
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Development Of A Graphical User Interface For
Control Of A Robotic Manipulatior With Sample
Acquisition Capability
Karan Desai
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Aerospace Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Desai, Karan, "Development Of A Graphical User Interface For Control Of A Robotic Manipulatior With Sample Acquisition
Capability" (2012). Theses and dissertations. Paper 1314.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1314?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR CONTROL OF A

ROBOTIC MANIPULATOR WITH SAMPLE ACQUISITION CAPABILITY

By

Karan Desai, B.Eng
Aerospace Engineering,

Ryerson University, 2010

A thesis presented to Ryerson University

in partial fulfillment of the
requirements for the degree of

Masters of Applied Science

in the Program of
Aerospace Engineering

Toronto, Ontario, Canada, 2012
© Karan Desai

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy

of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize Ryerson University to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the

public.

iii

Development of a Graphical User Interface for Control of a Robotic

Manipulator with Sample Acquisition Capability

Karan Desai

Masters of Applied Science, Ryerson University, Toronto, 2012

Abstract

Design of a graphical user interface (GUI) is a delicate task requiring

knowledge of human cognitive behaviour, design strategies and

programming skills. In this thesis work, a GUI has been developed for

control of a robotic arm that is capable of sample retrieval and collection.

This thesis work creates a bridge between technical and psychological

aspects of interface design by integrating the concepts of compatibility of

GUI with users, consistency in design, visual hierarchy and page layout.

The developed GUI is able to support control of the robotic manipulator

autonomously and manual operation using a joystick. Combinations of

control functions have been defined and implemented to alleviate the

operator’s efforts. The developed GUI is capable of task planning in offline

mode. Implemented intelligent server/client architecture enables efficient

remote control of the robotic arm. The presented interface can also be used

for multiple systems with minimal changes. To verify the effectiveness of the

developed GUI, experiments have been conducted using a robotic arm

comprised of three rotary joints and a scoop.

iv

Acknowledgements

I would like to thank God for giving me the endurance and perseverance to

complete this work.

I would also like to express my deepest gratitude to Dr. Guangjun Liu, who

has supported me throughout the course of my academic career through

encouragement, sound advice, good teaching, good company, and plenty of

great initiatives.

I also wish to express my deepest gratitude to my family whose countless

sacrifices have facilitated the completion of the thesis.

I would like to thank all of my colleagues, especially Dr. Yugang Liu, for

providing well-needed guidance. It is a pleasure to thank my friends for their

support during the preparation of this thesis. I am very grateful to everyone

who edited and reviewed my work. This thesis would not have been possible

without their help and support.

Karan Desai

v

Table of Contents

Chapter 1: Introduction .. 11

1.1 Introduction ... 11

1.2 A Brief History of the Human-Computer Interface ... 12

1.3 Graphical User Interface (GUI) .. 12

1.4 Thesis Objective and Contributions ... 16

1.5 Thesis Outline .. 17

Chapter 2: Literature Review and Background ... 18

2.1 Related Work ... 18

2.2 Astronaut Interface Device GUI ... 18

2.3 Graphical User Interface for Remote Control of a Robotic Arm ... 21

2.4 Graphical User Interface for Sequence Editor for Spirit (MER) ... 24

2.5 MotoSim EG ... 26

2.6 Background .. 27

2.7 Types of Robots ... 27

2.8 Graphical User Interface and Sensors ... 28

Chapter 3: Hardware System and Kinematics .. 31

3.1 Robotic Arm ... 31

3.2 Kinematics ... 35

3.3 Denavit – Hartenberg (DH) Convention .. 36

3.4 DH Parameter of Robotic Manipulator and Forward Kinematics Analysis 38

3.5 Inverse Kinematics Analysis: Geometric Approach ... 40

Chapter 4: Graphical User Interface Design Principles ... 43

4.1 Guideline to GUI design ... 43

4.2 Interface Design Guide by Donald Norman ... 43

4.3 Designing Interface: Patterns for Effective Interaction Design ... 47

4.4 Galitz’s View on Design Guidelines .. 50

4.5 Johnson’s User Interface Design Rules .. 52

4.6 Common Mistakes ... 55

4.7 User Interface Design Guidelines .. 56

vi

Chapter 5: SCL – Robotic Mast Graphical User Interface ... 64

5.1 Software Structure .. 64

5.2 SCL – Robotic Mast GUI ... 68

5.3 Experiments ... 84

5.4 Comparative Study .. 86

Chapter 6: Conclusion ... 88

6.1 Conclusion ... 88

6.2 Future Work... 90

References .. 91

Appendix ... 93

A.I atan2(y,x) ... 94

A.II Types of Robots ... 94

A.III mast_client.cpp ... 97

A.IV inputcheck.h .. 133

A.V task_signals.h .. 135

A.VI inv_kin.h .. 137

A.VII testjs.h ... 139

A.VIII server.c .. 143

vii

List of Tables

Table 3.1: DH parameters for the robotic mast -- 39

Table 3.2: Link lengths and description -- 39

Table 4.1: Comparison of user-interface design guidelines --- 56

Table 5.1: Interfacing joystick button with manipulator joints--- 74

Table 5.2: Function mapping for SCHUNK_INITIALIZE -- 77

Table 5.3: Function mapping for SCHUNK_CLEANUP --- 78

Table 5.4: Function mapping for SCHUNK_MOV_JNT -- 78

Table 5.5: Function mapping for SCHUNK_SET_PARAM --- 79

Table 5.6: Function mapping for SCHUNK_HALT_ALL -- 81

Table 5.7: Function mapping for SCHUNK_MOV_RETRIEVE -- 81

Table 5.8: Function mapping for SCHUNK_INV_KIN -- 82

Table 5.9: Function mapping for SCHUNK_GET_JNT_POS--- 84

Table 5.10: A Comparison of Reported GUIs --- 87

viii

List of Figures

Figure 1.1: Interaction of user interface between user and computer -- 13

Figure 1.2: Block diagram of remotely controlled system --- 13

Figure 1.3: The phases of intelligent interface design [31] -- 16

Figure 2.1: AIDMap GUI: Display of robots and known locations [10] --- 19

Figure 2.2: Graphical User Interface by Vajnberger et al [27] -- 22

Figure 2.3: RoSE Command Editor (Blurring due to ITAR Restrictions) [9] -- 25

Figure 2.4: Interface of MotoSim EG [32] --- 26

Figure 2.5: Simple user-interface design algorithm [23] --- 28

Figure 2.6: CanSat data flow block diagram [4] -- 29

Figure 3.1: A robotic arm for sample retrieval --- 31

Figure 3.2: Embedded computer (PC/104) -- 33

Figure 3.3: Joystick -- 34

Figure 3.4: The hardware schematic -- 35

Figure 3.5: Frame assignment for the DH convention [24] -- 37

Figure 3.6: Model of robotic mast --- 38

Figure 3.7: a) elbow-up, b) elbow-down configuration [11] -- 41

Figure 4.1: Microsoft Word 1995 with all the functions --- 44

Figure 4.2: MS Word 2012 user interface --- 45

Figure 4.3: “Next” button in Page 4 is perceived to in same location as other three pages [12] ------------ 53

Figure 4.4: Disorganized vs. organized page layout --- 60

Figure 4.5: Visual flow and predictability -- 61

Figure 4.6: Lynx Robot Arm Controller --- 62

Figure 5.1: Generalized Software architecture --- 64

Figure 5.2: Server process flow -- 65

Figure 5.3: Client data process flowchart -- 67

Figure 5.4: Network input dialog box --- 69

Figure 5.5: The drop down Command menu --- 70

Figure 5.6: The Parameter Input box --- 70

Figure 5.7: The Main screen and Quick Tabs --- 71

Figure 5.8: The Warning window -- 72

Figure 5.9: Task schedule dialogue box -- 75

Figure 5.10: Task scheduling and execution algorithm --- 76

Figure 5.11: Sample position data --- 76

Figure 5.12: Process flow of SCHUNK_MOV_JNT -- 80

Figure 5.13: Process flow for task space control --- 83

Figure 5.14: Snapshots for sample retrieval -- 85

Figure A.1: Robotic Arm Control Screen --- 93

Figure A.2: Arm movement options -- 93

Figure A.3: Cartesian Robot --- 95

ix

Figure A.4: Cylindrical Robot --- 95

Figure A.5: Articulated Robot--- 96

x

Nomenclature

AID – Astronaut Interface Device

CLI – Command Line Interfaces

CNC – Computer Numerical Control

DH – Denavit – Hartenberg

DOF – Degree of Freedom

GUI – Graphical User Interfaces

GUIDE – Graphical User Interface Development

HMI – Human Machine Interaction

IP – Internet Protocol

MER – Mars Exploration Rovers

OS – Operating System

RoSE – Rover Sequence Editor

ROV – Remotely Operated Vehicles

RSVP – The Rover Sequencing and Visualization Program

SCARA – Selective Compliance Assembly Robot Arm

SCL – Systems and Control Laboratory

TCP – Transmission Control Protocol

UAV – Unmanned Arial Vehicles

UDP – User Datagram Protocol

11

1 Chapter 1: Introduction

1.1 Introduction

Robotic arms have proven to be indispensable within industrial factories for

lifting heavy objects, moving with high speeds and repeating complex

performance with unerring precision [13]. Recently, robotic arms have also

demonstrated enormous application potential in planetary exploration [20].

One of the most significant planetary missions involves sample collection for

analysis and possible return to earth [20]. This thesis presents a graphical

user interface (GUI) to address the human-robot interaction issue associated

with control of a robotic manipulator that is capable of sample acquisition.

With the advancement of robotics technology, robots are getting closer to

human beings and the human-robot interaction has become an important

concern. As one of the most critical elements, human-robot interface

determines the quality of interactions between human and robots [28].

While developing human-robot interfaces, the developers need to be aware

of the technical knowledge of the end users. Furthermore, compatibilities of

the designed interface with the robot and the operator are crucial and should

get enough attention. The evolution of the user interface design of the

device for personal and entertainment use has experienced a giant leap. For

example, the revolutionary user interfaces of Apple’s iPhone have

successfully integrated the latest technology with specialized software [30].

In order to take the user interface design of robotic manipulators to the

same level, substantial research is yet needed [16].

12

1.2 A Brief History of the Human-Computer Interface

The need for people to communicate with each other has existed ever since

humans first walked upon this planet. The lower and most common level of

communication modes shared by humans are movements and gestures.

Movements and gestures are language independent. The next higher level of

communication mode is spoken language. Most people can speak one

language, some two or more. The third level is the written language. While

most people can speak, not all can write. Through its first decades, a

computer’s ability to deal with human communication was inversely related

to what was easy for people to do. The computer demanded rigid, typed

input through a keyboard (command line interface). Most people responded

slowly using this device. Finally, in the 1970s research at the Xerox’s Palo

Alto Research Center found an alternative to command line interface. The

Xerox system, Altus and STAR introduced the mouse, pointing, and selecting

as the primary human-computer communication method, which was later

popularized by Apple [6].

1.3 Graphical User Interface (GUI)

The human-robot interaction is difficult mostly because the human must be

familiar with the detailed software and hardware architecture of the system.

A user interface design is often significantly based on the technical

properties of the system rather than the operators and the objectives of the

system. This issue, along with inadequately designed GUI, leads to

disappointed users and interfaces that are complicated.

A user interface is a collection of techniques and mechanisms to interact

with a system. In a graphical interface, the primary interaction mechanism is

a pointing device of some kind. This device is electronic equivalent to human

13

hand [19]. Shown in Figure 1.1 is the simplest explanation of the interaction

between human and computer using user interface.

Figure 1.1: Interaction of user interface between user and computer

Most individuals have used GUI in one form or the other, for example:

Windows or Apple operating systems, cell phone operating systems such as

Android and iOS.

Tele-operated systems require intranet connection to transmit and receive

data. Figure 1.2 shows a block diagram of a tele-operated system. The user

selects the input using a keyboard, mouse or touch screen. Once the input

is defined, the system goes through a hierarchy of control sequences and

performs the action defined by the user. As soon as the action is completed,

the user interface gives a visual or auditory indication to the user.

Figure 1.2: Block diagram of remotely controlled system

Human Machine Interface (HMI) is the interface where interaction between

human and machine occurs. The goal of the interaction is to operate the

machines effectively and feedback from the machines helps the operator in

making correct decisions.

14

A graphical user interface (GUI) is a human-computer interface (i.e., a way

for humans to interact with computers) that uses windows, icons and menus

that can be manipulated by a mouse. A major advantage of a graphical user

interface is that they make an operation more intuitive, thus are easier to

learn and use. GUI is the most common form of user interface used in

current industry for operation of robots.

Graphical user interface was not very popular until recently, one of the

reasons is that the GUI requires considerably high computing power that

was not cheap until recently. Now, GUI has become the new norm when it

comes to interacting with machines. From the user’s point of view, an

interface is a software that allows them to perform tasks in their own way.

Hence, it must be easy to learn and use.

Command Line interfaces: command line interfaces (CLIs), use only text

and are accessed solely by a keyboard. The most familiar example of a CLI

is MS-DOS.

There are many different types of HMIs, depending on the purpose of the

system, the work environment and the cost. The most widely used are

graphical user interface and command line interface. Other than GUI and

CLI, below is a list and brief description of HMIs used for mobile and industry

robots.

1.3.1 Touch User Interface

This is a type of GUI that uses touchscreen or touchpad for the input and

output of the device. Feedback is given by haptic-feedback method to

confirm the entry of a command. This type of user interface is commonly

used in smartphones, photocopiers, or systems that do not require very

precise inputs.

15

1.3.2 Gesture Interface

This type of user interface is new and research is underway to make it user

friendly and effective. A gesture interface accepts input in-form of hand

gestures and mouse gestures. Gesture interface is very helpful for people

with disabilities because it recognizes gestures used for everyday

interactions.

1.3.3 Voice Interface

Commonly known as speech recognition technology, voice interface accepts

input and generates outputs by creating voice prompts. The user input is

made by “speaking” to the machine. This type of interface is very effective,

as it does not require physical interaction with the system. It is a relatively

new field and more research is required because the diverse range of speech

accents from humans all around the world make it harder for the machine to

recognize the input.

Designing such interfaces is a challenge and it requires a great deal of work

to make the interface logical, functional, accessible and pleasant to use.

Some engineers specialize in developing human machine interfaces and

changing the ways in which people interact with machines. Poorly designed

graphical user interface can be very frustrating for the operator, resulting in

errors. When industry robots have poorly designed user interface, errors are

bound to occur, and the result of this could be catastrophic.

A well-designed interface can eliminate the need of learning complex

theories, remembering commands and implementing complicated

algorithms. All of the complex work is done behind the interface by the

developers so that the users are provided with pleasant experience.

16

In order to make the final product meet the user’s expectations and

requirements, three necessary phases constitute the process of intelligent

interface design. They are Analysis, Design and Construction, as shown in

Figure 1.3.

Figure 1.3: The phases of intelligent interface design [31]

1.4 Thesis Objective and Contributions

The objective of this research is to investigate principles of graphical user

interface design and develop a graphical user interface for control of a

robotic arm that is capable of sample retrieval and collection. Based on a

thorough literature investigation, a GUI that can support autonomous and

manual control of the robotic manipulator is developed. The developed

interface is intuitive, user friendly, easy and enjoyable to navigate. In order

to alleviate commonly used functions such as scooping, resetting joints and

homing joints, shortcuts are developed and implemented.

Unexpected events such as connection failure may send robotic manipulator

in uncontrolled motion. The developed interface operates the robotic

manipulator using an internet connection; hence, it is necessary to develop

an intelligent server/client architecture that is capable of handling

unexpected events. Lastly, the developed user interface must be able to

operate robotic manipulator manually using joystick and schedule multiple

17

tasks for later execution. It should also be able to operate other robotic

manipulators with minimal changes and be operating system independent.

1.5 Thesis Outline

Chapter 2: Literature Review and Background

This chapter includes review of literatures related to this thesis work.

Furthermore, integration of graphical user interface and sensors is

explained.

Chapter 3: Kinematic Analysis and Hardware

This chapter explains basic concepts of robot kinematics. A forward and

inverse kinematic analysis is derived. Lastly, hardware system used during

the experiment is presented.

Chapter 4: Graphical User Interface Design Principles

In this chapter, guidelines of effective graphical user interface design are

presented. These guidelines have been used throughout the designed

interface.

Chapter 5: SCL – Robotic Mast Graphical User Interface

This chapter explains the developed and implemented “SCL – Robotic Mast

Graphical User Interface.”

Chapter 6: Conclusion

This chapter concludes the thesis by summarizing the developed user

interface and discussing possible future work.

18

2 Chapter 2: Literature Review and Background

2.1 Related Work

Extensive efforts have been reported on the design and development of the

graphical user interface. Remote operation and manipulation of robots has

previously been implemented to perform pre-set tasks, often in unsafe,

inaccessible and remote environments [2]. Igarashi et al. presented how

individuals perceive information and established an approach to develop a

GUI that efficiently presents critical information [8]. In tele-operation

research, one way of presenting feedback is by using forced haptic device

[3]. Anderson and Spong presented a way to make the operator aware of

remote conditions using forced feedback [1]. Vajnberger et al. developed a

GUI using visual feedback to operate a five-DOF robot arm, which was

implemented in MATLAB, making it platform specific and dependent, i.e., the

software had to be installed to use the interface [27]. Universal web

interfaces for robot control allows multiple users to control a robot over the

web [14], which is platform independent, allowing connectivity to different

frameworks. Goldstain et al. did a study on the systematic determination of

the interface design for web-based robot teaching [7].

2.2 Astronaut Interface Device GUI

Since it is not suitable for the suited astronauts to use mouse and a

keyboard to control the robots, a GUI called AID is especially designed to

control the robots by suited astronauts. In order to increase readability, the

AID display program is set up in window manner, where multiple display

screens are viewed one at a time using selection buttons. Once the robot is

selected by the operator, all the commands are sent to that specific robot.

“The current display page for AID includes an overhead “radar” view showing

19

the locations of all robots, a procedure tracking page, a predictive

consumables gauge, an image display page and a robot movement control

page. [10]” Because the AID uses standard windows software, all of the AID

GUI applications can be developed using a standard Windows XP computer.

The AID GUI is divided in different screens, thus, confusion is avoided while

reading the information as each sub-display will give information about

specific entities.

2.2.1 AIDMap GUI

The AIDMap GUI graphically displays the location of all the robots and stable

locations (such as waypoints, craters etc.). Objects are defined as dots with

their name on the side if available. If the displayed object is a robot and has

a valid heading, then the heading indicator is also displayed, shown in Figure

2.1. Center of the map can be a robot or a fixed location, and is selected by

the astronauts. AIDMap GUI offers two options in a map indicator - heading

up map and north up map. The Heading Up map mode is found more useful

when the astronauts are moving. As robots move, their position is updated

on the map. Once the target object is selected, distance and bearing is

displayed as texts in GUI.

Figure 2.1: AIDMap GUI: Display of robots and known locations [10]

20

2.2.2 Task Checklist GUI

This part of the GUI displays task to be completed along with the estimated

time required to complete the task. A task item automatically expands when

it is the current task and collapses when it is not.

2.2.3 Consumables GUI

The gauge display (right side of Figure 2.1), shows the present and future

status of the consumable for the agent. If an agent has an active job,

amount of needed consumables for the job is shown by the green bar while

the white bar shows the estimated supplies needed for the all the future

jobs. There are two configurable gauge limits, soft and hard, which by

default are 20% and 10%, respectively.

2.2.4 Camera GUI

The Camera GUI shows an image from the selected cameras. This provides

the user with the ability to view items of interest encountered by the agent

and improves situational awareness for commanding robots. Using a

dropdown menu, users can select a camera from the list of available

cameras. The Pan/Tilt button is activated if the selected camera has such

feature.

2.2.5 Robot Move GUIs

The AID is designed to work with multiple robots; this makes it difficult for

the developer to design a GUI such that each robot can be controlled with

one GUI. In order to maintain the simplicity of the GUI, each robot is

responsible for interpreting the command. This may lead to breaking down a

21

single command in multiple movements or ignoring the commands all

together. In order to make the input easier, robot’s movement by the GUI is

separated in two different windows. The first interface allows a user to enter

simple command such as drive, turn or rotate in place. The commands can

be sent by simply tapping on the screen. Second interface allows input of

more complicated commands.

The AID has successfully shown that it is possible to control multiple robots

using a single application. Since the AID uses common GUI for multiple

robots, it saves time and money for both training agents and the

development of GUIs. Design of the AID GUI is very interesting as it shows

sub-display for each activity while showing important information (such as

consumable) all the time. Simplicity of the GUI makes it user friendly and

effective.

This particular study served as the base reference for implementing and

developing the GUI presented in this thesis. When it comes to space

applications, redundancy is very important. The AID GUI lacks this feature.

Though one can control and command each robot, there is no way of

confirming if the sent command is correct. It was also concluded that there

should be a method to review all the commands sent to the system. Having

such a feature will provide easy access to the command history in the case

of a failure.

2.3 Graphical User Interface for Remote Control of a Robotic Arm

The graphical user interface shown in Figure 2.2 was developed by

Vajnberger et al to remotely operate a five DOF robotic arm. The Robotic

arm controlled by the interface does not have sensors built in to report the

position of the arm. This interface has an incredible visual feedback provided

22

to users beside the control panel. The setup of controls and feedback makes

it an ideal user interface to operate the robotic arm remotely.

Figure 2.2: Graphical User Interface by Vajnberger et al [27]

The interface shown in Figure 2.2 was designed and developed using GUIDE,

available MATLAB toolbox [27]. Since MATLAB was used to develop the

interface, an additional toolbox called TCP/UDP/IP was installed to provide

communication between the server and client computers. Due to the lack of

available toolbox in MATLAB to provide remote visual feedback,a VNC server

was installed. The camera is connected to the server computer and using the

VNC server one can gain access to the server from a remote desktop. In

order to access the visual information acquired by the camera, a VNC server

23

was used. Like every remote controlled robot arm, this arm also has two

different communication systems. One of them used between the server and

client, as described above. The second one provides lower level

communication between the robotic arm and corresponding computer. The

used communication is the serial communication RS-232. Serial

communication is the most common low-level protocol for communicating

between two or more devices [29]. In order to operate the arm using the

GUI, user chooses the degree of freedom to manipulate the direction of the

movement. By simply clicking on the arrows shown in the interface, users

can change the position of the arm as per their requirement. Besides the

visual feedback, every joint is implemented with contact micro-sensor. When

DOF reaches its final position, the micro-sensor becomes active, and further

movement is stopped avoiding damage to the arm.

Vajnberger et al’s interface presents a simple but effective way to control a

robotic arm but it has few limitations that cannot be over looked. First and

foremost the interface is developed using MATLAB and requires installation

of additional software. This makes the interface system specific and requires

additional work before the interface can be used. The interface presents

options to control each joint individually but there is no option for controlling

all the joints at the same time. It has limited number of available functions

to use. Lastly, this GUI can only be used with the system it is developed for,

such as, five degree of freedom robotic arm. The interface requires

redevelopment to control multiple systems.

A final recommendation was to develop an interface that is easy to use,

allows manual operation of a robotic arm using a joystick and has numerous

functions to control a robotic arm.

24

2.4 Graphical User Interface for Sequence Editor for Spirit (MER)

The author will now discuss the user interface developed and used for the

Spirit rover. Over the years, JPL Robotics has created many successful user

interfaces to control robotic systems. “These robots have ranged from multi-

arm manipulators for microgravity deployment or terrestrial surgical

applications, to legged prototype-rovers for rough terrains, to multi-wheeled

rovers including flight systems such as the Mars Pathfinder Sojourner Rover

and the Mars Exploration Rovers (MERs), Spirit and Opportunity. [28]” The

Rover Sequencing and Visualization Program (RSVP) is the name of the

development program for the graphical user interface of MER. Linux OS was

not the first choice for this development project, but was used afterwards as

it uses fewer resources. There are two parts of RSVP, The Rover Sequence

Editor (RoSE) and HyperDrive. Each of these individual applications can run

in standalone mode, but they are more powerful when used together.

RoSE is a Java application compiled using IBM’s much faster compiler, Jikes.

RoSE provides efficient GUI support to all the mission commands and

interfaces with the institutional tool SEQGEN for sequence validation [9].

RoSE is used to create all command sequences sent to the Mars rovers for

every day of the MER mission [28]. Shown in Figure 2.3 is the RoSE

interface. This technique simplifies the users’ operation to locate all the

available commands and makes it simpler for the developers to add new

commands. This interface was created for the users who are familiar with

the rovers and its system.

25

Figure 2.3: RoSE Command Editor (Blurring due to ITAR Restrictions) [9]

The level of interaction required by the operator is determined by the

mission profile. Identifying optimal balance for decision making between

operators and robots require understanding of the mission objectives,

operating environment and human behavior. In space-based mission,

reliability is crucial and there is zero error tolerance. This principle was used

to develop the task management feature of the interface presented in this

thesis. RoSE only allows sequence generation; there is no option to operate

the system in real time. In order to enable users who do not have the prior

knowledge of the system, it was concluded that the same interface should be

used for both autonomous control and sequence planning.

26

2.5 MotoSim EG

MotoSim EG is software used for the offline teaching and task execution of

robotic manipulators. This software and its functionalities are very similar to

the RoSE. They both are sequence generators for robots and robotic

manipulators, respectively. The ability to show a simulation of the task that

the manipulator is going to perform makes MotoSim unique. By doing this,

users can verify if the commands are in correct order and if the manipulator

will perform as expected before the operation starts. Figure 2.4 shows the

MotoSim EG interface with selected robotic manipulator.

Figure 2.4: Interface of MotoSim EG [32]

In order to schedule any task, simple or complex, users need to type

commands. For example, “MOV” has to be entered by the operator in order

to move the robot to a particular configuration [32]. Anyone using this

software would require prior experience with the software. Since users need

to remember the command to schedule a task, it can lead to errors while

typing the command. In order to avoid such situations, it is established that

the users should have the choice of typing commands or selecting them

27

when scheduling tasks. This prevents users from making a mistake without

compromising the speed and accuracy.

2.6 Background

People’s interpretation of the word ‘robot’ can vary depending on their

background, but most commonly the answer would be, “Robots are

machines that look like human”. Ironically, they are the hardest to design.

Robots can be classified by their application, their work environment or by

their design. Robots on the Earth can be further differentiated in other types

such as industrial robots, household robots, service robots and military

robots. Robots in space are remotely operated vehicles, autonomous or tele-

operated, in-orbit service robots and remote manipulator system, like the

Canadarm.

2.7 Types of Robots

Humans have been using robots for the past few decades in different forms

and the use of robots has been increasing exponentially. They are being

used in manufacturing industries, military, transportation, medical

application, and agriculture.

The job of a typical robotic manipulator is to perform tasks that are difficult,

dangerous, or dull. They perform the same task repeatedly with the same

precision, whereas humans cannot perform these repetitive tasks with

required precision. Dangerous tasks such as lifting heavy object or handling

reactive chemicals can also be performed using industry robot without

endangering a human life. Due to the speed, accuracy and cost effectiveness

of industry robots, they are mostly used in the assembly plants. These types

of robots include cartesian robots, cylindrical robots, polar robots, articulated

28

robots, parallel robots and SCARA (Selective Compliance Assembly Robot

Arm) robots.

2.8 Graphical User Interface and Sensors

A user interface of the robotic manipulators works in the same way as the

user interface of computer programs. Figure 2.5 shows the generalized

design algorithm for a user interface. The user interface of a robotic

manipulator is on a remote machine, which interacts with the robotic

manipulator using radio or data link.

Figure 2.5: Simple user-interface design algorithm [23]

Sensors are very important part of any robotic system. They are the “eyes”

and “ears” of the mobile robots. There are many different types of sensors

such as laser range finder, shock sensor, temperature sensor, pressure

sensor and GPS. All of these sensors are essential for the operation of a

robot. When operated in real time, these sensors provide the condition of

robots to the operator so the operator can decide the proper steps to control

it. If the robot is autonomous, then the data from these sensors are sent to

29

an onboard computer. Onboard computer is pre-programmed with intelligent

algorithms to control the rover with the available data.

Figure 2.6 shows the data flow block diagram of a CanSat, which is equipped

with GPS, onboard microprocessor, temperature and pressure sensor.

Figure 2.6: CanSat data flow block diagram [4]

The GUI is located on a ground station, which communicates with the

communication system of a CanSat using radio link. Once the command is

sent, system performs the task and sends back the feedback that is seen on

the GUI. Typically, this is how every GUI works for rovers or mobile robots.

Communication between robots may not be in real time; in such matter,

data is uploaded on the robot when communication is established.

Information collected by these sensors is also sent to the ground station or

control center if the robot is operated in real time. The user interface or

human machine interface displays this information to the operator, which

allows the operator to make necessary changes. Even the most autonomous

robots require a user interface, as it gives the way for human to interact

30

with the robots. Occasionally a user interface is used only for the

observation purpose of the hostile environment rather than the operation of

the system. Most robots have similar user interface consisting of few buttons

and predefined functions.

31

3 Chapter 3: Hardware System and Kinematics

The following section briefly explains hardware system used in the

experiment for testing the developed user interface.

3.1 Robotic Arm

The robotic arm shown in Figure 3.1 is comprised of three rotary modules

and a scoop. The rotary modules are known as Universal Rotary Actuator

PRL and built by Schunk GmbH & Co. KG. Modules PRL 60, PRL 80 and PRL

80 are used for wrist, elbow and shoulder joint, respectively. The individual

PRL modules have flexible mounting possibilities to an individual lightweight

arm using connecting elements [21]. The end-effector of this arm is a scoop,

which is specially designed for sample scooping. These PRL modules are

connected with customized robotic links, as shown in Figure 3.1. The PRL

rotary actuator is electrically actuated by the fully integrated control and

power electronics.

Figure 3.1: A robotic arm for sample retrieval

32

Each module has a built-in encoder that can provide position, velocity and

acceleration. In case of the power failure, integrated magnetic brakes can

hold the position of the manipulator. Modules allow varied range of

communication methods including Profibus DP, CAN-Bus or RS-232 [21].

The PRL modules are connected electronically to a CAN-Bus interface, which

is controlled by an embedded computer running Linux.

3.1.1 Embedded Computer - PC/104

PC/104 is a standard of the embedded computers defined and controlled by

the PC/104 Consortium in February 1992 [18]. The PC/104 Consortium

defines both the form factor and computer bus of an embedded computer.

PC/104 is popular for small computing modules typically used in industrial

control systems and vehicles. It is specially used where the applications

depend on a reliable data acquisition despite an often-extreme environment.

PC/104 Systems are small and have very low power requirement, making

them the ideal candidate for robotics applications. A typical system includes

common functions like a CPU, motherboard, analog-to-digital converter and

digital input/output module. Since PC/104, as shown in Figure 3.2, is a

stripped down version of a PC with a different form factor, program

development tools used for PCs can be used for the PC/104 systems as well.

This greatly reduces the learning curve for the programmers and hardware

designers.

The embedded computer system is connected to the robotic arm using a

CAN-Bus for data communication. An on-board Ethernet port is connected to

the Ryerson University’s Systems and Controls Laboratory’s network using

an Ethernet cable. This allows control of the robotic manipulator over the

internet connection.

33

Figure 3.2: Embedded computer (PC/104)

3.1.2 Joystick

A joystick, also known as the control column, is a main control device of

many modern aircrafts. A joystick is an input device consisting of a stick that

swivels on a base and reports its direction to the connected device. In recent

times, the implementation of joysticks has become very common in

industrial applications such as; cranes, robotic arms, mining trucks.

Furthermore, most Unmanned Aerial Vehicles (UAVs) and Remotely

Operated Vehicles (ROVs) consist of at least one joystick to control either

the vehicle itself or onboard cameras.

Most modern joysticks have two-dimensional movement, similar to a mouse.

A joystick is generally configured such that moving the stick forward or

backward corresponds to a movement along the Y-axis and moving it

sideways corresponds to movement along the X-axis. Additionally, joysticks

also have one or more buttons; they are simple push button switches. Most

modern joysticks use a USB interface for connection to PCs.

http://en.wikipedia.org/wiki/Input_device

34

A Joystick used in this experiment is a Logitech Attack™ 3 Joystick, shown in

Figure 3.3. It is “An easy-to-use joystick with a full array of customizable

controls that gives you durability and ambidextrous control—right out of the

box. [15]” It has full X-Y axis control and eleven customizable buttons. Force

feedback on this device is unavailable. Like most joysticks, it also uses a

USB interface for PC connection.

Figure 3.3: Joystick

The developed GUI is deployed on the client computer, as shown in Figure

3.4. The operator can send command through the GUI to control the robotic

manipulator for sample retrieval and collection.

35

Figure 3.4: The hardware schematic

3.2 Kinematics

Robotic manipulator is typically comprised of series of links connected by

joints. Simple joints, such as revolute and prismatic, of robotic manipulators

have one degree of freedom [24]. A revolute joint, also known as pin joint,

is a one DOF kinematic pair, which provides rotation function. A prismatic

joint, also known as slider, is a one DOF kinematic pair, which provides

linear sliding movement between two bodies.

There are two parts to the kinematics analysis, forward and inverse. In

forward kinematics, given the angles of joints, one is interested in finding

the position and the orientation of the end-effector. In inverse kinematics,

the position and orientation of the end-effector is known and one is

interested in finding the joint angles for each joints. The inverse kinematics

is more useful when programming a robot or designing a user interface.

Users want to manipulate the end-effector since most tasks such as

scooping, grasping and painting are performed by the end-effector.

36

3.3 Denavit – Hartenberg (DH) Convention

Denavit and Hartenberg proposed a matrix method for the forward

kinematics analysis [11]. First, the DH convention parameters will be

expressed and the forward kinematics analyses will be done accordingly.

The DH convention is mainly used in robot manipulators that are comprised

of an open kinematic chain, in which each joint has one degree of freedom.

In DH convention, each homogenous transformation matrix Hi is represented

as a product of four quantities associated with each link. The four

parameters ai, i, di, and Өi are known as link length, link twist, link offset,

and joint angle, respectively. For a revolute joint, Өi is the revolute variable

and for a prismatic joint, di is the prismatic variable. Using these

parameters, the orientation matrix
 -

 is given by equation 3.1.

[

]

 3.1

The DH convention is implemented through following steps; Figure 3.5

indicates the frame assignment. Here, ai is the distance from axis Zi-1 to Zi

measured along the axis Xi. Angle i is the angle from axis Zi-1 to Zi

measured about the axis Xi. Distance di is the distance from axis Xi-1 to Xi

measured along the axis Zi-1. Lastly, angle Өi is the angle from axis Xi-1 to Xi

measured along the axis Zi-1.

37

Figure 3.5: Frame assignment for the DH convention [24]

1) Number the links and joints starting from the base. The joints are

numbered 1 to i and links are number 0 to i.

2) Assign link’s co-ordinate system for each joints according to the

following rules:

a. Zi-1 axis is chosen along the axis of motion of the joint i.

b. Axis Xi is set so it is perpendicular to and intersects Zi-1 axis. The

origin Oi is assigned at the intersection of axis Xi and Zi. There

are three possible instances when assigning Xi axis.

i. When axis Zi-1 and Zi are not coplanar, there exists only

one possible line for axis Xi, which is the shortest line from

axis Zi-1 and Zi.

ii. When axis Zi-1 and Zi are parallel to each other, there are

infinite numbers of solution for the assignment of axis Xi.

Generally, it is simplest to choose axis Xi such that it

passes through origin Oi-1 making di zero. In this scenario,

 i is always zero.

38

iii. When axis Zi-1 and Zi intersect, axis Xi is normal to the

plane. Positive direction of axis Xi is arbitrary for such

cases. Parameter ai is always zero in such scenarios.

c. Axis Yi is chosen to satisfy the right-handed co-ordinate system.

d. To assign co-ordinate system to the tool, axis Zn is chosen in the

approach direction, axis Yn is chosen in the slide direction and

axis Xn is chosen in direction normal to the other axis.

3.4 DH Parameter of Robotic Manipulator and Forward Kinematics

Analysis

To find the DH parameter of robot, the wire frame model must be drawn,

shown in Figure 3.6.

Figure 3.6: Model of robotic mast

The DH parameters for the manipulator are defined in Table 3.1 and Table

3.2 contains the length of links and their description.

39

Table 3.1: DH parameters for the robotic mast

i i ai di Өi

1 0 l1 0 Ө1 (Joint Variable)

2 0 l2 0 Ө2 (Joint Variable)

3 0 l3 0 Ө3 (Joint Variable)

Table 3.2: Link lengths and description

Parameters Value Remark

l1 0.460 m Length of the upper arm (the link

connecting Shoulder and Elbow)

l2 0.440 m Length of the fore arm (the link

connecting the Elbow and Wrist)

l3 0.110 m Length of the scoop (from the tip to

the centerline of the Wrist)

 =

[

]

 3.2

 =

[

]

 3.3

 =

[

]

 3.4

40

Using equations 3.2, 3.3, and 3.4 transformation matrix from initial frame

zero to final frame n can be found. The transformation matrix T3

 is given by

equation 3.6.

 T3

 =

 3.5

T3

 =

[

]

 3.6

where, Px =

 Py =

Orientation, , of the end-effector is given by equation 3.7 and position of

the end-effector in global frame is given by Px and Py.

 3.7

3.5 Inverse Kinematics Analysis: Geometric Approach

The inverse kinematics analysis is performed to find the joint angles from a

given pose of the end-effector. For the common kinematics arrangements,

such as manipulator in this thesis, the variable q1, q2, q3 corresponding to O0

can be found using a geometric approach. For many robots, the orientation

is set by a wrist at the end of the manipulator. For simplicity, convert

position of tip point with respect to the base, to position of the wrist point

with respect to O0. Then the analysis is performed using the wrist point

position. The general approach to solve for joint variable qi using a

geometric approach is by projecting the manipulator onto xi-1 and yi-1 plane

41

and solving a simple trigonometry problem. For example, to solve for

project the manipulator onto the x0 – y0 plane and use trigonometry to find

 .

Given XE, YE and orientation, , the joint variable can be found using the

method below.

 x2 = XE – l3 cos() 3.8

 y2 = YE – l3 sin() 3.9

Therefore, cos() =

 3.10

 sin() = √
 3.11

The of the square root generates two solutions for , they correspond to

the elbow-up and elbow-down, respectively, as shown in Figure 3.7.

Figure 3.7: a) elbow-up, b) elbow-down configuration [11]

Therefore, can be found using equation 3.12,

 =) 3.12

42

Similar process is used to find the joint variable . Shown below is the

calculation for finding .

 = 3.13

where, = 3.14

cos(K) =

 √

3.15

 sin(K) = √ 3.16

Now that the values of and is known, the joint variable can be

easily calculated the using equation 3.17.

 3.17

In the next chapter, guidelines of an effective graphical user interface

design are presented. These guidelines have been used throughout the

developed interface.

43

4 Chapter 4: Graphical User Interface Design Principles

The purpose of this thesis is to design a graphical user interface for a robotic

manipulator. It is essential to understand how a graphical user interface

works and the process used to design it. This section will focus on general

guidelines used for designing and developing a graphical user interface.

4.1 Guideline to GUI design

With the ever-changing technology, there are no set rules that can help

design an interface. There are still some basic principles for all the good

interfaces. Unfortunately, they are exhibited by very few programs. The

author will discuss some of the most acknowledged user interface design

guidelines. Subsequently, they will be compared against each other. Most of

the guidelines discuss about designing an interface for software or websites.

Focus of this research is to develop a user interface for a robotic arm. During

the operation of a robotic arm, an operator can get hurt if incorrect

commands are executed. Simple system crash on the computer may have

adverse effect on the robotic arm such as sending the arm in out of control

motion.

4.2 Interface Design Guide by Donald Norman

First, the author will discuss the interface design principles defined by

Donald Norman in early nineties. In his book, The Design of Everyday

Things, he explains about how to take a conceptual model to a physical

design. Throughout the book, Norman strives to explain that the visibility,

feedback, constraints and consistency are essential for an effective user

interface design [17]. These principles are discussed below in detail.

44

4.2.1 Visibility

There are two aspects to making objects visible: what a user can do and

response to the action performed. In terms of what a user can do, the more

visible the functions are, easier it is to use them. Users cannot do what they

cannot see, also known as the concept of what you see is what you get

(WYSIWYG). While it is important to make all the functions visible, one

should not make a cluster of functions. They should be organized in such a

way that they are easy to navigate. Most people who have used wording

software can relate to the example. Figure 4.1 shows the user interface of

Microsoft (MS) Word 1995 with all the available functions And Figure 4.2

shows the interface of Microsoft Word 2012. By quick visual comparison,

several differences between two user interfaces designed for the same

software can be noticed.

Figure 4.1: Microsoft Word 1995 with all the functions
1

The interface of MS Word 2012 is lot more visually appealing than of MS

Word 1995. In MS Word 2012 important functions are visible on the main

screen and ribbon style menus displays additional available functions,

whereas MS Word 1995 makes a cluster by displaying all the available

functions.

1
 http://www.codinghorror.com/blog/2006/02/sometimes-a-word-is-worth-a-thousand-icons.html

45

Figure 4.2: MS Word 2012 user interface

4.2.2 Constraints

The design concept of the constraints refers to determining ways of

restricting some of the actions a user can perform. For example, sliders used

to adjust volume on a computer. It can only be moved between the lower

limit of zero to upper limit of hundred. By constraining, developers can make

sure that there is no mis-operation. According to Norman, there are multiple

ways of achieving that: physical constraints, semantic constraints, cultural

constraints and logical constraints [17]. Physical constraints are physical

limitations that constraint possible actions. It is not possible to move the

cursor outside of the screen; that is a physical constraint. Logical constraints

use reasoning or logic, for example number sequences or alphabetical order.

Semantic constraints rely on answer of why we do what we do. Lastly,

cultural constraints rely on accepted cultural conventions, such as red means

danger or stop.

4.2.3 Feedback

“Give each action an immediate and obvious effect. [17]” Feedback is very

important when designing an effective user interface. Feedback is necessary

in two cases, letting users know of their actions and in the case of errors

46

letting users know the type of error. Feedback is about sending information

back to the users. One cannot start the next task unless it is made clear that

the current task has been completed. Feedback is also necessary in case of

errors. We, as humans, are prone to making errors. It is the responsibility of

the interface designer to warn users when an error is made.

4.2.4 Consistency in Design

The system should be consistent in its structure and commands to minimize

the memory problems faced while performing the task. His research shows

that the lack of consistency leads to errors. Consistency means using the

similar elements to achieve similar tasks. A consistent interface is the one

that follows rules such as using the same input method. Throughout the

interface, texts used should be same except in the case of warning users of

an error. The use of graphics and colors are important and useful if kept

consistent. Everyone knows red color is used to warn when something is

wrong. Now if the developed interface uses red color to indicate that the

system has no error. That may lead to confusion, which may result in errors

made by the user.

Knowing how to design an interface is just as important as knowing, what

the users want to use the software for? Simplifying the structure of the tasks

leads to less use of long-term memory. This results in fewer errors made by

users. Tasks should be simple in structures, requiring less planning or

problem solving. Complex tasks can be restructured into a series of simpler

tasks eliminating the risk of error. As mentioned earlier, this can be achieved

by making things as visible as possible. When clicked on the button labelled

“add” on calculator, it should do the addition of two numbers not the

opposite. Hence, one needs to get the mapping right. Use the power of

constraints as much as possible; it is the easiest way of forcing users to do

47

the right thing. Always expect that the users will eventually make a mistake

so design for error. Last but not least, when all else fails, standardize the

task; this leaves users with no choice but to do what is being shown.

4.3 Designing Interface: Patterns for Effective Interaction Design

Jenifer Tidwell discusses numerous practices currently used by interface

designers to make an effective GUI. In her book, Designing Interface:

Patterns for Effective Interaction Design, she discusses about different

layouts used to make an interface look appealing. It is of utmost important

to focus on the users even before starting the interface design. Tidwell also

explains different means of collecting information from users that will lead to

fewer errors.

4.3.1 Focus on Users

“A Means to an End: Everyone who uses a tool – software or otherwise – has

a reason for using it. [26]” For instance, performing a search, buying a

product and in the case of this thesis: operating a robotic arm. Easiest way

of learning what the users want to do is by asking “why”. For examples, why

does a person use an email client? Answer is obvious “to read an email”.

When doing a basic research about users’ need, one should try to learn

following:

 What they would like to achieve by using the software?

 Specific task they would like to perform

 Prior knowledge of using similar software

 Language and words they use to describe what they are doing

These can be achieved by various ways such as surveys, case studies and

observations. When designing a user interface, one should also keep in mind

48

what inspires and motivates the users to learn. In the end, develop a

software that can be used “out of box”.

4.3.2 Organizing the Page Layout

In simple words, a page layout means laying information on a page that

makes the page attractive and appealing to users. There is more to page

layout than just making the page attractive. An experienced designer can

arrange the page in such manner that not only it makes the page appealing

but also draws users’ attention to the most crucial part of the page. There

are three important aspects of page layout: visual hierarchy, visual flow and

use of dynamic displays.

4.3.3 How to List Things

Most search results, articles, forum posts, documents and more are in one

way or the other shown in the form of a list. Every webpage or moderately

complex interface includes lists. By looking at a list, the user should be able

to get a general idea of what is the purpose of the list. At times, simple but

carefully chosen words can fulfill that purpose or sometimes it requires more

than just words. The list should also have a sorting order, for example sort

alphabetically or by time. Grouping the items inside the list is an effective

way of displaying similar types of information. By implementing that, users

do not have to browse the entire list to find similar commands or options.

Now that the list is there, what should users do with the list? Generally,

when users see a list, their natural instinct is to click on their choice for

further work.

According to Tidwell, a list can be displayed in two-panel selector, where one

panel shows the list of items and other shows the content of selected item

[26]. This is commonly used in picture gallery of every computer. Another

49

effective way is to list all the items or information. When users select the

item listed, the interface should open that list to show additional related

information.

4.3.4 Doing Things: Actions and Commands

Designing an interface that looks good and is easy to navigate is only one

part of making an interface. One other aspect is getting the interface to fulfill

its purpose by allowing users to perform correct actions. More often than

not, a designed interface contains buttons. They are placed directly onto the

interface and by simply clicking on it; the intended action can be performed.

Menu bars are also common example for putting more commands in less

space. Certain actions and commands such as keyboard shortcut “Ctrl-S”

have been used for saving the file. Those traditional commands should be

kept in mind and should be used for the same purpose they are intended for,

altering them can lead to confusion among the users. Additional ways of

displaying available actions are pop-up menus, drop-down menus and action

panels. One interesting feature to note is Hover tools. It is used to show

more information about the task or actions. When users take the mouse

pointer over the button or input field, more options are displayed. This is

typically used to display what the purpose of the function is and how to

utilize the function.

4.3.5 Getting Data from Users

At some point, users have to input relative data to perform the action. For

example, to add two numbers on a calculator, the user needs to enter two

numbers so that the addition can be performed. It is hard for users to enter

data if they do not know what they are being asked. The interface must be

very specific about what users are being asked to enter. When possible, list

50

all the choices available for the users so that they do not have to remember.

This leads to fewer errors and happy users. Drop downs, combo boxes and

lists are a great way to ensure this. When entering data, users are bound to

make mistakes. If an error is made, the interface must politely indicate the

error and allow them to return to the last stage.

There are multiple ways of getting input from users such as check box, radio

buttons and text field. Choice of which form to use depends on the available

space. Some controls take up more space than the others do. It is also

dependant on the how experienced users are with computers. For users, new

to the computer, using a text field for data input may lead to more errors. In

that case, one should use radio buttons so that all the choices are stated and

visible. Available technologies also play an important role in selecting which

form one uses to get the user’s input. Writing a GUI in TML provides limited

options whereas open source GUI toolkits provide richer sets of option.

4.4 Galitz’s View on Design Guidelines

4.4.1 Aesthetically Pleasing

Visually pleasing design is attractive to the eye and makes a system

accessible and inviting. It also conveys messages clearly to users. A visually

pleasing design can be provided by creating meaningful contrast between

screen elements. One should create groups and align screen elements to

make the interface more pleasing.

4.4.2 Clarity and Compatibility

The interface must be clean in visual appearance and should be

understandable. It should relate to the user’s real world concepts and

functions. The design must be compatible with the needs of the user and

51

client. It is very important to understand the users’ need to create an

efficient interface.

4.4.3 Configurability and Consistency

The interface should be designed such that the end users can change the

layout according to their need. Easy configuration and reconfiguration of a

system enhances a sense of control, encourages an active role in

understanding and allows users’ personal preferences. Design consistency is

very common in all the systems, be it a simple interface such as calculator

or complex interface such as Windows 7. Consistency is very important as it

reduces the learning curve by allowing the skills learned in one situation to

be transferred to another.

4.4.4 Directness and Predictability

The tasks should be performed directly and intuitively. In order to avoid

mistakes, the interface should provide direct and intuitive ways to

accomplish tasks. It can be achieved by simply putting tabs for each

important function. Tasks, displays and movement through the system

should be anticipatable through the user’s previous knowledge. Another

feature seen in Linux is tab completion, which is predicting the full command

by pressing a tab key once first three letters of the command are written.

4.4.5 Simplicity

Complex systems are often not fully utilized or used incorrectly. Complexity

confuses the user that leads to erroneous input. Simple interface is easy to

learn. By designing a simple interface, one can make it efficient and avoid

mistakes resulting in less time and energy consumption.

52

4.5 Johnson’s User Interface Design Rules

Following user interface design guidelines is not as simple as following

cooking recipes. Designers are often given final goal of the user interface.

Most design rules are general, leaving them open to any interpretation

designers like. Occasionally, more than one rule will apply to the same

situation and lots of trade-off is necessary. Lastly, many recent developers

of the user interface lack background in cognitive psychology. Jeff Johnson

explains some design rules in a way that is easy to understand by someone

who does not have psychological background.

4.5.1 Focus on Users and Tasks First

Everything humans perceive is based on what they expect to perceive [12].

Perception is based on experience, past and future; same applies for a user

interface. It is important to know background of the users when focusing on

them. Users will expect and perceive information in a user interface based

on their past. In Figure 4.3, based on the first three pages, users expect

“Next” button to be in the same location. ence, it is important to know

users before designing the interface.

Perception is also biased by users’ goals [12]. Users tend to ignore

everything except what they are looking for. For example, when browsing

website with specific goal in mind, users quickly skim through the screen

and only read texts related to their goals. Proximity indicates similarity

therefore keep similar functions together.

53

Figure 4.3: “Next” button in Page 4 is perceived to in same location as other three pages [12]

4.5.2 Conform the Users’ View of the Task

Throughout the interface, the developer should strive for naturalness. As

explained earlier, it is natural for users to read from left to right, “Ctrl + C”

means copying the selected text; keep everything that way. Humans in

general seek visual structures wherever they look [12]. Hence, visual

hierarchy is important. It lets people focus easily on the relevant

information. Break the information in to distinct sections and break large

sections in subsections. Reading big chunk of texts is boring; break them

into related and distinct sections. This makes the interface easy to navigate

and interesting. Present higher level and lower level functions as a

hierarchy. Higher-level functions should be more direct and visible to users.

Users of the software do not need to know programming details of the

software.

54

4.5.3 Design for the Common Case

Once all the requirements of the user interface are known, determine

functions that will be used often. Design the interface around the commonly

used functions, it makes the interface easy to use and navigate. When using

texts in the interface keep them simple and avoid uncommon or unfamiliar

vocabulary. When describing a function, use layman’s term so that it is easy

to grasp. It is best to avoid noisy background and tiny texts. Using color in

the user interface can greatly improve the look and functionality of the

interface. Red color indicates danger or warning so avoid using it unless it is

for warning. Similarly, green, orange and yellow colors also have a pre-

determined function.

4.5.4 Do Not Complicate Users’ Task

Attention span of a human brain [12] is limited when engaged in more than

one task. During the operation of the software, users want to finish the work

as early as possible. In order to make the user interface effective and easy

to use, avoid giving users extra problem to solve when they are using the

software. Sometimes it is impossible to proceed further without solving a

complex problem. In such cases, divide the problem in smaller steps and do

as much work as possible “behind the screen”.

4.5.5 Design for Responsiveness

Using software, which does not provide feedback, is confusing. Without

feedback, it is difficult to know if the action performed was correct or not. To

avoid the confusion, acknowledge user actions instantly. Provide users with

as much feedback as possible. In case the action performed is wrong, warn

the user about it and show them how it can be corrected. Allow users to exit

55

the operation whenever they want and let users be in control of the

operation whenever possible.

4.6 Common Mistakes

Since an intelligent interface allows users to perform tasks in their own

ways, it must be easy to learn and user friendly. Despite their popularity,

there are still some basic principles for all the good interfaces that only are

exhibited by a few programs. Common mistakes that are easily overlooked

by the designer can be summarized by the following three aspects:

1. Forgetting the user

Developers often base the design of an interface on what they know

instead of what the users know. This problem is very common in the

field of engineering but is more widespread in the interface design.

This is because the inadequately designed interface immediately

makes users feel that they are incapable of operating the system.

Even if state of the art system is developed, if users cannot use the

system effectively, it is a waste.

2. Exposing too many features at the top level

Designer may think that by putting all the features at top level, they

are providing users with more functions. Unfortunately, by doing so

the designer prevents users from selecting desired function and makes

the interface look disturbing and disorganized. A well designed GUI

presents higher level and most used functions at the top level with the

additional functions hidden in a menu or drop down panel.

56

3. Taking control away from the users

Users are most happy when they are in the control of the system, not

vice-versa. When the control is taken away, users feel frustrated and

get distracted. They are more reluctant to use the system again after

such instances. Instead of taking away the control from users when

mistake is made, display a warning and a way to fix the error.

4.7 User Interface Design Guidelines

Designing an interface that is easy to navigate, effective, and easy to use is

a trade-off between many different factors. It is nearly impossible to follow

each and every guidelines stated above. One can notice, all the guidelines in

this section explain how the interface should be for software. They do not

mention necessary steps that one has to take when designing the interface

for a machines or a robotic arm. Table 4.1 below compares notable user

interface guidelines.

From Table 4.1, it is clear that focusing on users is of utmost important. It

only makes sense because in the end, they will be the one using the

interface. Each design guidelines explained in the section above is crucial for

designing an effective interface. Additional guidelines are needed to design

an interface for a robotic arm that is intuitive, user friendly and safe. The

author will now explain interface design rules and how they can be used to

design the user interface for robotic arm.

Table 4.1: Comparison of user-interface design guidelines

Rule Norman

[17]

Tidwell

[26]

Galitz

[6]

Johnson

[12]

Shneiderman

And Plaisant

[22]

Stone

et al.

[25]

Visual Hierarchy

Visibility

57

Constraints

(Physical, logical)

Feedback and

Acknowledgement

Focusing on users

Simplicity

Easy Reversal of

Actions

Consistency

Preventing Errors

by Design

Organizing the

Page Layout

(Structure)

Universal Design

4.7.1 Focus on Users

Throughout this section, it has been stated and restated that the focusing on

users is the key to a successful user interface. A user centered design starts

with the people who will use the system. The aim is to design the graphical

user interface to fit people and their tasks. Developers of the graphical user

interface should keep in mind the answers to the following questions.

 Who are the end-users?

There are different types of users, such as direct users, remote users,

support users etc. Direct users use the system hands-on to perform their

own task. The end users for the graphical user interface designed in this

58

thesis are engineers that have prior knowledge of the system as well as the

hardware.

 What characteristics and knowledge do the users have?

These engineers have enough knowledge to understand the function and

application of the robotic arm.

 What will the system mean to them?

This graphical user interface is used for the educational and research

purposes in the lab.

 What are the usability requirements?

Agreeing what tasks users will perform is a key prerequisite to the graphical

user interface design. In order to understand how the new system and its

graphical user interface will assist users, the initial aim is to understand

what the user will do and how they will do it. A graphical user interface

designer should also evaluate how the tasks will be performed with the

developed GUI.

4.7.2 Joint Space Control and Task Space Control

There has been no mention of how users should allow the control of a robot.

Most literatures explain the design of user interface for software used in

computer; therefore, they do not run into this problem. Anyone with

background in robotics knows that the robots can be controlled in joint space

or task space. Controlling a robotic arm in joint space is simple and

straightforward. A user simply enters the local joint parameter; and the

selected joint moves to the desired position. Design of an interface for such

task does not require much work. Most rules described above can be used

for this task.

59

Controlling the robotic arm in task space requires lot of calculations and

conditions. Most users would not want to do the calculations when using the

interface and frankly, it is hard to perform such complex calculations.

Designing a user interface for such a task is complicated. The developer has

to calculate all the system parameters in the program so that the users can

easily control the robot in task space. When developing a user interface for

task space control, two parameters have to be verified before the operation.

First parameter is user input, which is verified in all interfaces designed for a

robotic arm operation. Second and more important, reachability of the

entered task space coordinates in joint space. For example, task space limit

of a robotic arm is between -90m to 90m in X and Y direction and 0 to 180 .

A user enters task space parameters within the defined limit and developed

interface accepts the entered parameters. After inverse kinematics

calculations are performed, it is realized the parameters cannot be reached

in joint space. In this case, sending the calculated parameters for execution

without rechecking them could potentially harm the system. Hence, the need

of designing a user interface that is redundant and deciding whether to allow

joint space control or task space control.

4.7.3 Visual Hierarchy

Figure 4.4, shows the simple page layout for collecting information, layout

on the left is disorganized whereas layout on right is properly organized.

The concept of visual hierarchy plays an important part in all forms of the

graphic design. Visual hierarchy focuses on the most important part of the

page layout and relationships among the other displayed data. There are

multiple ways a designer can draw attention to the main part of the page.

For example, short but large texts, such as news headlines. In general, by

making the density of important texts higher than the rest can make them

60

standout. Background colors, position and size of the texts are another ways

of making vital information stand out. By grouping the same information,

one can distinguish between different items without having to make multiple

windows.

Figure 4.4: Disorganized vs. organized page layout

Visual flow deals with the way human eyes tend to follow when reading or

looking for something. Humans are hardwired to read from left to right.

Suddenly if a page is displayed where information is presented from right to

left, it is hard to look for the information. That is why visual flow is

necessary when creating an excellent user interface. Figure 4.5 exhibits the

concept of visual flow and predictability in a user interface.

Last but not least, is the use of dynamic displays. Current technology has

allowed the display of information in more way than one. This is a good

thing if used with caution, if not it can lead to an inefficient user interface.

For example, putting the most important part of the user interface into the

largest subsection of window; and secondary tools are arranged around that

window.

61

Figure 4.5: Visual flow and predictability

4.7.4 Remote Operation or Local Operation

More and more robots operated now are tele-operated robots. It is an

excellent way to work without putting human lives at risk. A user interface

developed for any robotic arm requires more work than the interface

developed for other software. However, a user interface for a remote

operation requires extra work than the interface usually developed for a

robotic arm. Before examining remote operation, let us focus on the local

operation of a robotic arm.

Figure 4.6 shows the user interface for Lynx robotic arm for local operation.

As one can see, there is no feedback provided. Each sliding bar controls

different joints and user physically looks at the robotic arm for feedback.

This is usually the case with local operation and need of feedback is minimal.

In most cases, during the local operation, users operating the arm are

situated near the arm. Users also have immediate access to an emergency

stopping mechanism. If anything goes wrong with the software sending the

arm in undesired motion, the user can stop the robotic arm with a physical

62

emergency button. However, during the remote operation, this is simply not

the case.

Figure 4.6: Lynx Robot Arm Controller
2

In remote operation, users are not located near the robotic arm. In such

cases, need of feedback is very important. Easiest yet most effective way of

providing feedback in remote operation is the use of camera that can

monitor and display the robotic arm. The question rises, what to do if the

software crashes and sends the arm in an uncontrolled motion? This is

where, the additional work has to be done when developing a user interfaces

for tele-operation. Apart from providing necessary feedback, developer

should take all the precautionary steps leading to unwanted operation.

Designed interface for the tele-operation should be redundant. Each input,

before sending it to a robot arm, should be checked for its validity. Lastly,

emergency halt software should be deployed on a computer that controls the

arm. This emergency software should be triggered when a connection

2
 http://www.nopdesign.com/images/robotarm.jpg

63

between the host and client is disturbed. As soon as the emergency software

is triggered, it should put the robot arm in emergency halt mode stopping all

the operations. This way highest level of safety of the robotic arm as well

the environment it is operated in, can be achieved.

Next chapter will present in-depth discussion of the developed and

implemented “SCL – Robotic Mast Graphical User Interface”.

64

5 Chapter 5: SCL – Robotic Mast Graphical User

Interface

5.1 Software Structure

The developed user interface consists of multiple parts: main screen, quick

tabs, task scheduling window and pop-up windows to input parameters.

Deployment of the graphical user interface is done in two main parts: server

side and client side. Client contains the graphical user interface developed

for the control of the robotic mast. Server is deployed on the remote

computer, and client is deployed on the operator’s computer. For

communication between the server and client, TCP/IP network protocol is

used. Figure 5.1 shows the top-level software architecture of the server and

client.

Figure 5.1: Generalized Software architecture

65

5.1.1 TCP/IP Server

Figure 5.2 shows the process flow chart of the deployed server.

Figure 5.2: Server process flow

66

One of the prime requirements was the ability to operate the robotic

manipulator remotely using the developed GUI. For that, it is necessary to

develop a server that can handle the lower level control for the joints and

communicate with the client. As shows in Figure 5.1, server includes these

files: server.c, functions.h, param.h and func_cmd_no.h. File server.c is the

main file, containing TCP/IP communication protocol code as well as

necessary functions to control the robotic manipulator. File functions.c

contains lower level control codes and func_cmd_no.c has command

numbers respect to the function name. The Server runs on a remote

computer because in the case of communication breakdown, server can halt

the manipulator for safety.

5.1.2 TCP/IP Client

By the nature of TCP/IP protocol, server has to connect with client to receive

and send data. Client is the main part of the interface development in this

thesis. Program files for SCL – Robotic Mast Graphical User Interface are

deployed on client. File main.c contains all the necessary information to start

the user interface as well as to communicate with the server. The user

interface is developed in C language with the support of GTK+; layout of the

interface is designed using “Glade – A User Interface Designer”. File

taskplan.h contains necessary functions for task planning capability of the

interface and inputcheck.h validates user input before proceeding further.

Next section will describe the developed user interface in-depth and the use

of it with the robotic manipulator available in the laboratory. Figure 5.3

shows simplified algorithm for the developed GUI.

67

Figure 5.3: Client data process flowchart

68

5.2 SCL – Robotic Mast GUI

Initially, the user interface was designed using MATLAB GUIDE for the SCL –

Robotic Mast. It provided a convenient way to design and implement an

interface for the control of a robotic mast. However, it was soon realized that

the lower level control for the robotic mast in the lab was incompatible with

MATLAB. Due to this problem, another development platform was chosen.

The interface is developed in the C language with libglade and GTK+ add-on,

making the interface OS independent.

The built-in encoders in Schunk modules can provide position of each joint.

This information is used as a feedback for the presented commands. The

joints’ positions are not displayed in real time, but they are available at any

time upon request during the operation. The developed GUI is general and

can be easily extended for control of the other manipulators with minor

modifications.

5.2.1 Design and Operation

As soon as the GUI is started, SCL – Network Input shown in Figure 5.4,

dialog box appears. This dialog box is used to obtain an IP address and a

port number for the network connection. Once appropriate information is

provided, a TCP/IP connection is established with the running server on the

embedded computer. If the client fails to connect to the server, an error

message is displayed in the Main window to remind the user of the

communication error.

69

Figure 5.4: Network input dialog box

The Main window of the developed GUI features a drop down Command

menu where all the functions are located, such as setting and inquiring the

joints’ positions, as shown in Figure 5.5. The position of each joint can be

requested during the operation by simply clicking on the Current Status

button available in the Main window.

The Quick Tabs window provides easy access to most of the commonly used

functions, such as scooping samples, resetting joints and homing joints, as

shown in Figure 5.7. Functions in this window do not require any parameters

and they are always available as long as the TCP/IP connection is

established. It should be noted that both the Main window and the Quick

Tabs window are movable and can be positioned anywhere on the screen

independently. In order to avoid mis-operation, each command has to be

confirmed by the user before being sent to the server. When a command is

selected from the dropdown Command menu, the command name and

70

essential parameters are displayed in a pop-up box, as shown in Figure 5.6,

which can be resized without losing its functionality.

Figure 5.5: The drop down Command menu

Figure 5.6: The Parameter Input box

71

Figure 5.7: The Main screen and Quick Tabs

The Parameter Input box is a pop-up style dialogue box that appears after

clicking the configure button. In this window, only the information that is

related to the selected function is displayed. All the user inputs are validated

to make sure they are within the physical limits. If wrong parameters are

provided, a Warning window will pop out, as shown in Figure 5.8, and all the

other windows become inactive. In such a situation, no command will be

sent even if the Send button is pressed by accident.

72

Figure 5.8: The Warning window

The selected function and the corresponding user inputted parameters are

displayed in the Main window. The command will not be sent to the server

until the Send button is pressed. One exception is the Halt All Joints

command, which does not need any confirmation. Once pressed, the Halt All

command is sent to the server immediately, which will terminate the motion

of all the joints and engage the built-in magnetic brakes of the Schunk

rotary modules. The commands that were sent to the server are listed in the

Command History tab, which is read-only and can be exported into a text

file. When an error occurs during the sample retrieval process, the server

will halt the manipulator and report the error to the client, which will be

displayed in the Main window of the developed GUI. As long as the

manipulator is halted, the motion functions of the GUI will be deactivated,

and the modules have to be reset before performing the next task.

73

The developed interface can be generalized to control the other systems with

minor modifications. Description on implementing the developed GUI to

control the other robotic manipulators is presented here. Figure 5.1 presents

the software architecture of the developed GUI. In Figure 5.1, the Server is

implemented with all the lower level functions and the Schunk_FNC.h

module is designed for low-level control of the robotic manipulator. The

Schunk_FNC.h module contains name of all the functions and the necessary

input variables. The function Schunk_Mov_JNT (int jntno, float pos) function

contains necessary lower level code to operate the manipulator. By rewriting

the lower level function of another system in Schunk_FNC.h file, the same

interface can be used to control the new system. From this point of view, the

developed GUI is reusable and can be extended to control any robotic

manipulators with minor modification.

5.2.2 Operation using a Joystick

One of the requirements of the developed interface was to allow manual

control of the robotic manipulator using a joystick. Design of this assembly is

trickier because data communication between a joystick and connected PC is

much faster than the operating speed of the joints and CAN-bus

communication. As discussed by Norman implementing physical constraint

can help avoid mis-operation of the system. Upper and lower limit of the

joystick is associated with the upper and lower limit of the joints,

respectively. Homing position of the joystick corresponds to zero position of

the each joint. The joystick can be used anytime once program has been

started and successfully connected to the server. In order to evade

unintended operation of the manipulator, users must press and hold a

trigger button associated with each joint, Table 5.1, while operating the

joystick.

74

Table 5.1: Interfacing joystick button with manipulator joints

Joystick Button ID Joint ID

Button No. 2 6 – Shoulder

Button No. 3 7 – Elbow

Button No. 4 8 – Wrist

5.2.3 Task Scheduling

Any task using a manipulator can be performed in two ways: online mode

and offline mode. Currently, online mode is being used by the majority of

the users [32]. With consideration of the low efficiency of the online mode,

author introduces task scheduling into developed GUI. The flowchart for task

scheduling is shown in Figure 5.10.

Figure 5.9 shows the task scheduling dialogue box. Once the Execute button

is pressed, interface selects the first task in the stack and sends it to the

server. Upon receiving the confirmation of the task completion, the following

task is send, and so on. The order of tasks to be executed is determined by

the operator through the GUI, instead of autonomously by the low-level

controller. The system administrators are also allowed to plan tasks by

simply entering the command ID and parameters in the entry box.

75

Figure 5.9: Task schedule dialogue box

With task scheduling, the users can use the same interface presented above

to plan the multiple tasks in offline mode. In offline mode, the interface will

connect to the server and the task starts to execute, as soon as the user

confirms one command. In the event of connection failure, the user will be

warned and sever will finish the task before halting the manipulator.

Developed interface will also be used for testing of new control algorithms

that requires extensive data from joints’ sensors. As soon as a task is

started, developed task scheduling algorithm will start collecting position

data for each of the joints. The collected data is saved in new text file on the

client computer for easy access. In order to make sure no data is lost or

over written when new operation starts, new text file with unique identity is

created. Figure 5.11 shows partial data collected during the operation.

76

Figure 5.10: Task scheduling and execution algorithm

Figure 5.11: Sample position data

77

5.2.4 Function Mapping and Process Flow

As explained before, each command has its own unique dialog box. Some

commands directly call the lower level function to perform the needed

actions. Whereas, certain commands are combination of one or more lower

level functions. Below, each command and its associated lower level

function(s), process and the action performed by the command will be

explained, Table 5.2 to Table 5.9. After that, the process flowchart of the

most used commands will be presented for better understanding of the

programing structure.

5.2.4.1 SCHUNK_INITIALIZE

Table 5.2: Function mapping for SCHUNK_INITIALIZE

Function Name Schunk_Initialize

Function ID 1

Input parameters None

Lower level command used int schunk_Init()

int CAN_Init()

int Schunk_Get_Jnt_State ()

int Schunk_Set_Jnt_Vel()

int Schunk_Set_Jnt_Acc()

int Schunk_Mov_Reset_Jnt() {If

needed}

Purpose of the function Initialization of the CAN-BUS

communication between server

(PC/104) and Schunk joints

 Checking the error code of each

joint

 If any joint has an error such as

activation of halt command,

78

unable to set velocity or

acceleration than reset the joint.

Return 0 for success

1 for error

5.2.4.2 SCHUNK_CLEANUP

Table 5.3: Function mapping for SCHUNK_CLEANUP

Function Name Schunk_Cleanup

Function ID 2

Input parameters None

Lower level command(s) used int Schunk_Cleanup()

int CAN_Cleanup()

int Schunk_Mov_Halt_All() {If needed}

Purpose of the function Closing the CAN-BUS

communication before clearing

any error in the joint for safe

shutdown of the robot arm

 Checking the error code of each

joint

 If any joint has error such as

activation of halt command,

unable to set velocity or

acceleration than reset the joint.

Return 0 for success

1 for error

5.2.4.3 SCHUNK_MOV_JNT

Table 5.4: Function mapping for SCHUNK_MOV_JNT

Function Name Schunk_Mov_Jnt

79

Function ID 4

Input parameters Joint ID (int jntid)

 Desired angle (float posd)

Lower level command(s) used int Schunk_Mov_Jnt_Pos()

int CAN_Init()

Purpose of the function To move individual joint to desired

location

 After performing inverse

kinematics of the robot arm, use

this command to go to desired

position in task space.

Return 0 for success

1 for error

Figure 5.12 shows the process flowchart for function SCHUNK_MOV_JNT.

Process flow in the developed GUI for all the commands with the exception

of SCHUNK_INV_KIN is relatively same.

5.2.4.4 SCHUNK_SET_PARAM

Table 5.5: Function mapping for SCHUNK_SET_PARAM

Function Name Schunk_Set_Param

Function ID 3

Input parameters Desired position angle of all the joints

(float shoulder, float elbow, float wrist)

Lower level command(s) used int Schunk_Mov_All_Joints()

int Schunk_Mov_Jnt_Pos()

int Schunk_Wait_Jnt()

Purpose of the function Moving all the joints together with

the use of single function

 Create shortcuts for complicated

80

tasks such as sending robot arm

to home position

Return 0 for success

1 for error

Figure 5.12: Process flow of SCHUNK_MOV_JNT

81

5.2.4.5 SCHUNK_HALT_ALL

Table 5.6: Function mapping for SCHUNK_HALT_ALL

Function Name Schunk_Halt_All

Function ID 5

Input parameters None

Lower level command(s) used int Schunk_Mov_Halt_All()

int CAN_Init()

Purpose of the function Halting the robot arm in case of

emergency

 Same function is used to halt

robot when connection to the

server is lost, no action is require

by the user in case of lost

connection

Return 0 for success

1 for error

5.2.4.6 SCHUNK_MOV_RETRIEVE

Table 5.7: Function mapping for SCHUNK_MOV_RETRIEVE

Function Name Schunk_Mov_Retrieve

Function ID 8

Input parameters None

Lower level command(s) used int Schunk_Sample_Retrieve()

int Schunk_Mov_All_Joints ()

Purpose of the function Scooping of the sample (critical

task)

 Quicktabs box also includes

shortcut for this function

Return 0 for success

1 for error

82

Function Schunk_Mov_Dump uses the same structure and lower level

commands as the function Schunk_Mov_Retrieve. The purpose of this

function is to dump the scooped samples in the pre-designated area.

Shortcut for Schunk_Mov_Dump is also presented in the Quick Tabs window

for easy access.

5.2.4.7 SCHUNK_INV_KIN

Table 5.8: Function mapping for SCHUNK_INV_KIN

Function Name Schunk_Inv_Kin

Function ID 13

Input parameters Desired position in task space

(float x, float y, float theta)

Lower level command(s) used int Schunk_Mov_All_Joints()

int Schunk_Mov_Jnt_Pos()

int Schunk_Wait_Jnt()

Purpose of the function Performing inverse kinematics of

the robot from the given task

space input

 Sending robot arm to the given

task space position if everything

valid

 Warning the user if the position is

not reachable in joint space

Return 0 for success

1 for error

Figure 5.13 shows the process flow for SCHUNK_KIN_INV command, which

is used for task space control of the manipulator. Difference between this

command and rest is the retrieval of inv_kin function. Function inv_kin

performs inverse kinematics as explained in Chapter 3. Inverse kinematics

83

computations depend on the configurations of the manipulator. This function

is written in separate header file inv_kin.h. By rewriting the code for new

system, developed interface can be used with the new system.

Figure 5.13: Process flow for task space control

84

5.2.4.8 SCHUNK_GET_JNT_POS

Table 5.9: Function mapping for SCHUNK_GET_JNT_POS

Function Name Schunk_Get_Jnt_Pos

Function ID 16

Input parameters Joint ID (int jntid)

Lower level command(s) used int CAN_Init()

Purpose of the function To inquire about the position of

the joint in joint space

Return 0 for success

1 for error

5.3 Experiments

The robotic manipulator used in this experiment consists of three rotary

Schunk PRL modules (PRL 60, PRL 80 and PRL 80 for the wrist, elbow and

shoulder joints, respectively) and a scoop. These PRL modules are connected

with customized robotic links. The PRL modules are connected electronically

to a CAN-Bus interface, which is controlled by an embedded computer

running Linux.

Each command has been tested individually as well as using the task-

scheduling feature. Initially, each joints were moved to several different

positions using the interface. During this test, all the joints were controlled

using joint space functionality of the interface. After the successfully

completion of this test, the joints were controlled in task space. Afterwards,

all three joints were operated together multiple times to ensure the

reliability of the software. During this particular test, network connection

was intentionally interrupted to assess the emergency halting software. For

the duration of this test, behaviour of the interface was as expected.

85

After the successfully testing the joint movement commands, more complex

task of sample scooping and dumping was experimented using Quick Tabs as

well as drop down menu. Snapshots for the sample retrieval experiments are

shown in Figure 5.14.

Figure 5.14: Snapshots for sample retrieval

Finally, manual operation of the manipulator using a joystick was verified.

Software structure of the developed interface allows control the other

86

systems with minor modifications. Lower level code and a parameter input

box was modified to test the interface with the robotic manipulator made of

six rotary joints. Controls of individual joints were verified, scooping and

dumping functions were unavailable due to different configuration of the

manipulator. Videos of all the experiments are included in the DVD attached

with this thesis.

Overall, performance of the developed interface exceeded all the

expectations.

5.4 Comparative Study

In this subsection, the developed GUI is compared with several robotic tele-

operation interfaces reported in the literature. As summarized in Chapter 1,

the major requirements of the interface are to allow comfortable operation of

robotic arm and to enable efficient task scheduling. Some of the interfaces

reported in the literature have several good features, such as enabling online

operation, displaying all the available functions together, allowing remote

operation, and so on. However, task scheduling was not paid enough

attention. For example, the GUI for Astronaut Interface Device [10]and the

GUI developed by Vajnberger et al for remote control of a 5-DOF robotic

arm, allow only one task to be performed at a time. RoSE and MotoSim EG

[32] integrate all the necessary functions for operation, but they need input

commands to schedule a task. For example, “MOV” has to be entered by the

operator to move to robot to a particular configuration. With the developed

GUI, the user can perform one task at a time or schedule multiple tasks

using the same interface. The comparison is summarized in Table 5.10.

87

Table 5.10: A Comparison of Reported GUIs

Features AID

[10]

RoSE

[9]

Vajnberger

et al [27]

MotoSim

[32]

Proposed

GUI

Task scheduling

Online operation

Display all available

functions together

Ability to use GUI to

schedule tasks

Sub-display for each

function

Remote operation

Use command line to

schedule tasks

Next chapter concludes the thesis with several remarks on future work.

88

6 Chapter 6: Conclusion

6.1 Conclusion

In this thesis work, a graphical user interface has been developed for the

control of a robotic manipulator capable of sample acquisition. The

developed GUI is easy to use and the operator does not need to have any

prior technical knowledge of the system. Furthermore, this thesis simplifies

the process of a graphical user interface design for the developers lacking

the knowledge of human cognitive behaviour by focusing on users and their

requirements as well as consistency in design. This thesis also infuses the

concept of simplicity, feedback, and an appropriate page layout for GUI.

In chapter 2, literature related to this thesis is extensively reviewed to

develop a GUI that is capable of controlling the robotic manipulator

autonomously and manual operation using a joystick. Furthermore, it was

determined to develop a method to review all the commands sent to the

system for execution. Having such a feature will provide an easy access to

the command history in case of a failure. In chapter 3, inverse kinematics

analysis of the manipulator is presented. This analysis was required since

the developed interface has a functionality of operating the manipulator in

task space.

Chapter 4 presents essential guidelines for a user interface design. In order

to develop an effective GUI, it is of utmost important to focus on users and

not to take away the control from them. The designed interface should also

be visually pleasing and should exhibit visual hierarchy. Use of texts, colors

and input methods should be consistent throughout the GUI. For robotic

89

manipulator, users should have the option of controlling the manipulator in

both joint space and task space. Lastly, emergency halt software should be

deployed on a computer that controls the manipulator. This emergency

software should automatically trigger when a connection between the host

and client is disturbed.

Details of the designed user interface are explained in chapter 5.

Combinations of control functions have been defined to alleviate the

operator’s efforts in robotic arm manipulation. The developed GUI is easy to

use, and the operator does not need to have any prior technical knowledge

of the system. Since the GUI checks and validates all the user inputs before

sending a command to the server, there is a minimal risk of mis-operation.

The developed GUI is capable of monitoring and collecting position data of

each joint for further analysis. Task scheduling is also implemented in the

developed GUI allowing a user to plan and execute multiple tasks.

Furthermore, read-only command history is displayed in the Main Window to

help the diagnosis of an unexpected behavior of the robot manipulator if

necessary. Implemented intelligent server/client architecture is able to

handle unexpected events such as, connection failure, and able to halt the

manipulator to safety in case of emergency. In order to verify the

effectiveness of the presented GUI, it has been successfully tested on two

different robotic manipulators available in the laboratory.

In the end, the new interface promises to give a unique and comfortable

experience to the user when operating the manipulator.

90

6.2 Future Work

The following are suggestions for future work on SCL – Robotic Mast

Graphical User Interface software:

 During task scheduling, adding an animation that enables the user to

visualize the task before it is executed will improve the functionality of

the interface.

 Currently, only position data of the joints are displayed and collected;

adding the ability to collect velocity and acceleration data can be

helpful and can enrich the interface.

 To improve the intuitive feedback of the developed GUI, a vision

camera system should be introduced.

 Addition of path planning and fault detection algorithm for the

manipulator can also enhance the developed GUI.

91

References

[1] Anderson, R. J., & Spong, M. W. (May 1989). Bilateral control of teleoperators with time delay.

IEEE Trans. on Automatic Control, vol.34, pp. 494-501.

[2] Bukchin, J., Luquer, R., & Shtub, A. (March 2002). Learning in tele-operations. IIE Transactions

(March 2002), pg. 245-252 .

[3] Cho, C., Song, J., Kim, M., & Hwang, C. (April 2004). Energy-based control of a passive haptic

device. IEEE International Conference on Robotics and Automation, (pp. pp. 292-297). New

Orleans, LA.

[4] Cresnik, P. (2010). CANSAT Construction Documentation and Guide. Toronto: Ryerson University.

[5] Desai, K., Liu, Y., & Liu, G. (2012). A Graphical User Interface for Tele-operated Robotic Sample

Acquisition. IEEE International Conference On Mechatronics and Automation, (pp. pg. 1202-

1207). Chengdu, China.

[6] Galitz, W. O. (1997). Essential Guide to User Interface Design. New York, Toronto: Wiley

Computer Pub.

[7] Goldstain, O., Ben-Gal, I., & Bukchin, Y. (October 2011). Evaluation of telerobotic interface

components for teaching robot operation. IEEE Trans. on Learning. Technologies, vol. 4, pp. 365-

376.

[8] H. Igarashi, I., Takeya, A., Kubo, Y., Suzuki, S., Harashima, F., & Kakikura, M. (November 2006).

Human adaptive GUI design for teleoperation system. 31st Annual Conf. IEEE Industrial

Electronics Society, (p. pp. 6).

[9] Hartman, F., & Maxwell, S. (September 2004). Driving the mars rovers. Linux Journal.

[10] Hirsh, R., Simon, C., Tyree, K., Ngo, T., Mittman, D., Utz, H., et al. (September 2008). Astronaut

interface device (AID). AIAA SPACE 2008 Conference and Exposition, (pp. AIAA-2008-7910). San

Diego, California.

[11] Jazar, R. N. (2010). Theory of Applied Robotics. Springer.

[12] Johnson, J. (2010). Designing with the Mind in Mind. Morgan Kaufmann.

[13] Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human

environments. IEEE Robotics and Automation Magazine, 14, pp. pp.20-29.

[14] Koch, J., Reichardt, M., & Berns, K. (September 2008). Universal web interfaces for robot

control frameworks. IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp.

pp.2336-2341).

92

[15] Logitech. (2012). Logitech Attack™ 3 Joystick. Retrieved July 10, 2012

[16] Luostarinen, R., Manner, J., Ma¨a¨tta¨, J., & Ja¨rvinen, R. (November 2010). User-centered

design of graphical user interfaces. IEEE Military Communications Conference, (pp. pp. 50-55).

[17] Norman, D. A. (1990). The design of everyday things. New York: Doubleday Books.

[18] PC/104 Consortium. (2012). PC/104 Consortium - History. Retrieved July 10, 2012

[19] Redmond-Pyle, D., & Moore, A. (1995). Graphical User Interface Design and Evaluation.

Trowbridge: Prentice Hall.

[20] Schenker, P. S. (2006). Advances in rover technology for space exploration. IEEE Aerospace

Conference, (p. pp.26). Big Sky, MT.

[21] SCHUNK Gmbh & Co. (n.d.). SCHUNK. rotary modules PRL. Retrieved January 23, 2012

[22] Shneiderman, B., & Plaisant, C. (2009). Designing he User Interface: Strategies for Effective

Human–computer Interaction. Addison-Wesley.

[23] Song, T., Park, J., Chung, S., Kwon, K., & Jeon, J. (July 2008). Intelligent User Interface for

Human-Robot Interaction. INDIN 2008. 6th IEEE International Conference, (pp. pp.1463-1468).

[24] Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). Robot Modeling and Control. Wiley.

[25] Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User Interface Design and

Evaluation. San Francisco: Morgan Kaufmann Publishers.

[26] Tidwell, J. (2011). Designing Interfaces. Sebastopol, CA: O'Reilly.

[27] Vajnberger, V., Terzimehic, T., Silajdzic, S., & Osmic, N. (n.d.). Remote control of robot arm with

five DOF. MIPRO, 34th International Convention, (pp. pp. 1707-1711).

[28] Volpe, R. (n.d.). Robotics - Application. Retrieved February 25, 2012, from http://www-

robotics.jpl.nasa.gov/applications/applicationArea.cfm?App=11

[29] Wang, Y., Yan, K., Sun, G., & Lou, P. (n.d.). Serial Communication in DNC Information Systems.

Nanjing, China: Moxa Technologies.

[30] Want, R. (2010). iPhone: Smarter than the average phone. IEEE Pervasive Computing, vol. 9, no.

3, pp. 6-9.

[31] Weinschenk, S., Jamar, P., & Yeo, S. C. (1997). GUI design essentials. Wiley.

[32] Yu, H., Shan, J., & Zhu, X. (2011). Off-line programming and remote control for a palletizing

robot. IEEE International Conference on Computer Science and Automation Engineering, (pp. pp.

586-589).

93

A Appendix
Figure A.1, shows the developed interface in early stages of the thesis. This

interface was designed in MATLAB.

Figure A.1: Robotic Arm Control Screen

One button is dedicated to scooping; scooping can also be done manually.

Status box shows the status of the container. Three angles A, B and C are

for manual control of the arm that is discussed in the next section.

Figure A.2: Arm movement options

94

Figure A.2 shows two ways the arm can be controlled. One is using push

buttons and another by entering specific angles for each joint.

A.I atan2(y,x)

For any real number arguments x and y not both equal to zero,atan2(y, x) is

the angle in radians between the positive x-axis of a plane and the point

given by the coordinates (x, y) on it. The angle is positive for counter-

clockwise angles (upper half-plane,y > 0), and negative for clockwise angles

(lower half-plane, y < 0).

A.II Types of Robots

i) Cartesian Robot

A Cartesian robot, also known as Cartesian coordinate robot shown in Figure

A.3, has three links that coincides with Cartesian coordinate system; hence,

each link is perpendicular to one another. These types of robots are mostly

used in Computer Numerical Control (CNC) machine.

95

Figure A.3: Cartesian Robot
3

ii) Cylindrical Robot

Cylindrical robots, as shown in Figure A.4, are the rarest now a days due to

their stationary position. As the name suggests cylindrical robot is the robot

whose axes form a cylindrical coordinate system. Generally, they are used

for spot wielding and handling machines tools.

Figure A.4: Cylindrical Robot
4

iii) Polar Robot

Polar robot is similar to cylindrical robot with only difference being, polar

robot’s the ability to rotate in two different directions along its main axis.

Lastly, the joint moves in translation so that it forms polar coordinates.

3
 http://prime.jsc.nasa.gov/ROV/images/cartesian.GIF

4
 http://prime.jsc.nasa.gov/ROV/images/cylindrical2.GIF

96

iv) Articulated Robot

An articulated robot, shown in Figure A.5, is a robot consisting of rotary

joints. They range from simple two-jointed system to complex eight or more

interacting joints. They are typically used in automobile industries for large

assembly operation and for spray painting.

Figure A.5: Articulated Robot
5

v) Parallel Robot

Parallel robot consists of a fixed base platform connected to an end-effector

platform by means of a number of links. These links consist of an actuated

prismatic joint, allowing only traction or compression movement and due to

this a higher accuracy and lightweight system is achieved. Since the end-

effector is connected to the base via multiple kinematic joints, movement in

any two joints would cause entire system to move, making it a closed loop

system. These types of robots are used for cockpit flight or automobile

simulator.

5
 http://www.processonline.com.au/articles/36410-Packaging-automation-trends-using-small-assembly-robots-in-

upstream-packaging-processes

97

vi) SCARA (Selective Compliance Assembly Robot Arm) Robot

Design of the SCARA robot is much like a shoulder and elbow held perfectly

parallel to ground. Basic configuration of a SCARA is a four degree of

freedom movement. A SCARA has full range of motion on XY direction and

has rigid Z-axes. SCARA robots are known for their speed, large workspace,

payload capacity, and excellent repeatability. SCARA robots are more

expensive and controlling software requires inverse kinematics for

interpolated movements. They are generally used perform precise jobs

repeatedly, such as pick and place work, installing pin, application of

sealant.

Above described robots are typically used in the manufacturing industry.

Robots also perform important tasks outside of the manufacturing industries.

Their tasks include but are not limited to hazardous duty service, CAM/CAD

design and prototyping, medical applications, fighting fire and military

warfare.

A.III mast_client.cpp

Code presented here contains necessary functions to run GUI, callback

functions as well as TCP/IP client. In the main code, multiple headerfiles,

specifically developed for this software, have been used. Brief description of

the header files is presented here. Code from the headerfiles is also

presented in the appendix.

inputcheck.h – Check and validate all the input entered by the user before

sending it to server.

98

task_signals.h – Start the task scheduling interface and allow users to

manipulate the order of the task. Code manual task scheduling is written in

this file.

inv_kin.h – Inverse kinematics calculations for the manipulator, used in the

experiement of this thesis, is coded in this file.

testjs.h – Necessary code for operation of joystick and interfacing of joystick

between GUI and hardware is presented in this file.

/**
* Name: mast_client.cpp *
* *
* Func: Graphical User Interface for Client Software *
* Date: June 15, 2012 *
* Auth: Karan Desai *
* *
**/
// Current Arm Pos: 0, -80, -40

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include "SchunkData.h"
#include "inputcheck.h"
#include "task_signals.h"
#include "inv_kin.h"
#include "testjs.h"

#include <gtk/gtk.h>
#include <stdlib.h>

#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <math.h>

99

//Function to check if the input is numeric or not

int isNumeric (const char * s)
{
 if (s == NULL || *s == '\0')
 return 0;
 char * p;
 strtod (s, &p);
 return *p == '\0';
}

void error(const char *msg)
{
 perror(msg);
 exit(0);
}

void signal_callback_handler(int signum)
{
 printf("Caught signal %d\n",signum);
 // Cleanup and close up stuff here

 // Terminate program
 exit(signum);
}

//------------Write data file in current directory
char cwd[200];
char dir[1024];
struct tm *current; //pointer to array holding the current time

//-----------End data file---------------------

//End of isNumeric function

//--------------------GUI Variables-----------

gchar buf[1024];
gchar param[1024];
gchar sendd[1024];
gchar data[1024];
gchar recvv[1024];
gchar optns[1024];
gchar cmdlist[1024];
gchar Buff[4096];
int comd, test[4], testnum[4];

100

int kk=0, ok, tpw, sd;
int ret;
float px,py,phi,q_jnt[3];
char *selectt;
const gchar *entry1, *entry2, *entry3, *entry4;
FILE *data_out;

 GtkBuilder *main1, *parampop1, *parampop2, *parampop3, *parampop4, *quicktabs, *warning,
*configwarn, *taskplan, *netconn;
 GtkWidget *mainwindow, *parampop1w, *parampop2w, *parampop3w,
*parampop4w,*mainhalt, *quicktabsw, *warningw, *configwarnw;
 GtkWidget *taskplanw, *treewidget, *qthaltall, *netconnw;
 GtkEntry *parampop3entry1, *parampop3entry2, *parampop3entry3,
*parampop1entry1, *parampop2entry1, *parampop2entry2;
 GtkEntry *parampop4entry1, *parampop4entry2, *parampop4entry3,
*parampop4entry4, *netconn_ip, *netconn_port;
 GtkLabel *funclabelmain, *parampop4lab, *parampop3lab, *parampop1lab,
*parampop2lab, *mainparamlabel, *mainstatus;
 GtkTextView *textviewm;
 GtkTextBuffer *buffer1;
// GtkTextTagTable *texttag;
 GtkTextIter start, end;
 GtkTextIter iter;
// GtkTreeIter newrow;
// GtkTreePath *path1;

gboolean task_plan=false;
gboolean online=false;
gboolean connectok = false;

//-------------------END GUI Variables-----------------
using namespace std;

 int i;
 int sockfd, n, k;

 char ip_addr[100];
// sprintf (ip_addr,"localhost");

 //------------------------GTK+ GUI CALLBACK START-----------------------

// Following function is developed for receiving network connection data, such as IP address and port
number from users.

101

extern "C"
void on_netconn_enter_clicked (GtkObject *object, gpointer user_data)
{

 int portno;
 entry1= gtk_entry_get_text (netconn_ip);
 entry2= gtk_entry_get_text (netconn_port);
 test[0] = atoi(entry2);
 testnum[0]=isNumeric(entry2);

 if ((testnum[0] != 1))
 {
 sprintf(ip_addr,"192.168.1.148");
 portno = 5000;
 }
 else
 {
 bzero(ip_addr,sizeof(ip_addr));
 sprintf(ip_addr,"%s",entry1);
 sprintf(param,"%s",entry2);
 sscanf(param,"%d",&portno);
 }
 gtk_widget_hide(netconnw);

 //-------------------------TCP/IP Connection code is written in this section---------

 struct sockaddr_in serv_addr;
 struct hostent *server;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");

 server = gethostbyname(ip_addr);

 if (server == NULL)
 {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(portno);

 if (connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");

102

 signal(SIGINT, signal_callback_handler);

//-------TCP/IP End--------

}

// Start of the combo box function
extern "C"
void on_combobox1main_changed (GtkComboBox *combobox1main, gpointer user_data)
{
selectt = gtk_combo_box_get_active_text(combobox1main);
sprintf(buf,"%s",selectt);
gtk_label_set_text(funclabelmain,buf);

}

//Selection of On-line/Task plan mode

extern "C"
void on_onlinebut_clicked (GtkButton *button, gpointer user_data)
{

 if (gtk_toggle_button_get_active(GTK_TOGGLE_BUTTON(onlinebut)))
 {
 task_plan=false;
 online=true;
 printf ("Online Mode:\n");
 n = write(sockfd,"1000",4);
 gtk_widget_show(quicktabsw);
 }
}

extern "C"
void on_taskplanbut_clicked (GtkButton *button, gpointer user_data)
{
 if (gtk_toggle_button_get_active(GTK_TOGGLE_BUTTON(taskplanbut)))
 {
 task_plan=true;
 online=false;
 printf ("Task plan Mode:\n");
 n = write(sockfd,"1001",4);
 gtk_widget_show(taskplanw);
 }
}

103

//End online/task plan mode

extern "C"
void on_mainokbut_clicked (GtkButton *mainokbut, gpointer user_data)
{

ok = 1;
/*
SCHUNK_INITIALIZE 1
SCHUNK_CLEANUP 2
SCHUNK_SET_PARA 3
SCHUNK_MOV_JNT 4
SCHUNK_HALT_ALL 5
SCHUNK_MOV_LOCK 6
SCHUNK_MOV_UNLOCK 7
SCHUNK_MOV_RETRIEVE 8
SCHUNK_MOV_DUMP 9
SCHUNK_SET_JNT_PASSIVE 10
SCHUNK_RESET_ALL 11
SCHUNK_FWD_KIN 12
SCHUNK_INV_KIN 13
ELMO INITIALIZE 14
ELMO_CLEANUP 15
SCHUNK_WAIT_FINISH 16
SCHUNK_GET_MAST_CFG 17
SCHUNK_GET_JNT_POS 18
SCHUNK_JUDGE_LOCK 19
SCHUNK_TOUCH_DETECT 20
ELMO_READ_FORCESENSOR 21
QUIT 100
*/

gchar compare1[50];
sprintf(compare1,"%s","SCHUNK_INITIALIZE");

gchar compare2[50];
sprintf(compare2,"%s","SCHUNK_CLEANUP");

gchar compare3[50];
sprintf(compare3,"%s","SCHUNK_SET_PARA");

gchar compare4[50];
sprintf(compare4,"%s","SCHUNK_MOV_JNT");

gchar compare5[50];
sprintf(compare5,"%s","SCHUNK_HALT_ALL");

gchar compare6[50];

104

sprintf(compare6,"%s","SCHUNK_MOV_LOCK");

gchar compare7[50];
sprintf(compare7,"%s","SCHUNK_MOV_UNLOCK");

gchar compare8[50];
sprintf(compare8,"%s","SCHUNK_MOV_RETRIEVE");

gchar compare9[50];
sprintf(compare9,"%s","SCHUNK_MOV_DUMP");

gchar compare10[50];
sprintf(compare10,"%s","SCHUNK_SET_JNT_PASSIVE");

gchar compare11[50];
sprintf(compare11,"%s","SCHUNK_RESET_ALL");

gchar compare12[50];
sprintf(compare12,"%s","SCHUNK_FWD_KIN");

gchar compare13[50];
sprintf(compare13,"%s","SCHUNK_INV_KIN");

gchar compare14[50];
sprintf(compare14,"%s","ELMO INITIALIZE");

gchar compare15[50];
sprintf(compare15,"%s","ELMO_CLEANUP");

gchar compare16[50];
sprintf(compare16,"%s","SCHUNK_WAIT_FINISH");

gchar compare17[50];
sprintf(compare17,"%s","SCHUNK_GET_MAST_CFG");

gchar compare18[50];
sprintf(compare18,"%s","SCHUNK_GET_JNT_POS");

gchar compare19[50];
sprintf(compare19,"%s","SCHUNK_JUDGE_LOCK");

gchar compare20[50];
sprintf(compare20,"%s","SCHUNK_TOUCH_DETECT");

gchar compare21[50];
sprintf(compare21,"%s","ELMO_READ_FORCESENSOR");

gchar compare22[50];

105

sprintf(compare22,"%s","QUIT");

if (strcmp(buf,compare1)==0) //schunk_init
{
comd =1;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare2)==0) //schunk_clean
{
comd =2;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare3)==0) //schunk_set_para
{
comd =3;
sprintf(optns,"%s \nPlease input the desired joint angles (Shoulder, Elbow, Wrist): ",buf);
gtk_widget_show(parampop3w);
gtk_label_set_text(parampop3lab,optns);
}

else if (strcmp(buf,compare4)==0) //schunk_mov_jnt
{
comd =4;
sprintf(optns,"%s \nPlease input the JntID (6-Shoulder, 7-Elbow, 8-Wrist):",buf);
gtk_widget_show(parampop2w);
gtk_label_set_text(parampop2lab,optns);
}

else if (strcmp(buf,compare5)==0) //HALT
{
comd =5;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare6)==0) //schunk_lock
{
comd =6;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare7)==0) //schunk_unlock
{

106

comd =7;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare8)==0) //schunk_retrieve
{
comd =8;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare9)==0) //schunk_dump
{
comd =9;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare10)==0) //schunk_set_jnt_passive
{
comd =10;
sprintf(param,"Func: Not Available");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare11)==0) //schunk_reset_all
{
comd =11;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare12)==0) //schunk_fwd_kin
{
comd =12;
sprintf(param,"Func: Not Available");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare13)==0) //schunk_inv_kin
{
comd =13;
sprintf(optns,"%s \nPlease input px, py and phi: ",buf);
gtk_widget_show(parampop3w);
gtk_label_set_text(parampop3lab,optns);

}

107

else if (strcmp(buf,compare14)==0) //elmo ini
{
comd =14;
sprintf(param,"Func: Not Available");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare15)==0) //elmo_cleanup
{
comd =15;
sprintf(param,"Func: Not Available");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare16)==0) //schunk_get_param
{
comd =16;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare17)==0) //schunk_get_mast_cfg
{
comd =17;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare18)==0) //schunk_get_jnt_pos
{
comd =18;
sprintf(optns,"%s \nPlease input the JntID (6-Shoulder, 7-Elbow, 8-Wrist):",buf);
gtk_widget_show(parampop1w);
gtk_label_set_text(parampop1lab,optns);
}

else if (strcmp(buf,compare19)==0) //schunk_touch_detect
{
comd =19;
sprintf(param,"Func: Not Available");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare20)==0) //elmo_read_forcesensor
{
comd =20;
sprintf(param,"Func: Not Available");

108

gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare21)==0) // N/A
{
comd =21;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

else if (strcmp(buf,compare22)==0) //quit
{
comd =100;
sprintf(param," ");
gtk_label_set_text(mainparamlabel,param);
}

if ((comd == 3)||(comd == 4)||(comd == 18))
 {
 gtk_label_set_text(mainstatus, "Status: Configuration...");
 }
else
 {
 gtk_label_set_text(mainstatus, "Status: Ready...");
 }

}

//Parameter popup3 OK

extern "C"
void on_parampop3ok_clicked (GtkButton *button, gpointer user_data)
{

 entry1= gtk_entry_get_text (parampop3entry1);
 test[0] = atoi(entry1);
 testnum[0]=isNumeric(entry1);
 entry2= gtk_entry_get_text (parampop3entry2);
 test[1] = atoi(entry2);
 testnum[1]=isNumeric(entry2);
 entry3= gtk_entry_get_text (parampop3entry3);
 test[2] = atoi(entry3);
 testnum[2]=isNumeric(entry3);

 if ((testnum[0] == 1) && (testnum[1]==1) && (testnum[2]==1))
 {
 kk = user_input(comd,test);
 while (kk == -1)

109

 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop3w);
 break;
 }

 sprintf(param,"%s %s %s",entry1, entry2, entry3);
 gtk_widget_hide(parampop3w);
 gtk_label_set_text(mainparamlabel, param);
 }//end if
 else
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop3w);
 }// end else
 gtk_label_set_text(mainstatus, "Status: Ready...");
 gtk_entry_set_text(parampop3entry1, "");
 gtk_entry_set_text(parampop3entry2, "");
 gtk_entry_set_text(parampop3entry3, "");
}

//parameter popup1

extern "C"
void on_parampop1ok_clicked (GtkButton *button, gpointer user_data)
 {
 entry1= gtk_entry_get_text (parampop1entry1);
 test[0] = atoi(entry1);
 testnum[0]=(isNumeric(entry1));
 if (testnum[0] == 1)
 {
 kk = user_input(comd,test);
 while (kk == -1)
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop1w);
 break;
 }

 sprintf(param,"%s",entry1);
 gtk_widget_hide(parampop1w);
 gtk_label_set_text(mainparamlabel, param);
 }//end if
 else
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop1w);
 }//end else

110

 gtk_label_set_text(mainstatus, "Status: Ready...");
 gtk_entry_set_text(parampop1entry1, "");

 }

//parampop2 ok
extern "C"
void on_parampop2ok_clicked (GtkButton *button, gpointer user_data)
 {
 entry1= gtk_entry_get_text (parampop2entry1);
 test[0] = atoi(entry1);
 testnum[0]=isNumeric(entry1);
 entry2= gtk_entry_get_text (parampop2entry2);
 test[1] = atoi(entry2);
 testnum[1]=isNumeric(entry2);
 if ((testnum[0] == 1) && (testnum[1]==1))
 {
 kk = user_input(comd,test);
 while (kk == -1)
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop2w);
 break;
 }

 sprintf(param,"%s %s",entry1, entry2);
 gtk_widget_hide(parampop2w);
 gtk_label_set_text(mainparamlabel, param);
 }//end if
 else
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop2w);
 }// end else
 gtk_label_set_text(mainstatus, "Status: Ready...");
 gtk_entry_set_text(parampop2entry1, "");
 gtk_entry_set_text(parampop2entry2, "");
 }

//parampop4 ok
extern "C"
void on_parampop4ok_clicked (GtkButton *button, gpointer user_data)
 {
 entry1= gtk_entry_get_text (parampop4entry1);
 test[0] = atoi(entry1);
 testnum[0]=isNumeric(entry1);
 entry2= gtk_entry_get_text (parampop4entry2);
 test[1] = atoi(entry2);

111

 testnum[1]=isNumeric(entry2);
 entry3= gtk_entry_get_text (parampop4entry3);
 test[2] = atoi(entry3);
 testnum[2]=isNumeric(entry3);
 entry4= gtk_entry_get_text (parampop4entry4);
 test[3] = atoi(entry4);
 testnum[3]=isNumeric(entry4);

 if ((testnum[0] == 1) && (testnum[1]==1) && (testnum[2]==1) && (testnum[3]==1))
 {
 kk = user_input(comd,test);

 while (kk == -1)
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop3w);
 break;
 }

 sprintf(param,"%s %s %s %s",entry1, entry2, entry3, entry4);
 gtk_widget_hide(parampop4w);
 gtk_label_set_text(mainparamlabel, param);
 }//end if
 else
 {
 gtk_widget_show(warningw);
 gtk_widget_hide(parampop4w);
 }//end else
 gtk_label_set_text(mainstatus, "Status: Ready...");
 gtk_entry_set_text(parampop4entry1, "");
 gtk_entry_set_text(parampop4entry2, "");
 gtk_entry_set_text(parampop4entry3, "");
 gtk_entry_set_text(parampop4entry4, "");

}

extern "C"
void on_warningok_clicked (GtkButton *button, gpointer user_data)
 {
 gtk_widget_hide(warningw);
 if ((comd==18))
 {
 gtk_widget_show(parampop1w);
 }
 else if ((comd==4))
 {
 gtk_widget_show(parampop2w);
 }

112

 else if ((comd==3) || (comd==13))
 {
 gtk_widget_show(parampop3w);
 }
 }

// Widget Hide Button
extern "C"
void on_parampop4canc_clicked (GtkButton *button, gpointer user_data)
{

gtk_widget_hide(parampop4w);

}

extern "C"
void on_parampop3canc_clicked (GtkButton *button, gpointer user_data)
{

gtk_widget_hide(parampop3w);

}

extern "C"
void on_parampop2canc_clicked (GtkButton *button, gpointer user_data)
{

gtk_widget_hide(parampop2w);

}

extern "C"
void on_parampop1canc_clicked (GtkButton *button, gpointer user_data)
{

gtk_widget_hide(parampop1w);

}
// End Widget Hide Button

//-----------------------------Quick Tabs Buttons---------------------------
extern "C"
void on_qtbutcqt_clicked (GtkButton *button, gpointer user_data)

{
gtk_widget_hide(quicktabsw);
}

113

extern "C"
void on_qtbutmastmode_clicked (GtkButton *button, gpointer user_data)

{
 float pos[3];
 comd=17;
 sprintf(buf,"%s","MAST_GET_CONFIG");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(data,"%d",comd);

 n = write(sockfd,data,strlen(data));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(data,sizeof(data));

 k = read(sockfd,Buff,sizeof(Buff));
 sscanf(Buff,"%*d %f %f %f",&pos[0],&pos[1],&pos[2]);
 bzero(Buff,sizeof(Buff));
 sprintf(recvv,"Shoulder: %f\n Elbow: %f\n,Wrist %f\n",pos[0],pos[1],pos[2]);
 gtk_label_set_text(mainstatus, recvv);
 bzero(recvv,sizeof(recvv));

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

extern "C"
void on_qthomeall_clicked (GtkButton *button, gpointer user_data)

{
 float homepos[3] = {0.0,-80.0,-40.0}; // Joint 6, 7, 8
 comd =3;
 sprintf(buf,"%s","MAST_HOME_ALL");
 sprintf(param,"%f %f %f",homepos[0],homepos[1],homepos[2]);
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(data,"%d %f %f %f",comd,homepos[0],homepos[1],homepos[2]);
 n = write(sockfd,data,strlen(data));
 if (n < 0)

114

 error("ERROR writing to socket");
 bzero(data,sizeof(data));
 k = read(sockfd,Buff,sizeof(Buff));
 printf("Buff: %s",Buff);
 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

extern "C"
void on_qtresetall_clicked (GtkButton *button, gpointer user_data)

{
 comd =11;
 sprintf(buf,"%s","MAST_RESET_ALL");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(sendd,"%s",param);
 sprintf(data,"%d",comd);
 n = write(sockfd,data,strlen(data));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(data,sizeof(data));

 k = read(sockfd,Buff,sizeof(Buff));
 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);

115

}

extern "C"
void on_qthaltall_clicked (GtkButton *button, gpointer user_data)

{
 comd =5;
 sprintf(buf,"%s","SCHUNK_HALT_ALL");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);

 sprintf(sendd,"%d %s",comd,param);
 sprintf(data,"%s",sendd);
 n = write(sockfd,data,strlen(data));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(data,sizeof(data));
 bzero(Buff,sizeof(Buff));
 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);

}

extern "C"
void on_qtscoop_clicked (GtkButton *button, gpointer user_data)

{
 comd =8;
 sprintf(buf,"%s","MAST_SAMPLE_RETRIEVE");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(sendd,"%s",param);
 sprintf(data,"%d",comd);
 n = write(sockfd,data,strlen(data));
 bzero(data,sizeof(data));
 if (n < 0)
 error("ERROR writing to socket");
 k = read(sockfd,Buff,sizeof(Buff));

116

 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

extern "C"
void on_qtdroprb_clicked (GtkButton *button, gpointer user_data)

{
 comd =9;
 sprintf(buf,"%s","MAST_SAMPLE_DUMP - Right Bin");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(data,"%d",comd);
 n = write(sockfd,data,strlen(data));
 bzero(data,sizeof(data));
 if (n < 0)
 error("ERROR writing to socket");
 k = read(sockfd,Buff,sizeof(Buff));
 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

extern "C"
void on_qtdroplb_clicked (GtkButton *button, gpointer user_data)

{
 comd =9;

117

 sprintf(buf,"%s","MAST_SAMPLE_DUMP - Left Bin");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);
 sprintf(data,"%d",comd);
 n = write(sockfd,data,strlen(data));
 bzero(data,sizeof(data));
 if (n < 0)
 error("ERROR writing to socket");
 k = read(sockfd,Buff,sizeof(Buff));
 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

//-----------------------------Quick Tabs Buttons End-----------------------

extern "C"
void on_mainhalt_clicked (GtkButton *button, gpointer user_data)

{
 comd =5;
 sprintf(buf,"%s","SCHUNK_HALT_ALL");
 sprintf(param," ");
 gtk_label_set(mainparamlabel,param);
 gtk_label_set(funclabelmain,buf);

 sprintf(sendd,"%d %s",comd,param);
 sprintf(data,"%s",sendd);
 n = write(sockfd,data,strlen(data));
 bzero(data,sizeof(data));
 if (n < 0)
 error("ERROR writing to socket");

 bzero(sendd,sizeof(sendd));
 bzero(data,sizeof(data));
 bzero(Buff,sizeof(Buff));

118

 gtk_label_set_text(mainstatus, "Status: Sent...");

 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
}

extern"C"
void on_configwarnok_clicked (GtkButton *button, gpointer user_data)
{
 gtk_widget_hide(configwarnw);
}

//----------------------Send Command------------------------
extern "C"
void on_mainsendbut_clicked (GtkButton *button, gpointer user_data)
{
if (ok==0)
 {
 gtk_widget_show (configwarnw);
 }
while (param[0] != '\0')
{
sprintf(sendd,"%d %s",comd,param);
//---------------------Print Command History------------------
if (comd == 4)
 {
 int mode; float pos;
 sscanf(param, "%d %f", &mode,&pos);
 if (mode == 6)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Shoulder: %d, Position:
%.2f",buf,mode,pos);
 }
 if (mode == 7)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Elbow: %d, Position:
%.2f",buf,mode,pos);
 }
 if (mode == 8)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Wrist: %d, Position:
%.2f",buf,mode,pos);

119

 }
 }

else if (comd == 3)
 {
 float pos[3];
 sscanf(param, "%f%f%f", &pos[0],&pos[1],&pos[2]);
 sprintf(cmdlist,"Command: %s, Parameters: Shoulder: %.2f Elbow: %.2f Wrist:
%.2f",buf,pos[0],pos[1],pos[2]);
 }

else if (comd == 18)
 {
 int mode;
 sscanf(param, "%d", &mode);
 if (mode == 6)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Shoulder: %d",buf,mode);
 }
 if (mode == 7)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Elbow: %d",buf,mode);
 }
 if (mode == 8)
 {
 sprintf(cmdlist,"Command: %s, Parameters: Joint->Wrist: %d",buf,mode);
 }
 }
else
 {
 sprintf(cmdlist,"Command: %s, Parameters: %s",buf,param);
 }
//------------------End Print command History------------------

while (online)
{

while ((kk != -1) && (ok == 1))
{
 ok=0;
 if((comd == 100) || ((comd >= 1) && (comd<=15)))
 {
 if (comd == 13)
 {
 sscanf(param,"%f %f %f",&px,&py,&phi);

 ret = inv_kin(px, py, phi, q_jnt);

120

 if (ret == 1)
 {
 comd = 3;
 sprintf(data,"%d %f %f %f",comd,q_jnt[0],q_jnt[1],q_jnt[2]);
 n = write(sockfd,data,strlen(data));

 k = read(sockfd,Buff,sizeof(Buff));
 printf ("Buff is: %s\n",Buff);
 if (n < 0)
 {
 error("ERROR writing to socket");
 }
 bzero(data,sizeof(data));
 bzero(sendd,sizeof(sendd));
 bzero(Buff,sizeof(Buff));
 }
 else
 {
 gtk_widget_show(warningw);
 }

 }//INV KIN

 else
 {
 sprintf(data,"%s",sendd);
 n = write(sockfd,data,strlen(data));
 k = read(sockfd,Buff,sizeof(Buff));
 printf ("Buff is: %s\n",Buff);
 if (n < 0)
 {
 error("ERROR writing to socket");
 }
 bzero(data,sizeof(data));
 bzero(sendd,sizeof(sendd));
 bzero(Buff,sizeof(Buff));

 gtk_label_set_text(mainstatus, "Status: Sent...");

 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {
 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
 break;

121

 }
 }//end if

 else if((comd<=21) && (comd>=16))
 {
 sprintf(data,"%s",sendd);
 n = write(sockfd,data,strlen(data));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(Buff,sizeof(Buff));
 k = read(sockfd,Buff,sizeof(Buff));
 if (k < 0)
 error("Error reading from socket");

 if (comd==18)
 {

 int jnt_id=test[0];
 float jnt_pos;
 sscanf(Buff, "%*d %f", &jnt_pos);
 if (jnt_id==6)
 {
 sprintf(recvv,"joint[%d] - Shoulder .pos=%f\n", jnt_id, jnt_pos);
 }
 else if (jnt_id==7)
 {
 sprintf(recvv,"joint[%d] - Elbow .pos=%f\n", jnt_id, jnt_pos);
 }
 else if (jnt_id==8)
 {
 sprintf(recvv,"joint[%d] - Wrist .pos=%f\n", jnt_id, jnt_pos);
 }
 gtk_label_set_text(mainstatus, recvv);
 }
 else if (comd==17)
 {
 float jnt_pos[3];
 sscanf(Buff, "%*d %f %f %f\n", &jnt_pos[0], &jnt_pos[1], &jnt_pos[2]);
 sprintf(recvv,"Mast Configuration is:\n - Shoulder: %f \n - Elbow: %f \n - Wrist:
%f \n", jnt_pos[0], jnt_pos[1],jnt_pos[2]);
 gtk_label_set_text(mainstatus, recvv);
 }
 }//else end

 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 if (gtk_text_buffer_get_char_count(buffer1))
 {

122

 gtk_text_buffer_insert (buffer1, &iter, "\n",1);
 }
 gtk_text_buffer_get_iter_at_offset(buffer1, &iter, 0);
 gtk_text_buffer_insert (buffer1, &iter, cmdlist,-1);
 break;
 }//while Buff[0] end
break;
}//online while end
while (task_plan && ok == 1)
{
 ok = 0;
 model = gtk_tree_view_get_model(GTK_TREE_VIEW(treeview1));
 gtk_list_store_append(GTK_LIST_STORE(model), &newrow);
 gtk_list_store_set(GTK_LIST_STORE(model), &newrow, COL_TASK, buf,
COL_STATUS,"Pending",COL_CMD,sendd,-1);
 break;

}//task plan while end

break;
}//while empty array check end
}
//------------------End Send Command-------------------------------

// Current Status -----------
extern "C"
void on_mainstatusbut_clicked (GtkButton *button, gpointer user_data)
{
 int tmpcmd = 17;
 sprintf(data,"%d",tmpcmd);
 n = write(sockfd,data,strlen(data));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(Buff,sizeof(Buff));
 k = read(sockfd,Buff,sizeof(Buff));
 if (k < 0)
 error("Error reading from socket");

 float jnt_pos[3];
 sscanf(Buff, "%*d %f %f %f\n", &jnt_pos[0], &jnt_pos[1], &jnt_pos[2]);
 sprintf(recvv,"Current Pos: \nShoulder: %f \nElbow: %f \nWrist: %f", jnt_pos[0],
jnt_pos[1],jnt_pos[2]);
 gtk_label_set_text(mainstatus, recvv);
 bzero(Buff,sizeof(Buff));

}

123

//End Current status

//Execute Command start

extern "C"
void on_task_execute_but_clicked (GtkButton *button, gpointer user_data)
{

 getcwd(cwd,sizeof(cwd));
 time_t now; //time_t should be declared in time.h as long
 now = time(NULL); //current time in C representation
 current = localtime(&now); //IMPORTANT you have to use a pointer to time_t
 sprintf(dir,"%s/data/data_%d%d%d.txt",cwd,current->tm_hour,current->tm_min,current-
>tm_sec);

 data_out = fopen(dir,"a");

 model = gtk_tree_view_get_model(GTK_TREE_VIEW(treeview1));

 gint num = gtk_tree_model_iter_n_children(model, NULL);

 gtk_tree_model_get_iter_first (model, &newrow);
 bzero(data,sizeof(data));

 int i,errno, conf;
 conf = -1;
 for (i = 1; i<=num;i++)
 {
 int jnt;
 entry_ins = '\0';
 errno = 0;
 gtk_tree_model_get(model, &newrow, COL_CMD, &entry_ins,-1);

 printf ("%d String is: %s\n",i,entry_ins);
 sscanf (entry_ins,"%d",&comd);

 if (comd == 1)
 {
 errno = 0;
 while (errno < 5)
 {
 bzero(Buff,sizeof(Buff));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,sizeof(Buff));
 sscanf(Buff,"%d",&conf);
 if (conf == 1)
 {

124

 break;
 fprintf(data_out,"\nDONE\n");
 }
 else
 {
 errno++;
 printf ("Err: %d\n",errno);
 sleep(5);
 }
 }//while err end
 }

 else if (comd == 3)
 {
 while (errno < 5)
 {
 int cnt;
 int count = 1;
 float pos[3],pos_now[3];
 pos_now[0] = -300;pos_now[1] = -300;pos_now[2] = -300;
 bzero(data,sizeof(data));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,4095);
 printf ("Buffer %s \n",Buff);
 sscanf(Buff,"%d %f %f %f
%d",&conf,&pos_now[0],&pos_now[1],&pos_now[2],&cnt);
 sscanf(entry_ins,"%*d %f %f %f",&pos[0],&pos[1],&pos[2]);
 printf("Pos_temp: %f %f %f and conf %d and cnt:
%d\n",pos_now[0],pos_now[1],pos_now[2],conf,cnt);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);
 bzero(Buff,sizeof(Buff));

 while(conf == 1) //TRY conf == 1
 {
 if ((fabs(pos[0]-pos_now[0]) <=0.1) && (fabs(pos[1]-pos_now[1]) <=0.1)
&& (fabs(pos[2]-pos_now[2]) <=0.1))
 {
 k = read(sockfd,Buff,sizeof(Buff));
 count++;
 printf ("count: %d\n",count);
 bzero(Buff,sizeof(Buff));
 usleep(100);
 break;
 }

 bzero(Buff,sizeof(Buff));
 k = read(sockfd,Buff,sizeof(Buff));
 count++;

125

 sscanf(Buff,"%d %f %f %f
%d",&conf,&pos_now[0],&pos_now[1],&pos_now[2],&cnt);
 printf("Pos_temp: %f %f %f and conf: %d and cnt:
%d\n",pos_now[0],pos_now[1],pos_now[2],conf,cnt);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);
// usleep(50);
 }

 if (conf == 1)
 {
 if (cnt != count)
 {
 sleep(2);
 k = read(sockfd,Buff,sizeof(Buff));
 //printf ("!count > %s\n",Buff);
 }
 printf ("DONE\n");
 fprintf(data_out,"\nDONE\n");
 bzero(Buff,sizeof(Buff));
 gtk_list_store_set(GTK_LIST_STORE(model),
&newrow,COL_STATUS,"Complete",-1);
 sleep(5);
 break;
 }
 else
 {
 errno++;
 printf ("K is: %d Err: %d\n",k,errno);
 sleep(5);
 }

 }//while err end
 }//if comd end

 else if (comd == 4)
 {
 while (errno < 5)
 {
 float pos,pos_now;
 pos_now = -300;
 bzero(Buff,sizeof(Buff));
 bzero(data,sizeof(data));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,sizeof(Buff));
 sscanf(Buff,"%d",&conf);
 sscanf(entry_ins,"%*d %d %f",&jnt,&pos);

126

 printf("Pos_temp: %f, conf %d\n",pos_now,conf);
 sprintf(data,"%d %d",18,jnt);
 while(conf == 1) //TRY conf == 1
 {
 bzero(Buff,sizeof(Buff));
 n = write(sockfd,data,strlen(data));
 k = read(sockfd,Buff,sizeof(Buff));
 sscanf(Buff,"%d %f",&conf,&pos_now);
 printf("Pos_temp: %f and conf: %d\n",pos_now,conf);
 fprintf(data_out,"%f\n",pos_now);
 if (fabs(pos-pos_now) <=0.1)
 {
 bzero(Buff,sizeof(Buff));
 break;
 }
 //usleep(5000);
 }
 if (conf == 1)
 {
 fprintf(data_out,"\nDONE\n");
 gtk_list_store_set(GTK_LIST_STORE(model),
&newrow,COL_STATUS,"Complete",-1);
 sleep(5);
 break;
 }
 else
 {
 errno++;
 printf ("Err: %d\n",errno);
 sleep(5);
 }

 }//while err end
 }//if comd end

 else if (comd == 8)
 {
 float pos_des[3] = {80.0f,80.0f,50.0f}; // Moving back to the ready position

 while (errno < 5)
 {
 int cnt;
 int count = 1;
 float pos_now[3];
 bzero(Buff,sizeof(Buff));
 bzero(data,sizeof(data));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,sizeof(Buff));

127

 printf ("Buffer %s \n",Buff);
 sscanf(Buff,"%d %f %f %f
%d",&conf,&pos_now[0],&pos_now[1],&pos_now[2],&cnt);
 printf("Pos_temp: %f %f %f and conf %d and cnt:
%d\n",pos_now[0],pos_now[1],pos_now[2],conf,cnt);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);
 while(conf == 1) //TRY conf == 1
 {
 if ((fabs(pos_des[0]-pos_now[0]) <=0.1) && (fabs(pos_des[1]-
pos_now[1]) <=0.1) && (fabs(pos_des[2]-pos_now[2]) <=0.1))
 {
 k = read(sockfd,Buff,sizeof(Buff));
 count++;
 printf ("count: %d\n",count);
 bzero(Buff,sizeof(Buff));
 usleep(100);
 break;
 }
 bzero(Buff,sizeof(Buff));
 k = read(sockfd,Buff,sizeof(Buff));
 count++;
 sscanf(Buff,"%d %f %f
%f\n",&conf,&pos_now[0],&pos_now[1],&pos_now[2]);
 printf("Pos_temp: %f %f %f and conf:
%d\n",pos_now[0],pos_now[1],pos_now[2],conf);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);
// usleep(50);
 }
 if (conf == 1)
 {
 if (cnt != count)
 {
 sleep(2);
 k = read(sockfd,Buff,sizeof(Buff));
 //printf ("!count > %s",Buff);
 }
 printf ("DONE\n");
 fprintf(data_out,"\nDONE\n");
 bzero(Buff,sizeof(Buff));
 gtk_list_store_set(GTK_LIST_STORE(model),
&newrow,COL_STATUS,"Complete",-1);
 sleep(5);
 break;
 }
 else
 {
 errno++;
 printf ("Err: %d\n",errno);

128

 sleep(5);
 }

 }//while err end
 }//if comd end

 else if (comd == 9)
 {
 int cnt;
 int count = 1;
 float pos_des[3] = {80.0f,80.0f,50.0f}; // Moving back to the ready position
 float pos_dump[3] = {40.0f,140.0f,-30.0f}; // Dumping position

 while (errno < 5)
 {
 int dump = -1;
 float pos_now[3];
 bzero(Buff,sizeof(Buff));
 bzero(data,sizeof(data));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,sizeof(Buff));
 printf ("Buffer %s \n",Buff);
 sscanf(Buff,"%d %f %f %f
%d",&conf,&pos_now[0],&pos_now[1],&pos_now[2],&cnt);
 printf("Pos_temp: %f %f %f and conf %d and cnt:
%d\n",pos_now[0],pos_now[1],pos_now[2],conf,cnt);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);

 while(conf == 1) //TRY conf == 1
 {
 if ((fabs(pos_dump[0]-pos_now[0]) <=0.1) && (fabs(pos_dump[1]-
pos_now[1]) <=0.1) && (fabs(pos_dump[2]-pos_now[2]) <=0.1))
 {
 dump = 1;
 printf ("Dumped\n");
 }
 if ((dump == 1) && (fabs(pos_des[0]-pos_now[0]) <=0.1) && (fabs(pos_des[1]-
pos_now[1]) <=0.1) && (fabs(pos_des[2]-pos_now[2]) <=0.1))
 {
 printf ("count: %d\n",count);
 bzero(Buff,sizeof(Buff));
 usleep(100);
 break;
 }
 bzero(Buff,sizeof(Buff));
 k = read(sockfd,Buff,sizeof(Buff));
 count++;

129

 sscanf(Buff,"%d %f %f %f
%d\n",&conf,&pos_now[0],&pos_now[1],&pos_now[2],&cnt);
 printf("%d Pos_temp: %f %f %f and conf: %d and cnt:
%d\n",count,pos_now[0],pos_now[1],pos_now[2],conf,cnt);
 fprintf (data_out,"%f %f %f\n",pos_now[0],pos_now[1],pos_now[2]);
// usleep(50);
 }
 if (conf == 1)
 {
 if (cnt != count)
 {
 sleep(2);
 k = read(sockfd,Buff,sizeof(Buff));
 printf ("!count > %s\n",Buff);
 }
 printf ("DONE\n");
 fprintf(data_out,"\nDONE\n");
 bzero(Buff,sizeof(Buff));
 gtk_list_store_set(GTK_LIST_STORE(model),
&newrow,COL_STATUS,"Complete",-1);
 sleep(5);
 break;
 }
 else
 {
 errno++;
 printf ("Err: %d\n",errno);
 sleep(5);
 }

 }//while err end
 }//if comd end

 else
 {
 errno = 0;
 while (errno < 5)
 {
 bzero(Buff,sizeof(Buff));
 n = write(sockfd,entry_ins,strlen(entry_ins));
 k = read(sockfd,Buff,sizeof(Buff));
 sscanf(Buff,"%d",&conf);
 if (conf == 1)
 {
 printf ("%s\n",Buff);
 bzero(Buff,sizeof(Buff));
 break;
 }

130

 else
 {
 errno++;
 printf ("Err: %d\n",errno);
 sleep(5);
 }
 }//while err end
 }

 gtk_tree_model_iter_next(model, &newrow);
 }//for end
 fclose(data_out);
}

// Execute command end

//------------------GTK+ GUI CALLBACK END---------------------------
int main (int argc, char *argv[])
{

 //----------------GUI CODE-----------------------------------
 gtk_init (&argc, &argv);

 main1 = gtk_builder_new ();
 parampop1 = gtk_builder_new ();
 parampop2 = gtk_builder_new ();
 parampop3 = gtk_builder_new ();
 parampop4 = gtk_builder_new ();
 quicktabs = gtk_builder_new();
 warning = gtk_builder_new();
 configwarn = gtk_builder_new();
 taskplan = gtk_builder_new();
 netconn = gtk_builder_new();

 gtk_builder_add_from_file (main1, "main.glade", NULL);
 gtk_builder_add_from_file (parampop1, "parampop1.glade", NULL);
 gtk_builder_add_from_file (parampop2, "parampop2.glade", NULL);
 gtk_builder_add_from_file (parampop3, "parampop3.glade", NULL);
 gtk_builder_add_from_file (parampop4, "parampop4.glade", NULL);
 gtk_builder_add_from_file (quicktabs, "quicktabs.glade", NULL);
 gtk_builder_add_from_file (warning, "warning.glade", NULL);
 gtk_builder_add_from_file (configwarn, "configwarn.glade", NULL);
 gtk_builder_add_from_file (taskplan, "taskplan.glade", NULL);
 gtk_builder_add_from_file (netconn, "netconn.glade", NULL);

131

 mainwindow = GTK_WIDGET (gtk_builder_get_object (main1, "mainwindow"));
 parampop1w = GTK_WIDGET (gtk_builder_get_object (parampop1, "parampop1"));
 parampop2w = GTK_WIDGET (gtk_builder_get_object (parampop2, "parampop2"));
 parampop3w = GTK_WIDGET (gtk_builder_get_object (parampop3, "parampop3"));
 parampop4w = GTK_WIDGET (gtk_builder_get_object (parampop4, "parampop4"));
 quicktabsw = GTK_WIDGET (gtk_builder_get_object (quicktabs, "quicktabs"));
 warningw = GTK_WIDGET (gtk_builder_get_object (warning, "warning"));
 configwarnw = GTK_WIDGET (gtk_builder_get_object (configwarn, "configwarn"));
 taskplanw = GTK_WIDGET (gtk_builder_get_object (taskplan, "taskplan"));
 netconnw = GTK_WIDGET (gtk_builder_get_object (netconn, "netconn"));
 treeview1 = GTK_WIDGET(gtk_builder_get_object(taskplan, "treeview1"));

 funclabelmain = GTK_LABEL (gtk_builder_get_object (main1, "funclabelmain"));
 gtk_builder_connect_signals (main1,funclabelmain);

 parampop4lab = GTK_LABEL (gtk_builder_get_object (parampop4, "parampop4lab"));
 gtk_builder_connect_signals (parampop4,parampop4lab);

 parampop3lab = GTK_LABEL (gtk_builder_get_object (parampop3, "parampop3lab"));
 gtk_builder_connect_signals (parampop3,parampop3lab);

 parampop2lab = GTK_LABEL (gtk_builder_get_object (parampop2, "parampop2lab"));
 gtk_builder_connect_signals (parampop2,parampop2lab);

 parampop1lab = GTK_LABEL (gtk_builder_get_object (parampop1, "parampop1lab"));
 gtk_builder_connect_signals (parampop1,parampop1lab);

 parampop1entry1 = GTK_ENTRY (gtk_builder_get_object (parampop1, "parampop1entry1"));

 parampop2entry1 = GTK_ENTRY (gtk_builder_get_object (parampop2, "parampop2entry1"));
 parampop2entry2 = GTK_ENTRY (gtk_builder_get_object (parampop2, "parampop2entry2"));

 parampop3entry1 = GTK_ENTRY (gtk_builder_get_object (parampop3, "parampop3entry1"));
 parampop3entry2 = GTK_ENTRY (gtk_builder_get_object (parampop3, "parampop3entry2"));
 parampop3entry3 = GTK_ENTRY (gtk_builder_get_object (parampop3, "parampop3entry3"));

 parampop4entry1 = GTK_ENTRY (gtk_builder_get_object (parampop4, "parampop4entry1"));
 parampop4entry2 = GTK_ENTRY (gtk_builder_get_object (parampop4, "parampop4entry2"));
 parampop4entry3 = GTK_ENTRY (gtk_builder_get_object (parampop4, "parampop4entry3"));
 parampop4entry4 = GTK_ENTRY (gtk_builder_get_object (parampop4, "parampop4entry4"));

 netconn_ip = GTK_ENTRY (gtk_builder_get_object (netconn, "netconn_ip"));
 netconn_port = GTK_ENTRY (gtk_builder_get_object (netconn, "netconn_port"));

 mainparamlabel = GTK_LABEL (gtk_builder_get_object (main1, "mainparamlabel"));

132

 taskplanentry = GTK_ENTRY (gtk_builder_get_object (taskplan, "taskplanentry"));

 gtk_builder_connect_signals (main1,mainparamlabel);
 gtk_builder_connect_signals (quicktabs,NULL);
 gtk_builder_connect_signals (warning,NULL);
 gtk_builder_connect_signals (configwarn,NULL);
 gtk_builder_connect_signals(taskplan, NULL);
 gtk_builder_connect_signals(netconn, NULL);

 g_signal_connect(taskplanentry, "activate", G_CALLBACK(on_insert_but_clicked), treeview1);
 g_signal_connect(netconn_port, "activate", G_CALLBACK(on_netconn_enter_clicked), netconn);

 mainstatus = GTK_LABEL (gtk_builder_get_object (main1, "mainstatus"));
 gtk_builder_connect_signals (main1,mainstatus);

//------------------------Text View Code--

 textviewm = GTK_TEXT_VIEW (gtk_builder_get_object (main1, "maintextview"));
 buffer1 = gtk_text_view_get_buffer(GTK_TEXT_VIEW (textviewm));

//------------------------Text view code end--------------------------------------

//Creating colors
 GdkColor my_red;
 my_red.red = 0xffff;
 my_red.green = 0x0000;
 my_red.blue = 0x0000;

//Colors end

 mainhalt = GTK_WIDGET (gtk_builder_get_object (main1, "mainhalt"));
 qthaltall = GTK_WIDGET (gtk_builder_get_object (quicktabs, "qthaltall"));
 onlinebut = GTK_WIDGET (gtk_builder_get_object (main1, "onlinebut"));
 taskplanbut = GTK_WIDGET (gtk_builder_get_object (main1, "taskplanbut"));

//Color changing !!

 gtk_widget_modify_bg(mainhalt, GTK_STATE_NORMAL, &my_red);
 gtk_widget_modify_bg(mainhalt, GTK_STATE_PRELIGHT, &my_red);

 gtk_widget_modify_bg(qthaltall, GTK_STATE_NORMAL, &my_red);
 gtk_widget_modify_bg(qthaltall, GTK_STATE_PRELIGHT, &my_red);

133

//End of changing color

 gtk_widget_show_all (mainwindow);
 gtk_widget_show_all (netconnw);

 g_object_unref (G_OBJECT (main1));
 g_object_unref (G_OBJECT (parampop1));
 g_object_unref (G_OBJECT (parampop2));
 g_object_unref (G_OBJECT (parampop3));
 g_object_unref (G_OBJECT (parampop4));
 g_object_unref (G_OBJECT (quicktabs));
 g_object_unref (G_OBJECT (warning));
 g_object_unref (G_OBJECT (configwarn));
 g_object_unref (G_OBJECT (taskplan));
 g_object_unref (G_OBJECT (netconnw));
 //----------------GUI CODE END-------------------------------

 gtk_main ();
 js_tele();
 system("clear");

//}// END While
 close(sockfd);
 return 0;
}

A.IV inputcheck.h

Code presented below is the header file for validating the input from GUI.

#include<stdio.h>

#ifndef INPUT_CHECK
#define INPUT_CHECK
/* function prototypes here */
int user_input(int comd, int test[])
{

int i;

if (comd == 4)
{

134

 if((test[0] < 6) || (test[0]>8))
 {
 i=-1;
 }
 if ((test[0]==6) && ((test[1] <-90) || (test[1]>90)))
 {
 i=-1;
 }
 if ((test[0]==7) && ((test[1] <-150) || (test[1]>110)))
 {
 i=-1;
 }
 if ((test[0]==8) && ((test[1] <-90) || (test[1]>5)))
 {
 i=-1;
 }

}

else if (comd == 3)
{

 if ((test[0] <-90) || (test[1]>90))
 {
 i=-1;
 }
 if ((test[1] <-150) || (test[2]>110))
 {
 i=-1;
 }
 if ((test[2] <-90) || (test[3]>5))
 {
 i=-1;
 }
}

else if (comd == 18)
{

 if((test[0] < 6) || (test[0]>9))
 {
 i=-1;
 }
}
return i;
}

135

#endif

A.V task_signals.h

This part of the code contains necessary function to run the interface for

Task Scheduling functionality of the interface.

/*
 * Compile me with:
 * g++ -o main main.c $(pkg-config --cflags --libs gtk+-2.0 gmodule-2.0)
 */

enum
{
 COL_TASK = 0,
 COL_STATUS,
 COL_CMD,
};

#include <gtk/gtk.h>

 GtkWidget *treeview1, *taskplanbut, *onlinebut;
 GtkTreeModel *model;
 GtkEntry *taskplanentry;
 GtkTreeIter newrow;
 GtkTreePath *path1;

const gchar *entry_ins;

extern "C"
void on_insert_but_clicked (GtkButton *button, gpointer user_data)
{

 entry_ins= gtk_entry_get_text (taskplanentry);

if (entry_ins && *entry_ins)
 {

 model = gtk_tree_view_get_model(GTK_TREE_VIEW(treeview1));

 gtk_list_store_append(GTK_LIST_STORE(model), &newrow);

136

 gtk_list_store_set(GTK_LIST_STORE(model), &newrow, COL_TASK, "Manual",
COL_STATUS,"Pending",COL_CMD,entry_ins,-1);

 printf ("Entry: %s \n",entry_ins);

 gtk_entry_set_text(GTK_ENTRY(taskplanentry), ""); /* clear entry */

 }

}

extern "C"
void on_read_but_clicked (GtkButton *button, gpointer user_data)
{

 gint num = gtk_tree_model_iter_n_children(model, NULL);

 if (num != 0)
 {
 printf ("Num of iter: %d\n",num);
 }

}

extern "C"
void on_task_del_but_clicked (GtkButton *button, gpointer user_data)
{

 GtkTreeSelection *sel;
 GtkTreeIter selected_row;

 sel = gtk_tree_view_get_selection(GTK_TREE_VIEW(treeview1));

// g_assert(gtk_tree_selection_get_mode(sel) == GTK_SELECTION_SINGLE);

 if (gtk_tree_selection_get_selected(sel, &model, &selected_row))
 {
 gtk_list_store_remove(GTK_LIST_STORE(model), &selected_row);
 }
 else
 {
 /* If no row is selected, the button should
 * not be clickable in the first place */
 printf ("No row selected\n");
 }

137

}

A.VI inv_kin.h

File inv_kin.h is the header file containing needed the code for inverse

kinematics calculation of the three link robotic manipulator.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>

#ifndef INV_KIN
#define INV_KIN

define PI 3.14159265

int inv_kin (float px, float py, float phi, float q_jnt[3])
{
float l1,l2,w,phir,q[3];
float x2,y2,cq2,sq2,qr2,ck,sk,k,qr1,qr3; //Intermediate variables

l1 = 0.460;
l2 = 0.440;
w = 0.11;

phir = (phi*PI)/180;

x2 = px - (w*cos(phir));
y2 = py - (w*sin(phir));

//elbow down
cq2 = (x2*x2 + y2*y2 - l1*l1 - l2*l2)/(2*l1*l2);
sq2 = sqrt(1-(cq2*cq2));

qr2 = atan2(sq2,cq2);
q[1] = (qr2*180)/PI;

ck = (x2*x2 + y2*y2 + l1*l1 - l2*l2)/(2*sqrt(x2*x2 + y2*y2)*l1);
sk = sqrt(1-(ck*ck));
k = atan2(sk,ck);
qr1 = atan2(y2,x2) - k;

138

q[0] = (qr1*180)/PI;

qr3 = (phir-qr1-qr2);
q[2] = (qr3*180)/PI;
//elbow up
float squp2,qrup2,qup[3],cupk,supk,kup,qrup1,qrup3;
squp2 = -1*sqrt(1-(cq2*cq2));

qrup2 = atan2(squp2,cq2);
qup[1] = (qrup2*180)/PI;

cupk = (x2*x2 + y2*y2 + l1*l1 - l2*l2)/(2*sqrt(x2*x2 + y2*y2)*l1);
supk = -1*sqrt(1-(cupk*cupk));
kup = atan2(supk,cupk);
qrup1 = atan2(y2,x2) - kup;
qup[0] = (qrup1*180)/PI;

qrup3 = phir-qrup1-qrup2;
qup[2] = (qrup3*180)/PI;

printf ("Outside if --> q1: %f, q2: %f, q3: %f\n",q[0],q[1],q[2]);
printf ("Outside if --> qup1: %f, qup2: %f, qup3: %f\n",qup[0],qup[1],qup[2]);

if (((qup[0] > -90.0) && (qup[0] < 94.0)) && ((qup[1] > -150.0) && (qup[1] < 140.0)) && ((qup[2] > -90.0)
&& (qup[2] < 5.0)))
{
 //printf ("qup1: %f, qup2: %f, qup3: %f\n",qup[0],qup[1],qup[2]);
 q_jnt[0] = qup[0];
 q_jnt[1] = qup[1];
 q_jnt[2] = qup[2];
 return 1;
}
else if (((q[0] > -90.0) && (q[0] < 40.0)) && ((q[1] > -150.0) && (q[1] < 140.0)) && ((q[2] > -90.0) && (q[2]
< 5.0)))
{
 //printf ("q1: %f, q2: %f, q3: %f\n",q[0],q[1],q[2]);
 q_jnt[0] = q[0];
 q_jnt[1] = q[1];
 q_jnt[2] = q[2];
 return 1;
}
else
{
 printf ("Not Possible\n");
 return 0;
}

}

139

#endif

A.VII testjs.h

Following code collects joystick input data and sends it to main.c file. Upon

pressing trigger button, manual mode is activated and joystick is used to

control the manipulator.

#include <pthread.h>
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/joystick.h>
#include <math.h>

#ifndef TESTJS
#define TESTJS
#define NUM_THREADS 3
#define JOY_DEV "/dev/input/js1"
#define HZ 12
int sockfd;
char axisDesc[15][5] = {"X", "Y", "Z", "R", "A", "B", "C", "D", "E", "F", "G", "H", "I" };
char numAxis[20], numButtons[20], value[20][20], timeSec[20], timeMilli[20],buffer[1024];
int num_of_axis,n,k;
int jsdata[50];
 int cnt, joy_fd, *axis=NULL, num_of_buttons=0;
 char *button=NULL, name_of_joystick[80];
 struct js_event js;
 time_t theTime;
void *event_read(void *nothing)
{
while(1)
{
usleep(10000);
// READ THE JOYSTICK STATE, IT WILL BE RETURNED IN THE JS_EVENT STRUCT
 read(joy_fd, &js, sizeof(struct js_event));
 // CHECK THE EVENT
 switch (js.type & ~JS_EVENT_INIT){
 case JS_EVENT_AXIS:

140

 axis [js.number] = js.value;
 break;
 case JS_EVENT_BUTTON:
 button [js.number] = js.value;
 break;
 }
 // PRINT THE RESULTS
 for(cnt = 0; cnt < num_of_axis; cnt++)
 {
 sprintf(value[cnt], "%d", axis[cnt]);
 }
 for(cnt = 0;cnt < num_of_buttons;cnt++)
 {
 sprintf(value[cnt+num_of_axis], "%d",button[cnt]);
 }
 usleep(100);
 bzero(jsdata,sizeof(jsdata+1));
 for(cnt = 0;cnt < (num_of_buttons+num_of_axis);cnt++)
 {
 sscanf(value[cnt], "%d",&jsdata[cnt]);
 }
 jsdata[1] = -1*jsdata[1];
 //printf("%d %d %d\n",jsdata[0],jsdata[1],jsdata[2]);
}
}
void *write_msg (void *msg)
{
 //sprintf(buffer,"%d",jsdata[1]);
 n = write(sockfd,buffer,strlen(buffer));
 bzero(buffer,sizeof(buffer+1));
 usleep(75000);
}
int js_tele()
{
 if((joy_fd = open(JOY_DEV , O_RDONLY)) == -1)
{
 printf("Couldn't open joystick ");
 }
 ioctl(joy_fd, JSIOCGAXES, &num_of_axis); // GET THE
NUMBER OF AXIS ON JS
 ioctl(joy_fd, JSIOCGBUTTONS, &num_of_buttons); // GET THE NUMBER OF
BUTTONS ON THE JS
 ioctl(joy_fd, JSIOCGNAME(80), &name_of_joystick); // GET THE NAME OF THE JS

 axis = (int *) calloc(num_of_axis, sizeof(int));
 button = (char *) calloc(num_of_buttons, sizeof(char));
 printf("numAxis, %d ", num_of_axis);
 printf("numButtons, %d\n", num_of_buttons);

141

// CHANGE THE STATUS FLAG OF THE FILE DESCRIPTOR TO NON-BLOCKING MODE
 fcntl(joy_fd, F_SETFL, O_NONBLOCK);
 while(1)
 {
 //usleep(10000);
 // READ THE JOYSTICK STATE, IT WILL BE RETURNED IN THE JS_EVENT STRUCT
 read(joy_fd, &js, sizeof(struct js_event));
 // CHECK THE EVENT
 switch (js.type & ~JS_EVENT_INIT){
 case JS_EVENT_AXIS:
 axis [js.number] = js.value;
 break;
 case JS_EVENT_BUTTON:
 button [js.number] = js.value;
 break;
 }
 // PRINT THE RESULTS
 for(cnt = 0; cnt < num_of_axis; cnt++)
 {
 sprintf(value[cnt], "%d", axis[cnt]);
 }
 for(cnt = 0;cnt < num_of_buttons;cnt++)
 {
 sprintf(value[cnt+num_of_axis], "%d",button[cnt]);
 }
 usleep(100);
// printf("%s %s %s\n",value[0],value[1],value[2]);
 bzero(jsdata,sizeof(jsdata+1));
 for(cnt = 0;cnt < (num_of_buttons+num_of_axis);cnt++)
 {
 sscanf(value[cnt], "%d",&jsdata[cnt]);
 }
 jsdata[1] = -1*jsdata[1];
 // Determine joint angles
 if (jsdata[1] == 0)
 {
 printf("Ignore\n");
 }
 int count = 0;
 if (jsdata[5]==1)
 {
 printf("Button 5\n");
 bzero(buffer,sizeof(buffer+1));
 while ((jsdata[1] >= -32767)&&(jsdata[1] <= 32767))
 {
 float jnt_posd[3];
 jnt_posd[0] = jsdata[1]*(180.0/65534.0);
 printf("%f\n",jnt_posd[0]);

142

 int tmpcmd = 4;
 int jntid = 6;
 pthread_t threads1, threads2;
 int t = 0;
 pthread_create(&threads1, NULL, event_read, (void *)t);
 sprintf(buffer,"%d %d %f",tmpcmd,jntid,jnt_posd[0]);
 pthread_create(&threads2, NULL, write_msg, (void *)t);
 pthread_join(threads2,NULL);
 count++;
 printf("First -ve: %d and count: %d\n",jsdata[1],count);
 if (jsdata[5] != 1)
 {
 pthread_detach(threads2);
 break;
 }
 }
 }//Button 5
 if (jsdata[6]==1)
 {
 printf("Button 6\n");
 bzero(buffer,sizeof(buffer+1));
 while ((jsdata[1] >= -32767)&&(jsdata[1] <= 32767))
 {
 float jnt_posd[3];
 jnt_posd[0] = (jsdata[1]*(260.0/65534.0))-20.0;
 printf("%f\n",jnt_posd[0]);
 int tmpcmd = 4;
 int jntid = 7;
 pthread_t threads1, threads2;
 int t = 0;
 pthread_create(&threads1, NULL, event_read, (void *)t);
 pthread_create(&threads2, NULL, write_msg, (void *)t);
 sprintf(buffer,"%d %d %f",tmpcmd,jntid,jnt_posd[0]);
 pthread_join(threads2,NULL);

 count++;
 printf("First -ve: %d and count: %d\n",jsdata[1],count);

 if (jsdata[6] != 1)
 {
 pthread_detach(threads2);
 break;
 }
 }
 }//Button 6
 if (jsdata[7]==1)
 {
 printf("Button 7\n");

143

 while ((jsdata[1] >= -32767)&&(jsdata[1] <= 32767))
 {
 float jnt_posd[3];
 jnt_posd[0] = (jsdata[1]*(95.0/65534.0))-42.5;
 printf("%f\n",jnt_posd[0]);
 int tmpcmd = 4;
 int jntid = 8;
 pthread_t threads1, threads2;
 int t = 0;
 pthread_create(&threads1, NULL, event_read, (void *)t);
 pthread_create(&threads2, NULL, write_msg, (void *)t);
 sprintf(buffer,"%d %d %f",tmpcmd,jntid,jnt_posd[0]);
 pthread_join(threads2,NULL);
 count++;
 printf("First -ve: %d and count: %d\n",jsdata[1],count);
 if (jsdata[7] != 1)
 {
 pthread_detach(threads2);
 break;
 }
 }
 }
}
 return (0);
}
#endif

A.VIII server.c

File server.c is coded for running TCP/IP server for remotely control of the

robotic manipulator.

/* A simple server in the internet domain using TCP
 The port number is passed as an argument */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include "SchunkData.h"

#ifndef _Schunk_FNC_H

144

#include "Schunk_FNC.h"
#endif

void error(const char *msg)
{
 perror(msg);
 exit(1);
}

int main()
{
tv.tv_sec = 0; /* seconds */
tv.tv_usec = 0;

int ret = -1;
bool server = true;
// char buffer_send[1024];
// int sockfd, newsockfd, portno;
// int n,k;
 printf ("Insert Port no: ");
 scanf ("%d",&portno);

 FD_ZERO(&read_msg);

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 {
 error("ERROR opening socket");
 }
 bzero((char *) &serv_addr, sizeof(serv_addr));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);

 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
 {
 error("ERROR on binding");
 }
 listen(sockfd,5);
 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);
 bzero(buffer,sizeof(buffer));
 bzero(buffer_send,sizeof(buffer_send));

ret = Schunk_Init();

145

 if(ret != 0)
 {
 printf("Schunk Initialization failed\n");
 Schunk_Cleanup();
 running = false;
 }
 else
 {
 printf("Initialization Successful\n");
 }

while (server == true)
{
 if (newsockfd < 0)
 {
 error("ERROR on accept");
 }

 n = read(newsockfd,buffer,sizeof(buffer));

 if (n < 0)
 {
 error("ERROR reading from socket");
 }
 if (buffer[0] == '\0')
 {
 printf ("Client disconnected\n");
 Schunk_Cleanup();
 break;
 }

 printf("Here is the message: %s\n",buffer);
 sscanf (buffer,"%d\n",&cmd);

while(cmd >= 1000)
{
 if (cmd == 1000)
 {
 online = true;
 task_plan = false;
 }
 if (cmd == 1001)
 {
 task_plan = true;
 online = false;
 }
 bzero(buffer,sizeof(buffer));
 n = read(newsockfd,buffer,sizeof(buffer));

146

 if (n < 0)
 {
 error("ERROR reading from socket(in while)");
 }
 sscanf (buffer,"%d\n",&cmd);
 printf("Here is the message(in while): %s\n",buffer);
 break;
}

 if (buffer[0] == '\0')
 {
 printf ("Client disconnected\n");
 Schunk_Cleanup();
 break;
 }

// n = write(newsockfd,"I got your message",18);
// if (n < 0) error("ERROR writing to socket");

 switch (cmd)
 {

 case SCHUNK_INITIALIZE:
 {
 ret = Schunk_Init();
 if (ret != 0)
 {
 printf ("Error\n");
 k = write(newsockfd,"-1",2);
 }
 else
 {
 conf = 1;
 k = write(newsockfd,"1",1);
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_CLEANUP:
 {
 ret = Schunk_Cleanup();
 if (ret != 0)
 {
 k = write(newsockfd,"-1",2);
 printf ("Error\n");
 }
 else

147

 {

 conf = 1;
 k = write(newsockfd,"1",1);
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_RESET_ALL:
 {
 ret = Schunk_Mov_Reset_All();
 if (ret != 0)
 {
 printf ("Error\n");
 k = write(newsockfd,"-1",2);
 }
 else
 {
 conf = 1;
 k = write(newsockfd,"1",1);
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_MOV_LOCK:
 {
 send_pos = false;
 if (online)
 k = write(newsockfd,"1",1);
 ret = Schunk_Mov_Lock();
 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("Schunk Lock pos \n");
 if (task_plan)
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

148

 case SCHUNK_MOV_UNLOCK:
 {
 send_pos = false;
 if (online)
 k = write(newsockfd,"1",1);
 ret = Schunk_Mov_Unlock();

 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("Schunk Unlock pos \n");
 if (task_plan)
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_SET_PARA:
 {
 send_pos = true;
 cnt = 0;
 float shoulder, elbow, wrist;
 sscanf (buffer,"%*d %f %f %f\n",&shoulder, &elbow, &wrist);
 if (online)
 k = write(newsockfd,"1",1);
 ret = Schunk_Mov_All_Joints(shoulder, elbow, wrist);
 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("schunk_set_param\n");
 if (task_plan)
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));

149

 break;
 }

 case SCHUNK_MOV_JNT:
 {
 send_pos = false;
 int modID;
 float posd;
 sscanf (buffer,"%*d %d %f\n",&modID,&posd);
 ret = Schunk_Mov_Jnt_Pos(modID,posd);
 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("schunk_mov_jnt\n");
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_HALT_ALL:
 {
 ret = Schunk_Mov_Halt_All();

 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("halt all joints\n");
 k = write(newsockfd,"1",1);
 conf = 1;
 }

 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_MOV_RETRIEVE:

150

 {
 send_pos = true;
 cnt = 0;
 if (online)
 k = write(newsockfd,"1",1);
 ret = Schunk_Sample_Retrieve();
 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("Retrieving Sample\n");
 if (task_plan)
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

 case SCHUNK_MOV_DUMP:
 {
 send_pos = true;
 cnt = 0;
 if (online)
 k = write(newsockfd,"1",1);
 ret = Schunk_Sample_Dump();

 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 printf ("Dumping Sample\n");
 if (task_plan)
 k = write(newsockfd,"1",1);
 conf = 1;
 }
 bzero(buffer,sizeof(buffer));
 break;
 }

151

 case SCHUNK_GET_JNT_POS:
 {
 send_pos = false;
 int modID;
 float posd,pos;
 sscanf (buffer,"%*d %d\n",&modID);
 ret = Schunk_Get_Jnt_Pos(modID,&posd);
 printf ("Schunk Get Pos: \n");
 if (ret != 0)
 {
 printf ("Error\n");
 Schunk_Cleanup();
 k = write(newsockfd,"-1",2);
 }
 else
 {
 pos = (float)posd;
 conf = 1;
 sprintf (buffer_send,"%d %f",conf,pos);
 k = write(newsockfd,buffer_send,strlen(buffer_send));
 printf ("Pos_temp: %f\n",pos);

 }
 bzero(buffer,sizeof(buffer));
 bzero(buffer_send,sizeof(buffer_send));
 break;
 }

 case SCHUNK_GET_MAST_CFG:
 {
 send_pos = false;
 float poscfg[3];
 ret = Schunk_Get_Mast_Cfg(poscfg);
 if (ret != 0)
 {
 printf ("Error\n");
 k = write(newsockfd,"-1",2);
 Schunk_Cleanup();
 }
 else
 {
 printf ("Schunk Get Mast Cfg: \n");
 conf = 1;
 sprintf (buffer_send,"%d %f %f %f",conf,poscfg[0],poscfg[1],poscfg[2]);
 k = write(newsockfd,buffer_send,strlen(buffer_send));
 }
 bzero(buffer,sizeof(buffer));

152

 bzero(buffer_send,sizeof(buffer_send));
 break;
 }

 case QUIT:
 {
 server = false;
 printf ("Server false\n");
 Schunk_Cleanup();
 break;
 }

 default:
 {
 printf("Unknown request command\n");
 Schunk_Cleanup();
 break;
 }

 }
}// server == running
 close(newsockfd);
 close(sockfd);
 return 0;
}

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Development Of A Graphical User Interface For Control Of A Robotic Manipulatior With Sample Acquisition Capability
	Karan Desai
	Recommended Citation

