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Abstract

The purpose of this project was to create a test environment that can be used
to test different controllers and their robustness. In this report, the equations of
motion were derived using kinematics, with attitude quaternions, and spacecraft
dynamics, with angular velocity and acceleration. The equations were combined
and placed into the form of a linearized state-space equation. The different control
methods being investigated, Linear Quadratic Regulator (LQR) for the reaction
wheel model, and the Bdot with bias controller, were explained and the block dia-
gram for each was shown. To setup the test, the tolerances for the roll, pitch, and
yaw, and their rates, were taken from the mission requirement for the ESSENCE
mission. The attitude tolerance being ±0.5deg and the angular rates requirement
being ±0.05deg/s. Then the test setup was further explained. The test is broken
up into different scripts and steps:

1. Main run function for simulation. Initializes simulation parameters.

2. Build state-space equation and calculate constant gain matrix.

3. Randomize initial conditions and pass onto simulation.

4. Post-processing and plot generation.

5. Statistics generation.

This robust testing environment was used to test 5 different controllers for the
reaction wheel model. Each controller was tested for 200 different simulations,
in which the initial attitude, initial angular rates, and the center of mass were
randomized. The first controller was successful for 198/200 simulations, where
the only failure came from over-saturating the reaction wheels. The next three
controllers had a perfect record and were successful for all 200 simulations each.
The last controller, had only 71 successful simulations in the set, and a sample of
one of the failed simulations was further investigated to see how it failed.
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Chapter 1

Introduction

1.1 Background

This project is part of the research and development in the Educational Space
Science and Engineering CubeSat Mission (ESSENCE), by the Canadian Space
Agency (CSA). The ESSENCE mission consists of a 2U-CubeSat that will be
launched by the International Space Station (ISS). Some of the main objectives
of the mission are to demonstrate different attitude control methods, and to mon-
itor the thawing of permafrost and ice in the arctic region [2]. This project is
specifically part of work done by the Attitude Determination and Control System
(ADCS) team.

The primary goal of this project is to test different under-actuated control laws. To
support the development of the test, several standard control laws are used. The
first part of the project is dealing with and LQR controller with reaction wheels
set in a 3-wheel orthogonal configuration. The report will show the development
of a Monte Carlo test script to test a set of control gains over a wide range of
different random conditions. Parameters such as initial attitude states, angular
rates, and mass distribution will be randomized. The simulation passes the results
through a pass-fail checker and plots useful parameters to monitor any anomalies.
This test is to tune and verify controllers across different initial conditions and
variations in mass and inertia. The second control law investigated in this report
is the Bdot with bias. This section builds on existing Bdot control methods done
by the team, and introduces a method to test for adding a bias dipole moment to
the model, which can help coarsely point align the spacecraft with respect to the
magnetic field to help in early commissioning of the spacecraft.
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Chapter 2

Equations of Motion

This chapter deals with the equations of motion relative to the spacecraft in Low
Earth Orbit (LEO). It will begin with setting the frames of references used. Next
the kinematics and the attitude quaternions are discussed and further explained.
Then the dynamics relating the torques and the angular velocity and acceleration
are discussed. The equations are then combined to show the non-linear state-space
equation for the system. Finally, the linearized equations for the 3 reaction wheels
orthogonal configuration are presented.

2.1 Frames of Reference [1]

It is important to state the frames of references used in this report, which are
directly taken from the requirements document for the ESSENCE project, and
are stated as follows:

• Earth Centered Inertial Frame (ECI)
Origin at mass center of Earth
X-axis points towards the vernal equinox at J2000 epoch
Z-axis points towards polar axis
Y-axis completes the right handed coordinate frame

• Orbital Frame (ORB)
Origin at spacecraft center of mass (CoM)
X-axis is the orbit radial unit vector (EARTH CoM to SC CoM)
Z-axis is the orbit normal unit vector
Y-axis completes the right-handed coordinate frame

3
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• Terrestrial Frame (TER)
Origin at mass center of Earth
X-axis through 0° latitude, 0° longitude
Z-axis points to the geographic north pole
Y-axis completes the right-handed coordinate frame

• Spacecraft Body Frame (BOF)
Origin at spacecraft center of mass (CoM)
X-axis is the longitudinal axis
Z-axis TBD based on mechanical drawings
Y-axis TBD based on mechanical drawings

Figure 2.1.1: BOF Reference Frame [1]

2.2 Kinematics

Before getting into the attitude control of a spacecraft, it is crucial to model the
spacecraft kinematics and derive the equations of motion from there. The space-
craft kinematics in this report are modelled and represented using quaternions,
in order to avoid running into angle singularity issues. Quaternions are 4 dimen-
sional vectors, consisting of a scalar component and a vector component. In this
report, the quaternion is represented using a scalar first representation. This is
primarily done in order to keep consistant with the other reports in this project.
The spacecraft kinematics can be represented in the following equations:
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q =

[
η

ε

]
=


η

εx

εy

εz

 = η + iεx + jεy + kεz (2.2.1)

Where i,j, and k are imaginary numbers and satisfy the following relations and
conditions:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −i = j

(2.2.2)

Where η is the scalar component and εx, εy, and εz are the vector components and
can be calculated and expressed in the following manner:

η = cos
φ

2

εx = ux sin
φ

2

εy = uy sin
φ

2

εz = uz sin
φ

2

(2.2.3)

Equation (2.2.2) shows that the unit quaternion can be obtained using a unit vec-

tor u =

uxuy
uz

 and a rotation angle φ.

In order to start building the state space vector, the time derivatives of both
the scalar and the vector components of the quaternion can be expressed in the
following non-linear equations [3]:

η̇ = −1

2
εTωB

BI (2.2.4)
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ε̇ =
1

2
(ε× + ηI3×3)ω

B
BI (2.2.5)

Where I3×3 is a 3 × 3 identity matrix, and ωB
BI is the angular rate of the body

frame with respect to the inertial frame, represented in the body frame. Thus
giving the final non-linear form of the kinematics as follows:

q̇ =

[
η̇

ε̇

]
=

[
−1

2
εTωB

BI
1
2
(ε× + ηI3×3)ω

B
BI

]
(2.2.6)

2.3 Dynamics

In order to complete the state vector, the angular rate of the spacecraft is also
required. This can be obtained by modelling the rotational dynamics of the space-
craft. In order to derive the equation for the angular rate of the spacecraft, the
total external torque acting on the spacecraft is taken into consideration. This
can be expressed in equation 2.3.1 [4]:

τtot = Jω̇
B
BI + ω

B
BI × Jω

B
BI (2.3.1)

Where J is the spacecraft inertia matrix, ˙ωB
BI is the angular acceleration of the

BOF relative to the ECI, and ωB
BI is the angular velocity of the BOF relative to

the ECI, both expressed in the BOF.

The total torque acting on the spacecraft can be expressed in the individual torques
that are a resultant of the natural forces acting on the spacecraft. These can be
listed as the following:

• Torque due to the gravity gradient acting on the spacecraft

• Torque due to the interaction between the Earth magnetic field and the
magnetic dipoles on board the spacecraft.

• The disturbance torques due to the aerodynamic drag and the SRP acting
on the spacecraft

• The torque applied to the spacecraft by the reaction wheels
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The total torque can be expressed in the following equation:

τtot = τgg + τmag + τdis + τrwl (2.3.2)

Where the gravity gradient torque and the magnetic torque can be expressed in
equations (2.3.3) and (2.3.4) respectively

τgg =
3µ∥∥∥rB(t)∥∥∥3rB × JrB (2.3.3)

τmag =mB × bB (2.3.4)

To get an equation for the angular acceleration of the BOF, relative to the ECI,
expressed in the BOF, can be obtained by substituting equation 2.3.2 into equation
2.3.1 and rearranging for ˙ωB

BI :

ω̇B
BI = J−1(−ωB

BI × Jω
B
BI + τgg + τmag + τdis + τrwl) (2.3.5)

Now equations (2.2.6) and (2.3.5) can be combined and rearranged and put into
a state-space equation of the form:

ẋ = Ax+Bu (2.3.6)

Where the x vector representing the states that are to be controlled and it’s
derivative are the following:

x =

[
q

ω

]
=

ηε
ω



ẋ =

[
q̇

ω̇

]
=

η̇ε̇
ω̇


(2.3.7)

and the control input is a torque vector:
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u =

τxτy
τz

 (2.3.8)

The non linear A and B matrix are expressed in equations (2.3.9) and (2.3.10)

A =

 −1
2
εTωB

BI
1
2
(ε× + ηI3×3)ω

B
BI

J−1(−ωB
BI × JωB

BI + τgg + τdis)

 (2.3.9)

B =

01×303×3

J−1

 (2.3.10)

2.4 Linear Set of Equations

The linearization of the A matrix is taken from reference [5] and the linearized B
matrix is taken from reference [1]. The linearization of the A matrix is included
in Appendix A:

A =



0 ω0 0 1
2

0 0

−ω0 0 0 0 1
2

0

0 0 0 0 0 1
2

0 0 0 0 σxω0 0

0 −6ω2
0σy 0 σyω0 0 0

0 0 6ω2
0σy 0 0 0


(2.4.1)

B =



0 0 0

0 0 0

0 0 0
1

Jxx
0 0

0 1
Jyy

0

0 0 1
Jzz


(2.4.2)

Where ω0 and σ are defined in equations (2.4.3) and (2.4.4):
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ω0 =

√
µ

r3
(2.4.3)

σ =

σxσy
σz

 =


Iyy−Izz

Ixx
Izz−Ixx

Iyy
Ixx−Iyy

Izz

 (2.4.4)



Chapter 3

Control Methodology

This chapter goes over the control methods used in this project. First is the static
gain controller used for the reaction wheel model, which is derived using a Linear
Quadratic Regulator (LQR) tuning method. The second one is the B-dot with
bias controller, which uses a constant gain matrix, magnetic field, and a bias to
dampen the spacecraft rates.

3.1 Linear Quadratic Regulator (LQR) For Reac-

tion Wheels

The main control law used in this project is the Linear Quadratic Regulator con-
trol law. This methodology is used to obtain the appropriate static gain matrix.
To begin, the linearized state-space equation in the form of equation (2.3.6) is
considered:

ẋ = Ax+Bu

Where the feedback gain matrix K and feedback control action can be expressed
in the following form:

u(t) = −Kx(t) (3.1.1)

Where in the case of the reaction wheel model, the control/ input vector consists
of the wheel torques:

10
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u =

τrwl,x

τrwl,y

τrwl,z

 (3.1.2)

To solve the optimal control problem, the controller chooses a u(t) to minimize
the following cost function: [6]

J =

∞∫
0

(xTQx+ uTRu)dt (3.1.3)

Where the Q and R are positive definite matrices that the user prescribes. Before
solving for the gain matrix K, the Matrix Algebraic Riccati Equation (MARE) is
to be solved for a positive matrix P , shown in equation (3.1.4):

ATP + PA− PBR−1BTP +Q = 0 (3.1.4)

Once the P matrix is solved from equation (3.1.4), the feedback law gives the
following equation,

u(t) = −R−1BTPx(t) (3.1.5)

And substituting equation (3.1.1) into (3.1.5), the optimal gain matrix K can be
determined to be,

K = R−1BTP (3.1.6)

Although there are numerical methods to go through the procedure outlined above,
in solving for P and then calculating the gain matrix, it is of common practice to
use standard methods directly using tools and software such as MATLAB, with
the function:

K = lqr(A,B,Q,R)



3.2. AUGMENTATION OF INTEGRAL CONTROL GAIN Page 12

3.2 Augmentation of Integral Control Gain

In order to reduce the steady state error of the attitude signal, the state vector was
further manipulated and augmented to include an integral of the attitude error,
shown in equation (3.2.1) [7]

x̄ =


∫ t+1

t
εBN

εBN

ωB
BN

 (3.2.1)

Although the augmentation shown in equation (3.2.1) does not change the derived
A and B matrices from equations (2.4.1) and (2.4.2), the augmentation must be
taken into consideration in the new altered state space representation. This is
shown in equations (3.2.2) and (3.2.3) below. [7]

Ā =

[
03×3 I3×3 03×3

03×3 03×3 A

]
(3.2.2)

B̄ =

[
03×3

B

]
(3.2.3)

This augmentation changes the previously stated state space equation, as it adds
an extra integral gain to the system while calculating the K gain matrix from in
the LQR method stated above. The new altered state space representation of the
system can be expressed in equation (3.2.4) below.

˙̄x = Āx̄− B̄Kx̄ (3.2.4)

3.3 B-dot with Bias Gain Tuning

The second part of the project is to look at the B-dot gain tuning. This method
requires the measurement of the magnetic field rate ḃ, taken by the magnetometer,
and multiplies it by a constant gain matrix Kdot. This gives the dipole moment
of the magnetic controller. In order to further modify this model, a bias vector is
added, and so the final equation is represented in equation (3.3.1) [3]
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mcmd = −Kdotḃ+mbias (3.3.1)

and the constant gain matrix takes of the form shown in equation (3.3.2)

Kdot =

kdot,x 0 0

0 kdot,y 0

0 0 kdot,z

 (3.3.2)

The block diagram for the b-dot with bias controller is fairly similar to the original
bdot controller block diagram. The rate of the magnetic field rate in the body
frame is and multiplied by the gain matrix, and then the bias is added. The block
diagram is shown in figure (3.3.1).

Figure 3.3.1: Bdot With Bias Controller Block Diagram



Chapter 4

Software Setup

This chapter deals with the SIMULINK and MATLAB model setup. The existing
SIMULINK models are shown, which further help visualize the test harness and
the controller setup. Next the simulation test software is further discussed, as it is
broken down into different scripts, each having a certain functionality in the test.
Finally, the results for the tests conducted are displayed.

4.1 Existing Model

A SIMULINK model covering the dynamics and control of ESSENCE was pro-
vided. The full test model from highest level up can be seen in figure (4.1.1)

14
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Figure 4.1.1: Full Reaction Wheel Test Model

Where the green block is the test harness and the white block is the unit test.

The test harness is then broken down into the model seen in figure (4.1.2). With
the furthest block to the left models the dynamics of the reaction wheels, and so
the reaction wheel speed can be monitored in order to ensure the max speed is
not exceeded. The middle blue block has all the dynamics of the satellite. All the
outputs from that block are passed onto a separate block where they are passed
onto the workspace for use. The far right white block is a function to find the
error required for analysis.
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Figure 4.1.2: Test Harness

The controller block is shown in figure (4.1.3). This shows how the quaternion
and the angular rate errors are taken as inputs and multiplied by the constant
gain matrix, K, which is obtained using the LQR control method outlined earlier
in this report. The discrete time integrator shown in the figure also represents the
augmentation explained in the sections above. The terminated signal is the scalar
component of the attitude quaternion, which gets neglected in the linearization
process.

Figure 4.1.3: Controller Block

4.2 Test Setup

This section is to discuss how the test is set up and how the software is broken
down. The test consists of a Monte Carlo simulation that randomizes the initial
conditions and tests the controller gains throughout a large number of simula-
tions.The test will run the simulation for 2 orbits and the errors will be observed
after the initial settling time.The tolerances for both the Roll,Pitch, Yaw errors,
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and the angular rates errors were derived from the requirements document for the
ESSENCE project, and can be summarized in table (4.1) [1]

Table 4.1: RPY and Rates Tolerances

State Error Tolerance

RPY ±0.5deg

Angular Rates ±0.05deg/s

The full test can be broken down into multiple different MATLAB scripts to avoid
having one large bundle of code. This makes troubleshooting and making changes
to the code much easier, and it makes the code more modular:

1. runTST_CTL_ORBrwl_montecarlo.m

• This is the main script that runs the montecarlo simulation.

• Sets a clean start and initializes all directories for ESSENCE.

• Sets the correct directory and test folder

• Sets orbital duration (ie. number of orbits for test).

• Sets desired attitude states.

• Sets attitude and Rates Error tolerances.

• Builds SIMULINK model

• Calls other scripts and runs the simulation

2. TST_CTL_ORBrwl_monte_Controller.m

• Builds the augmented state-space equation.

• User manually sets the R and Q matrices for the LQR.

• Gain matrix K is calculated using lqr MATLAB function.

3. TST_CTL_ORBrwl_monte_init.m

• Randomizes center of mass distribution

• Randomizes initial attitude states within a 360 degree sweep, between
±180deg.
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• Randomizes initial rates between ±0.02deg/s

• Sets the inputs needed for the simulation in a SimIn set.

4. TST_CTL_ORBrwl_monte_CheckandPlot.m

• Sets the result folder.

• Checks the RPY and Rates signal error values and compares to toler-
ances set in the main run script.

• If both checks pass then it generates plots for initial values.

• If either of them fail the check then more plots summarizing the full
attitude summary is plotted to give more information on what failed
and why.

5. plotTST_CTL_ORBrwl_monte.m

• A plot function used in the TST_CTL_ORBrwl_monte_CheckandPlot.m
script.

• Takes outputs from the simulation and generates plots.

• function is written so that user can chose which set of plots to generate.

6. TST_CTL_ORBrwl_monte_Stats.m

• Plots the main statistics of the full simulation set

• Initial RPY and rates for each simulation.

• Average errors for each simulation.

• Maximum and minimum command torques experienced by the wheels.

• Maximum and minimum wheel speed, to ensure wheels are not over-
saturated.

All the other scripts are called into the main run script. The flow of the software
can be shown in figure (4.2.1)
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Figure 4.2.1: Software Flowchart

4.3 Results

The testing done in this project has been rather robust. Five controllers have
been tested for 200 simulations each, with completely randomized initial condi-
tions. Each of the following sections includes a table that summarizes the success
rate of the gain matrix used, along with the Q and R matrices that were used
to compute that gain matrix. After that, a set of figures is displayed, showing
the randomization in each simulation, the average error for each simulation, the
maximum and minimum control torque input, and the maximum and minimum
reaction wheel speeds.
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4.3.1 Simulation Set 1

Table 4.2: Summary of Results for Simulation Set 1

Parameter Value

R Matrix


1× 1013 0 0

0 1× 1013 0

0 0 1× 113 0



Q Matrix



3× 103 0 0 0 0 0 0 0 0

0 3× 103 0 0 0 0 0 0 0

0 0 3× 103 0 0 0 0 0 0

0 0 0 5× 103 0 0 0 0 0

0 0 0 0 5× 103 0 0 0 0

0 0 0 0 0 5× 103 0 0 0

0 0 0 0 0 0 5× 103 0 0

0 0 0 0 0 0 0 5× 103 0

0 0 0 0 0 0 0 0 5× 103



Kc
T Matrix



1.73× 10−5 4.72× 10−7 2.86× 10−21

−4.72× 10−7 1.73× 10−5 −2.60× 10−21

−6.25× 10−21 −3.01× 10−21 −3.01× 10−21

3.28× 10−4 2.27× 10−6 5.18× 10−20

−8.36× 10−6 5.42× 10−4 4.10× 10−20

−8.80× 10−20 3.81× 10−20 5.46× 10−4

0.0016 −1.06× 10−5 2.42× 10−19

−4.80× 10−5 0.0043 2.21× 10−19

1.12× 10−18 2.26× 10−19 0.0043


Nb. of Successful Sims 198

200
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Figure 4.3.1: Initial Errors for Each Simulation - Set 1

Figure 4.3.2: Average Errors for Each Simulation - Set 1
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Figure 4.3.3: Maximum Control Inputs - Set 1

Figure 4.3.4: Maximum and Minimum Reaction Wheel Speed - Set 1
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Figure 4.3.5: Maximum and Minimum Reaction Wheel Speed [RPM]- Set 1

Figure 4.3.6: Center of Mass Distribution - Set 1
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Figure 4.3.7: Summary of Results - Set 1

Although the RPY and angular rate conditions were met for all the simulations in
this set, the reason two simulations were classified as “Fails” is because the reaction
wheels were over-saturated. This can be seen in figure (4.3.4), where the reaction
wheel speed for both simulations 92 and 133 reaches the reaction wheel limit of
1484 rad/sec. Typically, this issue can be resolved by using magnetorquers and
momentum dumping, but for the sake of this report, any test that results in the
over-saturation of the reaction wheels, the test will be classified as a “Fail”
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4.3.2 Simulation Set 2

Table 4.3: Summary of Results for Simulation Set 2

Parameter Value

R Matrix


1× 1013 0 0

0 1× 1013 0

0 0 1× 113 0



Q Matrix



8× 102 0 0 0 0 0 0 0 0

0 8× 102 0 0 0 0 0 0 0

0 0 8× 102 0 0 0 0 0 0

0 0 0 5× 102 0 0 0 0 0

0 0 0 0 5× 102 0 0 0 0

0 0 0 0 0 5× 102 0 0 0

0 0 0 0 0 0 5× 102 0 0

0 0 0 0 0 0 0 5× 102 0

0 0 0 0 0 0 0 0 5× 102



Kc
T Matrix



8.93× 10−6 3.04× 10−7 1.67× 10−21

−3.04× 10−7 8.93× 10−6 5.87× 10−22

6.22× 10−22 4.98× 10−21 8.94× 10−6

2.11× 10−4 1.82× 10−6 1.13× 10−20

−6.71× 10−6 3.49× 10−4 8.37× 10−20

5.22× 10−21 1.22× 10−19 3.51× 10−4

0.0012 −1.06× 10−5 −5.78× 10−20

−4.80× 10−5 0.0034 9.24× 10−19

−2.67× 10−19 9.24× 10−19 0.0035


Nb. of Successful Sims 200

200
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Figure 4.3.8: Initial Errors for Each Simulation - Set 2

Figure 4.3.9: Average Errors for Each Simulation - Set 2
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Figure 4.3.10: Maximum Control Inputs - Set 2

Figure 4.3.11: Maximum and Minimum Reaction Wheel Speed - Set 2
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Figure 4.3.12: Maximum and Minimum Reaction Wheel Speed [RPM]- Set 2

Figure 4.3.13: Center of Mass Distribution - Set 2
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Figure 4.3.14: Summary of Results - Set 2
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4.3.3 Simulation Set 3

Table 4.4: Summary of Results for Simulation Set 3

Parameter Value

R Matrix


1× 1013 0 0

0 1× 1013 0

0 0 1× 113 0



Q Matrix



8× 102 0 0 0 0 0 0 0 0

0 8× 102 0 0 0 0 0 0 0

0 0 8× 102 0 0 0 0 0 0

0 0 0 5× 102 0 0 0 0 0

0 0 0 0 5× 102 0 0 0 0

0 0 0 0 0 5× 102 0 0 0

0 0 0 0 0 0 3× 102 0 0

0 0 0 0 0 0 0 3× 102 0

0 0 0 0 0 0 0 0 3× 102



Kc
T Matrix



8.93× 10−6 3.04× 10−7 −1.32× 10−21

−3.04× 10−7 8.93× 10−6 −3.21× 10−21

−9.87× 10−23 8.96× 10−24 8.94× 10−6

2.11× 10−4 1.82× 10−6 −1.79× 10−20

−6.71× 10−6 3.49× 10−4 −7.9× 10−20

−5.33× 10−20 1.46× 10−20 3.51× 10−4

0.0012 −1.06× 10−5 −8.25× 10−20

−4.80× 10−5 0.0034 6.96× 10−19

−3.81× 10−19 7.11× 10−19 0.0035


Nb. of Successful Sims 200

200
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Figure 4.3.15: Initial Errors for Each Simulation - Set 3

Figure 4.3.16: Average Errors for Each Simulation - Set 3
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Figure 4.3.17: Maximum Control Inputs - Set 3

Figure 4.3.18: Maximum and Minimum Reaction Wheel Speed - Set 3
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Figure 4.3.19: Maximum and Minimum Reaction Wheel Speed [RPM]- Set 3

Figure 4.3.20: Center of Mass Distribution - Set 3
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Figure 4.3.21: Summary of Results - Set 3
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4.3.4 Simulation Set 4

Table 4.5: Summary of Results for Simulation Set 4

Parameter Value

R Matrix


1× 1013 0 0

0 1× 1013 0

0 0 1× 113 0



Q Matrix



8× 102 0 0 0 0 0 0 0 0

0 8× 102 0 0 0 0 0 0 0

0 0 8× 102 0 0 0 0 0 0

0 0 0 5× 102 0 0 0 0 0

0 0 0 0 5× 102 0 0 0 0

0 0 0 0 0 5× 102 0 0 0

0 0 0 0 0 0 1× 102 0 0

0 0 0 0 0 0 0 1× 102 0

0 0 0 0 0 0 0 0 1× 102



Kc
T Matrix



8.93× 10−6 3.04× 10−7 −1.16× 10−22

−3.04× 10−7 8.93× 10−6 6.11× 10−22

−9.96× 10−22 −1.09× 10−21 8.94× 10−6

2.11× 10−4 1.82× 10−6 −4.88× 10−21

−6.71× 10−6 3.49× 10−4 1.52× 10−20

3.71× 10−20 −2.41× 10−20 3.51× 10−4

0.0012 −1.06× 10−5 −1.40× 10−20

−4.80× 10−5 0.0034 −7.68× 10−20

−6.46× 10−20 −7.84× 10−19 0.0035


Nb. of Successful Sims 200

200
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Figure 4.3.22: Initial Errors for Each Simulation - Set 4

Figure 4.3.23: Average Errors for Each Simulation - Set 4
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Figure 4.3.24: Maximum Control Inputs - Set 4

Figure 4.3.25: Maximum and Minimum Reaction Wheel Speed - Set 4
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Figure 4.3.26: Maximum and Minimum Reaction Wheel Speed [RPM]- Set 4

Figure 4.3.27: Center of Mass Distribution - Set 4
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Figure 4.3.28: Summary of Results - Set 4
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4.3.5 Simulation Set 5

Table 4.6: Summary of Results for Simulation Set 5

Parameter Value

R Matrix


3× 1013 0 0

0 3× 1013 0

0 0 3× 113 0



Q Matrix



1× 102 0 0 0 0 0 0 0 0

0 1× 102 0 0 0 0 0 0 0

0 0 1× 102 0 0 0 0 0 0

0 0 0 5× 102 0 0 0 0 0

0 0 0 0 5× 102 0 0 0 0

0 0 0 0 0 5× 102 0 0 0

0 0 0 0 0 0 1× 102 0 0

0 0 0 0 0 0 0 1× 102 0

0 0 0 0 0 0 0 0 1× 102



Kc
T Matrix



1.82× 10−6 1.05× 10−7 7.90× 10−23

−1.05× 10−7 1.82× 10−6 2.16× 10−22

2.76× 10−22 −3.75× 10−22 1.82× 10−6

7.34× 10−5 1.07× 10−6 −1.96× 10−21

−3.94× 10−6 1.20× 10−4 −1.96× 10−20

1.60× 10−20 −1.09× 10−20 1.21× 10−4

7.35× 10−4 −1.09× 10−5 1.53× 10−20

−4.79× 10−4 0.0020 2.15× 10−19

7.07× 10−20 2.19× 10−19 0.0020


Nb. of Successful Sims 71

200
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Figure 4.3.29: Initial Errors for Each Simulation - Set 5

Figure 4.3.30: Average Errors for Each Simulation - Set 5
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Figure 4.3.31: Maximum Control Inputs - Set 5

Figure 4.3.32: Maximum and Minimum Reaction Wheel Speed - Set 5
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Figure 4.3.33: Maximum and Minimum Reaction Wheel Speed [RPM]- Set 5

Figure 4.3.34: Center of Mass Distribution - Set 5
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Figure 4.3.35: Summary of Results - Set 5

Clearly the fifth simulation set had a large number of failed simulations. To further
investigate the failure, one of the failed simulations, simulation number 5, was used
to produce a more detailed summary of the RPY and angular rates throughout
the simulation time. The following is a summary of the initial conditions for this
simulation:

Table 4.7: Simulation 5 Initial Conditions

InitialRPY (deg) InitialRates(deg/sec) COMDistribution−57.23
62.76
112.01

 −0.0148
0.0025
−0.0138

 0.0051−0.002
−0.01


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Figure 4.3.36: Attitude and Rates Throughout Orbit for Simulation 5 in Set 5

Since the section being analyzed is after the 1 orbit mark, figure (4.3.36) only
shows that section of the orbit. As is seen in the figure, the attitude (RPY) of the
satellite is still fluctuating and reaches peaks much larger 0.5 deg, thus classifying
such simulation as a fail. This can also be seen in figure (4.3.30), where the average
error for the attitude is larger than ±0.5 deg for many simulations in the set, thus
deeming this controller to be unreliable.
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Conclusion

The purpose of this project was to build and use a testing method to test different
attitude control laws for the ESSENCE mission, which will be launched from the
ISS. The theory and equations of motion were described and the existing model
for the controller is shown. Controller block diagrams were displayed to further
explain the controller logic. The simulation software is broken down into the
different scripts used, and the results for the robust testing is shown. To validate
the randomization of the test software, many plots were generated showing the
initial attitude states, angular rates, and the center of mass distribution, for each
simulation in each set. The maximum reaction wheel speeds were also plotted
for each simulation to ensure over-saturation of the wheels does not occur. The
results provide validation for 3 different controllers that have been proven to be
robust and can stabilize the satellite through through a variety of different initial
conditions, within the tight tolerances stated by the mission requirements.

This software setup is versatile and can be used and implemented to any other
control law. Now that is has been validated with the LQR controller for the re-
action wheel model, it can be implemented to the Bdot with bias controller. The
only main differences would be changing the tolerances, simulation duration, and
settling time, which are all variables in the test code, and so can be manipulated
easily. Since the test software was broken down into separate scripts, when imple-
menting it for the Bdot with bias controller, or any other control law, customising
it has been made easy and straight forward.
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Appendix A

Linearization of A Matrix

This appendix provides a step by step explanation of the linearization of the A
matrix. To start off, the following two equations (A.1) and (A.2), are the ones
being linearized.

ẋ =

η̇ε̇
ω̇

 =

 −1
2
εTωB

BI
1
2
(ε× + ηI3×3)ω

B
BI

J−1(−ωB
BI × JωB

BI + τdis)

 (A.1)

τgg =
3µ∥∥rB(t)∥∥3rB × JrB (A.2)

The first assumption to be made is the small angle approximation, and knowing
that the quaternion error is double the small angle approximation. The attitude
quaternion can be shown in equation (A.3). This equation shows us that the most
important part from the attitude quaternion is the vector component, and so the
scalar component can be omitted in the linearization.

δq =

[
1

∆ε

]
(A.3)

The main objective of the control laws stated in this report is to align the attitude
of the body frame with the orbital frame with minimal deviation, and the equi-
librium and reference point used for the linearization is stated below in equation
(A.4)
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ẋ = f(x = xe) = 0

ẋ =


ε̇x
ε̇y
ε̇z
ω̇x

ω̇y

ω̇z

 = 0
(A.4)

Next, the cross coupled term −ωB
BI × JωB

BI is used as the initial point of the
linearization.

First, the shape of the spacecraft is assumed to be symmetrical, and so the mo-
ment of inertia matrix of the spacecraft can be defined in equation (A.5)

J =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (A.5)

The cross coupled term can then be linearized in the following set of equations:

−ω×Jω = −

ωx

ωy

ωz

×

ωxIxx
ωyIyy
ωzIzz

 =

(Iyy − Izz)ωyωz

(Izz − Ixx)ωxωz

(Ixx − Iyy)ωxωy

 (A.6)

ω̇cc = J
−1(−ω×Jω) =


Iyy−Izz

Ixx
ωyωz

Izz−Ixx
Iyy

ωxωz
Ixx−Iyy

Izz
ωxωy

 (A.7)

δω̇cc =


Iyy−Izz

Ixx
(δωyωz,e + δωzωy,e)

Izz−Ixx
Iyy

(δωxωz,e + δωzωx,e)
Ixx−Iyy

Izz
(δωxωx,e + δωyωy,e)

 (A.8)

In order to simplify the notation of the equations, set the following,

ω0 =

√
µ

r3
(A.9)
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σ =

σxσy
σz

 =


Iyy−Izz

Ixx
Izz−Ixx

Iyy
Ixx−Iyy

Izz

 (A.10)

By substituting the simplifications in equations (A.9) and (A.10), along with the
equilibrium conditions for the ωx,e, ωy,e, ωz,e, which are all equal to zero, except for
the ωz,e term, which is eqaul to the orbital velocity ω0, the linearized cross-coupled
term can be determined in equation (A.11).

δω̇cc =

σxδωyω0

σyδωxω0

0

 (A.11)

Once the cross-coupled term is linearized and presented above in equation (A.11),
the gravity gradient torque presented in equation (A.2) can now be linearized.
The assumptions made in this step is that the spacecraft maintains a circular
orbit around the Earth, and the orbital vector r̂, is considered to be the unit
vector of the x-axis in the orbital frame. The method used for linearizing this
gradient is to express the torque generated by the gravity gradient as an angular
acceleration, and to rearrange equation (A.9) and express it in terms of µ. The
linearization process is presented in the following set of equations.

τgg = Jδω̇gg =
3µ∥∥r(t)∥∥3 δr̂×Jδr̂ (A.12)

δω̇gg = 3ω2
0J

−1(δr̂×Jδr̂) (A.13)

δω̇gg = 3ω2
0

 1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

 1
−2δεz
2δεy

×

Ixx 0 0
0 Iyy 0
0 0 Izz

 1
−2δεz
2δεy

 (A.14)

δω̇gg = 3ω2
0

 1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

−4δεzδεyIzz + 4δεyδεzIyy
2δεyIzz + 2δεyIxx
−2δεzIyy + 2δεzIxx

 (A.15)

δω̇gg = 3ω2
0

 0
2δεy

Ixx−Izz
Iyy

2δεz
Ixx−Iyy

Izz

 (A.16)
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Substituting in the equation (A.10), and ignoring the higher order terms, the final
linearized equation for the gravity gradient torque can be expressed in equation
(A.17)

δω̇gg = 6ω2
0

 0
−σyδεy
σzδεz

 (A.17)

Finally, the kinematics are linearized, and the linearization process is shown
throughout the following set of equations:

ε̇ =
1

2
(ε× + ηI3×3)ω

B
BI (A.18)

ε̇ =
1

2

 η −εz εy
εz η −εx
−εy εx η

ωx

ωy

ωz

 (A.19)

ε̇ =
1

2

 ηωx − εzωy + εyωz

εzωx + ηωy − εxωz

−εyωx + εxωy + ηωz

 (A.20)

ε̇ =
1

2

 δηωx,e + ηδωx − δεzωy,e − δωyεz,e + δεyωz,e + δωzεy,e
δεzωx,e + δωxεz,e + δηωy,e + ηδωy − δεxωz,e − εx,eδωz,e

−δεyωx,e − δωxεy,e + δεxωy,e + εx,eδωy + δηωz,e + ηδωz

 (A.21)

Then introducing the equilibrium state, the linearized kinematics can be expressed
in equation (A.22)

ε̇ =
1

2

δωx + ω0δεy
δωy − ω0δεx

δωz

 (A.22)

Now combining equations (A.11), (A.17), and (A.22), the final linearized A matrix
is expressed in equation (A.23)

A =


0 ω0 0 1

2
0 0

−ω0 0 0 0 1
2

0
0 0 0 0 0 1

2

0 0 0 0 σxω0 0
0 −6ω2

0σy 0 σyω0 0 0
0 0 6ω2

0σz 0 0 0

 (A.23)


