Khan_Rehan_Muhammad.pdf (2.18 MB)
Download file

Electrochemical Removal of Zinc and Nickel Ions from Wastewater Using Flat Plate Electrodes

Download (2.18 MB)
thesis
posted on 08.06.2021, 10:51 authored by Rehan Muhammad Khan
Simulated wastewater containing 20ppm of Zn++, 20ppm of Ni++ was treated using an electrochemical technique. This synthetic wastewater was used to simulate the wastewater from metal finishing industries. A rectangular bath integrated with an electrochemical cell consisting of flat plate electrodes (the stainless steel anode and aluminum cathode) was used in the treatment. Potassium sulfate was used as a supporting electrolyte to enhance the removal of Zn++ and Ni++. The effects of volumetric liquid flux, pH and electrode surface area on Zn++ and Ni++ removal were investigated. All experiments were performed at 25ºC and at an applied voltage of 4V. When volumetric flux was raised from 0.0092 to 0.0277m³.m-².s-¹, an increasing trend of the Zn++ and Ni++ removal was observed. The maximum metal removal was observed at a volumeteric liquid flux of 0.0231m³.m-².s-¹. Zn++ and Ni++ were removed by 80% and 34%, respectively, after 48 hours of electrochemical treatment. Moreover, an increase in the removal of Zn++ and Ni++ was observed when the pH was varied from 3.5 to 6.5. The maximum removal of Zn++ and Ni++, 97% and 62%, respectively, occurred at a volumetric liquid flux of 0.0231m³.m-².s-¹ and a pH of 6.5. The experimental values showed a similar increasing trend in the removal of Zn++ and Ni++, when the electrode surface area was increased from 0.024m² to 0.048m²; the removal of Zn++ and Ni++ improved by 14% and 12%, respectively. However, there was no major change in the removal of Zn++ and Ni++ between flat plate and corrugated plate electrodes.

History

Language

eng

Degree

Master of Engineering

Program

Chemical Engineering

Granting Institution

Ryerson University

LAC Thesis Type

Thesis Project

Thesis Advisor

Huu Dung Doan