Rafanan_Ruby_R.pdf (2.29 MB)

Encapsulation Through The Use Of Emulsified Microemulsions

Download (2.29 MB)
posted on 23.05.2021, 10:46 by Ruby R. Rafanan
Emulsified microemulsions (EMEs), first described in detail in 2005 by the group of Garti, consist of a thermodynamically stable water-in-oil microemulsion phase (w1/o) further dispersed within an aqueous continuous phase (w2). These internally-structured w1/o/w2 dispersions are promising controlled release vehicles for water-soluble flavouring compounds, drugs and nutraceuticals. With a stable internal droplet structure, storage stability is improved over non-thermodynamically stable structured emulsions and may exhibit unique controlled release behaviour. Use of food-grade components allows for wider and safer applications in food and pharmaceutical products. In this thesis, a food-grade w1/o microemulsion consisting of glycerol monooleate, tricaprylin and water was dispersed in an aqueous (w2) phase by membrane emulsification and stabilized by a caseinate-pectin complex to produce w1/o/w2 EMEs. The resulting EME showed no signs of phase separation for weeks at room temperature. The microemulsion and EME were characterized by differential scanning calorimetry (DSC), cryo-TEM and small angle x-ray scattering (SAXS) to determine whether the microemulsion’s internal structure was maintained after emulsification. It was shown that EME droplets displayed ordering around the periphery consistent with some loss of microemulsion structure, but maintained the characteristic disordered microemulsion structure at the droplet core. Overall, this research demonstrated the feasibility of developing EME for possible applications in food and non-food applications.





Master of Science


Molecular Science

Granting Institution

Ryerson University

LAC Thesis Type


Usage metrics

Molecular Science (Theses)