Eldamak_Angie_Reda_Abdelhay_Mohamed_Ali.pdf (3.06 MB)

High Power Linearly Polarized Fiber Lasers in a Linear Cavity

Download (3.06 MB)
posted on 23.05.2021, 18:47 by Angie Reda Abdelhay Mohamed Ali Eldamak
This thesis presents two designs for high power linearly polarized all-fiber linear cavity lasers, continuous wave (CW) and mode-locked. The cavity designs use Polarization Maintaining (PM) fibers for both gain medium and Fiber Bragg Gratings (FBGs). The FBG pairs select lasing wavelength and polarization. The fiber lasers incorporating specialty designed FBGs achieve an extinction ratio larger than 23 dB. Firstly, an all-fiber linear cavity design of a high power picoseconds mode-locked laser is introduced. The proposed configuration is based on Non-Linear Polarization (NPR) using PM Yb-doped active fiber and two matching FBGs to form the laser cavity. The combination of nonlinearity, gain and birefringence in cavity made the laser generate mode-locked pulses in picoseconds range and with high average output power. The output mode-locked pulses amplitude is modulated with an envelope whose mechanism is also investigated in this thesis project. Experimental data and numerical simulations of the self mode-locking fiber laser are presented. Main parameters affecting mode-locked pulses and its envelope are identified. In addition, a new theoretical model based on Nonlinear Schrödinger Equation (NLSE) is developed and implemented on the MATLAB platform. The model explains the self mode-locking mechanism and the source of the pulse envelope. In this model, it is proven that self phase modulation (SPM) plays an essential role in pulse formation and shaping. The theoretical model and experimental results are in a very good agreement at different pumping levels. A method of regulating the mode-locked pulses is presented. This is achieved by applying a pulsed current to pump diode. This method successfully stabilizes the mode-locked pulses underneath a Q-switched pulse envelope. Further scale-up of average power and pulse energy is realized by adding an amplifier stage. Secondly, a CW dual-wavelength all-fiber laser is presented. The laser consists of two pairs of FBGs and a PM Er/Yb co-doped fiber as a gain medium. The laser emits at both 1 μm and 1.5 μm wavelengths simultaneously with a stable output. This laser provides a compact fiber-based pumping source that is suitable for mid-IR generation.





Doctor of Philosophy


Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type