

Development of an Aerostructural Analysis Tool

for a Low-Sweep Parametric Wing

Julian Bardin

500758483

Presented to Dr. Joon Chung

 Ryerson University

April 16, 2021

i

Acknowledgements
The author would like to thank Dr. Joon Chung for providing the opportunity and support to develop this

project. The author would also like to thank Pratik Pradhan and Mohsen Rostami for their regular guidance

throughout the development of this analysis. The author would lastly like to thank Ryerson University for

the chance to create an undergraduate thesis.

ii

Abstract
An aerostructural analysis program was developed to predict the aerodynamic performance of a non-rigid,

low-sweep wing. The wing planform was geometrically defined to have a rectangular section, and a

trapezoidal section. The cross-section was further set to an airfoil shape which was consistent across the

entire wingspan. Furthermore, to enable the inclusion of this multidisciplinary analysis module into an

optimization scheme, the wing geometry was defined by a series of parameters: root chord, taper ratio,

leading-edge sweep, semi-span length, and the kink location.

Aerodynamic analysis was implemented through the quasi-three-dimensional approach, including a three-

dimensional inviscid solution and a sectional two-dimensional viscous solution. The inviscid analysis was

provided through the implementation of the vortex ring lifting surface method, which modelled the wing

about its mean camber surface.

The viscous aerodynamic solution was implemented through a sectional slicing of the wing. For each

section, the effective angle of attack was determined and provided as an input to a two-dimensional airfoil

solver. This airfoil solution was comprised of two subcomponents: a linear-strength vortex method inviscid

solution, and a direct-method viscous boundary layer computation. The converged airfoil solution was

developed by adjusting the effective airfoil geometry to account for the boundary layer displacement

thickness, which in itself required the inviscid tangential speeds to compute.

The structural solution was implemented through classical beam theory, with a torsion and bending

calculator included. The torque and bending moment distribution along the wing were computed from the

lift distribution, neglecting the effects of drag, and used to compute the twist and deflection of the wing.

Interdisciplinary coupling was achieved through an iterative scheme. With the developed implementation,

the inviscid lift loads were used to compute the deformation of the wing. This deformation was used to

update the wing mesh, and the inviscid analysis was run again. This iteration was continued until the lift

variation between computations was below 0.1%. Once the solution was converged upon by the inviscid

and structural solutions, the viscous calculator was run to develop the parasitic drag forces. Once

computation had completed, the aerodynamic lift and drag forces were output to mark the completion of

execution.

iii

Table of Contents
Acknowledgements .. i

Abstract ... ii

Nomenclature .. v

List of Figures ... vii

List of Tables .. vii

1 Introduction ... 1

2 Analysis Architecture .. 2

2.1 Flow of Information .. 2

2.2 Lift-Structural Coupling .. 4

2.3 Aerodynamic Coupling ... 4

3 Geometric and Simulation Definitions.. 5

3.1 Planform Geometry ... 5

3.2 Airfoil Geometry ... 5

3.3 Wing Box Geometry ... 6

3.4 Airflow Properties ... 6

4 Inviscid Aerodynamic Analysis .. 6

4.1 Surface Discretization ... 6

4.2 Analysis Components ... 7

4.3 Mathematical Solution .. 8

4.4 Force Distribution ... 9

5 Viscous Aerodynamic Analysis .. 10

5.1 Strip Discretization ... 10

5.2 Effective Angle of Attack Computation ... 10

5.3 Inviscid Airfoil Analysis ... 11

5.3.1 Airfoil Discretization .. 11

5.3.2 Mathematical Solution .. 12

5.3.3 Analysis Outputs ... 14

5.4 Viscous Airfoil Analysis ... 14

5.4.1 Laminar Boundary Layer .. 15

5.4.2 Transition Condition ... 16

5.4.3 Turbulent Boundary Layer .. 16

5.5 Inviscid-Viscous Coupling .. 18

5.6 Parasitic Drag Computation .. 18

6 Structural Analysis .. 19

iv

6.1 Wing Box Bending Model .. 19

6.2 Wing Box Torsion Model ... 21

6.3 Wing Box Scaling Factors .. 22

6.4 Wing Loading ... 23

6.4.1 Torsional Loads... 23

6.4.2 Bending Loads .. 23

6.5 Wing Deformation .. 24

6.5.1 Twist Angle Prediction ... 24

6.5.2 Deflection Prediction .. 24

6.5.3 Mesh Deformation .. 26

7 Sample Results .. 27

7.1 Tested Wing Configuration ... 27

7.2 Aerodynamic Results .. 27

7.2.1 Lift Distribution .. 27

7.2.2 Aerodynamic Forces ... 28

7.3 Wing Loading Results ... 28

7.3.1 Bending Loads .. 28

7.3.2 Torsion Loads ... 29

7.3.3 Resulting Deformation .. 29

7.4 Computer Performance ... 30

8 Conclusions ... 30

9 References ... 31

Appendix A: Effective Angle of Attack Derivation ... 32

Appendix B: Shear Center Arm Derivation .. 33

Appendix C: Global Program Architecture .. 35

Appendix D: Main MATLAB Function ... 36

Appendix E: Aerodynamic Functions ... 38

Appendix F: Structural Functions ... 71

Appendix G: Utility Functions .. 90

v

Nomenclature
Acronyms

2D Two-Dimensional

3D Three-Dimensional

CPU Central Processing Unit

MATLAB Matrix Laboratory

MDA Multidisciplinary Analysis

MDF Multidisciplinary Feasible

MDO Multidisciplinary Optimization

Q3D Quasi-Three-Dimensional

RAM Random Access Memory

RHS Right-Hand-Side, Inviscid Free-Stream Contribution

UTH Speed-Theta-Shape Factor, Boundary Layer Analysis

VLM Vortex Lattice Method

Symbols

𝐴 Area

𝛼 Angle of Attack

𝛼𝑖 Panel Incidence Angle

𝑎𝐾𝐿 3D Aerodynamic Influence Coefficient

𝑏𝐾𝐿 3D Parallel Aerodynamic Influence Coefficient

𝐶𝑑𝑖 Induced Drag Coefficient

𝐶𝑓 Friction Coefficient

𝐶𝑙 Lift Coefficient

𝐶𝑙0 Zero Angle-of-Attack Lift Coefficient

𝐶𝑃 Pressure Coefficient

𝑐 Chord Length

Δ𝐿 Panel Lift Force

Δ𝐷 Panel Drag Force

𝐷𝑖 Induced Drag

𝐷𝑝 Parasitic Drag

𝑑𝑖 Section Induced Drag

𝑑𝑝 Section Parasitic Drag

𝛿∗ Boundary Layer Displacement Thickness

휀 Strain

Γ 3D Vorticity

vi

𝛾 2D Vorticity

𝐻 Shape Factor

𝐼𝑥𝑥,𝐼𝑧𝑧 Moment of Inertia

𝐼𝑧𝑥 Product of Inertia

𝐿 Lift Force

𝑙 Section Lift

𝜆 Pressure-Gradient Parameter

𝑀 Bending Moment

𝑀∞ Free-Stream Mach Number

𝜙 Twist Angle

𝑝 Shear Flow Lever Arm

�⃗� ∞ Free Stream Velocity Vector

𝑞 Induced Velocity

𝑞𝑠 Shear Flow

𝜌 Air Density

𝑟 Position Vector

𝑅𝑒 Reynolds Number

𝑆 Shear Force

𝑠 Curve Path Distance

𝜃 Deflection Angle or Boundary Layer Momentum Thickness

𝜃𝑝 Principal Axis Angle

𝑇 Torque

𝑡 Thickness

𝑢 Longitudinal Velocity Component

𝑢𝑒 Inviscid Edge Velocity

𝑉 Shear Force

𝑉∞ Free-Stream Speed

𝑤 Vertical Velocity Component

𝑤𝑖𝑛𝑑 Induced Downwash

𝑥 Longitudinal Direction, Parallel to Aircraft Axes

𝑦 Lateral Direction, Parallel to Aircraft Axes

𝑧 Vertical Direction, Parallel to Aircraft Axes

vii

List of Figures
Figure 2.1: Global MDA Architecture .. 2
Figure 2.2: Structural Solver Architecture .. 3
Figure 2.3: Viscous Aerodynamic Solver Architecture .. 3
Figure 3.1: Wing Planform Parameters ... 5
Figure 3.2: Sample Airfoil Geometry ... 5
Figure 3.3: Sample Wing Box Geometry .. 6
Figure 4.1: Wing Panels Planform View .. 6
Figure 4.2: Wing Discretization .. 7
Figure 5.1: Induced Drag 2D Representation ... 10
Figure 5.2: Airfoil Discretization .. 11
Figure 5.3: Viscous Airfoil Analysis Output .. 18
Figure 6.1: Wing Box as Area Concentrations ... 19
Figure 6.2: Principal Axes .. 20
Figure 6.3: Moment Vector Components ... 24
Figure 6.4: Probe Point Selection ... 25
Figure 7.1: Sample Lift Distribution ... 27
Figure 7.2: Sample Shear Distribution .. 28
Figure 7.3: Sample Bending Moment Distribution ... 28
Figure 7.4: Sample Torsion Distribution .. 29
Figure 7.5: Sample Wing Deflection .. 29
Figure 7.6: Sample Wing Twist .. 29

List of Tables
Table 6.1: Wing Box Scaling Factors ... 22
Table 7.1: Sample Parameters ... 27
Table 7.2 Sample Aerodynamic Forces .. 28
Table 7.3: Computational Requirements .. 30

1

1 Introduction
Optimization of aircraft components can be achieved through either a series of single-disciplinary

optimization stages, or through a coupled multidisciplinary approach [1]. In pursuing the multidisciplinary

approach, designs exhibiting better performance become possible due to an inclusion of the coupled

interactions in the analysis [1]. One implementation of this multidisciplinary strategy is the

multidisciplinary feasible (MDF) architecture, wherein a multidisciplinary analyser (MDA) is run each time

a constraint or objective function is computed [1]. As a precursor to this form of multidisciplinary

optimization, an MDA implementation was required.

With a specific focus given to the aerostructural performance of an aircraft wing, a multidisciplinary

analysis implementation was developed to predict the resulting aerodynamic performance of a wing when

structural deformation was considered. Building off the work of FEMWET by Elham and van Tooren [2],

this implementation sought to develop a simplified, thereby faster to compute, aerostructural modelling

approach for low-sweep wings. This was comprised of a quasi-three-dimensional (Q3D) aerodynamic

solver coupled with a classical bending-torsional structure solver.

The Q3D aerodynamic solver was built utilizing a Vortex Lattice Method (VLM) solver, based on the

analysis developed by Katz and Plotkin [3], used to compute the inviscid aerodynamic effects. Viscous

effects were subsequently computed using aerodynamic strip theory to divide the wing into a series of

sections which were individually analysed [2]. Along each strip, the effective angle of attack was computed

from the induced drag, and the acting parasitic drag force was computed iteratively between an inviscid

two-dimensional airfoil panel solver and a direct boundary layer approximation. In this implementation, a

linear-strength vortex panel method was used to predict the tangential speed distribution along the airfoil

surface. This was developed according to the analysis developed by Katz and Plotkin [3]. Using the speed

distribution, the resulting boundary layer was computed along the length of the upper and lower airfoil

surfaces according to the method presented by Fujiwara et al [4]. The airfoil geometry was adjusted by the

boundary layer results, and the converged solution was taken as the parasitic drag acting on the section.

The spanwise summation of this was used as the acting parasitic drag for the wing.

The structural solver itself was developed using classical beam theory as presented by Hibbeler [5]. Using

this, an implementation was developed where the wing twist about the shear centre was computed, and then

the bending deflection of the wing was determined. The combined rotations and deflections along the wing

were used to deform the aerodynamic model and adjust the acting loads. For rapid computation, the wing

box structure was analysed as a series of area concentrations laid about the wing box frame.

The global aerostructural solution was determined through the coupling of the aerodynamic and structural

solvers. To achieve this, the structural effects of the drag was considered negligible and omitted from

deforming the wing. An iterative scheme was then employed to apply the loads from the VLM to the

structure, which then deformed to adjust the VLM mesh. This process was repeated until the solution had

converged, after which the viscous effects were computed, and the multidisciplinary analysis was

considered to be complete.

2

2 Analysis Architecture

2.1 Flow of Information
The chosen architecture for the multidisciplinary analysis began first by creating a top-level main function

from which the individual analysers were called to produce their respective results. To this end, an

encapsulated analysis function was created for each solver, which contained calls for the various sub-

functions required to generate the aerodynamic or structural outputs. Additionally, to enable separate

iteration schemes, the inviscid aerodynamic solver and the viscous aerodynamic solver were encapsulated

separately.

The general flow of information from the main function to and from the encapsulated analysers was

presented in Figure 2.1. Inputs to a function have been placed in the same column, while outputs have been

placed within the same row [1]. Arrows have also been included to highlight the direction of information.

Figure 2.1: Global MDA Architecture

As was shown in the figure, geometric and material properties were sent by the main function into the three

solvers. Receiving this information, the solvers would compute their respective outputs. Starting with the

inviscid aerodynamic solver, the lift and induced drag distributions along the wing were output. In terms of

encapsulation, this was the simplest of the three functions containing only the function calls to populate and

solve the aerodynamic influence matrices.

The next solver that was called by the main function was the structural deformation calculator. This did not

require any additional internal control logic, and the subfunctions were merely computed in sequence.

Internally, this calculator was comprised of two modules: the wing twist solver and the wing deflection

solver. First, the torque acting on each section of the wing was used to compute the twist angle at each

spanwise location. From there, the bending analysis would determine the deflection through analysing the

bending moment at each section and using the twist angle to adjust the location probed for the radius of

curvature.

3

A third module was categorized within the structural solver but was present within the main analysis

function rather than the encapsulated structural solver. This module was the function used to deform the

VLM mesh according to the determined bending and twist distribution. This was placed outside of the

structural solver to allow for the analysis program to limit the relative change in deformation per iteration.

A visual representation of the structural analysis was presented in Figure 2.2, illustrating the flow of

loading, structural, and deformation information through the three sub-modules which comprised this

domain.

Figure 2.2: Structural Solver Architecture

The last of the three solvers to execute was the viscous drag aerodynamic analysis. Unlike the inviscid

aerodynamic and structural analysers, this function contained additional control logic with its own iteration

scheme. Four sub-modules comprised this analyser: an effective angle of attack calculator, a 2D inviscid

airfoil analyser, a boundary layer solver, and an airfoil geometry manipulator. These modules have been

presented in Figure 2.3.

Figure 2.3: Viscous Aerodynamic Solver Architecture

4

In using this solver, the wing was divided into a series of strips based on the panel discretization developed

for the VLM mesh. For each strip, the effective angle of attack was computed from the induced drag

coefficient and a linear-lift approximation. With this parameter determined, an iterative viscous-inviscid

coupled 2D aerodynamic analysis was run. With this, the inviscid airfoil panel solver was run to produce a

tangential speed distribution along the airfoil surface. This was then used to compute the boundary layer

characteristics, including its displacement thickness. The airfoil surface geometry sent to the inviscid

calculator was then adjusted with this displacement thickness, and the analysis was run repeatedly until a

solution was converged upon [3]. With the solution converged, the sectional viscous drag was returned.

This process was repeated for each spanwise section, and the summation of these drag forces was taken as

the total parasitic drag acting on the wing.

2.2 Lift-Structural Coupling
To simplify the analysis, coupling of the aerodynamic loads with the structural analysis was limited to only

the lift loads [2], with the drag loads assumed to have a negligible impact on the wing deformation. With

this assumption, the VLM was coupled to the structural solver and the viscous drag calculator was omitted

from this stage of the computation. Additionally, while the induced drag was computed by the VLM, its

effects too were omitted from structural consideration.

With the coupling mode defined, the iterative scheme was defined with the following steps:

1. Compute the lift force distribution along the wing with the VLM.

2. Compute the deflection and twist along the spanwise direction with the structural solver.

3. Scale the change in twist and deflection for the given iteration (prevented divergent solution)

4. Calculate the percentage change in lift for the given iteration

5. Check if change in lift is below 0.1%. If so, exit the iteration.

6. Otherwise, deform the wing VLM mesh and repeat from Step 1.

The iterative approach was necessitated by the interdependencies present between the aerodynamic and

structural solutions. Essentially, the structural solver required the VLM loads as an input while the VLM

required the deformed structure as an input. Through the implemented approach, the two solvers were run

repeatedly until a final convergent solution was output.

2.3 Aerodynamic Coupling
With the two aerodynamic solvers, the flow of information was established to be one-directional. With this

implementation, the viscous analysis required the induced drag output by the VLM, but the VLM did not

require any input from the viscous solver. Following from this, the viscous analyser was only run a single

time for a wing analysis, which was done after the lift-structural coupled solution had been computed.

5

3 Geometric and Simulation Definitions
To enable the usage of the tool, the wing was defined through a set of parameters. These parameters

specified the wing planform, the airfoil geometry, and the wing box characteristics. Additional inputs were

given to the analysis which defined the airflow properties.

Furthermore, to retain consistent nomenclature with aircraft, the chordwise direction was given the ‘𝑥’

label, the spanwise direction was given the ‘𝑦’ label, and the vertical direction was given the ‘𝑧’ label. The

geometric origin for analysis was placed at the leading edge of the wing root chord.

3.1 Planform Geometry
The planform of the wing was defined as having a rectangular section, and a trapezoidal section. The

spanwise location where the rectangular section ended was subsequently defined as the “kink” [2]. For the

overall wing geometry, the root chord length and semi-span length were used as defining parameters. The

location of the kink was defined as a proportion of the semi-span, through the use of a kink distance ratio.

For the trapezoidal section, the leading-edge sweep angle was also defined, and the tip chord was computed

as the product of the taper ratio and the root chord length. A sample planform with these 5 parameters

overlaid was presented in Figure 3.1.

Figure 3.1: Wing Planform Parameters

3.2 Airfoil Geometry
The airfoil geometry was defined as a list of points with 𝑥 and 𝑧 coordinates [6]. The first point in the array

was located at the trailing edge. The subsequent data points defined the curve along the upper surface, then

the leading edge, and finally the lower surface [7]. The last point specified in this array was located at the

lower surface trailing edge. The geometry of a unit-length airfoil was then defined as the linear

interpolation, from the upper trailing edge to the lower trailing edge, of these points. An example of this

representation was presented in Figure 3.2, using a NACA 6409 airfoil [6].

Figure 3.2: Sample Airfoil Geometry

6

3.3 Wing Box Geometry
The wing box was defined both geometrically and materially. Geometrically, the wing box shape was

defined with the airfoil geometry and the placement of the forward and rear spars. The upper and lower

surfaces of the wing box were interpolated from the airfoil geometry. The number of longitudinal stiffeners

was also included as a wing box defining parameter. The thicknesses of the skin and spars was additionally

specified, as well as the cross-sectional area of the stiffeners. For the structural modelling, the elastic

modulus and shear modulus were also specified. An example of the geometry resulting from a wing box

with spars placed at 20% and 70% chord length was presented in Figure 3.3. In this figure, longitudinal

stiffeners were represented with dots placed along the skin.

Figure 3.3: Sample Wing Box Geometry

3.4 Airflow Properties
A series of additional parameters were defined for the free-stream air properties, which were required to

compute the forces acting on the wing. The free-stream true airspeed was defined, as well as the

corresponding Mach number. The density and viscosity of air were also specified for the simulation.

Finally, and angle of attack was defined.

4 Inviscid Aerodynamic Analysis
The inviscid aerodynamic analysis, used to compute the lift and induced drag distribution of the wing, was

implemented through the use of a lifting surface solution comprised of vortex ring elements as presented

by Katz and Plotkin [2]. This approximation involved modelling the wing as its mean camber surface,

imposing discrete panels and vortex rings along it. The solution was then developed and solved using matrix

operations [2].

4.1 Surface Discretization
In implementing the lifting surface method outlined by Katz and Plotkin [3], the mean camber surface,

defined as the surface connecting the mean camber lines of the wing, was approximated by a series of thin

panels. Each of these panels was trapezoidal in geometry, with two sides parallel to the free-stream air. A

planform view of these trapezoidal panels was provided in Figure 4.1.

Figure 4.1: Wing Panels Planform View

7

As was apparent in Figure 4.1, the panels were arranged to produce a deformed grid. This grid separated

the camber surface into a series of sections in the 𝑦-direction, with each section being further divided by

into a set number of individual panels in the 𝑥-direction.

The 𝑧-direction coordinates for the panel vertexes were then computed from the mean camber line at each

section. To produce a smooth solution, the airfoil geometry was first divided into its upper and lower

surfaces. Then, each surface was interpolated from using MATLAB’s modified Akima cubic interpolation,

chosen as it prevented waving at the leading and trailing edge while still enabling a smooth solution. The

mean 𝑧-coordinate between the upper and lower surface curves was taken to lie on the mean camber line

and was used for the panel coordinates.

4.2 Analysis Components
Following with the requirements of the vortex ring analysis [3], a corresponding mesh of vortex rings was

computed. These were calculated from the panels rather than the mean camber surface and were offset

rearward by one-quarter panel length [3] to comply with the two-dimensional Kutta condition. The 𝑧-

direction coordinate for the vortex ring sections behind the wing, caused by the offset, was set to 0.

An additional row of vortex rings was added to the rear of the mesh in order to model the trailing edge wing

wake [3]. The rearmost line of these panels was given an 𝑥-direction coordinate of 1 000 000, considered

to be an adequate substitute for infinity.

Additional colocation points were placed on the midpoint of each panel three-quarter chord line [3]. In

terms of planform coordinates, while these were placed on the panels, the 𝑥- and 𝑦-coordinates aligned with

the centers of the vortex rings. The 𝑧-coordinate, however, was computed from the panels. These colocation

points served as the locations where the vorticities and loads were computed. A unit-length vector normal

to each panel surface was placed at these colocation points.

A visual example of the discretized wing mesh was provided with Figure 4.2.

Figure 4.2: Wing Discretization

8

4.3 Mathematical Solution
With the geometric locations of all simulation components determined, the mathematical definitions were

implemented. Globally, the vorticity solution was defined in matrix form with the following equation [3]:

 [

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

] [
Γ1
⋮
Γ𝑚

] = [
𝑅𝐻𝑆1
⋮

𝑅𝐻𝑆𝑚

] (4.1)

Where 𝑎 was the aerodynamic influence coefficient, Γ was the vorticity of the vortex ring, and 𝑅𝐻𝑆 was

the free-stream contribution. Regarding the influence matrix, each row represented the influences acting on

a specific colocation point, while the columns referred to the contribution of each colocation to the others.

Each coefficient within the aerodynamic influence matrix was computed with the following equation:

 𝑎𝐾𝐿 = (𝑞𝐿 + 𝑞𝐿
′ + 𝑞𝑊 + 𝑞𝑊

′) ∙ �̂�𝐾 (4.2)

Where 𝑎𝐾𝐿 was the influence coefficient for the 𝐾th colocation point and 𝐿th vortex ring, 𝑞𝐿 was the

induced velocity at this colocation point caused by the 𝐿th vortex ring, 𝑞𝐿
′ was the induced velocity by the

mirrored vortex ring (as this analysis modeled the right wing, the mirror accounted for the left wing), 𝑞𝑊was

the induced velocity of the wake, and 𝑞𝑊
′ was the induced velocity of the mirrored wake. For non-trailing

edge panels, the induced velocity of the wake panels was zero. For all induced velocity computations, a

unit vorticity was used. The actual vorticity values were solved with the matrix representation provided in

(4.1).

The induced velocity of a vortex ring was computed as the sum of the influences of the individual vortex

lines. As each vortex ring was trapezoidal, four vortex lines were summed. The effects of a single vortex

line were computed with the following formula [3]:

 𝑞 =
Γ

4𝜋|𝑟1⃗⃗⃗⃗ ×𝑟2⃗⃗⃗⃗ |
2 (

𝑟0⃗⃗⃗⃗ ∙𝑟1⃗⃗⃗⃗

|𝑟1⃗⃗⃗⃗ |
−
𝑟0⃗⃗⃗⃗ ∙𝑟2⃗⃗⃗⃗

|𝑟2⃗⃗⃗⃗ |
) ∙ (𝑟1⃗⃗⃗ × 𝑟2⃗⃗ ⃗) (4.3)

Where 𝑟1⃗⃗⃗ was the position vector from the first vortex line point and the colocation point, 𝑟2⃗⃗ ⃗ was the position

vector from the second vortex line point and the colocation point, and 𝑟0⃗⃗ ⃗ was position vector for the vortex

line.

Entries within the free-stream contribution matrix were subsequently computed with the following formula

[3]:

 𝑅𝐻𝑆𝐾 = −�⃗� ∞ ∙ �̂�𝐾 (4.4)

Where �⃗� ∞ was the velocity vector of the free-stream air, accounting for the angle of attack, and �̂�𝐾 was the

unit-length normal vector of each panel. With the aerodynamic influence coefficient matrix and the free-

stream contribution vector determined, the vorticity of each vortex ring was computed numerically. This

was represented in matrix form with the following formula:

 [Γ] = [𝐴]−1[𝑅𝐻𝑆] (4.5)

Where [𝐴] was the aerodynamic influence coefficient matrix.

9

With the ring vorticities computed, sufficient information had been determined to compute the lift force

acting on each panel. Determination of the induced drag, however, required the induced downwash at each

colocation points. This was computed according to the following relation [3]:

 [

𝑤𝑖𝑛𝑑,1
⋮

𝑤𝑖𝑛𝑑,𝑚
] = [

𝑏11 ⋯ 𝑏1𝑚
⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑚

] [
Γ1
⋮
Γ𝑚

] (4.6)

Where 𝑤𝑖𝑛𝑑 was the induced downwash at a colocation point, and 𝑏 was the component of the aerodynamic

influence coefficient determined using only the vortex lines parallel to the free-stream flow.

4.4 Force Distribution
The lift and drag force acting on each panel was computed using the vorticity and induced downwash at

each colocation point, as well as the free-stream air density and velocity. The formula used for lift

computation, which was an implementation of the Kutta-Joukowski theorem, was as follows [3]:

 Δ𝐿𝑖𝑗 = {
𝜌𝑄∞Γ𝑖,𝑗Δ𝑦𝑖𝑗

𝜌𝑄∞(Γ𝑖,𝑗 − Γ𝑖−1,𝑗)

, 𝑖 = 1
, 𝑖 > 1

 (4.7)

Where 𝜌 was the density in air, 𝑄∞ was the free stream airspeed, Δ𝑦 was the panel width, and the variables

𝑖 and 𝑗 were indices. The induced drag was subsequently computed with the following relation [3]:

 Δ𝐷𝑖𝑗 = {
−𝜌𝑤𝑖𝑛𝑑,𝑖𝑗Γ𝑖,𝑗Δ𝑦𝑖𝑗

−𝜌𝑤𝑖𝑛𝑑,𝑖𝑗(Γ𝑖,𝑗 − Γ𝑖−1,𝑗)

, 𝑖 = 1
, 𝑖 > 1

 (4.8)

As the vortex ring analysis was an incompressible analysis, the lift and induced drag were corrected to

account for compressible effects. This was done with the Prandtl-Glauert correction, represented with

following formulae [3]:

 Δ𝐿𝑖𝑗
′ =

Δ𝐿𝑖𝑗

√1−𝑀∞
2

 (4.9a)

 Δ𝐷𝑖𝑗
′ =

Δ𝐷𝑖𝑗

√1−𝑀∞
2

 (4.9b)

Where Δ𝐿𝑖𝑗
′ was the lift force acting on a panel in compressible flow, Δ𝐷𝑖𝑗

′ was the induced drag force

acting on a panel in compressible flow, and 𝑀∞ was the free-stream Mach number. As a final computation

for this stage of the analysis, the total lift and induced drag acting on the wing was computed as the sum of

the forces acting on the panels, as shown with the following equations [3]:

 𝐿 = ∑ΔLij
′ (4.10a)

 𝐷𝑖 = ∑Δ𝐷𝑖𝑗
′ (4.10b)

Where 𝐿 was the total lift force and 𝐷𝑖 was the total induced drag.

10

5 Viscous Aerodynamic Analysis
The viscous aerodynamic analysis of the wing was done through the use of strip theory, where the wing

was approximated as a series of spanwise sections, for which 2D effects could be readily modelled [2]. The

analysis for each cross section was an iterative viscous-inviscid coupled approach, where an inviscid 2D

potential flow analysis was used in conjunction with an empirical viscous drag analysis to converge on a

value for parasitic drag.

5.1 Strip Discretization
To align with VLM outputs, the wing was cut into a series of strips such that the ends of each strip aligned

with the panel mesh boundaries parallel to the free-stream velocity. This was represented in Figure 4.1,

where vertical lines of panel boundaries were present, and served as the basis for the sectional analysis. As

each mesh section was trapezoidal rather than rectangular, the average chord length for the strip was used.

The inviscid forces, determined through the VLM analysis, acting on this section were used to compute the

force coefficients used with the 2D analysis. Specifically, the induced drag coefficient was required for

each section to compute the effective angle of attack. This was computed with the following formulae:

 𝑑𝑖 =
√1−𝑀∞

2

𝑤
∑Δ𝐷𝑖

′ (5.1a)

 𝐶𝑑𝑖 =
2𝑑𝑖

𝜌𝑉∞
2 𝑐

 (5.1b)

Where 𝑑 was the induced drag force per unit length, 𝑤 was the width of the section, Δ𝐷𝑖 was the induced

drag acting on each panel within this section, 𝐶𝑑𝑖 was the 2D induced drag coefficient, 𝜌 was the density of

air, and 𝑐 was the average chord length of the section. The compressibility correction was also removed

from the induced drag force computed by the VLM, as the analysis for determining the effective angle of

attack required incompressible flow.

5.2 Effective Angle of Attack Computation
As a precursor to the inviscid analysis, the effective angle of attack acting on the airfoil was required. This

was done to account for the induced drag effects acting on the section, where the downwash produced an

effective tilting of the free-stream velocity vector. This, in turn, rotated and altered the acting lift force,

allowing a component of the vector to act in the drag direction. The various relevant vectors pertaining to

this stage of the analysis were visualized in Figure 5.1.

Figure 5.1: Induced Drag 2D Representation

11

Utilizing the definitions provided in the previous figure, the effective angle of attack was defined with the

following formula:

 𝛼𝑒𝑓𝑓 = 𝛼𝑔 +𝜙 − 𝛼𝑖 (5.1)

Where 𝛼𝑒𝑓𝑓 was the effective angle of attack, 𝜙 was the twist of the section, 𝛼𝑔 was the global angle of

attack of the wing, and 𝛼𝑖 was the induced angle of attack caused by the downwash. Utilizing the equation

determined in Appendix A, including a linear lift assumption, the effective angle of attack was solved

numerically using the following relation:

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin(𝛼𝑔 +𝜙 − 𝛼𝑒𝑓𝑓) − 𝐶𝑑𝑖 (5.2)

Where 𝐶𝑙0 was the lift coefficient of the airfoil at zero angle of attack. This formula, using the linearly lift

assumption already imposed by the VLM, accounted for both the tilting of the lift vector and its change in

magnitude caused by the change in angle of attack. Equation (5.2) was solved numerically using

MATLAB’s fzero() function, producing a value for the effective angle of attack experienced by the wing

strip. This was used as an input for the inviscid airfoil analysis.

5.3 Inviscid Airfoil Analysis
The inviscid analysis of the wing section, modelled as a 2D airfoil analysis, was required to compute the

tangential speeds along the surface. This was implemented through the use of the linear-strength vortex

method defined by Katz and Plotkin [3], similar in execution to XFOIL [7], and generating the solution at

the effective angle of attack determined with the model in Section 5.2.

5.3.1 Airfoil Discretization

The 2D airfoil geometry was modelled as a series of vortex panels connecting the geometric nodes of the

airfoil [3]. This produced a continuous curve of vortex panels from the upper trailing edge to the lower

trailing edge, aligning with a linear interpolation of the airfoil geometry. A colocation point, where the

vorticities were computed to be acting, was also placed at the midpoint of each vortex panel [3]. A unit-

length normal and tangent vector was computed and placed on each colocation point. A visual

representation of this discretized form was presented in Figure 5.2.

Figure 5.2: Airfoil Discretization

12

5.3.2 Mathematical Solution

The goal of the mathematical solution was to determine the vorticity of each vortex panel, which was then

used to compute the pressure coefficients and tangential velocity acting along airfoil surface. This was

represented in matrix form with the following matrix relation [3]:

 [

𝑎11 𝑎12 ⋯ 𝑎1,𝑁+1
⋮ ⋮ ⋱ ⋮
𝑎𝑁1 𝑎𝑁2 ⋯ 𝑎𝑁,𝑁+1
1 0 ⋯ 1

] [

𝛾1
⋮
𝛾𝑁
𝛾𝑁+1

] = [

𝑅𝐻𝑆1
⋮

𝑅𝐻𝑆𝑁
0

] (5.3)

Where 𝑎 was the aerodynamic influence coefficient, 𝛾 was the vorticity of a panel node, and 𝑅𝐻𝑆 was the

free-stream contribution. The size of the aerodynamic influence matrix was a square matrix of 𝑁 + 1, where

𝑁 was the number of colocation points. The size of 𝑁 + 1 resulted from the use of linear strength vortex

panels over constant strength panels, as vorticities were defined at the two ends of the panels. Additionally,

the final row of the matrix representation was the inclusion of the Kutta condition, which specified that the

two trailing edge vorticities must equal:

 𝛾1 + 𝛾𝑁+1 = 0 (5.4)

The aerodynamic influence coefficients within this matrix were computed as the dot product of the self-

induced velocity of the panel, from a unit strength vortex, and the normal vector [3]. This was presented

with the following equation:

 𝑎𝑖𝑗 = {(𝑢
𝑏 , 𝑤𝑏)

𝑖,𝑗−1
+ (𝑢𝑎 , 𝑤𝑎)𝑖,𝑗} ∙ �̂�𝑖 (5.5)

Where 𝑢 and 𝑤 were the velocity components induced by the 𝑗th vorticity, and �̂�𝑖 was the unit vector

normal to the 𝑖th panel. The induced velocity components were calculated, in the panel coordinate system,

with the following equations derived from the approach specified by Katz and Plotkin [3]:

 𝑢𝑗
𝑎 = −

𝑧

2𝜋
(

𝛾𝑗

𝑥2−𝑥1
) ln (

𝑟2

𝑟1
) +

𝛾𝑗(𝑥2−𝑥)

2𝜋(𝑥2−𝑥1)
(𝜃2 − 𝜃1) (5.6a)

 𝑢𝑗
𝑏 =

𝑧

2𝜋
(
𝛾𝑗+1

𝑥2−𝑥1
) ln (

𝑟2

𝑟1
) +

𝛾𝑗+1(𝑥−𝑥1)

2𝜋(𝑥2−𝑥1)
(𝜃2 − 𝜃1) (5.6b)

 𝑤𝑗
𝑎 = −(

𝛾𝑗(𝑥2−𝑥)

2𝜋(𝑥2−𝑥1)
) ln (

𝑟2

𝑟1
) −

𝑧

2𝜋
 (

𝛾𝑗

𝑥2−𝑥1
) [

𝑥2−𝑥1

𝑧
+ (𝜃2 − 𝜃1)] (5.6c)

 𝑤𝑗
𝑏 = −(

𝛾𝑗+1(𝑥−𝑥1)

2𝜋(𝑥2−𝑥1)
) ln (

𝑟1

𝑟2
) +

𝑧

2𝜋
(
𝛾𝑗+1

𝑥2−𝑥1
) [

𝑥2−𝑥1

𝑧
+ (𝜃2 − 𝜃1)] (5.6d)

Where the panel was defined as the line connecting points 1 and 2, defined at locations (𝑥1, 𝑧1) and (𝑥2, 𝑧2).

The vorticity acting at point 1 was set to 𝛾𝑗, while the vorticity acting at point 2 was set to 𝛾𝑗+1. The

colocation point, for which the induced velocity was computed to be acting on, was defined as (𝑥, 𝑧) within

the panel coordinate system. The distance between the colocation point and point 1 was defined as 𝑟1, while

the distance to point 2 was defined as 𝑟2. The angles were defined as the angle between 𝑟1⃗⃗⃗ or 𝑟2⃗⃗ ⃗ and the

panel tangent vector.

13

To compute these values, the reference frame was required to shift into the local panel reference frame.

Points were translated into the panel coordinate system with a rotation matrix [3]. Additionally, the origin

of the reference frame was placed at point 1 of the panel. The computation to determine the positions within

the panel reference frame was presented in the following formula [3]:

 [
𝑥𝑝
𝑧𝑝
] = [

cos(𝛼𝑖) sin(𝛼𝑖)

− sin(𝛼𝑖) cos(𝛼𝑖)
] [
𝑥 − 𝑥0
𝑧 − 𝑧0

] (5.7)

Where the values (𝑥𝑝, 𝑧𝑝) were within the panel reference frame, the values (𝑥, 𝑧) were within the global

reference frame, the values (𝑥0, 𝑧0) specified the position of the panel origin in the global coordinate

system, and 𝛼𝑖 was the incidence angle of the panel. Once the velocities were computed, another relation

was required to rotate them from the panel reference into the global reference [3]. This was presented below:

 [
𝑢
𝑤
] = [

cos(−𝛼𝑖) sin(−𝛼𝑖)

− sin(−𝛼𝑖) cos(−𝛼𝑖)
] [
𝑢𝑝
𝑤𝑝
] (5.8)

Where, the values (𝑢𝑝, 𝑤𝑝) were the velocity components in the panel reference frame, and the values

(𝑢, 𝑤) were the velocity components in the global reference frame. The remaining component for the

solution was the free-stream contribution, which was computed with the following relation [3]:

 𝑅𝐻𝑆𝑖 = �⃗� ∞ ∙ �̂�𝑖 (5.9)

Where �⃗� ∞ was the free-stream air velocity vector. The vorticity of each panel node was then computed, in

matrix form, with the following relationship:

 [𝛾] = [𝐴]−1[𝑅𝐻𝑆] (5.10)

Where [𝛾] was the vorticity vector, [𝐴] was the aerodynamic influence coefficient matrix, and [𝑅𝐻𝑆] was

the free-stream contribution vector.

To compute the induced velocity at the various colocation points, and by extension the tangential velocity

and pressure coefficients, an additional matrix computation was required. This was presented in the

following formula [3]:

 [

𝑄𝑖𝑛𝑑,1
⋮

𝑄𝑖𝑛𝑑,𝑁
0

] = [

𝑏11 𝑏12 ⋯ 𝑏1,𝑁+1
⋮ ⋮ ⋱ ⋮
𝑏𝑁1 𝑏𝑁2 ⋯ 𝑏𝑁,𝑁+1
0 0 ⋯ 0

] [

𝛾1
⋮
𝛾𝑁
𝛾𝑁+1

] (5.11)

Where 𝑄𝑖𝑛𝑑 was the induced velocity vector, and 𝑏 was the tangential aerodynamic influence coefficient.

The values for the tangential coefficients were computed with the following equation [3]:

 𝑏𝑖𝑗 = {(𝑢
𝑏 , 𝑤𝑏)

𝑖,𝑗−1
+ (𝑢𝑎 , 𝑤𝑎)𝑖,𝑗} ∙ �̂�𝑖 (5.12)

 Where �̂�𝑖 was the unit vector tangent to the panel.

14

5.3.3 Analysis Outputs

With the vorticities and induced velocity distribution along the airfoil surface computed, the tangential

velocity and pressure coefficients could be determined. The tangential velocity was taken as the sum of the

induced and free-stream velocity contributions, both acting tangential to the surface. This was represented

with the following equation [3]:

 𝑄𝑡,𝑗 = 𝑄𝑖𝑛𝑑,𝑗 + �⃗� ∞ ∙ �̂�𝑗 (5.13)

Where 𝑄𝑡,𝑗 was the tangential velocity and �⃗� ∞ was the free-stream velocity vector. Utilizing the tangential

velocity, the pressure coefficient acting on each panel was computed with the following relation [3]:

 𝐶𝑃,𝑗 = 1 − (
𝑄𝑡,𝑗

|�⃗� ∞|
)
2

 (5.14)

Where 𝐶𝑃,𝑗 was the pressure coefficient.

An additional capability, required for the effective angle of attack computation, was the calculation of the

zero angle-of-attack lift coefficient for the tested airfoil. This was calculated through a summation of the

pressure effects, presented in the following equation [3]:

 𝐶𝑙 = ∑𝐶𝑃,𝑗Δ𝑐𝑗cos (𝛼𝑗) (5.15)

 Where 𝐶𝑙 was the lift coefficient, Δ𝑐𝑗 was the distance between the 𝑗th and (𝑗 + 1)th colocation point, and

𝛼𝑖 was the incident angle of the panel.

5.4 Viscous Airfoil Analysis
The viscous analysis of the airfoil was determined using the analysis scheme presented by Fujiwara et al

[4]. This required the tangential velocity distribution along the upper and lower airfoils surfaces, and

determined the corresponding sectional drag and boundary layer displacement thickness. The chosen

approach was to implement a direct boundary layer scheme, due to its simplicity over the simultaneous

solution method. While the simultaneous method would be capable of predicting low-Reynolds number

performance accurately, this capability was considered to be unnecessary as the VLM mandated large

Reynolds number cases [4]. As such, the direct method was selected, wherein the viscous solution was

computed after the inviscid solution and was used to modify the geometry input to the inviscid calculator.

This analysis was computed twice for a given airfoil, once for each airfoil surface. As a precursor to

execution, the airfoil was divided at its stagnation point, or whichever node presented the lowest tangential

speed.

15

5.4.1 Laminar Boundary Layer

The laminar boundary layer solution was a compressible implementation of Curle’s method [8], which was

an adjustment on Thwaites’ method [4], with empirical relations used to compute the boundary layer

characteristics at each node using the previous node properties. For each node, the momentum thickness

was calculated first using the tangential edge velocity computed by the inviscid airfoil solver. This was

presented in the following relation:

 𝜃2𝑢𝑒
6 = 0.441

𝜇

𝜌
∫ 𝑢𝑒

5𝑑𝑠
𝑠

0
 (5.16)

Where 𝜃 was the momentum thickness of the boundary layer, 𝑢𝑒 was the inviscid edge velocity set equal

to the tangential speed computed by the inviscid solution, 𝜇 was the viscosity of air, 𝜌 was the density of

air, and 𝑠 was the distance along the airfoil surface curve from the stagnation point. Converting this equation

into a numerical iteration problem, it was computed in discrete form using the following equation:

 𝜃 = √
0.441𝜇

𝜌𝑢𝑒,𝑖
6 ∑ 𝑢𝑒,𝑗

5 Δ𝑠𝑗
𝑖
𝑗=1 (5.17)

Where 𝑖 was the index of the panel being solved for. For this panel, a local Reynolds number per unit length

was also defined, as presented with the following definition [4]:

 𝑅𝑒𝑙 =
𝜌𝑢𝑒

𝜇
 (5.18)

This value was subsequently used to compute the momentum thickness Reynolds number with the

following relation:

 𝑅𝑒𝜃 = 𝑅𝑒𝑙𝜃 (5.19)

Where 𝑅𝑒𝜃 was the momentum thickness Reynolds number. This value was used to determine if the flow

has transitioned to turbulence using the condition presented in Section 5.4.2.

Following with Thwaites’ approach, the dimensionless pressure-gradient parameter was computed through

the following approximation [4]:

 𝜆 =
𝜃2𝜌

𝜇

Δ𝑢𝑒

Δ𝑠
 (5.20)

Where 𝜆 was the pressure-gradient parameter, and Δ𝑢𝑒/Δ𝑠 was the velocity gradient of the panel. This

parameter was input to Twaites’ empirical relations for the shape factor [4]:

 𝐻 =

{

3.9155

2.088 +
0.0731

𝜆+0.14

2.61 − 3.75𝜆 + 5.24𝜆2

2.2874

, 𝜆 ≤ −0.1
, −0.1 < 𝜆 ≤ 0.0
, 0.0 < 𝜆 ≤ 0.1
, 𝜆 > 0.1

 (5.21)

Where 𝐻 was the shape factor.

16

An additional parameter, the 𝑙 parameter was also computed empirically using relations developed by

Thwaites, as presented below [4]:

 𝑙 =

{

−0.1773

0.22 + 1.402𝜆 +
0.018𝜆

𝜆+0.107

0.22 + 1.57𝜆 − 1.8𝜆2

0.3590

, 𝜆 ≤ −0.1
, −0.1 < 𝜆 ≤ 0.0
, 0.0 < 𝜆 ≤ 0.1
, 𝜆 > 0.1

 (5.22)

With the two parameters determined, the boundary layer displacement thickness and friction coefficient

were computed for each panel. This was done with the following two relations [4]:

 𝛿∗ = 𝐻𝜃 (5.23)

 𝐶𝑓 =
2𝑙

𝑅𝑒𝜃
(1 + 0.2𝑀2) (5.24)

Where 𝛿∗ was the displacement thickness of the boundary layer, 𝐶𝑓 was the compressible friction

coefficient for the panel, and 𝑀 was the Mach number of the inviscid flow for the panel. The boundary

layer properties were defined by equations (5.23) and (5.24) until the transition condition was met, and the

turbulent analysis was used in its stead.

5.4.2 Transition Condition

The transition condition, following the approach of Fujiwara et al, was achieved through implementing

Michel’s transition criterion [4]. This first required the computation of the arc-length Reynolds number, as

presented in the following definition:

 𝑅𝑒𝑠 = 𝑅𝑒𝑙𝑠 (5.25)

Where 𝑅𝑒𝑠 was the arc-length Reynolds number, and 𝑠 was the distance along the airfoil surface curve from

the stagnation point. The transition condition was subsequently computed with the following definition [4]:

 𝑅𝑒𝜃,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1.174(1 +
22400

𝑅𝑒𝑠
)𝑅𝑒𝑠

0.46 (5.26)

Where 𝑅𝑒𝜃,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 was the transition momentum thickness Reynolds number. This condition was

computed for each panel within the laminar region, and once the momentum thickness Reynolds number

was found to exceed this parameter, the flow was considered to have transitioned to turbulent flow. For this

panel and all subsequent panels to the trailing edge, the turbulent boundary layer analysis was used.

5.4.3 Turbulent Boundary Layer

Once the flow exceeded the transition condition, the turbulent boundary layer model was used. The

implementation involved using the boundary layer properties of a given panel to compute the characteristics

at the succeeding panel. The first step of this process was computing the boundary layer shape factor with

the following relation, developed by Stanford University through modifying the approach developed by

Cebeci and Schlichting [9]:

 𝐻1 = 3.0445 +
0.8702

(𝐻−1.1)1.2721
 (5.27)

Where 𝐻1 was the boundary layer shape factor, and 𝐻 was the shape factor.

17

Another mathematical quantity required was termed the 𝑈𝑇𝐻 factor and was computed with the following

relation. This was required to use an empirical differential relationship presented by Fujiwara et al [4].

 𝑈𝑇𝐻 = 𝑢𝑒𝜃𝐻1 (5.28)

Where 𝑈𝑇𝐻 was the needed factor. This was required to compute the properties of the succeeding panel

according to the following relation [4] which defined the change in this quantity with respect to the airfoil

arc.

𝑑

𝑑𝑠
(𝑈𝑇𝐻) =

0.0306𝑢𝑒
(𝐻1−3.0)

0.6169 (5.29)

Using equation (5.29), an iterative scheme was produced to predict the value of the 𝑈𝑇𝐻 factor for the

succeeding panel, as presented in the following formula where Euler’s method was employed:

 𝑈𝑇𝐻𝑖+1 = 𝑈𝑇𝐻𝑖 +
𝑑

𝑑𝑠
(𝑈𝑇𝐻) ∙ Δ𝑠 (5.30)

Where Δ𝑠 was the length of the panel, equal to the arc length step. Computing the succeeding panel

momentum thickness value required the use of the von Karmen’s compressible integral momentum

equation, reordered in the following relation [4]:

𝑑𝜃

𝑑𝑠
=

𝐶𝑓

2
−

𝜃

𝑢𝑒
(2 + 𝐻 −𝑀2)

Δ𝑢𝑒

Δ𝑠
 (5.31)

This equation required known properties of the panel, but also required the friction coefficient. This was

computed with the empirical relationship presented below [4]:

 𝐶𝑓 =
0.246

100.678𝐻𝑅𝑒𝜃
0.268 (1 + 0.2𝑀

2) (5.32)

Where 𝑅𝑒𝜃 was the momentum thickness Reynolds number, and 𝑀 was the Mach number of the flow above

the panel. With the displacement thickness gradient defined, Euler’s method was again used to compute the

momentum thickness of the succeeding panel with the following iterative definition:

 𝜃𝑖+1 + 𝜃𝑖 +
𝑑𝜃

𝑑𝑠
Δ𝑠 (5.33)

Using equations (5.30) and (5.33), the properties of the succeeding panels were able to be computed. First,

the boundary layer shape factor was computed from the momentum thickness, the inviscid tangential

velocity, and the 𝑈𝑇𝐻 factor as presented below:

 𝐻1 =
𝑈𝑇𝐻

𝜃𝑢𝑒
 (5.34)

The shape factor corresponding to this value was subsequently computed with the following empirical

definition [4]:

 𝐻 = {

3.0
0.6778 + 1.1536(𝐻1 − 3.3)

−0.326

1.1 + 0.86(𝐻1 − 3.3)
−0.777

, 𝐻1 < 3.33
, 3.3 ≤ 𝐻1 ≤ 5.3

𝐻1 > 5.3
 (5.35)

Finally, the boundary layer displacement thickness was computed with equation (5.23), restated below:

 𝛿∗ = 𝐻𝜃 (5.36)

18

With the displacement thickness and friction coefficients determined, the relevant quantities of the

boundary layer were able to be modelled. Additionally, following the recommendations of Fujiwara et al,

once the solution was completed, the boundary layer thickness for the last 5% of the chord was overridden

to have a constant thickness, correcting for the strong adverse pressure gradients produced by the trailing

edge Kutta condition [4].

5.5 Inviscid-Viscous Coupling
Coupling of the inviscid and viscous airfoil calculators was achieved through an iterative scheme. First, the

inviscid solution was computed using the defined airfoil geometry. The viscous analysis was subsequently

computed using the tangential velocity distribution predicted by the inviscid analysis.

The viscous analysis generated a boundary layer displacement thickness as one of its outputs. This was

used to adjust the airfoil geometry provided to the inviscid calculator, so that the inviscid analysis was

conducted about the boundary layer rather than the airfoil geometry itself. This defined the iterative scheme,

which was exited once the boundary layer thickness at the middle of the airfoil was no longer changing

significantly.

A sample result was provided in Figure 5.3, showing a magnified view of an airfoil and boundary layer.

The boundary layer displacement thickness was visibly thin, and only adjusted the geometry of the airfoil

slightly. Nonetheless, the difference in predicted skin friction was significant between the first and last

iteration, justifying the need for the iterative procedure.

Figure 5.3: Viscous Airfoil Analysis Output

5.6 Parasitic Drag Computation
The parasitic drag acting on each section was computed from the friction coefficients output by the

boundary layer analysis. This was defined with the following relation:

 𝑑𝑝 =
1

2
𝜌∑𝑄𝑡,𝑖

2 𝐶𝑓,𝑖Δ𝑠𝑖 (5.37)

 Where 𝑑𝑝 was the parasitic drag per unit length acting on the section, and Δ𝑠 was the length of each panel

comprising the airfoil.

19

The overall parasitic drag force acting on the section was computed by multiplying the sectional drag with

the section width, as presented in the following equation:

 Δ𝐷𝑝,𝑖 = 𝑑𝑝,𝑖Δ𝑦𝑖 (5.38)

Where Δ𝐷𝑝 was the parasitic drag force acting on the section, and Δ𝑦 was the spanwise length of the section.

The total parasitic drag acting on the wing was taken as the summation of the drag force acting on each

constituent section:

 𝐷𝑝 = ∑Δ𝐷𝑝,𝑖 (5.39)

Where 𝐷𝑝 was the total parasitic drag acting on the wing.

6 Structural Analysis
Structural modelling was utilized to predict how the wing would deform under the loading conditions

applied to it. This was done through an implementation of classical beam theory, which predicted the

bending deflection and twist angle of each section along the wing.

6.1 Wing Box Bending Model
To facilitate computation of the wing box bending properties, the structure was modelled as a series of area

concentrations. Through analysing the wing box in this form, an accurate approximation was possible for

the moments of inertia and centroid, provided a sufficient resolution was utilized. By extension, this enabled

the computation of the principal axes which were required to accurately predict the response of asymmetric

cross sections. A visual representation of this discretization was presented in Figure 6.1, depicting the skin,

spars, and stringers as a series of area concentration points.

Figure 6.1: Wing Box as Area Concentrations

20

This numerical approximation scheme allowed for the following approximations to be used for the centroid

computations [5]:

 𝑥𝑐 =
∑𝑥𝑖𝐴𝑖

∑𝐴𝑖
 (6.1a)

 𝑧𝑐 =
∑𝑧𝑖𝐴𝑖

∑𝐴𝑖
 (6.1b)

Where (𝑥𝑐 , 𝑧𝑐) was the location of the centroid, (𝑥𝑖 , 𝑧𝑖) was the location of each area concentration, and 𝐴𝑖
was the area concentrated at each point. The moments and product of inertia were similarly computed

according to the following numerical definitions [5]:

 𝐼𝑥𝑥 = ∑𝑧𝑖
2𝐴𝑖 (6.2a)

 𝐼𝑧𝑧 = ∑𝑥𝑖
2𝐴𝑖 (6.2b)

 𝐼𝑧𝑥 = ∑𝑥𝑖𝑧𝑖𝐴𝑖 (6.3c)

Where 𝐼𝑥𝑥 and 𝐼𝑧𝑧 were the area moments of inertia, and 𝐼𝑧𝑥 was the product of inertia. With these

computations, the moments and product of inertia were computed for the centroidal reference frame which

was defined as having the origin placed at the centroid with the axes parallel to the global 𝑥- and 𝑧-axes.

For the computation of the bending response, the principal axes were required. This was computed

according to the definition provided by Hibbeler [5]:

 𝜃𝑝 =
1

2
arctan (−

𝐼𝑧𝑥

0.5(𝐼𝑥𝑥−𝐼𝑧𝑧)
) (6.4)

Where 𝜃𝑝 was the angle between the principal axis and the global axis. Note that MATLAB’s atand()

function was used here to ensure the angle was bounded by [−90,90]. A visual representation of the

principal axes relative to the centroidal axes was provided in Figure 6.2.

Figure 6.2: Principal Axes

21

Within the principal reference frame, defined by the principal axes, the global-reference moments and

product of inertia were computed according to the following equations [5]:

 𝐼𝑥′𝑥′ =
𝐼𝑥𝑥+𝐼𝑧𝑧

2
+
𝐼𝑥𝑥−𝐼𝑧𝑧

2
cos(2𝜃𝑝) − 𝐼𝑧𝑥 sin(2𝜃𝑝) (6.5a)

 𝐼𝑧′𝑧′ =
𝐼𝑥𝑥+𝐼𝑧𝑧

2
+
𝐼𝑥𝑥−𝐼𝑧𝑧

2
cos(2𝜃𝑝) + 𝐼𝑧𝑥 sin(2𝜃𝑝) (6.5b)

 𝐼𝑧′𝑥′ = 0 (6.5c)

Where 𝐼𝑥′𝑥′ and 𝐼𝑧′𝑧′ were the moments of inertia within the principal reference frame, and 𝐼𝑧′𝑥′ was the

product of inertia within the principal reference frame, set to zero by definition.

Converting the coordinates of points into and out of the principal reference frame was done according to

the following matrix definitions:

 [
𝑥′

𝑧′
] = [

cos 𝜃𝑝 sin𝜃𝑝
−sin 𝜃𝑝 cos 𝜃𝑝

] [
𝑥
𝑧
] (6.6a)

 [
𝑥
𝑧
] = [

cos𝜃𝑝 −sin 𝜃𝑝
sin𝜃𝑝 cos 𝜃𝑝

] [
𝑥′

𝑧′
] (6.6b)

Where (𝑥′, 𝑧′) was the coordinates of a given point in the principal reference frame, and (𝑥, 𝑧) were the

coordinates of the same point within the centroidal reference frame.

6.2 Wing Box Torsion Model
To compute the torsion response of the wing, the shear centre location was required. This was computed

by applying an arbitrary unit-magnitude shear force in the 𝑥′-direction to locate the 𝑧′-coordinate of the

shear center. Following this, a unit magnitude force was applied in the 𝑧′ −direction and was used to locate

the 𝑥′-coordinate of the shear center.

Locating the shear center first required the shear flow within the structure to be computed. This was defined

with the following equation [10]:

 𝑞𝑠 = −(
𝑆𝑥𝐼𝑥𝑥−𝑆𝑧𝐼𝑧𝑥

𝐼𝑥𝑥𝐼𝑧𝑧−𝐼𝑧𝑥
2) ∫ 𝑡𝑥 𝑑𝑠

𝑠

0
− (

𝑆𝑧𝐼𝑧𝑧−𝑆𝑥𝐼𝑧𝑥

𝐼𝑥𝑥𝐼𝑧𝑧−𝐼𝑧𝑥
2) ∫ 𝑡𝑦 𝑑𝑠

𝑠

0
+ 𝑞𝑠,0 (6.7)

Where 𝑞𝑠 was the shear flow, 𝑞𝑠,0 was the constant shear flow, 𝑆𝑥 and 𝑆𝑧 were the applied shear forces, and

𝑠 was the distance along the curve of the wing box surface. The summation of the two integral terms and

their coefficients was termed the “basic shear flow” [10], and was given the identifier 𝑞𝑏.

Numerically approximating the basic shear flow, and computing its value within the principal reference

frame, and thereby setting the product of inertia to zero, the following formula was used to compute this

parameter for the analyser:

 𝑞𝑏,𝑖 = −
𝑆𝑥

𝐼𝑧′𝑧′
∑ (𝑡𝑖𝑥𝑗

′Δ𝑠𝑗)
𝑖
𝑗=𝑖 −

𝑆𝑧

𝐼𝑥′𝑥′
∑ (𝑡𝑗𝑧𝑗

′Δ𝑠𝑗)
𝑖
𝑗=0 (6.8)

Where 𝑞𝑏,𝑖 was the basic shear flow value at a wing box node, 𝑡𝑖 was the thickness of the skin or spar at

that node, (𝑥𝑗
′, 𝑧𝑗

′) was the coordinates of that node within the principal reference frame, and Δ𝑠𝑗 was the

distance between the node and the previous node. The selection of the initial node, and thereby the first

index, was arbitrary and did not affect the solution to the overall shear flow.

22

The constant shear flow was also computed using a numerical approximation, defined by the following

formula [10]:

 𝑞𝑠,0 = −
∑𝑞𝑏,𝑖Δ𝑠𝑖/𝑡𝑖

∑Δ𝑠𝑖/𝑡𝑖
 (6.9)

With the shear flow numerically approximated along the aircraft surface, the following definition was used

as a basis for computing the location of the shear centre [10]:

 𝑆𝑥𝜂 − 𝑆𝑧𝜉 = ∮𝑝𝑞𝑏 𝑑𝑠 + 2𝐴𝑚𝑒𝑎𝑛𝑞𝑠,0 (6.10)

Where 𝜂 was the 𝑧-coordinate of the shear center, 𝜉 was the 𝑥-coordinate of the shear center, 𝑝 was the

lever arm of the shear flow acting on the origin of the principal reference frame, and 𝐴𝑚𝑒𝑎𝑛 was the mean

2D area encased by the wing box. This was numerically approximated into the following form:

 𝑆𝑥𝜂 − 𝑆𝑧𝜉 = ∑𝑝𝑖𝑞𝑏,𝑖Δ𝑠𝑖 + 2𝐴𝑚𝑒𝑎𝑛𝑞𝑠,0 (6.11)

Additionally, with a derivation provided in Appendix B, the shear arm was computed with the following

formula:

 𝑝𝑖 = |
𝑧𝑖−

Δ𝑧

Δ𝑥
𝑥𝑖

1−(
Δ𝑧

Δ𝑥
)
2|√(

Δ𝑧

Δ𝑥
)
2
+ 1 (6.12)

Where 𝑝𝑖 was the lever arm corresponding to the wing box node, Δ𝑧/Δ𝑥 was the slope of the wing box at

the node, and (𝑥𝑖 , 𝑧𝑖) was the coordinates of the node. Equation (6.11) was used twice, once with the 𝑥′-

direction force and a second time with 𝑧′-direction force. For each, the force in the other direction was set

to zero and the coordinates were solved through algebraic manipulation. The coordinates were then rotated

back into the centroidal reference frame with equation (6.6b).

6.3 Wing Box Scaling Factors
For computational expediency, the properties of the wing box were computed to correspond to a unit-length

airfoil cross section. Its various characteristics were then multiplied by scaling factors to produce the

properties of the wing box at a given section. These were presented in Table 6.1, where properties were

scaled as a function of chord length 𝑐.

Table 6.1: Wing Box Scaling Factors

Parameter Scaling Factor

Length (Δ𝑠) 𝑐

Skin/Spar Thickness (unchanged)

Coordinates (𝑥, 𝑧) 𝑐

Area Concentration (𝐴𝑖) 𝑐

Mean Area (𝐴𝑚𝑒𝑎𝑛) 𝑐2

Moment of Inertia (𝐼𝑥𝑥, 𝐼𝑧𝑧) 𝑐3

Product of Inertia (𝐼𝑧𝑥) 𝑐3

Principal Angle (𝜃𝑝) (unchanged)

23

6.4 Wing Loading
The loading applied to the wing was computed through analysing the lift forces generated by the VLM on

each section, producing a load distribution along the wingspan. As with the viscous aerodynamic analyzer,

the sections were divided by the panel boundaries which were parallel to the free stream.

6.4.1 Torsional Loads

Computing first the torsional loading, the torque acting on each section was computed with the following

formula:

 𝑇𝑠,𝑗 = ∑Δ𝐿𝑖(𝑥𝑠𝑐 − 𝑥𝑖) (6.13)

 Where 𝑇𝑠,𝑗 was the torque acting on the section, Δ𝐿𝑖 was the lift force acting on teach panel within the

section, 𝑥𝑖 was the colocation point 𝑥-coordinate where the force was acting, and 𝑥𝑠𝑐 was the shear centre

𝑥-coordinate.

To compute the torsion distribution along the wingspan, the torque acting on the root section was first set

as the negative total torque acting on the wing, as defined in the following equation [5]:

 𝑇(𝑦1) = −∑𝑇𝑠,𝑗 (6.14)

Where 𝑇(𝑦1) was the value of the torque distribution function at the root. The values for the torque

distribution function were then computed iteratively according to the following formula:

 𝑇(𝑦𝑗) = 𝑇(𝑦𝑗−1) + 𝑇𝑠,𝑗 (6.15)

Where 𝑦 was the spanwise coordinate.

6.4.2 Bending Loads

To compute the bending loads, the shear force and bending moment functions were defined along the span

of the wing. First, the shear load distribution was computed, with the shear load acting on the root section

set to equal the negative total lift force acting on the wing [5]:

 𝑉(𝑦1) = −𝐿 (6.16)

Where 𝑉(𝑦1) was the value of the shear load function at the root. The subsequent values for the shear load

function were defined iteratively as presented below:

 𝑉(𝑦𝑗) = 𝑉(𝑦𝑗−1) + ∑Δ𝐿𝑖𝑗 (6.17)

Where ∑Δ𝐿𝑖𝑗 was the total lift force acting on the section.

The moment distribution was computed in a similar iterative fashion. The bending moment at the wing tip

was first set to zero [5]:

 𝑀(𝑦𝑛) = 0 (6.18)

Where 𝑀(𝑦𝑛) was the value of the moment function at the wing tip. The remaining values for the function

were computed iteratively from the tip to the root with the following definition [5]:

 𝑀(𝑦𝑗) = 𝑀(𝑦𝑗+1) +
1

2
Δ𝑦𝑗(∑Δ𝐿𝑖𝑗) (6.19)

Where Δ𝑦𝑗was spanwise panel width, and ∑Δ𝐿𝑖𝑗 was the lift force acting on the section.

24

6.5 Wing Deformation
Deformation of the wing was computed from the twist and deflection distribution along the span. For this

analysis, first the twist angle distribution along the wing was computed. Following this, the deflection angle

and vertical deflections were found, using the twist angle to adjust the point tested in determining the radius

of curvature.

6.5.1 Twist Angle Prediction

The twist angle at each point along the wingspan was calculated through the following approximation

provided by Hibbeler [5]. The twist angle at the root was set to zero degrees, while each successive angle

was computed with the torsion distribution function.

 𝜙𝑗+1 = 𝜙𝑗 −
𝑇(𝑦𝑗)Δ𝑦𝑗

4𝐴𝑚𝑒𝑎𝑛
2 𝐺

∑
Δ𝑠𝑖

𝑡𝑖
 (6.20)

Where 𝜙 was the twist angle and Δ𝑦𝑗 was the spanwise panel width. The quantity ∑
Δ𝑠𝑖

𝑡𝑖
 was computed along

the wing box surface.

6.5.2 Deflection Prediction

Prediction of the deflection required the radius of curvature for the wing box to be determined at each

spanwise section. To compensate for the twist of the wing and ensure that the computed deflection was in

the vertical direction, the point probed to compute this value was rotated by the twist angle.

Prior to this computation, however, the moment vector components acting on the structure were required.

Resulting from the lift force distribution, this vector was parallel to the global 𝑥-axis while the components

acting along the principal axes was needed, and further accounting for the rotation caused by twist was

necessary.

The deconstruction of the moment vector was presented in Figure 6.3. In this figure the axes shown were

centered on the wing box centroid. The 𝑥-axis was set parallel to the global 𝑥-axis, while the 𝑥𝑐-axis was

set parallel to the untwisted 𝑥-axis of the wing box. Finally, the 𝑥𝑝- and 𝑧𝑝-axes were the principal axes of

the wing box structure.

Figure 6.3: Moment Vector Components

25

Geometrically derived from Figure 6.3, the bending moment vector acting on the wing box was separated

into its constituent principal-axis components with the following to equations:

 𝑀𝑥 = 𝑀 cos(−𝜃𝑝 − 𝜙) (6.21a)

 𝑀𝑧 = 𝑀sin(−𝜃𝑝 − 𝜙) (6.21b)

Where 𝑀𝑥 was the moment vector component about the principal 𝑥-axis, 𝑀𝑧 was the moment vector

component about the 𝑧-axis, and 𝑀 was the total bending moment acting on the cross section.

Having determined the bending moment components acting on the structure, the lateral strain acting on any

arbitrary point within the wing box structure was able to be computed with the following formula [5]:

 휀𝑦 =
𝑀𝑧𝑥

′

𝐸𝐼𝑧′𝑧′
−

𝑀𝑥𝑧
′

𝐸𝐼𝑥′𝑥′
 (6.22)

Where 휀𝑦 was the lateral strain, (𝑥′, 𝑧′) was the coordinates of an arbitrary point defined in the principal

reference frame, and 𝐸 was the elastic modulus of the material. To compute the lateral strain value used for

the deflection angle computation, an arbitrary point near the top of the wing box was probed. To align the

radius of curvature and ensure that the computed deflection was vertical, the probed point was rotated from

the centroidal axis by the twist angle as presented in Figure 6.4.

Figure 6.4: Probe Point Selection

Deriving from the geometry presented in Figure 6.4, the probed point defined within the principal reference

frame was computed with the following equations:

 𝑥′ = 𝑧𝑝𝑟𝑜𝑏𝑒 sin(𝜃𝑝 + 𝜙) (6.23a)

 𝑧′ = 𝑧𝑝𝑟𝑜𝑏𝑒 cos(𝜃𝑝 + 𝜙) (6.23b)

Where (𝑥′, 𝑧′) was the probed point coordinates defined in the principal reference frame, and 𝑧𝑝𝑟𝑜𝑏𝑒 was

the 𝑧-axis component of the point probed for the strain.

26

With the lateral strain value computed, the deflection angle slope was able to be approximated with the

following equation [5]:

𝑑𝜃

𝑑𝑦
= −

𝜀𝑦

𝑧𝑝𝑟𝑜𝑏𝑒
 (6.24)

Where 𝜃 was the deflection angle, and 𝑑𝜃/𝑑𝑦 was the deflection angle slope. Employing Euler’s method

alongside an initial deflection angle of zero at the root, the successive deflection angles along the wingspan

were computed with the following formula:

 𝜃𝑗+1 = 𝜃𝑗 +
𝑑𝜃

𝑑𝑦
 Δ𝑦𝑗 (6.25)

Where Δ𝑦𝑗 was the spanwise section length. Conducting this computation along the entire wingspan

resulted in the deflection angle being determined for each section of the wing.

Finally, with the deflection angle at each location along the wing computed, the vertical deflection was

determined through a similar iterative scheme. This was presented in the following formula, where the

deflection at the wing root was set to zero.

 Δ𝑧𝑗+1 = Δ𝑧𝑗 + tan𝜃𝑗 Δ𝑦𝑗 (6.26)

Where Δ𝑧 was the vertical deflection of the wing section.

6.5.3 Mesh Deformation

To deform the VLM mesh using the predetermined twist and deflection distribution, the wing was again

divided into spanwise sections, aligning with the free-stream-parallel panel boundaries. Each point defining

the panel geometry was rotated and deflected according to the following equation:

 𝑥𝑑 = √𝑥
2 − 𝑧2 cos (arctan (

𝑧

𝑥
) + 𝜙𝑗) (6.27a)

 𝑧𝑑 = √𝑥
2 − 𝑧2 sin (arctan (

𝑧

𝑥
) + 𝜙

𝑗
) + Δ𝑧𝑗 (6.27b)

Where (𝑥𝑑 , 𝑧𝑑) was the location of the panel point after it was deformed, and (𝑥, 𝑧) was the location of the

panel point before the deformation. Additionally, MATLAB’s arctan2() function was used to compute the

angle to ensure that the point was rotated from the correct quadrant.

27

7 Sample Results

7.1 Tested Wing Configuration
To demonstrate the output capabilities of the developed multidisciplinary analysis program, a generic low-

sweep wing was utilized, intended to represent a typical turboprop aircraft. To further illustrate the wing

twisting, a longer wing was utilized. The parameters which defined this computation were presented in

Table 7.1.

Table 7.1: Sample Parameters

Air Properties

Density 1.225 kg/m3

Viscosity 1.789•10-5 kg/(m•s)

Velocity 58 m/s

Mach Number 0.2

Angle of Attack 3°

Wing Parameters

Airfoil NACA 6409

Root Chord 2.5 m

Taper Ratio 0.29

Semi-Span Length 18 m

Kink Distance Ratio 0.23

Leading Edge Sweep 3°

Wing Box Parameters

Forward Spar 20% Chord

Rear Spar 70% Chord

Number of Stringers 2×7

Stringer Area 0.0002 m2

Skin Thickness 0.001 m

Spar Thickness 0.003 m

Elastic Modulus 68.3•109 Pa

Shear Modulus 35.8•109 Pa

7.2 Aerodynamic Results

7.2.1 Lift Distribution

One of the core outputs of the VLM was the lift distribution along the aircraft wing. This was presented in

Figure 7.1, where greater lift forces were demarked in yellow and lower forces were indicated with blue.

Figure 7.1: Sample Lift Distribution

28

7.2.2 Aerodynamic Forces

Combining the outputs of both aerodynamic analyzers, the aerodynamic forces acting on the aircraft were

computed and presented in Table 7.2. This included the lift and induced drag, which were computed by the

VLM, and the parasitic drag output by the viscous analyzer. The overall lift to drag ratio of the wing was

also presented.

Table 7.2 Sample Aerodynamic Forces

Output Value

Lift 61370 N

Induced Drag 870 N

Parasitic Drag 430 N

Lift-to-Drag Ratio 47

7.3 Wing Loading Results

7.3.1 Bending Loads

The loading outputs predicted by the bending solver include the shear force and bending moment

distribution. The shear force corresponding to this sample case, modeled as a function of spanwise distance,

was presented in Figure 7.2. The bending moment distribution which corresponded to this was presented

in Figure 7.3.

Figure 7.2: Sample Shear Distribution

Figure 7.3: Sample Bending Moment Distribution

29

7.3.2 Torsion Loads

The torsion load calculator was responsible for predicting the torque distribution as a function of the

spanwise distance. The plot presenting this for the sample case was given in Figure 7.4.

Figure 7.4: Sample Torsion Distribution

7.3.3 Resulting Deformation

The core functionality of the wing structural analyzer was the bending deflection and twist angle as a

function of spanwise distance. The bending deflection predicted for this sample cases was presented in

Figure 7.5, while the predicted twist was shown in Figure 7.6.

Figure 7.5: Sample Wing Deflection

Figure 7.6: Sample Wing Twist

30

7.4 Computer Performance
As the developed program was a numerical approximation, a trade-off existed between simulation

resolution and compute time. A series of resolutions were tested, with the required iterations and time to

compute presented in Table 7.3. These results were produced using a MATLAB environment given 24

parallel workers, on an AMD Ryzen-9 3950X computer system with 16 CPU cores and 32 gigabytes of

RAM. During the program operation, the system was able to maintain approximately 90% CPU utilization

with the developed architecture.

Table 7.3: Computational Requirements

Number of 𝒙-panels Number of 𝒚-panels Iterations to Converge Time to Compute (s)

3 7 10 1.4

10 40 7 4.2

40 40 4 20.8

60 40 5 55.8

60 80 5 213.9

60 100 5 330.2

8 Conclusions
An aerostructural analyzer was developed to model the deformation and aerodynamic loading of a low-

sweep wing. This implementation was developed within the MATLAB environment, and included coupled

aerodynamic and structural solvers. Each of these encapsulated solving functions were further subdivided

into additional functions which sequentially or iteratively generated the required outputs.

The aerodynamic analysis approach used was the quasi-three-dimensional modelling approach, with a

separate inviscid and viscous analyzer [2]. The inviscid effects were modelled with a vortex ring lifting

surface model, implementing the method presented by Katz and Plotkin [3]. Viscous effects, specifically

that of parasitic drag, were modelled with strip theory analysis using a 2D airfoil analyzer [2]. This 2D

analysis was in itself subdivided, including an effective angle of attack computation, an inviscid linear-

strength vortex airfoil analysis [3], and an empirical direct boundary layer computation [4].

Structural modelling was supplied through an implementation of classical beam theory [5]. This was

comprised of a torsional twist prediction and a bending deflection computation. For solution purposes, the

wing box was numerically approximated as a swarm of area concentrations that allowed for the rapid

determination of the wing box centroid, moments of inertia, and shear centre.

The global solution was produced through a coupling of these solvers. For a given analysis, the

implementation would iteratively converge the inviscid loading and structural response loads. Once this

was completed, the viscous analysis was run to develop the parasitic drag load and allow for the

computation of the wing aerodynamic efficiency. As developed, the analyzer was capable of predicting the

dominant aerodynamic loads for the modeled non-rigid wing within acceptable time frames.

31

9 References

[1] J. Martins and A. Lambe, "Multidisciplinary Design Optimization: A Survey of Architectures," AIAA

Journal, vol. 51, no. 9, pp. 1-48, 2013.

[2] A. Elham and M. van Tooren, "Tool for preliminary structural sizing, weight estimation, and aeroelastic

optimization of lifting surfaces," Proceedings of the Institution of Mechanical Engineers, vol. 230, no.

2, pp. 280-295, 2015.

[3] J. Katz and A. Plotkin, Low-Speed Aerodynamics, New York: Cambridge University Press, 2001.

[4] G. Fujiwara, D. Chaparro and N. Nguyen, "An Integral Boundary Layer Direct Method Applied to 2D

Transonic Small-Disturbance Equations," in AIAA Applied Aerodynamics Conference, Washington DC,

2016.

[5] R. C. Hibbeler, Mechanics of Materials, Pearson Prentice Hall, 2011.

[6] M. Selig, "UIUC Airfoil Coordinates Database," University of Illinois, [Online]. Available: https://m-

selig.ae.illinois.edu/ads/coord_database.html#N. [Accessed 2021].

[7] M. Drela, "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils," Low Reynolds

Number Aerodynamics, pp. 1-12, 1989.

[8] N. Curle, The Laminar Boundary Layer Equations, Oxford: Oxfor University Press, 1962.

[9] B. J. Cantwell, "Viscous Flow Along a Wall," Stanford University Department of Aeronautics and

Astronautics, [Online]. Available:

https://web.stanford.edu/~cantwell/AA200_Course_Material/Ch09_Viscous_Flow_Along_a_Wall.pdf.

[Accessed March 2021].

[10] T. H. G. Megson, Aircraft Structures for Engineering Students, Kidlington: Elsevier Ltd., 2017.

32

Appendix A: Effective Angle of Attack Derivation
Given that the induced drag coefficient 𝐶𝑑𝑖, the global angle of attack 𝛼𝑔, and twist angle 𝜙 were known,

and that 𝛼𝑖 was unknown.

The effective angle of attack was defined with the following equation:

 𝛼𝑒𝑓𝑓 = 𝛼𝑔 +𝜙 − 𝛼𝑖 (A.1)

Using the linear-lift assumption from Thin Airfoil Theory, the lift coefficient function was defined as:

 𝐶𝑙(𝛼) = 2𝜋𝛼 + 𝐶𝑙0 (A.2)

Where 𝛼 was some angle of attack in radians, and 𝐶𝑙0 was the zero angle-of-attack lift coefficient of the

aircraft. The 𝐶𝑙0 was assumed to be a known value.

The induced drag coefficient was defined with the following equation:

 𝐶𝑑𝑖 = 𝐶𝑙(𝛼𝑒𝑓𝑓) ∙ sin𝛼𝑖 (A.3)

Where 𝐶𝑑𝑖 was the induced drag coefficient.

Equation (A.3) was rearranged into the following form, and equation (A.2) was substituted in:

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin𝛼𝑖 − 𝐶𝑑𝑖 (A.4)

Equation (A.1) was rearranged and substituted in for 𝛼𝑖. This produced the final equation used for

determination of the effective angle of attack:

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin(𝛼𝑔 +𝜙 − 𝛼𝑒𝑓𝑓) − 𝐶𝑑𝑖

33

Appendix B: Shear Center Arm Derivation
Given the arbitrary cross section presented in the following figure of an arbitrary cross section for a thin

member:

Three points where defined. Point 𝑐 was located at the centroid, point 𝑖 was located on the edge of the thin

member, and point 1 was set where the lever arm met the tangent line. The distance between point 𝑐 and

point 1 was defined as the lever arm distance with the following equation:

 𝑝 = √(𝑥1 − 𝑥𝑐)
2 + (𝑧1 − 𝑧𝑐)

2 (B.1)

The tangent line was defined as having the slope 𝑚 = 𝑑𝑧/𝑑𝑥, which permitted the following two definitions

for the tangent and lever lines:

𝑧1−𝑧𝑖

𝑥1−𝑥𝑖
= 𝑚 (B.2)

𝑧1−𝑧𝑐

𝑥1−𝑥𝑐
=

1

𝑚
 (B.3)

Equation (B.3) was rearranged and substituted into equation (B.1) to produce the following relation.

 𝑝 = √𝑚2(𝑧1 − 𝑧𝑐)
2 + (𝑧1 − 𝑧𝑐)

2 (B.4)

Equation (B.4) was simplified into the following form:

 𝑝 = √𝑚2 + 1|𝑧1 − 𝑧𝑐| (B.5)

Equations (B.2) and (B.3) were rearranged into the following forms:

 𝑧1 = 𝑚(𝑥1 − 𝑥𝑖) + 𝑧𝑖 (B.6)

 𝑥1 = 𝑚(𝑧1 − 𝑧𝑐) + 𝑥𝑐 (B.7)

Equation (B.7) was substituted into equation (B.6) to produce the following formula.

 𝑧1 =
𝑚𝑥𝑐−𝑚

2𝑧𝑐−𝑚𝑥𝑖+𝑧𝑖

1+𝑚2 (B.8)

34

Setting 𝑥𝑐 = 0 and 𝑧𝑐 = 0 as the centroid was used the origin for the reference frame. Equations (B.5) and

(B.8) combined to become:

 𝑝 = |
𝑧𝑖−𝑚𝑥𝑖

1−𝑚2 | √𝑚
2 + 1 (B.9)

Substituting the definition of 𝑚 yielded the final equation below:

 𝑝 = |
𝑧𝑖−

𝑑𝑧

𝑑𝑥
 𝑥𝑖

1−(
𝑑𝑧

𝑑𝑥
)
2|√(

𝑑𝑧

𝑑𝑥
)
2
+ 1

35

Appendix C: Global Program Architecture

36

Appendix D: Main MATLAB Function
% wing_solve_main.m

%

% Description

% This function is the main function used to operate the aero-structual

% analysis suite

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

clear;clc;

% Initialize parallel compute workers

workers = gcp;

% Add subfolders to the path

addpath('./Aerodynamics/');

addpath('./Utilities/');

addpath('./Structures/');

% Define the simulation parameters

V_inf = 58; % Free stream velocity in m/s

M_inf = 0.2; % Free stream mach number

rho = 1.225; % Density of air

mu = 1.789E-5 ; % viscosity of air

% Read in the airfoil

[airfoil] = read_selig_foil('../01_Data/airfoil_test_NACA6.txt');

% [airfoil] = read_selig_foil('../01_Data/airfoil_test.txt');

% render_airfoil(airfoil);

% Define a placeholder wing

wing = Wing_Param();

wing.airfoil = airfoil;

wing.aoa = 3;

wing.chord_root = 2.5;

wing.tr_tip = 0.29;

wing.semi_span = 18;

wing.sweep_LE = 3;

wing.dr_kink = 0.23;

% Define the placeholder wing box

stringers = 7; % Number of stringers on top or bottom surface

A_stringers = 0.0002;

t_skin = 0.0010;

t_spar = 0.0030;

box_chords = [0.2 0.7];

E = 68.3E9; % Young's modulus in Pa

G = 35.8E9; % Shear modulus in Pa

% Compute the zero-alpha lift coefficient

foil = Airfoil(airfoil);

[CP,Qt,foil] = airfoil_solver_inviscid(foil,0,V_inf);

Cl0 = calc_airfoil_Cl(foil,CP);

% Define the resolution of the 3D VLM Analysis

x_panels = 60;

y_panels = 40;

% x_panels = 3;

% y_panels = 7;

% Define the resolution of the wingbox resolution

res_skin = 20;

res_spar = 9;

% Split the wing planform up into panels

wing_calc = convert_wing_obj(wing,x_panels,y_panels);

wing_calc_ref = wing_calc;

% Determine the wingbox for a unit-length airfoil

37

box_ref =

struct_solver_wingbox(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar);

% Compute the coupled inviscid-lift and structural analysis

fprintf('---\n');

L_last = 0;

twist_last = zeros(1,y_panels+1);

dz_last = zeros(1,y_panels+1);

scale_factor = 0.4;

exit_percent = 0.1;

for i = 1:50

 % Wing Inviscid Lift and Induced Drag Calculator

 [L,Di,dL,dDi,w] = aero_solver_inviscid(wing_calc,wing.aoa,V_inf,M_inf,rho);

 % Compute the deflection of the wing due to bending

 [y_lift,dz,twist,T_lift,V_lift,M_lift]...

 = struct_solver_deformation(wing_calc_ref,box_ref,L,dL,E,G);

 % Set the twist and deflection using the scale factor

 twist = scale_factor.*(twist-twist_last) + twist_last;

 dz = scale_factor.*(dz-dz_last) + dz_last;

 % Calculate the relative difference in lift

 percent_diff = abs(L-L_last)/abs(L_last)*100;

 % Output the percent difference

 fprintf('Lift change for iteration %2.2d: %6.3f %%\n',i,percent_diff);

 % If the change in lift is less than the exit percent, exit

 if percent_diff < exit_percent

 fprintf('Aerostructural analysis complete with %d iterations\n',i);

 break;

 end

 % Bend and twist the wing;

 wing_calc = wing_bend_and_twist(wing_calc_ref,box_ref,twist,dz);

 % Store the current values for the next iteration to compare against

 L_last = L;

 twist_last = twist;

 dz_last = dz;

end

fprintf('---\n');

% Wing Parasitic Drag Calculator

AoA = wing.aoa*ones(1,y_panels+1) + twist;

Dp = aero_solver_viscous(wing_calc,foil,y_panels,dDi,V_inf,rho,mu,AoA,Cl0,M_inf);

% Output the Aerodynamic Properties

fprintf('Lift: %10.2f N\n',L);

fprintf('Drag (Induced): %10.2f N\n',Di);

fprintf('Drag (Parasitic): %10.2f N\n',Dp);

fprintf('L/D: %10.2f\n',L/(Di+Dp));

fprintf('---\n');

% Render wingbox cross section

% render_wingbox(box_ref);

% render_loading(y_lift,V_lift,M_lift,T_lift);

% render_structure_response(y_lift,dz,twist);

% Render the wing planform

% render_wing_2D(wing, wing_calc_ref);

% render_wing_3D(wing, wing_calc_ref,1);

% render_wing_3D_lift(wing, wing_calc_ref,dL);

% render_airfoil(foil);

% [CP,~,foil] = airfoil_solver_inviscid(foil,wing.aoa,V_inf);

% render_airfoil_CP(foil,CP);

% [~,zBL] = airfoil_solver_viscous(foil,7,0,V_inf,rho,mu,M_inf);

% render_airfoil2(foil,zBL)

38

Appendix E: Aerodynamic Functions
% aero_solver_inviscid.m

%

% Description:

% This function encapsulates the inviscid aerodynamic solver. This is an

% implementation of the vortex-lattice-method, where the wing is

% approximated as a thin sheet along its mean-camber line. Thickness

% effects are neglected. The resulting computation produces the lift and

% drag distributions for the wing, and the total summation of both.

%

% Written by: Julian Bardin

% Date: 2021-02-14

%

function [L,Di,dL,dDi,w] = aero_solver_inviscid(wing_calc,AoA,V_inf,M_inf,rho)

% Calculate the infulence coefficient matrices

[A,B] = calc_influence_coeffs(wing_calc);

% Convert the free-stream velocity into vector form

Q_inf = calc_vel_vector(V_inf,AoA);

% Calculate the right-hand-side vector used in solving for vorticity

RHS = calc_RHS(wing_calc,Q_inf);

% Calculate the vorticity vector

Gamma = A\RHS;

% Calculate the lift distribution and wing lift

[L,dL] = calc_panel_lift(wing_calc,Gamma,V_inf,M_inf,rho);

% Calculate the induced vertical velocities

w = B*Gamma;

% Calculate the induced drag distribution and total wing induced drag

[Di,dDi] = calc_panel_induced_drag(wing_calc,Gamma,w,M_inf,rho);

end

39

% aero_solver_viscous.m

%

% Description:

% This function encapsulatese the viscous drag computations used for the

% wing. This includes determining the effective angle of attack of each

% airfoil section based on the induced drag, and ustilizing von Karmen's

% equations to compute drag.

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

function Dp = aero_solver_viscous(wing_calc,foil,y_panels,dDi,V_inf,rho,mu,AoA,Cl0,M_inf)

% Initialize the variable to store spanwise drag

D = NaN(1,y_panels);

% Compute the drag of each spanwise section

parfor i = 1:y_panels

 % Determine the mean chord and spanwise length of the section

 chord_l = abs(wing_calc.panel_x(end,i) - wing_calc.panel_x(1,i));

 chord_r = abs(wing_calc.panel_x(end,i+1) - wing_calc.panel_x(1,i+1));

 chord_section = (chord_l + chord_r)/2;

 length_section = abs(wing_calc.panel_y(1,i+1)-wing_calc.panel_y(1,i));

 % Determine the induced drag of the section

 induced_drag_section = sum(dDi(:,i))/length_section;

 % Compute the induced drag coefficient, and determine the

 % incompressible coefficient

 Cdi = induced_drag_section/(0.5*rho*V_inf^2*chord_section)*sqrt(1-M_inf.^2);

 % Compute the effective angle of attack that the airfoil experiences

 a_eff = calc_effective_AoA(AoA(i),0,Cdi,Cl0);

 % Compute the parasite drag of the airfoil

 [d,~] = airfoil_solver_viscous(foil,chord_section,a_eff,V_inf,rho,mu,M_inf);

 % Add it to the total parasite drag

 D(i)= d*length_section;

end

% Compute the total parasitic drag

Dp = sum(D,'all');

end

40

% airfoil_solver_inviscid.m

%

% Description:

% This function encapsulates the inviscid airfoil solver, used in

% conjuntion with the viscous airfoil solver to determine the parasitic

% drag of the wing.

%

% Written by: Julian Bardin

% Date: 2021-03-17

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin FPages 303-305

%

function [CP,Qt,foil] = airfoil_solver_inviscid(foil,AoA,V_inf)

[foil.x_coloc,foil.z_coloc] = calc_airfoil_coloc_coords(foil);

[foil.a_panels] = calc_airfoil_panel_angle(foil);

[foil.x_norm,foil.z_norm] = calc_panel_norm_2D(foil.a_panels);

[foil.x_tang,foil.z_tang] = calc_panel_tang_2D(foil.a_panels);

[A,B] = calc_airfoil_influence_coeffs(foil);

Q_inf = calc_vel_vector(V_inf,AoA);

RHS = calc_airfoil_RHS(foil,Q_inf);

gamma = A\RHS;

[CP,Qt] = calc_airfoil_CP(foil,Q_inf,V_inf,B,gamma);

end

41

% airfoil_solver_viscous.m

%

% Description:

% This function encapsulates the viscous-inviscid coupled solver for the

% airfoil, used to predict the sectional drag generated by an airfoil.

% The problem is solved by interatively adjusting the airfoil geometry

% sent to the inviscid solver in order to account for the boundary layer

% displacement thickness.

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

function [d,zBL] = airfoil_solver_viscous(foil,chord,AoA,V_inf,rho,mu,M_inf)

% Initialize the buffer variables

break_cond_0 = 0;

break_cond_1 = 9E20;

zBL_old = foil.z_coords;

foil_BL = foil;

% Iterate until the airfoil simulation has converged

while abs(break_cond_0 - break_cond_1) > 0.001

 % Update the value for the previous iteration's break condition

 break_cond_0 = break_cond_1;

 % Run the inviscid solver

 [~,Qt,~] = airfoil_solver_inviscid(foil_BL,AoA,V_inf);

 % Find the index of the stagnation point

 idx_stag = find_stagnation_point(Qt);

 % Split up the airfoil into two have surfaces based on the stagnation point

 [x_1,z_1,Qt_1,x_2,z_2,Qt_2] = split_airfoil(foil,Qt,idx_stag);

 s_1 = calc_curve_dist(x_1*chord,z_1*chord);

 s_2 = calc_curve_dist(x_2*chord,z_2*chord);

 % Compute the skin friction and boundary layer displacement thickness

 [del_str_1,~,Cf_1] = halffoil_solver_viscous(s_1,Qt_1,rho,mu,M_inf,V_inf);

 [del_str_2,~,Cf_2] = halffoil_solver_viscous(s_2,Qt_2,rho,mu,M_inf,V_inf);

 % Compute the new airfoil z values based on the displacement thickness

 zBL_1 = compute_new_z_from_disp(x_1,z_1,-del_str_1/chord);

 zBL_2 = compute_new_z_from_disp(x_2,z_2,del_str_2/chord);

 % Merge the upper and lower z values to create the new airfoil geometry

 zBL = [fliplr(zBL_1) zBL_2];

 % Update the airfoil

 foil_BL.z_coords = zBL;

 % Determine the break condition through analysing the boundary layer

 % near the middle of the airfoil

 l1 = length(zBL_1);

 break_cond_1 = sum(abs(zBL_1(floor(l1/3):ceil(2*l1/3)) - zBL_old(floor(l1/3):ceil(2*l1/3))));

 % Store this current boundary layer as the "old" value for comparison

 % in the next loop

 zBL_old = zBL;

end

% Compute the sectional drag of the airfoil and apply compressiblity

% correction

d_1 = calc_halffoil_drag(rho,Qt_1,Cf_1,s_1);

d_2 = calc_halffoil_drag(rho,Qt_2,Cf_2,s_2);

d = d_1 + d_2;

end

42

% calc_airfoil_Cl.m

%

% Description:

% This function is used to compute lift coefficient of an airfoil based

% on its geometry and pressure distribution.

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Page 283

function Cl = calc_airfoil_Cl(foil,CP)

% Extract the organize the airfoil geometry into two row vectors

x_coloc = foil.x_coloc;

z_coloc = foil.z_coloc;

% Determine the number of panels

num_panels = length(CP);

% Go through the pressure coefficients and sum up the contributions to the

% lift coefficient

Cl = 0;

for i = 1:num_panels-1

 % Calculate the distance between colocation points

 dist_coloc = sqrt((z_coloc(i) - z_coloc(i+1))^2 + (x_coloc(i) - x_coloc(i+1))^2);

 % Add the contribution to the lift coefficient

 Cl = Cl - CP(i)*dist_coloc*cos(foil.a_panels(i));

end

end

43

% calc_airfoil_coloc_coords.m

%

% Description:

% This function computes the colocation points of all the panels the

% comprise the airfoil. These colocation points are located at the

% midpoints of all the panels.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

function [x,z] = calc_airfoil_coloc_coords(foil)

% Extract the organize the airfoil geometry into two row vectors

x_foil = foil.x_coords;

z_foil = foil.z_coords;

% Initialize the output matrices for the colocation points

x = NaN(1,length(x_foil)-1);

z = NaN(1,length(x_foil)-1);

% Go through the airfoil geometry and place the colocation points at the

% midpoint of each panel. As all panels are linear, the midpoints are

% merely the average of the coordinates of the panel vertices

for i = 1:length(x)

 x(i) = (x_foil(i) + x_foil(i+1))/2;

 z(i) = (z_foil(i) + z_foil(i+1))/2;

end

end

44

% calc_airfoil_CP.m

%

% Description:

% This function is used to compute the pressure coefficient distribution

% along the airfoil surface. It also computes and returns the tangential

% velocity for each panel

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Page 305

%

function [CP,Qt] = calc_airfoil_CP(foil,Q_inf,V_inf,B,gamma)

% Extract the organize the airfoil geometry into two row vectors

x_tang = foil.x_tang;

z_tang = foil.z_tang;

% Convert the 3D velocity vector to 2D in the x-z plane

Q_inf = [Q_inf(1) Q_inf(3)];

% Determine the number of panels

num_panels = length(gamma)-1;

% Initialize the output variables

CP = NaN(1,num_panels);

Qt = NaN(1,num_panels);

% Multiply B by gamma to determine the induced tangential velocities. Note

% that the bottom row of B is NaNs because B is one column and row larger

% than the number of panels

Q_ind = B*gamma;

% Calculate the tangential velocity and pressure coefficient at each

% colocation point

for i = 1:num_panels

 Qt(i) = Q_ind(i) + dot(Q_inf,[x_tang(i) z_tang(i)]);

 CP(i) = 1-(Qt(i)/V_inf)^2;

end

end

45

% calc_airfoil_influence_coeffs.m

%

% Description:

% This function is responsible for calculating the influence coefficients

% used in the computation of inviscid airfoil performance. These

% coefficients are stored in the A matrix. And additional B matrix is

% also returned, storing the nodal tangential speed at unit vorticity.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 11.103, 11.103b,

% 11.103c, 11.104, and 11.105

%

function [A,B] = calc_airfoil_influence_coeffs(foil)

% Extract the panel geometry

x_foil = foil.x_coords;

z_foil = foil.z_coords;

a_foil = foil.a_panels;

% Extract the colocation points

x_coloc = foil.x_coloc;

z_coloc = foil.z_coloc;

% Extract the normal vectors

x_norm = foil.x_norm;

z_norm = foil.z_norm;

% Extract the tangent vectors

x_tang = foil.x_tang;

z_tang = foil.z_tang;

% Determine the number colocation points

num_c = length(z_coloc);

% Initialize the output matrix

A = NaN(num_c+1);

B = NaN(num_c+1);

% Go through the various points

% For each colocation points i

for i = 1:num_c

 % Define the colocation point as point p

 p = [x_coloc(i) z_coloc(i)];

 % Initialize variables to store the induced velocities

 V_ua = NaN(1,num_c);

 V_wa = NaN(1,num_c);

 V_ub = NaN(1,num_c);

 V_wb = NaN(1,num_c);

 % Compute the induced velocity of each vortex on this colocation points

 for j = 1:num_c

 % Define the two verticies of the panel and p1 and p2

 p1 = [x_foil(j) z_foil(j)];

 p2 = [x_foil(j+1) z_foil(j+1)];

 % Compute the panel-reference-frame values

 [p_p,p1_p,p2_p,th1,th2,r1,r2] = determine_panel_frame(p,p1,p2,a_foil(j));

 % Compute the induced velocities

 if i == j

 [V_ua(j),V_wa(j),V_ub(j),V_wb(j)] = calc_velocity_p_ij(p_p,p1_p,p2_p,a_foil(j));

 else

 [V_ua(j),V_wa(j),V_ub(j),V_wb(j)] =

calc_velocity_p(p_p,p1_p,p2_p,th1,th2,r1,r2,a_foil(j));

 end

 end

46

 % Compute the influence coefficients for j = 1

 j = 1;

 A(i,j) = dot([V_ua(j) V_wa(j)],[x_norm(i) z_norm(i)]);

 B(i,j) = dot([V_ua(j) V_wa(j)],[x_tang(i) z_tang(i)]);

 % Compute the influence coefficents for j = 2:N

 for j = 2:num_c

 % Extract the velocity vector

 V = [V_ua(j)+V_ub(j-1) V_wa(j)+V_wb(j-1)];

 % Set the influence coefficient

 A(i,j) = dot(V,[x_norm(i) z_norm(i)]);

 B(i,j) = dot(V,[x_tang(i) z_tang(i)]);

 end

 % Compute the influence coefficient for N+1

 j = num_c+1;

 A(i,j) = dot([V_ub(j-1) V_wb(j-1)],[x_norm(i) z_norm(i)]);

 B(i,j) = dot([V_ub(j-1) V_wb(j-1)],[x_tang(i) z_tang(i)]);

end

% Set the bottom row of the matrix to be the Kutta condition

row_bottom = zeros(1,num_c+1);

row_bottom(1) = 1;

row_bottom(end) = 1;

A(end,:) = row_bottom;

end

function [u_a,w_a,u_b,w_b] = calc_velocity_p(p_p,p1_p,p2_p,th1,th2,r1,r2,alpha_i)

% Extract the point information

x = p_p(1);

z = p_p(2);

x1 = p1_p(1);

x2 = p2_p(1);

% Calculate the three speeds in the panel reference frame

up_a = -(z*log(r2/r1)+x*(th2-th1)-x2*(th2-th1))/(2*pi*x2);

up_b = (z*log(r2/r1) + x*(th2-th1))/(2*pi*x2);

wp_a = -(x2-z*(th2-th1) - x*log(r1/r2) + x2*log(r1/r2))/(2*pi*x2);

wp_b = (x2-z*(th2-th1) - x*log(r1/r2))/(2*pi*x2);

% Calculate the rotation matrix

rot_p2g = [cos(-alpha_i) sin(-alpha_i) ; -sin(-alpha_i) cos(-alpha_i)];

% Rotate the calculated velocities

Vp_a = [up_a ; wp_a];

Vp_b = [up_b ; wp_b];

V_a = rot_p2g*Vp_a;

V_b = rot_p2g*Vp_b;

% Extract the rotated velocities for outputting

u_a = V_a(1);

w_a = V_a(2);

u_b = V_b(1);

w_b = V_b(2);

end

function [u_a,w_a,u_b,w_b] = calc_velocity_p_ij(p_p,p1_p,p2_p,alpha_i)

% Extract the point information

x = p_p(1);

z = p_p(2);

x1 = p1_p(1);

x2 = p2_p(1);

% Calculate the three speeds in the panel reference frame

up_a = -0.5*(x-x2)/x2;

up_b = 0.5*x/x2;

wp_a = -1/(2*pi);

wp_b = 1/(2*pi);

47

% Calculate the rotation matrix

rot_p2g = [cos(-alpha_i) +sin(-alpha_i) ; -sin(-alpha_i) cos(-alpha_i)];

% Rotate the calculated velocities

Vp_a = [up_a ; wp_a];

Vp_b = [up_b ; wp_b];

V_a = rot_p2g*Vp_a;

V_b = rot_p2g*Vp_b;

% Extract the rotated velocities for outputting

u_a = V_a(1);

w_a = V_a(2);

u_b = V_b(1);

w_b = V_b(2);

end

48

% calc_airfoil_RHS.m

%

% Description:

% This function is used to compute the RHS vector, required to solve the

% vorticities of the airfoil approximation.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 11.103, 11.103b,

% 11.103c, 11.104, and 11.105

%

function RHS = calc_airfoil_RHS(foil,Q_inf)

% Extract the organize the airfoil geometry into two row vectors

x_foil = foil.x_coords;

a_foil = foil.a_panels;

% Extract the normal vectors

x_norm = foil.x_norm;

z_norm = foil.z_norm;

% Convert the 3D velocity vector to 2D in the x-z plane

Q_inf = [Q_inf(1) Q_inf(3)];

% Initialize the RHS vector

RHS = NaN(length(x_foil),1);

% Go through all the panels and calculate the RHS vector

for i = 1:length(x_foil)-1

 RHS(i) = dot(Q_inf,[sin(a_foil(i)) -cos(a_foil(i))]);

end

% Add the zero at the end of the RHS vector for the Kutta condition

RHS(end) = 0;

end

49

% calc_effective_AoA

%

% Description:

% This function is used to approximately the effective angle of attack of

% the cross-section based on the induced drag.

%

% ** ANGLES ARE IN DEGREES

%

function a_eff = calc_effective_AoA(a_global,e_twist,Cdi,Cl0)

% Convert the input angles into radians

a_global = a_global*pi/180;

e_twist = e_twist*pi/180;

% Define the function that will be solved

f = @(a_eff) (2*pi*a_eff + Cl0)*sin(a_global + e_twist-a_eff) - Cdi;

% Solve for the effective angle of attack

a_eff = fzero(f,0);

% Convert the effective angle of attack into degrees

a_eff = a_eff*180/pi;

% Convert the angle to be between +90 and -90

while 1

 if a_eff < -90

 a_eff = a_eff + 180;

 elseif a_eff > 90

 a_eff = a_eff - 180;

 else

 break

 end

end

end

50

% calc_airfoil_drag

%

% Description:

% This function is used to compute the drag generated by one half of the

% airfoil.

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

function d = calc_halffoil_drag(rho,Qt,Cf,s)

% Initailize d to zero

d = 0;

% Go through all the points and compute the drag of the section, and add it

% to the overall drag

for i = 2:length(s)

 d = 0.5*rho*(Qt(i-1))^2*Cf(i)*(s(i)-s(i-1)) + d;

end

end

51

% calc_influence_coeffs.m

%

% Description:

% This function calculates the lift and induced drag influence

% coefficients. The lift influence coefficients are calculated using

% vortex rights of unit vorticity, and the inverse of the matrix (A)

% can be used later to solve for the vorticities.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Fig. 12.13

%

function [A,B] = calc_influence_coeffs(wing_calc)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Determine how many colocation points there are

x_colocs = x_panels;

y_colocs = y_panels;

% Predefine A and B as square matrices with x_panels*y_panels by

% x_panels*y_panels size

A = NaN(x_panels*y_panels);

B = NaN(x_panels*y_panels);

% Extract the ring locations

xr = wing_calc.ring_x;

yr = wing_calc.ring_y;

zr = wing_calc.ring_z;

% Extract the colocation points

xc = wing_calc.coloc_x;

yc = wing_calc.coloc_y;

zc = wing_calc.coloc_z;

% Extract the norms

xn = wing_calc.norm_x;

yn = wing_calc.norm_y;

zn = wing_calc.norm_z;

% Go through the various colocation points

parfor K = 1:x_colocs*y_colocs

 % Convert hte K value into its corresponin i and j

 [i_c,j_c] = K2ij(K,y_panels);

 % Define buffer variables for a row of A and B

 A_row = NaN(1,x_panels*y_panels);

 B_row = NaN(1,x_panels*y_panels);

 % Define the colocation point

 c = [xc(i_c,j_c) yc(i_c,j_c) zc(i_c,j_c)];

 c_mirror = [xc(i_c,j_c) -yc(i_c,j_c) zc(i_c,j_c)];

 % Define the normal vector

 norm = [xn(i_c,j_c) yn(i_c,j_c) zn(i_c,j_c)];

 % Go through the various vortex rings

 L = 1;

 for i = 1:x_panels

 for j = 1:y_panels

 % Define the points for the vortex ring

 [p1,p2,p3,p4] = calc_ring_corners(i,j,xr,yr,zr);

 % Calculate the induced velocities

 [q1, qt1] = vortex_ring(c ,p1,p2,p3,p4,1.0);

52

 [q2, qt2] = vortex_ring(c_mirror,p1,p2,p3,p4,1.0);

 % Calculate the net induced velocity, and the component only from

 % the vortex lines parallel to the flow

 q = add_mirrored_q(q1,q2);

 qt = add_mirrored_q(qt1,qt2);

 % Check if its the trailing edge

 if i == x_panels

 % Define the vortex ring points for the wake

 [p1,p2,p3,p4] = calc_ring_corners(i+1,j,xr,yr,zr);

 % Calculate the induced velocities of the wake

 [q3, qt3] = vortex_ring(c ,p1,p2,p3,p4,1.0);

 [q4, qt4] = vortex_ring(c_mirror,p1,p2,p3,p4,1.0);

 % Add the influence of the wake to the induced velocity

 q = q + add_mirrored_q(q3,q4);

 qt = qt + add_mirrored_q(qt3,qt4);

 end

 % Calculate the influence coefficients

 A_row(L) = dot(q, norm);

 B_row(L) = dot(qt,norm);

 % Increment the L counter for the next iteration

 L = L + 1;

 end

 end

 % Insert the influence coefficients into the main matrix

 A(K,:) = A_row;

 B(K,:) = B_row;

end

end

% This function determines the location vectors for the four corners of the

% vortex ring.

function [p1,p2,p3,p4] = calc_ring_corners(i,j,xr,yr,zr)

p1 = [xr(i,j) yr(i,j) zr(i,j)];

p2 = [xr(i,j+1) yr(i,j+1) zr(i,j+1)];

p3 = [xr(i+1,j+1) yr(i+1,j+1) zr(i+1,j+1)];

p4 = [xr(i+1,j) yr(i+1,j) zr(i+1,j)];

end

% This function adds the mirrored induced velocities

function q = add_mirrored_q(q1,q2)

q(1) = q1(1) + q2(1);

q(2) = q1(2) - q2(2);

q(3) = q1(3) + q2(3);

end

53

% calc_panel_induced_drag

%

% Description:

% This function is used to calculate the induced drag produced by each

% individual panel, as well as the overall total induced drag generated

% by the wing.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 12.27 and 12.27a

%

function [Di,dDi] = calc_panel_induced_drag(wing_calc,Gamma,w,M_inf,rho)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Initialize the matrix dL which will store the lift acting on each panel

dDi = NaN(x_panels,y_panels);

% Extract the panel dimensions

yp = wing_calc.panel_y;

% Go through all the panels and calculate the lift force acting on each

% panel

for j = 1:y_panels

 % Calculate the panel width

 dy = abs(yp(1,j) - yp(1,j+1));

 % Determine the K index for the vorticity vector for the leading edge

 % panel

 K = ij2K(1,j,y_panels);

 % Calculate the component for the panel induced drag which is only a

 % function of induced velocity (w) and vorticity. Leading edge panel

 % only.

 dDi(1,j) = Gamma(K).*w(K).*dy;

 % For the non-leading edge panels

 for i = 2:x_panels

 % Determine the K index for the vorticity vector

 K = ij2K(i,j,y_panels);

 K_1 = ij2K(i-1,j,y_panels);

 % Calculate the component for the panel induced drag which is only a

 % function of induced velocity (w) and vorticity.

 dDi(i,j) = (Gamma(K) - Gamma(K_1)).*w(K).*dy;

 end

end

% Multiply by density to determine the drag, then correct for

% compressibility.

dDi = -rho./sqrt(1-M_inf.^2).*dDi;

% Calculate the total induced drag

Di = sum(dDi,'all');

end

54

% calc_panel_lift.m

%

% Description:

% This function is responsible for calculating the lift distribution and

% total lift of the wing, given the atmospheric conditions and the

% vorticity vector.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 12.25 and 12.25a

%

function [L,dL] = calc_panel_lift(wing_calc,Gamma,V_inf,M_inf,rho)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Initialize the matrix dL which will store the lift acting on each panel

dL = NaN(x_panels,y_panels);

% Extract the panel dimensions

yp = wing_calc.panel_y;

% Go through all the panels and calculate the lift force acting on each

% panel

for j = 1:y_panels

 % Calculate the panel width

 dy = abs(yp(1,j) - yp(1,j+1));

 % Determine the K index for the vorticity vector

 K = ij2K(1,j,y_panels);

 % Calculate the component for the panel left which is only a function

 % of vorticity and panel width

 dL(1,j) = Gamma(K).*dy;

 % For the non-leading edge panels

 for i = 2:x_panels

 % Determine the K index for the vorticity vector

 K = ij2K(i,j,y_panels);

 K_1 = ij2K(i-1,j,y_panels);

 % Calculate the component for the panel left which is only a function

 % of vorticity and panel width

 dL(i,j) = (Gamma(K) - Gamma(K_1)).*dy;

 end

end

% Multiply by density, V_inf, and correct for compressility to calculate

% the lift for each panel

dL = rho.*V_inf./sqrt(1-M_inf.^2).*dL;

% Calculate the total lift

L = sum(dL,'all');

end

55

% calc_panel_norm.m

%

% Description:

% This function calculates the normal vector of a panel defined by four

% points p1 through p4. The returned vector is of unit length.

% Additionally, p1 refers to the forward-leftmost point, and 2 through 4

% are clockwise from there.

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 12.20

%

function n = calc_panel_norm(p1,p2,p3,p4)

% Define the two diagonal vectors

r31 = p3 - p1;

r24 = p2 - p4;

% Calculate the cross product in the same direction as the normal

cross_n = cross(r31,r24);

% Calculate the normal vector

n = cross_n./norm(cross_n);

end

56

% calc_panel_norm_2D.m

%

% Description

% This function calculates the panel norms placed at each colocation

% point for an airfoil.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

function [x,z] = calc_panel_norm_2D(alpha)

% Initialize the output matrices for the normal vector

x = NaN(1,length(alpha));

z = NaN(1,length(alpha));

% Go through all the panels and compute the normals

for i = 1:length(alpha)

 x(i) = -sin(alpha(i));

 z(i) = cos(alpha(i));

end

end

57

% calc_panel_tang_2D.m

%

% Description

% This function calculates the panel norms placed at each colocation

% point for an airfoil.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

function [x,z] = calc_panel_tang_2D(alpha)

% Initialize the output matrices for the normal vector

x = NaN(1,length(alpha));

z = NaN(1,length(alpha));

% Go through all the panels and compute the normals

for i = 1:length(alpha)

 x(i) = cos(alpha(i));

 z(i) = sin(alpha(i));

end

end

58

% calc_RHS.m

%

% Description:

% This function calculates the RHS vector, essentially in calculating the

% vorticity distribution of the wing.

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 12.24

%

function RHS = calc_RHS(wing_calc,Q_inf)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Extract the norms

xn = wing_calc.norm_x;

yn = wing_calc.norm_y;

zn = wing_calc.norm_z;

% Initialize the RHS vector

RHS = NaN(x_panels*y_panels,1);

% Go through all the colocation points and calculate the value for the RHS

% VLM vector

K = 1;

for i = 1:x_panels

 for j = 1:y_panels

 % Calculate the RHS value

 RHS(K) = -dot(Q_inf,[xn(i,j) yn(i,j) zn(i,j)]);

 % Increment the K counter

 K = K + 1;

 end

end

end

59

% determine_coloc_coordinates

%

% Description:

% This function is responsible for calculating the locations of the

% colocation points for each panel

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [x,y,z] = determine_coloc_coordinates(wing_calc)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Extract the x and y coordinates

x_coords = wing_calc.panel_x;

y_coords = wing_calc.panel_y;

z_coords = wing_calc.panel_z;

% Initialize the coordinate matrices

x = NaN(x_panels,y_panels);

y = NaN(x_panels,y_panels);

z = NaN(x_panels,y_panels);

% Go through each panel and determine colocation point

for j = 1:y_panels

 for i = 1:x_panels

 % Get the points for the vertices of this panel

 x_v = x_coords(i:i+1,j:j+1);

 y_v = y_coords(i:i+1,j:j+1);

 z_v = z_coords(i:i+1,j:j+1);

 % Since y is straight, the y-coordinate can be calculated from the

 % panel's leading edge

 y_point = (y_v(1,1) + y_v(1,2))/2;

 % Get the 3/4 lines for the left and right side

 x_34l = x_v(1,1) + 0.75*abs(x_v(1,1) - x_v(2,1));

 x_34r = x_v(1,2) + 0.75*abs(x_v(1,2) - x_v(2,2));

 % Get the z values at the above left and right x points

 z_34l = interp1(x_v(:,1),z_v(:,1),x_34l);

 z_34r = interp1(x_v(:,2),z_v(:,2),x_34r);

 % Since the y-coordinate is a midpoint, so too will these be the

 % midpoint between the left and right 3/4 points

 x_point = (x_34l + x_34r)/2;

 z_point = (z_34l + z_34r)/2;

 % Set the colocation points

 x(i,j) = x_point;

 y(i,j) = y_point;

 z(i,j) = z_point;

 end

end

end

60

% determine_coloc_norms.m

%

% Description:

% This function calculates the panel normals for wing, which during later

% analysis are treated as being placed at the colocation point.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

function [x,y,z] = determine_coloc_norms(wing_calc)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Initialize the coordinate matrices

x = NaN(size(x_panels));

y = NaN(size(y_panels));

z = NaN(size(x_panels));

% Extract the panel locations

xp = wing_calc.panel_x;

yp = wing_calc.panel_y;

zp = wing_calc.panel_z;

% Go through each panel and determine normal for that panel, which for

% later ananlysis is located at the colocation points

for j = 1:y_panels

 for i = 1:x_panels

 % Define the points

 p1 = [xp(i,j) yp(i,j) zp(i,j)];

 p2 = [xp(i,j+1) yp(i,j+1) zp(i,j+1)];

 p3 = [xp(i+1,j+1) yp(i+1,j+1) zp(i+1,j+1)];

 p4 = [xp(i+1,j) yp(i+1,j) zp(i+1,j)];

 % Calculate the normal

 n = calc_panel_norm(p1,p2,p3,p4);

 % Store the vector lengths for the normal

 x(i,j) = n(1);

 y(i,j) = n(2);

 z(i,j) = n(3);

 end

end

end

61

% determine_panel_area.m

%

% Description:

% This function calculates the area of a panel in 3D space.

%

% Written by: Julian Bardin

% Date: 2021-02-12

%

function A = determine_panel_area(wing_calc)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Extract the panel locations

xp = wing_calc.panel_x;

yp = wing_calc.panel_y;

zp = wing_calc.panel_z;

% Initialize the area matrix

A = NaN(size(x_panels));

% Go through all the panels and calculate their area.

for j = 1:y_panels

 for i = 1:x_panels

 % Define the points for the panel

 p1 = [xp(i,j) yp(i,j) zp(i,j)];

 p2 = [xp(i,j+1) yp(i,j+1) zp(i,j+1)];

 p3 = [xp(i+1,j+1) yp(i+1,j+1) zp(i+1,j+1)];

 p4 = [xp(i+1,j) yp(i+1,j) zp(i+1,j)];

 % Calculate the area by splitting the shape into two triangles

 A124 = calc_area_triangle(p1,p2,p4);

 A243 = calc_area_triangle(p2,p4,p3);

 % Store the area.

 A(i,j) = A124 + A243;

 end

end

end

% This function calculates the area of a triangle in 3d space

function A = calc_area_triangle(p1,p2,p3)

% Define the two position vectors

r12 = p1 - p2;

r32 = p3 - p2;

% Calculate the area

A = 0.5*norm(cross(r12,r32));

end

62

% determine_panel_coordinates.m

%

% Description:

% This function is responsible for generating the coordinates for the

% vertices of the panels which will be used for VLM computation

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [x,y,z] = determine_panel_coordinates(wing_param,x_panels,y_panels)

% Get the leading and trailing edge points

[x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param);

% Of the y-panels (spanwise direction), determine how many as being

% allocated to the left of the kink and to the right of the kink

y_panels_left = floor(y_panels*wing_param.dr_kink);

if y_panels_left < 1 && wing_param.dr_kink ~= 0

 y_panels_left = 1;

end

y_panels_right = y_panels - y_panels_left;

% Initialize the coordinate matrices

x = NaN(x_panels+1,y_panels+1);

y = NaN(x_panels+1,y_panels+1);

z = NaN(x_panels+1,y_panels+1);

% Determine the y coordinates

y_lines_l = linspace(0,wing_param.semi_span*wing_param.dr_kink,y_panels_left+1);

y_lines_r =

linspace(wing_param.semi_span*wing_param.dr_kink,wing_param.semi_span,y_panels_right+1);

y_lines = [y_lines_l y_lines_r(2:end)];

% Populate the coordinate matrices

for j = 1:y_panels+1

 % Set the y-coordinates for the chord

 y(:,j) = y_lines(j);

 % Determine the points that comprise the planview chord. Note that

 % x_LE, y_LE, etc are swapped from that used for the wing

 % dimensions.

 chord_x = [interp1(x_LE,y_LE,y_lines(j)) interp1(x_TE,y_TE,y_lines(j))];

 chord_len = abs(chord_x(1) - chord_x(2));

 % Split up the chord into the requested number of points

 x_points = linspace(chord_x(1),chord_x(2),x_panels+1);

 % Calculate the z-height based on the airfoil camber

 z_camber = calc_mean_camber(wing_param.airfoil,linspace(0,1,x_panels+1))*chord_len;

 for i = 1:x_panels+1

 x(i,j) = -x_points(i);

 z(i,j) = z_camber(i);

 end

end

end

63

% determine_panel_frame.m

%

% Description:

% This function is used to compuite the points, angles, and displacements

% within the panel reference frame.

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Fig 11.29

%

function [p_p,p1_p,p2_p,th1,th2,r1,r2] = determine_panel_frame(p,p1,p2,alpha_i)

% Define the rotation matrices

rot_g2p = [cos(alpha_i) sin(alpha_i) ; -sin(alpha_i) cos(alpha_i)];

% Since p1 is used as the origin for the panel reference frame, set its

% coordinates to [0,0]

p1_p = [0 0];

% Calculate the p2_p and p_p location in the panel reference frame using

% the rotation matrix.

p2_p = (rot_g2p*(p2-p1)')';

p_p = (rot_g2p*(p-p1)')';

% Calculate the magnitude of the displacement vectors r1 and r2 which point

% to the given arbitrary point p

r1 = norm(p_p);

r2 = norm(p_p-p2_p);

% Calculate the theta angles using arctan (not arctan2)

th1 = atan2(p_p(2),p_p(1));

th2 = atan2(p_p(2),(p_p(1) - p2_p(1)));

end

64

% determine_ring_coordinates

%

% Description:

% This function is responsible for calculating the vertex coordinates of

% the vortex rings which will be used for VLM computation of wing lift

% and inducted drag performance

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [x,y,z] = determine_ring_coordinates(wing_calc)

% Determine how many panels are present in the wing_calc object

dims = size(wing_calc.panel_x);

x_panels = dims(1)-1;

y_panels = dims(2)-1;

% Initialize the coordinate matrices

x = NaN(size(x_panels));

z = NaN(size(x_panels));

% Since, y-coordiantes don't change, just use the same y-coordinate matrix

% from the wing_calc object. We do need to add an additional row to

% compensate for the zero-strength vortex data points

y = [wing_calc.panel_y ; wing_calc.panel_y(1,:)];

for j = 1:y_panels+1 % For each chord

 % Extract the point which fall along this chord

 x_coords = [wing_calc.panel_x(:,j)];

 z_coords = [wing_calc.panel_z(:,j)];

 % Going along the chord, adjust x positions to place rings on the

 % quarder line of each panel

 for i = 1:x_panels

 x(i,j) = x_coords(i)+0.25*abs(x_coords(i)-x_coords(i+1));

 z(i,j) = interp1(x_coords,z_coords,x(i,j));

 end

 % Account for the trailing edge zero-strength vortex line

 x(i+1,j) = x_coords(end) + 0.25*abs(x_coords(end-1)-x_coords(end));

 z(i+1,j) = 0;

 % Add an extra point at 1E6 for "infinity"

 x(i+2,j) = 1E6;

 z(i+2,j) = 0;

end

end

65

% halffoil_solver_viscous.m

%

% Description:

% This function computes the viscous boundary layer quantities of the

% airfoil. This include consideration for the laminar potion and

% turbulent portion, with a transition in between.

%

% Based on: An Integral Boundary Layer Direct Method... by G. Fijiwara and

% N. Nguyen

% Based on: Stanford University Viscous Flow Presentation

%

% Written by: Julian Bardin

% Date: 2021-03-20

%

%

function [del_str,theta,Cf] = halffoil_solver_viscous(s,ue,rho,mu,M_inf,V_inf)

% Determine the number of points

num_points = length(s);

% Initialize the output vectors

del_str = NaN(1,num_points); % Boundary layer displacement thickness

theta = NaN(1,num_points); % Boundary layer momentum thickess

Cf = NaN(1,num_points); % skin friction coefficient

% Compute the free-stream speed of sound

if M_inf ~= 0

 a_inf = V_inf/M_inf;

else

 a_inf = 1E6;

end

% Go through the laminar points

H = 0;

for i = 1:num_points

 % Compute the local reynolds number

 Re_l = rho*ue(i)/mu;

 % Calculate the momentum thickness

 theta_sqrd = laminar_momentum_thickness(mu,ue,s,i);

 theta(i) = sqrt(theta_sqrd);

 if ~isreal(theta(i))

 error('Computation error');

 end

 % Calculate the momentum reynolds number

 Re_th = Re_l*theta(i);

 % If the flow has transitioned, exit this loop

 if check_if_transition(Re_l,s(i),Re_th)

% disp('Transition')

 break;

 end

 % Compute the speed gradient

 if i ~= 1

 spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1));

 else

 spd_grad = (ue(2) - ue(1))/(s(2) - s(1));

 end

 % Compute the value of lambda

 lambda = theta_sqrd*rho/mu*spd_grad;

 % Compute the values of H and l

 [H,l] = laminar_thwaites_approximations(lambda);

 % Compute the displacement thickness

 del_str(i) = H*theta(i);

 % Compute the friction coefficient

66

 Cf(i) = 2*l/Re_th*(1+0.2*(ue(i)/a_inf)^2);

end

% Override the friction coefficient at the first point to zero, since the

% computed value only exists due to the algorithm structure

Cf(1) = 0;

% Decrement i to redo that point as it is turbulent rather than laminar

i = i-1;

% Go through turbulent points

if i < num_points

 if i == 1

 for i = 1:2

 % Compute the local reynolds number

 Re_l = rho*ue(i)/mu;

 % Calculate the momentum thickness

 theta_sqrd = laminar_momentum_thickness(mu,ue,s,i);

 theta(i) = sqrt(theta_sqrd);

 if ~isreal(theta(i))

 error('Computation error');

 end

 % Calculate the momentum reynolds number

 Re_th = Re_l*theta(i);

 % Compute the speed gradient

 if i ~= 1

 spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1));

 else

 spd_grad = (ue(2) - ue(1))/(s(2) - s(1));

 end

 % Compute the value of lambda

 lambda = theta_sqrd*rho/mu*spd_grad;

 % Compute the values of H and l

 [H,~] = laminar_thwaites_approximations(lambda);

 % Compute the displacement thickness

 del_str(i) = H*theta(i);

 % Compute the friction coefficient

 Cf(i) = 0;

 end

 end

 % Go through the remaining turbulent points

 for i = i:num_points-1

 % Extract the previous poiints

 theta_0 = theta(i);

 H_0 = H;

 if ~isreal(H_0)

 error('Computation error');

 end

 % Compute the value of H1

 H1_0 = 3.0445 + 0.8702/(H_0-1.1)^1.2721;

 % Compute the ue*theta*H1 quantity

 UTH_0 = ue(i-1)*theta_0*H1_0;

 % Step the UTH value

 UTH_1 = step_UTH(UTH_0,s(i),s(i+1),ue(i-1),H1_0);

 % Compute the friction coefficient

 Cf(i) = 0.246/(10^(0.678*H_0)*Re_th^0.268)*(1+0.2*(ue(i-1)/a_inf)^2);

 % Compute the speed gradient

 if i ~= 1

 spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1));

67

 else

 spd_grad = (ue(2) - ue(1))/(s(2) - s(1));

 end

 % Determine the next value of theta

 theta(i+1) = step_theta(theta_0,ue(i),spd_grad,H_0,Cf(i),s(i),s(i+1),ue(i-1)/a_inf);

 if ~isreal(theta(i+1))

 error('Computation error');

 elseif theta(i+1) < 0

 error('Computation error');

 end

 % Determine the new H1 value from theta, ue, and UTH

 H1_1 = UTH_1/(ue(i)*theta(i+1));

 % Determine the value of H

 H = H1_to_H(H1_1);

 % Compute the boundary layer displacement thickness

 del_str(i+1) = H*theta(i+1);

 if ~isreal(del_str(i+1))

 error('Computation error');

 end

 % Compute the local reynolds number

 Re_l = rho*ue(i)/mu;

 % Calculate the momentum reynolds number

 Re_th = Re_l*theta(i+1);

 if ~isreal(Re_th)

 error('Computation error');

 end

 end

 % Compute the friction coefficient for the last point

 Cf(end) = 0.246/(10^(0.678*H)*Re_th^0.268)*(1+0.2*(ue(i)/a_inf)^2);

end

% Discard the boundary layer thickness at the last 5% of chord

idx = find(s > 0.95*max(s));

del_str(idx) = del_str(idx(1)-1);

end

%% Laminar Functions

% This function computes the moment thickness in laminar flow over the

% airfoil surface.

function theta_sqrd = laminar_momentum_thickness(mu,ue,s,idx)

% First compute the integral

sum = 0;

for i = 2:idx

 sum = sum + (ue(i))^5*(s(i)-s(i-1));

end

% Compute the moment thickness

if idx ~= 1

 theta_sqrd = (0.441*mu./(ue(i))^6)*sum;

else

 theta_sqrd = 0;

end

end

% This function computes the values of l and H based on Thwaites

% approximation

function [H,l] = laminar_thwaites_approximations(lambda)

if lambda >= -0.1 && lambda < 0

 l = 0.22 + 1.402*lambda + (0.018*lambda)/(lambda + 0.107);

 H = 2.088 + 0.0731/(lambda + 0.14);

elseif lambda >= 0 && lambda < 0.1

 l = 0.22 + 1.57*lambda - 1.8*lambda^2;

 H = 2.61 - 3.75*lambda + 5.24*lambda^2;

elseif lambda < -0.1

68

 lambda = -0.1;

 l = 0.22 + 1.402*lambda + (0.018*lambda)/(lambda + 0.107);

 H = 2.088 + 0.0731/(lambda + 0.14);

elseif lambda >= 0.1

 lambda = 0.1;

 l = 0.22 + 1.57*lambda - 1.8*lambda^2;

 H = 2.61 - 3.75*lambda + 5.24*lambda^2;

end

end

%% Turbulent Functions

% Use Euler's Method to compute the next step of UTH

function UTH = step_UTH(UTH_0,s1,s2,ue_0,H1_0)

UTH = 0.0306*(ue_0/(H1_0-3.0)^0.6169)*(s2-s1) + UTH_0;

end

% Use Euler's Method to compute the next step of theta

function theta = step_theta(theta_0,ue,spd_grad,H_0,Cf_0,s1,s2,M_inf)

m = Cf_0/2 - (2+H_0-M_inf^2)*theta_0/ue*spd_grad;

theta = m*(s2-s1) + theta_0;

if theta < 0

 theta = theta_0;

end

end

function H = H1_to_H(H1)

if H1 < 3.3

 H = 3.0;

elseif H1 >=3.3 && H1 < 5.3

 H = 0.6778 + 1.1536*(H1-3.3)^(-0.326);

else % if H >= 5.3

 H = 1.1 + 0.86*(H1-3.3)^(-0.777);

end

end

%% Transition Functions

% This function determines if the transition criterion has been met

function bool = check_if_transition(Re_l,s,Re_th)

% Compute the distance reynolds number

Re_s = Re_l*s;

% Compute the transition reynolds number

Re_transition = 1.174*(1 + 22400/Re_s)*Re_s^0.46;

% Return the boolean

bool = Re_th > Re_transition;

end

69

% vortex_line.m

%

% Description:

% This function calculates the induced velocity at an arbitrary point by

% the a vortex line.

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 10.116

%

function q = vortex_line(p, p1, p2,vorticity)

% Calculate the cross product between r1 and r2

cross12(1) = (p(2) - p1(2))*(p(3) - p2(3)) - (p(3) - p1(3))*(p(2) - p2(2));

cross12(2) = -(p(1) - p1(1))*(p(3) - p2(3)) + (p(3) - p1(3))*(p(1) - p2(1));

cross12(3) = (p(1) - p1(1))*(p(2) - p2(2)) - (p(2) - p1(2))*(p(1) - p2(1));

% Calculate the absolute of the above cross product

abs_cross12 = sum(cross12.^2);

% Calculate the distances between p and 1, then p and 2

dist_rp1 = norm(p-p1);

dist_rp2 = norm(p-p2);

% Check for singular conditions

if dist_rp1 == 0 || dist_rp2 == 0 || abs_cross12 == 0

 q = [0 0 0];

 return;

end

% Calculate the dot product quantities

dot_r01 = sum((p2-p1).*(p-p1));

dot_r02 = sum((p2-p1).*(p-p2));

% Calculate the velocity

q = vorticity/4/pi/abs_cross12*(dot_r01./dist_rp1 - dot_r02./dist_rp2)*cross12;

end

70

% vortex_ring.m

%

% Description:

% This function calculates the induced velocity at an arbitrary point

% caused by a vortex ring of four vortex lines

%

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 10.117

%

function [q, qt] = vortex_ring(p,p1,p2,p3,p4,vorticity)

% Calculate the components for the trailing vortex segments

qt = vortex_line(p, p2, p3,vorticity) + vortex_line(p, p4, p1,vorticity);

%Calculate q as the sum of all the induced velocities of all four lines

q = vortex_line(p, p1, p2,vorticity) + vortex_line(p, p3, p4,vorticity) + qt;

end

71

Appendix F: Structural Functions
% calc_angle_distribution.m

%

% Description:

% This function is used to determine the deflection angles caused by the

% bending moment along the wingspan.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

% Developed using definitions from Mechanics of Materials by Hibbeler

%

function th = calc_angle_distribution(box_ref,panel_x,y_lift,M_lift,theta_p,E,twist)

% Determine how many points are being analysed

num_points = length(y_lift);

% Initialize the output

th = NaN(1,num_points);

th(1) = 0;

% Compute the spanwise chord distribution

chord_lens = NaN(1,num_points);

for i = 1:num_points

 chord_lens(i) = abs(panel_x(1,i) - panel_x(end,i));

end

% Go across the wing in the spanwise direction computing the value for the

% change in theta divided by distance

for i = 2:num_points

 % Determine the average chord length of the section

 c_mean = mean([chord_lens(i) chord_lens(i-1)]);

 % Resize the parameters for the wingbox for this size

 box = scale_wingbox(box_ref,c_mean);

 % Determine the maximum z-value of the wing box. The computation will

 % proceed using this value above the centroid

 z_max = max(box.z_vals) - box.z_centroid;

 % Convert this point into the principal reference frame

 [x_p,z_p] = rotate_wingbox_coords(z_max,theta_p+twist(i));

 % Compute the moment components along the principal axes

 Mx_p = M_lift(i)*cosd(-theta_p-twist(i));

 Mz_p = M_lift(i)*sind(-theta_p-twist(i));

 % Compute the strain at this point

 strain = calc_bending_normal_strain(Mx_p,Mz_p,x_p,z_p,E,box.Izz_p,box.Ixx_p);

 % Compute the theta derivative

 dth_dy = -strain/(z_max);

 % Compute the next step of theta

 th(i) = th(i-1) + dth_dy*(y_lift(i)-y_lift(i-1));

end

% Convert the angles into degrees

th = th*180/pi;

end

% This function converts a given point along the global

% z-axis centered on the centroid of the wingbox into a coordainte in the

% principal reference

function [x_p,z_p] = rotate_wingbox_coords(z,theta_p)

x_p = z*sind(theta_p);

z_p = z*cosd(theta_p);

end

% This function computes the normal strain at a point

72

function strain = calc_bending_normal_strain(Mx_p,Mz_p,x_p,z_p,E,Izz_p,Ixx_p)

strain = Mz_p*x_p/(E*Izz_p) - Mx_p*z_p/(E*Ixx_p);

end

73

% calc_bend_loading.m

%

% Description:

% This function computes the spanwise shear distribution caused by the

% lifting distribution.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function [V,M,y] = calc_bend_loading(L,dL,panel_y)

% Determine how many points there are in the spanwise direction

dims = size(dL);

num_sections = dims(2);

% Determine the y-positions

y = panel_y(1,:);

% Initialize the output variable

V = NaN(1,num_sections+1);

M = NaN(1,num_sections+1);

V(1) = -L;

M(end) = 0;

% Determine the spanwise lift distribution

for i = 1:num_sections

 % Determine the shear force at the next point

 V(i+1) = V(i) + sum(dL(:,i));

end

% Determine the moment distribution

for i = num_sections:-1:1

 % Determine panel length

 len = (y(i+1) - y(i));

 % Determine the constant force distribution over the section

 w = sum(dL(:,i))/len;

 % Determine the moment at the point

 M(i) = M(i+1) + 0.5*w*len^2;

end

end

74

% calc_bending_deflection.m

%

% Description:

% This function approximates the vertical deflection of the wing, centered

% at its centroid,

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function dz = calc_bending_deflection(y_lift,th)

% Initialize the output variable

dz = NaN(1,length(y_lift));

dz(1) = 0;

% Go through the points and compute the deflection

for i = 2:length(y_lift)

 dz(i) = dz(i-1) + tand(th(i))*(y_lift(i)-y_lift(i-1));

end

end

75

% calc_moments_of_inertia.m

%

% Description:

% This function is used to compute the moments of inertia and product of

% inertia for the wingbox based on the area concentration distribution

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function [Ixx,Izz,Izx] = calc_moments_of_inertia(box)

% Extract the relevant wingbox data

x_vals = [box.x_vals box.x_strs] - box.x_centroid;

z_vals = [box.z_vals box.z_strs] - box.z_centroid;

A_vals = [box.A_vals box.A_strs];

% Compute the moments of inertia

Ixx = sum(x_vals.*x_vals.*A_vals,'all');

Izz = sum(z_vals.*z_vals.*A_vals,'all');

Izx = sum(z_vals.*x_vals.*A_vals,'all');

end

76

% calc_principal_angle.m

%

% Description:

% This function computes angle that the principal x-axis makes with

% the global x-axis.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

% Based on: Mechanics of Materials by Hibbeler Page 795

%

function theta_p = calc_principal_angle(box)

% Compute the angle of the principal x-axis

theta_p = 0.5*atand(-2*box.Izx/(box.Ixx - box.Izz));

end

77

% calc_principal_inertia

%

% Description:

% This function rotates the moments of inertia to the values

% corresponding to the principal reference frame. It also sets the

% product of inertia to zero, as occurs with the principal axis.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

% Based on: Mechanics of Materials by Hibbeler, Page 794

%

function [Ixx_p,Izz_p,Izx_p] = calc_principal_inertia(Ixx,Izz,Izx,theta_p)

% Compute the value of Ixx in the principal reference frame

Ixx_p = 0.5*(Ixx + Izz) + 0.5*(Ixx - Izz)*cosd(2*theta_p) - Izx*sind(2*theta_p);

% Compute the value of Izz in the principal reference frame

Izz_p = 0.5*(Ixx + Izz) + 0.5*(Ixx - Izz)*cosd(2*theta_p) + Izx*sind(2*theta_p);

% Set the product of inertia to zero (always true along principal axes

Izx_p = 0;

end

78

% calc_shear_center.m

%

% Description:

% This function is used to compute the location of the shear center of

% wing box section corresponding to a unit-length chord. This is done by

% applying arbitrary unit shear loads to compute the shear flow and

% afterwards determine the location of the shear center.

%

% Written by: Julian Bardin

% Date: 2021-04-03

%

function [x_shearcen,z_shearcen] = calc_shear_center(box)

% Extract relevant information from the wingbox object

x_vals = box.x_vals - box.x_centroid;

z_vals = box.z_vals - box.z_centroid;

t_vals = box.t_vals;

theta_p = box.theta_p;

Ixx_p = box.Ixx_p;

Izz_p = box.Izz_p;

A_mean = box.A_mean;

% Convert the x and z coordinates into the principal reference frame

x_p = x_vals.*cosd(theta_p) + z_vals.*sind(theta_p);

z_p = z_vals.*cosd(theta_p) - x_vals.*sind(theta_p);

% Compute the basic shear flow for the Sz case

qb = compute_basic_shear(0,1,t_vals,x_p,z_p,Ixx_p,Izz_p);

% Compute the constant shear flow for the Sz case

qs0 = compute_const_shear(qb,t_vals,x_p,z_p);

% Compute the x-coordiante of the shear center in the principal axes

x_shearcen_p = -find_shear_center_coord(-1,x_p,z_p,qb,qs0,A_mean);

% Compute the basic shear flow for the Sx case

qb = compute_basic_shear(1,0,t_vals,x_p,z_p,Ixx_p,Izz_p);

% Compute the constant shear flow for the Sx case

qs0 = compute_const_shear(qb,t_vals,x_p,z_p);

% Compute the z-coordiante of the shear center in the principal axes

z_shearcen_p = -find_shear_center_coord(1,x_p,z_p,qb,qs0,A_mean);

% Convert the shear center coordinates to the centroidal reference frame

x_shearcen = x_shearcen_p*cosd(theta_p) - z_shearcen_p*sind(theta_p);

z_shearcen = z_shearcen_p*cosd(theta_p) + x_shearcen_p*sind(theta_p);

% Convert the shear center into the global reference frame

x_shearcen = x_shearcen + box.x_centroid;

z_shearcen = z_shearcen + box.z_centroid;

end

% This function determines the basic shear distribution across the wingbox

function qb = compute_basic_shear(Sx,Sz,t_vals,x_p,z_p,Ixx_p,Izz_p)

% Append the first point to the end of the matrix to form a complete loop

x_p = [x_p x_p(1)];

z_p = [z_p z_p(1)];

% Compute the section lengths for the wingbox discretization

area_sum_x = NaN(1,length(x_p)-1);

area_sum_z = NaN(1,length(x_p)-1);

area_sum_x(1) = 0;

area_sum_z(1) = 0;

for i = 2:length(x_p)-1

 % Determine the z and x distance travaled between this point and the

 % next one

 dz = z_p(i+1) - z_p(i);

 dx = x_p(i+1) - x_p(i);

 % Determine the distance between the two points

79

 ds = sqrt(dx^2 + dz^2);

 % Calculate the value of this iteration's area x and z area sums

 area_sum_x(i) = area_sum_x(i-1) + t_vals(i)*x_p(i)*ds;

 area_sum_z(i) = area_sum_z(i-1) + t_vals(i)*z_p(i)*ds;

end

% Compute the shear flow matrix

qb = -Sx/Izz_p.*area_sum_x - Sz/Ixx_p*area_sum_z;

end

% This function determines the cosntant reference shear flow

function qs0 = compute_const_shear(qb,t_vals,x_p,z_p)

% Append the first point to the end of the matrix to form a complete loop

x_p = [x_p x_p(1)];

z_p = [z_p z_p(1)];

% Go along the border the wingbox, completing a numerical line integral to

% find the numerator value and denominator value

numerator = 0;

denominator = 0;

for i = 1:length(x_p)-1

 % Determine the z and x distance travaled between this point and the

 % next one

 dz = z_p(i+1) - z_p(i);

 dx = x_p(i+1) - x_p(i);

 % Determine the distance between the two points

 ds = sqrt(dx^2 + dz^2);

 % Add the value to the numerator

 numerator = numerator + qb(i)/t_vals(i)*ds;

 % Add the denominator value

 denominator = denominator + ds/t_vals(i);

end

% Compute the constant shear flow

qs0 = -numerator/denominator;

end

% This function computes one of the coordinates of the shear center

function coord = find_shear_center_coord(S,x_p,z_p,qb,qs0,A_mean)

% Append the first point to the end of the matrix to form a complete loop

x_p = [x_p x_p(1)];

z_p = [z_p z_p(1)];

% Go through all the points completing a numerical line integral

torque_sum = 0;

for i = 1:length(x_p)-1

 % Determine the z and x distance travaled between this point and the

 % next one

 dz = z_p(i+1) - z_p(i);

 dx = x_p(i+1) - x_p(i);

 % Determine the distance between the two points

 ds = sqrt(dx^2 + dz^2);

 % Depending on if the section if vertical or not, the analysis is a bit

 % different

 if dx ~= 0

 % If dx is no zero, there is no worry of infinity appearing,

 % compute the slope normally

 m = dz/dx;

 % Compute the value of p

 p = abs((z_p(i) - m*x_p(i))/(1-m^2))*sqrt(m^2+1);

 else

 % If the slope is infinity, then p is parallel to the x-axis and

 % equal in length to the x-coordinate

80

 p = abs(x_p(i));

 end

 % Add the valye to the torque_sum

 torque_sum = torque_sum + p*qb(i)*ds;

end

% Solve for the shear center coordinate

coord = (torque_sum + 2*A_mean*qs0)/S;

end

81

% calc_torsion_loading.m

%

% Description:

% This function is used to compute the torque distribution along the

% wing. This is done by first computing the torque applied to each

% section, then finding the reaction force at the root from this. The

% spanwise distribution is found by adding the section torque at each

% point to the previous torque, finding the net torque generated by lift

% along the wing.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function [T_lift,y_lift,T_span] = calc_torsion_loading(dL,wing_calc,box_ref)

% Determine the y-positions

y_lift = wing_calc.panel_y(1,:);

% Determine how many points are being analysed

num_points = length(y_lift);

% Initialize the output

T_lift = NaN(1,num_points);

% Determine the chordlengths

% Compute the spanwise chord distribution

chord_lens = NaN(1,num_points+1);

for i = 1:num_points

 chord_lens(i) = abs(wing_calc.panel_x(1,i) - wing_calc.panel_x(end,i));

end

% Go through the wing slices and determine the torque being applied at each

T_span = NaN(1,num_points-1);

for i = 1:num_points-1

 % Determine the average chord length for the section

 chord = (chord_lens(i) + chord_lens(i+1))/2;

 % Determine the scaled centroid location

 x_pivot = box_ref.x_shearcen*chord;

 % Extract the lift distirbution

 lift_dist = dL(:,i);

 % Extract the colocation points where the lift force is applied

 coloc_x = wing_calc.coloc_x(:,i)-(wing_calc.panel_x(1,i) + wing_calc.panel_x(1,i+1))/2;

 % Compute the sectional torque

 T_span(i) = sum(lift_dist.*(x_pivot-coloc_x));

end

% Go along the wing and apply the torques as they are encountered

T_lift(1) = -sum(T_span);

for i = 1:num_points-1

 T_lift(i+1) = T_lift(i) + T_span(i);

end

end

82

% calc_twist_distribution.m

%

% Description:

% This function computes the twist distribution in the spanwise direction

% along the wing.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function twist = calc_twist_distribution(panel_x,box_ref,T_lift,y_lift,G)

% Determine how many points are being analysed

num_points = length(y_lift);

% Initialize the output

twist = NaN(1,num_points);

twist(1) = 0;

% Compute the spanwise chord distribution

chord_lens = NaN(1,num_points);

for i = 1:num_points

 chord_lens(i) = abs(panel_x(1,i) - panel_x(end,i));

end

% Go along the span and compute the wing twist

for i = 2:num_points

 % Compute the mean chord

 c_mean = (chord_lens(i) + chord_lens(i-1))/2;

 % Scale the wingbox

 box = scale_wingbox(box_ref,c_mean);

 % Compute the next twist value

 twist(i) = twist(i-1) - T_lift(i)*abs(y_lift(i)-y_lift(i-

1))/(4*(box.A_mean)^2*G)*sum(box.st_vals);

end

% Convert the twist into degrees

twist = twist*180/pi;

end

83

% calc_wingbox_centroid.m

%

% Description:

% This function is used to compute the centroid of the wingbox based on

% the area concentration distribution.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function box = calc_wingbox_centroid(box)

% Extract the relevant wingbox data

x_vals = box.x_vals;

z_vals = box.z_vals;

A_vals = box.A_vals;

% Extract the stringer properties

x_strs = box.x_strs;

z_strs = box.z_strs;

A_strs = box.A_strs;

% Determine the location of the centroid

box.x_centroid = (sum(x_vals.*A_vals,'all') +

sum(x_strs.*A_strs,'all'))/(sum(A_vals,'all')+sum(A_strs,'all'));

box.z_centroid = (sum(z_vals.*A_vals,'all') +

sum(z_strs.*A_strs,'all'))/(sum(A_vals,'all')+sum(A_strs,'all'));

end

84

% determine_wingbox_data.m

%

% Description:

% This function populates the basic information which defines the wingbox

% arrangement. Mainly, this sets the thickness values and outline

% coordinates for the skin, as well as the stringer information

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function box =

determine_wingbox_data(foil,box_chords,N_strs,t_skin,t_spar,A_stringers,res_skin,res_spar)

% Initialize the wingbox object

box = WingBox();

% Pass on relevant parameters into the wingbox object

box.t_skin = t_skin;

box.t_spar = t_spar;

% Find where the airfoil is split

idx_split = find(foil.x_coords == 0);

% Split up the surfaces

x_lo = foil.x_coords(1:idx_split);

z_lo = foil.z_coords(1:idx_split);

x_up = foil.x_coords(idx_split:end);

z_up = foil.z_coords(idx_split:end);

% Determine which vectors need to be flipped

if x_up(1) > x_up(end)

 x_up = fliplr(x_up);

 z_up = fliplr(z_up);

else

 x_lo = fliplr(x_lo);

 z_lo = fliplr(z_lo);

end

% Compute the coordinates for the wingbox outline

[box.x_vals,box.z_vals] = calc_wingbox_outline(x_up,x_lo,z_up,z_lo,res_skin,res_spar,box_chords);

% Compute the coordinates of the stringers

[box.x_strs,box.z_strs,box.A_strs] =

calc_stringers(x_up,x_lo,z_up,z_lo,N_strs,A_stringers,box_chords);

% Compute the area concentrations

[box.A_vals,box.st_vals,box.t_vals] =

calc_area_concentrations(box.x_vals,box.z_vals,t_skin,t_spar);

end

% This function computes the coordinates of the skin/spar outline of the

% wingbox

function [x_vals,z_vals] = calc_wingbox_outline(x_up,x_lo,z_up,z_lo,res_skin,res_spar,box_chords)

% Determine the x-coordinates for the airfoil skin surfaces

x_skins = linspace(box_chords(1),box_chords(2),res_skin);

% Compute the coordinates of the skin portion of the outline

z_skins_up = NaN(1,res_skin);

z_skins_lo = NaN(1,res_skin);

for i = 1:res_skin

 z_skins_up(i) = interp1(x_up,z_up,x_skins(i),'makima');

 z_skins_lo(i) = interp1(x_lo,z_lo,x_skins(i),'makima');

end

% Determine the coordinates of the forward spar (left)

z_left = linspace(z_skins_up(1),z_skins_lo(1),res_spar);

x_left = box_chords(1)*ones(1,res_spar);

% Determine the coordiantes for the rear spar (right)

z_right = linspace(z_skins_lo(end),z_skins_up(end),res_spar);

x_right = box_chords(2)*ones(1,res_spar);

85

% Assemble the coordinates so that the points start at the bottom left and

% wrap around the wingbox in counter clockwise direction

x_vals = [x_skins x_right(2:end-1) fliplr(x_skins) x_left(2:end-1)];

z_vals = [z_skins_lo z_right(2:end-1) fliplr(z_skins_up) z_left(2:end-1)];

end

% This function determines the locations of all the stringers. It also

% converts the given stringer area into a vector of the same length as the

% x and z coordinates, for easy indexing.

function [x_strs,z_strs,A_strs] =

calc_stringers(x_up,x_lo,z_up,z_lo,N_strs,A_stringers,box_chords)

% Determine the x-coordinates of the stringers

x_vals = linspace(box_chords(1),box_chords(2),N_strs+2);

x_vals = x_vals(2:end-1);

% Compute the coordinates of the skin portion of the outline

z_vals_up = NaN(1,N_strs);

z_vals_lo = NaN(1,N_strs);

for i = 1:N_strs

 z_vals_up(i) = interp1(x_up,z_up,x_vals(i),'makima');

 z_vals_lo(i) = interp1(x_lo,z_lo,x_vals(i),'makima');

end

% Assemble the coordinates to be output

x_strs = [x_vals x_vals];

z_strs = [z_vals_lo z_vals_up];

A_strs = A_stringers*ones(1,2*N_strs);

end

% This function computes the area concentrations of the wingbox, used for a

% numerical approximation of the area distribution of the geometry

function [A_vals,st_vals,t_vals] = calc_area_concentrations(x_vals,z_vals,t_skin,t_spar)

% Append the first point to the end of the matrix to form a complete loop

x_vals = [x_vals x_vals(1)];

z_vals = [z_vals z_vals(1)];

% Initialize the output variable

A_vals = NaN(1,length(x_vals)-1);

st_vals = NaN(1,length(x_vals)-1);

t_vals = NaN(1,length(x_vals)-1);

% Go through all the points and compute the area for each area

% concentration

for i = 1:length(x_vals)-1

 % Determine the z and x distance travaled between this point and the

 % next one

 dz = z_vals(i+1) - z_vals(i);

 dx = x_vals(i+1) - x_vals(i);

 % Determine the distance between the two points

 ds = sqrt(dx^2 + dz^2);

 % Determine which thickness is to be used. If the dx is 0, then it is a

 % spar, otherwise it is a skin. Compute the area as the

 % distance*thickeness

 if dx == 0

 A_vals(i) = ds*t_spar;

 st_vals(i) = ds/t_spar;

 t_vals(i) = t_spar;

 else

 A_vals(i) = ds*t_skin;

 st_vals(i) = ds/t_skin;

 t_vals(i) = t_skin;

 end

end

end

86

% scale_wingbox.m

%

% Description:

% This function is used to scale the wingbox parameters from the section

% corresponding to unit-length chord to the length of a given cross

% section

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function box = scale_wingbox(box,chord)

% Scale the position of the centroid

box.x_centroid = box.x_centroid*chord;

box.z_centroid = box.z_centroid*chord;

% Scale the position of the shear centre

box.x_shearcen = box.x_shearcen*chord;

box.z_shearcen = box.z_shearcen*chord;

% Scale the wingbox outline

box.x_vals = box.x_vals*chord;

box.z_vals = box.z_vals*chord;

box.A_vals = box.A_vals*chord;

box.st_vals = box.st_vals*chord;

% Scale the mean area

box.A_mean = box.A_mean*chord^2;

% Scale the stringer positions

box.x_strs = box.x_strs*chord;

box.z_strs = box.z_strs*chord;

% Scale the moments of inertia

box.Ixx = box.Ixx*chord^3;

box.Izz = box.Izz*chord^3;

box.Izx = box.Izx*chord^3;

box.Ixx_p = box.Ixx_p*chord^3;

box.Izz_p = box.Izz_p*chord^3;

box.Izx_p = box.Izx_p*chord^3;

end

87

% struct_solver_bending.m

%

% Description:

% This function encapsulates the functions used to compute the structural

% bending of the wing. The important outputs include deflection angle and

% vertical deflection distance.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function [dz,def_angle,V_lift,M_lift,y_lift] =

struct_solver_bending(wing_calc,box_ref,L,dL,E,twist)

% Compute the loading distribution

[V_lift,M_lift,y_lift] = calc_bend_loading(L,dL,wing_calc.panel_y);

% Compute the deflection angles across the wing span

def_angle =

calc_angle_distribution(box_ref,wing_calc.panel_x,y_lift,M_lift,box_ref.theta_p,E,twist);

dz = calc_bending_deflection(y_lift,def_angle);

end

88

% struct_solver_deformation.m

%

% Description:

% This function encapsulates the structural solver of the wing and

% wingbox. This first computes the torque loading, then the twist

% distribution. The bending calculator is then run, utilizing the twist

% as an input as well. This will rotate the point probed for bending

% radius to compensate for the wing twist. The deflection and twist along

% the spanwise direction are returned, as well as the loads for plotting.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function [y_lift,dz,twist,T_lift,V_lift,M_lift]...

 = struct_solver_deformation(wing_calc,box_ref,L,dL,E,G)

% Compute torsional loading distribution

[T_lift,y_lift,~] = calc_torsion_loading(dL,wing_calc,box_ref);

% Compute the twist angles

twist = calc_twist_distribution(wing_calc.panel_x,box_ref,T_lift,y_lift,G);

% Determine the bending deflection and loading, correcting for the twist

[dz,~,V_lift,M_lift,y_lift] = struct_solver_bending(wing_calc,box_ref,L,dL,E,twist);

end

89

% struct_solver_wingbox.m

%

% Description:

% This function encapsultes the functions used to compute the

% characteristics of a wingbox corresponding to an airfoil of unit

% chord length.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function box =

struct_solver_wingbox(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar)

% Determine basic geometric and area data for the wing box

box =

determine_wingbox_data(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar);

% Compute the centroid for the wingbox

box = calc_wingbox_centroid(box);

% Compute the moments of inertia in the global reference frame

[box.Ixx,box.Izz,box.Izx] = calc_moments_of_inertia(box);

% Determine the angle between the principal axes and the global axes

box.theta_p = calc_principal_angle(box);

% Determine the moments of inertia in the principal reference frame

[box.Ixx_p,box.Izz_p,box.Izx_p] = calc_principal_inertia(box.Ixx,box.Izz,box.Izx,box.theta_p);

% Determine the mean area of the wingbox

box.A_mean = polyarea([box.x_vals box.x_vals(1)],[box.z_vals box.z_vals(1)]);

% Compute the shear center of the wingbox

[box.x_shearcen,box.z_shearcen] = calc_shear_center(box);

end

90

Appendix G: Utility Functions
% Airfoil.m

%

% Description:

% This class defines the airfoil object, used to store airfoil

% information. This is analogous to the Wing_calc object, but for use

% with 2D calculation

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

classdef Airfoil

 properties

 % Define the geometric properties which define the airfoil

 x_coords = []; % x-direction coordinates for airfoil geometry

 z_coords = []; % z-direction coordinates for airfoil geometry

 a_panels = []; % The angle of the panel relative to -ve freestream

 x_coloc = []; % x-direction coordinates of the colocation points

 z_coloc = []; % z-direction coordiantes of the colocation points

 % Define secondary parametere

 x_norm = []; % x-direction component of each panel's normal

 z_norm = []; % z-direction component of each panel's normal

 x_tang = []; % x-direction component of each panel's tangent

 z_tang = []; % z-direction component of each panel's tangent

 end

 methods

 % Constructor method

 function obj = Airfoil(coord_vectors)

 obj.x_coords = fliplr(coord_vectors(1,:));

 obj.z_coords = fliplr(coord_vectors(2,:));

 end

 end

end

91

% calc_airfoil_panel_angle.m

%

% Description:

% This function computes the angle of each panel the comprises the

% airfoil.

% *** NOTE: ANGLES IN RADIANS, NOT DEGREES

%

% Written by: Julian Bardin

% Date: 2021-02-16

%

function [alpha] = calc_airfoil_panel_angle(foil)

% Extract the airfoil geometry

x_foil = foil.x_coords;

z_foil = foil.z_coords;

% Initialize the output matrix

alpha = NaN(1,length(x_foil)-1);

% Go through all the panels and compute the angle

for i = 1:length(x_foil)-1

 % Define the points p1 and p2

 p1 = [x_foil(i) z_foil(i)];

 p2 = [x_foil(i+1) z_foil(i+1)];

 % Define the vector pointing from p2 to p1, which lies on the x_p axis in

 % the negative direction

 r21 = p2-p1;

 % Calculate the angle of the panel. Note all angles within this function

 % are in radians, rather than degrees used in other sections of this

 % program.

 alpha(i) = atan2(r21(2),r21(1));

end

end

92

% calc_curve_dist.m

%

% Description:

% This fucntion computes the curve displacement from x(0), z(0) at each

% point defined by the given x and z vectors.

%

% Written by: Julian Bardin

% Date: 2021-03-19

%

function s = calc_curve_dist(x,z)

% Initialize the output matrix

s = NaN(1,length(x));

% Set the first value of s to 0

s(1) = 0;

% Go through all the coordinates and compute the curve distance

for i = 2:length(x)

 s(i) = sqrt((x(i)-x(i-1))^2 + (z(i) - z(i-1))^2) + s(i-1);

end

end

93

% calc_mean_camber.m

%

% Description:

% This function is used to calcualte the mean camber line of an airfoil

% at discrete given x-values

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [z_camber] = calc_mean_camber(airfoil,x_camber)

% Extract the coordinates of the airfoil

x = airfoil(1,:);

z = airfoil(2,:);

% Find the point that corresponds to the leading edge

idx_split = find(x == 0);

% Split the airfoil geometry into upper and lower surface using the

% idx_split point found above. It is assumed that the first geometry

% interval is the upper surface, but if it is reversed the generation of

% the camber line will remain unaffected

x_up = x(1:idx_split);

z_up = z(1:idx_split);

x_lo = x(idx_split:end);

z_lo = z(idx_split:end);

% Determine which vectors need to be flipped

if x_up(1) > x_up(end)

 x_up = fliplr(x_up);

 z_up = fliplr(z_up);

else

 x_lo = fliplr(x_lo);

 z_lo = fliplr(z_lo);

end

% Determine the length of the x_camber vector

x_len = length(x_camber);

% Initialize variables to store the interpolated points

z_up_interp = NaN(1,x_len);

z_lo_interp = NaN(1,x_len);

% Calculate the values of z for the camber

for i = 1:x_len

 z_up_interp(i) = interp1(x_up,z_up,x_camber(i),'makima');

 z_lo_interp(i) = interp1(x_lo,z_lo,x_camber(i),'makima');

end

z_camber = 0.5*(z_up_interp + z_lo_interp);

end

94

% calc_vel_vector.m

%

% Description:

% This function is used to convert the free-stream velocity and angle of

% attack to a velocity vector Q_inf which is equivalent to a wing at 0 AoA

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

function Q_inf = calc_vel_vector(V_inf,AoA)

Q_inf = [V_inf*cosd(AoA) 0 V_inf*sind(AoA)];

end

95

% compute_new_z_from_disp

%

% Description:

% This functin is used to adjust the airfoil surface geometry to account

% for the boundary layer displacement thickness.

%

%

function z_new = compute_new_z_from_disp(x,z,disp)

% Initialize the variables to store x and z coordiantes with the

% displacement thickness

x_d = NaN(1,length(x));

z_d = NaN(1,length(x));

x_d(1) = x(1);

z_d(1) = z(1);

% Go through all the points (starting from 2 as the displacement thickness

% at the first point is always zero), and compute the adjusted value for x

% and z based on the dispacement thickness

for i = 2:length(z)

 % Compute the angle of this panel in the global reference frame

 panel_alpha = atan2d(z(i)-z(i-1),x(i)-x(i-1));

 % If the angle is equal to zero, then just use the displacement

 % thickness

 if panel_alpha == 0

 z_d(i) = z(i) + disp(i);

 x_d(i) = x(i);

 continue;

 end

 % Otherwise use trigonometry to adjust the coordinates

 z_d(i) = disp(i)*cosd(panel_alpha) + z(i);

 x_d(i) = -disp(i)*sind(panel_alpha) + x(i);

end

% Interpolate to find the values of z that match with input x coordinates

z_new = interp1(x_d,z_d,x,'linear','extrap');

end

96

% convert_wing_obj.m

%

% Description:

% This function is used to convert the parametrized wing into a

% calculation-compatible equivalent form.

%

% Written by: Julian Bardin

% Date: 2021-02-14

%

function wing_calc = convert_wing_obj(wing_param,x_panels,y_panels)

% Generate a calc-compatible wing object

wing_calc = Wing_Calc();

% Calculate the discrete panels that are used for VLM computation

[wing_calc.panel_x,wing_calc.panel_y,wing_calc.panel_z] =

determine_panel_coordinates(wing_param,x_panels,y_panels);

% Calculate the areas of the panels

wing_calc.panel_A = determine_panel_area(wing_calc);

% Determine the grid of vertices used for computing the vortex rings

[wing_calc.ring_x,wing_calc.ring_y,wing_calc.ring_z] = determine_ring_coordinates(wing_calc);

% Determine the colocation points and the normal vectors placed on them.

[wing_calc.coloc_x,wing_calc.coloc_y,wing_calc.coloc_z] = determine_coloc_coordinates(wing_calc);

[wing_calc.norm_x,wing_calc.norm_y,wing_calc.norm_z] = determine_coloc_norms(wing_calc);

end

97

% find_stagnation_point.m

%

% Description:

% This function determines the location of the stagnation point on the

% airfoil. If the stagnation point does not like on a node, then an index

% value of X.5 is place between the two points in the tangential speed

% matrix where the velocity flips signs.

%

% Written by: Julian Bardin

% Date: 2021-03-17

%

function idx = find_stagnation_point(Qt)

% Convert the Qt vector into a vector of signs

Qt_sign = sign(Qt);

% First try and find a point where the sign is zero

idx = find(Qt_sign == 0,1,'first');

% If the idx is empty, it means no point equals 0, therefore set the

% stagnation point index to a midpoint between the two sign-flip points.

% The function that is used for drag computation will then round this value

% depending on which side of the airfoil is being computed.

if isempty(idx)

 % Find the first sign flip. Then subtract 0.5 from the index so that

 % the value returned is halfway between the two points.

 if Qt_sign(1) == 1

 idx = find(Qt_sign == -1,1,'first') -0.5;

 else

 idx = find(Qt_sign == 1,1,'first') -0.5;

 end

end

end

98

% gen_outline_2D.m

%

% Description:

% This function returns two row vectors with coordinates for the wing

% planform outline

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [x,y] = gen_outline_2D(wing_param)

% Define the origin at the leading edge at the root

x = 0;

y = 0;

% Define the leading edge at the kink

x(end+1) = x(1) + wing_param.semi_span*wing_param.dr_kink;

y(end+1) = y(1);

% Add point for the leading edge at the tip chord

x(end+1) = x(1) + wing_param.semi_span;

y(end+1) = y(1) - wing_param.semi_span*tand(wing_param.sweep_LE);

% Add point for the trailing edge the tip chord

x(end+1) = x(end);

y(end+1) = y(end) - wing_param.chord_root*wing_param.tr_tip;

% Add point for the trailing edge at the kink

x(end+1) = x(1) + wing_param.semi_span*wing_param.dr_kink;

y(end+1) = y(1) - wing_param.chord_root;

% Add point for the trailing edge at the root chord

x(end+1) = x(1);

y(end+1) = y(1) - wing_param.chord_root;

% Complete the loop and add the origin at the end of the row vectors

x(end+1) = x(1);

y(end+1) = y(1);

end

99

% gen_planform_LE_TE.m

%

% Description:

% This function parses through the wing planform outline and isolates

% which points belong to the leadinge edge, and which points belong to

% the trailing edge.

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param)

% First get the overall planform outline

[x,y] = gen_outline_2D(wing_param);

% Determine which points correspond to the tip chord.

tip_points = find(x == wing_param.semi_span);

% Coordinates from the first entry up until the first tip chord coordinate

% are taken as belonging to the leading edge

x_LE = x(1:tip_points(1));

y_LE = y(1:tip_points(1));

% Coordinates belonding to the trailing edge are taken as the range of

% values from teh last tip-chord points until the second-last outline points

x_TE = x(tip_points(end):end-1);

y_TE = y(tip_points(end):end-1);

end

100

% ij2K.m

%

% Description:

% This function converts an i,j combination into its corresponding K

% identifier.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

function K = ij2K(i,j,y_panels)

K = (i-1)*y_panels + j;

end

101

% K2ij.m

%

% Description:

% This function converts a given K identifier into its corresponding i

% and j indices.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

function [i,j] = K2ij(K,y_panels)

j = mod(K-1,y_panels)+1 ;

i = ceil(K/y_panels);

end

102

% read_selig_foil

%

% Description:

% This function is responsible for loading the selig airfoil data file.

% The output is a matrix, where the first row is a vector of x values,

% and the second row is a matrix of z values.

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function [points] = read_selig_foil(filename)

% Open the file

fileID = fopen(filename);

% Load the contents of the file into memory

contents = [];

while ~feof(fileID)

 contents = [contents ; {fgetl(fileID)}];

end

% Go through the loaded data and convert the strings into numbers

points = [];

for i = 1:length(contents)

 % Convert the string values to doubles

 vals = str2num(contents{i});

 % If the length is less than 2, assume this is a comment

 if length(vals) < 2

 continue

 end

 % Otherwise append the numbers to the points matrix

 points = [points ; vals];

end

% Transpose the points matrix to provice two row vectors.

points = points';

end

103

% render_airfoil.m

%

% Description:

% This function generates a figure showing the airfoil with its mean

% camber line.

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function render_airfoil(foil)

% Create the figure

figure();

axis equal;

hold on;

% Plot the airfoil outline

plot(foil.x_coords,foil.z_coords,'-ok');

% Get the coordinates of the mean camber line

x_camber = linspace(0,1,100);

[z_camber] = calc_mean_camber([foil.x_coords ; foil.z_coords],x_camber);

% Plot the camber

plot(x_camber,z_camber,'-r');

% If the colocation points exist, plot them

if ~isempty(foil.x_coloc) && ~isempty(foil.z_coloc)

 plot(foil.x_coloc,foil.z_coloc,'kx');

end

% If the normals exist, plot them

if ~isempty(foil.x_norm) && ~isempty(foil.z_norm) && ~isempty(foil.x_coloc) &&

~isempty(foil.z_coloc)

 for i = 1:length(foil.x_norm)

 plot([foil.x_coloc(i) foil.x_coloc(i)+0.01*foil.x_norm(i)],[foil.z_coloc(i)

foil.z_coloc(i)+0.01*foil.z_norm(i)],'-k','LineWidth',1.3);

 end

end

% Output a legend

h = 0;

h(1) = plot(NaN,NaN,'kx');

h(2) = plot(NaN,NaN,'-ok');

h(3) = plot(NaN,NaN,'-r');

legend(h,'Colocation Points','Panel Nodes','Mean Camber Line');

end

104

% render_airfoil2.m

%

%

function render_airfoil2(foil,z_BL)

% Create the figure

figure();

grid on;

axis equal;

hold on;

% Plot the airfoil outline

plot(foil.x_coords,foil.z_coords,'-k');

% Get the coordinates of the mean camber line

x_camber = linspace(0,1,100);

[z_camber] = calc_mean_camber([foil.x_coords ; foil.z_coords],x_camber);

% Plot the camber

plot(x_camber,z_camber,'-r');

% Plot the boundary layer

plot(foil.x_coords,z_BL,'--r');

% Output a legend

h = 0;

h(1) = plot(NaN,NaN,'-k');

h(2) = plot(NaN,NaN,'--r');

legend(h,'Airfoil Outline','Boundary Layer Displacement');

end

105

% render_airfoil_CP.m

%

%

function render_airfoil_CP(foil,CP)

figure();

hold on;

axis equal

grid minor;

% CP(abs(CP) > 1E2) = 0;

plot(foil.x_coloc,CP);

set(gca, 'YDir','reverse')

plot(foil.x_coords,-foil.z_coords+1.5)

end

106

% render_loading.m

%

% Description:

% This function renders the shear and moment diagrams for the spanwise

% loading distribution.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function render_loading(y,V,M,T)

% Create the figure

figure();

grid on;

hold on;

% Set the subplot

subplot(3,1,1);

% Plot axis lines

xline(0);

yline(0);

% Plot the shear distribution

plot(y,V,'-b');

% Add labelling

xlabel('Spanwise distance (m)');

ylabel('Shear Force (N)');

title('Shear Distribution');

% Set the subplot

subplot(3,1,2);

% Plot the moment distribution

plot(y,M,'-r');

% Set the labelling

ylabel('Bending Moment (Nm)');

xlabel('Spanwise distance (m)');

title('Moment Distribution');

% Set the subplot

subplot(3,1,3)

% Plot the torsion diagram

plot(y,T,'-r')

% Set the labelling

ylabel('Torsion (Nm)');

xlabel('Spanwise distance (m)');

title('Torsion Distribution');

end

107

% render_structure_response

%

% Description:

% This function is used to generate plots for the twist and deflection

% distribution along the wing.

%

% Written by: Julian Bardin

% Date: 2021-03-27

%

function render_structure_response(y_lift,dz,twist)

% Create the figure

figure();

hold on;

% Set the subplot

subplot(2,1,1);

% Plot the data

plot(y_lift,dz,'-k');

% Label the plot

title('Spanwise Bending Deflection');

xlabel('Spanwise Distance (m)');

ylabel('Deflection (m)');

% Set the subplot

subplot(2,1,2);

% Plot the data

plot(y_lift,twist,'-k');

% Label the plot

title('Spanwise Twist');

xlabel('Spanwise Distance (m)');

ylabel('Twist (^o)');

end

108

% render_wing_2D.m

%

% Description:

% This function is reponsible for generating a 2D planform view of the

% wing.

%

% Written by: Julian Bardin

% Date: 2021-02-09

%

function render_wing_2D(wing_param, wing_calc)

% Open the figure

figure();

grid on;

axis equal;

hold on;

% Draw a line for x = 0

xline(0);

% Generate the outline coordinates

[x,y] = gen_outline_2D(wing_param);

[x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param);

% Set the axes (x and y based on MATLAB, not on aircraft standard

% nomenclature)

x_range = wing_param.semi_span;

y_range = max(y)-min(y);

xlim([min(x)-0.1*x_range max(x)+0.1*x_range]);

ylim([min(y)-0.1*y_range max(y)+0.1*y_range]);

% Output the outline of the wing planform

plot(x,y,'-k','LineWidth',2);

% Render the panels if data for them exists

if ~isempty(wing_calc.panel_x) && ~isempty(wing_calc.panel_y)

 % Extract the panel locations

 x_panels = -wing_calc.panel_x;

 y_panels = wing_calc.panel_y;

 % Plot the panel borders

 plot(y_panels,x_panels,'-b');

 plot(y_panels',x_panels','-b');

end

% Output lines on the leading and trailing edge

plot(x_LE,y_LE,'-g','LineWidth',1.2);

plot(x_TE,y_TE,'-g','LineWidth',1.2);

% Render the vortex rings if they exist

if ~isempty(wing_calc.ring_x) && ~isempty(wing_calc.ring_y)

 % Extract the ring locations

 x_rings = -wing_calc.ring_x;

 y_rings = wing_calc.ring_y;

 % Plot the vortex right boundaries

 plot(y_rings,x_rings,'-r','LineWidth',1.5);

 plot(y_rings',x_rings','-r','LineWidth',1.5);

end

% Render the colocation points

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y)

 x_coloc = -wing_calc.coloc_x;

 y_coloc = wing_calc.coloc_y;

 dims = size(wing_calc.coloc_x);

 for j = 1:dims(2)

 for i = 1:dims(1)

 plot(y_coloc(i,j),x_coloc(i,j),'kx');

109

 end

 end

end

% Output a legend

h = zeros(1,1);

h(1) = plot(NaN,NaN,'-g');

h(2) = plot(NaN,NaN,'-b');

h(3) = plot(NaN,NaN,'-r');

h(4) = plot(NaN,NaN,'xk');

legend(h,'LE and TE','Panels','Vortex Rings','Collocation Points');

end

110

% render_wing_3D.m

%

%

function render_wing_3D(wing_param, wing_calc,render_norms)

% Create the figure

figure();

% First render the root airfoil

x_f1 = -wing_param.airfoil(1,:)*wing_param.chord_root;

z_f1 = wing_param.airfoil(2,:)*wing_param.chord_root;

y_f1 = zeros(1,length(x_f1));

plot3(x_f1,-y_f1,z_f1,'-k','LineWidth',2);

% Now that the plot is 3D, set hold and axis

hold on;

axis equal;

% Generate the outline

[y_ol,x_ol] = gen_outline_2D(wing_param);

z_ol = zeros(1,length(x_ol));

% plot3(x_ol,-y_ol,z_ol,'-k','LineWidth',2);

% Get the lines for the leading and trailing edge

[y_LE,x_LE,y_TE,x_TE] = gen_planform_LE_TE(wing_param);

z_LE = zeros(1,length(x_LE));

z_TE = zeros(1,length(x_TE));

plot3(x_LE,-y_LE,z_LE,'-g','LineWidth',1.5);

plot3(x_TE,-y_TE,z_TE,'-g','LineWidth',1.5);

% Render the tip airfoil

x_f2 = x_LE(end)-wing_param.airfoil(1,:)*wing_param.chord_root*wing_param.tr_tip;

z_f2 = wing_param.airfoil(2,:)*wing_param.chord_root*wing_param.tr_tip;

y_f2 = ones(1,length(x_f2))*wing_param.semi_span;

plot3(x_f2,-y_f2,z_f2,'-k','LineWidth',2);

% Set axes limits

x_range = abs(max(x_ol) - min(x_ol));

y_range = abs(max(y_ol) - min(y_ol));

z_range = abs(max(z_f1) - min(z_f1));

xlim([min(x_ol)-0.2*x_range max(x_ol)+0.2*x_range]);

ylim([min(-y_ol)-0.2*y_range max(-y_ol)+0.2*y_range]);

zlim([min(z_ol)-2*z_range max(z_ol)+2*z_range]);

% If the panel data exists, plot it

if ~isempty(wing_calc.panel_x) && ~isempty(wing_calc.panel_y) && ~isempty(wing_calc.panel_z)

 plot3(-wing_calc.panel_x,-wing_calc.panel_y,wing_calc.panel_z,'-b');

 plot3(-wing_calc.panel_x',-wing_calc.panel_y',wing_calc.panel_z','-b');

end

% If the vortex ring data exits, plot it

if ~isempty(wing_calc.ring_x) && ~isempty(wing_calc.ring_y) && ~isempty(wing_calc.ring_z)

 % Extract the ring_x information

 ring_x = -wing_calc.ring_x;

 % Remove points at -1E6, and replace it with closer points

 ring_x(ring_x == -1E6) = min(x_ol)-0.2*x_range;

 % Plot the vortex rings

 plot3(ring_x,-wing_calc.ring_y,wing_calc.ring_z,'-r');

 plot3(ring_x',-wing_calc.ring_y',wing_calc.ring_z','-r');

end

% If the colocation point data exists, plot it

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y) && ~isempty(wing_calc.coloc_z)

 x_coloc = wing_calc.coloc_x;

 y_coloc = wing_calc.coloc_y;

 z_coloc = wing_calc.coloc_z;

111

 dims = size(wing_calc.coloc_x);

 for j = 1:dims(2)

 for i = 1:dims(1)

 plot3(-x_coloc(i,j),-y_coloc(i,j),z_coloc(i,j),'kx');

 end

 end

end

% If the normals are calculated, plot them

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y) && ~isempty(wing_calc.coloc_z)

&&...

 ~isempty(wing_calc.norm_x) && ~isempty(wing_calc.norm_y) && ~isempty(wing_calc.norm_z) &&

render_norms

 % Determine how many panels are present in the wing_calc object

 dims = size(wing_calc.panel_x);

 x_panels = dims(1)-1;

 y_panels = dims(2)-1;

 % Go through each panel and plot the normals

 for j = 1:y_panels

 for i = 1:x_panels

 % Determine the vector for each normal

 x_n = [wing_calc.coloc_x(i,j)

wing_calc.coloc_x(i,j)+wing_calc.norm_x(i,j)*0.05*wing_param.chord_root];

 y_n = [wing_calc.coloc_y(i,j)

wing_calc.coloc_y(i,j)+wing_calc.norm_y(i,j)*0.05*wing_param.chord_root];

 z_n = [wing_calc.coloc_z(i,j)

wing_calc.coloc_z(i,j)+wing_calc.norm_z(i,j)*0.05*wing_param.chord_root];

 % Plot the normals

 plot3(-x_n,-y_n,z_n,'-k');

 end

 end

end

% Output a legend

h = zeros(1,1);

h(1) = plot(NaN,NaN,'-g');

h(2) = plot(NaN,NaN,'-b');

h(3) = plot(NaN,NaN,'-r');

h(4) = plot(NaN,NaN,'xk');

legend(h,'LE and TE','Panels','Vortex Rings','Collocation Points','Location','best');

end

112

% render_wing_3D_lift.m

%

% Description:

% This function renders the pressure distribution over the wing camber

% determined from the wing's lift distribution.

%

% Written by: Julian Bardin

% Date: 2021-02-13

%

function render_wing_3D_lift(wing_param, wing_calc,dL)

% Create the figure

figure();

% First render the root airfoil

x_f1 = -wing_param.airfoil(1,:)*wing_param.chord_root;

z_f1 = wing_param.airfoil(2,:)*wing_param.chord_root;

y_f1 = zeros(1,length(x_f1));

plot3(x_f1,-y_f1,z_f1,'-k','LineWidth',2);

% Now that the plot is 3D, set hold and axis

hold on;

axis equal;

% Generate the outline

[y_ol,x_ol] = gen_outline_2D(wing_param);

z_ol = zeros(1,length(x_ol));

plot3(x_ol,-y_ol,z_ol,'-k','LineWidth',2);

% Get the lines for the leading and trailing edge

[y_LE,x_LE,y_TE,x_TE] = gen_planform_LE_TE(wing_param);

z_LE = zeros(1,length(x_LE));

z_TE = zeros(1,length(x_TE));

% Render the tip airfoil

x_f2 = x_LE(end)-wing_param.airfoil(1,:)*wing_param.chord_root*wing_param.tr_tip;

z_f2 = wing_param.airfoil(2,:)*wing_param.chord_root*wing_param.tr_tip;

y_f2 = ones(1,length(x_f2))*wing_param.semi_span;

plot3(x_f2,-y_f2,z_f2,'-k','LineWidth',2);

x = wing_calc.panel_x;

y = -wing_calc.panel_y;

z = wing_calc.panel_z;

% dL(1,:) = dL(2,:);

c = dL./wing_calc.panel_A;

surf(-x,y,z,c,'EdgeColor','none')

colorbar

end

113

% render_wingbox.m

%

% Description:

% This function is used to render a 2D cross section of the structural

% wingbox.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

function render_wingbox(box)

% Create the figure

figure();

hold on;

axis equal;

% Set the plot limits

xlim([min(box.x_vals)-0.05,max(box.x_vals)+0.05]);

% Plot the wingbox outline and stringers

plot(box.x_vals,box.z_vals,'-k','LineWidth',1.5)

% plot([box.x_vals box.x_vals(1)],[box.z_vals box.z_vals(1)],'-k','LineWidth',1.5)

plot(box.x_strs,box.z_strs,'or')

% Plot the area concentrations

A_max = max(box.A_vals);

for i = 1:length(box.x_vals)

 plot(box.x_vals(i),box.z_vals(i),'.k','MarkerSize',box.A_vals(i)/A_max*20,'Color',[0.3 0.3

0.3]);

end

% Plot the centroid if the point exists. Additionally, plot some lines to

% indicate the unrotated non-principal axes

if ~isempty(box.x_centroid) && ~isempty(box.z_centroid)

 plot(box.x_centroid,box.z_centroid,'.k','MarkerSize',12);

 plot([box.x_centroid box.x_centroid+0.1],[box.z_centroid box.z_centroid],'--k');

 plot([box.x_centroid box.x_centroid],[box.z_centroid box.z_centroid+0.1],'--k');

end

% If the angle of the principal angle exists, plot axes to show the

% principal axes

len_p = 0.2;

if ~isempty(box.theta_p)

 [x,z] = principal_axes(box.x_centroid,box.z_centroid,box.theta_p,len_p);

 plot(x,z,'-k');

 [x,z] = principal_axes(box.x_centroid,box.z_centroid,box.theta_p+90,len_p);

 plot(x,z,'-k');

end

% If the shear center exists, plot it

if ~isempty(box.x_shearcen) && ~isempty(box.z_shearcen)

 plot(box.x_shearcen,box.z_shearcen,'xr');

end

% Output a legend

h = zeros(1,1);

h(1) = plot(NaN,NaN,'or');

h(2) = plot(NaN,NaN,'.k','Color',[0.3 0.3 0.3]);

h(3) = plot(NaN,NaN,'--k');

h(4) = plot(NaN,NaN,'-k');

h(5) = plot(NaN,NaN,'xr');

legend(h,'Stringers','Area Concentrations','Centroid Axis','Principal Axis','Shear Center');

end

% This function computes the points to plot the principal axes

function [x,z] = principal_axes(x_centroid,z_centroid,theta,len)

% Initialize the output variables

x = NaN(1,2);

z = NaN(1,2);

114

% Set he first point to be at the centroid

x(1) = x_centroid;

z(1) = z_centroid;

% Compute the following point

m = tand(theta);

if theta < -90 || theta > 90

 x(2) = x(1) - len/sqrt(m^2 + 1);

else

 x(2) = x(1) + len/sqrt(m^2 + 1);

end

z(2) = m*(x(2)-x(1)) + z(1);

end

115

% split_airfoil.m

%

% Description:

% This function splits up the airfoil surface into the upper and lower

% surface, based on the stagnation point index. This is pre-requisite for

% computation of 2D viscous drag

%

% Written by: Julian Bardin

% Date: 2021-03-18

%

function [x_1,z_1,Qt_1,x_2,z_2,Qt_2] = split_airfoil(foil,Qt,idx)

% Extract the airfoil geometry

x = foil.x_coords;

z = foil.z_coords;

% Extract the data for the upper surface

x_1 = fliplr(x(1:floor(idx)));

z_1 = fliplr(z(1:floor(idx)));

Qt_1 = fliplr(-Qt(1:floor(idx)));

% Extract the data for the lower surface

x_2 = x(ceil(idx):end);

z_2 = z(ceil(idx):end);

Qt_2 = Qt(ceil(idx):end);

end

116

% wing_bend_and_twist.m

%

% Description:

% This function is used to deform the VLM mesh in response to the twist

% (torsion) and z-deflection (bending) of the wing. First, each section

% is rotated about the shear center by the supplied twist angle.

% Afterwards, all points are deflected.

%

% Written by: Julian Bardin

% Date: 2021-04-03

%

function wing_new = wing_bend_and_twist(wing_old,box_ref,twist,dz)

% Extract the panel coordiantes of the old wing planform

panel_x = wing_old.panel_x;

panel_y = wing_old.panel_y;

panel_z = wing_old.panel_z;

y_vals = panel_y(1,:);

% Initialize the new wing object

wing_new = Wing_Calc();

% Set the y-values to be the same as before

wing_new.panel_y = wing_old.panel_y;

% Go through each y-slice and adjust the x- and z-coordinates based on the

% input distance dz values

for i = 1:length(twist)

 % Extract the coordinates of the slice

 x_vals = panel_x(:,i);

 z_vals = panel_z(:,i);

 % Determine the chord length

 chord = x_vals(end) - x_vals(1);

 % Resize the coordinates of the shear center centroid (pivot point of

 % rotation)

 x_pivot = box_ref.x_shearcen*chord;

 z_pivot = box_ref.z_shearcen*chord;

 % Extract the leading edge coordinates

 x_LE = x_vals(1);

 z_LE = z_vals(1);

 % Convert the coordinates from the global reference frame to the

 % centroidal-centered reference frame

 x_vals = x_vals - x_pivot - x_LE;

 z_vals = z_vals - z_pivot - z_LE;

 % Go through each point, and rotate it about the centroid

 for j = 1:length(x_vals)

 % Compute the angle that this point makes with the x-axis

 ref_angle = atan2d(z_vals(j),x_vals(j));

 % Compute the distance between this point and the origin

 r = sqrt(z_vals(j)^2 + x_vals(j)^2);

 % Compute the new coordinates

 x_vals(j) = r*cosd(ref_angle + twist(i));

 z_vals(j) = r*sind(ref_angle + twist(i));

 end

 % Convert the coordinates back to the global reference frame

 x_vals = x_vals + x_pivot + x_LE;

 z_vals = z_vals + z_pivot + z_LE;

 % Add the z-direction deflection caused by the bending

 z_vals = z_vals + dz(i);

 % Set the values in the output object

 wing_new.panel_x(:,i) = x_vals;

117

 wing_new.panel_z(:,i) = z_vals;

end

% Calculate the areas of the panels

wing_new.panel_A = determine_panel_area(wing_new);

% Determine the grid of vertices used for computing the vortex rings

[wing_new.ring_x,wing_new.ring_y,wing_new.ring_z] = determine_ring_coordinates(wing_new);

% Determine the colocation points and the normal vectors placed on them.

[wing_new.coloc_x,wing_new.coloc_y,wing_new.coloc_z] = determine_coloc_coordinates(wing_new);

[wing_new.norm_x, wing_new.norm_y, wing_new.norm_z] = determine_coloc_norms(wing_new);

end

118

% Wing_Calc.m

%

% Description:

% This class defines the wing in a form more convenient for aerodynamic

% calculation. It is expected that objects of this type are populated by

% converting from a Wing_Param object.

%

% Written by: Julian Bardin

% Date: 2021-02-06

%

classdef Wing_Calc

 properties

 % Define the quantities used to calcualte the 3D viscous effects

 foil_geom = {}; % Airfoil geometry at each foil_y point. This is in true coordinates

 foil_y = []; % Distance from root for each geometry/AOA point

 foil_AoA = []; % Angle of attack for each airfoil at each y

 foil_points = 0; % The number of data points used to represent the wing

 % Define the quantities used for VLM to predict lift and induced

 % drag

 panel_x = []; % x-coordinates for the panel vertices

 panel_y = []; % y-coordinates for the panel vertices

 panel_z = []; % z-coordinates for the panel vertices

 panel_A = []; % Area of each panel

 ring_x = []; % x-coordinates for the vortex ring vortices

 ring_y = []; % y-coordinates for the vortex ring vortices

 ring_z = []; % z-coordinates for the vortex ring vortices

 coloc_x = []; % x-coordinates for the colocation points

 coloc_y = []; % y-coordinates for the colocation points

 coloc_z = []; % z-coordinates for the colocation points

 norm_x = []; % x-distance for the panel normals

 norm_y = []; % y-distance for the panel normals

 norm_z = []; % z-distance for the panel normals

 end

 methods

 end

end

119

% Wing_Param.m

%

% Description:

% This class defines a wing in its parametrized form. It also includes

% derivative quantities which are calcualted from the main defining

% parameters.

%

% Written By: Julian Bardin

% Date: 2021-02-06

%

classdef Wing_Param

 properties

 % Properties which are parametrized and therefore define the

 % geometry of the wing

 airfoil = []; % Selig format. X on first row, Z on second

 aoa = 0; % Angle of attack for the airfoil.

 chord_root = []; % Length of the root chord in m

 tr_tip = 1; % Taper Ratio between tip and root chord

 semi_span = []; % Length of the wing from the root to the tip in m

 sweep_LE = 0; % The sweep angle at the leading edge, in deg

 dr_kink = 0; % Location of the kink as a proportion of semispan

 % Properties calculated from the above definition

 qchord_line = []; % Coordinates of the quarter chord. X is 1st row, Y is 2nd

 sweep_QC = []; % The sweep angle at the quarter chord

 area = []; % Wing planform area

 tr_kink = 1; % Taper Ratio between kink and root chord

 end

 methods

 % This function calculates the secondary properties of the wing,

 % which are derived from teh parametrizing quantities

 function obj = calc_secondary_quantities(obj)

 end

 end

end

120

% WingBox.m

%

% Description:

% This function is used to define an object for storing wing box data.

%

% Written by: Julian Bardin

% Date: 2021-03-26

%

classdef WingBox

 properties

 % Define thicknesses

 t_spar = []; % Thickness of the forward and rear spars in m

 t_skin = []; % Thickness of the upper an lower skin

 % Define the centroid location relative to the airfoil

 x_centroid = []; % x location of the wingbox centroid with the airfoil coordinate system

 z_centroid = []; % z location of the wingbox centroid with the airfoil coordinate system

 % Define the shear center of the wingbox relative to the airfoil

 x_shearcen = []; % x location of the wingbox shear center

 z_shearcen = []; % z location of the wingbox shear center

 % Define the mean area of the wingbox

 A_mean = []; % Mean area encased by the wing box cross section

 % Define the coordinate system of the wingbox

 x_vals = []; % x values for the wing box outline

 z_vals = []; % y values for the wing box outline

 A_vals = []; % Area value for each area concentration set at each x,z point

 st_vals = []; % Sum of the ratios of displacement/thickness

 t_vals = []; % Thickness for each section of the wingbox outline

 % Define the stringer locations and area

 x_strs = []; % x coordinates for the stringers

 z_strs = []; % y coordinates for hte stringers

 A_strs = []; % Area of each stringer

 % Define the moments of inertia

 Ixx = []; % Moment of Inertia along the x-axis

 Izz = []; % Moment of Inertia along the z-axis

 Izx = []; % Product of Inertia

 % Define the angle of the principal axis relative to the global

 % aircraft reference frame

 theta_p = []; % Angle in degrees

 % Define the moments of inertia in the principal reference frame

 Ixx_p = []; % Moment of inertia along principal x-axis

 Izz_p = []; % Moment of inertia along principal z-axis

 Izx_p = []; % Product of inertia in principal reference frame

 end

 methods

 end

end

