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Abstract 
An aerostructural analysis program was developed to predict the aerodynamic performance of a non-rigid, 

low-sweep wing.  The wing planform was geometrically defined to have a rectangular section, and a 

trapezoidal section. The cross-section was further set to an airfoil shape which was consistent across the 

entire wingspan. Furthermore, to enable the inclusion of this multidisciplinary analysis module into an 

optimization scheme, the wing geometry was defined by a series of parameters: root chord, taper ratio, 

leading-edge sweep, semi-span length, and the kink location.  

Aerodynamic analysis was implemented through the quasi-three-dimensional approach, including a three-

dimensional inviscid solution and a sectional two-dimensional viscous solution. The inviscid analysis was 

provided through the implementation of the vortex ring lifting surface method, which modelled the wing 

about its mean camber surface.  

The viscous aerodynamic solution was implemented through a sectional slicing of the wing. For each 

section, the effective angle of attack was determined and provided as an input to a two-dimensional airfoil 

solver. This airfoil solution was comprised of two subcomponents: a linear-strength vortex method inviscid 

solution, and a direct-method viscous boundary layer computation. The converged airfoil solution was 

developed by adjusting the effective airfoil geometry to account for the boundary layer displacement 

thickness, which in itself required the inviscid tangential speeds to compute.   

The structural solution was implemented through classical beam theory, with a torsion and bending 

calculator included. The torque and bending moment distribution along the wing were computed from the 

lift distribution, neglecting the effects of drag, and used to compute the twist and deflection of the wing.  

Interdisciplinary coupling was achieved through an iterative scheme. With the developed implementation, 

the inviscid lift loads were used to compute the deformation of the wing. This deformation was used to 

update the wing mesh, and the inviscid analysis was run again. This iteration was continued until the lift 

variation between computations was below 0.1%. Once the solution was converged upon by the inviscid 

and structural solutions, the viscous calculator was run to develop the parasitic drag forces. Once 

computation had completed, the aerodynamic lift and drag forces were output to mark the completion of 

execution.  
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1 Introduction 
Optimization of aircraft components can be achieved through either a series of single-disciplinary 

optimization stages, or through a coupled multidisciplinary approach [1]. In pursuing the multidisciplinary 

approach, designs exhibiting better performance become possible due to an inclusion of the coupled 

interactions in the analysis [1]. One implementation of this multidisciplinary strategy is the 

multidisciplinary feasible (MDF) architecture, wherein a multidisciplinary analyser (MDA) is run each time 

a constraint or objective function is computed [1]. As a precursor to this form of multidisciplinary 

optimization, an MDA implementation was required. 

With a specific focus given to the aerostructural performance of an aircraft wing, a multidisciplinary 

analysis implementation was developed to predict the resulting aerodynamic performance of a wing when 

structural deformation was considered. Building off the work of FEMWET by Elham and van Tooren [2], 

this implementation sought to develop a simplified, thereby faster to compute, aerostructural modelling 

approach for low-sweep wings. This was comprised of a quasi-three-dimensional (Q3D) aerodynamic 

solver coupled with a classical bending-torsional structure solver.  

The Q3D aerodynamic solver was built utilizing a Vortex Lattice Method (VLM) solver, based on the 

analysis developed by Katz and Plotkin [3], used to compute the inviscid aerodynamic effects. Viscous 

effects were subsequently computed using aerodynamic strip theory to divide the wing into a series of 

sections which were individually analysed [2]. Along each strip, the effective angle of attack was computed 

from the induced drag, and the acting parasitic drag force was computed iteratively between an inviscid 

two-dimensional airfoil panel solver and a direct boundary layer approximation. In this implementation, a 

linear-strength vortex panel method was used to predict the tangential speed distribution along the airfoil 

surface. This was developed according to the analysis developed by Katz and Plotkin [3]. Using the speed 

distribution, the resulting boundary layer was computed along the length of the upper and lower airfoil 

surfaces according to the method presented by Fujiwara et al [4]. The airfoil geometry was adjusted by the 

boundary layer results, and the converged solution was taken as the parasitic drag acting on the section. 

The spanwise summation of this was used as the acting parasitic drag for the wing. 

The structural solver itself was developed using classical beam theory as presented by Hibbeler [5]. Using 

this, an implementation was developed where the wing twist about the shear centre was computed, and then 

the bending deflection of the wing was determined. The combined rotations and deflections along the wing 

were used to deform the aerodynamic model and adjust the acting loads. For rapid computation, the wing 

box structure was analysed as a series of area concentrations laid about the wing box frame. 

The global aerostructural solution was determined through the coupling of the aerodynamic and structural 

solvers. To achieve this, the structural effects of the drag was considered negligible and omitted from 

deforming the wing. An iterative scheme was then employed to apply the loads from the VLM to the 

structure, which then deformed to adjust the VLM mesh. This process was repeated until the solution had 

converged, after which the viscous effects were computed, and the multidisciplinary analysis was 

considered to be complete.  
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2 Analysis Architecture 

2.1 Flow of Information 
The chosen architecture for the multidisciplinary analysis began first by creating a top-level main function 

from which the individual analysers were called to produce their respective results. To this end, an 

encapsulated analysis function was created for each solver, which contained calls for the various sub-

functions required to generate the aerodynamic or structural outputs. Additionally, to enable separate 

iteration schemes, the inviscid aerodynamic solver and the viscous aerodynamic solver were encapsulated 

separately.  

The general flow of information from the main function to and from the encapsulated analysers was 

presented in Figure 2.1. Inputs to a function have been placed in the same column, while outputs have been 

placed within the same row [1]. Arrows have also been included to highlight the direction of information. 

 

 

Figure 2.1: Global MDA Architecture 

As was shown in the figure, geometric and material properties were sent by the main function into the three 

solvers. Receiving this information, the solvers would compute their respective outputs. Starting with the 

inviscid aerodynamic solver, the lift and induced drag distributions along the wing were output. In terms of 

encapsulation, this was the simplest of the three functions containing only the function calls to populate and 

solve the aerodynamic influence matrices.  

The next solver that was called by the main function was the structural deformation calculator. This did not 

require any additional internal control logic, and the subfunctions were merely computed in sequence. 

Internally, this calculator was comprised of two modules: the wing twist solver and the wing deflection 

solver. First, the torque acting on each section of the wing was used to compute the twist angle at each 

spanwise location. From there, the bending analysis would determine the deflection through analysing the 

bending moment at each section and using the twist angle to adjust the location probed for the radius of 

curvature.  
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A third module was categorized within the structural solver but was present within the main analysis 

function rather than the encapsulated structural solver. This module was the function used to deform the 

VLM mesh according to the determined bending and twist distribution. This was placed outside of the 

structural solver to allow for the analysis program to limit the relative change in deformation per iteration.  

A visual representation of the structural analysis was presented in Figure 2.2, illustrating the flow of 

loading, structural, and deformation information through the three sub-modules which comprised this 

domain.  

 

 

Figure 2.2: Structural Solver Architecture 

The last of the three solvers to execute was the viscous drag aerodynamic analysis. Unlike the inviscid 

aerodynamic and structural analysers, this function contained additional control logic with its own iteration 

scheme. Four sub-modules comprised this analyser: an effective angle of attack calculator, a 2D inviscid 

airfoil analyser, a boundary layer solver, and an airfoil geometry manipulator. These modules have been 

presented in Figure 2.3.  

 

Figure 2.3: Viscous Aerodynamic Solver Architecture 
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In using this solver, the wing was divided into a series of strips based on the panel discretization developed 

for the VLM mesh. For each strip, the effective angle of attack was computed from the induced drag 

coefficient and a linear-lift approximation. With this parameter determined, an iterative viscous-inviscid 

coupled 2D aerodynamic analysis was run. With this, the inviscid airfoil panel solver was run to produce a 

tangential speed distribution along the airfoil surface. This was then used to compute the boundary layer 

characteristics, including its displacement thickness. The airfoil surface geometry sent to the inviscid 

calculator was then adjusted with this displacement thickness, and the analysis was run repeatedly until a 

solution was converged upon [3]. With the solution converged, the sectional viscous drag was returned. 

This process was repeated for each spanwise section, and the summation of these drag forces was taken as 

the total parasitic drag acting on the wing. 

 

2.2 Lift-Structural Coupling  
To simplify the analysis, coupling of the aerodynamic loads with the structural analysis was limited to only 

the lift loads [2], with the drag loads assumed to have a negligible impact on the wing deformation. With 

this assumption, the VLM was coupled to the structural solver and the viscous drag calculator was omitted 

from this stage of the computation. Additionally, while the induced drag was computed by the VLM, its 

effects too were omitted from structural consideration. 

With the coupling mode defined, the iterative scheme was defined with the following steps: 

1. Compute the lift force distribution along the wing with the VLM. 

2. Compute the deflection and twist along the spanwise direction with the structural solver. 

3. Scale the change in twist and deflection for the given iteration (prevented divergent solution) 

4. Calculate the percentage change in lift for the given iteration 

5. Check if change in lift is below 0.1%. If so, exit the iteration. 

6. Otherwise,  deform the wing VLM mesh and repeat from Step 1. 

The iterative approach was necessitated by the interdependencies present between the aerodynamic and 

structural solutions. Essentially, the structural solver required the VLM loads as an input while the VLM 

required the deformed structure as an input. Through the implemented approach, the two solvers were run 

repeatedly until a final convergent solution was output.  

 

2.3 Aerodynamic Coupling 
With the two aerodynamic solvers, the flow of information was established to be one-directional. With this 

implementation, the viscous analysis required the induced drag output by the VLM, but the VLM did not 

require any input from the viscous solver. Following from this, the viscous analyser was only run a single 

time for a wing analysis, which was done after the lift-structural coupled solution had been computed.  
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3 Geometric and Simulation Definitions 
To enable the usage of the tool, the wing was defined through a set of parameters. These parameters 

specified the wing planform, the airfoil geometry, and the wing box characteristics. Additional inputs were 

given to the analysis which defined the airflow properties.  

Furthermore, to retain consistent nomenclature with aircraft, the chordwise direction was given the ‘𝑥’ 

label, the spanwise direction was given the ‘𝑦’ label, and the vertical direction was given the ‘𝑧’ label. The 

geometric origin for analysis was placed at the leading edge of the wing root chord.  

3.1 Planform Geometry 
The planform of the wing was defined as having a rectangular section, and a trapezoidal section. The 

spanwise location where the rectangular section ended was subsequently defined as the “kink” [2]. For the 

overall wing geometry, the root chord length and semi-span length were used as defining parameters. The 

location of the kink was defined as a proportion of the semi-span, through the use of a kink distance ratio. 

For the trapezoidal section, the leading-edge sweep angle was also defined, and the tip chord was computed 

as the product of the taper ratio and the root chord length. A sample planform with these 5 parameters 

overlaid was presented in Figure 3.1. 

 

 

Figure 3.1: Wing Planform Parameters 

3.2 Airfoil Geometry 
The airfoil geometry was defined as a list of points with 𝑥 and 𝑧 coordinates [6]. The first point in the array 

was located at the trailing edge. The subsequent data points defined the curve along the upper surface, then 

the leading edge, and finally the lower surface [7]. The last point specified in this array was located at the 

lower surface trailing edge. The geometry of a unit-length airfoil was then defined as the linear 

interpolation, from the upper trailing edge to the lower trailing edge, of these points. An example of this 

representation was presented in Figure 3.2, using a NACA 6409 airfoil [6].  

 

 

Figure 3.2: Sample Airfoil Geometry  
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3.3 Wing Box Geometry 
The wing box was defined both geometrically and materially. Geometrically, the wing box shape was 

defined with the airfoil geometry and the placement of the forward and rear spars. The upper and lower 

surfaces of the wing box were interpolated from the airfoil geometry. The number of longitudinal stiffeners 

was also included as a wing box defining parameter. The thicknesses of the skin and spars was additionally 

specified, as well as the cross-sectional area of the stiffeners. For the structural modelling, the elastic 

modulus and shear modulus were also specified. An example of the geometry resulting from a wing box 

with spars placed at 20% and 70% chord length was presented in Figure 3.3. In this figure, longitudinal 

stiffeners were represented with dots placed along the skin.  

 

Figure 3.3: Sample Wing Box Geometry 

3.4 Airflow Properties 
A series of additional parameters were defined for the free-stream air properties, which were required to 

compute the forces acting on the wing. The free-stream true airspeed was defined, as well as the 

corresponding Mach number. The density and viscosity of air were also specified for the simulation. 

Finally, and angle of attack was defined.  

 

4 Inviscid Aerodynamic Analysis 
The inviscid aerodynamic analysis, used to compute the lift and induced drag distribution of the wing, was 

implemented through the use of a lifting surface solution comprised of vortex ring elements as presented 

by Katz and Plotkin [2]. This approximation involved modelling the wing as its mean camber surface, 

imposing discrete panels and vortex rings along it. The solution was then developed and solved using matrix 

operations [2]. 

 

4.1 Surface Discretization 
In implementing the lifting surface method outlined by Katz and Plotkin [3], the mean camber surface, 

defined as the surface connecting the mean camber lines of the wing, was approximated by a series of thin 

panels. Each of these panels was trapezoidal in geometry, with two sides parallel to the free-stream air. A 

planform view of these trapezoidal panels was provided in Figure 4.1. 

 

Figure 4.1: Wing Panels Planform View 
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As was apparent in Figure 4.1, the panels were arranged to produce a deformed grid. This grid separated 

the camber surface into a series of sections in the 𝑦-direction, with each section being further divided by 

into a set number of individual panels in the 𝑥-direction.  

The 𝑧-direction coordinates for the panel vertexes were then computed from the mean camber line at each 

section. To produce a smooth solution, the airfoil geometry was first divided into its upper and lower 

surfaces. Then, each surface was interpolated from using MATLAB’s modified Akima cubic interpolation, 

chosen as it prevented waving at the leading and trailing edge while still enabling a smooth solution. The 

mean 𝑧-coordinate between the upper and lower surface curves was taken to lie on the mean camber line 

and was used for the panel coordinates.  

4.2 Analysis Components 
Following with the requirements of the vortex ring analysis [3], a corresponding mesh of vortex rings was 

computed. These were calculated from the panels rather than the mean camber surface and were offset 

rearward by one-quarter panel length [3] to comply with the two-dimensional Kutta condition. The 𝑧-

direction coordinate for the vortex ring sections behind the wing, caused by the offset, was set to 0.  

An additional row of vortex rings was added to the rear of the mesh in order to model the trailing edge wing 

wake [3]. The rearmost line of these panels was given an 𝑥-direction coordinate of 1 000 000, considered 

to be an adequate substitute for infinity.  

Additional colocation points were placed on the midpoint of each panel three-quarter chord line [3]. In 

terms of planform coordinates, while these were placed on the panels, the 𝑥- and 𝑦-coordinates aligned with 

the centers of the vortex rings. The 𝑧-coordinate, however, was computed from the panels. These colocation 

points served as the locations where the vorticities and loads were computed. A unit-length vector normal 

to each panel surface was placed at these colocation points.  

A visual example of the discretized wing mesh was provided with Figure 4.2.  

 

 

Figure 4.2: Wing Discretization 
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4.3 Mathematical Solution 
With the geometric locations of all simulation components determined, the mathematical definitions were 

implemented. Globally, the vorticity solution was defined in matrix form with the following equation [3]: 

 [

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

] [
Γ1
⋮
Γ𝑚

] = [
𝑅𝐻𝑆1
⋮

𝑅𝐻𝑆𝑚

] (4.1) 

Where 𝑎 was the aerodynamic influence coefficient, Γ was the vorticity of the vortex ring, and 𝑅𝐻𝑆 was 

the free-stream contribution. Regarding the influence matrix, each row represented the influences acting on 

a specific colocation point, while the columns referred to the contribution of each colocation to the others. 

Each coefficient within the aerodynamic influence matrix was computed with the following equation: 

 𝑎𝐾𝐿 = (𝑞𝐿 + 𝑞𝐿
′ + 𝑞𝑊 + 𝑞𝑊

′ ) ∙ �̂�𝐾 (4.2) 

Where 𝑎𝐾𝐿 was the influence coefficient for the 𝐾th colocation point and 𝐿th vortex ring, 𝑞𝐿 was the 

induced velocity at this colocation point caused by the 𝐿th vortex ring, 𝑞𝐿
′  was the induced velocity by the 

mirrored vortex ring (as this analysis modeled the right wing, the mirror accounted for the left wing), 𝑞𝑊was 

the induced velocity of the wake, and 𝑞𝑊
′  was the induced velocity of the mirrored wake. For non-trailing 

edge panels, the induced velocity of the wake panels was zero. For all induced velocity computations, a 

unit vorticity was used. The actual vorticity values were solved with the matrix representation provided in 

(4.1). 

The induced velocity of a vortex ring was computed as the sum of the influences of the individual vortex 

lines. As each vortex ring was trapezoidal, four vortex lines were summed. The effects of a single vortex 

line were computed with the following formula [3]: 

 𝑞 =
Γ

4𝜋|𝑟1⃗⃗⃗⃗ ×𝑟2⃗⃗⃗⃗ |
2 (

𝑟0⃗⃗⃗⃗ ∙𝑟1⃗⃗⃗⃗ 

|𝑟1⃗⃗⃗⃗ |
−
𝑟0⃗⃗⃗⃗ ∙𝑟2⃗⃗⃗⃗ 

|𝑟2⃗⃗⃗⃗ |
) ∙ (𝑟1⃗⃗⃗  × 𝑟2⃗⃗  ⃗) (4.3) 

Where 𝑟1⃗⃗⃗   was the position vector from the first vortex line point and the colocation point, 𝑟2⃗⃗  ⃗ was the position 

vector from the second vortex line point and the colocation point, and 𝑟0⃗⃗  ⃗ was position vector for the vortex 

line.  

Entries within the free-stream contribution matrix were subsequently computed with the following formula 

[3]: 

 𝑅𝐻𝑆𝐾 = −�⃗� ∞ ∙ �̂�𝐾 (4.4) 

Where �⃗� ∞ was the velocity vector of the free-stream air, accounting for the angle of attack, and �̂�𝐾 was the 

unit-length normal vector of each panel. With the aerodynamic influence coefficient matrix and the free-

stream contribution vector determined, the vorticity of each vortex ring was computed numerically. This 

was represented in matrix form with the following formula: 

 [Γ] = [𝐴]−1[𝑅𝐻𝑆] (4.5) 

Where [𝐴] was the aerodynamic influence coefficient matrix.  
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With the ring vorticities computed, sufficient information had been determined to compute the lift force 

acting on each panel. Determination of the induced drag, however, required the induced downwash at each 

colocation points. This was computed according to the following relation [3]: 

 [

𝑤𝑖𝑛𝑑,1
⋮

𝑤𝑖𝑛𝑑,𝑚
] = [

𝑏11 ⋯ 𝑏1𝑚
⋮ ⋱ ⋮
𝑏𝑚1 ⋯ 𝑏𝑚𝑚

] [
Γ1
⋮
Γ𝑚

] (4.6) 

Where 𝑤𝑖𝑛𝑑 was the induced downwash at a colocation point, and 𝑏 was the component of the aerodynamic 

influence coefficient determined using only the vortex lines parallel to the free-stream flow.  

4.4 Force Distribution 
The lift and drag force acting on each panel was computed using the vorticity and induced downwash at 

each colocation point, as well as the free-stream air density and velocity. The formula used for lift 

computation, which was an implementation of the Kutta-Joukowski theorem, was as follows [3]: 

 Δ𝐿𝑖𝑗 = {
𝜌𝑄∞Γ𝑖,𝑗Δ𝑦𝑖𝑗

𝜌𝑄∞(Γ𝑖,𝑗 − Γ𝑖−1,𝑗)

, 𝑖 = 1
, 𝑖 > 1

 (4.7) 

Where 𝜌 was the density in air, 𝑄∞ was the free stream airspeed, Δ𝑦 was the panel width, and the variables 

𝑖 and 𝑗 were indices. The induced drag was subsequently computed with the following relation [3]: 

 Δ𝐷𝑖𝑗 = {
−𝜌𝑤𝑖𝑛𝑑,𝑖𝑗Γ𝑖,𝑗Δ𝑦𝑖𝑗

−𝜌𝑤𝑖𝑛𝑑,𝑖𝑗(Γ𝑖,𝑗 − Γ𝑖−1,𝑗)

, 𝑖 = 1
, 𝑖 > 1

 (4.8) 

As the vortex ring analysis was an incompressible analysis, the lift and induced drag were corrected to 

account for compressible effects. This was done with the Prandtl-Glauert correction, represented with 

following formulae [3]: 

 Δ𝐿𝑖𝑗
′ =

Δ𝐿𝑖𝑗

√1−𝑀∞
2

 (4.9a) 

 Δ𝐷𝑖𝑗
′ =

Δ𝐷𝑖𝑗

√1−𝑀∞
2

 (4.9b) 

Where Δ𝐿𝑖𝑗
′  was the lift force acting on a panel in compressible flow, Δ𝐷𝑖𝑗

′  was the induced drag force 

acting on a panel in compressible flow, and 𝑀∞ was the free-stream Mach number. As a final computation 

for this stage of the analysis, the total lift and induced drag acting on the wing was computed as the sum of 

the forces acting on the panels, as shown with the following equations [3]: 

 𝐿 = ∑ΔLij
′  (4.10a) 

 𝐷𝑖 = ∑Δ𝐷𝑖𝑗
′  (4.10b) 

Where 𝐿 was the total lift force and 𝐷𝑖 was the total induced drag.  
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5 Viscous Aerodynamic Analysis 
The viscous aerodynamic analysis of the wing was done through the use of strip theory, where the wing 

was approximated as a series of spanwise sections, for which 2D effects could be readily modelled [2]. The 

analysis for each cross section was an iterative viscous-inviscid coupled approach, where an inviscid 2D 

potential flow analysis was used in conjunction with an empirical viscous drag analysis to converge on a 

value for parasitic drag.  

5.1 Strip Discretization 
To align with VLM outputs, the wing was cut into a series of strips such that the ends of each strip aligned 

with the panel mesh boundaries parallel to the free-stream velocity. This was represented in Figure 4.1, 

where vertical lines of panel boundaries were present, and served as the basis for the sectional analysis. As 

each mesh section was trapezoidal rather than rectangular, the average chord length for the strip was used.  

The inviscid forces, determined through the VLM analysis, acting on this section were used to compute the 

force coefficients used with the 2D analysis. Specifically, the induced drag coefficient was required for 

each section to compute the effective angle of attack. This was computed with the following formulae: 

 𝑑𝑖 =
√1−𝑀∞

2

𝑤
∑Δ𝐷𝑖

′ (5.1a) 

 𝐶𝑑𝑖 =
2𝑑𝑖

𝜌𝑉∞
2 𝑐

 (5.1b) 

Where 𝑑 was the induced drag force per unit length, 𝑤 was the width of the section, Δ𝐷𝑖 was the induced 

drag acting on each panel within this section, 𝐶𝑑𝑖 was the 2D induced drag coefficient, 𝜌 was the density of 

air, and 𝑐 was the average chord length of the section. The compressibility correction was also removed 

from the induced drag force computed by the VLM, as the analysis for determining the effective angle of 

attack required incompressible flow.  

5.2 Effective Angle of Attack Computation 
As a precursor to the inviscid analysis, the effective angle of attack acting on the airfoil was required.  This 

was done to account for the induced drag effects acting on the section, where the downwash produced an 

effective tilting of the free-stream velocity vector. This, in turn, rotated and altered the acting lift force, 

allowing a component of the vector to act in the drag direction. The various relevant vectors pertaining to 

this stage of the analysis were visualized in Figure 5.1.  

 

Figure 5.1: Induced Drag 2D Representation 
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Utilizing the definitions provided in the previous figure, the effective angle of attack was defined with the 

following formula: 

 𝛼𝑒𝑓𝑓 = 𝛼𝑔 +𝜙 − 𝛼𝑖 (5.1) 

Where 𝛼𝑒𝑓𝑓 was the effective angle of attack, 𝜙 was the twist of the section, 𝛼𝑔 was the global angle of 

attack of the wing, and 𝛼𝑖 was the induced angle of attack caused by the downwash. Utilizing the equation 

determined in Appendix A, including a linear lift assumption, the effective angle of attack was solved 

numerically using the following relation: 

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin(𝛼𝑔 +𝜙 − 𝛼𝑒𝑓𝑓) − 𝐶𝑑𝑖 (5.2) 

Where 𝐶𝑙0 was the lift coefficient of the airfoil at zero angle of attack. This formula, using the linearly lift 

assumption already imposed by the VLM, accounted for both the tilting of the lift vector and its change in 

magnitude caused by the change in angle of attack. Equation (5.2) was solved numerically using 

MATLAB’s fzero() function, producing a value for the effective angle of attack experienced by the wing 

strip. This was used as an input for the inviscid airfoil analysis.  

 

5.3 Inviscid Airfoil Analysis  
The inviscid analysis of the wing section, modelled as a 2D airfoil analysis, was required to compute the 

tangential speeds along the surface. This was implemented through the use of the linear-strength vortex 

method defined by Katz and Plotkin [3], similar in execution to XFOIL [7], and generating the solution at 

the effective angle of attack determined with the model in Section 5.2.  

5.3.1 Airfoil Discretization 

The 2D airfoil geometry was modelled as a series of vortex panels connecting the geometric nodes of the 

airfoil [3]. This produced a continuous curve of vortex panels from the upper trailing edge to the lower 

trailing edge, aligning with a linear interpolation of the airfoil geometry. A colocation point, where the 

vorticities were computed to be acting, was also placed at the midpoint of each vortex panel [3]. A unit-

length normal and tangent vector was computed and placed on each colocation point. A visual 

representation of this discretized form was presented in Figure 5.2.  

 

 

 

Figure 5.2: Airfoil Discretization 
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5.3.2 Mathematical Solution 

The goal of the mathematical solution was to determine the vorticity of each vortex panel, which was then 

used to compute the pressure coefficients and tangential velocity acting along airfoil surface. This was 

represented in matrix form with the following matrix relation [3]: 

 [

𝑎11 𝑎12 ⋯ 𝑎1,𝑁+1
⋮ ⋮ ⋱ ⋮
𝑎𝑁1 𝑎𝑁2 ⋯ 𝑎𝑁,𝑁+1
1 0 ⋯ 1

] [

𝛾1
⋮
𝛾𝑁
𝛾𝑁+1

] = [

𝑅𝐻𝑆1
⋮

𝑅𝐻𝑆𝑁
0

] (5.3) 

Where 𝑎 was the aerodynamic influence coefficient, 𝛾 was the vorticity of a panel node, and 𝑅𝐻𝑆 was the 

free-stream contribution. The size of the aerodynamic influence matrix was a square matrix of 𝑁 + 1, where 

𝑁 was the number of colocation points. The size of 𝑁 + 1 resulted from the use of linear strength vortex 

panels over constant strength panels, as vorticities were defined at the two ends of the panels. Additionally, 

the final row of the matrix representation was the inclusion of the Kutta condition, which specified that the 

two trailing edge vorticities must equal: 

 𝛾1 + 𝛾𝑁+1 = 0 (5.4) 

The aerodynamic influence coefficients within this matrix were computed as the dot product of the self-

induced velocity of the panel, from a unit strength vortex, and the normal vector [3]. This was presented 

with the following equation: 

 𝑎𝑖𝑗 = {(𝑢
𝑏 , 𝑤𝑏)

𝑖,𝑗−1
+ (𝑢𝑎 , 𝑤𝑎)𝑖,𝑗} ∙ �̂�𝑖 (5.5) 

Where 𝑢 and 𝑤 were the velocity components induced by the 𝑗th vorticity, and �̂�𝑖 was the unit vector 

normal to the 𝑖th panel. The induced velocity components were calculated, in the panel coordinate system, 

with the following equations derived from the approach specified by Katz and Plotkin [3]: 

 𝑢𝑗
𝑎 = −

𝑧

2𝜋
(

𝛾𝑗

𝑥2−𝑥1
) ln (

𝑟2

𝑟1
) +

𝛾𝑗(𝑥2−𝑥)

2𝜋(𝑥2−𝑥1)
(𝜃2 − 𝜃1) (5.6a) 

 𝑢𝑗
𝑏 =

𝑧

2𝜋
(
𝛾𝑗+1

𝑥2−𝑥1
) ln (

𝑟2

𝑟1
) +

𝛾𝑗+1(𝑥−𝑥1)

2𝜋(𝑥2−𝑥1)
(𝜃2 − 𝜃1) (5.6b) 

 𝑤𝑗
𝑎 = −(

𝛾𝑗(𝑥2−𝑥)

2𝜋(𝑥2−𝑥1)
) ln (

𝑟2

𝑟1
) −

𝑧

2𝜋
 (

𝛾𝑗

𝑥2−𝑥1
) [

𝑥2−𝑥1

𝑧
+ (𝜃2 − 𝜃1)] (5.6c) 

 𝑤𝑗
𝑏 = −(

𝛾𝑗+1(𝑥−𝑥1)

2𝜋(𝑥2−𝑥1)
) ln (

𝑟1

𝑟2
) +

𝑧

2𝜋
(
𝛾𝑗+1

𝑥2−𝑥1
) [

𝑥2−𝑥1

𝑧
+ (𝜃2 − 𝜃1)] (5.6d) 

Where the panel was defined as the line connecting points 1 and 2, defined at locations (𝑥1, 𝑧1) and (𝑥2, 𝑧2). 

The vorticity acting at point 1 was set to 𝛾𝑗, while the vorticity acting at point 2 was set to 𝛾𝑗+1. The 

colocation point, for which the induced velocity was computed to be acting on, was defined as (𝑥, 𝑧) within 

the panel coordinate system. The distance between the colocation point and point 1 was defined as 𝑟1, while 

the distance to point 2 was defined as 𝑟2. The angles were defined as the angle between 𝑟1⃗⃗⃗   or 𝑟2⃗⃗  ⃗ and the 

panel tangent vector.  
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To compute these values, the reference frame was required to shift into the local panel reference frame. 

Points were translated into the panel coordinate system with a rotation matrix [3]. Additionally, the origin 

of the reference frame was placed at point 1 of the panel. The computation to determine the positions within 

the panel reference frame was presented in the following formula [3]: 

 [
𝑥𝑝
𝑧𝑝
] = [

cos(𝛼𝑖) sin(𝛼𝑖)

− sin(𝛼𝑖) cos(𝛼𝑖)
] [
𝑥 − 𝑥0
𝑧 − 𝑧0

] (5.7) 

Where the values (𝑥𝑝, 𝑧𝑝) were within the panel reference frame, the values (𝑥, 𝑧) were within the global 

reference frame, the values (𝑥0, 𝑧0) specified the position of the panel origin in the global coordinate 

system, and 𝛼𝑖 was the incidence angle of the panel. Once the velocities were computed, another relation 

was required to rotate them from the panel reference into the global reference [3]. This was presented below: 

 [
𝑢
𝑤
] = [

cos(−𝛼𝑖) sin(−𝛼𝑖)

− sin(−𝛼𝑖) cos(−𝛼𝑖)
] [
𝑢𝑝
𝑤𝑝
] (5.8) 

Where, the values (𝑢𝑝, 𝑤𝑝) were the velocity components in the panel reference frame, and the values 

(𝑢, 𝑤) were the velocity components in the global reference frame. The remaining component for the 

solution was the free-stream contribution, which was computed with the following relation [3]: 

 𝑅𝐻𝑆𝑖 = �⃗� ∞ ∙ �̂�𝑖 (5.9) 

Where �⃗� ∞ was the free-stream air velocity vector. The vorticity of each panel node was then computed, in 

matrix form, with the following relationship: 

 [𝛾] = [𝐴]−1[𝑅𝐻𝑆] (5.10) 

Where [𝛾] was the vorticity vector, [𝐴] was the aerodynamic influence coefficient matrix, and [𝑅𝐻𝑆] was 

the free-stream contribution vector.  

To compute the induced velocity at the various colocation points, and by extension the tangential velocity 

and pressure coefficients, an additional matrix computation was required. This was presented in the 

following formula [3]: 

 

 [

𝑄𝑖𝑛𝑑,1
⋮

𝑄𝑖𝑛𝑑,𝑁
0

] =  [

𝑏11 𝑏12 ⋯ 𝑏1,𝑁+1
⋮ ⋮ ⋱ ⋮
𝑏𝑁1 𝑏𝑁2 ⋯ 𝑏𝑁,𝑁+1
0 0 ⋯ 0

] [

𝛾1
⋮
𝛾𝑁
𝛾𝑁+1

] (5.11) 

 

Where 𝑄𝑖𝑛𝑑 was the induced velocity vector, and 𝑏 was the tangential aerodynamic influence coefficient. 

The values for the tangential coefficients were computed with the following equation [3]: 

 𝑏𝑖𝑗 = {(𝑢
𝑏 , 𝑤𝑏)

𝑖,𝑗−1
+ (𝑢𝑎 , 𝑤𝑎)𝑖,𝑗} ∙ �̂�𝑖 (5.12) 

 Where �̂�𝑖 was the unit vector tangent to the panel.  
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5.3.3 Analysis Outputs 

With the vorticities and induced velocity distribution along the airfoil surface computed, the tangential 

velocity and pressure coefficients could be determined. The tangential velocity was taken as the sum of the 

induced and free-stream velocity contributions, both acting tangential to the surface. This was represented 

with the following equation [3]: 

 𝑄𝑡,𝑗 = 𝑄𝑖𝑛𝑑,𝑗 + �⃗� ∞ ∙ �̂�𝑗 (5.13) 

Where 𝑄𝑡,𝑗 was the tangential velocity and �⃗� ∞ was the free-stream velocity vector. Utilizing the tangential 

velocity, the pressure coefficient acting on each panel was computed with the following relation [3]: 

 𝐶𝑃,𝑗 = 1 − (
𝑄𝑡,𝑗

|�⃗� ∞|
)
2

 (5.14) 

Where 𝐶𝑃,𝑗 was the pressure coefficient.  

An additional capability, required for the effective angle of attack computation, was the calculation of the 

zero angle-of-attack lift coefficient for the tested airfoil. This was calculated through a summation of the 

pressure effects, presented in the following equation [3]: 

 𝐶𝑙 = ∑𝐶𝑃,𝑗Δ𝑐𝑗cos (𝛼𝑗) (5.15) 

 Where 𝐶𝑙 was the lift coefficient, Δ𝑐𝑗 was the distance between the 𝑗th and (𝑗 + 1)th colocation point, and 

𝛼𝑖 was the incident angle of the panel.  

 

5.4 Viscous Airfoil Analysis 
The viscous analysis of the airfoil was determined using the analysis scheme presented by Fujiwara et al 

[4]. This required the tangential velocity distribution along the upper and lower airfoils surfaces, and 

determined the corresponding sectional drag and boundary layer displacement thickness. The chosen 

approach was to implement a direct boundary layer scheme, due to its simplicity over the simultaneous 

solution method. While the simultaneous method would be capable of predicting low-Reynolds number 

performance accurately, this capability was considered to be unnecessary as the VLM mandated large 

Reynolds number cases [4]. As such, the direct method was selected, wherein the viscous solution was 

computed after the inviscid solution and was used to modify the geometry input to the inviscid calculator. 

This analysis was computed twice for a given airfoil, once for each airfoil surface. As a precursor to 

execution, the airfoil was divided at its stagnation point, or whichever node presented the lowest tangential 

speed.  
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5.4.1 Laminar Boundary Layer 

The laminar boundary layer solution was a compressible implementation of Curle’s method [8], which was 

an adjustment on Thwaites’ method [4], with empirical relations used to compute the boundary layer 

characteristics at each node using the previous node properties. For each node, the momentum thickness 

was calculated first using the tangential edge velocity computed by the inviscid airfoil solver. This was 

presented in the following relation: 

 𝜃2𝑢𝑒
6 = 0.441

𝜇

𝜌
∫ 𝑢𝑒

5𝑑𝑠
𝑠

0
 (5.16) 

Where 𝜃 was the momentum thickness of the boundary layer, 𝑢𝑒 was the inviscid edge velocity set equal 

to the tangential speed computed by the inviscid solution, 𝜇 was the viscosity of air, 𝜌 was the density of 

air, and 𝑠 was the distance along the airfoil surface curve from the stagnation point. Converting this equation 

into a numerical iteration problem, it was computed in discrete form using the following equation: 

 𝜃 = √
0.441𝜇

𝜌𝑢𝑒,𝑖
6 ∑ 𝑢𝑒,𝑗

5 Δ𝑠𝑗
𝑖
𝑗=1  (5.17) 

Where 𝑖 was the index of the panel being solved for. For this panel, a local Reynolds number per unit length 

was also defined, as presented with the following definition [4]: 

 𝑅𝑒𝑙 =
𝜌𝑢𝑒

𝜇
 (5.18) 

This value was subsequently used to compute the momentum thickness Reynolds number with the 

following relation: 

 𝑅𝑒𝜃 = 𝑅𝑒𝑙𝜃 (5.19) 

Where 𝑅𝑒𝜃 was the momentum thickness Reynolds number. This value was used to determine if the flow 

has transitioned to turbulence using the condition presented in Section 5.4.2.  

Following with Thwaites’ approach, the dimensionless pressure-gradient parameter was computed through 

the following approximation [4]: 

 𝜆 =
𝜃2𝜌

𝜇

Δ𝑢𝑒

Δ𝑠
 (5.20) 

Where 𝜆 was the pressure-gradient parameter, and Δ𝑢𝑒/Δ𝑠 was the velocity gradient of the panel. This 

parameter was input to Twaites’ empirical relations for the shape factor [4]: 

 𝐻 = 

{
 

 
3.9155

2.088 +
0.0731

𝜆+0.14

2.61 − 3.75𝜆 + 5.24𝜆2

2.2874

 

, 𝜆 ≤ −0.1
, −0.1 < 𝜆 ≤ 0.0
, 0.0 < 𝜆 ≤ 0.1
, 𝜆 > 0.1

 (5.21) 

Where 𝐻 was the shape factor.  
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An additional parameter, the 𝑙 parameter was also computed empirically using relations developed by 

Thwaites, as presented below [4]: 

 𝑙 =  

{
 

 
−0.1773

0.22 + 1.402𝜆 +
0.018𝜆

𝜆+0.107

0.22 + 1.57𝜆 − 1.8𝜆2

0.3590

 

, 𝜆 ≤ −0.1
, −0.1 < 𝜆 ≤ 0.0
, 0.0 < 𝜆 ≤ 0.1
, 𝜆 > 0.1

 (5.22) 

With the two parameters determined, the boundary layer displacement thickness and friction coefficient 

were computed for each panel. This was done with the following two relations [4]: 

 𝛿∗ = 𝐻𝜃 (5.23) 

 𝐶𝑓 =
2𝑙

𝑅𝑒𝜃
(1 + 0.2𝑀2) (5.24) 

Where 𝛿∗ was the displacement thickness of the boundary layer, 𝐶𝑓 was the compressible friction 

coefficient for the panel, and 𝑀 was the Mach number of the inviscid flow for the panel. The boundary 

layer properties were defined by equations (5.23) and (5.24) until the transition condition was met, and the 

turbulent analysis was used in its stead.  

 

5.4.2 Transition Condition 

The transition condition, following the approach of Fujiwara et al, was achieved through implementing 

Michel’s transition criterion [4]. This first required the computation of the arc-length Reynolds number, as 

presented in the following definition: 

 𝑅𝑒𝑠 = 𝑅𝑒𝑙𝑠 (5.25) 

Where 𝑅𝑒𝑠 was the arc-length Reynolds number, and 𝑠 was the distance along the airfoil surface curve from 

the stagnation point. The transition condition was subsequently computed with the following definition [4]: 

 𝑅𝑒𝜃,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1.174(1 +
22400

𝑅𝑒𝑠
)𝑅𝑒𝑠

0.46 (5.26) 

Where 𝑅𝑒𝜃,𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 was the transition momentum thickness Reynolds number. This condition was 

computed for each panel within the laminar region, and once the momentum thickness Reynolds number 

was found to exceed this parameter, the flow was considered to have transitioned to turbulent flow. For this 

panel and all subsequent panels to the trailing edge, the turbulent boundary layer analysis was used.  

5.4.3 Turbulent Boundary Layer 

Once the flow exceeded the transition condition, the turbulent boundary layer model was used. The 

implementation involved using the boundary layer properties of a given panel to compute the characteristics 

at the succeeding panel. The first step of this process was computing the boundary layer shape factor with 

the following relation, developed by Stanford University through modifying the approach developed by 

Cebeci and Schlichting [9]: 

 𝐻1 = 3.0445 +
0.8702

(𝐻−1.1)1.2721
 (5.27) 

Where 𝐻1 was the boundary layer shape factor, and 𝐻 was the shape factor.  
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Another mathematical quantity required was termed the 𝑈𝑇𝐻 factor and was computed with the following 

relation. This was required to use an empirical differential relationship presented by Fujiwara et al [4]. 

 𝑈𝑇𝐻 = 𝑢𝑒𝜃𝐻1 (5.28) 

Where 𝑈𝑇𝐻 was the needed factor. This was required to compute the properties of the succeeding panel 

according to the following relation [4] which defined the change in this quantity with respect to the airfoil 

arc.  

 
𝑑

𝑑𝑠
(𝑈𝑇𝐻) =

0.0306𝑢𝑒
(𝐻1−3.0)

0.6169 (5.29) 

Using equation (5.29), an iterative scheme was produced to predict the value of the 𝑈𝑇𝐻 factor for the 

succeeding panel, as presented in the following formula where Euler’s method was employed: 

 𝑈𝑇𝐻𝑖+1 = 𝑈𝑇𝐻𝑖 +
𝑑

𝑑𝑠
(𝑈𝑇𝐻) ∙ Δ𝑠 (5.30) 

Where Δ𝑠 was the length of the panel, equal to the arc length step. Computing the succeeding panel 

momentum thickness value required the use of the von Karmen’s compressible integral momentum 

equation, reordered in the following relation [4]: 

 
𝑑𝜃

𝑑𝑠
=

𝐶𝑓

2
−

𝜃

𝑢𝑒
(2 + 𝐻 −𝑀2)

Δ𝑢𝑒

Δ𝑠
 (5.31) 

This equation required known properties of the panel, but also required the friction coefficient. This was 

computed with the empirical relationship presented below [4]: 

 𝐶𝑓 =
0.246

100.678𝐻𝑅𝑒𝜃
0.268 (1 + 0.2𝑀

2) (5.32) 

Where 𝑅𝑒𝜃 was the momentum thickness Reynolds number, and 𝑀 was the Mach number of the flow above 

the panel. With the displacement thickness gradient defined, Euler’s method was again used to compute the 

momentum thickness of the succeeding panel with the following iterative definition: 

 𝜃𝑖+1 + 𝜃𝑖 +
𝑑𝜃

𝑑𝑠
Δ𝑠 (5.33) 

Using equations (5.30) and (5.33), the properties of the succeeding panels were able to be computed. First, 

the boundary layer shape factor was computed from the momentum thickness, the inviscid tangential 

velocity, and the 𝑈𝑇𝐻 factor as presented below: 

 𝐻1 =
𝑈𝑇𝐻

𝜃𝑢𝑒
 (5.34) 

The shape factor corresponding to this value was subsequently computed with the following empirical 

definition [4]: 

 𝐻 = {

3.0
0.6778 + 1.1536(𝐻1 − 3.3)

−0.326

1.1 + 0.86(𝐻1 − 3.3)
−0.777

  

, 𝐻1 < 3.33
, 3.3 ≤ 𝐻1 ≤ 5.3

𝐻1 > 5.3
 (5.35) 

Finally, the boundary layer displacement thickness was computed with equation (5.23), restated below: 

 𝛿∗ = 𝐻𝜃 (5.36) 
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With the displacement thickness and friction coefficients determined, the relevant quantities of the 

boundary layer were able to be modelled. Additionally, following the recommendations of Fujiwara et al, 

once the solution was completed, the boundary layer thickness for the last 5%  of the chord was overridden 

to have a constant thickness, correcting for the strong adverse pressure gradients produced by the trailing 

edge Kutta condition [4]. 

5.5 Inviscid-Viscous Coupling 
Coupling of the inviscid and viscous airfoil calculators was achieved through an iterative scheme. First, the 

inviscid solution was computed using the defined airfoil geometry. The viscous analysis was subsequently 

computed using the tangential velocity distribution predicted by the inviscid analysis. 

The viscous analysis generated a boundary layer displacement thickness as one of its outputs. This was 

used to adjust the airfoil geometry provided to the inviscid calculator, so that the inviscid analysis was 

conducted about the boundary layer rather than the airfoil geometry itself. This defined the iterative scheme, 

which was exited once the boundary layer thickness at the middle of the airfoil was no longer changing 

significantly.  

A sample result was provided in Figure 5.3, showing a magnified view of an airfoil and boundary layer. 

The boundary layer displacement thickness was visibly thin, and only adjusted the geometry of the airfoil 

slightly. Nonetheless, the difference in predicted skin friction was significant between the first and last 

iteration, justifying the need for the iterative procedure.  

 

Figure 5.3: Viscous Airfoil Analysis Output 

 

5.6 Parasitic Drag Computation 
The parasitic drag acting on each section was computed from the friction coefficients output by the 

boundary layer analysis. This was defined with the following relation: 

 𝑑𝑝 =
1

2
𝜌∑𝑄𝑡,𝑖

2 𝐶𝑓,𝑖Δ𝑠𝑖 (5.37) 

 Where 𝑑𝑝 was the parasitic drag per unit length acting on the section, and Δ𝑠 was the length of each panel 

comprising the airfoil.  
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The overall parasitic drag force acting on the section was computed by multiplying the sectional drag with 

the section width, as presented in the following equation: 

 Δ𝐷𝑝,𝑖 = 𝑑𝑝,𝑖Δ𝑦𝑖 (5.38) 

Where Δ𝐷𝑝 was the parasitic drag force acting on the section, and Δ𝑦 was the spanwise length of the section. 

The total parasitic drag acting on the wing was taken as the summation of the drag force acting on each 

constituent section: 

 𝐷𝑝 = ∑Δ𝐷𝑝,𝑖 (5.39) 

Where 𝐷𝑝 was the total parasitic drag acting on the wing.  

 

6 Structural Analysis 
Structural modelling was utilized to predict how the wing would deform under the loading conditions 

applied to it. This was done through an implementation of classical beam theory, which predicted the 

bending deflection and twist angle of each section along the wing.  

6.1 Wing Box Bending Model 
To facilitate computation of the wing box bending properties, the structure was modelled as a series of area 

concentrations. Through analysing the wing box in this form, an accurate approximation was possible for 

the moments of inertia and centroid, provided a sufficient resolution was utilized. By extension, this enabled 

the computation of the principal axes which were required to accurately predict the response of asymmetric 

cross sections. A visual representation of this discretization was presented in Figure 6.1, depicting the skin, 

spars, and stringers as a series of area concentration points.  

 

 

 

Figure 6.1: Wing Box as Area Concentrations 
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This numerical approximation scheme allowed for the following approximations to be used for the centroid 

computations [5]: 

 𝑥𝑐 =
∑𝑥𝑖𝐴𝑖

∑𝐴𝑖
 (6.1a) 

 𝑧𝑐 =
∑𝑧𝑖𝐴𝑖

∑𝐴𝑖
 (6.1b) 

Where (𝑥𝑐 , 𝑧𝑐) was the location of the centroid, (𝑥𝑖 , 𝑧𝑖) was the location of each area concentration, and 𝐴𝑖 
was the area concentrated at each point. The moments and product of inertia were similarly computed 

according to the following numerical definitions [5]: 

 𝐼𝑥𝑥 = ∑𝑧𝑖
2𝐴𝑖 (6.2a) 

 𝐼𝑧𝑧 = ∑𝑥𝑖
2𝐴𝑖 (6.2b) 

 𝐼𝑧𝑥 = ∑𝑥𝑖𝑧𝑖𝐴𝑖 (6.3c) 

Where 𝐼𝑥𝑥 and 𝐼𝑧𝑧 were the area moments of inertia, and 𝐼𝑧𝑥 was the product of inertia. With these 

computations, the moments and product of inertia were computed for the centroidal reference frame which 

was defined as having the origin placed at the centroid with the axes parallel to the global 𝑥- and 𝑧-axes.  

For the computation of the bending response, the principal axes were required. This was computed 

according to the definition provided by Hibbeler [5]: 

 𝜃𝑝 =
1

2
arctan (−

𝐼𝑧𝑥

0.5(𝐼𝑥𝑥−𝐼𝑧𝑧)
) (6.4) 

Where 𝜃𝑝 was the angle between the principal axis and the global axis. Note that MATLAB’s atand() 

function was used here to ensure the angle was bounded by [−90,90]. A visual representation of the 

principal axes relative to the centroidal axes was provided in Figure 6.2. 

 

 

Figure 6.2: Principal Axes 
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Within the principal reference frame, defined by the principal axes, the global-reference moments and 

product of inertia were computed according to the following equations [5]: 

 𝐼𝑥′𝑥′ =
𝐼𝑥𝑥+𝐼𝑧𝑧

2
+
𝐼𝑥𝑥−𝐼𝑧𝑧

2
cos(2𝜃𝑝) − 𝐼𝑧𝑥 sin(2𝜃𝑝) (6.5a) 

 𝐼𝑧′𝑧′ =
𝐼𝑥𝑥+𝐼𝑧𝑧

2
+
𝐼𝑥𝑥−𝐼𝑧𝑧

2
cos(2𝜃𝑝) + 𝐼𝑧𝑥 sin(2𝜃𝑝) (6.5b) 

 𝐼𝑧′𝑥′ = 0 (6.5c) 

Where 𝐼𝑥′𝑥′ and 𝐼𝑧′𝑧′  were the moments of inertia within the principal reference frame, and 𝐼𝑧′𝑥′ was the 

product of inertia within the principal reference frame, set to zero by definition.  

Converting the coordinates of points into and out of the principal reference frame was done according to 

the following matrix definitions: 

 [
𝑥′

𝑧′
] = [

cos 𝜃𝑝 sin𝜃𝑝
−sin 𝜃𝑝 cos 𝜃𝑝

] [
𝑥
𝑧
] (6.6a) 

 [
𝑥
𝑧
] = [

cos𝜃𝑝 −sin 𝜃𝑝
sin𝜃𝑝 cos 𝜃𝑝

] [
𝑥′

𝑧′
] (6.6b) 

Where (𝑥′, 𝑧′) was the coordinates of a given point in the principal reference frame, and (𝑥, 𝑧) were the 

coordinates of the same point within the centroidal reference frame.  

 

6.2 Wing Box Torsion Model 
To compute the torsion response of the wing, the shear centre location was required. This was computed 

by applying an arbitrary unit-magnitude shear force in the 𝑥′-direction to locate the 𝑧′-coordinate of the 

shear center. Following this, a unit magnitude force was applied in the 𝑧′ −direction and was used to locate 

the 𝑥′-coordinate of the shear center.  

Locating the shear center first required the shear flow within the structure to be computed. This was defined 

with the following equation [10]: 

 𝑞𝑠 = −(
𝑆𝑥𝐼𝑥𝑥−𝑆𝑧𝐼𝑧𝑥

𝐼𝑥𝑥𝐼𝑧𝑧−𝐼𝑧𝑥
2 ) ∫ 𝑡𝑥 𝑑𝑠

𝑠

0
− (

𝑆𝑧𝐼𝑧𝑧−𝑆𝑥𝐼𝑧𝑥

𝐼𝑥𝑥𝐼𝑧𝑧−𝐼𝑧𝑥
2 ) ∫ 𝑡𝑦 𝑑𝑠

𝑠

0
+ 𝑞𝑠,0 (6.7) 

Where 𝑞𝑠 was the shear flow, 𝑞𝑠,0 was the constant shear flow, 𝑆𝑥 and 𝑆𝑧 were the applied shear forces, and 

𝑠 was the distance along the curve of the wing box surface. The summation of the two integral terms and 

their coefficients was termed the “basic shear flow” [10], and was given the identifier 𝑞𝑏. 

Numerically approximating the basic shear flow, and computing its value within the principal reference 

frame, and thereby setting the product of inertia to zero, the following formula was used to compute this 

parameter for the analyser: 

 𝑞𝑏,𝑖 = −
𝑆𝑥

𝐼𝑧′𝑧′
∑ (𝑡𝑖𝑥𝑗

′Δ𝑠𝑗)
𝑖
𝑗=𝑖 −

𝑆𝑧

𝐼𝑥′𝑥′
∑ (𝑡𝑗𝑧𝑗

′Δ𝑠𝑗)
𝑖
𝑗=0  (6.8) 

Where 𝑞𝑏,𝑖 was the basic shear flow value at a wing box node, 𝑡𝑖 was the thickness of the skin or spar at 

that node, (𝑥𝑗
′, 𝑧𝑗

′) was the coordinates of that node within the principal reference frame, and Δ𝑠𝑗 was the 

distance between the node and the previous node. The selection of the initial node, and thereby the first 

index, was arbitrary and did not affect the solution to the overall shear flow. 
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The constant shear flow was also computed using a numerical approximation, defined by the following 

formula [10]: 

 𝑞𝑠,0 = −
∑𝑞𝑏,𝑖Δ𝑠𝑖/𝑡𝑖

∑Δ𝑠𝑖/𝑡𝑖
 (6.9) 

With the shear flow numerically approximated along the aircraft surface, the following definition was used 

as a basis for computing the location of the shear centre [10]: 

 𝑆𝑥𝜂 − 𝑆𝑧𝜉 = ∮𝑝𝑞𝑏 𝑑𝑠 + 2𝐴𝑚𝑒𝑎𝑛𝑞𝑠,0 (6.10) 

Where 𝜂 was the 𝑧-coordinate of the shear center, 𝜉 was the 𝑥-coordinate of the shear  center, 𝑝 was the 

lever arm of the shear flow acting on the origin of the principal reference frame, and 𝐴𝑚𝑒𝑎𝑛 was the mean 

2D area encased by the wing box. This was numerically approximated into the following form: 

 𝑆𝑥𝜂 − 𝑆𝑧𝜉 = ∑𝑝𝑖𝑞𝑏,𝑖Δ𝑠𝑖 + 2𝐴𝑚𝑒𝑎𝑛𝑞𝑠,0 (6.11) 

Additionally, with a derivation provided in Appendix B, the shear arm was computed with the following 

formula: 

 𝑝𝑖 = |
𝑧𝑖−

Δ𝑧

Δ𝑥
𝑥𝑖

1−(
Δ𝑧

Δ𝑥
)
2|√(

Δ𝑧

Δ𝑥
)
2
+ 1 (6.12) 

Where 𝑝𝑖 was the lever arm corresponding to the wing box node, Δ𝑧/Δ𝑥 was the slope of the wing box at 

the node, and (𝑥𝑖 , 𝑧𝑖) was the coordinates of the node. Equation (6.11) was used twice, once with the 𝑥′-

direction force and a second time with 𝑧′-direction force. For each, the force in the other direction was set 

to zero and the coordinates were solved through algebraic manipulation. The coordinates were then rotated 

back into the centroidal reference frame with equation (6.6b).  

 

6.3 Wing Box Scaling Factors 
For computational expediency, the properties of the wing box were computed to correspond to a unit-length 

airfoil cross section. Its various characteristics were then multiplied by scaling factors to produce the 

properties of the wing box at a given section. These were presented in Table 6.1, where properties were 

scaled as a function of chord length 𝑐. 

Table 6.1: Wing Box Scaling Factors 

Parameter Scaling Factor 

Length (Δ𝑠) 𝑐 

Skin/Spar Thickness  (unchanged) 

Coordinates (𝑥, 𝑧) 𝑐 

Area Concentration (𝐴𝑖) 𝑐 

Mean Area (𝐴𝑚𝑒𝑎𝑛) 𝑐2 

Moment of Inertia (𝐼𝑥𝑥, 𝐼𝑧𝑧) 𝑐3 

Product of Inertia (𝐼𝑧𝑥) 𝑐3 

Principal Angle (𝜃𝑝) (unchanged) 
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6.4 Wing Loading 
The loading applied to the wing was computed through analysing the lift forces generated by the VLM on 

each section, producing a load distribution along the wingspan. As with the viscous aerodynamic analyzer, 

the sections were divided by the panel boundaries which were parallel to the free stream.  

6.4.1 Torsional Loads 

Computing first the torsional loading, the torque acting on each section was computed with the following 

formula: 

 𝑇𝑠,𝑗 = ∑Δ𝐿𝑖(𝑥𝑠𝑐 − 𝑥𝑖) (6.13) 

 Where 𝑇𝑠,𝑗 was the torque acting on the section, Δ𝐿𝑖 was the lift force acting on teach panel within the 

section, 𝑥𝑖 was the colocation point 𝑥-coordinate where the force was acting, and 𝑥𝑠𝑐 was the shear centre 

𝑥-coordinate.  

To compute the torsion distribution along the wingspan, the torque acting on the root section was first set 

as the negative total torque acting on the wing, as defined in the following equation [5]: 

 𝑇(𝑦1) = −∑𝑇𝑠,𝑗 (6.14) 

Where 𝑇(𝑦1) was the value of the torque distribution function at the root. The values for the torque 

distribution function were then computed iteratively according to the following formula: 

 𝑇(𝑦𝑗) = 𝑇(𝑦𝑗−1) + 𝑇𝑠,𝑗 (6.15) 

Where 𝑦 was the spanwise coordinate.   

6.4.2 Bending Loads 

To compute the bending loads, the shear force and bending moment functions were defined along the span 

of the wing.  First, the shear load distribution was computed, with the shear load acting on the root section 

set to equal the negative total lift force acting on the wing [5]: 

 𝑉(𝑦1) = −𝐿 (6.16) 

Where 𝑉(𝑦1) was the value of the shear load function at the root. The subsequent values for the shear load 

function were defined iteratively as presented below: 

 𝑉(𝑦𝑗) = 𝑉(𝑦𝑗−1) + ∑Δ𝐿𝑖𝑗 (6.17) 

Where ∑Δ𝐿𝑖𝑗 was the total lift force acting on the section.  

The moment distribution was computed in a similar iterative fashion. The bending moment at the wing tip 

was first set to zero [5]: 

 𝑀(𝑦𝑛) = 0 (6.18) 

Where 𝑀(𝑦𝑛) was the value of the moment function at the wing tip. The remaining values for the function 

were computed iteratively from the tip to the root with the following definition [5]: 

 𝑀(𝑦𝑗) = 𝑀(𝑦𝑗+1) +
1

2
Δ𝑦𝑗(∑Δ𝐿𝑖𝑗) (6.19) 

Where Δ𝑦𝑗was spanwise panel width, and ∑Δ𝐿𝑖𝑗 was the lift force acting on the section.  
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6.5 Wing Deformation 
Deformation of the wing was computed from the twist and deflection distribution along the span. For this 

analysis, first the twist angle distribution along the wing was computed. Following this, the deflection angle 

and vertical deflections were found, using the twist angle to adjust the point tested in determining the radius 

of curvature.  

6.5.1 Twist Angle Prediction 

The twist angle at each point along the wingspan was calculated through the following approximation 

provided by Hibbeler [5]. The twist angle at the root was set to zero degrees, while each successive angle 

was computed with the torsion distribution function. 

 𝜙𝑗+1 = 𝜙𝑗 −
𝑇(𝑦𝑗)Δ𝑦𝑗

4𝐴𝑚𝑒𝑎𝑛
2 𝐺

∑
Δ𝑠𝑖

𝑡𝑖
 (6.20) 

Where 𝜙 was the twist angle and Δ𝑦𝑗 was the spanwise panel width. The quantity ∑
Δ𝑠𝑖

𝑡𝑖
 was computed along 

the wing box surface.  

6.5.2 Deflection Prediction 

Prediction of the deflection required the radius of curvature for the wing box to be determined at each 

spanwise section. To compensate for the twist of the wing and ensure that the computed deflection was in 

the vertical direction, the point probed to compute this value was rotated by the twist angle.  

Prior to this computation, however, the moment vector components acting on the structure were required. 

Resulting from the lift force distribution, this vector was parallel to the global 𝑥-axis while the components 

acting along the principal axes was needed, and further accounting for the rotation caused by twist was 

necessary.  

The deconstruction of the moment vector was presented in Figure 6.3. In this figure the axes shown were 

centered on the wing box centroid. The 𝑥-axis was set parallel to the global 𝑥-axis, while the 𝑥𝑐-axis was 

set parallel to the untwisted 𝑥-axis of the wing box. Finally, the 𝑥𝑝- and 𝑧𝑝-axes were the principal axes of 

the wing box structure.  

 

Figure 6.3: Moment Vector Components 
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Geometrically derived from Figure 6.3, the bending moment vector acting on the wing box was separated 

into its constituent principal-axis components with the following to equations: 

 𝑀𝑥 = 𝑀 cos(−𝜃𝑝 − 𝜙) (6.21a) 

 𝑀𝑧 = 𝑀sin(−𝜃𝑝 − 𝜙) (6.21b) 

Where 𝑀𝑥 was the moment vector component about the principal 𝑥-axis, 𝑀𝑧 was the moment vector 

component about the 𝑧-axis, and 𝑀 was the total bending moment acting on the cross section.  

Having determined the bending moment components acting on the structure, the lateral strain acting on any 

arbitrary point within the wing box structure was able to be computed with the following formula [5]: 

 휀𝑦 =
𝑀𝑧𝑥

′

𝐸𝐼𝑧′𝑧′
−

𝑀𝑥𝑧
′

𝐸𝐼𝑥′𝑥′
 (6.22) 

Where 휀𝑦 was the lateral strain, (𝑥′, 𝑧′) was the coordinates of an arbitrary point defined in the principal 

reference frame, and 𝐸 was the elastic modulus of the material. To compute the lateral strain value used for 

the deflection angle computation, an arbitrary point near the top of the wing box was probed. To align the 

radius of curvature and ensure that the computed deflection was vertical, the probed point was rotated from 

the centroidal axis by the twist angle as presented in Figure 6.4. 

 

Figure 6.4: Probe Point Selection 

Deriving from the geometry presented in Figure 6.4, the probed point defined within the principal reference 

frame was computed with the following equations: 

 𝑥′ = 𝑧𝑝𝑟𝑜𝑏𝑒 sin(𝜃𝑝 + 𝜙) (6.23a) 

 𝑧′ = 𝑧𝑝𝑟𝑜𝑏𝑒 cos(𝜃𝑝 + 𝜙) (6.23b) 

Where (𝑥′, 𝑧′) was the probed point coordinates defined in the principal reference frame, and 𝑧𝑝𝑟𝑜𝑏𝑒 was 

the 𝑧-axis component of the point probed for the strain.  
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With the lateral strain value computed, the deflection angle slope was able to be approximated with the 

following equation [5]: 

 
𝑑𝜃

𝑑𝑦
= −

𝜀𝑦

𝑧𝑝𝑟𝑜𝑏𝑒
 (6.24) 

Where 𝜃 was the deflection angle, and 𝑑𝜃/𝑑𝑦 was the deflection angle slope. Employing Euler’s method 

alongside an initial deflection angle of zero at the root, the successive deflection angles along the wingspan 

were computed with the following formula: 

 𝜃𝑗+1 = 𝜃𝑗 +
𝑑𝜃

𝑑𝑦
 Δ𝑦𝑗 (6.25) 

Where Δ𝑦𝑗 was the spanwise section length. Conducting this computation along the entire wingspan 

resulted in the deflection angle being determined for each section of the wing. 

Finally, with the deflection angle at each location along the wing computed, the vertical deflection was 

determined through a similar iterative scheme. This was presented in the following formula, where the 

deflection at the wing root was set to zero.  

 Δ𝑧𝑗+1 = Δ𝑧𝑗 + tan𝜃𝑗 Δ𝑦𝑗 (6.26) 

Where Δ𝑧 was the vertical deflection of the wing section.  

6.5.3 Mesh Deformation 

To deform the VLM mesh using the predetermined twist and deflection distribution, the wing was again 

divided into spanwise sections, aligning with the free-stream-parallel panel boundaries. Each point defining 

the panel geometry was rotated and deflected according to the following equation: 

 𝑥𝑑 = √𝑥
2 − 𝑧2 cos (arctan (

𝑧

𝑥
) + 𝜙𝑗) (6.27a) 

 𝑧𝑑 = √𝑥
2 − 𝑧2 sin (arctan (

𝑧

𝑥
) + 𝜙

𝑗
) + Δ𝑧𝑗 (6.27b) 

Where (𝑥𝑑 , 𝑧𝑑) was the location of the panel point after it was deformed, and (𝑥, 𝑧) was the location of the 

panel point before the deformation. Additionally, MATLAB’s arctan2() function was used to compute the 

angle to ensure that the point was rotated from the correct quadrant.  
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7 Sample Results 

7.1 Tested Wing Configuration 
To demonstrate the output capabilities of the developed multidisciplinary analysis program, a generic low-

sweep wing was utilized, intended to represent a typical turboprop aircraft. To further illustrate the wing 

twisting, a longer wing was utilized. The parameters which defined this computation were presented in 

Table 7.1.  

Table 7.1: Sample Parameters 

Air Properties 

Density 1.225 kg/m3 

Viscosity 1.789•10-5 kg/(m•s) 

Velocity 58 m/s 

Mach Number 0.2 

Angle of Attack 3° 

Wing Parameters 

Airfoil NACA 6409 

Root  Chord 2.5 m 

Taper Ratio 0.29 

Semi-Span Length 18 m 

Kink Distance Ratio 0.23 

Leading Edge Sweep 3° 

Wing Box Parameters 

Forward Spar 20% Chord 

Rear Spar 70% Chord 

Number of Stringers 2×7 

Stringer Area 0.0002 m2 

Skin Thickness 0.001 m 

Spar Thickness 0.003 m 

Elastic Modulus 68.3•109 Pa 

Shear Modulus 35.8•109 Pa 

 

7.2 Aerodynamic Results 

7.2.1 Lift Distribution 

One of the core outputs of the VLM was the lift distribution along the aircraft wing. This was presented in 

Figure 7.1, where greater lift forces were demarked in yellow and lower forces were indicated with blue.  

 

 

Figure 7.1: Sample Lift Distribution 
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7.2.2 Aerodynamic Forces 

Combining the outputs of both aerodynamic analyzers, the aerodynamic forces acting on the aircraft were 

computed and presented in Table 7.2. This included the lift and induced drag, which were computed by the 

VLM, and the parasitic drag output by the viscous analyzer. The overall lift to drag ratio of the wing was 

also presented. 

Table 7.2 Sample Aerodynamic Forces 

Output Value 

Lift 61370 N 

Induced Drag 870 N 

Parasitic Drag 430 N 

Lift-to-Drag Ratio 47 

 

7.3 Wing Loading Results 

7.3.1 Bending Loads 

The loading outputs predicted by the bending solver include the shear force and bending moment 

distribution. The shear force corresponding to this sample case, modeled as a function of spanwise distance, 

was presented in Figure 7.2. The bending moment distribution which corresponded to this was presented 

in Figure 7.3.  

 

Figure 7.2: Sample Shear Distribution 

 

 

Figure 7.3: Sample Bending Moment Distribution 
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7.3.2 Torsion Loads 

The torsion load calculator was responsible for predicting the torque distribution as a function of the 

spanwise distance. The plot presenting this for the sample case was given in Figure 7.4.  

 

 

Figure 7.4: Sample Torsion Distribution 

7.3.3 Resulting Deformation 

The core functionality of the wing structural analyzer was the bending deflection and twist angle as a 

function of spanwise distance. The bending deflection predicted for this sample cases was presented in 

Figure 7.5, while the predicted twist was shown in Figure 7.6. 

 

Figure 7.5: Sample Wing Deflection 

 

 

Figure 7.6: Sample Wing Twist 
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7.4 Computer Performance 
As the developed program was a numerical approximation, a trade-off existed between simulation 

resolution and compute time. A series of resolutions were tested, with the required iterations and time to 

compute presented in Table 7.3. These results were produced using a MATLAB environment given 24 

parallel workers, on an AMD Ryzen-9 3950X computer system with 16 CPU cores and 32 gigabytes of 

RAM. During the program operation, the system was able to maintain approximately 90% CPU utilization 

with the developed architecture.  

Table 7.3: Computational Requirements 

Number of 𝒙-panels Number of 𝒚-panels Iterations to Converge Time to Compute (s) 

3 7 10 1.4 

10 40 7 4.2 

40 40 4 20.8 

60 40 5 55.8 

60 80 5 213.9 

60 100 5 330.2 

 

8 Conclusions 
An aerostructural analyzer was developed to model the deformation and aerodynamic loading of a low-

sweep wing. This implementation was developed within the MATLAB environment, and included coupled 

aerodynamic and structural solvers. Each of these encapsulated solving functions were further subdivided 

into additional functions which sequentially or iteratively generated the required outputs.  

The aerodynamic analysis approach used was the quasi-three-dimensional modelling approach, with a 

separate inviscid and viscous analyzer [2]. The inviscid effects were modelled with a vortex ring lifting 

surface model, implementing the method presented by Katz and Plotkin [3]. Viscous effects, specifically 

that of parasitic drag, were modelled with strip theory analysis using a 2D airfoil analyzer [2]. This 2D 

analysis was in itself subdivided, including an effective angle of attack computation, an inviscid linear-

strength vortex airfoil analysis [3], and an empirical direct boundary layer computation [4].  

Structural modelling was supplied through an implementation of classical beam theory [5]. This was 

comprised of a torsional twist prediction and a bending deflection computation. For solution purposes, the 

wing box was numerically approximated as a swarm of area concentrations that allowed for the rapid 

determination of the wing box centroid, moments of inertia, and shear centre.  

The global solution was produced through a coupling of these solvers. For a given analysis, the 

implementation would iteratively converge the inviscid loading and structural response loads. Once this 

was completed, the viscous analysis was run to develop the parasitic drag load and allow for the 

computation of the wing aerodynamic efficiency. As developed, the analyzer was capable of predicting the 

dominant aerodynamic loads for the modeled non-rigid wing within acceptable time frames.  

  



  

31 

 

9 References 
 

[1]  J. Martins and A. Lambe, "Multidisciplinary Design Optimization: A Survey of Architectures," AIAA 

Journal, vol. 51, no. 9, pp. 1-48, 2013.  

[2]  A. Elham and M. van Tooren, "Tool for preliminary structural sizing, weight estimation, and aeroelastic 

optimization of lifting surfaces," Proceedings of the Institution of Mechanical Engineers, vol. 230, no. 

2, pp. 280-295, 2015.  

[3]  J. Katz and A. Plotkin, Low-Speed Aerodynamics, New York: Cambridge University Press, 2001.  

[4]  G. Fujiwara, D. Chaparro and N. Nguyen, "An Integral Boundary Layer Direct Method Applied to 2D 

Transonic Small-Disturbance Equations," in AIAA Applied Aerodynamics Conference, Washington DC, 

2016.  

[5]  R. C. Hibbeler, Mechanics of Materials, Pearson Prentice Hall, 2011.  

[6]  M. Selig, "UIUC Airfoil Coordinates Database," University of Illinois, [Online]. Available: https://m-

selig.ae.illinois.edu/ads/coord_database.html#N. [Accessed 2021]. 

[7]  M. Drela, "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils," Low Reynolds 

Number Aerodynamics, pp. 1-12, 1989.  

[8]  N. Curle, The Laminar Boundary Layer Equations, Oxford: Oxfor University Press, 1962.  

[9]  B. J. Cantwell, "Viscous Flow Along a Wall," Stanford University Department of Aeronautics and 

Astronautics, [Online]. Available: 

https://web.stanford.edu/~cantwell/AA200_Course_Material/Ch09_Viscous_Flow_Along_a_Wall.pdf. 

[Accessed March 2021]. 

[10]  T. H. G. Megson, Aircraft Structures for Engineering Students, Kidlington: Elsevier Ltd., 2017.  

 

 

 

  



  

32 

 

Appendix A: Effective Angle of Attack Derivation 
Given that the induced drag coefficient 𝐶𝑑𝑖, the global angle of attack 𝛼𝑔, and twist angle 𝜙 were known, 

and that 𝛼𝑖 was unknown.  

The effective angle of attack was defined with the following equation: 

 𝛼𝑒𝑓𝑓 = 𝛼𝑔 +𝜙 − 𝛼𝑖 (A.1) 

Using the linear-lift assumption from Thin Airfoil Theory, the lift coefficient function was defined as: 

 𝐶𝑙(𝛼) = 2𝜋𝛼 + 𝐶𝑙0 (A.2) 

Where 𝛼 was some angle of attack in radians, and 𝐶𝑙0 was the zero angle-of-attack lift coefficient of the 

aircraft. The 𝐶𝑙0 was assumed to be a known value.  

The induced drag coefficient was defined with the following equation: 

 𝐶𝑑𝑖 = 𝐶𝑙(𝛼𝑒𝑓𝑓) ∙ sin𝛼𝑖 (A.3) 

Where 𝐶𝑑𝑖 was the induced drag coefficient.  

Equation (A.3) was rearranged into the following form, and equation (A.2) was substituted in: 

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin𝛼𝑖 − 𝐶𝑑𝑖 (A.4) 

Equation (A.1) was rearranged and substituted in for 𝛼𝑖. This produced the final equation used for 

determination of the effective angle of attack: 

 0 = (2𝜋𝛼𝑒𝑓𝑓 + 𝐶𝑙0) sin(𝛼𝑔 +𝜙 − 𝛼𝑒𝑓𝑓) − 𝐶𝑑𝑖 
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Appendix B: Shear Center Arm Derivation 
Given the arbitrary cross section presented in the following figure of an arbitrary cross section for a thin 

member: 

 

Three points where defined. Point 𝑐 was located at the centroid, point 𝑖 was located on the edge of the thin 

member, and point 1 was set where the lever arm met the tangent line. The distance between point 𝑐 and 

point 1 was defined as the lever arm distance with the following equation: 

 𝑝 = √(𝑥1 − 𝑥𝑐)
2 + (𝑧1 − 𝑧𝑐)

2 (B.1) 

The tangent line was defined as having the slope 𝑚 = 𝑑𝑧/𝑑𝑥, which permitted the following two definitions 

for the tangent and lever lines: 

 
𝑧1−𝑧𝑖

𝑥1−𝑥𝑖
= 𝑚 (B.2) 

 
𝑧1−𝑧𝑐

𝑥1−𝑥𝑐
=

1

𝑚
 (B.3) 

Equation (B.3) was rearranged and substituted into equation (B.1) to produce the following relation. 

 𝑝 = √𝑚2(𝑧1 − 𝑧𝑐)
2 + (𝑧1 − 𝑧𝑐)

2 (B.4) 

Equation (B.4) was simplified into the following form: 

 𝑝 = √𝑚2 + 1|𝑧1 − 𝑧𝑐| (B.5) 

Equations (B.2) and (B.3) were rearranged into the following forms: 

 𝑧1 = 𝑚(𝑥1 − 𝑥𝑖) + 𝑧𝑖 (B.6) 

 𝑥1 = 𝑚(𝑧1 − 𝑧𝑐) + 𝑥𝑐 (B.7) 

Equation (B.7) was substituted into equation (B.6) to produce the following formula. 

 𝑧1 =
𝑚𝑥𝑐−𝑚

2𝑧𝑐−𝑚𝑥𝑖+𝑧𝑖

1+𝑚2  (B.8) 
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Setting 𝑥𝑐 = 0 and 𝑧𝑐 = 0 as the centroid was used the origin for the reference frame. Equations (B.5) and 

(B.8) combined to become: 

 𝑝 = |
𝑧𝑖−𝑚𝑥𝑖

1−𝑚2 | √𝑚
2 + 1 (B.9) 

Substituting the definition of 𝑚 yielded the final equation below: 

 𝑝 = |
𝑧𝑖−

𝑑𝑧

𝑑𝑥
 𝑥𝑖

1−(
𝑑𝑧

𝑑𝑥
)
2|√(

𝑑𝑧

𝑑𝑥
)
2
+ 1 
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Appendix C: Global Program Architecture 
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Appendix D: Main MATLAB Function 
% wing_solve_main.m 

%  

% Description  

%   This function is the main function used to operate the aero-structual 

%   analysis suite 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

clear;clc; 

  

% Initialize parallel compute workers 

workers = gcp; 

  

% Add subfolders to the path 

addpath('./Aerodynamics/'); 

addpath('./Utilities/'); 

addpath('./Structures/'); 

  

% Define the simulation parameters 

V_inf = 58;   % Free stream velocity in m/s 

M_inf = 0.2;  % Free stream mach number 

rho   = 1.225; % Density of air 

mu  = 1.789E-5 ;    % viscosity of air 

  

% Read in the airfoil 

[airfoil] = read_selig_foil('../01_Data/airfoil_test_NACA6.txt'); 

% [airfoil] = read_selig_foil('../01_Data/airfoil_test.txt'); 

% render_airfoil(airfoil); 

  

% Define a placeholder wing 

wing            = Wing_Param(); 

wing.airfoil    = airfoil; 

wing.aoa        = 3; 

wing.chord_root = 2.5; 

wing.tr_tip     = 0.29; 

wing.semi_span  = 18; 

wing.sweep_LE   = 3; 

wing.dr_kink    = 0.23; 

  

% Define the placeholder wing box 

stringers       = 7; % Number of stringers on top or bottom surface 

A_stringers     = 0.0002; 

t_skin          = 0.0010; 

t_spar          = 0.0030; 

box_chords      = [0.2 0.7]; 

E               = 68.3E9;    % Young's modulus in Pa 

G               = 35.8E9;    % Shear modulus in Pa 

  

% Compute the zero-alpha lift coefficient 

foil = Airfoil(airfoil); 

[CP,Qt,foil] = airfoil_solver_inviscid(foil,0,V_inf); 

Cl0 = calc_airfoil_Cl(foil,CP); 

  

% Define the resolution of the 3D VLM Analysis 

x_panels = 60; 

y_panels = 40; 

% x_panels = 3; 

% y_panels = 7; 

  

% Define the resolution of the wingbox resolution 

res_skin = 20; 

res_spar = 9; 

  

% Split the wing planform up into panels 

wing_calc = convert_wing_obj(wing,x_panels,y_panels); 

wing_calc_ref = wing_calc; 

  

% Determine the wingbox for a unit-length airfoil 
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box_ref = 

struct_solver_wingbox(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar); 

  

% Compute the coupled inviscid-lift and structural analysis 

fprintf('---------------------------------------------------\n'); 

L_last     = 0; 

twist_last = zeros(1,y_panels+1); 

dz_last    = zeros(1,y_panels+1); 

scale_factor = 0.4; 

exit_percent = 0.1; 

for i = 1:50 

    % Wing Inviscid Lift and Induced Drag Calculator 

    [L,Di,dL,dDi,w] = aero_solver_inviscid(wing_calc,wing.aoa,V_inf,M_inf,rho); 

     

    % Compute the deflection of the wing due to bending 

    [y_lift,dz,twist,T_lift,V_lift,M_lift]... 

        = struct_solver_deformation(wing_calc_ref,box_ref,L,dL,E,G); 

     

    % Set the twist and deflection using the scale factor 

    twist = scale_factor.*(twist-twist_last) + twist_last; 

    dz    = scale_factor.*(dz-dz_last)       + dz_last; 

     

    % Calculate the relative difference in lift 

    percent_diff = abs(L-L_last)/abs(L_last)*100; 

     

    % Output the percent difference 

    fprintf('Lift change for iteration %2.2d: %6.3f %%\n',i,percent_diff); 

     

    % If the change in lift is less than the exit percent, exit 

    if percent_diff < exit_percent 

        fprintf('Aerostructural analysis complete with %d iterations\n',i); 

        break; 

    end 

     

    % Bend and twist the wing; 

    wing_calc = wing_bend_and_twist(wing_calc_ref,box_ref,twist,dz); 

     

    % Store the current values for the next iteration to compare against 

    L_last      = L; 

    twist_last  = twist; 

    dz_last     = dz; 

end 

fprintf('---------------------------------------------------\n'); 

  

% Wing Parasitic Drag Calculator 

AoA = wing.aoa*ones(1,y_panels+1) + twist; 

Dp = aero_solver_viscous(wing_calc,foil,y_panels,dDi,V_inf,rho,mu,AoA,Cl0,M_inf); 

  

% Output the Aerodynamic Properties 

fprintf('Lift:              %10.2f N\n',L); 

fprintf('Drag (Induced):    %10.2f N\n',Di); 

fprintf('Drag (Parasitic):  %10.2f N\n',Dp); 

fprintf('L/D:               %10.2f\n',L/(Di+Dp)); 

fprintf('---------------------------------------------------\n'); 

  

% Render wingbox cross section 

% render_wingbox(box_ref); 

% render_loading(y_lift,V_lift,M_lift,T_lift); 

% render_structure_response(y_lift,dz,twist); 

  

% Render the wing planform 

% render_wing_2D(wing, wing_calc_ref); 

% render_wing_3D(wing, wing_calc_ref,1); 

% render_wing_3D_lift(wing, wing_calc_ref,dL); 

% render_airfoil(foil); 

% [CP,~,foil] = airfoil_solver_inviscid(foil,wing.aoa,V_inf); 

% render_airfoil_CP(foil,CP); 

% [~,zBL] = airfoil_solver_viscous(foil,7,0,V_inf,rho,mu,M_inf); 

% render_airfoil2(foil,zBL) 
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Appendix E: Aerodynamic Functions 
% aero_solver_inviscid.m 

%  

% Description: 

%   This function encapsulates the inviscid aerodynamic solver. This is an 

%   implementation of the vortex-lattice-method, where the wing is 

%   approximated as a thin sheet along its mean-camber line. Thickness 

%   effects are neglected. The resulting computation produces the lift and 

%   drag distributions for the wing, and the total summation of both. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-14 

%  

  

function [L,Di,dL,dDi,w] = aero_solver_inviscid(wing_calc,AoA,V_inf,M_inf,rho) 

% Calculate the infulence coefficient matrices 

[A,B] = calc_influence_coeffs(wing_calc); 

  

% Convert the free-stream velocity into vector form 

Q_inf = calc_vel_vector(V_inf,AoA); 

  

% Calculate the right-hand-side vector used in solving for vorticity 

RHS = calc_RHS(wing_calc,Q_inf); 

  

% Calculate the vorticity vector 

Gamma = A\RHS; 

  

% Calculate the lift distribution and wing lift 

[L,dL] = calc_panel_lift(wing_calc,Gamma,V_inf,M_inf,rho); 

  

% Calculate the induced vertical velocities 

w = B*Gamma; 

  

% Calculate the induced drag distribution and total wing induced drag 

[Di,dDi] = calc_panel_induced_drag(wing_calc,Gamma,w,M_inf,rho); 

end 
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% aero_solver_viscous.m 

%  

% Description: 

%   This function encapsulatese the viscous drag computations used for the 

%   wing. This includes determining the effective angle of attack of each 

%   airfoil section based on the induced drag, and ustilizing von Karmen's 

%   equations to compute drag. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

  

function Dp = aero_solver_viscous(wing_calc,foil,y_panels,dDi,V_inf,rho,mu,AoA,Cl0,M_inf) 

% Initialize the variable to store spanwise drag 

D = NaN(1,y_panels); 

  

% Compute the drag of each spanwise section 

parfor i = 1:y_panels 

    % Determine the mean chord and spanwise length of the section 

    chord_l = abs(wing_calc.panel_x(end,i) - wing_calc.panel_x(1,i)); 

    chord_r = abs(wing_calc.panel_x(end,i+1) - wing_calc.panel_x(1,i+1)); 

    chord_section = (chord_l + chord_r)/2; 

    length_section = abs(wing_calc.panel_y(1,i+1)-wing_calc.panel_y(1,i)); 

     

    % Determine the induced drag of the section 

    induced_drag_section = sum(dDi(:,i))/length_section; 

     

    % Compute the induced drag coefficient, and determine the 

    % incompressible coefficient 

    Cdi = induced_drag_section/(0.5*rho*V_inf^2*chord_section)*sqrt(1-M_inf.^2); 

     

    % Compute the effective angle of attack that the airfoil experiences 

    a_eff = calc_effective_AoA(AoA(i),0,Cdi,Cl0); 

     

    % Compute the parasite drag of the airfoil 

    [d,~] = airfoil_solver_viscous(foil,chord_section,a_eff,V_inf,rho,mu,M_inf); 

     

    % Add it to the total parasite drag 

    D(i)= d*length_section; 

end 

  

% Compute the total parasitic drag 

Dp = sum(D,'all'); 

  

end 
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% airfoil_solver_inviscid.m 

%  

% Description: 

%   This function encapsulates the inviscid airfoil solver, used in 

%   conjuntion with the viscous airfoil solver to determine the parasitic 

%   drag of the wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-17 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin FPages 303-305 

%  

  

function [CP,Qt,foil] = airfoil_solver_inviscid(foil,AoA,V_inf) 

[foil.x_coloc,foil.z_coloc] = calc_airfoil_coloc_coords(foil); 

[foil.a_panels] = calc_airfoil_panel_angle(foil); 

  

[foil.x_norm,foil.z_norm] = calc_panel_norm_2D(foil.a_panels); 

[foil.x_tang,foil.z_tang] = calc_panel_tang_2D(foil.a_panels); 

  

[A,B] = calc_airfoil_influence_coeffs(foil); 

Q_inf = calc_vel_vector(V_inf,AoA); 

RHS = calc_airfoil_RHS(foil,Q_inf); 

gamma = A\RHS; 

[CP,Qt] = calc_airfoil_CP(foil,Q_inf,V_inf,B,gamma); 

end 
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% airfoil_solver_viscous.m 

%  

% Description: 

%   This function encapsulates the viscous-inviscid coupled solver for the 

%   airfoil, used to predict the sectional drag generated by an airfoil. 

%   The problem is solved by interatively adjusting the airfoil geometry 

%   sent to the inviscid solver in order to account for the boundary layer 

%   displacement thickness.  

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

  

function [d,zBL] = airfoil_solver_viscous(foil,chord,AoA,V_inf,rho,mu,M_inf) 

% Initialize the buffer variables 

break_cond_0 = 0; 

break_cond_1 = 9E20; 

zBL_old = foil.z_coords; 

foil_BL = foil; 

  

% Iterate until the airfoil simulation has converged 

while abs(break_cond_0 - break_cond_1) > 0.001 

    % Update the value for the previous iteration's break condition 

    break_cond_0 = break_cond_1; 

     

    % Run the inviscid solver 

    [~,Qt,~] = airfoil_solver_inviscid(foil_BL,AoA,V_inf); 

     

    % Find the index of the stagnation point 

    idx_stag = find_stagnation_point(Qt); 

     

    % Split up the airfoil into two have surfaces based on the stagnation point 

    [x_1,z_1,Qt_1,x_2,z_2,Qt_2] = split_airfoil(foil,Qt,idx_stag); 

    s_1 = calc_curve_dist(x_1*chord,z_1*chord); 

    s_2 = calc_curve_dist(x_2*chord,z_2*chord); 

     

    % Compute the skin friction and boundary layer displacement thickness 

    [del_str_1,~,Cf_1] = halffoil_solver_viscous(s_1,Qt_1,rho,mu,M_inf,V_inf); 

    [del_str_2,~,Cf_2] = halffoil_solver_viscous(s_2,Qt_2,rho,mu,M_inf,V_inf); 

     

    % Compute the new airfoil z values based on the displacement thickness 

    zBL_1 = compute_new_z_from_disp(x_1,z_1,-del_str_1/chord); 

    zBL_2 = compute_new_z_from_disp(x_2,z_2,del_str_2/chord); 

     

    % Merge the upper and lower z values to create the new airfoil geometry 

    zBL = [fliplr(zBL_1) zBL_2]; 

     

    % Update the airfoil 

    foil_BL.z_coords = zBL; 

     

    % Determine the break condition through analysing the boundary layer 

    % near the middle of the airfoil 

    l1 = length(zBL_1); 

    break_cond_1 = sum(abs(zBL_1(floor(l1/3):ceil(2*l1/3)) - zBL_old(floor(l1/3):ceil(2*l1/3)))); 

     

    % Store this current boundary layer as the "old" value for comparison 

    % in the next loop 

    zBL_old = zBL; 

end 

  

% Compute the sectional drag of the airfoil and apply compressiblity 

% correction 

d_1 = calc_halffoil_drag(rho,Qt_1,Cf_1,s_1); 

d_2 = calc_halffoil_drag(rho,Qt_2,Cf_2,s_2); 

d = d_1 + d_2; 

end 
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% calc_airfoil_Cl.m 

%  

% Description: 

%   This function is used to compute lift coefficient of an airfoil based 

%   on its geometry and pressure distribution. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Page 283 

  

function Cl = calc_airfoil_Cl(foil,CP) 

% Extract the organize the airfoil geometry into two row vectors 

x_coloc = foil.x_coloc; 

z_coloc = foil.z_coloc; 

  

% Determine the number of panels 

num_panels = length(CP); 

  

% Go through the pressure coefficients and sum up the contributions to the 

% lift coefficient 

Cl = 0; 

for i = 1:num_panels-1 

    % Calculate the distance between colocation points 

    dist_coloc = sqrt((z_coloc(i) - z_coloc(i+1))^2 + (x_coloc(i) - x_coloc(i+1))^2); 

     

    % Add the contribution to the lift coefficient 

    Cl = Cl - CP(i)*dist_coloc*cos(foil.a_panels(i)); 

end 

end 
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% calc_airfoil_coloc_coords.m 

%  

% Description: 

%   This function computes the colocation points of all the panels the 

%   comprise the airfoil. These colocation points are located at the 

%   midpoints of all the panels.  

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

  

function [x,z] = calc_airfoil_coloc_coords(foil) 

% Extract the organize the airfoil geometry into two row vectors 

x_foil = foil.x_coords; 

z_foil = foil.z_coords; 

  

% Initialize the output matrices for the colocation points 

x = NaN(1,length(x_foil)-1); 

z = NaN(1,length(x_foil)-1); 

  

% Go through the airfoil geometry and place the colocation points at the 

% midpoint of each panel. As all panels are linear, the midpoints are 

% merely the average of the coordinates of the panel vertices 

for i = 1:length(x) 

    x(i) = (x_foil(i) + x_foil(i+1))/2; 

    z(i) = (z_foil(i) + z_foil(i+1))/2; 

end 

end 
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% calc_airfoil_CP.m 

%  

% Description: 

%   This function is used to compute the pressure coefficient distribution 

%   along the airfoil surface. It also computes and returns the tangential 

%   velocity for each panel 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Page 305 

%  

  

function [CP,Qt] = calc_airfoil_CP(foil,Q_inf,V_inf,B,gamma) 

% Extract the organize the airfoil geometry into two row vectors 

x_tang = foil.x_tang; 

z_tang = foil.z_tang; 

  

% Convert the 3D velocity vector to 2D in the x-z plane 

Q_inf = [Q_inf(1) Q_inf(3)]; 

  

% Determine the number of panels 

num_panels = length(gamma)-1; 

  

% Initialize the output variables 

CP = NaN(1,num_panels); 

Qt = NaN(1,num_panels); 

  

% Multiply B by gamma to determine the induced tangential velocities. Note 

% that the bottom row of B is NaNs because B is one column and row larger 

% than the number of panels 

Q_ind = B*gamma; 

  

% Calculate the tangential velocity and pressure coefficient at each 

% colocation point 

for i = 1:num_panels 

    Qt(i)  = Q_ind(i) + dot(Q_inf,[x_tang(i) z_tang(i)]); 

    CP(i) = 1-(Qt(i)/V_inf)^2; 

end 

  

end 
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% calc_airfoil_influence_coeffs.m 

%  

% Description: 

%   This function is responsible for calculating the influence coefficients 

%   used in the computation of inviscid airfoil performance. These 

%   coefficients are stored in the A matrix. And additional B matrix is 

%   also returned, storing the nodal tangential speed at unit vorticity. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 11.103, 11.103b, 

%   11.103c, 11.104, and 11.105 

%  

  

function [A,B] = calc_airfoil_influence_coeffs(foil) 

% Extract the panel geometry 

x_foil = foil.x_coords; 

z_foil = foil.z_coords; 

a_foil = foil.a_panels; 

  

% Extract the colocation points 

x_coloc = foil.x_coloc; 

z_coloc = foil.z_coloc; 

  

% Extract the normal vectors 

x_norm  = foil.x_norm; 

z_norm  = foil.z_norm; 

  

% Extract the tangent vectors 

x_tang  = foil.x_tang; 

z_tang  = foil.z_tang; 

  

  

% Determine the number colocation points 

num_c = length(z_coloc); 

  

% Initialize the output matrix 

A = NaN(num_c+1); 

B = NaN(num_c+1); 

  

% Go through the various points 

% For each colocation points i 

for i = 1:num_c 

    % Define the colocation point as point p 

    p = [x_coloc(i) z_coloc(i)]; 

     

    % Initialize variables to store the induced velocities 

    V_ua = NaN(1,num_c); 

    V_wa = NaN(1,num_c); 

    V_ub = NaN(1,num_c); 

    V_wb = NaN(1,num_c); 

     

    % Compute the induced velocity of each vortex on this colocation points 

    for j = 1:num_c 

        % Define the two verticies of the panel and p1 and p2 

        p1 = [x_foil(j)   z_foil(j)]; 

        p2 = [x_foil(j+1) z_foil(j+1)]; 

         

        % Compute the panel-reference-frame values 

        [p_p,p1_p,p2_p,th1,th2,r1,r2] = determine_panel_frame(p,p1,p2,a_foil(j)); 

         

        % Compute the induced velocities 

        if i == j 

            [V_ua(j),V_wa(j),V_ub(j),V_wb(j)] = calc_velocity_p_ij(p_p,p1_p,p2_p,a_foil(j)); 

        else 

            [V_ua(j),V_wa(j),V_ub(j),V_wb(j)] = 

calc_velocity_p(p_p,p1_p,p2_p,th1,th2,r1,r2,a_foil(j)); 

        end 

    end 
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    % Compute the influence coefficients for j = 1 

    j = 1; 

    A(i,j) = dot([V_ua(j) V_wa(j)],[x_norm(i) z_norm(i)]); 

    B(i,j) = dot([V_ua(j) V_wa(j)],[x_tang(i) z_tang(i)]); 

     

    % Compute the influence coefficents for j = 2:N 

    for j = 2:num_c 

        % Extract the velocity vector 

        V = [V_ua(j)+V_ub(j-1) V_wa(j)+V_wb(j-1)]; 

         

        % Set the influence coefficient 

        A(i,j) = dot(V,[x_norm(i) z_norm(i)]); 

        B(i,j) = dot(V,[x_tang(i) z_tang(i)]); 

    end 

     

    % Compute the influence coefficient for N+1 

    j = num_c+1; 

    A(i,j) = dot([V_ub(j-1) V_wb(j-1)],[x_norm(i) z_norm(i)]); 

    B(i,j) = dot([V_ub(j-1) V_wb(j-1)],[x_tang(i) z_tang(i)]); 

end 

  

% Set the bottom row of the matrix to be the Kutta condition 

row_bottom = zeros(1,num_c+1); 

row_bottom(1)   = 1; 

row_bottom(end) = 1; 

A(end,:) = row_bottom; 

end 

  

function [u_a,w_a,u_b,w_b] = calc_velocity_p(p_p,p1_p,p2_p,th1,th2,r1,r2,alpha_i) 

% Extract the point information 

x  = p_p(1); 

z  = p_p(2); 

x1 = p1_p(1); 

x2 = p2_p(1); 

  

% Calculate the three speeds in the panel reference frame 

up_a = -(z*log(r2/r1)+x*(th2-th1)-x2*(th2-th1))/(2*pi*x2); 

up_b =  (z*log(r2/r1) + x*(th2-th1))/(2*pi*x2); 

wp_a = -(x2-z*(th2-th1) - x*log(r1/r2) + x2*log(r1/r2))/(2*pi*x2); 

wp_b =  (x2-z*(th2-th1) - x*log(r1/r2))/(2*pi*x2); 

  

% Calculate the rotation matrix 

rot_p2g = [cos(-alpha_i) sin(-alpha_i) ; -sin(-alpha_i) cos(-alpha_i)]; 

  

% Rotate the calculated velocities 

Vp_a = [up_a ; wp_a]; 

Vp_b = [up_b ; wp_b]; 

V_a  = rot_p2g*Vp_a; 

V_b  = rot_p2g*Vp_b; 

  

% Extract the rotated velocities for outputting 

u_a = V_a(1); 

w_a = V_a(2); 

u_b = V_b(1); 

w_b = V_b(2); 

end 

  

function [u_a,w_a,u_b,w_b] = calc_velocity_p_ij(p_p,p1_p,p2_p,alpha_i) 

% Extract the point information 

x  = p_p(1); 

z  = p_p(2); 

x1 = p1_p(1); 

x2 = p2_p(1); 

  

% Calculate the three speeds in the panel reference frame 

up_a = -0.5*(x-x2)/x2; 

up_b =  0.5*x/x2; 

wp_a = -1/(2*pi); 

wp_b =  1/(2*pi); 

  



  

47 

 

% Calculate the rotation matrix 

rot_p2g = [cos(-alpha_i) +sin(-alpha_i) ; -sin(-alpha_i) cos(-alpha_i)]; 

  

% Rotate the calculated velocities 

Vp_a = [up_a ; wp_a]; 

Vp_b = [up_b ; wp_b]; 

V_a  = rot_p2g*Vp_a; 

V_b  = rot_p2g*Vp_b; 

  

% Extract the rotated velocities for outputting 

u_a = V_a(1); 

w_a = V_a(2); 

u_b = V_b(1); 

w_b = V_b(2); 

  

end 
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% calc_airfoil_RHS.m 

%  

% Description: 

%   This function is used to compute the RHS vector, required to solve the 

%   vorticities of the airfoil approximation. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 11.103, 11.103b, 

%   11.103c, 11.104, and 11.105 

%  

  

function RHS = calc_airfoil_RHS(foil,Q_inf) 

% Extract the organize the airfoil geometry into two row vectors 

x_foil = foil.x_coords; 

a_foil = foil.a_panels; 

  

% Extract the normal vectors 

x_norm  = foil.x_norm; 

z_norm  = foil.z_norm; 

  

% Convert the 3D velocity vector to 2D in the x-z plane 

Q_inf = [Q_inf(1) Q_inf(3)]; 

  

% Initialize the RHS vector 

RHS = NaN(length(x_foil),1); 

  

% Go through all the panels and calculate the RHS vector 

for i = 1:length(x_foil)-1 

    RHS(i) = dot(Q_inf,[sin(a_foil(i)) -cos(a_foil(i))]); 

end 

  

% Add the zero at the end of the RHS vector for the Kutta condition 

RHS(end) = 0; 

  

end 
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% calc_effective_AoA 

%  

% Description: 

%   This function is used to approximately the effective angle of attack of 

%   the cross-section based on the induced drag. 

%  

% ** ANGLES ARE IN DEGREES 

%  

  

function a_eff = calc_effective_AoA(a_global,e_twist,Cdi,Cl0) 

% Convert the input angles into radians 

a_global = a_global*pi/180; 

e_twist = e_twist*pi/180; 

  

% Define the function that will be solved 

f = @(a_eff) (2*pi*a_eff + Cl0)*sin(a_global + e_twist-a_eff) - Cdi; 

  

% Solve for the effective angle of attack 

a_eff = fzero(f,0); 

  

% Convert the effective angle of attack into degrees 

a_eff = a_eff*180/pi; 

  

% Convert the angle to be between +90 and -90 

while 1 

    if a_eff < -90 

        a_eff = a_eff + 180; 

    elseif a_eff > 90 

        a_eff = a_eff - 180; 

    else 

        break 

    end 

end 

end 
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% calc_airfoil_drag 

%  

% Description: 

%   This function is used to compute the drag generated by one half of the 

%   airfoil. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

  

function d = calc_halffoil_drag(rho,Qt,Cf,s) 

% Initailize d to zero 

d = 0; 

  

% Go through all the points and compute the drag of the section, and add it 

% to the overall drag 

for i = 2:length(s) 

    d = 0.5*rho*(Qt(i-1))^2*Cf(i)*(s(i)-s(i-1)) + d; 

end 

end 
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% calc_influence_coeffs.m 

%  

% Description: 

%   This function calculates the lift and induced drag influence 

%   coefficients. The lift influence coefficients are calculated using 

%   vortex rights of unit vorticity, and the inverse of the matrix (A) 

%   can be used later to solve for the vorticities. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Fig. 12.13 

%  

  

  

function [A,B] = calc_influence_coeffs(wing_calc) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Determine how many colocation points there are 

x_colocs = x_panels; 

y_colocs = y_panels; 

  

% Predefine A and B as square matrices with x_panels*y_panels by 

% x_panels*y_panels size 

A = NaN(x_panels*y_panels); 

B = NaN(x_panels*y_panels); 

  

% Extract the ring locations 

xr = wing_calc.ring_x; 

yr = wing_calc.ring_y; 

zr = wing_calc.ring_z; 

  

% Extract the colocation points 

xc = wing_calc.coloc_x; 

yc = wing_calc.coloc_y; 

zc = wing_calc.coloc_z; 

  

% Extract the norms 

xn = wing_calc.norm_x; 

yn = wing_calc.norm_y; 

zn = wing_calc.norm_z; 

  

% Go through the various colocation points 

parfor K = 1:x_colocs*y_colocs 

    % Convert hte K value into its corresponin i and j 

    [i_c,j_c] = K2ij(K,y_panels); 

     

    % Define buffer variables for a row of A and B 

    A_row = NaN(1,x_panels*y_panels); 

    B_row = NaN(1,x_panels*y_panels); 

     

    % Define the colocation point 

    c           = [xc(i_c,j_c)  yc(i_c,j_c) zc(i_c,j_c)]; 

    c_mirror    = [xc(i_c,j_c) -yc(i_c,j_c) zc(i_c,j_c)]; 

     

    % Define the normal vector 

    norm = [xn(i_c,j_c)  yn(i_c,j_c) zn(i_c,j_c)]; 

     

    % Go through the various vortex rings 

    L = 1; 

    for i = 1:x_panels 

        for j = 1:y_panels 

         

            % Define the points for the vortex ring 

            [p1,p2,p3,p4] = calc_ring_corners(i,j,xr,yr,zr); 

             

            % Calculate the induced velocities 

            [q1, qt1] = vortex_ring(c       ,p1,p2,p3,p4,1.0); 
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            [q2, qt2] = vortex_ring(c_mirror,p1,p2,p3,p4,1.0); 

             

            % Calculate the net induced velocity, and the component only from 

            % the vortex lines parallel to the flow 

            q  = add_mirrored_q(q1,q2); 

            qt = add_mirrored_q(qt1,qt2); 

             

            % Check if its the trailing edge 

            if i == x_panels 

                % Define the vortex ring points for the wake 

                [p1,p2,p3,p4] = calc_ring_corners(i+1,j,xr,yr,zr); 

                 

                % Calculate the induced velocities of the wake 

                [q3, qt3] = vortex_ring(c       ,p1,p2,p3,p4,1.0); 

                [q4, qt4] = vortex_ring(c_mirror,p1,p2,p3,p4,1.0); 

                 

                % Add the influence of the wake to the induced velocity 

                q  = q  + add_mirrored_q(q3,q4); 

                qt = qt + add_mirrored_q(qt3,qt4); 

            end 

             

            % Calculate the influence coefficients 

            A_row(L) = dot(q, norm); 

            B_row(L) = dot(qt,norm); 

             

            % Increment the L counter for the next iteration 

            L = L + 1; 

        end 

    end 

     

    % Insert the influence coefficients into the main matrix 

    A(K,:) = A_row; 

    B(K,:) = B_row; 

end 

end 

  

% This function determines the location vectors for the four corners of the 

% vortex ring. 

function [p1,p2,p3,p4] = calc_ring_corners(i,j,xr,yr,zr) 

p1 = [xr(i,j)      yr(i,j)     zr(i,j)]; 

p2 = [xr(i,j+1)    yr(i,j+1)   zr(i,j+1)]; 

p3 = [xr(i+1,j+1)  yr(i+1,j+1) zr(i+1,j+1)]; 

p4 = [xr(i+1,j)    yr(i+1,j)   zr(i+1,j)]; 

end 

  

% This function adds the mirrored induced velocities 

function q = add_mirrored_q(q1,q2) 

q(1)  = q1(1)  + q2(1); 

q(2)  = q1(2)  - q2(2); 

q(3)  = q1(3)  + q2(3); 

end 
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% calc_panel_induced_drag 

%  

% Description: 

%   This function is used to calculate the induced drag produced by each 

%   individual panel, as well as the overall total induced drag generated 

%   by the wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 12.27 and 12.27a 

%  

  

function [Di,dDi] = calc_panel_induced_drag(wing_calc,Gamma,w,M_inf,rho) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Initialize the matrix dL which will store the lift acting on each panel 

dDi = NaN(x_panels,y_panels); 

  

% Extract the panel dimensions 

yp = wing_calc.panel_y; 

  

% Go through all the panels and calculate the lift force acting on each 

% panel 

for j = 1:y_panels 

    % Calculate the panel width 

    dy = abs(yp(1,j) - yp(1,j+1)); 

     

    % Determine the K index for the vorticity vector for the leading edge 

    % panel 

    K   = ij2K(1,j,y_panels); 

     

    % Calculate the component for the panel induced drag which is only a 

    % function of induced velocity (w) and vorticity. Leading edge panel 

    % only. 

    dDi(1,j) = Gamma(K).*w(K).*dy; 

     

    % For the non-leading edge panels 

    for i = 2:x_panels 

        % Determine the K index for the vorticity vector 

        K   = ij2K(i,j,y_panels); 

        K_1 = ij2K(i-1,j,y_panels); 

         

        % Calculate the component for the panel induced drag which is only a 

        % function of induced velocity (w) and vorticity. 

        dDi(i,j) = (Gamma(K) - Gamma(K_1)).*w(K).*dy; 

    end 

end 

  

% Multiply by density to determine the drag, then correct for 

% compressibility. 

dDi = -rho./sqrt(1-M_inf.^2).*dDi; 

  

% Calculate the total induced drag 

Di = sum(dDi,'all'); 

end 
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% calc_panel_lift.m 

%  

% Description: 

%   This function is responsible for calculating the lift distribution and 

%   total lift of the wing, given the atmospheric conditions and the 

%   vorticity vector. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq 12.25 and 12.25a 

%  

  

  

function [L,dL] = calc_panel_lift(wing_calc,Gamma,V_inf,M_inf,rho) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Initialize the matrix dL which will store the lift acting on each panel 

dL = NaN(x_panels,y_panels); 

  

% Extract the panel dimensions 

yp = wing_calc.panel_y; 

  

% Go through all the panels and calculate the lift force acting on each 

% panel 

for j = 1:y_panels 

    % Calculate the panel width 

    dy = abs(yp(1,j) - yp(1,j+1)); 

     

    % Determine the K index for the vorticity vector 

    K   = ij2K(1,j,y_panels); 

     

    % Calculate the component for the panel left which is only a function 

    % of vorticity and panel width 

    dL(1,j) = Gamma(K).*dy; 

     

    % For the non-leading edge panels 

    for i = 2:x_panels 

        % Determine the K index for the vorticity vector 

        K   = ij2K(i,j,y_panels); 

        K_1 = ij2K(i-1,j,y_panels); 

         

        % Calculate the component for the panel left which is only a function 

        % of vorticity and panel width 

        dL(i,j) = (Gamma(K) - Gamma(K_1)).*dy; 

  

    end 

end 

  

% Multiply by density, V_inf, and correct for compressility to calculate 

% the lift for each panel 

dL = rho.*V_inf./sqrt(1-M_inf.^2).*dL; 

  

% Calculate the total lift 

L = sum(dL,'all'); 

end 
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% calc_panel_norm.m 

%  

% Description: 

%   This function calculates the normal vector of a panel defined by four 

%   points p1 through p4. The returned vector is of unit length. 

%   Additionally, p1 refers to the forward-leftmost point, and 2 through 4 

%   are clockwise from there. 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 12.20 

%  

  

  

function n = calc_panel_norm(p1,p2,p3,p4) 

% Define the two diagonal vectors 

r31 = p3 - p1; 

r24 = p2 - p4; 

  

% Calculate the cross product in the same direction as the normal 

cross_n = cross(r31,r24); 

  

% Calculate the normal vector 

n = cross_n./norm(cross_n); 

end 
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% calc_panel_norm_2D.m 

%  

% Description 

%   This function calculates the panel norms placed at each colocation 

%   point for an airfoil. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

  

function [x,z] = calc_panel_norm_2D(alpha) 

% Initialize the output matrices for the normal vector 

x = NaN(1,length(alpha)); 

z = NaN(1,length(alpha)); 

  

% Go through all the panels and compute the normals 

for i = 1:length(alpha) 

    x(i) = -sin(alpha(i)); 

    z(i) = cos(alpha(i)); 

end 

end 
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% calc_panel_tang_2D.m 

%  

% Description 

%   This function calculates the panel norms placed at each colocation 

%   point for an airfoil. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

  

function [x,z] = calc_panel_tang_2D(alpha) 

% Initialize the output matrices for the normal vector 

x = NaN(1,length(alpha)); 

z = NaN(1,length(alpha)); 

  

% Go through all the panels and compute the normals 

for i = 1:length(alpha) 

    x(i) = cos(alpha(i)); 

    z(i) = sin(alpha(i)); 

end 

end 
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% calc_RHS.m 

%  

% Description: 

%   This function calculates the RHS vector, essentially in calculating the 

%   vorticity distribution of the wing. 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 12.24 

%  

  

function RHS = calc_RHS(wing_calc,Q_inf) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Extract the norms 

xn = wing_calc.norm_x; 

yn = wing_calc.norm_y; 

zn = wing_calc.norm_z; 

  

% Initialize the RHS vector 

RHS = NaN(x_panels*y_panels,1); 

  

% Go through all the colocation points and calculate the value for the RHS 

% VLM vector 

K = 1; 

for i = 1:x_panels 

    for j = 1:y_panels 

         % Calculate the RHS value 

         RHS(K) = -dot(Q_inf,[xn(i,j)  yn(i,j) zn(i,j)]); 

          

         % Increment the K counter 

         K = K + 1; 

     end 

end 

end 
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% determine_coloc_coordinates 

%  

% Description: 

%   This function is responsible for calculating the locations of the 

%   colocation points for each panel 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [x,y,z] = determine_coloc_coordinates(wing_calc) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Extract the x and y coordinates 

x_coords = wing_calc.panel_x; 

y_coords = wing_calc.panel_y; 

z_coords = wing_calc.panel_z; 

  

% Initialize the coordinate matrices 

x = NaN(x_panels,y_panels); 

y = NaN(x_panels,y_panels); 

z = NaN(x_panels,y_panels); 

  

% Go through each panel and determine colocation point 

for j = 1:y_panels 

     for i = 1:x_panels 

        % Get the points for the vertices of this panel 

        x_v = x_coords(i:i+1,j:j+1); 

        y_v = y_coords(i:i+1,j:j+1); 

        z_v = z_coords(i:i+1,j:j+1); 

         

        % Since y is straight, the y-coordinate can be calculated from the 

        % panel's leading edge 

        y_point = (y_v(1,1) + y_v(1,2))/2; 

         

        % Get the 3/4 lines for the left and right side  

        x_34l = x_v(1,1) + 0.75*abs(x_v(1,1) - x_v(2,1)); 

        x_34r = x_v(1,2) + 0.75*abs(x_v(1,2) - x_v(2,2)); 

         

        % Get the z values at the above left and right x points 

        z_34l = interp1(x_v(:,1),z_v(:,1),x_34l); 

        z_34r = interp1(x_v(:,2),z_v(:,2),x_34r); 

         

        % Since the y-coordinate is a midpoint, so too will these be the 

        % midpoint between the left and right 3/4 points 

        x_point = (x_34l + x_34r)/2; 

        z_point = (z_34l + z_34r)/2; 

         

        % Set the colocation points 

        x(i,j) = x_point; 

        y(i,j) = y_point; 

        z(i,j) = z_point; 

    end 

end 

  

  

  

end 
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% determine_coloc_norms.m 

%  

% Description: 

%   This function calculates the panel normals for wing, which during later 

%   analysis are treated as being placed at the colocation point. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

  

  

function [x,y,z] = determine_coloc_norms(wing_calc) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Initialize the coordinate matrices 

x = NaN(size(x_panels)); 

y = NaN(size(y_panels)); 

z = NaN(size(x_panels)); 

  

% Extract the panel locations 

xp = wing_calc.panel_x; 

yp = wing_calc.panel_y; 

zp = wing_calc.panel_z; 

  

% Go through each panel and determine normal for that panel, which for 

% later ananlysis is located at the colocation points 

for j = 1:y_panels 

     for i = 1:x_panels 

         % Define the points 

         p1 = [xp(i,j)      yp(i,j)     zp(i,j)]; 

         p2 = [xp(i,j+1)    yp(i,j+1)   zp(i,j+1)]; 

         p3 = [xp(i+1,j+1)  yp(i+1,j+1) zp(i+1,j+1)]; 

         p4 = [xp(i+1,j)    yp(i+1,j)   zp(i+1,j)]; 

          

         % Calculate the normal 

         n = calc_panel_norm(p1,p2,p3,p4); 

          

         % Store the vector lengths for the normal 

         x(i,j) = n(1); 

         y(i,j) = n(2); 

         z(i,j) = n(3); 

     end 

end 

  

end 
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% determine_panel_area.m 

%  

% Description: 

%   This function calculates the area of a panel in 3D space. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-12 

%  

  

  

function A = determine_panel_area(wing_calc) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Extract the panel locations 

xp = wing_calc.panel_x; 

yp = wing_calc.panel_y; 

zp = wing_calc.panel_z; 

  

% Initialize the area matrix 

A = NaN(size(x_panels)); 

  

% Go through all the panels and calculate their area. 

for j = 1:y_panels 

    for i = 1:x_panels 

        % Define the points for the panel 

         p1 = [xp(i,j)      yp(i,j)     zp(i,j)]; 

         p2 = [xp(i,j+1)    yp(i,j+1)   zp(i,j+1)]; 

         p3 = [xp(i+1,j+1)  yp(i+1,j+1) zp(i+1,j+1)]; 

         p4 = [xp(i+1,j)    yp(i+1,j)   zp(i+1,j)]; 

          

         % Calculate the area by splitting the shape into two triangles 

         A124 = calc_area_triangle(p1,p2,p4); 

         A243 = calc_area_triangle(p2,p4,p3); 

          

         % Store the area. 

         A(i,j) = A124 + A243; 

    end 

end 

end 

  

% This function calculates the area of a triangle in 3d space 

function A = calc_area_triangle(p1,p2,p3) 

% Define the two position vectors 

r12 = p1 - p2; 

r32 = p3 - p2; 

  

% Calculate the area 

A = 0.5*norm(cross(r12,r32)); 

end 
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% determine_panel_coordinates.m 

%  

% Description: 

%   This function is responsible for generating the coordinates for the 

%   vertices of the panels which will be used for VLM computation 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [x,y,z] = determine_panel_coordinates(wing_param,x_panels,y_panels) 

% Get the leading and trailing edge points 

[x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param); 

  

% Of the y-panels (spanwise direction), determine how many as being 

% allocated to the left of the kink and to the right of the kink 

y_panels_left = floor(y_panels*wing_param.dr_kink); 

if y_panels_left < 1 && wing_param.dr_kink ~= 0 

    y_panels_left = 1; 

end 

y_panels_right = y_panels - y_panels_left; 

  

% Initialize the coordinate matrices 

x = NaN(x_panels+1,y_panels+1); 

y = NaN(x_panels+1,y_panels+1); 

z = NaN(x_panels+1,y_panels+1); 

  

% Determine the y coordinates 

y_lines_l = linspace(0,wing_param.semi_span*wing_param.dr_kink,y_panels_left+1); 

y_lines_r = 

linspace(wing_param.semi_span*wing_param.dr_kink,wing_param.semi_span,y_panels_right+1); 

y_lines = [y_lines_l y_lines_r(2:end)]; 

  

% Populate the coordinate matrices 

for j = 1:y_panels+1 

    % Set the y-coordinates for the chord 

    y(:,j) = y_lines(j); 

     

    % Determine the points that comprise the planview chord. Note that 

    % x_LE, y_LE, etc are swapped from that used for the wing 

    % dimensions. 

    chord_x = [interp1(x_LE,y_LE,y_lines(j)) interp1(x_TE,y_TE,y_lines(j))]; 

    chord_len = abs(chord_x(1) - chord_x(2)); 

     

    % Split up the chord into the requested number of points 

    x_points = linspace(chord_x(1),chord_x(2),x_panels+1); 

     

    % Calculate the z-height based on the airfoil camber 

    z_camber = calc_mean_camber(wing_param.airfoil,linspace(0,1,x_panels+1))*chord_len; 

     

    for i = 1:x_panels+1 

        x(i,j) = -x_points(i); 

        z(i,j) = z_camber(i); 

    end 

end 

end 
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% determine_panel_frame.m 

%  

% Description: 

%   This function is used to compuite the points, angles, and displacements 

%   within the panel reference frame. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%    

% Based on: Low Speed Aerodynamics by Katz and Plotkin Fig 11.29 

%  

  

  

function [p_p,p1_p,p2_p,th1,th2,r1,r2] = determine_panel_frame(p,p1,p2,alpha_i) 

% Define the rotation matrices 

rot_g2p = [cos(alpha_i) sin(alpha_i) ; -sin(alpha_i) cos(alpha_i)]; 

  

% Since p1 is used as the origin for the panel reference frame, set its 

% coordinates to [0,0] 

p1_p = [0 0]; 

  

% Calculate the p2_p and p_p location in the panel reference frame using 

% the rotation matrix. 

p2_p = (rot_g2p*(p2-p1)')'; 

p_p  = (rot_g2p*(p-p1)')'; 

  

% Calculate the magnitude of the displacement vectors r1 and r2 which point 

% to the given arbitrary point p 

r1 = norm(p_p); 

r2 = norm(p_p-p2_p); 

  

% Calculate the theta angles using arctan (not arctan2) 

th1 = atan2(p_p(2),p_p(1)); 

th2 = atan2(p_p(2),(p_p(1) - p2_p(1))); 

end 
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% determine_ring_coordinates 

%  

% Description: 

%   This function is responsible for calculating the vertex coordinates of 

%   the vortex rings which will be used for VLM computation of wing lift 

%   and inducted drag performance 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [x,y,z] = determine_ring_coordinates(wing_calc) 

% Determine how many panels are present in the wing_calc object 

dims = size(wing_calc.panel_x); 

x_panels = dims(1)-1; 

y_panels = dims(2)-1; 

  

% Initialize the coordinate matrices 

x = NaN(size(x_panels)); 

z = NaN(size(x_panels)); 

  

% Since, y-coordiantes don't change, just use the same y-coordinate matrix 

% from the wing_calc object. We do need to add an additional row to 

% compensate for the zero-strength vortex data points 

y = [wing_calc.panel_y ; wing_calc.panel_y(1,:)]; 

  

  

for j = 1:y_panels+1 % For each chord 

    % Extract the point which fall along this chord 

    x_coords = [wing_calc.panel_x(:,j)]; 

    z_coords = [wing_calc.panel_z(:,j)]; 

     

    % Going along the chord, adjust x positions to place rings on the 

    % quarder line of each panel 

    for i = 1:x_panels 

        x(i,j) = x_coords(i)+0.25*abs(x_coords(i)-x_coords(i+1)); 

        z(i,j) = interp1(x_coords,z_coords,x(i,j)); 

    end 

     

    % Account for the trailing edge zero-strength vortex line 

    x(i+1,j) = x_coords(end) + 0.25*abs(x_coords(end-1)-x_coords(end)); 

    z(i+1,j) = 0; 

     

    % Add an extra point at 1E6 for "infinity" 

    x(i+2,j) = 1E6; 

    z(i+2,j) = 0; 

     

end 

  

  

end 
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% halffoil_solver_viscous.m 

%  

% Description: 

%   This function computes the viscous boundary layer quantities of the 

%   airfoil. This include consideration for the laminar potion and 

%   turbulent portion, with a transition in between. 

%  

% Based on: An Integral Boundary Layer Direct Method... by G. Fijiwara and 

% N. Nguyen 

% Based on: Stanford University Viscous Flow Presentation 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-20 

%  

%  

  

function [del_str,theta,Cf] = halffoil_solver_viscous(s,ue,rho,mu,M_inf,V_inf) 

% Determine the number of points 

num_points = length(s); 

  

% Initialize the output vectors 

del_str = NaN(1,num_points); % Boundary layer displacement thickness 

theta   = NaN(1,num_points); % Boundary layer momentum thickess 

Cf      = NaN(1,num_points); % skin friction coefficient 

  

% Compute the free-stream speed of sound 

if M_inf ~= 0 

    a_inf = V_inf/M_inf; 

else 

    a_inf = 1E6; 

end 

  

% Go through the laminar points 

H = 0; 

for i = 1:num_points 

    % Compute the local reynolds number 

    Re_l = rho*ue(i)/mu; 

     

    % Calculate the momentum thickness 

    theta_sqrd = laminar_momentum_thickness(mu,ue,s,i); 

    theta(i) = sqrt(theta_sqrd); 

    if ~isreal(theta(i)) 

        error('Computation error'); 

    end 

     

    % Calculate the momentum reynolds number 

    Re_th = Re_l*theta(i); 

     

    % If the flow has transitioned, exit this loop 

    if check_if_transition(Re_l,s(i),Re_th) 

%         disp('Transition') 

        break; 

    end 

     

    % Compute the speed gradient 

    if i ~= 1 

        spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1)); 

    else 

        spd_grad = (ue(2) - ue(1))/(s(2) - s(1)); 

    end 

     

    % Compute the value of lambda 

    lambda = theta_sqrd*rho/mu*spd_grad; 

     

    % Compute the values of H and l 

    [H,l] = laminar_thwaites_approximations(lambda); 

     

    % Compute the displacement thickness 

    del_str(i) = H*theta(i); 

     

    % Compute the friction coefficient 
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    Cf(i) = 2*l/Re_th*(1+0.2*(ue(i)/a_inf)^2); 

end 

  

% Override the friction coefficient at the first point to zero, since the 

% computed value only exists due to the algorithm structure 

Cf(1) = 0; 

  

% Decrement i to redo that point as it is turbulent rather than laminar 

i = i-1; 

  

% Go through turbulent points 

if i < num_points 

    if i == 1 

        for i = 1:2 

            % Compute the local reynolds number 

            Re_l = rho*ue(i)/mu; 

             

            % Calculate the momentum thickness 

            theta_sqrd = laminar_momentum_thickness(mu,ue,s,i); 

            theta(i) = sqrt(theta_sqrd); 

            if ~isreal(theta(i)) 

                error('Computation error'); 

            end 

             

            % Calculate the momentum reynolds number 

            Re_th = Re_l*theta(i); 

             

            % Compute the speed gradient 

            if i ~= 1 

                spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1)); 

            else 

                spd_grad = (ue(2) - ue(1))/(s(2) - s(1)); 

            end 

             

            % Compute the value of lambda 

            lambda = theta_sqrd*rho/mu*spd_grad; 

             

            % Compute the values of H and l 

            [H,~] = laminar_thwaites_approximations(lambda); 

             

            % Compute the displacement thickness 

            del_str(i) = H*theta(i); 

             

            % Compute the friction coefficient 

            Cf(i) = 0; 

        end 

        end 

    % Go through the remaining turbulent points 

    for i = i:num_points-1 

        % Extract the previous poiints 

        theta_0 = theta(i); 

        H_0     = H; 

        if ~isreal(H_0) 

            error('Computation error'); 

        end 

         

        % Compute the value of H1 

        H1_0 = 3.0445 + 0.8702/(H_0-1.1)^1.2721; 

         

        % Compute the ue*theta*H1 quantity 

        UTH_0 = ue(i-1)*theta_0*H1_0; 

         

        % Step the UTH value 

        UTH_1 = step_UTH(UTH_0,s(i),s(i+1),ue(i-1),H1_0); 

         

        % Compute the friction coefficient 

        Cf(i) = 0.246/(10^(0.678*H_0)*Re_th^0.268)*(1+0.2*(ue(i-1)/a_inf)^2); 

         

        % Compute the speed gradient 

        if i ~= 1 

            spd_grad = (ue(i) - ue(i-1))/(s(i) - s(i-1)); 



  

67 

 

        else 

            spd_grad = (ue(2) - ue(1))/(s(2) - s(1)); 

        end 

         

        % Determine the next value of theta 

        theta(i+1) = step_theta(theta_0,ue(i),spd_grad,H_0,Cf(i),s(i),s(i+1),ue(i-1)/a_inf); 

        if ~isreal(theta(i+1)) 

            error('Computation error'); 

        elseif theta(i+1) < 0 

            error('Computation error'); 

        end 

         

        % Determine the new H1 value from theta, ue, and UTH 

        H1_1 = UTH_1/(ue(i)*theta(i+1)); 

         

        % Determine the value of H 

        H = H1_to_H(H1_1); 

         

        % Compute the boundary layer displacement thickness 

        del_str(i+1) = H*theta(i+1); 

        if ~isreal(del_str(i+1)) 

            error('Computation error'); 

        end 

         

        % Compute the local reynolds number 

        Re_l = rho*ue(i)/mu; 

         

        % Calculate the momentum reynolds number 

        Re_th = Re_l*theta(i+1); 

        if ~isreal(Re_th) 

            error('Computation error'); 

        end 

    end 

     

     % Compute the friction coefficient for the last point 

     Cf(end) = 0.246/(10^(0.678*H)*Re_th^0.268)*(1+0.2*(ue(i)/a_inf)^2); 

end 

  

% Discard the boundary layer thickness at the last 5% of chord 

idx = find(s > 0.95*max(s)); 

del_str(idx) = del_str(idx(1)-1); 

end 

  

%% Laminar Functions 

% This function computes the moment thickness in laminar flow over the 

% airfoil surface. 

function theta_sqrd = laminar_momentum_thickness(mu,ue,s,idx) 

% First compute the integral 

sum = 0; 

for i = 2:idx 

    sum = sum + (ue(i))^5*(s(i)-s(i-1)); 

end 

  

% Compute the moment thickness 

if idx ~= 1 

    theta_sqrd = (0.441*mu./(ue(i))^6)*sum; 

else 

    theta_sqrd = 0; 

end 

end 

  

% This function computes the values of l and H based on Thwaites 

% approximation 

function [H,l] = laminar_thwaites_approximations(lambda) 

if lambda >= -0.1 && lambda < 0 

    l = 0.22 + 1.402*lambda + (0.018*lambda)/(lambda + 0.107); 

    H = 2.088 + 0.0731/(lambda + 0.14); 

elseif lambda >= 0 && lambda < 0.1 

    l = 0.22 + 1.57*lambda - 1.8*lambda^2; 

    H = 2.61 - 3.75*lambda + 5.24*lambda^2; 

elseif lambda < -0.1 
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    lambda = -0.1; 

    l = 0.22 + 1.402*lambda + (0.018*lambda)/(lambda + 0.107); 

    H = 2.088 + 0.0731/(lambda + 0.14); 

elseif lambda >= 0.1 

    lambda = 0.1; 

    l = 0.22 + 1.57*lambda - 1.8*lambda^2; 

    H = 2.61 - 3.75*lambda + 5.24*lambda^2; 

end 

end 

  

%% Turbulent Functions 

% Use Euler's Method to compute the next  step of UTH 

function UTH = step_UTH(UTH_0,s1,s2,ue_0,H1_0) 

UTH = 0.0306*(ue_0/(H1_0-3.0)^0.6169)*(s2-s1) + UTH_0; 

end 

  

% Use Euler's Method to compute the next step of theta 

function theta = step_theta(theta_0,ue,spd_grad,H_0,Cf_0,s1,s2,M_inf) 

m = Cf_0/2 - (2+H_0-M_inf^2)*theta_0/ue*spd_grad; 

theta = m*(s2-s1) + theta_0; 

if theta < 0 

    theta = theta_0; 

end 

end 

  

function H = H1_to_H(H1) 

if H1 < 3.3 

    H = 3.0; 

elseif H1 >=3.3 && H1 < 5.3 

    H = 0.6778 + 1.1536*(H1-3.3)^(-0.326); 

else % if H >= 5.3 

    H = 1.1 + 0.86*(H1-3.3)^(-0.777); 

end 

end 

%% Transition Functions 

% This function determines if the transition criterion has been met 

function bool = check_if_transition(Re_l,s,Re_th) 

% Compute the distance reynolds number 

Re_s = Re_l*s; 

  

% Compute the transition reynolds number 

Re_transition = 1.174*(1 + 22400/Re_s)*Re_s^0.46; 

  

% Return the boolean 

bool = Re_th > Re_transition; 

end 

  



  

69 

 

% vortex_line.m 

%  

% Description: 

%   This function calculates the induced velocity at an arbitrary point by 

%   the a vortex line.  

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 10.116 

%  

  

  

function q = vortex_line(p, p1, p2,vorticity) 

% Calculate the cross product between r1 and r2 

cross12(1) =  (p(2) - p1(2))*(p(3) - p2(3)) - (p(3) - p1(3))*(p(2) - p2(2)); 

cross12(2) = -(p(1) - p1(1))*(p(3) - p2(3)) + (p(3) - p1(3))*(p(1) - p2(1)); 

cross12(3) =  (p(1) - p1(1))*(p(2) - p2(2)) - (p(2) - p1(2))*(p(1) - p2(1)); 

  

% Calculate the absolute of the above cross product 

abs_cross12 = sum(cross12.^2); 

  

% Calculate the distances between p and 1, then p and 2 

dist_rp1 = norm(p-p1); 

dist_rp2 = norm(p-p2); 

  

% Check for singular conditions 

if dist_rp1 == 0 || dist_rp2 == 0 || abs_cross12 == 0 

    q = [0 0 0]; 

    return; 

end 

  

% Calculate the dot product quantities 

dot_r01 = sum((p2-p1).*(p-p1)); 

dot_r02 = sum((p2-p1).*(p-p2)); 

  

% Calculate the velocity 

q = vorticity/4/pi/abs_cross12*(dot_r01./dist_rp1 - dot_r02./dist_rp2)*cross12; 

end 
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% vortex_ring.m 

%  

% Description: 

%   This function calculates the induced velocity at an arbitrary point 

%   caused by a vortex ring of four vortex lines 

%  

% Based on: Low Speed Aerodynamics by Katz and Plotkin Eq. 10.117 

%  

  

function [q, qt] = vortex_ring(p,p1,p2,p3,p4,vorticity) 

% Calculate the components for the trailing vortex segments 

qt = vortex_line(p, p2, p3,vorticity) + vortex_line(p, p4, p1,vorticity); 

  

%Calculate q as the sum of all the induced velocities of all four lines 

q = vortex_line(p, p1, p2,vorticity) + vortex_line(p, p3, p4,vorticity) + qt; 

end 
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Appendix F: Structural Functions 
% calc_angle_distribution.m 

%  

% Description: 

%   This function is used to determine the deflection angles caused by the 

%   bending moment along the wingspan. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

% Developed using definitions from Mechanics of Materials by Hibbeler 

%  

  

function th = calc_angle_distribution(box_ref,panel_x,y_lift,M_lift,theta_p,E,twist) 

% Determine how many points are being analysed 

num_points = length(y_lift); 

  

% Initialize the output 

th = NaN(1,num_points); 

th(1) = 0; 

  

% Compute the spanwise chord distribution 

chord_lens = NaN(1,num_points); 

for i = 1:num_points 

    chord_lens(i) = abs(panel_x(1,i) - panel_x(end,i)); 

end 

  

% Go across the wing in the spanwise direction computing the value for the 

% change in theta divided by distance 

for i = 2:num_points 

    % Determine the average chord length of the section 

    c_mean = mean([chord_lens(i) chord_lens(i-1)]); 

     

    % Resize the parameters for the wingbox for this size 

    box = scale_wingbox(box_ref,c_mean); 

     

    % Determine the maximum z-value of the wing box. The computation will 

    % proceed using this value above the centroid 

    z_max = max(box.z_vals) - box.z_centroid; 

     

    % Convert this point into the principal reference frame 

    [x_p,z_p] = rotate_wingbox_coords(z_max,theta_p+twist(i)); 

     

    % Compute the moment components along the principal axes 

    Mx_p = M_lift(i)*cosd(-theta_p-twist(i)); 

    Mz_p = M_lift(i)*sind(-theta_p-twist(i)); 

     

    % Compute the strain at this point 

    strain = calc_bending_normal_strain(Mx_p,Mz_p,x_p,z_p,E,box.Izz_p,box.Ixx_p); 

     

    % Compute the theta derivative 

    dth_dy = -strain/(z_max); 

     

    % Compute the next step of theta 

    th(i) = th(i-1) + dth_dy*(y_lift(i)-y_lift(i-1)); 

end 

  

% Convert the angles into degrees 

th = th*180/pi; 

end 

  

% This function converts a given point along the global 

% z-axis centered on the centroid of the wingbox into a coordainte in the 

% principal reference 

function [x_p,z_p] = rotate_wingbox_coords(z,theta_p) 

x_p = z*sind(theta_p); 

z_p = z*cosd(theta_p); 

end 

  

% This function computes the normal strain at a point 
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function strain = calc_bending_normal_strain(Mx_p,Mz_p,x_p,z_p,E,Izz_p,Ixx_p) 

strain = Mz_p*x_p/(E*Izz_p) - Mx_p*z_p/(E*Ixx_p); 

end 
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% calc_bend_loading.m 

%  

% Description: 

%   This function computes the spanwise shear distribution caused by the 

%   lifting distribution. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function [V,M,y] = calc_bend_loading(L,dL,panel_y) 

% Determine how many points there are in the spanwise direction 

dims = size(dL); 

num_sections = dims(2); 

  

% Determine the y-positions 

y = panel_y(1,:); 

  

% Initialize the output variable 

V = NaN(1,num_sections+1); 

M = NaN(1,num_sections+1); 

V(1) = -L; 

M(end) = 0; 

  

% Determine the spanwise lift distribution 

for i = 1:num_sections 

    % Determine the shear force at the next point 

    V(i+1) = V(i) + sum(dL(:,i)); 

end 

  

% Determine the moment distribution 

for i = num_sections:-1:1 

    % Determine panel length 

    len = (y(i+1) - y(i)); 

     

    % Determine the constant force distribution over the section 

    w = sum(dL(:,i))/len; 

     

    % Determine the moment at the point 

    M(i) = M(i+1) + 0.5*w*len^2; 

end 

  

end 
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% calc_bending_deflection.m 

%  

% Description: 

%   This function approximates the vertical deflection of the wing, centered 

%   at its centroid, 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function dz = calc_bending_deflection(y_lift,th) 

% Initialize the output variable 

dz = NaN(1,length(y_lift)); 

dz(1) = 0; 

  

% Go through the points and compute the deflection 

for i = 2:length(y_lift) 

    dz(i) = dz(i-1) + tand(th(i))*(y_lift(i)-y_lift(i-1)); 

end 

end 
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% calc_moments_of_inertia.m 

%  

% Description: 

%   This function is used to compute the moments of inertia and product of 

%   inertia for the wingbox based on the area concentration distribution 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function [Ixx,Izz,Izx] = calc_moments_of_inertia(box) 

% Extract the relevant wingbox data  

x_vals = [box.x_vals box.x_strs] - box.x_centroid; 

z_vals = [box.z_vals box.z_strs] - box.z_centroid; 

A_vals = [box.A_vals box.A_strs]; 

  

% Compute the moments of inertia 

Ixx = sum(x_vals.*x_vals.*A_vals,'all'); 

Izz = sum(z_vals.*z_vals.*A_vals,'all'); 

Izx = sum(z_vals.*x_vals.*A_vals,'all'); 

end 
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% calc_principal_angle.m 

%  

% Description: 

%   This function computes angle that the principal x-axis makes with 

%   the global x-axis. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

% Based on: Mechanics of Materials by Hibbeler Page 795 

%  

  

function theta_p = calc_principal_angle(box) 

% Compute the angle of the principal x-axis 

theta_p = 0.5*atand(-2*box.Izx/(box.Ixx - box.Izz)); 

end 
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% calc_principal_inertia 

%  

% Description: 

%   This function rotates the moments of inertia to the values 

%   corresponding to the principal reference frame. It also sets the 

%   product of inertia to zero, as occurs with the principal axis. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

% Based on: Mechanics of Materials by Hibbeler, Page 794 

%  

  

function [Ixx_p,Izz_p,Izx_p] = calc_principal_inertia(Ixx,Izz,Izx,theta_p) 

% Compute the value of Ixx in the principal reference frame 

Ixx_p = 0.5*(Ixx + Izz) + 0.5*(Ixx - Izz)*cosd(2*theta_p) - Izx*sind(2*theta_p); 

  

% Compute the value of Izz in the principal reference frame 

Izz_p = 0.5*(Ixx + Izz) + 0.5*(Ixx - Izz)*cosd(2*theta_p) + Izx*sind(2*theta_p); 

  

% Set the product of inertia to zero (always true along principal axes 

Izx_p = 0; 

end 
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% calc_shear_center.m 

%  

% Description: 

%   This function is used to compute the location of the shear center of 

%   wing box section corresponding to a unit-length chord. This is done by 

%   applying arbitrary unit shear loads to compute the shear flow and 

%   afterwards determine the location of the shear center. 

%  

% Written by:   Julian Bardin 

% Date:         2021-04-03 

%  

  

function [x_shearcen,z_shearcen] = calc_shear_center(box) 

% Extract relevant information from the wingbox object 

x_vals  = box.x_vals - box.x_centroid; 

z_vals  = box.z_vals - box.z_centroid; 

t_vals  = box.t_vals; 

theta_p = box.theta_p; 

Ixx_p   = box.Ixx_p; 

Izz_p   = box.Izz_p; 

A_mean  = box.A_mean; 

  

% Convert the x and z coordinates into the principal reference frame 

x_p = x_vals.*cosd(theta_p) + z_vals.*sind(theta_p); 

z_p = z_vals.*cosd(theta_p) - x_vals.*sind(theta_p); 

  

% Compute the basic shear flow for the Sz case 

qb = compute_basic_shear(0,1,t_vals,x_p,z_p,Ixx_p,Izz_p); 

  

% Compute the constant shear flow for the Sz case 

qs0 = compute_const_shear(qb,t_vals,x_p,z_p); 

  

% Compute the x-coordiante of the shear center in the principal axes 

x_shearcen_p = -find_shear_center_coord(-1,x_p,z_p,qb,qs0,A_mean); 

  

% Compute the basic shear flow for the Sx case 

qb = compute_basic_shear(1,0,t_vals,x_p,z_p,Ixx_p,Izz_p); 

  

% Compute the constant shear flow for the Sx case 

qs0 = compute_const_shear(qb,t_vals,x_p,z_p); 

  

% Compute the z-coordiante of the shear center in the principal axes 

z_shearcen_p = -find_shear_center_coord(1,x_p,z_p,qb,qs0,A_mean); 

  

% Convert the shear center coordinates to the centroidal reference frame 

x_shearcen = x_shearcen_p*cosd(theta_p) - z_shearcen_p*sind(theta_p); 

z_shearcen = z_shearcen_p*cosd(theta_p) + x_shearcen_p*sind(theta_p); 

  

% Convert the shear center into the global reference frame 

x_shearcen = x_shearcen + box.x_centroid; 

z_shearcen = z_shearcen + box.z_centroid; 

end 

  

% This function determines the basic shear distribution across the wingbox 

function qb = compute_basic_shear(Sx,Sz,t_vals,x_p,z_p,Ixx_p,Izz_p) 

% Append the first point to the end of the matrix to form a complete loop 

x_p = [x_p x_p(1)]; 

z_p = [z_p z_p(1)]; 

  

% Compute the section lengths for the wingbox discretization 

area_sum_x = NaN(1,length(x_p)-1); 

area_sum_z = NaN(1,length(x_p)-1); 

area_sum_x(1) = 0; 

area_sum_z(1) = 0; 

for i = 2:length(x_p)-1 

    % Determine the z and x distance travaled between this point and the 

    % next one 

    dz = z_p(i+1) - z_p(i); 

    dx = x_p(i+1) - x_p(i); 

     

    % Determine the distance between the two points 
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    ds = sqrt(dx^2 + dz^2); 

     

    % Calculate the value of this iteration's area x and z area sums 

    area_sum_x(i) = area_sum_x(i-1) + t_vals(i)*x_p(i)*ds; 

    area_sum_z(i) = area_sum_z(i-1) + t_vals(i)*z_p(i)*ds; 

end 

  

% Compute the shear flow matrix 

qb = -Sx/Izz_p.*area_sum_x - Sz/Ixx_p*area_sum_z; 

end 

  

% This function determines the cosntant reference shear flow 

function qs0 = compute_const_shear(qb,t_vals,x_p,z_p) 

% Append the first point to the end of the matrix to form a complete loop 

x_p = [x_p x_p(1)]; 

z_p = [z_p z_p(1)]; 

  

% Go along the border the wingbox, completing a numerical line integral to  

% find the numerator value and denominator value 

numerator = 0; 

denominator = 0; 

for i = 1:length(x_p)-1 

    % Determine the z and x distance travaled between this point and the 

    % next one 

    dz = z_p(i+1) - z_p(i); 

    dx = x_p(i+1) - x_p(i); 

     

    % Determine the distance between the two points 

    ds = sqrt(dx^2 + dz^2); 

     

    % Add the value to the numerator 

    numerator = numerator + qb(i)/t_vals(i)*ds; 

     

    % Add the denominator value 

    denominator = denominator + ds/t_vals(i); 

end 

  

% Compute the constant shear flow 

qs0 = -numerator/denominator; 

end 

  

% This function computes one of the coordinates of the shear center 

function coord = find_shear_center_coord(S,x_p,z_p,qb,qs0,A_mean) 

% Append the first point to the end of the matrix to form a complete loop 

x_p = [x_p x_p(1)]; 

z_p = [z_p z_p(1)]; 

  

% Go through all the points completing a numerical line integral 

torque_sum = 0; 

for i = 1:length(x_p)-1 

    % Determine the z and x distance travaled between this point and the 

    % next one 

    dz = z_p(i+1) - z_p(i); 

    dx = x_p(i+1) - x_p(i); 

     

    % Determine the distance between the two points 

    ds = sqrt(dx^2 + dz^2); 

     

    % Depending on if the section if vertical or not, the analysis is a bit 

    % different 

    if dx ~= 0 

        % If dx is no zero, there is no worry of infinity appearing, 

        % compute the slope normally 

        m = dz/dx; 

         

        % Compute the value of p 

        p = abs((z_p(i) - m*x_p(i))/(1-m^2))*sqrt(m^2+1); 

         

    else 

        % If the slope is infinity, then p is parallel to the x-axis and 

        % equal in length to the x-coordinate 
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        p = abs(x_p(i)); 

    end 

     

    % Add the valye to the torque_sum 

    torque_sum = torque_sum + p*qb(i)*ds; 

end 

  

% Solve for the shear center coordinate 

coord = (torque_sum + 2*A_mean*qs0)/S; 

end 
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% calc_torsion_loading.m 

%  

% Description: 

%   This function is used to compute the torque distribution along the 

%   wing. This is done by first computing the torque applied to each 

%   section, then finding the reaction force at the root from this. The 

%   spanwise distribution is found by adding the section torque at each 

%   point to the previous torque, finding the net torque generated by lift 

%   along the wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function [T_lift,y_lift,T_span] = calc_torsion_loading(dL,wing_calc,box_ref) 

% Determine the y-positions 

y_lift = wing_calc.panel_y(1,:); 

  

% Determine how many points are being analysed 

num_points = length(y_lift); 

  

% Initialize the output 

T_lift = NaN(1,num_points); 

  

% Determine the chordlengths 

% Compute the spanwise chord distribution 

chord_lens = NaN(1,num_points+1); 

for i = 1:num_points 

    chord_lens(i) = abs(wing_calc.panel_x(1,i) - wing_calc.panel_x(end,i)); 

end 

  

% Go through the wing slices and determine the torque being applied at each 

T_span = NaN(1,num_points-1); 

for i = 1:num_points-1 

    % Determine the average chord length for the section 

    chord = (chord_lens(i) + chord_lens(i+1))/2; 

     

    % Determine the scaled centroid location 

    x_pivot = box_ref.x_shearcen*chord; 

     

    % Extract the lift distirbution 

    lift_dist = dL(:,i); 

     

    % Extract the colocation points where the lift force is applied 

    coloc_x = wing_calc.coloc_x(:,i)-(wing_calc.panel_x(1,i) + wing_calc.panel_x(1,i+1))/2; 

     

    % Compute the sectional torque 

    T_span(i) = sum(lift_dist.*(x_pivot-coloc_x)); 

end 

  

% Go along the wing and apply the torques as they are encountered 

T_lift(1) = -sum(T_span); 

for i = 1:num_points-1 

    T_lift(i+1) = T_lift(i) + T_span(i); 

end 

end 
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% calc_twist_distribution.m 

%  

% Description: 

%   This function computes the twist distribution in the spanwise direction 

%   along the wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function twist = calc_twist_distribution(panel_x,box_ref,T_lift,y_lift,G) 

% Determine how many points are being analysed 

num_points = length(y_lift); 

  

% Initialize the output 

twist = NaN(1,num_points); 

twist(1) = 0; 

  

% Compute the spanwise chord distribution 

chord_lens = NaN(1,num_points); 

for i = 1:num_points 

    chord_lens(i) = abs(panel_x(1,i) - panel_x(end,i)); 

end 

  

% Go along the span and compute the wing twist 

for i = 2:num_points 

    % Compute the mean chord 

    c_mean = (chord_lens(i) + chord_lens(i-1))/2; 

     

    % Scale the wingbox 

    box = scale_wingbox(box_ref,c_mean); 

     

    % Compute the next twist value 

    twist(i) = twist(i-1) - T_lift(i)*abs(y_lift(i)-y_lift(i-

1))/(4*(box.A_mean)^2*G)*sum(box.st_vals); 

end 

  

% Convert the twist into degrees 

twist = twist*180/pi; 

end 
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% calc_wingbox_centroid.m 

%  

% Description: 

%   This function is used to compute the centroid of the wingbox based on 

%   the area concentration distribution. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function box = calc_wingbox_centroid(box) 

% Extract the relevant wingbox data  

x_vals = box.x_vals; 

z_vals = box.z_vals; 

A_vals = box.A_vals; 

  

% Extract the stringer properties 

x_strs = box.x_strs; 

z_strs = box.z_strs; 

A_strs = box.A_strs; 

  

% Determine the location of the centroid 

box.x_centroid = (sum(x_vals.*A_vals,'all') + 

sum(x_strs.*A_strs,'all'))/(sum(A_vals,'all')+sum(A_strs,'all')); 

box.z_centroid = (sum(z_vals.*A_vals,'all') + 

sum(z_strs.*A_strs,'all'))/(sum(A_vals,'all')+sum(A_strs,'all')); 

end 
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% determine_wingbox_data.m 

%  

% Description: 

%   This function populates the basic information which defines the wingbox 

%   arrangement. Mainly, this sets the thickness values and outline 

%   coordinates for the skin, as well as the stringer information 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function box = 

determine_wingbox_data(foil,box_chords,N_strs,t_skin,t_spar,A_stringers,res_skin,res_spar) 

% Initialize the wingbox object 

box = WingBox(); 

  

% Pass on relevant parameters into the wingbox object 

box.t_skin = t_skin; 

box.t_spar = t_spar; 

  

% Find where the airfoil is split 

idx_split = find(foil.x_coords == 0); 

  

% Split up the surfaces 

x_lo = foil.x_coords(1:idx_split); 

z_lo = foil.z_coords(1:idx_split); 

x_up = foil.x_coords(idx_split:end); 

z_up = foil.z_coords(idx_split:end); 

  

% Determine which vectors need to be flipped 

if x_up(1) > x_up(end) 

    x_up = fliplr(x_up); 

    z_up = fliplr(z_up); 

else 

    x_lo = fliplr(x_lo); 

    z_lo = fliplr(z_lo); 

end 

  

% Compute the coordinates for the wingbox outline 

[box.x_vals,box.z_vals] = calc_wingbox_outline(x_up,x_lo,z_up,z_lo,res_skin,res_spar,box_chords); 

  

% Compute the coordinates of the stringers 

[box.x_strs,box.z_strs,box.A_strs] = 

calc_stringers(x_up,x_lo,z_up,z_lo,N_strs,A_stringers,box_chords); 

  

% Compute the area concentrations 

[box.A_vals,box.st_vals,box.t_vals] = 

calc_area_concentrations(box.x_vals,box.z_vals,t_skin,t_spar); 

end 

  

% This function computes the coordinates of the skin/spar outline of the 

% wingbox 

function [x_vals,z_vals] = calc_wingbox_outline(x_up,x_lo,z_up,z_lo,res_skin,res_spar,box_chords) 

% Determine the x-coordinates for the airfoil skin surfaces 

x_skins = linspace(box_chords(1),box_chords(2),res_skin); 

  

% Compute the coordinates of the skin portion of the outline 

z_skins_up = NaN(1,res_skin); 

z_skins_lo = NaN(1,res_skin); 

for i = 1:res_skin 

    z_skins_up(i) = interp1(x_up,z_up,x_skins(i),'makima'); 

    z_skins_lo(i) = interp1(x_lo,z_lo,x_skins(i),'makima'); 

end 

  

% Determine the coordinates of the forward spar (left) 

z_left = linspace(z_skins_up(1),z_skins_lo(1),res_spar); 

x_left = box_chords(1)*ones(1,res_spar); 

  

% Determine the coordiantes for the rear spar (right) 

z_right = linspace(z_skins_lo(end),z_skins_up(end),res_spar); 

x_right = box_chords(2)*ones(1,res_spar); 
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% Assemble the coordinates so that the points start at the bottom left and 

% wrap around the wingbox in counter clockwise direction 

x_vals = [x_skins    x_right(2:end-1) fliplr(x_skins)    x_left(2:end-1)]; 

z_vals = [z_skins_lo z_right(2:end-1) fliplr(z_skins_up) z_left(2:end-1)]; 

end 

  

% This function determines the locations of all the stringers. It also 

% converts the given stringer area into a vector of the same length as the 

% x and z coordinates, for easy indexing. 

function [x_strs,z_strs,A_strs] = 

calc_stringers(x_up,x_lo,z_up,z_lo,N_strs,A_stringers,box_chords) 

% Determine the x-coordinates of the stringers 

x_vals = linspace(box_chords(1),box_chords(2),N_strs+2); 

x_vals = x_vals(2:end-1); 

  

% Compute the coordinates of the skin portion of the outline 

z_vals_up = NaN(1,N_strs); 

z_vals_lo = NaN(1,N_strs); 

for i = 1:N_strs 

    z_vals_up(i) = interp1(x_up,z_up,x_vals(i),'makima'); 

    z_vals_lo(i) = interp1(x_lo,z_lo,x_vals(i),'makima'); 

end 

  

% Assemble the coordinates to be output 

x_strs = [x_vals x_vals]; 

z_strs = [z_vals_lo z_vals_up]; 

A_strs = A_stringers*ones(1,2*N_strs); 

end 

  

% This function computes the area concentrations of the wingbox, used for a 

% numerical approximation of the area distribution of the geometry 

function [A_vals,st_vals,t_vals] = calc_area_concentrations(x_vals,z_vals,t_skin,t_spar) 

% Append the first point to the end of the matrix to form a complete loop 

x_vals = [x_vals x_vals(1)]; 

z_vals = [z_vals z_vals(1)]; 

  

% Initialize the output variable 

A_vals  = NaN(1,length(x_vals)-1); 

st_vals = NaN(1,length(x_vals)-1); 

t_vals  = NaN(1,length(x_vals)-1); 

% Go through all the points and compute the area for each area 

% concentration 

for i = 1:length(x_vals)-1 

    % Determine the z and x distance travaled between this point and the 

    % next one 

    dz = z_vals(i+1) - z_vals(i); 

    dx = x_vals(i+1) - x_vals(i); 

     

    % Determine the distance between the two points 

    ds = sqrt(dx^2 + dz^2); 

     

    % Determine which thickness is to be used. If the dx is 0, then it is a 

    % spar, otherwise it is a skin. Compute the area as the 

    % distance*thickeness 

    if dx == 0 

        A_vals(i)  = ds*t_spar; 

        st_vals(i) = ds/t_spar; 

        t_vals(i)  = t_spar; 

    else 

        A_vals(i)  = ds*t_skin; 

        st_vals(i) = ds/t_skin; 

        t_vals(i)  = t_skin; 

    end 

end 

end 
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% scale_wingbox.m 

%  

% Description: 

%   This function is used to scale the wingbox parameters from the section 

%   corresponding to unit-length chord to the length of a given cross 

%   section 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function box = scale_wingbox(box,chord) 

% Scale the position of the centroid 

box.x_centroid = box.x_centroid*chord; 

box.z_centroid = box.z_centroid*chord; 

  

% Scale the position of the shear centre 

box.x_shearcen = box.x_shearcen*chord; 

box.z_shearcen = box.z_shearcen*chord; 

  

% Scale the wingbox outline 

box.x_vals = box.x_vals*chord; 

box.z_vals = box.z_vals*chord; 

box.A_vals = box.A_vals*chord; 

box.st_vals = box.st_vals*chord; 

  

% Scale the mean area 

box.A_mean = box.A_mean*chord^2; 

  

% Scale the stringer positions 

box.x_strs = box.x_strs*chord; 

box.z_strs = box.z_strs*chord; 

  

% Scale the moments of inertia 

box.Ixx = box.Ixx*chord^3; 

box.Izz = box.Izz*chord^3; 

box.Izx = box.Izx*chord^3; 

box.Ixx_p = box.Ixx_p*chord^3; 

box.Izz_p = box.Izz_p*chord^3; 

box.Izx_p = box.Izx_p*chord^3; 

end 
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% struct_solver_bending.m 

%  

% Description: 

%   This function encapsulates the functions used to compute the structural 

%   bending of the wing. The important outputs include deflection angle and 

%   vertical deflection distance. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function [dz,def_angle,V_lift,M_lift,y_lift] = 

struct_solver_bending(wing_calc,box_ref,L,dL,E,twist) 

% Compute the loading distribution 

[V_lift,M_lift,y_lift] = calc_bend_loading(L,dL,wing_calc.panel_y); 

  

% Compute the deflection angles across the wing span 

def_angle = 

calc_angle_distribution(box_ref,wing_calc.panel_x,y_lift,M_lift,box_ref.theta_p,E,twist); 

dz = calc_bending_deflection(y_lift,def_angle); 

end 
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% struct_solver_deformation.m 

%  

% Description: 

%   This function encapsulates the structural solver of the wing and 

%   wingbox. This first computes the torque loading, then the twist 

%   distribution. The bending calculator is then run, utilizing the twist 

%   as an input as well. This will rotate the point probed for bending 

%   radius to compensate for the wing twist. The deflection and twist along 

%   the spanwise direction are returned, as well as the loads for plotting. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function [y_lift,dz,twist,T_lift,V_lift,M_lift]... 

    = struct_solver_deformation(wing_calc,box_ref,L,dL,E,G) 

% Compute torsional loading distribution 

[T_lift,y_lift,~] = calc_torsion_loading(dL,wing_calc,box_ref); 

  

% Compute the twist angles  

twist = calc_twist_distribution(wing_calc.panel_x,box_ref,T_lift,y_lift,G); 

  

% Determine the bending deflection and loading, correcting for the twist 

[dz,~,V_lift,M_lift,y_lift] = struct_solver_bending(wing_calc,box_ref,L,dL,E,twist); 

end 
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% struct_solver_wingbox.m 

%  

% Description: 

%   This function encapsultes the functions used to compute the 

%   characteristics of a wingbox corresponding to an airfoil of unit 

%   chord length. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function box = 

struct_solver_wingbox(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar) 

% Determine basic geometric and area data for the wing box 

box = 

determine_wingbox_data(foil,box_chords,stringers,t_skin,t_spar,A_stringers,res_skin,res_spar); 

  

% Compute the centroid for the wingbox 

box = calc_wingbox_centroid(box); 

  

% Compute the moments of inertia in the global reference frame 

[box.Ixx,box.Izz,box.Izx] = calc_moments_of_inertia(box); 

  

% Determine the angle between the principal axes and the global axes 

box.theta_p = calc_principal_angle(box); 

  

% Determine the moments of inertia in the principal reference frame 

[box.Ixx_p,box.Izz_p,box.Izx_p] = calc_principal_inertia(box.Ixx,box.Izz,box.Izx,box.theta_p); 

  

% Determine the mean area of the wingbox 

box.A_mean = polyarea([box.x_vals box.x_vals(1)],[box.z_vals box.z_vals(1)]); 

  

% Compute the shear center of the wingbox 

[box.x_shearcen,box.z_shearcen] = calc_shear_center(box); 

end 
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Appendix G: Utility Functions 
% Airfoil.m 

%  

% Description: 

%   This class defines the airfoil object, used to store airfoil 

%   information. This is analogous to the Wing_calc object, but for use 

%   with 2D calculation 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

  

  

classdef Airfoil 

    properties 

        % Define the geometric properties which define the airfoil 

        x_coords = []; % x-direction coordinates for airfoil geometry 

        z_coords = []; % z-direction coordinates for airfoil geometry 

        a_panels = []; % The angle of the panel relative to -ve freestream 

        x_coloc  = []; % x-direction coordinates of the colocation points 

        z_coloc  = []; % z-direction coordiantes of the colocation points 

         

        % Define secondary parametere 

        x_norm   = []; % x-direction component of each panel's normal 

        z_norm   = []; % z-direction component of each panel's normal 

        x_tang   = []; % x-direction component of each panel's tangent 

        z_tang   = []; % z-direction component of each panel's tangent 

         

    end 

     

    methods 

        % Constructor method 

        function obj = Airfoil(coord_vectors) 

            obj.x_coords = fliplr(coord_vectors(1,:)); 

            obj.z_coords = fliplr(coord_vectors(2,:)); 

        end 

    end 

end 
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% calc_airfoil_panel_angle.m 

%  

% Description: 

%   This function computes the angle of each panel the comprises the 

%   airfoil.  

%   *** NOTE: ANGLES IN RADIANS, NOT DEGREES 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-16 

%  

  

function [alpha] = calc_airfoil_panel_angle(foil) 

% Extract the airfoil geometry 

x_foil = foil.x_coords; 

z_foil = foil.z_coords; 

  

% Initialize the output matrix 

alpha   = NaN(1,length(x_foil)-1); 

  

% Go through all the panels and compute the angle 

for i = 1:length(x_foil)-1 

    %  Define the points p1 and p2 

    p1 = [x_foil(i)   z_foil(i)]; 

    p2 = [x_foil(i+1) z_foil(i+1)]; 

     

    % Define the vector pointing from p2 to p1, which lies on the x_p axis in 

    % the negative direction 

    r21 = p2-p1; 

     

    % Calculate the angle of the panel. Note all angles within this function 

    % are in radians, rather than degrees used in other sections of this 

    % program. 

    alpha(i)   = atan2(r21(2),r21(1)); 

end 

end 
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% calc_curve_dist.m 

%  

% Description: 

%   This fucntion computes the curve displacement from x(0), z(0) at each 

%   point defined by the given x and z vectors. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-19 

%  

  

function s = calc_curve_dist(x,z) 

% Initialize the output matrix 

s = NaN(1,length(x)); 

  

% Set the first value of s to 0 

s(1) = 0; 

  

% Go through all the coordinates and compute the curve distance 

for i = 2:length(x) 

    s(i) = sqrt((x(i)-x(i-1))^2 + (z(i) - z(i-1))^2) + s(i-1); 

end 

end 
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% calc_mean_camber.m 

%  

% Description: 

%   This function is used to calcualte the mean camber line of an airfoil 

%   at discrete given x-values 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [z_camber] = calc_mean_camber(airfoil,x_camber) 

% Extract the coordinates of the airfoil 

x = airfoil(1,:); 

z = airfoil(2,:); 

  

% Find the point that corresponds to the leading edge 

idx_split = find(x == 0); 

  

% Split the airfoil geometry into upper and lower surface using the 

% idx_split point found above. It is assumed that the first geometry 

% interval is the upper surface, but if it is reversed the generation of 

% the camber line will remain unaffected 

x_up = x(1:idx_split); 

z_up = z(1:idx_split); 

x_lo = x(idx_split:end); 

z_lo = z(idx_split:end); 

  

% Determine which vectors need to be flipped 

if x_up(1) > x_up(end) 

    x_up = fliplr(x_up); 

    z_up = fliplr(z_up); 

else 

    x_lo = fliplr(x_lo); 

    z_lo = fliplr(z_lo); 

end 

  

% Determine the length of the x_camber vector 

x_len = length(x_camber); 

  

% Initialize variables to store the interpolated points 

z_up_interp = NaN(1,x_len); 

z_lo_interp = NaN(1,x_len); 

  

% Calculate the values of z for the camber  

for i = 1:x_len 

    z_up_interp(i) = interp1(x_up,z_up,x_camber(i),'makima'); 

    z_lo_interp(i) = interp1(x_lo,z_lo,x_camber(i),'makima'); 

end 

z_camber = 0.5*(z_up_interp + z_lo_interp); 

  

end 
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% calc_vel_vector.m 

%  

% Description: 

% This function is used to convert the free-stream velocity and angle of 

% attack to a velocity vector Q_inf which is equivalent to a wing at 0 AoA 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

  

function Q_inf = calc_vel_vector(V_inf,AoA) 

Q_inf = [V_inf*cosd(AoA) 0 V_inf*sind(AoA)]; 

end 
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% compute_new_z_from_disp 

%  

% Description: 

%   This functin is used to adjust the airfoil surface geometry to account 

%   for the boundary layer displacement thickness.  

%  

%  

  

function z_new = compute_new_z_from_disp(x,z,disp) 

% Initialize the variables to store x and z coordiantes with the 

% displacement thickness 

x_d = NaN(1,length(x)); 

z_d = NaN(1,length(x)); 

x_d(1) = x(1); 

z_d(1) = z(1); 

  

% Go through all the points (starting from 2 as the displacement thickness 

% at the first point is always zero), and compute the adjusted value for x 

% and z based on the dispacement thickness 

for i = 2:length(z) 

    % Compute the angle of this panel in the global reference frame 

    panel_alpha = atan2d(z(i)-z(i-1),x(i)-x(i-1)); 

     

    % If the angle is equal to zero, then just use the displacement 

    % thickness 

    if panel_alpha == 0 

        z_d(i) = z(i) + disp(i); 

        x_d(i) = x(i); 

        continue; 

    end 

    % Otherwise use trigonometry to adjust the coordinates 

    z_d(i) =  disp(i)*cosd(panel_alpha) + z(i); 

    x_d(i) = -disp(i)*sind(panel_alpha) + x(i); 

end 

  

% Interpolate to find the values of z that match with input x coordinates 

z_new = interp1(x_d,z_d,x,'linear','extrap'); 

  

end 
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% convert_wing_obj.m 

%  

% Description: 

%   This function is used to convert the parametrized wing into a 

%   calculation-compatible equivalent form. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-14 

%  

  

function wing_calc = convert_wing_obj(wing_param,x_panels,y_panels) 

% Generate a calc-compatible wing object 

wing_calc = Wing_Calc(); 

  

% Calculate the discrete panels that are used for VLM computation 

[wing_calc.panel_x,wing_calc.panel_y,wing_calc.panel_z] = 

determine_panel_coordinates(wing_param,x_panels,y_panels); 

  

% Calculate the areas of the panels 

wing_calc.panel_A = determine_panel_area(wing_calc); 

  

% Determine the grid of vertices used for computing the vortex rings 

[wing_calc.ring_x,wing_calc.ring_y,wing_calc.ring_z] = determine_ring_coordinates(wing_calc); 

  

% Determine the colocation points and the normal vectors placed on them. 

[wing_calc.coloc_x,wing_calc.coloc_y,wing_calc.coloc_z] = determine_coloc_coordinates(wing_calc); 

[wing_calc.norm_x,wing_calc.norm_y,wing_calc.norm_z] = determine_coloc_norms(wing_calc); 

  

end 
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% find_stagnation_point.m 

%  

% Description: 

%   This function determines the location of the stagnation point on the 

%   airfoil. If the stagnation point does not like on a node, then an index 

%   value of X.5 is place between the two points in the tangential speed 

%   matrix where the velocity flips signs. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-17 

%  

  

function idx = find_stagnation_point(Qt) 

% Convert the Qt vector into a vector of signs 

Qt_sign = sign(Qt); 

  

% First try and find a point where the sign is zero 

idx = find(Qt_sign == 0,1,'first'); 

  

% If the idx is empty, it means no point equals 0, therefore set the 

% stagnation point index to a midpoint between the two sign-flip points. 

% The function that is used for drag computation will then round this value 

% depending on which side of the airfoil is being computed. 

if isempty(idx) 

    % Find the first sign flip. Then subtract 0.5 from the index so that 

    % the value returned is halfway between the two points. 

    if Qt_sign(1) == 1 

        idx = find(Qt_sign == -1,1,'first') -0.5; 

    else 

        idx = find(Qt_sign == 1,1,'first') -0.5; 

    end 

end 

end 
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% gen_outline_2D.m 

%  

% Description: 

%   This function returns two row vectors with coordinates for the wing 

%   planform outline 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [x,y] = gen_outline_2D(wing_param) 

% Define the origin at the leading edge at the root 

x = 0; 

y = 0; 

  

% Define the leading edge at the kink 

x(end+1) = x(1) + wing_param.semi_span*wing_param.dr_kink; 

y(end+1) = y(1); 

  

% Add point for the leading edge at the tip chord 

x(end+1) = x(1) + wing_param.semi_span; 

y(end+1) = y(1) - wing_param.semi_span*tand(wing_param.sweep_LE); 

  

% Add point for the trailing edge the tip chord 

x(end+1) = x(end); 

y(end+1) = y(end) - wing_param.chord_root*wing_param.tr_tip; 

  

% Add point for the trailing edge at the kink 

x(end+1) = x(1) + wing_param.semi_span*wing_param.dr_kink; 

y(end+1) = y(1) - wing_param.chord_root; 

  

% Add point for the trailing edge at the root chord 

x(end+1) = x(1); 

y(end+1) = y(1) - wing_param.chord_root; 

  

% Complete the loop and add the origin at the end of the row vectors 

x(end+1) = x(1); 

y(end+1) = y(1); 

  

end 
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% gen_planform_LE_TE.m 

%  

% Description: 

%   This function parses through the wing planform outline and isolates 

%   which points belong to the leadinge edge, and which points belong to 

%   the trailing edge. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param) 

% First get the overall planform outline 

[x,y] = gen_outline_2D(wing_param); 

  

% Determine which points correspond to the tip chord. 

tip_points = find(x == wing_param.semi_span); 

  

% Coordinates from the first entry up until the first tip chord coordinate 

% are taken as belonging to the leading edge 

x_LE = x(1:tip_points(1)); 

y_LE = y(1:tip_points(1)); 

  

% Coordinates belonding to the trailing edge are taken as the range of 

% values from teh last tip-chord points until the second-last outline points 

x_TE = x(tip_points(end):end-1); 

y_TE = y(tip_points(end):end-1); 

end 
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% ij2K.m 

%  

% Description: 

%   This function converts an i,j combination into its corresponding K 

%   identifier. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

  

function K = ij2K(i,j,y_panels) 

K = (i-1)*y_panels + j; 

end 
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% K2ij.m 

%  

% Description: 

%   This function converts a given K identifier into its corresponding i 

%   and j indices. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

  

function [i,j] = K2ij(K,y_panels) 

j = mod(K-1,y_panels)+1 ; 

i = ceil(K/y_panels); 

end 
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% read_selig_foil 

%  

% Description: 

%   This function is responsible for loading the selig airfoil data file. 

%   The output is a matrix, where the first row is a vector of x values, 

%   and the second row is a matrix of z values. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function [points] = read_selig_foil(filename) 

% Open the file 

fileID = fopen(filename); 

  

% Load the contents of the file into memory 

contents = []; 

while ~feof(fileID) 

    contents = [contents ; {fgetl(fileID)}]; 

end 

  

% Go through the loaded data and convert the strings into numbers 

points = []; 

for i = 1:length(contents) 

    % Convert the string values to doubles 

    vals = str2num(contents{i}); 

     

    % If the length is less than 2, assume this is a comment 

    if length(vals) < 2 

        continue 

    end 

     

    % Otherwise append the numbers to the points matrix 

    points = [points ; vals]; 

end 

  

% Transpose the points matrix to provice two row vectors. 

points = points'; 

  

end 
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% render_airfoil.m 

%  

% Description: 

%   This function generates a figure showing the airfoil with its mean 

%   camber line. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function render_airfoil(foil) 

% Create the figure 

figure(); 

axis equal; 

hold on; 

  

% Plot the airfoil outline 

plot(foil.x_coords,foil.z_coords,'-ok'); 

  

% Get the coordinates of the mean camber line 

x_camber = linspace(0,1,100); 

[z_camber] = calc_mean_camber([foil.x_coords ; foil.z_coords],x_camber); 

  

% Plot the camber 

plot(x_camber,z_camber,'-r'); 

  

% If the colocation points exist, plot them 

if ~isempty(foil.x_coloc) && ~isempty(foil.z_coloc) 

    plot(foil.x_coloc,foil.z_coloc,'kx'); 

end 

  

% If the normals exist, plot them 

if ~isempty(foil.x_norm) && ~isempty(foil.z_norm) && ~isempty(foil.x_coloc) && 

~isempty(foil.z_coloc) 

    for i = 1:length(foil.x_norm) 

        plot([foil.x_coloc(i) foil.x_coloc(i)+0.01*foil.x_norm(i)],[foil.z_coloc(i) 

foil.z_coloc(i)+0.01*foil.z_norm(i)],'-k','LineWidth',1.3); 

    end 

end 

  

% Output a legend 

h = 0; 

h(1) = plot(NaN,NaN,'kx'); 

h(2) = plot(NaN,NaN,'-ok'); 

h(3) = plot(NaN,NaN,'-r'); 

legend(h,'Colocation Points','Panel Nodes','Mean Camber Line'); 

  

end 
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% render_airfoil2.m 

%  

%  

  

function render_airfoil2(foil,z_BL) 

% Create the figure 

figure(); 

grid on; 

axis equal; 

hold on; 

  

% Plot the airfoil outline 

plot(foil.x_coords,foil.z_coords,'-k'); 

  

% Get the coordinates of the mean camber line 

x_camber = linspace(0,1,100); 

[z_camber] = calc_mean_camber([foil.x_coords ; foil.z_coords],x_camber); 

  

% Plot the camber 

plot(x_camber,z_camber,'-r'); 

  

% Plot the boundary layer 

plot(foil.x_coords,z_BL,'--r'); 

  

% Output a legend 

h = 0; 

h(1) = plot(NaN,NaN,'-k'); 

h(2) = plot(NaN,NaN,'--r'); 

legend(h,'Airfoil Outline','Boundary Layer Displacement'); 

end 
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% render_airfoil_CP.m 

%  

%  

  

function render_airfoil_CP(foil,CP) 

  

figure(); 

hold on; 

axis equal 

grid minor; 

  

% CP(abs(CP) > 1E2) = 0; 

  

plot(foil.x_coloc,CP); 

  

set(gca, 'YDir','reverse') 

  

plot(foil.x_coords,-foil.z_coords+1.5) 

  

  

end 
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% render_loading.m 

%  

% Description: 

%   This function renders the shear and moment diagrams for the spanwise 

%   loading distribution. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function render_loading(y,V,M,T) 

% Create the figure 

figure(); 

grid on; 

hold on; 

  

% Set the subplot 

subplot(3,1,1); 

  

% Plot axis lines 

xline(0); 

yline(0); 

  

% Plot the shear distribution 

plot(y,V,'-b'); 

  

% Add labelling 

xlabel('Spanwise distance (m)'); 

ylabel('Shear Force (N)'); 

title('Shear Distribution'); 

  

% Set the subplot 

subplot(3,1,2); 

  

% Plot the moment distribution 

plot(y,M,'-r'); 

  

% Set the labelling 

ylabel('Bending Moment (Nm)'); 

xlabel('Spanwise distance (m)'); 

title('Moment Distribution'); 

  

% Set the subplot 

subplot(3,1,3) 

  

% Plot the torsion diagram 

plot(y,T,'-r') 

  

% Set the labelling 

ylabel('Torsion (Nm)'); 

xlabel('Spanwise distance (m)'); 

title('Torsion Distribution'); 

  

  

  

  

end 
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% render_structure_response 

%  

% Description: 

%   This function is used to generate plots for the twist and deflection 

%   distribution along the wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-27 

%  

  

function render_structure_response(y_lift,dz,twist) 

% Create the figure  

figure(); 

hold on; 

  

% Set the subplot 

subplot(2,1,1); 

  

% Plot the data 

plot(y_lift,dz,'-k'); 

  

% Label the plot 

title('Spanwise Bending Deflection'); 

xlabel('Spanwise Distance (m)'); 

ylabel('Deflection (m)'); 

  

% Set the subplot 

subplot(2,1,2); 

  

% Plot the data 

plot(y_lift,twist,'-k'); 

  

% Label the plot 

title('Spanwise Twist'); 

xlabel('Spanwise Distance (m)'); 

ylabel('Twist (^o)'); 

  

end 
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% render_wing_2D.m 

%  

% Description: 

%   This function is reponsible for generating a 2D planform view of the 

%   wing. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-09 

%  

  

function render_wing_2D(wing_param, wing_calc) 

% Open the figure  

figure(); 

grid on; 

axis equal; 

hold on; 

  

% Draw a line for x = 0 

xline(0); 

  

% Generate the outline coordinates 

[x,y] = gen_outline_2D(wing_param); 

[x_LE,y_LE,x_TE,y_TE] = gen_planform_LE_TE(wing_param); 

  

% Set the axes (x and y based on MATLAB, not on aircraft standard 

% nomenclature) 

x_range = wing_param.semi_span; 

y_range = max(y)-min(y); 

xlim([min(x)-0.1*x_range max(x)+0.1*x_range]); 

ylim([min(y)-0.1*y_range max(y)+0.1*y_range]); 

  

% Output the outline of the wing planform 

plot(x,y,'-k','LineWidth',2); 

  

% Render the panels if data for them exists 

if ~isempty(wing_calc.panel_x) && ~isempty(wing_calc.panel_y) 

    % Extract the panel locations 

    x_panels = -wing_calc.panel_x; 

    y_panels = wing_calc.panel_y; 

     

    % Plot the panel borders 

    plot(y_panels,x_panels,'-b'); 

    plot(y_panels',x_panels','-b'); 

     

end 

  

% Output lines on the leading and trailing edge 

plot(x_LE,y_LE,'-g','LineWidth',1.2); 

plot(x_TE,y_TE,'-g','LineWidth',1.2); 

  

% Render the vortex rings if they exist 

if ~isempty(wing_calc.ring_x) && ~isempty(wing_calc.ring_y) 

    % Extract the ring locations 

    x_rings = -wing_calc.ring_x; 

    y_rings = wing_calc.ring_y; 

     

    % Plot the vortex right boundaries 

    plot(y_rings,x_rings,'-r','LineWidth',1.5); 

    plot(y_rings',x_rings','-r','LineWidth',1.5); 

end 

  

% Render the colocation points 

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y) 

    x_coloc = -wing_calc.coloc_x; 

    y_coloc = wing_calc.coloc_y; 

     

     

    dims = size(wing_calc.coloc_x); 

    for j = 1:dims(2) 

        for i = 1:dims(1) 

            plot(y_coloc(i,j),x_coloc(i,j),'kx'); 
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        end 

    end 

end 

  

% Output a legend 

h = zeros(1,1); 

h(1) = plot(NaN,NaN,'-g'); 

h(2) = plot(NaN,NaN,'-b'); 

h(3) = plot(NaN,NaN,'-r'); 

h(4) = plot(NaN,NaN,'xk'); 

legend(h,'LE and TE','Panels','Vortex Rings','Collocation Points'); 

end 
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% render_wing_3D.m 

%  

%  

  

function render_wing_3D(wing_param, wing_calc,render_norms) 

% Create the figure 

figure(); 

  

% First render the root airfoil 

x_f1 = -wing_param.airfoil(1,:)*wing_param.chord_root; 

z_f1 = wing_param.airfoil(2,:)*wing_param.chord_root; 

y_f1 = zeros(1,length(x_f1)); 

plot3(x_f1,-y_f1,z_f1,'-k','LineWidth',2); 

  

% Now that the plot is 3D, set hold and axis 

hold on; 

axis equal; 

  

% Generate the outline 

[y_ol,x_ol] = gen_outline_2D(wing_param); 

z_ol = zeros(1,length(x_ol)); 

% plot3(x_ol,-y_ol,z_ol,'-k','LineWidth',2); 

  

% Get the lines for the leading and trailing edge 

[y_LE,x_LE,y_TE,x_TE] = gen_planform_LE_TE(wing_param); 

z_LE = zeros(1,length(x_LE)); 

z_TE = zeros(1,length(x_TE)); 

plot3(x_LE,-y_LE,z_LE,'-g','LineWidth',1.5); 

plot3(x_TE,-y_TE,z_TE,'-g','LineWidth',1.5); 

  

% Render the tip airfoil 

x_f2 = x_LE(end)-wing_param.airfoil(1,:)*wing_param.chord_root*wing_param.tr_tip; 

z_f2 = wing_param.airfoil(2,:)*wing_param.chord_root*wing_param.tr_tip; 

y_f2 = ones(1,length(x_f2))*wing_param.semi_span; 

plot3(x_f2,-y_f2,z_f2,'-k','LineWidth',2); 

  

% Set axes limits 

x_range = abs(max(x_ol) - min(x_ol)); 

y_range = abs(max(y_ol) - min(y_ol)); 

z_range = abs(max(z_f1) - min(z_f1)); 

xlim([min(x_ol)-0.2*x_range max(x_ol)+0.2*x_range]); 

ylim([min(-y_ol)-0.2*y_range max(-y_ol)+0.2*y_range]); 

zlim([min(z_ol)-2*z_range max(z_ol)+2*z_range]); 

  

  

% If the panel data exists, plot it 

if ~isempty(wing_calc.panel_x) && ~isempty(wing_calc.panel_y) && ~isempty(wing_calc.panel_z) 

    plot3(-wing_calc.panel_x,-wing_calc.panel_y,wing_calc.panel_z,'-b'); 

    plot3(-wing_calc.panel_x',-wing_calc.panel_y',wing_calc.panel_z','-b'); 

end 

  

% If the vortex ring data exits, plot it 

if ~isempty(wing_calc.ring_x) && ~isempty(wing_calc.ring_y) && ~isempty(wing_calc.ring_z) 

    % Extract the ring_x information 

    ring_x = -wing_calc.ring_x; 

     

    % Remove points at -1E6, and replace it with closer points 

    ring_x(ring_x == -1E6) = min(x_ol)-0.2*x_range; 

     

    % Plot the vortex rings 

    plot3(ring_x,-wing_calc.ring_y,wing_calc.ring_z,'-r'); 

    plot3(ring_x',-wing_calc.ring_y',wing_calc.ring_z','-r'); 

end 

  

% If the colocation point data exists, plot it 

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y) && ~isempty(wing_calc.coloc_z) 

    x_coloc = wing_calc.coloc_x; 

    y_coloc = wing_calc.coloc_y; 

    z_coloc = wing_calc.coloc_z; 
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    dims = size(wing_calc.coloc_x); 

    for j = 1:dims(2) 

        for i = 1:dims(1) 

            plot3(-x_coloc(i,j),-y_coloc(i,j),z_coloc(i,j),'kx'); 

        end 

    end 

end 

  

% If the normals are calculated, plot them 

if ~isempty(wing_calc.coloc_x) && ~isempty(wing_calc.coloc_y) && ~isempty(wing_calc.coloc_z) 

&&... 

        ~isempty(wing_calc.norm_x) && ~isempty(wing_calc.norm_y) && ~isempty(wing_calc.norm_z) && 

render_norms 

     

    % Determine how many panels are present in the wing_calc object 

    dims = size(wing_calc.panel_x); 

    x_panels = dims(1)-1; 

    y_panels = dims(2)-1; 

     

    % Go through each panel and plot the normals 

    for j = 1:y_panels 

        for i = 1:x_panels 

            % Determine the vector for each normal 

            x_n = [wing_calc.coloc_x(i,j) 

wing_calc.coloc_x(i,j)+wing_calc.norm_x(i,j)*0.05*wing_param.chord_root]; 

            y_n = [wing_calc.coloc_y(i,j) 

wing_calc.coloc_y(i,j)+wing_calc.norm_y(i,j)*0.05*wing_param.chord_root]; 

            z_n = [wing_calc.coloc_z(i,j) 

wing_calc.coloc_z(i,j)+wing_calc.norm_z(i,j)*0.05*wing_param.chord_root]; 

             

            % Plot the normals 

            plot3(-x_n,-y_n,z_n,'-k'); 

        end 

    end 

end 

  

  

% Output a legend 

h = zeros(1,1); 

h(1) = plot(NaN,NaN,'-g'); 

h(2) = plot(NaN,NaN,'-b'); 

h(3) = plot(NaN,NaN,'-r'); 

h(4) = plot(NaN,NaN,'xk'); 

legend(h,'LE and TE','Panels','Vortex Rings','Collocation Points','Location','best'); 

  

end 
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% render_wing_3D_lift.m 

%  

% Description: 

%   This function renders the pressure distribution over the wing camber 

%   determined from the wing's lift distribution. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-13 

%  

  

function render_wing_3D_lift(wing_param, wing_calc,dL) 

  

% Create the figure 

figure(); 

  

% First render the root airfoil 

x_f1 = -wing_param.airfoil(1,:)*wing_param.chord_root; 

z_f1 = wing_param.airfoil(2,:)*wing_param.chord_root; 

y_f1 = zeros(1,length(x_f1)); 

plot3(x_f1,-y_f1,z_f1,'-k','LineWidth',2); 

  

% Now that the plot is 3D, set hold and axis 

hold on; 

axis equal; 

  

% Generate the outline 

[y_ol,x_ol] = gen_outline_2D(wing_param); 

z_ol = zeros(1,length(x_ol)); 

plot3(x_ol,-y_ol,z_ol,'-k','LineWidth',2); 

  

% Get the lines for the leading and trailing edge 

[y_LE,x_LE,y_TE,x_TE] = gen_planform_LE_TE(wing_param); 

z_LE = zeros(1,length(x_LE)); 

z_TE = zeros(1,length(x_TE)); 

  

% Render the tip airfoil 

x_f2 = x_LE(end)-wing_param.airfoil(1,:)*wing_param.chord_root*wing_param.tr_tip; 

z_f2 = wing_param.airfoil(2,:)*wing_param.chord_root*wing_param.tr_tip; 

y_f2 = ones(1,length(x_f2))*wing_param.semi_span; 

plot3(x_f2,-y_f2,z_f2,'-k','LineWidth',2); 

  

  

  

x = wing_calc.panel_x; 

y = -wing_calc.panel_y; 

z = wing_calc.panel_z; 

  

% dL(1,:) = dL(2,:); 

c = dL./wing_calc.panel_A; 

  

surf(-x,y,z,c,'EdgeColor','none') 

colorbar 

  

  

end 

  



  

113 

 

% render_wingbox.m 

%  

% Description: 

%   This function is used to render a 2D cross section of the structural 

%   wingbox. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

function render_wingbox(box) 

% Create the figure 

figure(); 

hold on; 

axis equal; 

  

% Set the plot limits 

xlim([min(box.x_vals)-0.05,max(box.x_vals)+0.05]); 

  

% Plot the wingbox outline and stringers 

plot(box.x_vals,box.z_vals,'-k','LineWidth',1.5) 

% plot([box.x_vals box.x_vals(1)],[box.z_vals box.z_vals(1)],'-k','LineWidth',1.5) 

plot(box.x_strs,box.z_strs,'or') 

  

% Plot the area concentrations 

A_max = max(box.A_vals); 

for i = 1:length(box.x_vals) 

    plot(box.x_vals(i),box.z_vals(i),'.k','MarkerSize',box.A_vals(i)/A_max*20,'Color',[0.3 0.3 

0.3]); 

end 

  

% Plot the centroid if the point exists. Additionally, plot some lines to 

% indicate the unrotated non-principal axes 

if ~isempty(box.x_centroid) && ~isempty(box.z_centroid) 

    plot(box.x_centroid,box.z_centroid,'.k','MarkerSize',12); 

    plot([box.x_centroid box.x_centroid+0.1],[box.z_centroid box.z_centroid],'--k'); 

    plot([box.x_centroid box.x_centroid],[box.z_centroid box.z_centroid+0.1],'--k'); 

     

end 

  

% If the angle of the principal angle exists, plot axes to show the 

% principal axes 

len_p = 0.2; 

if ~isempty(box.theta_p) 

    [x,z] = principal_axes(box.x_centroid,box.z_centroid,box.theta_p,len_p); 

    plot(x,z,'-k'); 

    [x,z] = principal_axes(box.x_centroid,box.z_centroid,box.theta_p+90,len_p); 

    plot(x,z,'-k'); 

end 

  

% If the shear center exists, plot it 

if ~isempty(box.x_shearcen) && ~isempty(box.z_shearcen) 

    plot(box.x_shearcen,box.z_shearcen,'xr'); 

end 

  

% Output a legend 

h = zeros(1,1); 

h(1) = plot(NaN,NaN,'or'); 

h(2) = plot(NaN,NaN,'.k','Color',[0.3 0.3 0.3]); 

h(3) = plot(NaN,NaN,'--k'); 

h(4) = plot(NaN,NaN,'-k'); 

h(5) = plot(NaN,NaN,'xr'); 

legend(h,'Stringers','Area Concentrations','Centroid Axis','Principal Axis','Shear Center'); 

end 

  

% This function computes the points to plot the principal axes 

function [x,z] = principal_axes(x_centroid,z_centroid,theta,len) 

% Initialize the output variables 

x = NaN(1,2); 

z = NaN(1,2); 
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% Set he first point to be at the centroid 

x(1) = x_centroid; 

z(1) = z_centroid; 

  

% Compute the following point 

m = tand(theta); 

if theta < -90 || theta > 90 

    x(2) = x(1) - len/sqrt(m^2 + 1); 

else 

    x(2) = x(1) + len/sqrt(m^2 + 1); 

end 

z(2) = m*(x(2)-x(1)) + z(1); 

end 
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% split_airfoil.m 

%  

% Description: 

%   This function splits up the airfoil surface into the upper and lower 

%   surface, based on the stagnation point index. This is pre-requisite for 

%   computation of 2D viscous drag 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-18 

%  

  

function [x_1,z_1,Qt_1,x_2,z_2,Qt_2] = split_airfoil(foil,Qt,idx) 

% Extract the airfoil geometry 

x = foil.x_coords; 

z = foil.z_coords; 

  

% Extract the data for the upper surface 

x_1  = fliplr(x(1:floor(idx))); 

z_1  = fliplr(z(1:floor(idx))); 

Qt_1 = fliplr(-Qt(1:floor(idx))); 

  

% Extract the data for the lower surface 

x_2  = x(ceil(idx):end); 

z_2  = z(ceil(idx):end); 

Qt_2 = Qt(ceil(idx):end); 

end 
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% wing_bend_and_twist.m 

%  

% Description: 

%   This function is used to deform the VLM mesh in response to the twist 

%   (torsion) and z-deflection (bending) of the wing. First, each section 

%   is rotated about the shear center by the supplied twist angle. 

%   Afterwards, all points are deflected. 

%  

% Written by:   Julian Bardin 

% Date:         2021-04-03 

%  

  

function wing_new = wing_bend_and_twist(wing_old,box_ref,twist,dz) 

% Extract the panel coordiantes of the old wing planform 

panel_x = wing_old.panel_x; 

panel_y = wing_old.panel_y; 

panel_z = wing_old.panel_z; 

y_vals  = panel_y(1,:); 

  

% Initialize the new wing object 

wing_new = Wing_Calc(); 

  

% Set the y-values to be the same as before 

wing_new.panel_y = wing_old.panel_y; 

  

% Go through each y-slice and adjust the x- and z-coordinates based on the 

% input distance dz values 

for i = 1:length(twist) 

    % Extract the coordinates of the slice 

    x_vals = panel_x(:,i); 

    z_vals = panel_z(:,i); 

     

    % Determine the chord length 

    chord = x_vals(end) - x_vals(1); 

     

    % Resize the coordinates of the shear center centroid (pivot point of 

    % rotation) 

    x_pivot = box_ref.x_shearcen*chord; 

    z_pivot = box_ref.z_shearcen*chord; 

     

    % Extract the leading edge coordinates 

    x_LE = x_vals(1); 

    z_LE = z_vals(1); 

     

    % Convert the coordinates from the global reference frame to the 

    % centroidal-centered reference frame 

    x_vals = x_vals - x_pivot - x_LE; 

    z_vals = z_vals - z_pivot - z_LE; 

     

    % Go through each point, and rotate it about the centroid 

    for j = 1:length(x_vals) 

        % Compute the angle that this point makes with the x-axis 

        ref_angle = atan2d(z_vals(j),x_vals(j)); 

         

        % Compute the distance between this point and the origin 

        r = sqrt(z_vals(j)^2 + x_vals(j)^2); 

         

        % Compute the new coordinates 

        x_vals(j) = r*cosd(ref_angle + twist(i)); 

        z_vals(j) = r*sind(ref_angle + twist(i)); 

    end 

     

    % Convert the coordinates back to the global reference frame 

    x_vals = x_vals + x_pivot + x_LE; 

    z_vals = z_vals + z_pivot + z_LE; 

     

    % Add the z-direction deflection caused by the bending 

    z_vals = z_vals + dz(i); 

     

    % Set the values in the output object 

    wing_new.panel_x(:,i) = x_vals; 
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    wing_new.panel_z(:,i) = z_vals; 

end 

  

% Calculate the areas of the panels 

wing_new.panel_A = determine_panel_area(wing_new); 

  

% Determine the grid of vertices used for computing the vortex rings 

[wing_new.ring_x,wing_new.ring_y,wing_new.ring_z] = determine_ring_coordinates(wing_new); 

  

% Determine the colocation points and the normal vectors placed on them. 

[wing_new.coloc_x,wing_new.coloc_y,wing_new.coloc_z] = determine_coloc_coordinates(wing_new); 

[wing_new.norm_x, wing_new.norm_y, wing_new.norm_z]  = determine_coloc_norms(wing_new); 

end 
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% Wing_Calc.m 

%  

% Description: 

%   This class defines the wing in a form more convenient for aerodynamic 

%   calculation. It is expected that objects of this type are populated by 

%   converting from a Wing_Param object. 

%  

% Written by:   Julian Bardin 

% Date:         2021-02-06 

%  

  

classdef Wing_Calc 

    properties 

        % Define the quantities used to calcualte the 3D viscous effects 

        foil_geom   = {}; % Airfoil geometry at each foil_y point. This is in true coordinates 

        foil_y      = []; % Distance from root for each geometry/AOA point 

        foil_AoA    = []; % Angle of attack for each airfoil at each y 

        foil_points = 0;  % The number of data points used to represent the wing 

         

        % Define the quantities used for VLM to predict lift and induced 

        % drag 

        panel_x     = []; % x-coordinates for the panel vertices 

        panel_y     = []; % y-coordinates for the panel vertices 

        panel_z     = []; % z-coordinates for the panel vertices 

        panel_A     = []; % Area of each panel 

        ring_x      = []; % x-coordinates for the vortex ring vortices 

        ring_y      = []; % y-coordinates for the vortex ring vortices 

        ring_z      = []; % z-coordinates for the vortex ring vortices 

        coloc_x     = []; % x-coordinates for the colocation points 

        coloc_y     = []; % y-coordinates for the colocation points 

        coloc_z     = []; % z-coordinates for the colocation points 

        norm_x      = []; % x-distance for the panel normals 

        norm_y      = []; % y-distance for the panel normals 

        norm_z      = []; % z-distance for the panel normals 

         

    end 

    methods 

    end    

end 
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% Wing_Param.m 

%  

% Description: 

%   This class defines a wing in its parametrized form. It also includes 

%   derivative quantities which are calcualted from the main defining 

%   parameters. 

%  

% Written By:   Julian Bardin 

% Date:         2021-02-06 

%  

  

classdef Wing_Param 

    properties 

        % Properties which are parametrized and therefore define the 

        % geometry of the wing 

        airfoil     = []; % Selig format. X on first row, Z on second 

        aoa         = 0;  % Angle of attack for the airfoil.  

        chord_root  = []; % Length of the root chord in m 

        tr_tip      = 1;  % Taper Ratio between tip and root chord 

        semi_span   = []; % Length of the wing from the root to the tip in m 

        sweep_LE    = 0;  % The sweep angle at the leading edge, in deg 

        dr_kink     = 0;  % Location of the kink as a proportion of semispan 

         

        % Properties calculated from the above definition 

        qchord_line = []; % Coordinates of the quarter chord. X is 1st row, Y is 2nd 

        sweep_QC    = []; % The sweep angle at the quarter chord 

        area        = []; % Wing planform area 

        tr_kink     = 1;  % Taper Ratio between kink and root chord 

         

    end 

    methods 

        % This function calculates the secondary properties of the wing, 

        % which are derived from teh parametrizing quantities 

        function obj = calc_secondary_quantities(obj) 

             

        end 

         

    end 

end 
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% WingBox.m 

%  

% Description: 

%   This function is used to define an object for storing wing box data. 

%  

% Written by:   Julian Bardin 

% Date:         2021-03-26 

%  

  

classdef WingBox 

    properties 

        % Define thicknesses 

        t_spar = [];     % Thickness of the forward and rear spars in m 

        t_skin = [];     % Thickness of the upper an lower skin 

         

        % Define the centroid location relative to the airfoil  

        x_centroid = []; % x location of the wingbox centroid with the airfoil coordinate system 

        z_centroid = []; % z location of the wingbox centroid with the airfoil coordinate system 

         

        % Define the shear center of the wingbox relative to the airfoil 

        x_shearcen = []; % x location of the wingbox shear center 

        z_shearcen = []; % z location of the wingbox shear center 

         

        % Define the mean area of the wingbox 

        A_mean = [];    % Mean area encased by the wing box cross section 

         

        % Define the coordinate system of the wingbox 

        x_vals = [];    % x values for the wing box outline 

        z_vals = [];    % y values for the wing box outline 

        A_vals = [];    % Area value for each area concentration set at each x,z point 

        st_vals = [];   % Sum of the ratios of displacement/thickness 

        t_vals = [];    % Thickness for each section of the wingbox outline 

         

        % Define the stringer locations and area 

        x_strs = [];    % x coordinates for the stringers 

        z_strs = [];    % y coordinates for hte stringers 

        A_strs = [];    % Area of each stringer 

         

        % Define the moments of inertia 

        Ixx    = [];    % Moment of Inertia along the x-axis 

        Izz    = [];    % Moment of Inertia along the z-axis 

        Izx    = [];    % Product of Inertia 

         

        % Define the angle of the principal axis relative to the global 

        % aircraft reference frame 

        theta_p = [];   % Angle in degrees 

         

        % Define the moments of inertia in the principal reference frame 

        Ixx_p   = [];   % Moment of inertia along principal x-axis 

        Izz_p   = [];   % Moment of inertia along principal z-axis 

        Izx_p   = [];   % Product of inertia in principal reference frame 

    end 

     

    methods 

         

    end 

end 

  

 
 




