Khajehhasani_Siavash.pdf (14.13 MB)
Download file

Numerical modeling of innovative film cooling hole schemes

Download (14.13 MB)
thesis
posted on 08.06.2021, 10:07 by Siavash Khajehhasani
A numerical investigation of the film cooling performance on novel film hole schemes is presented using Reynolds-Averaged Navier-Stokes analysis. The investigation considers low and high blowing ratios for both flat plate film cooling and the leading edge of a turbine blade. A novel film hole geometry using a circular exit shaped hole is proposed, and the influence of an existing sister holes’ technique is investigated. The results indicate that high film cooling effectiveness is achieved at higher blowing ratios, results of which are even greater when in the presence of discrete sister holes where film cooling effectiveness results reach a plateau. Furthermore, a decrease in the strength of the counter-rotating vortex pairs is evident, which results in more attached coolant to the plate’s surface and a reduction in aerodynamic losses. Modifications are made to the spanwise and streamwise locations of the sister holes around the conventional cylindrical hole geometry. It is found that the spanwise variations have a significant influence on the film cooling effectiveness results, while only minor effects are observed for the streamwise variations. Positioning the sister holes in locations farther from the centerline increases the lateral spreading of the coolant air over the plate’s surface. This result is further verified through the flow structure analysis. Combinations of sister holes are joined with the primary injection hole to produce innovative variant sister shaped single-holes. The jet lift-off is significantly decreased for the downstream and up/downstream configurations of the proposed scheme for the flat plate film cooling. These schemes have shown notable film cooling improvements whereby more lateral distribution of coolant is obtained and less penetration of coolant into the mainstream flow is observed. The performance of the sister shaped single-holes are evaluated at the leading edge of a turbine blade. At the higher blowing ratios, a noticeable improvement in film cooling performance including the effectiveness and the lateral spread of the cooling air jet has been observed for the upstream and up/downstream schemes, in particular on the suction side. It is determined that the mixing of the coolant with the high mainstream flow at the leading edge of the blade is considerably decreased for the upstream and up/downstream configurations and more adhered coolant to the blade’s surface is achieved.

History

Language

eng

Program

Aerospace Engineering

Granting Institution

Ryerson University