Komarova_Karina.pdf (9.94 MB)
Download file

Strategy For Cellulase Immobilization And Its Partial Purification And Characterization

Download (9.94 MB)
thesis
posted on 23.05.2021, 12:57 authored by Karina Komarova
Conversion of cellulose to glucose units by cellulases, called hydrolysis, is a very complex step in ethanol production. It requires the mixing of aqueous suspensions of cellulose/cellulases so that cellulases (majority composed of the active site domain and the binding site domain) can attach to cellulose chains, cut or hydrolyze ß(1-4) glycosidic bonds between glucose units, de-attach and move to another location. Mixing extent (insufficient or excessive agitation) might influence the attachment of cellulases and possibly lead to lower glucose yields. A long-term goal of this research is to determine the strength of mixing required to be applied during the cellulose-cellulase mixing cycle. For that purpose, one of the objectives was to purify CBH I exocellulase from the commercial cellulase mixture. A partial purification of the CBH I that was performed on a much smaller scale with uncontrolled flow rate was successful. Another objective was to propose a scheme that would covalently immobilize CBH I exoceullase via its active site domain (ASD) on an atomic force microscopy-compatible support, a silicon support. A theoretically-developed hypothetical scheme was constructed (with the provided detailed procedure). The approach of immobilizing the inhibitor specific to the ASD of CBH I enzyme led to the possibility that no purification of CBH I could be required. Skipping CBH I purification step would save time and hassle associated with purification step. Once the ASD of CBH I is immobilized on a silicon support, the AFM force profile between the free-floating CDB and substrate cellulose could be established.

History

Language

eng

Degree

Master of Applied Science

Program

Environmental Applied Science and Management

Granting Institution

Ryerson University

LAC Thesis Type

Thesis

Thesis Advisor

Ginette Turcotte Darrick Heyd