Jayasinghe_Supun.pdf (1.47 MB)

A dynamic coefficient matrix method for the free vibration of thin rectangular isotropic plates

Download (1.47 MB)
journal contribution
posted on 21.05.2021, 13:17 by Supun Jayasinghe, Seyed M. Hashemi
The free flexural vibration of thin rectangular plates is revisited. A new, quasi-exact solution to the governing differential equation is formed by following a unique method of decomposing the governing equation into two beam-like expressions. Using the proposed quasi-exact solution, a Dynamic Coefficient Matrix (DCM) method is formed and used to investigate the free lateral vibration of a rectangular thin plate, subjected to various boundary conditions. Exploiting a special code written on MATLAB, the flexural natural frequencies of the plate are found by sweeping the frequency domain in search of specific frequencies that yield a zero determinant. Results are validated extensively both by the limited exact results available in the open literature and by numerical studies using ANSYS and in-house conventional FEM programs using both 12- and 16-DOF plate elements. The accuracy of all methods for lateral free vibration analysis is assessed and critically examined through benchmark solutions. It is envisioned that the proposed quasi-exact solution and the DCM method will allow engineers to more conveniently investigate the vibration behaviour of two-dimensional structural components during the preliminary design stages, before a detailed design begins.