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Abstract  

Fused Filament Fabrication (FFF) is an additive manufacturing technique commonly used in 

industry to produce complicated structures sustainably. Although promising, the technology frequently 

suffers from defects, including warp deformation compromising the structural integrity of the component 

and, in extreme cases, the printer itself. To avoid the adverse effects of warp deformation, this thesis 

explores the implementation of deep neural networks to form a closed-loop in-process monitoring 

architecture using Convolutional Neural Networks (CNN) capable of pausing a printer once a warp is 

detected. Any neural network, including CNNs, depend on their hyperparameters. Hyperparameters can 

either be optimized using a manual or an automated approach. A manual approach, although easier to 

program, is often time-consuming, inaccurate and computationally inefficient, necessitating an automated 

approach. To evaluate this statement, classification models were optimized through both approaches and 

tested in a laboratory scaled manufacturing environment. The automated approach utilized a Bayesian-

based optimizer yielding a mean accuracy of 100% significantly higher than 36% achieved by the other 

approach. 
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Nomenclature  
 

To avoid confusion, the term "parameter" or "model parameter" stands for any variable that is 

learned during the training process. In contrast, any variable defined before training is referred to as 

"hyperparameter" or "model hyperparameter."  "Weight" is used interchangeably with the "model 

parameter" but denotes a learnable variable outside of the convolution layer. 
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1.0 Introduction  

The past two decades have seen exponential growth in Additive Manufacturing (AM), an efficient 

technique that offers cost-effectiveness and sustainable manufacturing. Unlike conventional subtractive 

techniques, the ability of AM to handle complex geometries while conserving material has led to its 

widespread use in a variety of applications. A common AM technique used in industry is Fused Filament 

Fabrication (FFF). FFF (3D printing) adopts thermoplastic extrusion to fabricate a component from the base 

up, enabling streamline design with fewer overall components.  

The aerospace industry is often dependent on such techniques to address supply chain constraints, 

limited warehouse space, and reduced wasted materials, typically seen in conventional manufacturing 

techniques. Airbus has been a strong advocate of AM to produce components for its A350 aircraft [1,2]. 

Components are printed with ULTEM 9085 resin wherein the resin is melted and extruded layer-by-layer 

to fabricate the part, resulting in an overall reduction of weight by about 20%. Similarly, GE manufactured 

components for Denali single-engine aircraft resulting in the elimination of 845 parts saving procurement, 

installation, and inspection efforts [1,2].  

Although reliable, FFF printed components frequently exhibit defects that impair their functionality 

and performance leading to significant loss of material and time. Warpage represents one of the most typical 

defects in FFF [3,4,5,6]. Often, after material deposition, since the cooling rate is not uniform throughout 

the printed component, a temperature gradient forms within the print leading to residual thermal stresses. 

As the layers increase, the residual stress builds up, causing the component to distort, i.e., the bending force 

is higher than the adhesion between the component and the build platform, causing it to warp [9,10]. Warp 

deformation can happen at any time during the print and typically leads to print failure, compromised 

dimensional accuracy, and in extreme cases, damage to the 3D printer. 

Multiple studies have been performed to analyze the factors that lead to warp deformation. Wang 

et al. [8] identified chamber temperature, material thermal expansion rate and the number of layers as 

critical parameters for warp deformation. Fitzharris et al. [12] studied the impact of material properties 

where altering polyphenylene sulphide to polyphenylene; they observed that materials with high thermal 

conductivity and low thermal expansion rates were less prone to warp deformation. Similarly, Peng et al. 

[10] indicated that decreasing the thermal expansion coefficient and glass transition temperature by treating 

a filament could reduce the chance of warpage. Other studies included analyzing geometric parameters on 

warp deformation. In a study conducted by Guerrero-de-Mier et al. [11] and Armillotta et al. [9], they 

concluded that decreasing the size of the horizontal plane of a coupon decreased the chance of deformation.  
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These studies provide an insight into critical factors that lead to warp deformation; however, due 

to design constraints, not all strategies can be implemented. Consistent monitoring of fabrication is thus 

required to detect defects limiting the loss of time and material.  

In recent years, with the advancement of hardware accelerators, image processing and computer 

vision have been deployed for in-situ defect detection of 3D printed parts. Baumann et al. [17] utilized 

image processing to detect missing material and movement caused by the deformation of 3D printed 

components. The parts were recognized using a colouring threshold, followed by a binary difference image 

to identify defects. The model accuracy was severely affected by variations in lighting conditions and the 

colour of the filament, limiting the practicability of the monitoring system. A similar approach was used by 

Yi et al. [23], where a camera was utilized to record a print, layer by layer. The contours of each image 

were then extracted through image processing and analyzed using statistical process control to find defects. 

Although promising, these methods are often vulnerable to small variations in input data. Currently, 

machine learning methodologies provide an infrastructure capable of improving itself with data 

accumulation that adds flexibility by adapting to various industries and standards based on the 

manufacturing environment [26].  

Delli and Chang [24] developed a system using a support vector machine (SVM) to classify printed 

components into either defective or non-defective by collecting images throughout the printing process to 

define an ideal print job. Similarly, Wu et al. [25] identified infill defects via Naïve Bayes Classifier and 

Decision Trees algorithm to achieve an accuracy of 85.26 and 95.51%, respectively. Recently, Z. Zhang et 

al. [18] and B. Zhang et al. [19] inspected defects in welded components Convolutional Neural Network 

(CNN) and explored the versatility and potential of machine learning in manufacturing process inspection.  

This study focuses on developing a closed-loop in-process monitoring system capable of detecting 

warped corners in FFF printed components using CNN. In the following sections, a manual method is 

compared to an automated Bayesian-based black-box optimization algorithm for selecting the suitable CNN 

classification model. Next, a closed-loop architecture capable of pausing a print when a warp is detected is 

proposed. Finally, a discussion of the complete system is presented before the conclusion and 

recommendations for future work. 
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2.0 Theory  

An Artificial Neural Network (ANN) is a mathematical model resembling the networked structure 

of neurons in the brain, with layers of connected nodes. Traditionally neural networks were shallow 

(containing two to three hidden layers), which were good at memorization, but lacked generalization 

limiting their practicability. Deep learning methodologies, however, utilize neural networks with several 

hidden layers to learn features at various levels of abstraction. A deeper network is better at generalizing as 

the network learns all the intermediate features between the input data and the high-level classification and 

thus achieves promising results for complex classification applications [27].  

One of the most popular types of a deep neural networks is the Convolutional Neural Network 

(CNN). CNN learns relevant features while training on a collection of images, making it suitable for 

computer vision tasks such as object classification. This section focuses on the basic concepts of CNN and 

its applicability in image classification [20,27].  

2.1 Convolutional Neural Network: An Overview  

CNN is a mathematical construct designed for processing spatial hierarchies of features within an 

image adaptively. Typically, CNN is composed of three types of layers: convolution, pooling, and fully 

connected layers. The first two layers deal with feature extraction whereas, the fully connected layer, 

associates the extracted features to the final output [20]. 

A convolution layer comprises a series of learnable filters known as kernels. A kernel is a matrix 

that convolves over a subset of input pixels to produce a feature map. The creation of multiple feature maps 

in each convolutional layer helps extract different features from the input image. As the classification 

function modeled through the neural network is unlikely to have a linear relation with the input, 

nonlinearities are added to generalize the system, enhancing the performance of the neural network. These 

nonlinearities are added by employing activation functions analogous to synapses in a brain. To improve 

the performance of the model, it is essential to make features invariant to small translations. This is typically 

achieved by downsampling the feature maps through means of pooling. The feature maps are then flattened 

and passed through fully connected layers, and finally, the output layer completing the architecture of a 

typical CNN. The process of optimizing parameters to minimize the difference between outputs and truth 

labels is called training and is achieved by minimizing the error function through means of backpropagation.  
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2.2 Building blocks of CNN architecture  

This section provides an overview of a typical CNN architecture and the training process.  

2.2.1 Convolution 

Convolution is a mathematical operation to extract features by applying kernels across an input 

image. Element-wise product between each element of the kernel and the image is then calculated and 

summed, as illustrated in Figure 1. The values of each element in a kernel are learned throughout the training 

process to ensure essential features are captured, a critical factor for getting the right prediction [20,27]. 

 

Figure 1:  An example of convolution operation with a kernel size of 3 × 3 applied across an input tensor to 

obtain an output value for a feature map. [20] 

Figure 2 presents an example of different features extracted from an image. 

 

Figure 2: An example of how kernels obtain feature maps in a convolution layer. [30] 
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A 32 × 32-pixel image was passed through a convolution layer with six kernels to produce six 

feature maps. Each feature map is unique and represents an essential feature of the input. Brighter spots in 

the map represent the extracted feature; for example, the first map (left-most) extracts the horizontal aspects 

of the number six while the fifth map extracts vertical ones. With additional layers and an optimal number 

of kernels, a network ensures a wholesome understanding of images within the dataset; however, these 

hyperparameters are often hard to select and will be discussed later in the investigation.  

2.2.2 Activation Function  

An activation function is a mathematical gate that maps an input (in the current neuron) to the 

output in the subsequent layer deciding which neurons are relevant (for a feature) influencing the accuracy 

and efficiency of any ANN.  

Activation functions can typically be divided into two groups: 

1. Linear Activation Function  

2. Non-Linear Activation Function  

Linear Activation Functions  

In a linear activation function, the activation is proportional to the input. The derivative of such a 

function is constant. This implies that the error in prediction is constant and does not depend on the input, 

making it impossible to understand what weight in the input neurons can provide a better prediction. 

Besides, a linear combination of a linear function is still linear; thus, all layers of the ANN can collapse 

into one. This creates a linear regression model that fails to learn the complex functional mapping from 

input data [22].  

Non-Linear Activation Functions  

Non-linear activation functions address these problems by: 

1. Enabling backpropagation as the derivative function depends on the input.  

2. Allowing the stacking of neurons to develop deep neural networks. Deep networks have various 

hidden layers of neurons that allow complex features to be extracted with high accuracy.  

Common non-linear activation function includes sigmoid, hyperbolic tangent1, Rectified Linear Unit 

(ReLU) and Leaky ReLU.  

 
1 Similar to the sigmoid function, however, the output is zero centered, making it easy to identify neurons that have a 

strong positive, negative, or no impact on the network. 
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Sigmoid  

Sigmoid offers two significant advantages, bounding the output values to 0 and 1, thus, normalizing 

the output of each neuron and creating a smooth gradient to enable backpropagation. As shown in Figure 

3, the derivative of the function resembles a bell curve. This leads to the vanishing gradient problem 

whereby very large and very low values of x have no impact on the prediction, preventing the network from 

learning further [22]. 

  

 

(a)  (b)  

Figure 3: A graphical representation of sigmoid function: (a) Sigmoid Function; (b) Derivative of Sigmoid 

Function 

 

ReLU and Leaky ReLU 

In a deep neural network, sigmoid or hyperbolic tangent will cause all neurons to fire, i.e., all 

activations will be processed to obtain an output making them computationally expensive.  Visible in Figure 

4, ReLU prevents this by setting all negative values (neurons deemed not useful for a specific feature) to 

zero and proportional to the input for all values above or equal to zero. However, inputs that approach zero 

or are negative cannot perform backpropagation leading to the dying ReLU problem. Leaky ReLU attempts 

to solve the issue by having a small positive slope in the negative region to enable backpropagation [22]. 

  

(a) (b) 

Figure 4: A graphical representation of two commonly used activation functions: (a) ReLU Function; (b) 

Leaky ReLU 
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2.2.3 Pooling  

Typically feature maps produced through convolution are sensitive to the location of features in the 

input image, limiting the generalizability of the model. An approach to address this sensitivity is to down-

sample the feature maps. Pooling is a downsampling operation that reduces the in-plane dimensionality of 

feature maps, making them invariant to small translations and distortion, simultaneously reducing the 

number of learnable parameters in the subsequent layers [20].There are no learnable model parameters in 

any of the pooling layers; however, similar to convolution, the hyperparameters can be optimized to 

enhance model performance. The two conventional pooling methodologies are:  

Max Pooling & Global Average Pooling (GAP) 

As the name suggests, max-pooling identifies the most activated presence of a feature in a feature 

map. It is a simple mathematical operation wherein patches of data are extracted from an input feature map, 

then storing the maximum value within that patch to produce a downsampled map. Another common 

approach is to summarize the presence of a feature within a feature map. GAP works by extracting several 

patches of data and storing the mean value of each patch to reduce the dimension of the feature map [20]. 

2.2.4 Fully Connected Layer  

Feature maps from the last convolution/pooling layer are flattened, i.e. transformed into a vector 

and connected to each neuron in the subsequent layer by a learnable weight. This is done to map extracted 

features to the final output of the network. The final fully connected layer of a CNN has the same number 

of output nodes as the number of classes. An activation function is then applied to get the predicted class 

[20]. 

2.2.5 Last Layer Activation  

The activation function applied to the last fully connected layer of the network is different then the 

non-linear activation function covered in Section 2.2.2. For a multiclass classification problem, a softmax 

function is often used which normalizes the outputs for each class between 0 and 1, divided by their sum to 

yield the probability of a specific class.  
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Mathematically a softmax function is represented as: 

𝑃(𝑦 = 𝑗 | 𝑧𝑖) =
𝑒𝑧

𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=0

 
 

(1) 

 

where  

𝑧 = 𝑤0𝑥0 +𝑤1𝑥1 +⋯+𝑤𝑚𝑥𝑚 =∑𝑤𝑖𝑥𝑖 = 𝒘
𝑻𝒙

𝑚

𝑖=0

 
 

(2) 

 

Here 𝒘 represents the weight vector and 𝒙 the feature vector of one training sample. The softmax 

function computes the probability, 𝑃(𝑦 = 𝑗 | 𝑧𝑖), of the training sample belonging to some class given an 

input 𝑧𝑖 to predict a class label 𝑗 [28].  
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2.2.6 Training the Network  

Training involves finding the right set of kernels and weights in convolution and fully connected 

layers to minimize error in the predicted output. A model is analyzed through a loss function during forward 

propagation, and learnable model parameters are updated with respect to the error through backpropagation 

and gradient descent (Figure 5) [20]. A comprehensive explanation of backpropagation, loss function and 

gradient descent is beyond the scope of this thesis. 

 

 

Figure 5: A simplified representation of the training process 
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2.3 Building the Network  

Depending on the nature of the problem and computational resources, a CNN architecture can be 

constructed using a manual or an automated approach. 

2.3.1 Manual Approach  

As the name suggests, this approach requires a user to make design decisions manually. Design 

decisions include selecting hyperparameters, training and regularization procedures2 to ensure models 

perform as intended. The performance of machine learning models, in general, is susceptible to a wide 

range of hyperparameter choices. Each time a different set of hyperparameters is selected, the machine 

learning model has to be retrained. Some machine learning models, such as CNNs, take several days to be 

trained, making the process irrational to do by hand [21]. 

2.3.2 Automated Approach  

With an increase in hardware accelerators, the past decade has seen exponential growth in machine 

learning models and their applications in various domains.  

The idea of extending optimization from model parameters to design decision is covered in the 

field of automated machine learning (AutoML). AutoML involves automating various stages of machine 

learning application pipeline: data preparation, feature extraction, hyperparameter optimization, and model 

selection. Since the performance of machine learning models changes considerably with hyperparameters, 

this paper focuses on developing a general-purpose pipeline to optimize hyperparameters and subsequently 

select models for the problem at hand. Although an automated pipeline reduces human efforts, thereby 

improving efficiency and performance, the underlying optimization algorithms faces two significant 

challenges: 

1. The hyperparameter configuration space is a complex, multidimensional problem often composed 

of discrete, continuous, conditional, and categorical data types. The combination of datatypes 

makes it challenging to define a range in which hyperparameters need to be optimized [21, 29].  

2. A machine learning model is optimized by minimizing a cost function. However, for a 

hyperparameter optimization problem, the shape of the function is unknown, nonlinear, non-

convex, and multidimensional. As little is known about the cost function, black-box optimization 

methodologies are often employed to optimize the hyperparameter configuration space [21]. 

At a higher level hyperparameter optimization can be represented as: 

 
2 This paper encapsulates training procedure and regularization into hyperparameters for simplicity. 
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𝜆∗ = argmin
𝜆∈Λ

𝑓(𝜆) (3) 

 

Here, 𝑓(𝜆) refers to the objective function to be minimized – typically evaluated on the validation 

set; 𝜆∗ is a vector that minimizes the objective function and, 𝜆 a vector in the hyperparameter in 

configuration space that can take any value in the domain Λ.   

Although global optimization algorithms are usually preferred, the non-convex nature of the 

problem often leads to premature convergence. This local convergence is still useful as it allows to make 

progress within a few function evaluations. Common algorithms include model-free blackbox optimization 

and Bayesian optimization [21]. 

Model-Free Blackbox Optimization Methods  

Model-free blackbox optimization methodologies include grid search and random search. Grid 

search is a simple optimization algorithm wherein a user defines a finite set or grid of values for each 

hyperparameter. The algorithm then performs the Cartesian product of this grid; however, since the number 

of evaluations increases with the dimensionality of the hyperparameter configuration space, this method 

suffers from the curse of dimensionality. Furthermore, to improve the resolution of discretization, additional 

function evaluations are required, which further increases the computational cost. These costs can be limited 

by setting a computational budget. Random search is an alternative wherein the algorithm randomly 

searches for samples within a hyperparameter configuration space until a certain computational threshold 

is reached. Random search is often used to initiate an optimization process. This is because the algorithm 

searches throughout the hyperparameter configuration space achieving performance close to the optimum. 

Although better than manual tuning, both methodologies ignore past evaluations and often spend time and 

computational resources on unimportant hyperparameters [21].  

Bayesian Optimization Methodologies  

In contrast to the previous approaches, a Bayesian optimizer is an iterative algorithm that develops 

a surrogate model and an acquisition function to select hyperparameters in an informed manner. The 

algorithm approximates the objective function, 𝑓(𝜆) by drawing samples from 𝑓(𝜆)  to obtain posterior 

that better describe 𝑓(𝜆). The probabilistic model developed to approximate the objective function is called 

a surrogate model [21, 29]. 

The acquisition function uses the probabilistic model to select next samples from the 

hyperparameter configuration space. A common acquisition function is the expected improvement (EI) 

which provides a balance between exploitation and exploration. Mathematically, the function is represented 

as follows: 
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𝔼[𝕀(𝜆)] = 𝔼[max(𝑓(𝜆) − 𝑓(𝜆+),0)] (4) 

 

where 𝑓(𝜆+) is the value of the best sample so far. The expected improvement is typically 

calculated using a Gaussian Process model. Analytically this process is evaluated as: 

 

𝔼[𝕀(𝜆)] = {

(𝜇(𝜆) − 𝑓(𝜆+) − 𝜉)Φ(𝑍) + 𝜎(𝜆)𝜙(𝑍)
 
 
0

 

 

 

𝜎(𝜆) > 0 

 

 

(5)  

𝜎(𝜆) = 0 

 

where  

 

𝑍 =

{
 
 

 
 (𝜇(𝜆) − 𝑓(𝜆

+) − 𝜉)

𝜎(𝜆) 
 
0

 

 

 

𝜎(𝜆) > 0 

 

 

(6) 
 

𝜎(𝜆) = 0 

 

𝜇(𝜆) and 𝜎(𝜆) are the mean and standard deviation of the Gaussian Process, respectively; Φ and 𝜙 

the Cumulative Density Function (CDF) and Probability Density Function of the normal distribution. The 

expression 𝜇(𝜆) − 𝑓(𝜆+) − 𝜉 is the exploitation term while 𝜎(𝜆) represents the exploration. Exploration 

refers to searching over the entire sample space, while exploitation consists of exploring a limited but 

promising search space. The term 𝜉 determines the amount of exploration. Increasing 𝜉 will lead to more 

exploration as the improvement predicted by the mean decreases with relative to 𝜎(𝜆) describing high 

prediction uncertainty [21, 29].  

The terms 𝜇(𝜆) and 𝜎(𝜆) are obtained by: 

𝜇(𝝀) = 𝒌∗
𝑻𝑲−𝟏𝒚, 𝜎2(𝝀) = 𝑘(𝝀, 𝝀) − 𝒌∗

𝑻𝑲−𝟏𝒌∗ (7) 

 

where 𝑘(𝝀, 𝝀) denotes the covariance matrix, 𝒌∗ the vector of covariance between 𝝀 and all 

previous observations, 𝑲 the covariance matrix of previous evaluated configurations and y the values of 

observed functions [21].  
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This mathematical construct allows evaluating the degree of impact of specific hyperparameters 

from previous iterations to select the next set of hyperparameters in an informed manner. Bayesian 

optimizers spend more time selecting; however, the time spent in selecting is often inconsequential to the 

frequent call made to the objective function as in model-free blackbox optimization methodologies.  
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3.0 Methodology 

This section provides details regarding experimental setup, dataset preparation and an in-depth 

comparison of designing a CNN classification algorithm through two approaches: manual and automated.  

3.1 Experimental Setup 

Figure 6 outlines the setup used for this study. All tests were carried out on Prusa i3 MK2S, a 

commercial desktop 3D printer. As depicted, the camera was in line with the build platform to have a clear 

view of the printed component.  

 

Figure 6: Experimental setup for the proposed closed-loop architecture 
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The camera and 3D printer were managed via subroutines running on a local computer to form a 

closed loop architecture (Figure 7).   

 

Figure 7: A simplified representation of the dataflow for the proposed closed-loop architecture 

 

The computer was responsible for running three subroutines3 in the background: A G-Code 

transmission script to interface with the 3D printer via its serial port, an image capturing and processing 

script and the CNN classification algorithm. The G-Code was altered to pause the printer at the end of each 

layer 4and resume automatically after two seconds, allowing the extruder to move out of the frame to have 

an uninterrupted view of the component being printed. An image was then captured and processed to 

extract, reshape and grayscale a region of interest (ROI) to reduce computational complexity. Next, the ROI 

 
3 All scripts were written in a Python 3.6 environment and processed on an Intel® Core™ i5-6300U processor @ 2.4 GHz and 

8GB memory running on Windows 10 64-bits.    

4 The system was initiated at the end of the second layer to ensure enough material was deposited to distinguish the part from the 

build-platform. 
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was analyzed using the classification algorithm to get the probability of an event, 𝑋 = 𝑢𝑛𝑤𝑎𝑟𝑝𝑒𝑑, where 

𝑋 represents the corner of the part being printed. A 𝑃(𝑋) value above or equal to 0.5 indicates the 

component is unwarped, allowing the print to continue. A 𝑃(𝑋) value below 0.5 indicates a warping 

occurrence, and a signal is sent to pause the printer, thereby creating a closed-loop system.  

Figure 8 outlines the image acquisition and preprocessing and classification pipeline.  

 

Figure 8: Image acquisition and analysis pipeline for the classification algorithm 

 

3.2 Dataset Preparation  

Two datasets5 were proposed for this study; the first set contained images taken in an ideal 

environment, i.e. lighting conditions were closely monitored to warrant clear images. For the second set 

however, ambient conditions (including lighting conditions and camera position) were altered to obtain 

grainy images. These images were acquired using the setup described in Section 3.1. Each set consisted of 

550 coloureds, 6000 × 4000 pixeled images divided (equally) into two classes. Several 30 mm ×15mm × 

5mm cuboids were printed (individually) and recorded layer-by-layer to collect images for unwarped 

corners. The corners of these cuboids were then peeled from the build platform to imitate warp deformation.  

Training a classification algorithm with this dataset would require optimizing 3.96 × 1010 nodes 

(550 × 6000 × 4000 × 3), a computationally expensive process. To improve computational efficiency a 

region-of-interest (Figure 9) was extracted, greyscale and resized to 100 × 100 pixels by performing 

nearest-neighbor interpolation. The processed dataset was then one-hot encoded, shuffled and split into 

training and validation sets in a 80 10⁄  split, the remaining 10% was used for testing.  

 

 
5 The rationale for varying image quality is discussed in Section 4.0.  
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Figure 9 shows three training samples for each class from both datasets. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 9: Samples from the training set: (a) unwarped samples from Test Set 1; (b) unwarped samples 

from Test Set 1; (c) warped samples from Test Set 1; (d) warped samples from Test Set 2 

 

3.3 Building the Network  

This section provides details regarding the underlying CNN classification model, including 

approaches taken for hyperparameter optimization and integration with the overall closed-loop architecture. 

Depending on computational resources, any ANN can be constructed manually or autonomously. Although 

simple to program, the manual approach necessitates multiple trials and error to optimize a model and is 

often time-consuming, and inaccurate. In contrast, an automated approach is suitable for an agile 

environment but requires a good understanding of black-box optimization. The following sections provide 

a comparative study of the two approaches and a rationale for choosing one over the other. 
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3.3.1 Manual Approach  

Table 1 presents the final architecture of CM-M1, the CNN classification model constructed via a 

manual approach.  

Table 1: Summarised architecture of CNN classification model CM-M1 

Layer Operator Kernel Size Stride Number of 

Filters/Nodes/% 

Method 

LY1 – C1 Convolution 2 × 2 2 8 - 

LY2 – P1 Pooling 2 × 2 2 - Max Pooling 

LY3 – C2 Convolution 2 × 2 2 8 - 

LY4 – P2 Pooling 2 × 2 2 - Max Pooling 

LY5 – C3 Convolution 2 × 2 2 8 - 

LY6 – P3 Pooling 2 × 2 2 - Max Pooling 

LY7 – C4 Convolution 2 × 2 2 16 - 

LY8 – P4 Pooling 2 × 2 2 - Max Pooling 

LY9 – C5 Convolution 2 × 2 2 16 - 

LY10 – P5 Pooling 2 × 2 2 - Max Pooling 

LY11 – C6 Convolution 2 × 2 2 16 - 

LY12 – P6 Pooling 2 × 2 2 - Max Pooling 

LY13 – C7 Convolution 2 × 2 2 24 - 

LY14 – P7 Pooling 2 × 2 2 - Max Pooling 

LY15 – C8 Convolution 2 × 2 2 24 - 

LY16 – FC1 Fully Connected Flattened to a vector 

LY17 – DP1 Dropout 60% of Nodes Retained 

LY18 – FC2 Fully Connected - - 2 SoftMax 

(Activation) 
 

 

CNN typically contains an input, convolution, pooling, fully connected and output layer. The 

dataset was passed through the convolution layer LY1 – C1, where a kernel of size 2×2 was applied to the 

input image with a stride of 2. The first layer contained eight learnable kernels producing eight feature 

maps. These feature maps were then passed through subsequent convolutional layers with additional filters, 

as outlined in Table 1 – furthermore, even layers from 2 to 14 performed max-pooling of stride 2. The 

number of layers, filters and stride were selected at random and altered until the model yielded acceptable 

results. The feature maps were then flattened into a vector and fully connected to the subsequent layer. As 

the underlying model performs binary classification, the output layer had two nodes, one for each class; 

completing the basic framework of the classification model. 
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Next, an optimization algorithm was chosen to minimize the loss function. Figure 10 compares the 

evolution of loss function with the number of epochs for three optimization algorithms: Root Mean Square 

(RMS), Stochastic Gradient Descent (SGD) and Adaptive moment estimation (Adam) optimizer. The 

details of these optimizers are beyond the scope of this paper.   

 

 

 

 

 

(a) (b) 

 

(c) 

Figure 10: A comparison of loss function decay with the number of epochs minimised by common 

optimization algorithms: (a) RMS; (b) SGD; (c) Adam  

 

All optimizers performed reasonably well6; however, RMS and SGD were prone to substantial 

fluctuations. In contrast, Adam optimizer minimized the loss function to less than 10% with little fluctuation 

and was therefore selected. 

 
6 Although Adam performs well for this dataset, recent publications have shown that the optimizer often fails to converge under 

specific conditions. In hindsight, all optimizers would have yielded similar results given the optimal number of epochs, learning 

rate and mini-batch size. Therefore, any optimizer could have been employed for this investigation. 
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For reasons explained in Section 2.2.2, each layer requires an activation function. Based on existing 

literature, two activation functions were considered ReLU and Leaky ReLU. Their performance was 

evaluated by training a model for 50 epochs. Epochs are essential to the generalizability of the model and 

must be selected carefully. Callback addresses this issue by evaluating the internal state of any machine 

learning algorithm to prevent a model from training further once the accuracy plateaus. The training and 

validation accuracy for both activation functions were then graphed and compared.  

  

(a) (b) 

Figure 11: Training and validation accuracy of the model with different activation functions: (a) ReLU;  

(b) Leaky ReLU 

 

ReLU provides a training and validation accuracy of 0.520 and 0.511, respectively. The poor 

performance could be attributed to the “dying ReLU problem” described in Section 2.2.2; consequently, 

Leaky ReLU was chosen.  
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Figure 12 indicates a discrepancy between training and validation accuracy, suggesting overfitting. 

Overfitting is commonly observed in CNN models and is corrected by adding a dropout layer. A dropout 

layer randomly discards nodes to allow a model to learn from all the inputs instead of relying on a few 

inputs regularizing the neural network.   

 

 

 

 

 

(a) (b) 

Figure 12: Training and validation accuracy with the number of epochs: (a) without dropout; (b) with 

dropout 

 

The approach may seem promising at first glance, yielding an accuracy of 0.98; however, the 

number of manual iterations exposes the inherent vulnerabilities with this method. The subsequent section 

proposes an alternative approach. 
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3.3.2 Automated Approach  

Figure 13 outlines the high-level algorithm utilized for an automated approach.  

 

Figure 13: A simplified representation of the underlying algorithm utilized for the automated approach 

 

The algorithm involved repeating an optimization loop until a certain threshold was met. In each 

iteration, hyperparameters were selected from a hyperparameter configuration space defined by the user. 

The configuration space for this study contained the total number of convolution layers (including stride 

length and kernel size), the number of units (neurons) and feature maps in each layer; the optimal dropout 

and learning rate; and the activation function for each layer. An intermediate classification model was then 

created and trained using the selected hyperparameters. The validation accuracy was recorded and utilized 

for estimating hyperparameters for subsequent iterations. The models were stored in an array, and the one 

with the highest score (validation accuracy) was serialized 7 for later use. 

 

 
7 Here, serialization refers to the (OOP language) process of converting an Object (stored model) into a transportable 

form for later use.    
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Figure 14 shows the best classification model for each dataset proposed by the optimization algorithm.  

  

(a) (b) 

Figure 14: Best hyperparameter values selected by the optimization algorithm for each dataset:  

(a) CM-A1; (b) CM-A2 

 

CM-A1 was trained on the first dataset, whereas CM-A2 was trained on both datasets. Like, the 

previous approach, both models had a validation accuracy of 0.98. Once serialized, the models were 

retrained on additional epochs, yielding an accuracy of 0.991 and 0.996, respectively. The number of epochs 

was limited by implementing early stopping, as defined in the previous section. The serialized architecture 

for CM-A1 and CM-A2 is summarised in Tables 2 and 3 respectively.  
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Table 2: Serialized architecture of CNN classification model CM-A1 

Layer Operator Kernel Size Stride Number of 

Filters/Nodes/% 

Method/Activation 

LY1 – C1 Convolution 2 × 2 2 18 ReLU 

LY2 – P1 Pooling 2 × 2 2 - Max Pooling 

LY3 – C2 Convolution 2 × 2 2 14 ReLU 

LY4 – C3 Convolution 2 × 2 2 26 ReLU 

LY5 – C4 Convolution 2 × 2 2 16 ReLU 

LY6 – F1 Fully Connected  Flattened to a Vector 

LY7 – DP1 Dropout  80% of Nodes Retained 

LY8 – FC2 Fully Connected - - 2 SoftMax 

(Activation) 
 

 

Table 3: Serialized architecture of CNN classification model CM-A2 

Layer Operator Kernel Size Stride Number of 

Filters/Nodes/% 

Method/Activation 

LY1 – C1 Convolution 2 × 2 2 10 ReLU 

LY2 – P1 Pooling 2 × 2 2 - Max Pooling 

LY3 – C2 Convolution 2 × 2 2 8 ReLU 

LY4 – C3 Convolution 2 × 2 2 18 ReLU 

LY5 – C4 Convolution 2 × 2 2 10 ReLU 

LY6 – F1 Fully Connected  Flattened to a Vector 

LY7 – DP1 Dropout  90% of Nodes Retained 

LY8 – FC2 Fully Connected - - 2 SoftMax 

(Activation) 
 

 

In comparison to CM-M1, both CM-A1 and CM-A2 had fewer hidden layers; however, they had 

additional kernels per convolutional layer. This arrangement hypothetically allows the convolution layer to 

extract additional low-level features from the input image. 
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4.0 Results and Discussion  

Figure 15 outlines the procedure undertaken to evaluate the performance of two machine learning 

architectures.  

 

Figure 15: A representation of the test-plan for evaluating the performance of the proposed approaches 

 

CNN models are sensitive to the quality of input images; for example, features are less prominent 

in darker images and reduce the performance of the system. This can be addressed by retraining the 

underlying model with additional images. This was evaluated by employing two datasets; Test Set 1 

represented an ideal condition wherein ambient light condition was closely monitored, while Test Set 2, 

contained a combination of clear and grainy images to simulate varying lighting conditions. CM-M1 was 

tested on both test sets, while CM-A1 and CM-A2 were tested on Test Set 1 and 2, respectively. This setup 

allowed to form a comparative study of the approaches taken to build the underlying CNN classification 

model. 

 

 

 



30 | P a g e  
 

Figure 16 depicts a specimen printed following the lighting conditions specified for the first dataset. 

 

Table 4 present the predicted output for a specimen depicted in Figure 16. 

Table 4: The predicted output by CM-M1 and CM-A1 for a specimen printing 

CM-M1 CM-A1 

Layer # 𝑃(𝑋 = 𝑈𝑛𝑤𝑎𝑟𝑝𝑒𝑑 𝐶𝑜𝑟𝑛𝑒𝑟) Layer # 𝑃(𝑋 = 𝑈𝑛𝑤𝑎𝑟𝑝𝑒𝑑 𝐶𝑜𝑟𝑛𝑒𝑟) 

2 0.5786 2 0.5641 

3 0.8349 3 0.8115 

4 0.7567 4 0.7912 

5 0.8849 5 0.9147 

6 0.9543 6 0.9684 

7 0.9384 7 0.9588 

8 0.9848 8 0.9975 

9 0.9932 9 0.9998 

10 0.0004 10 0.0008 
 

 

Both models were able to classify the printed layers correctly. Moreover, a similar pattern was 

observed in the predicted outcome. For instance, there was a dip in 𝑃(𝑋) for layers four and seven due to 

stringing. This indicates that both models were sensitive to slight variations in input data and could benefit 

from regularization. Although CM-M1 performs well in this test, it must be noted that the manual approach 

took several hours to optimize. In contrast, the automated approach produced CM-A1 and retrained the 

model with additional epochs in under 15 minutes. Besides, CM-M1 took additional hidden layers to have 

a similar performance as CM-A1 proving to be computationally inefficient.  

 

Figure 16: A subplot of different layers of a sample print showing warping in Layer 10 
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The test was then repeated on the second dataset. Table 5 presents the predicted output for a specimen 

depicted in Figure 17. 

 

Figure 17: A subplot of different layers of a sample print showing warping in Layer 10 

 

Table 5: The predicted output by CM-M1 and CM-A2 for a specimen printing 

CM-M1 CM-A2 

Layer # 𝑃(𝑋 = 𝑈𝑛𝑤𝑎𝑟𝑝𝑒𝑑 𝐶𝑜𝑟𝑛𝑒𝑟) Layer # 𝑃(𝑋 = 𝑈𝑛𝑤𝑎𝑟𝑝𝑒𝑑 𝐶𝑜𝑟𝑛𝑒𝑟) 

2 0.3167 2 0.8123 

3 0.4812 3 0.9543 

4 0.4154 4 0.9671 

5 0.3329 5 0.9785 

6 0.3864 6 0.9792 

7 0.4215 7 0.9872 

8 0.6623 8 0.9976 

9 0.6349 9 0.9983 

10 0.0136 10 0.0003 
 

 

As expected, CM-M1 performed poorly in the second test. This is because the hyperparameters 

were chosen for a specific dataset, and any variations in the test data would affect the accuracy of the 

underlying model.  
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As the models are stochastic in nature, the tests were repeated twice to validate the results. 

Table 6: Test result summary 

 

Model Dataset 

Number 

Test 

Number 

Number of 

Layers 

Number of 

Unwarped 

Layers 

Number of 

Warped Layers 

Layers 

Correctly 

Identified 

Mean 

Accuracy  

 

 

 

CM-M1 

 

1 

1 15 15 0 15  

1 2 15 14 1 15 

38 9 8 1 9 

 

2 

1 15 15 0 6  

0.36 2 15 14 1 5 

3 9 8 1 3 

 

 

 

CM-A1 

 

1 

1 15 15 0 15  

1 2 15 14 1 15 

3 9 8 1 9 

 

2 

1 15 15 0 7  

0.46 2 15 14 1 9 

3 9 8 1 2 

 

 

 

CM-A2 

 

1 

1 15 15 0 15  

1 2 15 14 1 15 

3 9 8 1 9 

 

2 

1 15 15 0 15  

1 2 15 14 1 15 

3 9 8 1 9 

 

Overall, the models were able to classify all layers in Dataset 1 correctly. In contrast, CM-M1 and 

CM-A1 performed poorly with an average accuracy of 0.36 and 0.46, respectively. As CM-A2 was trained 

on both datasets, the model performed well, having an accuracy of 1. Although the manual approach took 

longer to optimize, it failed to generalize the problem proving to be inaccurate, time-consuming and 

computationally inefficient. Theoretically, deeper networks are better at abstracting features leading to a 

more comprehensive understanding of the input image. The redundant pooling layers and lack of kernels, 

however, prevented CM-M1 from learning low-level features, as evident from the results. The other 

approach yielded a much shallower yet efficient model in under 15 minutes, highlighting the impact of 

hyperparameters and the prowess of black-box optimization algorithms.  

 
8 The third test for each dataset is depicted in Figures 16 and 17, respectively. 
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The dataset for this study is relatively small, allowing models to be trained in under an hour. In an 

industrial environment, however, datasets are complex, with much longer training times necessitating an 

automated approach. With an increase in hardware accelerators, computational costs are now 

inconsequential in comparison to the time saved and the accuracy achieved by using black-box optimization 

algorithms, thus validating the implementation of an automated system. 

 

5.0 Conclusion  

The objective of the study was to present the application of Convolutional Neural Networks in 

additive manufacturing. Fused Filament Fabrication is a commonly used additive manufacturing technique 

that often suffers from defects, including warp deformation compromising the structural integrity of the 

component being printed and, in extreme cases damaging the printer. Therefore, a closed-loop in-process 

monitoring architecture was proposed to pause a print on the onset of warp deformation.  

The architecture contained three significant components running in the background, namely a G-

code transmission system, image acquisition and processing system, and a CNN classification model. Any 

Artificial Neural Network, including CNNs, depend on their hyperparameters. Typically, hyperparameters 

can be optimized using a manual or automated approach. A manual approach, although easier to program, 

requires multiple trials and error and is often time-consuming, inaccurate and computationally inefficient. 

In contrast, an automated approach selects an optimal model through black-box optimization algorithms. 

This thesis utilized a Bayesian-based optimizer to develop an autonomous architecture capable of producing 

and training models, depending on the problem at hand. 

To evaluate the performance of the automated approach and form a comparative study, two datasets 

were proposed. The first set contained images taken in an ideal environment the second set, however, 

consisted of a combination of bright, blurry and grainy images to simulate varying lighting conditions. The 

manual approach produced the CM-M1 classification model, while the automated approach yielded CM-

A1 and CM-A2. CM-M1 and CM-A1 were trained on the first dataset while CM-A2 was trained on both 

datasets. As expected, all datasets performed well on the first set; however, CM-M1 and CM-A1 poorly on 

Test Set 2, having an accuracy of 0.36 and 0.53, respectively. CM-M1 was tested on the second dataset to 

highlight the inherent vulnerabilities of this approach. An automated approach is thus required to ensure 

that models are optimized in an agile manufacturing environment. 

In the future, efforts will be made to populate the existing dataset with additional defects to increase 

the practicality of this system. 
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