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Abstract 

Mohammed Yahya. “Three Dimensional Finite-Element Modeling of Blood Flow 

in Elastic Vessel: Effects of Arterial Geometry and Elasticity on Aneurysm Growth and 

Rupture”,  M. Sc. Biomedical Physics, Ryerson University, Toronto, 2010. 

 

An intracranial aneurysm (ICA) is the localized dilation of cerebral arterial segment 

due to a degenerative arterial disease causing local wall weakness. Sudden ICA rupture of 

cerebral aneurysms is the leading cause of subarachnoid haemorrhage (SAH) which is a 

serious disease associated with high mortality and morbidity. In this research work, we have 

developed and validated a finite-element fluid-structure interaction (FSI) 2-way coupling 

model using COMSOL Multiphysics® software package. We applied the model to three 

idealized intracranial elastic arteries under the Newtonian blood flow assumption. The blood 

flow was characterized as a steady flow velocity at the inflow and various values of blood 

pressure at the outflow, while the arterial wall was modeled as a hyperelastic neo-Hookean 

material. The result shows the significantly weakened wall shear stress (WSS) at the 

aneurysm fundus and intensified WSS at the distal side of aneurysm neck. The wall 

deformation and WSS may play an important role in the growth and rupture of ICAs. 

Moreover, based on these results we postulate that lateral saccular aneurysms located on 

highly curved arteries are subjected to higher hemodynamic stresses and are more prone to 

rupture.  
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Chapter 1  INTRODUCTION AND BACKGROUND 

 Computational fluid dynamics (CFD) modelling of cerebral hemodynamics requires 

some background into the anatomy, physiology and pathology of the cerebral vasculature 

before any modelling decisions are to be made. This chapter provides the required 

background to understand the scope of this research. 

 The chapter begins with special emphasis on the cardiovascular diseases and 

intracranial aneurysms (ICAs) which represent one of the forms of cardiovascular diseases 

that lead to the aim and motivation of this research. The next section describes the human 

systemic circulation followed by the structure and function of arteries, the mechanical 

properties of the arteries and the principle of fluid dynamics. 

1.1 Introduction to the Human Circulatory System 
 The human circulatory system is spread all over the body and consists of the heart, 

which is the central unit and pumps the blood, the blood vessels and the blood. Its main 

functions are the transport of blood throughout the body carrying essential substances such as 

nutrients, oxygen and hormones to the cells. It also works for the removal of products and 

wastes of the cellular metabolism. For an average human being, the heart pumps five liters of 

blood through a complex network of blood vessels which is distributed to all the organs and 

parts of human body providing nutrients and oxygen that these organs use and carry out the 

waste products and potentially harmful chemicals, such as uric acid, away from these organs. 

The heart works as the pump and is responsible for providing the driving pulsed push to 

move all this blood while the lungs work for the exchange of blood components as providing 

oxygen to be carried to the vital and related organs and taking away the carbon dioxide that is 

gradually built up in the blood as it flows throughout the body. 
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 The main vessels that release fresh blood from heart out are the arteries. The arteries 

in the systemic circulation transfers rich oxygenated blood, while the veins are the vessels 

that take away the unwanted chemical with waste gasses in particular where this transfer 

occurs. The arteries are comparatively larger vessels and they branch into smaller vessels 

called arterioles which branch further into smallest vessels called capillaries. These small 

vessels are the ones that reach every smallest possible part of the human body and hence play 

the most important role for the maximum transfer of materials carried within the blood to 

other parts of the body. Due to very small size, capillaries have extremely thin walls to allow 

for flow of fluids and nutrients, and  after their job is done,  they eventually come together to 

form vessels called venules where venules join together to form veins. Veins have a thin wall 

and relatively smaller in diameter as compared to arteries since the pressure exerted by their 

walls is very low as by those of arteries. Also the veins do not transfer many materials, but 

they do have valves along the vessel to prevent any incident of backward flow of blood (John 

Edward, 1946). 

1.2 Blood Vessel Structure 
The blood vessels form a continuous network throughout the human body. They can 

be generally classified into arteries, arterioles, capillaries, venules and veins. Since the 

capillaries and the venules are extremely thin, they do not possess layers as do the arteries 

and veins. The basic cross sectional structure of an artery consists of three layers surrounded 

by muscle and supporting tissue which are most apparent in the muscular arteries, since they 

have to force the pumped blood to all parts, and least apparent in the veins since pressure is 

dropped by the time blood stream reaches veins from the lumen to the outer wall of the blood 

vessels. The layers are the tunica intima, the tunica media and the tunica adventitia as 

illustrated in Figure 1-1 (John Edward, 1946). 

The first layer, tunica intima consist of a layer of Vascular Endothelium (VE) which 

comprises the inner surface of blood vessels and its main role is to act as a filter between the 

blood and the rest of the biological tissues. Another role of endothelium is to act as a WSS 

sensor and is a major determinant of vascular remodeling (Hashimoto, Meng, & Young, 



2006).  The tunica intima and the next layer, tunica media are separated by an internal elastic 

membrane. The tunica media consists of smooth muscle cells arranged in a circular manner 

around the blood vessel. The tunica media also includes varying amounts of elastic and 

collagen fibers, depending on the size of the vessel. The tunica media is separated from the 

tunica adventitia by an external elastic membrane which can be identified at the outer border 

of the tunica media in some arteries (John Edward, 1946). 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Cross-sectional view of an artery showing the three distinct layers. 

http://www.medicalhistology.us/twiki/bin/view/Main/Cardiovascular 

 

 

1.3 Cardiovascular Diseases 
According to the most recent statistics, cardiovascular diseases are the third leading 

cause of death in the western world (Kroon & Holzapfel, 2008). One form of cardiovascular 

disease is cerebral aneurysm. The rupture of cerebral aneurysms is the leading cause of 

subarachnoid haemorrhage (SAH) which is a serious disease associated with high mortality 

and morbidity (Hashimoto et al., 2006; Krex, Schackert, & Schackert, 2001) . Approximately 

50% of patients with aneurismal SAH die or suffer severe disability as a result of the initial 

haemorrhage; another 23 to 35% die as a result of subsequent haemorrhage if the aneurysm is 

not treated. (Hoi et al., 2004; Humphrey & Canham, 2000). ICA is a moderately common 

condition that is often asymptomatic until the time of rupture. The fundamental 
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understanding of the cerebral aneurysms, improvement in new clinical solutions in the form 

of treatment methods, medical advices, and advanced surgical techniques lead to the 

reduction of morbidity and mortality associated with the disease. 

1.4 Cerebral Aneurysm 
A brain aneurysm, also called a cerebral or ICA, is a cerebrovascular disorder caused 

by the weakness in the wall of a cerebral artery. An aneurysm can simply be described as a 

weak spot or an infected part on the wall of an artery which becomes more compliant than a 

healthy vessel. It has less resistance to counteract hemodynamic forces. The weak area 

causes a localized dilation or ballooning of the blood vessel. The blood vessel bulges 

outward to form a balloon-like protuberance. Aneurysms are more likely to be formed at high 

pressure regions in the circulatory system, usually occurring in or near the circle of Willis 

(Oshima, Torii, Kobayashi, Taniguchi, & Takagi, 2001; Q. Wang, and Cao, 2009), the 

primary network of vessels that supply blood to the brain and at bifurcations, as illustrated in 

Figure 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: An inferior transverse view of the brain, illustrating the location of cerebral 

arteries aneurysms. http://emedicine.medscape.com/article/252142-overview 
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Aneurysm is localized, irreversible dilatation of an artery, at least one and a half times 

its normal diameter, and caused due to the destruction of the vessel wall by infection. The 

shape of the aneurysm varies from patient to patient, but generally it is roughly a spherical or 

oblong protrusion from the artery wall. 

In general, these aneurysms occur in one of four forms: Saccular, Fusiform, Dissecting, 

and Mycotic types as shown in Figure 1-3. Saccular and Fusiform represent the two main 

types of ICA, however the saccular type accounts for 90% of ICAs; thus, it will be the focus 

of this research. 

 Fusiform aneurysm is spindle-shaped in which the entire circumference of the vessel 

is distended, usually occurring in the abdominal and rarely in the brain (Peattie, Riehle, & 

Bluth, 2004). However, the saccular aneurysm forms a sac-like bulge on one side of an 

artery. A mycotic aneurysm is an aneurysm that becomes infected as a result of bacterial or 

fungal accumulation in the bloodstream. It can also be a pre-existing aneurysm that becomes 

infected. The fourth type is dissecting aneurysm that results from a tear between the tissues 

layers of the aorta, caused by blood flow pumped from the heart. This tear usually occurs in 

the aorta close to the heart. Dissecting aneurysms are formed from the separation of tunica 

layers which fill with blood. 

  

 

 

 

 

 

 

 

Figure 1-3: Illustrating brain aneurysms (Source: 2001 eCureMe.com).  
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The natural history of saccular aneurysms comprises of three phases: pathogenesis, 

enlargement, and rupture (Nikolov, Stoytchev, Torres, & Nieto, 2003). The local 

hemodynamic environments influence the pathogenesis of cerebral aneurysms significantly. 

Clinical observations indicate that most cerebral aneurysms originate from area subjected to 

increased hemodynamic forces, that is, at the apex of the arterial bifurcations or on the curve 

of tortuous vessels, instead of along straight vessel segments (Humphrey & Canham, 2000). 

The enlargement of cerebral aneurysm continues till the vessels rupture if left untreated. 

Fortunately, with the advances in medical imaging, greater numbers of unruptured aneurysms 

get detected before it ruptures. 

 Presently, the causes of aneurysms are not fully clear yet, however atherosclerosis, 

atheroma, syphilis, congenital defects, heart attacks, smoking, obesity, hypertension, trauma, 

inflammation and/or hereditary conditions are considered by researchers as some of the main 

causes (Hademenos, Massoud, Valentino, Duckwiler, & Vinuela, 1994a; Hademenos, 

Massoud, Valentino, Duckwiler, & Vinuela, 1994b).  Besides these, hemodynamics and 

biomechemical factors like vessel WSS are other causes of aneurysms that will be discussed 

in detail later in this thresis (Hashimoto et al., 2006; Niroomand Oscuii, Tafazzoli Shadpour, 

& Ghalichi, 2007; Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 2010). 

 Aneurysms can be treated by two primary methods: intracranial surgery, in which 

blood flow is cut off from the aneurysm dilatation by placing a small metal clip at the neck; 

and endovascular embolization, which includes the development of metallic coils that 

promote the formation of clots within the lesion that again isolates it from the blood flow 

(Nichols, Meyer, Piepgras, & Smith, 1994; P. J. Camarata, R. E. Latchaw, 1993). 
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1.5 Motivation and Aims 

Recently, significant amount of research is being carried on cerebral aneurysms in 

intracranial arteries- arteries that have an enlargement at some point on the arterial wall.  

However, the exact causes of aneurysm are still not clear. 

Usually, the enlargement of cerebral aneurysm continues until they rupture if they are 

not treated. The rupture of ICAs is followed by subarachnoid haemorrhage (SAH), a serious 

disease associated with high mortality and morbidity. Due to their unpredictable nature, the 

study of aneurysms is restricted in vivo to clinical observations of patients and tissue 

specimens retrieved at autopsy (Hademenos, Massoud, Valentino, Duckwiler, & Vinuela, 

1994a). Nevertheless, special attention is being diverted towards understanding the physics 

involved with the aneurysm itself and the causes and possible methods of its treatment. 

Numerous experiments have been conducted in order to study the geometry and fluid effects 

on the condition. These studies have provided valuable data which contributes tremendously 

towards understanding the problem. There are certain limitations with these experimental 

techniques which need to be investigated by applying other methods. The modeling of flow 

behavior within aneurysm arteries was investigated by applying other methods. The 

modeling of flow behavior within aneurysm arteries of varying geometry and conditions has 

become much easier due to recent computational techniques which can be calibrated and 

adjusted according to realistic clinical situations. 

When it comes to economy, accuracy and reliability, the computational technique is 

probably the preferable choice since it is fast in addition to above mentioned qualities. As 

technological advancements have been achieved, computational power has increased 

manifold. As a result the simulations can be carried out with more complexity, and can 

incorporate a greater number of variables. This leads to better approximation of realistic 

results. 

The study of the relationship between the shape of aneurysm and blood flow has been 

extended due to numerical simulations using geometry and other physical characteristics 

obtained from medical samples and non-invasive methods. This study has served as the 
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basics for extending research since in covers many factors that are related to flow of blood 

and the growth. The study of rupture of arteries is also supported by this extended research. It 

also provides a detailed analysis of steady and transient flow of blood.  

  Inclusion of Fluid-Structural Interaction (FSI), which allows a coupling between fluid 

and solid models, is another major development. This method has an advantage that it allows 

for a study of the vessel wall behavior and corresponding flow response to wall deformation, 

which previously was not considered. With the help of this, studding the aneurysms growth 

and determining critical radius where an aneurysm may rupture. 

 Approaches in studies like pathogenesis and hemodynamic of cerebral aneurysms 

have been carried out intensively, but they do not help much in understanding the problem. A 

number of simulations have been incorporated to study incompressible Newtonian and non-

Newtonian blood flow or FSI individually in different shape and size aneurysms (Bazilevs et 

al., 2010; Castro, Putman, & Cebral, 2006; Chen & Sheu, 2003). Still, there is a lot of 

research pending to study the formation of aneurysms growth and carrying out risk analysis 

for probability of a rupture. 

 The motivation behind this work includes understanding the mechanisms of the 

initiation, development and rupture of human ICAs. More focus has been given to saccular 

aneurysm, since saccular aneurysms are more commend in cerebral arteries. In this study we 

grafting aneurysm represented with different mechanical properties in a healthy arterial wall 

to understand the way of aneurysms growth. In addition this study covers the effect of arterial 

curvature into the growth of aneurysms. 

 An iterative two-way coupling method will be employed to link the fluid and solid 

models and provide an understanding of the influences between these models as well as the 

basic physical characteristics such as WSS, deformations and flow properties, which play 

important roles in initiation and formation of aneurysms. To achieve this, the COMSOL 

Multiphysics® software package will be used (COMSOL Inc., Burlington, MA, USA), 

which carries out the modeling of the fluid and structural portions respectively, as well as 

provides a bridging environment to couple them. 
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1.5.1 Mechanical Behaviour of Arteries 

 Mathematical modeling of the initiation, development and rupture of cerebral 

aneurysms requires a material description of the human cerebral arterial walls and saccular 

walls when a constitutive equation of blood and study of its flow in cerebral circulation are 

required if hemodynamic factors are considered. Generally, testing and modeling the 

mechanical properties of biological soft tissues usually becomes challenging, since many of 

them are nonlinear, viscoelastic and anisotropic (Y.C. Fung, 1993). As for the arteries posses 

as a nonlinear elastic properties and have a stress-strain relationship that can be 

mathematically described as an approximately exponential function (Wilmer W. Nichols and 

Michael F. O'Rourke, 1990; Y.C. Fung, 1993). 

 Most of the biological tissues generally exhibit an isotropic property, which is they 

have geometrically uniform dimensions (Wilmer W. Nichols and Michael F. O'Rourke, 

1990; Y.C. Fung, 1993), consider  an isotropic tissues within a mathematical framework, 

then even the most general form requires a large number of terms to describe the mechanical 

properties since the geometry changes non-uniformly. However for ease of calculations, if 

we make the assumption that tissue is isotropic (Fung 1967; Galey 1969), then only two 

independent constants are required in the mathematical model (Saada 1993). These two 

constants are called the Lamé constants, as described below. 

 Biological materials in the human body like vessels have a nature of being deformed 

in stress situations. If an artery is subjected to a pressure as mechanical loading or a 

compressive force, then deformation occurs and stresses are developed within that arterial 

wall. The amount of deformation and strain depend on the history and rate of the applied 

loading, temperature, etc., and the deformed shape usually does not return to its original 

configuration when the load is removed (Y.C. Fung, 1993). When the deformation is very 

small and adiabatic (i.e., no heat is gained or lost), then the most likely condition is that the 

stress and strain are independent of the loading rate and history, and that the material is likely 

to return to its original configuration after the compressive force is removed. 

If deformation is the only factor, the stress in an elastic body can be expressed as a function 

of the strain as follows: 
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௜௝ߪ ൌ ௜݂௝൫ߝ௜௝൯,                                                                        1 െ 1 

where σ୧୨ and ε୧୨ denote the first-order stress and strain tensors, respectively. Assuming that 

the deformation is linear elastic, and then equation 1-1 becomes: 

ൌ ௜௝ܣ                                               1 െ ௜௝ߪ 2 ൅                  ,௜௝ߝ௜௝ܥ

where ܣ௜௝ ൌ ௜݂௝ሺ0ሻ and ܥ௜௝ ൌ ߲ ௜݂௝ሺ0ሻ/߲ߝ௜௝   are constants and usually called young’s 

modulus. ܣ௜௝  represents the state of stress at ߝ௜௝   ൌ 0, namely, the initial stress. Within the 

context of linear elastic deformation, the initial stress can be neglected and consequently, 

equation 1-2 can e b simplified to: 

௜௝ߪ ൌ ௜௝,                                                                              1ߝܧ െ 3 

where, ܧ is young’s elasticity modulus, equation 1-3 is called the generalized Hooke’s law 

where is describes the proportionality of the stress and strain, which states that each of the 

components of the state of stress at a point is a linear function of the components of the state 

of strain at that point. The strain tensor introduced in equation 1-3 is defined mathematically 

as: 

௜௝   ൌߝ
1
2 ቆ

௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ                                                        1 െ 4 

 The strain tensor ߝ௜௝   was introduced by Cauchy and Green and is called Cauchy’s 

infinitesimal strain tensor, where ݑ௜ is the displacement component in the ݅௧௛direction and ݑ௝ 

is the displacement captured in the ݆௧௛ direction of the displaced material point (Y.C. Fung, 

1990). 

For the Hookean elastic solid, a solid that obeys Hooke’s law according to which the stress 

tensor is linearly p opr ortional to the strain tensor: 

௜௝ߪ ൌ ௞௟,                                                                      1ߝ௜௝௞௟ܥ െ 5 

where ߪ௜௝ is the stress tensor, ߝ௞௟   is the strain tensor, and ܥ௜௝௞௟ is a tensor of elastic constants, 

or module, which are independent of stress and strain. If material is isotropic with regular 

geometry, a great reduction in the number of elastic constants is obtained, and the 

constitutive equation of an isotropic material has exactly two independent elastic constant, 

for which the Hooke’s law mathematically states: 
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௜௝ߪ ൌ ௜௝ߜ   ఈఈߝߣ ൅ ௜௝                                                       1ߝܩ2 െ 6 

Where, λ and G are called the first and second Lamé constants, respectively. The second 

Lamé constant G is identified as the shear modulus. 

As a general practice, the elastic properties of materials are described by their Young’s 

Modulus and the Poisson’s ratio since the Lamé constants are achieved after rigorous 

mathematical calculations and their physical meanings are complex for interpretation. The 

relationship between both the Young’s modulus and Poisson’s ratio and the Lamé constants 

can be derived by considering an elastic isotropic material and a simple contraction 

deformation experiment. 

ܩ ൌ
ሺ1ߣ െ ሻߥ2

ߥ2 ൌ
ܧ

2ሺ1 ൅ ሻߥ  ,                                           1 െ 7 

where ߥ is the Poisson’s ratio. 

Most metals and rubbers have linear elasticity, for small strain values. This simplest 

deformation behavior of a purely elastic body can be described by Hooke’s law of elasticity. 

If the applied stress is plotted against the resulting strain, it yields a straight line whose slope 

is the elastic or Young modulus, and describes quantitative measure of an object to retain its 

original state or shape (Scott, Ferguson, & Roach, 1972). In other words, if a linearly elastic 

material is deformed, a plot of the applied stress against the resulting strain gives a straight 

line whose slope is the Young’s modulus of elasticity. This is a measure of the elastic 

stiffness of the material. A material with a high Young’s modulus is stiffer, and less easily 

deformed, than one with a low Young’s modulus. For example steel has a higher young’s 

modulus than rubber. In human circulatory system, arteries and most biological tissues have 

nonlinear elastic properties. When arteries are expanded, the elastic modulus is not constant 

because it increases as the strain changes due to nonlinearity. Arteries get nonlinear elastic 

behavior due to the presence of their stiff and rubbery constituents that is collagen and elastin 

respectively (Robert Shadwick, 1999; Y.C. Fung, 1993). In physics, elastic rigidity increases 

with the degree of stress, and it is more suitable to describe these properties using an elastic 

modulus that is expressed as a function of the strain or distending pressure. Non-linear 



behavior is the key to elastic stability in any highly stretchable pressure vessel, protecting 

against aneurysms and consequent blowout (Burton, 1954; Gordon, 1975). 

It has come into observation that while in addition to the nonlinear behavior, cerebral 

arterial walls also exhibit inelastic behavior under effectively high loads. The most relevant 

mechanical testing in which arteries have an inelastic behavior of arteries was revealed by 

Scott et al. (Scott et al., 1972). 

The inflation behavior of a cylindrical blood vessel can be governed by the Law of 

Laplace that describes the behavior of a membrane that encapsulates the vessel. This law 

describes the state of equilibrium of a curved membrane subjected to a pressure. The 

membrane stress (σmembrane) can be described as follows: 

௠௘௠௕௥௔௡௘ߪ ൌ
ܲ/݄

ቀ 1
ܴଵ

൅ 1
ܴଶ

ቁ
                                                    1 െ 8 

where P represents the internal pressure, h is the membrane thickness, and  ܴଵ and  ܴଶ are the 

principle radii of curvature, where ܴଵ is the arterial radii curvature and ܴଶ is the arterial inner 

radii. The above equation does not consider external pressure and assumes that the membrane 

stress is independent of the direction (see Figure 1-4). For the case of a straight tube,   ܴଵ ൌ

ܴ ܽ݊݀ ܴଶ ่  ∞, and the Law of Laplace yields the mean circumferential stress, 
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௖௜௥௖ߪ ൌ
ܴܲ
݄                                                                            1 െ 9 

 

 

 

 

 

 

 Figure 1-4: Illustrating the principle of radii of curvature. 
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 The nonlinear properties of an artery may be well studied by plotting of T versus R as 

shown in Figure 1-5. The four dashed lines are Laplace plots for four levels of pressure (P1 

to P4), each having a unique intersection point with the artery curve (a to d,) respectively. As 

long as the Laplace lines are not steep enough to become parallel to the artery curve, there 

will be a stable inflation. Nevertheless in this graph are placed a family of straight lines 

through the origin, each representing the Laplace relationship at a different pressure. It is 

noteworthy here that the Laplace plot of T versus R for pressure ௜ܲ is a straight line with 

slope ሺ ௜ܲ). 

Figure 1-5: The mechanical response of an artery to inflation. The graph shows nonlinear 

wall tension (T) versus internal radius (R) relationship (solid curve). 

The above analysis illustrates that each Laplace line has only one point of intersection 

with the artery curve, and this is the point which represents the equilibrium radius for the 

artery at that pressure. 

Keeping in mind the above graph, to maintain stable inflation requires that increasing 

pressures must all have equilibrium intersection points on the artery curve. In contrast to this, 

a similar operation on the tension–radius relationship curve for a cylindrical rubber tube 

where a small incremental change in pressure results in a large increment in radius, forming 



14 

 

the aneurysm. This phenomenon is typically observed when a balloon is inflated, as air enters 

it, pressure is increased and rubber walls expand with huge increments in radius of balloon. 

There is also a case where instability occurs and that is at the pressure at which the 

Laplace line is tangential to the inflation curve for the cylinder. This graphical analysis 

illustrates that the tension–radius curve for the elastic cylinder must have a continuously 

increasing slope that is nonlinear elasticity to be stable in the situation of increasing pressure. 

This required condition was also illustrated more quantitatively by (Burton, 1954), who 

defined relative volume distensibility as Dୱ ൌ ୢV
VୢP

 , the Distensibility, defined as the relative 

change in volume per unit of pressure, where V is volume, and was shown to be inversely 

proportional to the expression ሺ݄ܧ/ܴሻ െ ܲ, where E is the elastic modulus and h is the wall 

thickness. So, as P increases, R will increase and h will decrease. If E is constant (linear 

elasticity), then ܦ௦ will increase and become infinitely large and get unstable values as P 

approaches ሺ݄ܧ/ܴሻ, causing rupture. To balance this, E must increase as a function of P, 

such that ሺ݄ܧ/ܴሻ, is always greater than P. based on Laplace law the critical risk of rapture 

radii for spherical shape such as saccular aneurysms can be written as (George J. Hademenos, 

Tarik F. Massoud, 9 1 98): 

ܴ௖ ൌ
݄ܧ2

ܲ                                                                        1 െ 10 

1.5.2 Hemodynamics 

 Blood is formed essentially of erythrocytes commonly known as “Red Blood Cells” 

(RBCs), leukocytes known as “White Blood Cells” (WBCs), and platelets that are suspended 

in the plasma. From physical point of view, since blood is a fluid which consists of different 

constituents, it is viscous due to the friction of a two different layers pass over each other. 

 Viscosity is a physical property of every fluid. In less viscous fluids such as water, 

viscosity is independent on the rate at which the adjacent fluid layers slide over one another 

in another word the relative velocities in laminar flow of parallel adjacent layers of a fluid 

body under shear force called (shear rate ߛሶ) and such fluids are usually referred to as 

Newtonian fluids. In contrast to simple fluids as water, blood is a suspension of particles, 



therefore the viscous properties of blood are complex and therefore blood is a non-

Newtonian fluid. It has been shown that if the arterial diameter is greater than 1mm, the 

effect of RBC in the flow is minimizes as the size of the RBC is too small compared to the 

arterial diameter and therefore it is pertinent to neglect lead to a constant viscosity of blood in 

this case (Huo, Choy, Svendsen, Sinha, & Kassab, 2009; Wilmer W. Nichols and Michael F. 

O'Rourke, 1990), and consider the asymptotic value of blood viscosity, that is the value to 

which the apparent viscosity tends at high shear rate of adjacent sliding layers. Its value at 

normal physiological conditions for an average human being is in the range of μ ൌ 3 ൈ

10ିଷ െ 4 ൈ 10ିଷܰ. ߩ  ଶ with a density of݉/ݏ ൌ  .ଷ݉/݃ܭ 1060 

 

 

 

 

 

 

 

 

 

 
Figure 1-6: Velocity profiles for laminar (a), turbulent (b) and uniform (c) flow. 

 A fluid flowing in a vessel exhibits motion which is classified into two types: laminar 

or turbulent. In laminar flow the fluid particles move along smooth paths in layers with every 

layer sliding smoothly over its neighbor. It is also called streamline flow. As the velocity of 

flow increases, the different layers start interfering in each others’ motion due to different 

inertia and friction at some point and eventually the laminar flow becomes unstable, vortices 

start to form, and ultimately the fluid flow becomes turbulent. Hence turbulent flow is one in 

which different layers collide with one another and cause non-uniformity. When the flow is 

turbulent the velocity vectors of the fluid particles at every point change rapidly with time, 
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both in magnitude and direction. Both the laminar and turbulent flows have different 

developed sketches, as illustrated in Figure 1-6. 

 For every fluid, to reach turbulent flow, there is a threshold value dependent on the 

average fluid velocity, density, viscosity and the diameter of the vessel (for internal flows). 

This characteristic value, which depends on all these quantities, is called the Reynolds 

number ሺܴ௘ሻ, as sho  b own el w in equation 1-11. 

 ܴ௘ ൌ
ܦݑߩ

μ
                                                   1 െ 11 

Where, u is the average fluid velocity, D is the vessel diameter, ρ is the fluid density, μ is the 

fluid (dynamic) viscosity. It has been found through experiments that the fluid (blood) tends 

to become turbulent at a Reynolds number of approximately 2000 for internal flows (Wilmer 

W. Nichols and Michael F. O'Rourke, 1997,1990,1998). 

1.6 Fluid Principles 
Dynamics is a branch of physics that involves studying motion under the influence of 

forces. It is fundamental that force drives fluid motion. Newton’s second law of motion, 

ܨ ൌ ݉ ൈ ܽ (force = mass × acceleration) also applies to fluid flow. Changes in pressure and 

body force (such as gravity) produce fluidic motion. Shear forces, on the other hand, oppose 

fluid motion by creating friction between different layers. Shear forces occur when a fluid 

body is subjected to deformation. In streamline flows, shear is caused from the viscosity of 

the fluid. When turbulence is present, its current like motion causes the shear forces. Shear 

forces diffuse through the flow, which result in variation in velocity. Along these lines, shear 

forces counterbalance pressure gradients and body forces. 

Fluid motion is said to have zero acceleration when the sum of the shear, pressure 

gradient and body forces are zero. In this way the fluid motion remains constant. Since 

acceleration is zero, net force is zero. However, whenever one of these factors breaks the 

balance, then the fluid achieves acceleration and force must be accounted for this 

acceleration. The resultant acceleration which is created is of two possible types: temporal 
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and convective. Temporal acceleration is the one that occurs due to flow that changes with 

respect to time. Convective accelerations are due to change in fluid motion as a fluid moves 

from one location to another. In other words, it is the acceleration that changes with respect 

to displacement.  For instance, the accelerations a fluid experiences through an arterial 

constriction are convective since it is different at different location while the accelerations a 

fluid experiences during the heart pumping cycle are temporal. 

Since in dynamics, momentum is always conserved, the forces driving and opposing 

fluid motion may be equated to the accelerations. Assuming that fluid is incompressible and 

that the fluid exhibits Newtonian fluid properties, the conservation of momentum leads to a 

commonly used form of equation called the Navier-Stokes equation as (Oshima et al., 2001; 

Torii, Oshima, Koba T ,yashi, akagi, & Tezduyar  2006). 

ߩ ቆ
௜ݑ߲

ݐ߲ ൅ ௝ݑ
௝ݑ߲

௝ݔ߲
ቇ ൌ െ

߲ܲ
௜ݔ߲

൅ ݃ߩ ൅ μ
߲ଶݑ௜

௝ݔ௝߲ݔ߲
        1 െ 12 

Here, ݑ௜ = (u, v, w) is the local velocity, ݔ௜ = (x, y, z) is the length coordinate, t is the time 

scale, P is the fluid pressure, μ is the dynamic viscosity, ௜݂ ൌ  is the body force, and g is ݃ߩ

the gravitational constant. The terms on the left hand side collectively represent momentum 

change from temporal and convective acceleration. On the right hand side, the terms 

represent pressure gradient, gravitational forces and shear forces. 

One of the fundamental principles that are followed in dynamics is the law of 

conservation of mass. Mass is neither created nor destroyed by any non-nuclear processes. 

This is fundamental to physics, fluid dynamics, and cardiovascular circulation. Considering 

an incompressibl i  e flu d, the conservation of mass is represented by, 

௜ݑ߲

௜ݔ߲
ൌ 0                                                                    1 െ 13 

 The study of fluid flow combines the laws of conservation of momentum and mass 

both. Sometimes the equations of fluid flow containing limited parameters of mass and 

momentum may be solved analytically to describe the flow field. However when analytical 

solutions are not possible or when mass and momentum relationships follow non-uniform 

behaviour, these equations may be approximated using iterative numerical methods. 



 In fluid motion, sheer stress and its rate of change affect the flow depending on their 

values. The relationship between the shear stress, τ, and shear rate, ߛሶ , determines the fluids 

ability to flow when sheer stress keeps on changing (Wilmer W. Nichols and Michael F. 

O'Rourke, 1997,1990,1998). For Newtonian fluids the correlation between shear stress and 

shear rate is linear. This relationship is sometimes expressed using a single constant, the 

dynamic viscosity, μ (Agarwal, Katiyar, & Pradhan, 2008). The best example of a Newtonian 

fluid is water which exhibits laminar fluid flow with linear behaviour in terms of shear stress 

and shear rate. But many other simple homogenous fluids also exhibit these properties. 

 Blood has different behaviour from water in terms of fluid flow. At low shear, blood 

becomes thick and becomes more viscous. Red blood cells align and aggregate to form 

rouleaux Figure 1-7 (Schmid-Schönbein, Wells, & Goldstone, 1969). 

 

 

 

 

 

 

 

 

  

 

 

Figure 1-7: Rouleaux and Non-Rouleaux Blood formation. Source: 

http://www.homepage.ntlworld.com/.../Rouleaux%20Blood.JPG 

When rouleaux are formed, it acts as an opposing force to fluid flow. The formation 

of rouleaux slows down the ability of the blood to flow. More specifically, blood has the 

properties of a Casson fluid that is shear-thinning fluid, which shows both a yield stress and a 

non-linear relationship between stress and strain in the fluid flow system (Fournier, 1999). 

Casson fluids show three types of behaviour depending on the values of shear: 
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1) Low Values of Shear 

 When the shear is low, the yield stress of blood (0.004  ܰ/݉ଶ), the yield stress is the 

applied stress we must exceed than shear in order to allow for the blood to flow. In case the 

change in pressure is not enough to overcome the viscous yield stress, the fluid does not 

flow. Since fluid is not flowing in such conditions, the viscosity is said to be infinite to make 

a structured fluid flow 

2) Shear Surpasses Yield Stress 

 When the yield stress is overcome and the blood becomes fluidic, it results in a 

nonlinear behaviour between stress and strain. This condition occurs at low to moderate 

strain rates (γሶ ൏ 100 sିଵ). Such strain rates are present in smaller blood vessels. Due to 

lower value of shear, the viscosity remains variable at different points. 

3) High Values of Shear 

 The shear stress and shear rate correlation becomes more linear at higher value of 

shear (γሶ ൐ 100 sିଵ), which results in constant effective viscosity. These conditions are 

observed only in the largest arteries, the blood behaves in a Newtonian manner (Wilmer W. 

Nichols and Michael F. O'Rourke, 1990). That is why, the Newtonian behaviour is assumed 

throughout this study and the kinematic viscosity, ߤ , is considered constant at 0.0035 ܰ. /ݏ

݉ଶ. The dynamic viscosity, ݒ ൌ  0.003465 N/mଶ, which is the product of the density, ߩ, 

and kinematic viscosity (ߤ ൌ  The density of blood under pressures experienced in our .(ݒߩ

study assumed to be constant at ߩ ൌ 1060 ݇݃/mଷ. To make the study mathematically 

simpler, blood is modeled as an incompressible fluid. 
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1.7 Newtonian Viscous Fluid 
 Newtonian viscous fluid is a fluid for which the shear stress is linearly proportional to 

the strain rate. For a Newtonian fluid the stress-strain relationship is specified by the 

equation; 

σ୧୨ ൌ െpδ୧୨ ൅ μ௜௝௞௟݁௞௟                                                          1 െ 14 

 

where σ୧୨ is the stress tensor, ݁௞௟ is the strain rate tensor,  μ୧୨୩୪ is the tensor of viscosity 

coefficients of the fluid, P is the static pressure, and δ୧୨ is the kronecker delta, which has the 

value 1 if  ݅ ൌ ݆, and zero if  ݅ ് ݆. The term െPδ୧୨ represents the state possible in a fluid at 

rest (when  ݁௞௟ ൌ 0). For equations purposes, assume an isotropic tensor, which the tensor 

has the same array of components when the frame of reference is rotated or reflected. In this 

case, the isotropic constitutive equation yields: 

If a fluid is incompressible, then ݁௞௞ ൌ 0, and the constitutive equation for an incompressible 

viscous fluid becomes: 

σ୧୨ ൌ െPδ୧୨ ൅ λ݁௞௞δ୧୨ ൅ 2μ݁௜௝                                          1 െ 15 

1.7.1 Wall Shear Stress 

The Wall shear stress  τ୵, is a vector, containing both a directional and a magnitude 

component, where is defined as the gradient of the velocity of the fluid at and normal to the 

wall times its dynamic viscosity.  

Newton’s concept of viscosity may be elucidated in the simplest case of a shear flow 

with a uniform velocity gradient as sketched in Figure 1-8. Fluid in contact with the vessel 

wall will travel at the same velocity as the wall under the ‘no slip’ condition forced on the 

boundary. This is a logical assumption as the shear forces applied by the wall on the fluid 

will ultimately cause the flow on the boundary to have the same velocity as the wall further 

downstream, which in this study is equal to zero. In the meantime, in order to maintain mass 

balance, the flow further away from the vessel wall is inclined to increase in velocity until it 

reaches a developed profile, after which no further changes in velocity profile occur in the 



flow direction. These results in a non-zero velocity gradient  ݀ݕ݀/ݑ  , where u and y are the 

velocity component in the direction of the flow and the space coordinate normal to the flow 

direction respectively as shown in Figure 1-8. 
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߬௪ ൌ ߤ
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where ߬ is the shear stress, ߤ is the coefficient of viscosity, the unit of ߤ in SI system is 

ܰ. ݁ݏ݅݋݌ ଶ is called a poise (1݉/ݏ ൌ 0.1 ܰ.  ଶ, in honour of Poiseuille, the French݉/ݏ

physicist who did seminal works in this field. 

Figure 1-8: Diagram showing the velocity component, u, in the direction of the flow 

and the space coordinates x and y for a ‘no slip’ condition applied on the vessel wall. 

Direct WSS measurement is not feasible, therefore to evaluate wall shear, three 

measurements are required. 1) The dynamic viscosity must be known. 2) The velocity near 

the wall must be determined in fine details to accurately evaluate the gradient. 3) The normal 

direction of the wall must be found. Viscosity evaluation is challenged by the Casson 

properties of blood and its coagulation outside the body, but the Newtonian assumption 

simplifies this portion of the calculation. 

 It has been demonstrated that WSS plays important roles in initiation and growth on 

ICAs (Oshima et al., 2001). Since this quantity is difficult to attain using experimental 

techniques, it mostly relies on knowledge of the fluid viscosity and velocity profile near the 

vessel wall. Computational fluid dynamics (CFD) techniques make this quantity easier to 
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estimate and numerous studies have been devoted to WSS estimation in aneurysms 

considering a rigid wall using this technique (Hoi et al., 2004; Peattie et al., 2004; Q. Wang 

et al., 2009). Moreover, In case of an elastic wall by implementing the FSI method, only a 

few attempts have been done to estimate the WSS in a blood vessel. The FSI modeling 

showed significant difference in WSS between rigid and elastic wall, with an increase of 

about 25% in an elastic wall as compared to a rigid wall (Niroomand Oscuii et al., 2007). 

 The blood flow velocity calculations in our experiment were done using pulse wave 

Doppler ultrasound method. Therefore following is a brief explanation of this concept 

including background and basic physics. 

1.8 Physics of Ultrasound 
 Sound is a form of mechanical energy which travels through matter, as waves in the 

form of compressions and rarefactions. Sound waves are generated when an object vibrates 

in a medium. When a sound wave is generated, it causes pressure in the molecules of the 

medium, so the molecules of the medium compress. As the source of generation of sound 

moves backward, pressure drops in the medium, and the molecules decompress. After the 

wave travels through a particular point, the molecules of the medium retain their original 

position with an overall displacement equalling zero. 

 The speed of sound is different in different media. It is fastest in solids, and minimum 

in gasses. It depends on how close the molecules of the medium are to each other. For human 

beings the audible sound frequency ranges from approximately 10 Hz to 20 KHz, sound with 

frequency more that 20 KHz inaudible to the human ear and this is known as ultrasound. 

 Nowadays, ultrasound has a number of applications in medicine and biology, and in 

industry (Francis A. Duck, Andrew C. Baker, Hazel C. Starritt, c1998; George J. 

Hademenos, Tarik F. Massoud, 1998; Jorgen Arendt Jensen, 1996). In this work, we dealt 

with Doppler ultrasound as an accurate method for blood flow measurement.  
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1.8.1 Doppler Effect 

 The Doppler Effect is a physical phenomenon named after Austrian physicist 

Christian Johann Doppler (1803-1853), who first described it in 1842. According to the 

definition of Doppler Effect, the apparent frequency of a sound wave changes as the distance 

between the source and observer changes. The change in the frequency is known as the 

Doppler frequen  cy shift, or simply Doppler shift: 

ௗ݂ ൌ ௧݂ െ ௥݂                                                                          1 െ 17 

where ௗ݂ is the shifted apparent frequency, ௧݂ is the actual transmitted frequency, and ௥݂ is 

the received frequency. If the source and the observer move toward each other, the 

wavelength decreases and the frequency increase. Conversely, when the sound source and 

observer are moved apart, the wavelength increases and the frequency decreases, since the 

wavelength and frequency are inversely related to each other at a constant velocity. 

 Doppler Effect is utilized widely in medical imaging to measure the velocity of blood 

flow in blood vessels. This work is credited to Satumora who first conceived this idea (S. 

Satomura, 1957). In addition to blood flow, Doppler Effect has been extensively used since 

then to monitor moving structure within the body, for example foetal movement (Peter W. 

Callen, c2000). 

 Using the theory of the Doppler effect, Satumora constructed an instrument capable 

of detecting moving objects. This instrument generates ultrasound and transmits it toward a 

blood flow. The flow of blood causes the ultrasound to scatter. Based on the observation of 

shifted frequency between incident and reflected waves, Satumora was able to detect the 

velocity of flow g t  as: in  blood. Mathematically the Doppler formula can be wri ten

ௗ݂ ൌ
2 ௧݂

ܿ 1                                                                      ߠݏ݋ܿ ݒ െ 18 

By re-arranging q n, the e uatio  we can get expression for velocity as: 

ݒ ൌ ௗ݂ ܿ
2 ௧݂ ܿߠݏ݋                                                                            1 െ 19 

Here ft represents the frequency of the incident beam (transducer), v the velocity of the blood 

in a given direction, c the propagation speed of sound in the tissue, and θ the angle between 



the axis of the vessel and the ultrasound beam shown below in Figure 1-8. The above 

equation 3-3 forms the basis for clinical application of Doppler principle. 

 

 

 

 

 

 

 
Figure 1-9: Doppler Ultrasound Angle. 

 

1.8.2 Ultrasound in Medicine 

Ultrasound was used in medicine first in 1950s, when it was found that ultrasound 

waves could be used for the detection of parts like tissue layers, tumours and heart structures 

(Christof Sohn, Hans-Joachim Voigt, Klaus Vetter, 2004). As the technology advanced, non-

invasive ultrasound imaging technique has been widely used in medical area. The affordable 

price of ultrasound equipment and its ability to gather real-time data without invading the 

body makes this technique very preferable in clinics and hospitals around the world. 

As the ultrasound waves pass from one medium to another (e.g., from soft tissue to 

bone) some of them pass through the boundary separating the two media, and the remaining 

waves are reflected back. The amount of reflection of these waves depends on the mismatch 

of blocking of medium for sound waves, or in other words the acoustic impedance, and the 

angle of incidence of these waves. The acoustic impedance is different for different parts of 

the body. For the fluids like blood and soft media like soft tissues, the acoustic impedance 

depends on the density and compressibility of the medium. 

 Over the past few decades, many different types of ultrasound scanners have been 

developed to study the inside of the human body. Almost, all these scanners work on basic 

24 

 



25 

 

principle of pulse-echo imaging in which the instrument sends an ultrasonic pulse into the 

body and measures the reflections from various interfaces in the wave path. The differences 

in the echo signals help in collecting data about behaviour of different body parts like blood 

flow and other parts and organs in our body. The first such scanner was the A-mode scanner 

in which the ultrasonic beam is directed into the body along the single path. The echo wave 

received has time delay which is proportional to the distance covered. The echoed wave is 

plotted versus the strength of original signal. The amplitude of the received wave is 

determined by various factors such as the interfaces and attenuation of the medium along its 

path. 

 There is a more complex and advanced ultrasound system that is capable of 

displaying two-dimensional images. It is called the B-mode scanner. Such a scanner produces 

images by holding the transducer with the body. The transducer transmits ultrasound waves 

into the body and receives the reflected waves. The waves travelling inside the body confront 

various obstacles and some part of the waves is reflected back. The amount of the reflected 

wave is proportional to the difference in the acoustic density and compressibility of the 

tissues. For generation of the image, the brightness of each pixel is determined by the 

amplitude of the echo signal corresponding to the position in the image (David H. Evans and 

W.N. McDicken, 2000). In this way particular regions in the image get corresponding 

brightness depending on echoes and hence produce a final gray scale image. 

1.8.3 Doppler Ultrasound 

 Doppler ultrasound is a medical technique used to perform a non-invasive 

measurement of blood flow velocity. The instrument used in this technique transmits an 

ultrasonic beam into the body at a certain frequency. As this wave travels inside the body, it 

is reflected /scattered in the body and if the object that is causing this reflection and 

deflection is moving in relation to the ultrasonic transducer, the frequency of the received 

wave is different from that of the transmitted one as explained in the Doppler Effect theory. 

The frequency difference is proportional to the relative difference between the object inside 
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the body and the ultrasonic transducer. There are two modes of operation for Doppler 

ultrasound: the Continuous Wave (CW) and Pulse Wave (PW) Doppler ultrasound. 

1.8.3.1 Continuous Wave Systems 

 The CW Doppler instrument consists of two separate transducers: a Transmitter (T) 

that is continuously emitting ultrasound waves and the Receiver (R) continuously picking up 

the ultrasound waves reflected or scattered from the body tissue. The receiver transducer 

collects the radiation reflected back from tissue interfaces along the beam path, such as blood 

vessel walls, as well as the radiation backscattered by the red blood cells (RBCs) within the 

blood flow. These two transducers are mounted side by side in the same probe with a slight 

inward inclination so that their beams overlap. The portion of overlap is usually called the 

sample volume as shown in Figure 1-10. 

1.8.3.2 Pulsed Wave Systems 

 The CW Doppler system lags behind when it comes to resolution. It is possible to 

check the depth in tissue of the vessel, when two transducer crystals are close to each other. 

There is a possibility that two vessels, at different depths, accidentally will be at the same 

image and therefore it will give a wrong frequency distribution. To resolve this issue, the 

Pulsed Wave (PW) system suggested by Baker (1970) (Jorgen Arendt Jensen, 1996) 

overcomes the range resolution limitation by controlling the distance from which echoed 

beam is received. In PW systems there is a single transducer to transmit and receive the 

ultrasonic wave. In PW mode, a short pulse of ultrasound signal is transmitted at a repetition 

frequency of ௥݂. The reflected signal is received with the same transducer but with a time 

delay of  ௗܶ  caused in the travel. The delay time  ௗܶ  is determined by the range of interest or 

sample volume which gives comparison of transmitted and received beam see Figure 1-10. 

 The Doppler Sample Volume (DSV) is the three-dimensional region in the path of the 

transmitted ultrasound beam from which the frequency shift signals are obtained. For the PW 

Doppler system, the specified zone from which the echoes are received makes up the sample 

volume. The distance between the transducer and the sample volume is determined by the 



time delay between the transmission and reception. The duration of the transmission interval 

and of the reception interval determines its axial length. The width of the sample volume is 

linked with the width of the ultrasonic beam at the depth being investigated. Although PW 

systems have added advantages over CW systems, but that comes with added cost. The 

Doppler shift that can be detected has limitations. For each Pulse Repetition Frequency 

(PRF) there is a maximum frequency shift that can be clearly detected   ௗ݂೘ೌೣୀ௉ோி/ଶ  (the 

Nyquist limit, which, represent the maximum frequency threshold). If examination of a 

deeper sample volume is done that requires higher PRF, it will reveal that the distance 

travelled by the beam to the sample volume and back is reduced. Since the PRF decreases, 

the maximum detectable velocity also decreases. The maximum detectable velocity decreases 

as the transmitted frequency increases for a given depth of sample volume and for a constant 

angle of incidence. As the heart pumps blood with a periodic pulse throughout the body, the 

Doppler signal spectrum varies with time following the cardiac cycle, and therefore it is 

usually plotted as a sonogram, also called a spectrogram, where the horizontal axis represents 

time, the vertical axis represents frequency and the intensity of the gray scale plot is related 

to the power of the spectrum (Fish, c1990). 

 

 

 

 

 

Figure 1-10: Schematic illustration of the Doppler sample volume. 
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1.9 Computational Fluid Dynamics 
 Computational Fluid Dynamics (CFD) is an increasingly popular approach to study 

fluid flows within both common and unique applications. This method uses a numerical 

approach to solve the mathematical equations involved in the fluid flow. Most of the times, 

these equations are in the partial differential equations form. Such problems can deal with 

simple flow characteristics or at times complex factors like turbulence and heat flow. 

 The CDF equations can be solved by conventional equations which themselves have 

been well recognized for many years and represent the groundwork of fluid mechanics. 

Though, with the advancement in numerical methods, the ability to solve the CFD equations 

numerically has become a widely-used approach due to advancements in computational 

power. 

 The applications of CFDs started as early as in 1940’s (Milne-Thomson, 1958), but 

the applications at that time were restricted by the computational power. According to the 

principles of CFD, having finer and more elements allow for a more accurate prediction of 

results but that is achieved at the cost of increased computation time. Increasing the 

complication of the calculations by integrating accurate turbulence equations as well as other 

factors that may be of research interest can also significantly affect the processing time and 

ability of the code. That is why CFD has recently been established as an alternative to 

experimental testing and pure theoretical calculations for research (the latter being applicable 

for simpler problems only). 

 As powerful modern processors are arriving, computational power is such that now it 

is possible to implement complicated simulations on an affordable personal computer within 

a reasonable period of time. Methods such as parallel processing have decreased the 

computational effort even further. 

 CFD has a number of advantages over experimental fluid dynamics (EFD) 

investigations. The first advantage that CFD has over EFD is in terms of feasibility of design 

and development. As a typical example consider a simple aerodynamics experiment. A 

considerable amount of time is required to design the experimental rig and setup to obtain the 

required data correctly.  Collecting values of flow data at more than one location requires the 
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construction of either a movable data-sampler or multiple data-samplers arranged to cover 

the region of interest. It is not easy to design conditions where a good sampling of results is 

obtainable without putting the results beyond accuracy by having the measuring instruments 

interfere with the fluid flow (Milne-Thomson, 1958). In EFD, a considerable amount of time 

may also be required to set up experimental conditions to match the conditions of interest, 

such as changing temperature of the fluids or achieving steady flow. It is also difficult to 

make adjustments to design parameters for experimental conditions so as to study the 

variation of measured values with respect to these alterations. On the other hand, in most 

cases these alterations are quite easy to make in CFD simulations and at most of the times do 

not require a restarting the solution process. Research on novel algorithms that allow the 

computer to predict the changes in trends given sufficient initial inputs is still ongoing. 

However, it should be noted that there are certain restrictions to the CFD methods. Non-

uniformity and sudden changes in parameters can affect the solution stability, resulting in 

slow or non-converging results or a drastic overhaul in the simulation process. One of the 

major advantages that CFD simulations over experimental methods and theoretical 

calculations is the span and details available from a simple simulation. In experimental 

approach, results can provide large-scale values such as changes in pressure over a relatively 

large test section, the velocity graph or the average velocity at a point of interest and the 

paths of injected particles. Still, achieving accurate results for the entire model can be costly, 

time consuming and in some cases impossible to do. As an example, WSS calculation is 

quite feasible and accurate using the CFD, while it is a fairly challenging task to measure it 

using experimental methods (Hoi et al., 2004; Q. Wang et al., 2009). 

 A third advantage that gives the CFD a lead is that extensive simulations at the 

present time are quite cost-effective compared to the experimental alternative. The 

programming codes which are used to solve the fluid dynamics equations are commonly 

available and even basic computers are capable of providing accurate results for complex 

simulations. Comparatively, the cost required to run the experiments is significantly higher 

even for simple experiments. That is why the CFD is cost effective and accurate and hence 

has become a widely-used approach in fluid dynamics calculations. 
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 In spite of all advantages of the CFD discussed above, it should be noted that the 

experimental methods still play a vital role in research. In a CFD technique there will be a 

small degree of inaccuracy due to round-off errors, which should preferably be kept to an 

extremely small value. In numerical computational methods, convergence is a key concern as 

it may be impossible to achieve a satisfactory degree of convergence without a large demand 

in computational resources CFD results also require some form of experimental validation to 

ensure that the proper settings were used and that the code functions as it has been 

programmed. But on wider scale, the advantages mentioned above have made CFD methods 

playing a growing role in the research and development process, and thus providing an 

economically practical option to extend the results beyond the limitations of experimental 

methods (P. Niyogi, S.K. Chakrabartty, M.K. Laha, 2005). 

1.10 Basic Principles of CFD 
 CFD breaks geometry into small cells and hence aims to solve the governing 

equations for each cell. These equations describe the physical aspects of fluid flow and for 

simple flows they are: 

(1) Conservation of mass, 

(2) Conservation of momentum, and 

(3) Conservation of energy if heat is transferred from one point in space to another. 

 For this study, the basic governing equations of flow are the Navier-Stokes equations 

(Y.C. Fung, 1990) that determine the conservation of mass and momentum. The process of 

CFD can be divided into three different phases. The first is the pre-processing stage, in which 

the domain of calculation is determined and it is decomposed into discrete cells to form a 

mesh or network of cells. There are several methods involved in creating a best possible 

mesh that requires knowledge and experience. A finer mesh would provide better results but 

will need more computational power. To achieve a balance between the calculation accuracy 

and time, several mesh setting have been tested. This stage also involves determination of the 

properties of the fluid to be studied. After the fluid medium and the equations that need to be 

solved have been determined, appropriate boundary conditions are applied to the model. This 
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is done by constraining the nodes or cells along the domain boundary with known or 

controllable parameter values. The solution for the rest of the flow domain will be 

determined from these boundary values. It is wise to note that this stage is likely to require 

the largest amount of effort. It has been estimated that over 50% of the time spent on a CFD 

simulation will be devoted to defining the domain geometry and grid generation (P. Niyogi, 

S.K. Chakrabartty, M.K. Laha, 2005). In this study three idealized geometries that have been 

created using COMSOL CAD tools. While current codes has helped in making this stage 

easier, it still requires reasonable knowledge  in CAD drawing and mesh setting to be able to 

create proper meshes to reproduce actual conditions and provide accurate results while 

keeping computational time to a reasonable level. 

 In the second stage of CFD, the mesh generated in the previous stage is solved. The 

solution starts by assigning the cells with an initial value which provides initial estimates for 

the solution methods. There are several numerical solution techniques like finite difference, 

finite element and finite volume methods for this purpose. In this work we will use methods 

based on the finite element solvers in which functions on elements are used to describe the 

local variations of variable of interest ׎ across the nodes, which are then used to estimate the 

value of ׎ of the element (see below for the definition of ׎). 

 All of these methods essentially use a solver algorithm described by (Lee waite, 

c2006; P. Niyogi S . a y, , .K  Chakrab rtt M.K. Laha, 2005), 

௖׎௖ܣ ൅ ෍ ௡௕ܣ ௡௕׎ ൌ ܳ௖                                                 1 െ 20 
௡௕

The subscripts ܿ and ܾ݊ refer to the cell centre or grid point and the centres of the 

neighbouring cells or grid points respectively, ܣ   stands for the geometrical parameters 

(volume, area or distance), fluid properties (density, viscosity, etc.) and also variable values 

to account for the non-linearity of the equations. Q represents all terms that are known or 

treated as such within one iteration cycle. ׎ is the dependent variable, which may stand for 

the velocity components or pressure that is to be determined from the calculation. An 

iterative approach is used to solve these equations from the original given values to the point 

whereby the condition of equation 1-20 is met. The third stage is post-processing stage which 
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is the final stage in the CFD method in which the data generated from the preceding step is 

extracted and analysed. Commercially available programs are user-friendly and seek to 

improve on the visual presentation and manipulation of the data, whereas the traditional 

codes only export raw data. Commercial programs employ a graphical user interface that 

among others can show the geometry and grid, vector plots, contour plots, surface plots, 

particle tracking and other options to suit the user’s needs. However, this process requires 

basic knowledge to interpret the results. The needs of the present level of research and 

computational power are being met by improving modelling capabilities and user interface. 

 The main concern of the current study engages the FSI capability of the software, 

which is presently not supported by a lot of the popular packages available in the market 

today. It is, therefore, the most important feature for determining which numerical code to 

use. Since the fluid flows in the current study are laminar, there is little or no need for 

considerations related to the code’s accuracy when solving turbulence. Most of the CFD 

programs already include the viscosity-strain equations within the code itself. Software’s 

flexibility to encompass user-defined changes and the ability to model transient conditions 

are some of the considerations to be taken into account. 

 At present, several software packages like ADINA, ANSYS Multiphysics, FLUENT, 

ABAQUS and recently COMSOL Multiphysics provide this capability (Structural Mechanics 

Model: User’s Guide, 2008). All these software employ the finite-element method to solve 

the flow equations. This is the preferred method for solving FSI simulations of structural 

problems as it is a well established and the best method available. In this study we will 

develop a novel coupling environment of COMSOL Multiphysics with FSI capability to use 

in the computational blood flow simulation in an elastic blood vessel. The most important 

feature of this software is that it is capable of solving both the fluid and solid models within 

one single program. The coupling method is two-way, in which the fluid domain is fully 

coupled with the solid structure, which subsequently allows for highly non-linear problems to 

be modelled. A stronger interaction than an iterative scheme between the fluid and the solid 

model is resulted due to a fully coupled model. Although this type may acquire more 

computational efforts to resolve, yet the results have the propensity to be accurate. With the 
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amalgam of the flow and solid equations into a single system to be solved by using the finite 

element method, this software currently allows to simulate more complex flow conditions 

and highly non-linear behaviour. 

1.11 Previous Studies on Fluid-Structural Interaction (FSI) 
 Fluid-structure interaction (FSI) has been an important field of study for many years. 

It is a technique used in numerical problems to provide an understanding of the impact of the 

flow on structures, both within and surrounding the flow. Due to the drastic increase in 

computing power over the last decade, numerical methods are becoming increasingly more 

effective. This has resulted in the increased utilization and research in the field of numerical 

methods to predict FSI motions and other responses. Originally, this method was used to 

simulate cases of aeroelasticity for aerodynamic research (Milne-Thomson, 1958), but 

recently it has been actively integrated in various biomechanical researches, including those 

involving blood flows through aneurysms arteries (Bazilevs et al., 2010; Takizawa, 

Christopher, Tezduyar, & Sathe, 2010; Torii et al., 2010). The integration of FSI into the 

blood flow models is considered to be a big step in research field carried on arteries wall 

diseases as it allows the researcher to locate where arterial lesions are most likely to occur 

and how they happen; offering a method to understand the problem and to prevent potentially 

fatal results. 

 It has been an established observation that the presence of an aneurysm within the 

artery can result in a high region of blood pressure, particularly where the occlusion is at 

bifurcations or curvatures arteries (Eriksson, Kroon, & Holzapfel, 2009; Hashimoto et al., 

2006; Krex et al., 2001; Sekhar & Heros, 1981). Various physiological experiments 

conducted recently have shown that the hemodynamic forces play an important role of 

initiation, formation and growth of an ICA and other vascular diseases, such as 

atherosclerosis (Malek, Alper, and Izumo, 1999). 

 Numerous studies focusing on the CFD, recommended geometry movement and 

provided immense information that is not available in clinical practice (Lee waite, c2006). 

The introduction of Arbitrary Lagrangian–Eulerian formulation (ALE) methods (Duarte, 
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Gormaz, & Natesan, 2004) (described in the next section) has helped ease the studies of 

moving boundary. Lately, hemodynamic simulations with patient-specific vascular models 

have become popular and a large number of studies have been conducted. In one of the 

earlier studies as reported in (Taylor, Hughes, & Zarins, 1998), hemodynamic simulations 

were carried out with the main focus on the abdominal aorta in which the geometry was 

extracted from the magnetic resonance imaging (MRI) data. In (Taylor et al., 1998)  as well 

as in various studies from the same period, the vascular walls were assumed to be rigid. Only 

the most recent studies have taken into account the deformation of the vascular walls in 

Hemodynamic simulations. For instance in (Alberto Figueroa, Baek, Taylor, & Humphrey, 

2009; Bazilevs et al., 2010; Pericevic, Lally, Toner, & Kelly, 2009), blood flow computations 

were carried out with moving boundaries where either a theoretical or an empirical model 

based on in vivo measurements is used to prescribe the motion. Computations of the FSI 

between blood flows and blood vessels were reported in (Di Martino et al., 2001; Moosavi, 

Fatouraee, & Katoozian, 2009; Watanabe, Hisada, Sugiura, Okada, & Fukunari, 2002). These 

studies mainly focused on the heart and abdominal aorta where the deformations are 

comparatively large. On the other hand, FSI analysis of cerebral arteries is not so common 

because the cerebral arteries deform less and are smaller than other arteries and consequently 

have little influence. However, no matter how small, these small deformations affect and 

interact with the dynamics of blood flow in the brain and this makes the arterial-wall 

deformations in cerebral arteries important. 

 With special focus on modeling the structure influence of moving boundaries of 

aneurysmatic arteries with implementation of FSI and ALE formulation (Flori, Giudicelli, & 

Di Martino, 2009; Guivier-Curien, Deplano, & Bertrand, 2009; Krittian, Janoske, Oertel, & 

Böhlke, 2010), studies have been performed with a 3D code-coupling approach to simulate 

cardiovascular blood flow and stenosed arteries (Koh, Kang, Cho, & Yoo, 2009). Research 

using FSI analysis on many types of aneurysms arteries was conducted and provided analysis 

on wall deformation, stress distribution and flow characteristics with patient-specific 

geometry constructed from clinical magnetic resonance images (MRI), computer tomography 

(CT), and 3D ultrasound images (Oshima et al., 2001; Torii, Oshima, Kobayashi, Takagi, & 



Tezduyar, 2007a), or by using  idealized realistic geometry with different sizes and shapes of 

arterial aneurysms (Bazilevs, Gohean, Hughes, Moser, & Zhang, 2009; De Hart, Peters, 

Schreurs, & Baaijens, 2003) . These researches have managed to show that a high WSS 

exists around the neck region of the aneurysms and at the aneurysm fundus (the farthest part 

from the opening of a sac or hollow artery). Moreover, these studies reveal that the 

aneurysms have a significantly thinner wall thickness compared with the parent artery, which 

increases the probability of rupture see Figure 1-11. 

 The aneurysms in the mentioned studies already existed in the geometries before the 

simulation begins, whether or not the geometries were constructed from the patients’ medical 

images or represented simplified clinical geometries. 

 

 

 

 

 

 

 

 

 

Figure 1-11: A sketch of a saccular aneurysm cross section. 

(George J. Hademenos, Tarik F. Massoud 1998) 

 

 

 

1.12 Arbitrary Lagrangian–Eulerian Methods 
 For numerical simulation of multi-dimensional problems in fluid dynamics and 

nonlinear solid mechanics, an establishment of strong interaction between fluid-solid, solid-

fluid or fluid-structure interface is frequently required. When developing a computer code for 

simulating problems in this class, the choice of an appropriate kinematical description of the 

continuum is an essentially important consideration. In fact, such a choice determines the 
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relationship between the deforming continuum and the finite grid or network of computing 

zones, and thus conditions the ability of the numerical method to deal with large distortions 

and provides an accurate resolution of material interfaces and mobile boundaries (A Huerta, 

M Casteleiro and H. Alder, 1993). 

 Arbitrary Lagrangian Eulerian (ALE) is an approach employed to solve problems in 

engineering in which the use of the classical Lagrangian and Eulerian reference frames is 

combined. Mostly it is used in the analysis of FSI systems. Generally, it is favourable (if not 

necessary) to use an ALE approach to analyze the structure (and fluid) motions if material 

strain rate is significant. ALE becomes very useful when analyzing structural motions in 

cases where the structure is severely deformed, like an impact problem or for the analysis of 

a very flexible structure. 

 The Lagrangian reference frame is most commonly used in solid mechanics (Duarte 

et al., 2004). It sets up a reference frame by fixing a grid to the material of interest and as the 

material deforms the grid deforms with it. It also assists in identifying the exact dislocation of 

each particle which becomes very helpful in tracking motions in solid mechanics. This 

method automatically adjusts the conservation of mass since the individual sections of the 

grid always contain the same (amount of) mass. In structure motions with large deformation, 

the grid becomes extremely distorted and the integration time steps decreases since they are 

based on the size of the smallest section of the grid. 

 The Eulerian reference frame is a typical framework, fixed in space, used in the 

analysis of fluid mechanics problems (Duarte et al., 2004). It allows the material to flow 

through the grid conveniently. However, the Eulerian reference frame is unable to track the 

path of individual particles. Therefore, for solving motion predictions through the Eulerian 

approach, the solution is generally implemented for the net flow through a certain area. For 

this reason, in the Eulerian method, conservation of mass is adjusted by measuring the flux in 

and out of each grid section. Therefore, the key disadvantage of the Eulerian system is that it 

does not track the path of any element, particularly the fluid free surfaces.   ALE approach 

combines the use of the two reference frames. It allows for a grid that is both flexible and 

capable of handling flow of materials through it.  In fact, it takes the advantages of both 
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reference frames and combines them into one (Duarte et al., 2004; Y. Wang, Zhao, Mao, & 

Wang, 2007). This approach proves to be helpful in problems dealing with large 

deformations in solid mechanics and in fluid-structure interaction. It allows the grid to track 

the material to some extent, however, when the grid deforms excessively and alters the aspect 

ratio of the grid beyond an acceptable point, it adjusts the grid and measures the flux of the 

material during the adjustment of the grid. The main challenge while using the ALE 

approach is to decide how much the grid should be allowed to deform and how much flux to 

allow. This can be resolved by setting a limit on the distortion of a segment of a grid and 

once it deforms past that limit then that part of the grid is interconnected or re-meshed. 

 While using the ALE, the input of several variables is required to allow the numerical 

model to compare closely to the real-world situation and to let the governing equations to 

work. There are numerous variables that must be ascribed with size, boundary 

considerations, free surfaces and starting velocities. Fundamental characteristics of the 

material are also important which include density, viscosity, strength, Young’s modulus, 

shear modulus and bulk modulus. These variables are necessary for input in order to assure 

the accuracy of the governing equations. 

 For the modeling of FSI the use of several governing equations like the conservation 

of momentum is necessary. This is usually taken care of with the Navier-Stokes equations. 

Conservation of mass is important when re-meshing occurs. When the mesh stays constant, 

as in an Eulerian approach, there is no need for conservation of mass since it stays constant 

by default (as there is no mass flux). Conservation of energy is another important 

consideration. Lastly, boundary conditions need to be taken into account. 
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Chapter 2  COMPUTIATIONAL FSI MODELING OF 
BLOOD FLOW 

 This chapter aims to provide a description of the governing mathematical equations 

and the algorithm developed for the computational FSI modeling of blood flow and the 

model geometries used in the study. A synopsis of the mathematical equations used for the 

solution process and the boundary conditions has also been incorporated in this chapter. 

Methods used to attain the solution, as well as a discussion on the FSI coupling method are 

also included in this chapter. 

2.1 Model Geometries 
 As mentioned  previously, the saccular cerebral aneurysms usually forms and grows 

at arterial forks with connection to the circle of Willis, particularly in the anterior choroid 

artery junction, the anterior communicating artery and the middle cerebral arteries’ main 

bifurcation  (Steiger, 1990),  where the internal elastic membrane is to some extent destroyed 

and where the arterial media layer are weakened (Austin, Fisher, Dickson, Anderson, & 

Richardson, 1993). 

 The current study scrutinizes the hemodynamic flow, wall deformations and WSS in 

straight, curvature and bifurcated vessels computationally, and examines their correlation 

with the influence of the mechanical properties on a saccular ICA formation, growth, and 

rupture. 

Idealized saccular aneurysms were modeled along the parent vessels and daughter 

branches using the CAD drawing  tools in COMSOL Multiphysics finite element software 

package V 3.5a (COMSOL Inc., Burlington, MA, USA) (Structural Mechanics Model: 

User’s Guide, 2008).  



The first model to be regarded as a straight elastic tube with undeformed inner 

diameter of  D ൌ 3 ݉݉, length of  ܮ ൌ 20 ݉݉, and the wall thickness of  ݄ ൌ 0.2 ݉݉, as 

shown in Figure 2.1 (Kroon & Holzapfel, 2008). 

 

 

 

 

 

 

 

 

 

 Figure 2-1: Geometry and section divisions of saccular aneurysm. 
 

 The second model was a segment of curved artery (Foutrakis, Yonas, & Sclabassi, 

1999; Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 2007a), which had the same inner 

diameter of  3 mm and length of  23 mm  with a 90 degree curvature as shown in Figure 2-2. 

 

 

 

 

 

 

 

 

 

 

  
Figure 2-2: Geometry and section divisions of saccular aneurysm in a curved artery.  
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 The last two models represent part of the middle cerebral artery (MCA) bifurcation, 

which is among the common locations of cerebral aneurysm as shown in Figure 2-3 

(Foutrakis et al., 1999) . The inner diameter of the parent artery and two daughter arteries is 

assumed to be the same as earlier geometries of  3 mm and same daughter curvature in order 

to be compared with previous geometries and also with same two neck size,  large as shown 

in Figure 2-3A and small neck size as shown in Figure 2-3B . 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-3: Geometry and section divisions of simplified saccular aneurysm in bifurcation 

geometry, with large neck size (A) and small neck size (B). 
 

In two types of Bifurcation Aneurysm with large neck size (A) and small neck size (B). Based on 

wall mechanical properties, each geometry was divided into two sections. In this research, it 

was observed that the aneurysm considered as diseased part had different mechanical 

properties than the arterial wall, however both of them were assumed to have the same wall 

thickness of  0.2 ݉݉ (Torii et al., 2010). On the other hand, the healthy arterial wall 

elasticity was assumed to be 6 ܽܲܯ for all studied models, which is a much higher elasticity 

than the aneurysm’s wall  0.25 െ  .ܽܲܯ 0.0625
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 The introduction of aneurysm as a diseased part into the geometry at the median of 

the artery consisted of two sizes: large surface area of  ሺ ௟ܵ ൌ 21 mmଶሻ, and small surface 
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area of   ሺ ܵ௦ ൌ 6 mmଶሻ. The chosen aneurysms had different mechanical properties along 

with a range of values that had been changed to the values from 0.25 ܽܲܯ  to 0.0625 ܽܲܯ 

(Hashimoto et al., 2006; Kroon & Holzapfel, 2008; Valentín & Humphrey, 2009) for a more 

extensive coverage of biomechanical properties of diseased arteries. The severity of the 

aneurysm was determined by comparing the amount of the diseased surface area and the 

degree of loss suffered by their mechanical properties with the healthy arterial wall. For this 

purpose, aneurysms with different surface areas and mechanical properties were planted in a 

healthy blood vessel to study their effects on the formation and growth of the aneurysms. 

Lastly, it is imperative to mention that in all cases, the geometries were considered as 

cylindrical elastic tube and were generated by COMSOL. 

2.2 Governing Equations 

2.2.1 Flow Modeling 

 The Navier-Stokes equations are the principal equations to model fluid flow. Under 

the conditions of an incompressible material, the flow was assumed to be steady so that the 

time derivative is neglected,  ߩ௙݃  denotes the gravitational external force which is assumed 

to be zero, the Navier-Stokes equations 1-12, simplify to the continuity equation (the 

conservation of u t n 2-2.  mass) equation 2-1 and the conservation of momentum eq a io

         
௜ݑ߲

௜ݔ߲
ൌ 0                                                                                2 െ 1 

And 

.ߩ ௝ݑ
௝ݑ߲

௝ݔ߲
ൌ െ

߲ܲ
௜ݔ߲

൅ μ
߲ଶݑ௜

௝ݔ௝߲ݔ߲
                                                   2 െ 2 

where, ݑ௜ = (u, v, w) is the local velocity, ݔ௜ = (x, y, z) is the length coordinate, p is the fluid 

pressure, μ is the dynamic viscosity. The last expression in equation 2-2 denotes the surface 

force and ݁௜௝ is the strain rate tensor which generated the stress in the elastic material see 

equation . 
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 The blood-mimicking fluid was modeled in isothermal, incompressible and 

Newtonian (constant viscosity) conditions, and the stress tensor is generated in the blood 

defined by the on  n c stitutive equatio s is given by: 

௜௝ߪ ൌ െߜ݌௜௝ ൅ ௜௝                            2݁ߤ2 െ 3                                          

where  ߪ௜௝ is the stress tensor, and ߤ ൌ 3.5 ൈ 10ିଷ݉ଶ/ܿ݁ݏ is the fluid viscosity, and  ߜ௜௝ is 

the knockers delta (Lee & Xu, 2002; Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 2007a; 

Y.C. Fung, 1993). 

2.2.2 Elastic Vessel Wall Modeling 

 The governing equations for the motion of an elastic solid are mathematically described 

by the followin  e tio ri h a  g qua n (To i, Os ima, Kobay shi, Takagi, & Tezduyar, 2007a):

߲ଶߝ௜௝

௪ߩଶݐ߲ ൌ
௜௝ߪ߲

௝ݔ߲
൅ ݅ ݎ݋݂    ௜ܨ௪ߩ ൌ 1,2,3                                         2 െ 4 

where ε୧୨ and σ୧୨ are the components of the displacements and stress tensor in a solid 

respectively, ߩ௪  is the solid density, ܨ௜ are the components of body force acting on solid, 

nd, σ୧୨ can be obtained from constitutive equation of the material. a

 Solid material deformation is produced as a result of flow, and according to the law of 

conservation of energy, the energy will store inside the material. Strain energy density 

function  W  can be used to measure the energy stored in the material as a result of 

deformation that can be written as: 

߲ܹ
௜ܵ௝ ൌ ௜௝ߝ߲

                  ݅, ݆ ൌ 1,2,3                                                 2 െ 5 

where ௜ܵ௝ and ߝ௜௝, are the components of the second Piola‐Kirchhoff stress tensor, and 

the Green‐Lagrange strain tensor see equation , respectively. Under small deformations, 

the Green‐Lagrange strain tensor is reduced into the infinitesimal strain tensor: 

 Under infinitesimal deformations both stresses are identical. Second Piola-Kirchhoff 

stress tensor is r lat ye ed to Cauch  and total stress tensors as follows: 

߬௜௝ ൌ െܫ݌ ҧ ൅ ௜௝                                                                        2ߪ െ 7 
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where   ߬௜௝, ܫ ҧ, are the components of the total stress and the identity unit tensors, respectively, 

and  ݌  is the hydrostatic pressure. 

A single-layered arterial wall was assumed throughout the entire model. The artery was 

modeled as a hyper-elastic material or Neo-Hookean elastic solid material which shows 

nonlinear dependence of stress-strain behaviour of materials undergoing large deformations 

(Eriksson et al., 2009). 

 A hyperelastic or Green elastic material is basically a type of constitutive model used 

for ideally elastic material for which the stress-strain relationship originates from a strain 

energy density function. The hyperelastic material is a special case of a Cauchy elastic 

material (Niroomand Oscuii et al., 2007). The strain energy density function for neo-

Hookean material is considered a special case of a Cauchy elastic material that can be written 

as: 

ܹ ൌ
ܩ
2

ሺܫ ҧ െ 3ሻ ൅
݇
2 ሺܬ െ 1ሻଶ                                                     2 െ 8 

Where ܩ, ݇   are the shears and bulk modulus respectively, representing the material 

properties, J is the ratio of the deformed elastic volume over the undeformed volume and ܫ ҧ is 

the first invariant of the left Cauchy-Green deformation tensor defined as: 

ܫ ҧ ൌ ଵߣ
ଶ ൅ ଶߣ

ଶ ൅ ଷߣ
ଷ                                                                           2 െ 9 

 The artery was modeled as an incompressible material since the incompressibility is a 

reasonable assumption because biological tissues contain mostly water, which is 

incompressible at physiologic pressures. The material is incompressible in the sense that its 

resistance to volume changes in orders of magnitude greater than its resistance to shape 

changes. The incompressibility assumption has been employed by most of the investigators 

for arterial mechanics (Carew, Vaishnav, & Patel, 1968), confirming this assumption by 

measuring the change in the total volume of arterial tissue during deformation (Chuong & 

Fung, 1984). For a Neo-Hookean incompressible material J=1, then 

http://en.wikipedia.org/wiki/Deformation_(engineering)
http://en.wikipedia.org/wiki/Constitutive_equation
http://en.wikipedia.org/wiki/Elastic_(solid_mechanics)
http://en.wikipedia.org/wiki/Strain_energy_density_function
http://en.wikipedia.org/wiki/Strain_energy_density_function
http://en.wikipedia.org/wiki/Cauchy_elastic_material
http://en.wikipedia.org/wiki/Cauchy_elastic_material
http://en.wikipedia.org/wiki/Invariants_of_tensors
http://en.wikipedia.org/wiki/Incompressible
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ܹ ൌ
ܩ
2

ሺܫ ҧ െ 3ሻ                                                                                2 െ 10 

Using the relation for the Cauchy stress for an incompressible neo-Hookean material we get 

σ୧୨ ൌ λe஑஑δ୧୨ ൅ 2Gε୧୨                                                                     2 െ 11 

In terms of the principal stretches, the Cauchy stress differences for an incompressible 

hyperelastic material, which is a type of constitutive model for ideally elastic material for 

which the stress-strain relationship derives from a strain energy density function. The 

hyperelastic material is a special case of a Cauchy elastic material are given by (Torii, 

Oshima, Kob as a  ay hi, T kagi, & Tezduyar, 2007a; Y.C. Fung, 1993): 

ߪ െ ߪ ଷ ൌ ߣ
߲ܹ

ଵଵ ଷ ଵ ଵߣ߲
െ ߣ

߲ܹ
ଷ ଷߣ߲

                                                       2 െ 12 

ଶଶߪ െ ଷଷߪ ൌ ଶߣ
߲ܹ
ଷߣ߲

െ ଷߣ
߲ܹ
ଷߣ߲

                                                       2 െ 13 

 The most widely used criterion is the Von Mises Stress  distortion energy criterion for 

ductile materials, where the Von Mises stress or equivalent tensile stress, ߪ௏௢௡ ெ௜௦௘௦ , a scalar 

stress value that can be computed from the stress tensor which is used to predict yielding of 

materials under any loading condition from results of simple uniaxial tensile tests. The 

quantities  ܫ ҧ  ൌ ሺܫଵ, ,ଶܫ  ଷሻ  are the stress invariants given same stress state in all 3Dܫ

coordinated systems. 

 According to the Von Mises theory, even though none of the primary stresses exceeds 

the yield stress of the material, it is possible for yielding to stem from the combination of 

stresses. The Von Mises stress combines these three stresses into an equivalent stress, which 

is then comp r e  ared to the yield stress of the mate ial giv n as:

௏௢ ൌ
√2

ߪ ௡ ெ௜௦௘௦ 2
ඥሺߪଵ െ ଶߪଶሻଶ൅ሺߪ െ ଷߪଷሻଶ൅ሺߪ െ ଵሻଶ           2ߪ െ 14 

where,   σଵ, σଶ, and  σଷ  are the three principal stresses. 

  

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Constitutive_equation
http://en.wikipedia.org/wiki/Elastic_(solid_mechanics)
http://en.wikipedia.org/wiki/Strain_energy_density_function
http://en.wikipedia.org/wiki/Cauchy_elastic_material
http://en.wikipedia.org/wiki/Stress_tensor
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2.3 Boundary Conditions 
 For fluid model, steady flow velocity profile was assumed at the inflow boundaries 

with a uniform velocity of  50 ܿ݉/ݏ. Due to the no-slip boundary condition assumption at 

the artery walls (with no porosity), the fluid is believed not to have penetrated through the 

walls as it flows along the vessel. Due to the nature of blood flow in the cerebral arteries, a 

uniform velocity profile was chosen with parabolic laminar profile (Wilmer W. Nichols and 

Michael F. O'Rourke, 1997,1990,1998). The outflow was set with various pressure values 

starting from 20 ݉݉݃ܪ and increased to  ሺ200 ݉݉݃ܪሻ   with a 20 ݉݉݃ܪ step size for all 

models (Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 2007a). These boundary conditions 

correspond to a characteristic flow setting for a typical human cardiac cycle for normal as 

well as hypertension high blood pressure. 

 In the case of the solid model which corresponds to the artery walls, a Young 

modulus of elasticity of ܧ ൌ ߥ and Poisson ratio of ܽܲܯ 6.2 ൌ 0.45 were used in a healthy 

arterial wall, where the young modulus is assumed to be fixed with the value of   ܧ ൌ

ܧ for the healthy part of the arterial wall and this value was reduced down to ܽܲܯ 6.2 ൌ

 to introduce the aneurysm part in the healthy artery. Additionally the aneurysm ܽܲܯ 0.25

part were varies from  ܧ ൌ ܧ and decreases down to ܽܲܯ 0.25 ൌ  with four  ܽܲܯ 0.0625

equal reduction steps to study the influence of the mechanical properties on aneurysm 

formation and growth. A full summary of the boundary conditions is shown in table 2.1. 

 

 

Domain Parameter Value 

A
rt

er
y 

Module Structural Mechanical Modulus- Solid Stress-Strain 

Material Model Hyperelastic Neo-Hookean 

Initial Shear Modulus ܩ ൌ 1.74  ܽܲܯ

Initial Bulk Modulus ݇ ൌ 34.7  ܽܲܯ

Young Modulus ܧ ൌ 6.2  ܽܲܯ

Density ߩ ൌ 1000  ଷ݉/݃ܭ

Poisson’s Ratio 0.45 
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A
ne

ur
ys

m
 

Module Structural Mechanical Modulus- Solid Stress-Strain 

Model Material Hyperelastic Neo-Hookean 

Initial Shear Modulus ܩ ൌ 0.075,0.056,0.037, ܽ݊݀  ܽܲܯ0.018

Initial Bulk Modulus ݇ ൌ 1.5,1.12,0.74, ܽ݊݀  ܽܲܯ0.37

Young Modulus ܧ ൌ 0.25, 0.1875, 0.125, ܽ݊݀  ܽܲܯ 0.0625

Poisson’s Ratio 0 33 .

Density ߩ ൌ 960  ଷ݉/݃ܭ

B
lo

od
 Model Material Incompressible Navier-Stokes 

Density ߩ ൌ 1060  ଷ݉/݃ܭ

Viscosity μ ൌ 3.5 ݉ܲܽ. ܵ݁ܿ 

 

Table 2.1: Model Parameters. 

2.4 Computational Details 
 COMSOL is a commercial CFD package that is utilized in this study to construct the 

discretised equations representing blood flow, artery and aneurysm into a structured mesh in 

accordance with the finite element method. 

 Finite element method is employed to solve the model equations in which finite 

element technique divides a geometry of a complex shape into smaller, simpler shaped 

elements, and computes these equations individually on each element. The geometries in this 

study consisted of three domains; the arterial wall and the aneurysm were assumed to be a 

composite geometry, in which COMSOL treated the system as one solid object, whereas 

blood as a fluid is the third domain. Thus for these three different domains, the software 

provided continuity for the displacement and provided a conforming mesh at the artery-

aneurysm (Structural Mechanics Model: User’s Guide, 2008). The three sub-domains were 

kept preserved in order to dispense different material properties for the artery, aneurysm, and 

blood domains. One of the major important factors to provide an accurate solution is the 

number of elements applied to establish an optimum computational result, which would trade 

off with the time required for each simulation. A fine mesh setting was used for the artery 

and aneurysm domains. The number of mesh elements varied from 150000 to 300000 with 

the maximum element size of 0.8 mm taking into consideration the time required for each 
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simulation. The COMSOL software package provides two methods for performing FSI: one-

way coupling and two-way coupling. The recommended two-way coupling method was 

employed in this study by utilising the COMSOL Arbitrary Lagrangian-Eulerian (ALE) 

formulation. In this method, the fluid and solid domains are solved concurrently. This is 

carried out by creating fluid and solid geometries individually, applying the appropriate 

meshing and then applying the appropriate boundary conditions. These conditions are applied 

on the appropriate boundary where FSI allows the transfer of fluid-solid, solid-fluid, solid 

displacements and velocities changes across the geometry. This FSI process efficiently yields 

a two-way coupling result. Finally to solve the models, a GMRES solver “Generalized 

Minimal Residual (GMRES) algorithm method (Fortin & Fortin, 1990)” was used in all 

simulations allowing us for an accurate comparison between the simulations. This solver is a 

set of routines for solving asymmetrical hemodynamics systems (Youcef Saad, Martin H. 

Schultz, 1986). Finally, the simulations were runs on Intel® Core™2 Quad Processor Q8200 

(4M Cache, 2.5 GHz, 1333 MHz FSB) with 8Mbyte desktop, where 6-12 hours were needed 

to finish one run.  

2.5 Formulation of the Problem 
 A computational finite element analysis of three different types of idealized 

intracranial saccular aneurysms, including: 1) side-walled aneurysm, 2) curve-walled 

aneurysm and 3) bifurcation aneurysm was carried out. These types of aneurysms were 

modeled with the parent vessel and daughter branches and truncated into two different sizes 

of aneurysms surface areas along the vasculature. As part of this study, the effects different 

geometries on the formation and growth of ICAs were investigated. We focused in this study 

on two main factors:  The first factor is WSS, which was reported as an important factor in 

the initiation and growth of aneurysms (Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 

2007a). The second factor is vessel wall deformation and is related to prediction of the 

aneurysm’s rupture using Laplace law (Canham & Ferguson, 1985; Humphrey & Kyriacou, 

1996). 
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Chapter 3  MODEL VALIDATIONS 

 This chapter covers the methods for the experimental verification of the developed 

numerical FSI model. Model validation has been done with two choosing experimental 

results. First validation was based on our experimental work performed on simple 

multichannel rigid wall blood vessels phantom that we created in our lab. In this 

experimental study only rigid wall simulated vessel was used. This is because it allows 

limited experimental effort and lowers the difficulty to construct an elastic multichannel 

blood vessel. The second validation was done using a published experimental data on a 

straight elastic dog mid-abdominal aorta. This chapter highlights and explains the details of 

the construction of the phantom, flow system, experimental preparation and velocity 

measurement. This chapter also covers the validation model and the computational model 

details with the boundary conditions. At the end, the FSI model simulation results for a 

straight dog mid-abdominal aorta have been validated against published experimental data. 

 The modelling technique developed in this study presents a starting point to 

modelling and understanding cerebral hemodynamics and there is a very large scope for 

validation of the model before it possibly will become accepted as a clinical tool. There is 

also a wide scope of extension of the model to take in other aspects of neurologic dysfunction 

such as brain metabolism (Aubert, Costalat, Duffau, & Benali, 2002; Vatov et al., 2006) . 

In the first part of the study, a number of simulations investigating the velocity of blood flow 

in a rigid wall multichannel blood vessel geometry and wall deformation in a segment of dog 

aorta have been performed in the second part. To validate the simulations, these results were 

compared with our experimental work which was performed on a rigid wall blood vessels 

phantom, and published experimental work was done on an elastic dog aorta. The second part 

of the study was applied the FSI developed model on idealized clinical geometry to study the 

formation and growth in cerebral aneurysms. 



3.1 Validation of the Numerical Model - Method One: 
Comparison with Experimental Data  

3.1.1 Experimental Model 

 For a validation purpose we built several multichannel blood vessel phantoms, and a 

steady flow circulation system. In the following sections we will describe our phantoms and 

the flow system and their building stages. 

3.1.1.1 Rigid-Wall Phantom 

 The phantom used in this part of the study shown in Figure 3-1 below, has been built 

from transparent plastic (Rexolite® 1422). This material was found to be one of the best 

ultrasound transparent solid materials in high frequency ultrasound experiments (Yeh, 

Ferrara, & Kruse, 2004). The phantom consists of two slabs with dimensions of 75×45×6 

mm. 

 

 

 

 

 

 

 

 

 Figure 3-1: Rexolite® multichannel blood vessel phantom. 

 

On one slab we carved a simple multichannel blood vessel network. The carving was 

carried out using manual fixed drill with drill tip diameter of 2 mm. The carved was therefore 

2 mm in depth. It was then carefully polished to obtain smooth flow channels. 
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After carving, the next step of building the phantom was to set up a flow system by 

inserting an inlet and outlet short plastic tubes with 2.5 mm outer diameter, after increasing 

the width at the two ends of the phantom to match the tubes’ outer diameter size. Then the 

two Rexolite® slabs were glued together to obtain the flow channels and compressed with a 

manual compressor, left overnight for drying. The entire outer edges of the phantom were 

enclosed by the same glue to create an impermeable seal. For additional sealing and 

structural support, the junction was properly sealed and glued. 

In addition, it is important to mention that we had to redo the last stage more than once, 

trying to prevent any fluid leakage from anywhere in the phantom. 

3.1.1.2 Steady Flow System 

To determine the practicability of measurements of velocity of fluid flow, an 

experimental steady flow system was built. To achieve this, 2.5 millimetre diameter clear 

plastic tubing was fabricated into detachable tubing connectors. A schematic diagram of the 

experimental model is shown in Figure 3-2. 

 

 

 

 

 

 

 

 

 

 

 

The flow system tubing was connected into the two ends of the phantom so that the 

lumen, inside of the vessel, was continuous. After connecting phantom to the flow system, a 

rotary Masterflex® portable peristaltic pulsatile pump (Cole-Parmer Canada Inc) was used to 

Figure 3-2: A schematic diagram of the experimental flow system. 
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provide the pulsed pressure required to drive the fluid through the flow system. The pump 

was placed on the working surface. The lab counter level was used as a so-called “floor 

level” as it was about the same level as the phantom. A photograph of the experimental 

model is shown in Figure 3-3. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-3: Flow System Setup. The flow system was used to measure the pulse wave velocity in 

multichannel blood vessel phantom. 
 

Since in our experiment the flow velocity measurement was performed on steady flow, 

therefore a modification was required on the flow system to convert the fluid flow from 

pulsatile flow to continuous flow. That was achieved by having two fluid containers, called a 

head tank container and overflow container. The pulsatile pump pumped the fluid from the 

receiver container at the floor level to the head container having 45 ml capacity that is 

opened at some point to the overflow container. Figure 3-4 shows a photograph of the two 

head containers and overflow containers. With those, we had effectively generated a fluid 

column of constant height, allowing for a continuous and steady flow. The overflow 

container collected the overflow fluid from the head container and returned to the floor level 
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reservoir. A gravity-driven flow system was constructed from plastic tubing to deliver steady 

fluid flow. 

The flow velocity was controlled by the manual valve tap placed in the outset of the 

outlet head container and the elevation of the head container as seen in Figure 3-4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: A photograph shows the head and over flow containers that were used to convert the 

pulsatile flow to steady flow, as well as the manual valve tap that was used to control the fluid flow.

 As part of the experiment, the rigid-wall phantom was immersed in a water tank, in 

order to have coupling for the ultrasound signal between the ultrasound transducer and the 

phantom, and fixed at same position by adhesive water proof tape. The fluid used inside the 

vessel was a blood-mimicking fluid model 046 from (CSP® Medical Inc., London Ontario). 

Table 3-1 shows the blood-mimicking fluid specifications. 

Property Human Blood (37°C) Model 046 Blood Mimicking Fluid 

Viscosi .ܽܲ݉ ty ܿ݁ݏ 3.5 4േ0.5 

Density݃ܭ/݉ଷ 1050 1045 

Velocity ݉/1570 1583 ܿ݁ݏ  േ30 

Attenuation ݀0.1> 0.15 ݖܪܯ    ݉ܿ/ܤ 

Fluid Properties non Newtonian Newtonian 

Table 3-1: Blood-Mimicking Fluid Model 046 Specifications. 
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3.1.1.3 High Frequency Ultrasound Scanner 

 A high frequency ultrasound scanner vivo770™ (VisualSonics Inc, Toronto, Ontario, 
Canada) with 25 MHz single element transducer was used to perform flow velocity 
measurement on the constructed phantom. In this experiment, pulsed wave Doppler mode 
was used in all measurements. The Doppler incident angle was fixed at 60 degree, as shown 
in Figure 3-5, in the direction of the fluid flow. This angle was experimentally selected to 
achieve better image quality from feedback (reflected signals) as well as a good pulse wave 
Doppler velocity signal, with very small artefact (mirroring), where, it is a recommended 
Doppler scanning angle in the clinical practices (Fish, c1990). This angel was kept uniformed 
in all experimental measurements. The above-mentioned scanner has a feature of motorized 
scan, however, in this study we controlled the transducer manually in a different selected 
point on the phantom to make our measurements. 

 

 

 

 

 

 

 

 
Figure 3-5: A photograph illustrate the transducer angle with the phantom for the pulse 

wave velocity measurements. 
 

3.1.1.4 Experimental Preparations 

 Pulsed wave velocity measurement has been performed on the rigid-wall Rexolite® 

phantom that has been installed in the flow system filled up by a blood-mimicking fluid as 

mentioned earlier. The flow system had to be sealed properly to prevent any leakage. In order 

to check any flow leak in or out of the phantom, the flow system was tested with deionised 

water that was colored using regular red ink in order to be able to see the flow inside the 

phantom as well as observe any water leak, as the water is more prone to micro leaks than the 

blood-mimicking fluid due to its very low viscosity. Nevertheless, before recording any 
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velocity, the flow velocity was selected and monitored by adjusting the head container 

elevation and the tap valve to maintain a steady flow velocity. The fluid flow system was 

allowed to stabilize for 2-3 hours prior before any velocity measurements were taken. As for 

environmental temperature, it was assumed to be constant at 22 °C room temperature. 

 Furthermore, in order to track the measurements position and reduce the experimental 

measure mental errors in the velocity measurements, the water tank was fixed on a moving 

board with adhesive tape. In order to control and record the location for each velocity 

measurements, a self adhesive measuring tape was placed in both vertical and horizontal 

directions on the moving board. See Figure 3-6 for details of the experimental velocity 

measurements steps. 
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After making the data recordings at the end of the experiment, when the flow system was not 

in use for a short period, the working fluid remained in the flow loop. The downstream 

manual valve was shut and the power supply for the pulsing pump was turned off. It is 

important that the container is shaken to allow the particle to regain uniform position and 

hence help in scattering of ultrasonic waves for next experiment. If shutdown was required 

for longer term, the flow loop was drained, and also rinsed multiple times with clean water 

after every use in order to ensure that no blood-mimicking fluid is subsided into the tubes and 

in to the phantoms. 

Figure 3-6: Experimental velocity measurements manual steps. 



3.1.1.5 Experimental Velocity Measurements 

Pulsed wave Doppler velocity measurements were performed on the phantom using 

the Vivo770™ high frequency ultrasound scanner system. The velocity was measured and 

recorded at each selected point. The phantom was divided into four paths following each 

vessel branch, and was also divided into 20 vertical slides with 2.5 mm of distance apart to 

control the locations of the selected velocity measurement positions. 

 The transducer of the scanner was fixed at the same position, while the phantom on 

the moving board was manually moved at each selected point where the velocity image was 

captured. To reduce the location error for each step, we followed the adhesive measuring tape 

mentioned earlier. An example of velocity captured from the flow system is shown in Figure 

3-7. The ultrasound probe is fixed about a half centimetre above the phantom with the water 

path in between the probe and the phantom. 

 The experiments were repeated under the same conditions three times in order to 

obtain an average experimental flow velocity. The velocity was 42 mm/s according to the 

gravity elevation condition in the experimental system setup. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Video Display of Vevo770® scanner for the Continues Velocity on the 

Blood Vessel Phantom.
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3.1.2 Computational Model 

 For model validation purpose, computational fluid dynamic based on FSI model was 

developed using COMSOL Multiphysics® finite element solver for three dimensional 

multichannel blood vessels. The following sections will describe briefly the details of the 

model development, beginning with the generation of the multichannel blood vessels 

geometry, followed by the governing equations and the boundary conditions, and final 

simulation results. 

3.1.2.1 Geometry Generation 

The 2D multichannel blood vessel image that was used to create the experimental 

phantom has been used to construct 3D multichannel blood vessel geometry. In this stage of 

the study, the 2D image was modified into a black and white sharp edged image using Photo 

Shop®, and then exported to COMSOL using a Matlab code.  

 

 

 

 

 

 

 

 

 
Figure 3-8: 3D Mesh of multichannel blood vessel phantom. 

 

 Then, after importing the 2D geometry into COMSL work space, the geometry was 

extruded for 2 mm where, COMSOL CAD tools were used to extrude the 2D geometry in 

COMSOL platform to 3D geometry as shown in Figure 3-8. Moreover, a fine mesh was 

applied to the geometry where the number of elements was 82388 elements, taking into the 
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consideration the calculation time of the simulation and the accuracy of the results. 

3.1.2.2 Governing Equations 

 The principal equations for the conservation of mass and momentum for an 

incompressible and Newtonian fluid, in Cartesian system, which are well known as Navier-

Stokes equatio ins s written as: 

௜ݑ߲

௜ݔ߲
ൌ ,݅ ݎ݋݂   0 ݆ ൌ 1,2,3                                                               3 െ 1 

and 
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where, ݑ௜  is the velocity vector, ݔ௜ = (x, y, z) is the Cartesian coordinate, t is the time, σ୧୨ is 

the stress tensor, where the tensors are geometric entities introduced into mathematics 

and physics to extend the notion of scalars, geometric vectors, and matrices to higher orders, 

and   ݏ௜  is the momentum source component. The stress tensor is defined by the constitutive 

equations below: 
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where ܲ is the pressure, ߜ௜௝ is the Kronecker delta (ߜ௜௝ ൌ ݅ ݎ݋݂ 1 ൌ ݆, ݁ݏ݅ݓݎ݄݁ݐ݋ ൌ 0), ߬௜௝ 

are the components of the shear stress tensor, ߤ is the fluid viscosity, and ߝ௜௝ are the 

components of rate of deformation tensor. These flow equations together with the boundary 

conditions were solved using the COMSOL commercial CFD software based on the ALE 

method. 

3.1.2.3 Boundary Conditions 

 The model consists of two domains, the solid domain, which represents the vessel 

wall, which was considered as a rigid wall where this limitation was only applied to validate 

the computational model. The wall was assumed as an incompressible, isotropic and linearly 
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elastic material, with high Young’s Modulus of 80 MPa, a Poisson ratio of 0.45, and a 

density of 1000 ݃ܭ/݉ଷ with thick wall and no-slip wall condition. While, in the fluid 

domain, blood-mimicking fluid was modeled in isothermal conditions and as incompressible 

and Newtonian, in which the fluid density was ߩ ൌ  ଷ, and viscosity was݉/݃ܭ 1050

ߤ ൌ 3.5 ൈ 10ିଷ݉ଶ/ݏ (Wilmer W. Nichols and Michael F. O'Rourke, 1997,1990,1998). A 

steady flow with laminar profile with mean velocity of 42 mm/s was selected as boundary 

condition at the inflow boundaries. At the outlet it was considered as free pressure boundary. 

3.1.3 Model Validation Results 

 The velocity flow that was computed at the center-plane of the rigid walled vessel has 

been compared with the measured velocity values from experiment. This is shown in Figure 

3-9. As mentioned earlier the blood vessel in the phantom was described as four paths as 

shown in Figure 3-9. 

 

 

 

 

 

 

 

 

 Figure 3-9:  Mid-Place velocity in the rigid Rexolite® phantom. 

 The computed velocities from each path were plotted against the experimental one as 

shown in Figure 3-10. As we see, there is a close agreement between the experimental 

measurement results and the computed values obtained using our numerical model. The 

matching between the two sets of values was better at high velocities where negligible 
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differences were found, while difference was more significant at low velocities. This is 

because the Vivo770™ ultrasound scanner was found not sensitive enough at flows with 

average velocities less than 5 mm/s. Other possible reason for the discrepancy at low 

velocities could be due to the shift in the velocity measurements position experimentally on 

the phantom and the position on the computer simulation.  Additionally, the mismatch in 

results could be attributed to the experimental errors which were found to be about 2.5% 

from the repeated experimental measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Shows the comparisons between the flow velocity from our experimental work 

that plotted in blue color and computed flow velocity results using FSI on the same geometry 
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3.2 Validation of the Numerical Model – Method Two: 
Comparison with Published Data 

3.2.1 Experimental work 

 The developed numerical FSI model was also validated against the experimental data 

published by Mosora et al., (Mosora et al., 1993). A study on the mid-abdomen of a dog was 

performed in vivo, continuous measurement of pressure and diameter was recorded on mid-

abdominal aorta whose diagram is shown in Figure 3-11. The measurements were carried out 

with a Gould-Statham P23 monitor (Gould Statham Inc., USA) used with a catheter tube 

passing through the carotid or femoral arteries till the aorta. 

 

 

 

 

 

 

 

 

 

 
Figure 3-11: Scheme of the experimental geometry, A: on ascending thoracic aorta. 

B: on mid-abdominal aorta.  

 

 The diameter measurements were carried out by two techniques. First, by a pressure 

catheter gauge system connected with plethysmograph (Serimed PL2) that was positioned at 

the same level as the pressure catheter and formed by a silastic tube filled with mercury was 

placed around the base of thoracic ascending aorta. Second a sonomicrometer with two 
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transducers implanted on both sides of mid-abdominal aorta was used to measure a resonance 

frequency between 3 to 5 MHz. The experimental measurements were performed on a 

segment of aorta whose length was 3 cm. At the instant between two heart beats, when the 

heart is static, the mean unstressed radius and wall thickness was measured experimentally 

and considered as an unstressed one. While, the average radius at diastolic was 3.2 mm with 

wall thickness of 1 mm, the Poisson’s ratio assumed to be 0.5 and Young’s Modulus of 5 

MPa. 

3.2.1 Computational Model 

The information related to geometry was provided in the experimental work (Mosora 

et al., 1993), and was used to manually create the same geometry in COMSOL with FSI 

application to model a dog’s mid-abdominal aorta. In this part of the study we modeled the 

abdominal aorta as a hyperelastic Neo-Hookean material and used three dimensional Navier-

Stokes equations to solve the fluid flow through it. The fluid was modeled to flow under the 

no-slip condition along the inner linings of the aorta wall. The fluid was modeled as a 

Newtonian fluid with viscosity  ߤ ൌ 3.5 ݉ܲܽ. ߩ  and density ݏ ൌ  .ଷ  (Wilmer W݉/݃ܭ 1050

Nichols and Michael F. O'Rourke, 1997,1990,1998). A steady flow condition with maximum 

velocity of 0.30 m/s was considered at the inlet flow, while at the outflow was set to different 

pressure values starting from 90 mmHg, which stand for diastolic pressure and varies 

gradually up to 140 mmHg, which is slightly over the systolic pressure to cover whole 

carotid cycle. 

3.2.2 Model Validation Results 

 The results of the wall deformation verses pressure variation due to the carotid cycle 

from the published data and from our numerical model was plotted as shown in Figure 3-12. 

The results once again show an acceptable agreement between the experimental and a 

computed one. However, a pronounced difference was found at high blood pressure, and that 

could be due to increasing experimental error at high pressures. The difference could have 

also been assigned to some of the assumptions that we had to make in our model that were 



not mentioned in the experimental work such as considering the fluid in our model as a 

Newtonian one, which is an acceptable assumption in a vessel diameter larger than 1 mm 

(Huo et al., 2009; Wilmer W. Nichols and Michael F. O'Rourke, 1997,1990,1998). 

Additionally, in the experimental work there is no mention about the blood velocity in that 

part of aorta, and we had to adopt that value from another published data (Wilmer W. 

Nichols and Michael F. O'Rourke, 1997,1990,1998). 

Finally, we can conclude after those two experimental validations that our numerical 

model gives accurate results in both rigid and an elastic wall conditions in typical clinical 

applications. 
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Figure 3-12: Comparison result of experimental and simulated values of pressure as a 

function of vessel diameter. 
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Chapter 4  RESULTS AND DISCUSSION 

 In this study, three dimensional idealized elastic wall geometries were replicated and 

analysed using hyperelastic neo-Hookean nonlinear isotropic materials (Kyriacou & 

Humphrey, 1996) as a two way-coupling of the FSI model based on the ALE algorithm, in 

the presence of saccular aneurysms (Takizawa et al., 2010). In this respect, aneurysm was 

introduced as a smooth ellipsoidal surface in a healthy artery with different wall mechanical 

properties. 

 Parabolic steady laminar flow simulations were performed with an unvarying average 

inlet velocity of  50 mm/s applied on all geometries, whereas, the outflow pressure varied 

from  40 ݃ܪ݉݉ 200 ݋ݐ. The resultant analyses disclosed the impact of the geometry size 

and shape and material properties on aneurysms’ initiation and growth. The model was 

applied on three idealized geometries for a healthy subject: first with the absence of 

aneurysms and then the same geometries were used with the presence of the aneurysms. This 

was done to examine the influence of the wall mechanical properties in addition to the effect 

of arterial geometry and aneurysm neck size on the hemodynamics of the aneurysm, and to 

associate these parameters with the growth and rupture of the aneurysm. 

4.1 Influence of Wall Mechanical Properties on Aneurysms 
Initiation and Growth 

4.1.1 Wall Deformations 

We calculated the resulting wall deformation using a finite-element solver (COMSOL 

Multiphysics) based on the FSI model. The FSI computation formed strong implicit coupling 

between the solid phase stress-strain computation and the fluid phase computation. 

Subsequently, pressure and shear stress information was sent to the stress computation 
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module for the calculation of the deformations and stresses. Thus, these deformations are 

transported back to the fluid module, where a new grid is created and the solution is 

recalculated on the new deformed geometry. Iterations are performed continuously till the 

time convergence is obtained. According to the finite element-method, this process is applied 

on each element at the node. 

 Figures 4-1 to 4-3 below show that the evolutions of the aneurismal shape are caused 

only due to the dynamic alteration of the Young’s elasticity modulus for the three models 

having large aneurysm neck surface area  ௟ܵ, while Figures 4-4 to 4-6 show the same 

simulations but with small aneurysm neck surface area  ܵ௦ (neck size). The geometrical 

evolution was performed in four quasi-steady steps. The Young’s Modulus (E) for the 

surfaces  ௟ܵ ,   ܵ௦, changed within a range from  0.25 ܽ݌ܯ 0.0625 ݋ݐ. The above arterial wall 

remodelling steps were captured under one constant pressure of 60 ݉݉݃ܪ as shown in 

Figures 4-1 to 4-6. These figures reflect the four consecutive steps of wall weakening 

process, demonstrated an interesting behaviour of arterial remodelling.  The aneurysm 

growth process shows in these figures reflects the function of endothelial cell layer function 

as a sensor of arterial remodelling on developing aneurysms (Kinlay et al., 2001; Resnick et 

al., 2003). This also comes in conformity with the computationally simulated results. 

On the other hand, it is evident that the resulting arterial geometry at lower Young’s 

Modulus of  E ൌ  is considerably more prone to deformation than the same ܽܲܯ 0.0625

geometry with higher Young’s Modulus ݂݋  E ൌ         In other words, the arterial .ܽܲܯ 0.1875

geometry achieved by lower E has more deformation on the aneurysm part in all models. 

Under the consideration of  E ൌ   the maximum displacement in walls was ,  ܽܲܯ 0.125

149.8, 934.5, and 953.4 ݉ߤ and 109.9, 635.6, and 344.38 ݉ߤ for the large and the small 

neck size of the models 1 to 3, respectively, where the maximum wall deformation occurring 

in the fundus of the aneurysms. Hence the middle of aneurysmal wall is the region that shows 

much of the deformation, and fairly large displacements can be seen on the fundus of the 

aneurysm, which is of the order of one tenth of the arterial diameter which is 

approximately  3 ݉݉. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration large aneurysm neck surface area in 3D view. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-2: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration large aneurysm neck surface area in 3D view. 
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Figure 4-3: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration large aneurysm neck surface area in 3D view.

 

 

 

 

 

 

 

 

 

 

 Figure 4-4: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration small aneurysm neck surface area in 3D view.  
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Figure 4-5: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration small aneurysm neck surface area in 3D view. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-6: Wall Deformation in µm for aneurysm geometrical evolution due to the Young`s 

Modulus of elasticity dynamic alteration small aneurysm neck surface area in 3D view. 
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 The influence of variations in the Young’s Modulus for model 2 and model 3 has 

been plotted in Figures 4-7 and 4-8 for both large surface area  ௟ܵ and small surface area 

 ௌܵ respectively. 

 

 

 

 

 

 

 

 

 

 Figure 4-7: Maximum wall displacements for models 2 as a function of outflow pressure.

 

 

 

 

 

 

 

 

 

 Figure 4-8: Maximum wall displacements for models 3 as a function of outflow pressure. 
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The plotting shows that reduction in the Young’s Modulus has significant effect on  

aneurysm formation and growth as observed in a comparison of healthy models versus wide 

range of blood pressures. The wall displacement of arteries at high pressure for the curved 

and bifurcation model have not been shown in Figures 4-7 and 4-8, since the material failed, 

which the artery lose is strength under the action of high pressure and low E. 

The predicted aneurysmal wall rupture can be seen from Figure 4-9. The results for the 

curved model 2 were calculated based on the Laplace law. There occurs an intersection of the 

Laplace law result and the computed radii result based on our model. Based on the 

simulations, we stipulate that if the aneurism’s critical radius falls above the Laplace curve, it 

has high probability of rupture. High risk of aneurism rupture translates to an urgent need for 

a suitable treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9: Predicted aneurysmal wall rupture for the curved model 2 was calculated 

based on the Laplace law. 
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4.1.2 Wall Shear Stress and Flow Field 

For the aneurysm progression, one of the most relevant hemodynamic parameters is 

the WSS. WSS is the tangential force of the blood flow on the endothelial surface of the 

blood vessel. In this study it has been assumed that the blood flows at constant velocity of 50 

mm/s with a fixed inflow pressure of   20 ݉݉/݃ܪ  and variable pressures of 40 െ

 .at the outlet boundary  ݃ܪ/݉݉ 200

 The arterial wall stress tensor consists of nine components, rendering it very difficult 

to present any illustrative results based on it. In order to meet this challenge alternatively, the 

energetic equivalent formulation as presented by von Mises is used to illustrate the stress 

behaviour of the arterial wall during its deformation period. The equivalent von Mises stress 

depicts the distortional energy  ሺߜଶ/ܧሻ contained by an element and in terms of all the 

positive defined scalar stress values, gives a final stress value. 

 Figures 4-10 and 4-15 show the patterns of WSS variations at different instants 

during the aneurysmal growth for the models 1 to 3 for four different blood pressures 40, 80, 

120, and 160 mmHg respectively at fixed arterial wall elasticity of  ܧ ൌ  The .ܽܲܯ 0.125

simulated results not only bring agreement with literature (Hashimoto,T. 2006; Kroon,M. 

2007), but also justify the observation that the shear stress gives higher values at the neck 

distal side of aneurysm which is away from the fundus. It also becomes evident by the results 

that the major part of the deformation is caused by this remodelling procedure and essentially 

a high WSS caused at aneurysm part is responsible for the shaping of the aneurysm. Figures 

4-10 and 4-15 help us in drawing the conclusion that the resultant spatial stresses from this 

deformation are similar to that during the inflation of a balloon. 

 It has been observed that large deformation takes place near the apex of this 

‘‘balloon’’. Due to this, the largest stress values are found at the distal aneurysmal wall 

region with the higher E value. The results of   ௟ܵ ,  ܵ௦ for the models 1 to 3 are presented in 

Figures 4-10 to 4-15, respectively. 

 

 



 

 

 

 

 

 

 

 

 

 

 
Figure 4-10: Von Mises wall shear stress in Pa for aneurysm geometrical at four different blood 

pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on large aneurysm neck surface area. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-11: Von Mises wall shear stress in Pa for aneurysm geometrical at four different blood 

pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on large aneurysm neck surface area. 
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Figure 4-12: Von Mises wall shear stress in Pa for aneurysm geometrical at four different blood 

pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on large aneurysm neck surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: Von Mises wall shear stress in Pa for aneurysm geometrical at four different blood 

pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on small aneurysm neck surface area. 
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Figure 4-14: Von Mises wall shear stress in Pa for aneurysm geometrical at four different 

blood pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on small aneurysm neck 

surface area.

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Von Mises wall shear stress in Pa for aneurysm geometrical at four different blood 

pressures 40, 80, 120, and 160 mmHg at E=0.125 MPa on large aneurysm neck surface area. 
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4.2 Effects of Blood Vessel Geometry on Cerebral 
Aneurysm Initiation and Growth 
 The second important process carried out in this study, that affects the aneurysm 

growth, was to quantify the relationship between hemodynamic forces and arterial curvature 

in order to determine further correlations of the effect of arterial geometry on the aneurysm 

growth. 

 In this context, the aneurysm growth on three idealized models was analysed with 

varying arterial curvatures, along with two aneurysm neck sizes to quantify the role of local 

hemodynamic forces within the aneurysm. Idealized arterial geometries with varying 

curvatures (and keeping other parameters unchanged at the same time) were adopted to 

segregate the arterial geometry and aneurysm neck size from several other geometric and 

physiological factors present in human aneurysms. 

4.2.1 Flow Dynamic and Velocity Field 

 Figures 4-16 to 4-20 shows how the computed results of the flow dynamics, 

represented by the velocity field and streamlines, were captured at the center-plane in all 

three geometries. During this procedure, we selected outflow blood pressure of  120 ݉݉݃ܪ  

from various outflow pressures under use and the E of 0.125 ܽܲܯ  in all the figures 

presented in this study. After the development of the aneurysm, it was observed that some of 

the flow streamlines never entered the aneurysm, whereas all the paths entering the aneurysm 

did so near the distal side of the neck in all three models. Some streamlines entering the 

aneurysm left at the proximal side of the neck with a lower velocity, whereas others joined 

the inflow of the parent artery, entered the cavity again, spinning erratically within the 

aneurysm. In the case of the straight artery, the vortices at the distal side of the neck weakly 

allowed the flow into the aneurysm, as compared to the arteries with more pronounced 

curvature. 

  



 

 

 

 

 

 

 
Figure 4-16: Velocity field and stream lines at the aneurysm plane in the straight artery 

model 1with two neck surface area.
 

 

 

 

 

 

 

 Figure 4-17: Velocity field and stream lines at the aneurysm plane in curvature artery 

model 2 for the large neck surface area.  

 

 

 

 

 

 

Figure 4-18: Velocity field and stream lines at the aneurysm plane in curvature artery 

model 2 for the small neck surface area.
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Figure 4-19: Velocity field and stream lines at the aneurysm plane in arterial bifurcation 

model 3 for the large neck surface area.
 

 

 

 

 

 

 

 

 

 

 

Figure 4-20: Velocity field and stream lines at the aneurysm plane in arterial bifurcation 

model 3 for the small neck surface area. 

It is interesting to know that blood impinges on the distal aneurysm neck while 

travelling through the main lumen of the artery. Subsequently, the impinged flow is diverted 

into the aneurysm sac present at the side of the distal neck. The blood re-circulates within the 

aneurysm and travels in a retrograde fashion to the main flow in the arterial lumen. Despite 
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the fact that the magnitude of the intra-aneurysmal flow velocities is smaller, the blood 

continues to re-circulate inside the aneurysm until it joins the mainstream flow and is carried 

downstream. 

 As far as velocity field is concerned, high velocity flow is observed at the distal side 

of aneurysm neck with increasing curvature. Figures 4-16 to 4-20 illustrate the flow velocity 

at the centerline of the model, which was documented at the selected outflow pressure of 

 ,in the three models. Model 1 depicted a straight artery  ܽܲܯ and E of  0.125 ݃ܪ݉݉ 120

where the curvature in model was insignificant, thus the flow was weakly entrained into the 

aneurysm by the streamlines at the distal side of the aneurysmal neck. In the case of the 

curved models 2 and 3, the arteries having more curvatures, allow the velocity profiles to tilt 

towards the outer wall of the lesion, demonstrating the effect of centrifugal force in all 

models as illustrated in previous figures. From these results, it is observed that a large 

volume of higher momentum flow impinges more strongly on the distal of the aneurysm neck 

as the degree of arterial curvature or the major axis of the aneurysm neck increases. The high 

momentum flow resulted in the formation of a strong vortex in the aneurysm cavity. 

Therefore it was concluded that the affected area enlarges with the increase in arterial 

curvature and in the size of the aneurysm neck. 

4.2.2 Wall Shear Stress 

 As a result of the increase in the degree of arterial curvature and decreasing the size 

of the aneurysm neck, a rise in the wall deformation at the fundus of the aneurysmal wall 

along with a rise in the WSS at the distal side of the neck were observed in all models, as can 

be seen in previous Figures. These increases can be considered as a function of arterial 

curvature or aneurysm neck size or both. To quantify this relationship, we plot the wall 

deformation and the WSS for three different geometries with two sizes of the aneurysm neck 

as a function of pressure as shown in Figures 4-21 and 4-22 respectively. 

 A comparison with the parent artery shows low WSS within the dome of the 

aneurysm through visualizing the distribution of WSS magnitude. In all simulations, high 

WSS is always found at the distal side of aneurysmal wall. Furthermore, the intra-aneurysmal  



flows, as established by the streamlines in Figures 4-21 and 4-22 were smoother with a more 

simplified vortical pattern. In cases of high degrees of upstream curvature, these changes are 

more prominent (i.e. models 2 and 3). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-21: Comparative plot of the maximum wall deformation at the 

aneurysm for the three models as a function of outflow pressure.  
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Figure 4-22: Comparative plot of the wall shear stress at the distal side of 

aneurysmal wall for the three models as a function of outflow pressure. 
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4.3 Discussion 
 The first major part of this study investigated the influence of the reduction in the E 

factor of an aneurysmal wall on the initiation and growth of aneurysm in three idealized 

models. This factor is of special interest since it is the only main factor that will be changed 

in case of any sudden arterial wall injury or disease, therefore aneurysms most commonly 

occur at these locations. 

 Simulations were repeated for four values of E assigned to the aneurysm part of the 

arterial wall with a wider-range of blood pressures, covering the normal and abnormal 

(hypertension) blood pressures in human cardiac cycle. In such cases, as the aneurysm dome 

growth proceeds, the wall-aneurysmal diameter begins to increase and the arterial 

remodelling itself to compensator mechanism tensor to reduce the risk of aneurysmal wall 

stress and rupture. In the beginning, steady flow in healthy arteries without an aneurysm was 

simulated. The results indicated that besides an insignificant wall displacement at the 

aneurysmal wall, no shear stress is likely to occur. A wide-range of normal and high blood 

pressures were used in this respect. 

 In all the three models studied, the wall E was modified at selected areas on the 

arterial wall in order to account for the presence of an aneurysm. The simulation result 

indicates that the aneurysm develops at that part of the wall which has less mechanical 

properties, and the developed aneurysm size rapidly increases with an increase of blood 

pressure and a decrease in their E. The simulation also specifies that increasing the 

aneurysmal surface area from small   ܵ௦ to large  ௟ܵ (neck size) leads to large amount of wall 

deformation and eventually to high probability of rupture. In addition, we also observed that 

the maximum wall displacement occurred at the fundus of the aneurysmal wall, increases the 

possibility of rupture at the fundus of an aneurysm. On the other hand, smaller size of 

aneurysm neck  ܵ௦ showed higher shear rates than the larger size of aneurysm neck ௟ܵ, 

possibly due to the reason that at a given blood flow the amount of shear stress is 

concentrated on smaller area of aneurysm neck, while it is distributed liberally on larger area 

of aneurysm neck, and the high shear stress occurs at the distal side of the aneurysmal wall. 
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It has been inferred from the computational simulation results for the wall 

deformation and WSS that large wall deformation does not occur at the point of high wall 

stress. Actually, the maximum WSS occurs at the distal side of the artery which is away from 

the aneurysm fundus, while the maximum wall deformation occurs at the fundus of the 

aneurysmal wall. This inference is also in agreement with the published studies (Torii et al., 

2006; Torii, Oshima, Kobayashi, Takagi, & Tezduyar, 2007b; Torii, Oshima, Kobayashi, 

Takagi, & Tezduyar, 2009). We also found that the WSS is not distributed uniformly on the 

aneurysmal wall and is mostly found with high values at the distal wall in the direction of 

blood flow. 

 The maximum value of WSS on the aneurysm is generally found around the region 

where the flow first comes in contact with the aneurysm wall, e.g., the distal side of 

aneurysms neck. This was found to be about 2-10 times the values in the parent artery, 

whereas the value of the spatially averaged WSS over the entire aneurysm is usually less than 

the parent artery values. It is to be noted that WSS over the aneurysm mostly relies on the 

aneurysm neck size and increases linearly with a decrease in the Young’s module. This linear 

increase is only observed at low blood pressure, while at high blood pressure it is more 

nonlinear as shown in Figures 4-21 and 4-22. An increased WSS within distal side of 

aneurysm neck as compared to the parent artery is believed to be a contributing factor for 

aneurysm growth or rupture. 

 The observations made in this study are significant from the modeling point of view, 

as well as for the contribution it has made for understanding the processes of aneurysm 

growth and rupture. Currently, there are two opposing schools of thought about these 

processes. On one hand it is believed, according to the claim made by low-flow theories, that 

the dome of aneurysms under low WSS states triggers mechanobiologic processes that 

weaken the arterial wall, which in turn results in the growth or rupture of the aneurysm 

(Griffith, 1994; Liepsch, 1986). These theories are formulated on the basis of the 

observations of low WSS in the aneurysm dome conducted on idealized experimental and 

computational models and clinical observations. 
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On the other hand, high-flow theories argue that unusually large WSS at the aneurysm wall, 

especially at the flow impaction area cause a different set of mechanobiologic processes that 

weaken the vessel structure and result in growth or rupture (Fukuda et al., 2000; Fukuda et 

al., 2000; Guzman, Abe, & Zarins, 1997; Kyriacou & Humphrey, 1996). 

 The current study signifies that the hemodynamic patterns demonstrate regions of 

increased WSS at the aneurysm distal through modeling of idealized aneurysm geometries. 

Although the extent of these differences is not identified, drawing general conclusions from 

idealized models may be deceptive. Aneurysm rupture mechanism theories should take 

possible errors into deliberation. There is also a need for re-scrutinizing in the low flow 

theories depending on previous “low WSS states”. Furthermore, it is imperative to 

distinguish between the mechanisms that are actually driving the processes of growth and 

rupture using hemodynamic studies employing “realistic” (i.e., including the correct 

geometry of the proximal segment of the parent vessel) patient specific vascular models. 

 Despite the fact that we have found changes in intra-aneurysmal flow patterns and 

WSS in our study, yet there are limitations to our study that may influence our results. The 

CFD analysis relies on a number of assumption including Newtonian flow as shows 

significant effect at small diameter < 1mm, input flow, outflow conditions where pulsatile 

flow is more realistic flow, and fixed aneurysmal wall thickness as is reported to be thinner 

than the rest of the artery. 

 The concentration of high hemodynamic stresses at the aneurysm neck suggests an 

inclination for the increase of the size of the aneurysm neck. The maximal pressure in the 

surrounding area of the narrow-neck  ܵ௦ aneurysm configuration is up to 5 times greater than 

that of the luminal pressure in the parent artery. On the other hand, the computational results 

for a wide-neck  ௟ܵ saccular aneurysm reflect the existence of high pressure at the aneurysm 

neck. As compared to the narrow-neck aneurysm model, the amount of intra-aneurysmal 

flow is dramatically increased in the wide-neck  ௟ܵ saccular aneurysm, therefore supporting 

the proposition that wide-neck aneurysms are less vulnerable to thrombus formation. 

Towards the second part of the study, the focus was aimed at the effect of arterial geometry 

on aneurysm growth. We came to know that in the case of the curved arterial segment model, 
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high streamline flow arises at the apex of the bend along the outer (lateral) arterial wall, 

whereas in case of bifurcation, high streamline flow exists at the apex of the bifurcation. 

An investigation conducted on the progressive formation of saccular aneurysms in curved 

non-bifurcating arteries exposed several assumed but unproved hypotheses concerning 

mechanisms that play a significant role in the origin of aneurysms. It also revealed that local 

pressure increase is present along the lateral (outer) wall in the region of the bend. This 

localized high pressure zone yields high hemodynamic stress as a result that materializes the 

occurrence of saccular aneurysms on the lateral wall of the curved arteries. We found that 

once the yield stress, which is defined as the stress at which a predetermined amount of 

permanent deformation occurs, of the arterial wall is exceeded, the wall undertakes plastic 

deformation and therefore an aneurysm bleb develops. It was observed that when a small 

aneurysm grows, the blood impinges on the wall throughout the entire pressure values 

(outflow boundary), thus making the distal neck a crucial target of hemodynamic stress. As a 

result of high pressures and shear rates at the distal neck within the aneurysm bleb, dilatation 

occurs at this site, further resulting in a fully developed saccular aneurysm that inclines 

towards the downstream direction. Thus, the foremost changes in hemodynamics as well as 

aneurysm growth occur at the dome of aneurysms, as originally suspected. These results 

show that as the distal neck site is pushed downstream, the aneurysm mouth is prone to get 

enlarged. 

 The risk of the rupture of ICA is generally assumed to be associated with maximum 

diameter. Where, size is the primary parameter currently used to determine whether an 

aneurysm is likely to rupture or not, numerous studies categorised aneurysms into smaller 

and larger sizes (Morita, Fujiwara, Hashi, Ohtsu, & Kirino, 2005; Rinkel, Djibuti, Algra, & 

Van Gijn, 1998; So, Dowling, Mitchell, Laidlaw, & Yan, 2010). It has been concluded 

through extensive research (based on the hypothesis that the aneurysm size alone is the 

determinant) that for large aneurysms (>10mm), the risk of rupture is quite high and 

treatment is required, whereas for smaller aneurysms (<4mm) the lesions are safe and 

unlikely to rupture. As a matter of fact, this assumption is fallacious as some of these small 

lesions do rupture while larger aneurysms remain stable, which depicts that a new predictor 
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is needed. Little research has been made in the geometry of saccular aneurysms as the 

predictor for the rupture of a lesion with only the most basic parameters such as aspect ratio 

“head-to-neck ratio” (Parlea, Fahrig, Holdsworth, & Lownie, 1999). Since size is the easiest 

among all the properties of an aneurysm that can be measured, this is considered as the best 

indicator of likelihood of aneurysm rupture. The law of Laplace relates the in-plane Cauchy 

stress σ to the distension pressure P, aneurysm radius R, and aneurysmal wall thickness h for 

an inflated, thin-walled, spherical structure through a simple equation  ߪ ൌ ܴܲ/2݄. For a 

given constant value of elastic modulus E, the expression for the critical radius of the 

aneurysm was used ܽݏ  ܴ௖ ൌ  .ܲ/݄ܧ2

 A gross mechanical failure of the arterial aneurysmal wall is responsible for the 

aneurysm rupture and occurs when the acting mechanical wall stress surpasses the potency of 

the tissue. In this study we predicted the aneurysm rupture in the light of the Laplace law, 

whereas the risk of ICA rupture was determined on the basis of the critical radii. The 

computed radii results obtained from computational model simulations were plotted against 

the theoretical results obtained from the Laplace law as shown in Figure 4-9. From this figure 

we believe that any arterial radii that fall above the presented Laplace curve are to be 

considered under risk of rupture and it is necessary to take medical action. 
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Chapter 5  CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 
What makes unique the approach to study ICAs formation and growth in this thesis is 

that it proposes to develop fluid-structure interactions through a 2-way coupling using a 

finite-element model based on the ALE algorithm. One of the striking factors of this study is 

that the finite-element method simulated fluid-structure interactions for blood flow through 

intracranial arteries. In previous studies (Niroomand Oscuii et al., 2007) it was indicated that 

the stress distribution and blood flow fields get affected from the elasticity of the arterial wall 

significantly as compared to a solid arterial wall. 

 The approach of computational fluid-structure interactions was applied to three 

idealized intracranial arteries with different curvatures, comprising of two different 

mechanical properties in one solid domain. It is for the first time that this model is developed 

in COMSOL Multiphysics in a 2-way coupling of fluid flow and solid structure finite-

element solvers for a 3D geometry. The uniqueness of this model lies in the method in which 

a full coupling of the fluid domain and the solid domain compressed elasticity of different 

materials and simultaneously solved the fluid-solid domain equations using finite elements 

method. Basically, this method offers a vitally new perspective to study aneurysm’s growth 

based on the response to controlled changes in the local mechanical properties of the arterial 

wall. This model approach may help to study the effects of local parameters on arterial 

remodelling outputs by independently controlling the parameters. Furthermore, this approach 

can also be utilized for solving patient-specific realistic geometries. 

 The need to develop a finite-element model was roused in order to solve the flow 

governing equations (Navier-Stokes equations) with the assumption of the Newtonian and 

incompressible steady flow and with the arterial wall assumed to be an elastic homogenous 
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hyperelastic neo-Hookean material. In this study, a fixed aneurysm wall thickness similar to 

the rest of the arterial wall was assumed, which we believe is an acceptable simplification for 

the intracranial arteries for the reason that intracranial arteries and their associated aneurysms 

possess very small wall thickness of  20 ݏܽ  ݉ߤ 200 ݋ݐ compared to the normal extra cranial 

arteries (Kroon & Holzapfel, 2008). The possible location of aneurysm development on the 

arterial wall was predicted based on literature data (Kroon & Holzapfel, 2008)[Ref] that 

focused on the velocity fields and the streamlines of blood flow in the normal intracranial 

arterial segment models. Also, a selected part of the arterial wall was modified to detect the 

presence of an aneurysm in its initial stage of development. 

 In this study, a comprehensive analysis of fluid flow has been presented in three 

idealized intracranial models (straight and curved arteries, and arterial bifurcations) related to 

aneurysmal disease. The relationship between the hemodynamics of blood flow and 

aneurysm formation and growth has also been established. It was indicated through the 

analysis of our 3D CFD studies, which were altered with respect to local anatomical 

geometric parameters and by constituting a local hemodynamic environment, that the 

chances of the existence of an aneurysm growth on a high degree of arterial curvature is high 

if the inflow momentum is not impeded.  However, it was observed that a large impact area 

on the aneurysm wall appears to be the most probable site for aneurysm initiation, growth or 

regrowth of a treated aneurysm. Our analysis has revealed that hemodynamic stresses are 

pressure-dependent and vary greatly over the pressure range values, as well as location-

dependent, varying considerably all through the aneurysm. In addition, we have also 

provided evidence that the weakening of the arterial wall mechanical properties is significant 

for the commencement of the disease and for a sizeable aneurysm growth to occur. 

 This study contributes to the advancement of our knowledge towards aneurysm 

hemodynamic variable, such as blood velocity, pressure and shear stress. It aims to provide 

information for the healthy and diseased cardiovascular function and assists in predicting the 

risk of aneurysm rupture. It provides clinicians a modeling tool to gain a better understanding 

of the aneurysm hemodynamics and analyses to be used for optimal medical management. 
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5.2 Future Work 
 The results from this study suggest a wide range of future research projects with 

different set of assumptions. Among others, new models can be developed for non-

Newtonian blood flow with other available hyperelastic material models and solid models 

such as Yeoh model or Mooney-Rivlin model (Lally, Dolan, & Prendergast, 2005). Below 

are a few suggestions for future works based on the current study: 

• A new anisotropic model can be developed to compare with the current isotropic 

models in a finite element analysis of ICAs. Both the new model and current isotropic 

models can be added in simulations that integrate fluid-structure interactions between 

pulsatile blood flow and the ICA wall. The results from these studies can then be used 

to augment the effectiveness of current treatment decisions. 

• Further computational results would be used to investigate the effects of a 

heterogeneous vessel wall with residual stress. Currently, all models of ICA tissue 

assumed a homogeneous wall with a fixed wall thickness, although the arterial wall is 

clearly known to have three heterogeneous layers (cf. Ch. 1). 

• Additional computational work may also involve dividing the aneurysmal wall 

geometry into different regions and using a separate constitutive equations for each 

region. Such approach will be particularly useful in defining realistic geometries. 

• New more elaborated patient-specific models could lead to a complete hemodynamic 

analysis that hopefully will incite new research that would result in enhanced 

treatment of multiple pathological conditions, such as ICAs. 
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