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Abstract 

 Machine learning models can contain many layers and branches. Each branch and layer, 
contain individual variables, know as hyperparameters, that require manual tuning. For instance, 
the genetic algorithm designed by Unit Amin [2] was designed to mimic the reproductive process 
of living organisms. The genetic algorithm and the Artificial Neural Network (ANN) training 
processes  contain inherent randomness that reduces the replicability of results. Combined with 
the sheer magnitude of hyperparameter permutations, confidence that model has arrived at the 
best solution may be low. The algorithm designed for this thesis was designed to isolate portions 
of a complex ANN model and generate results showing the effect each hyperparameter has on 
the performance of the model as a whole. The results of this thesis show that the algorithm 
effectively generates data correlating model performance to hyperparameter selection. This is 
evident in section 3.1, and 3.2, where it is shown that using the sigmoid activation function with 
CNN layers, regardless of the number of filters, or hyperparameters used in the subsequent 
LSTM layers, produces superior RMSE scores. Section 3.2 also reveals that the model does not 
improve in performance as the number of CNN and LSTM layers are added to the model. 
Finally, the results in section 3.3 show that the rmsprop optimizer generates superior results 
regardless of the hyperparameters used in the rest of the model.  
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1 Introduction 

 The original goal of this thesis was to design a novel model to predict the Remaining 
Useful Life (RUL) of a turbojet engine using simulation data generated by the National 
Aeronautics and Space Administration’s (NASA) Commercial Modular Aero-Propulsion 
Simulation System (CMAPSS) [1]. In preparation for the design, the hybrid Convolutional 
Neural Network (CNN)/ Long Short-Term Memory (LSTM) neural network developed by Amin 
[2], for his master’s thesis, was utilized to learn how to build and train neural networks. During 
that training period, the author was advised to investigate the discrepancies in the results 
generated by the Hybrid CNN-LSTM (HCL) model. 

Figure 1: Comparison of APH to other models [2]. 

Figure 4 shows the results of the HCL model compared to results of other models from Amin’s 
literature review. What stands out is that the HCL model didn’t consistently perform better or 
worse than the other models across all four datasets. In ranking the HCL’s performance it can be 
seen that the best relative results come from the model trained using the FD002 dataset, where it 
achieved the 3rd lowest Root Mean Square Error (RMSE). Whereas the FD001, FD003, and 
FD004 results are ranked 6th, 6th, and 4th, respectively. From these observations it was decided 
that instead of blindly learning how to build and train neural networks, it would be wiser to also 
learn about the inner workings of the model.     

1.1 Alternate PHM Approaches 

It is never a good idea to follow a path, without knowing why that path is the correct choice. 
With that in mind, alternate methods of determining the RUL of a system were also studied. 
According to Goodman et al. [3], there are three main approaches to PHM, classical, usage-
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based, and condition-based. Classical based methods are further broken down into three 
categories, model-based, data-driven, or hybrid-driven [3].  

1.1.1 Model-Based PHM 

Model-based PHM is the most familiar for an undergraduate student as it uses physics, and 
reliability statistics to determine the RUL of a system. Determining the yield point of a steel bar 
is a good example. Data-driven models use previous generated data, and statistics to predict the 
RUL of a system. Data-driven models attempt to derive probabilities of future events from a 
history of a past event chains. For example, if the weather was 7°C and cloudy on Monday, what 
is the likelihood of rain on Tuesday?  A hybrid system combines model-based and data-driven to 
optimize a PHM system for precision and ease-of-development [3]. Model-based designs are 
highly accurate because physics and statistics are inherently accurate. Model-based designs lose 
their abilities as systems become more complex, not because the underlying principle are wrong, 
but because it becomes harder to determine the conditions to which each component is subjected. 
Whereas a data-driven model only gives answers for the conditions in which it was generated. A 
hybrid approach then takes the strengths of each model type, achieving greater performance than 
either alone [3]. 

1.1.2 Usage-Based PHM 

Usage-based models are those that monitor a system and make predictions on the future 
health of a system by accounting for the past and present usage history and the physics-based 
model of the system [4]. This is basically a hybrid model that updates the statistical models as 
the usage history is gained. The need for this type of model arises from the weakness in physical 
models, the uncertainty in operating conditions. Furthermore, the uncertainty in a future event 
grows the further into the future a prediction is made. This can be demonstrated by an object 
travelling in a straight line, whose intent is to travel 1 meter forward. If it is known that the 
objects path may deviate, from directly forward, by one centimeter after one meter of forward 
travel, then after 10 timesteps the actual location could be between 10 centimeters to the left and 
10 centimetres to the right. A usage-based model would update itself at each timestep, such that 
the model could predict the outcome of each future step within one centimeter. 

1.1.3 Condition-based Maintenance 

A Condition-Based Maintenance (CBM) system continuously monitors system parameters in 
order detect deviations from the expected performance. In some cases, this data is used to make 
RUL predictions on the system or its components. In an aircraft, this system could monitor the 
temperature, pressure, environmental, variables of a turbofan and analyze that data to detect 
when the performance of a component, such as the High-Pressure Turbine, begins to degrade. In 
this case it would alert the airline and guide the maintenance crew in diagnosing and repairing 
the engine. This is the approach upon which the HCL model is founded.  
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1.2  C-MAPPS Dataset 

 The CMAPPS dataset is a run-to-failure simulation dataset based on a MATLAB and 
Simulink model of large turbofan engine [5]. The dataset is separated into four main subsets, 
FD001, FD002, FD003, and FD004. They are separated according to the number of operating 
conditions and fault-modes present in the data. The six operating conditions ranging from sea-
level to 40,000 feet and the fault-modes relate to the degradation of the High-Pressure 
Compressor (HPC) performance and degradation of the fan’s performance. The datasets are 
further comprised of the sensor data for a number of engines operating through a number of 
cycles, and the total number of cycles the engine operated for until failure. The dataset also 
comes pre-split by the total number of engines into training and test sets. These details and 
divisions of each dataset is summarized in Table 1. 

Table 1: Dataset division, fault-mode, and operating condition summary. 
Dataset FD001 FD002 FD003 FD004 

Number of Training Engines 100 260 100 248 
Number of Test Engines 100 259 100 249 

Operating Conditions   1 6 1 6 

Fault Mode HPC YES YES YES YES 
Fan NO NO YES YES 

 The data for each engine is a comprised of 26 sensor readings from those that would be 
available in a typical commercial turbofan engine. However, Amin’s model uses only 14 of these 
sensors that according to previous research, had meaningful impacts predicting RUL [2]. The 
sensor data used to train the model are listed in Table 2. 

Table 2: Data features used to train and test APH model [2]. 
Sensor Number Data Type 

2 Total temperature at LPC exit 
3 Total temperature at HPC exit 
4 Total temperature at LPT exit 
7 Total pressure at HPC exit 
8 Physical fan speed 
9 Physical core speed 

11 Static pressure at HPC exit 
12 Fuel flow ratio to Ps30 
13 Corrected fan speed 
14 Corrected core speed 
15 Bypass ratio 
17 Bleed enthalpy 
20 HPT coolant bleed 
21 LPT coolant speed 
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The data in Table 6 are know as the features when used as the input the Neural Networks (NN), 
as discussed in section 1.3. 

1.3  Artificial Neural Networks and Machine Learning 
1.3.1 Basics of Neural Networks 

 Artificial Neural Networks (ANN) are essential computer algorithms that have the ability 
to improve themselves as calculations are performed on each input of data. The core 
mathematics of a neural network involve matrix-multiplication, linear equations, and simple 
piecewise or trigonometric functions. The model is built in layers of column vectors or matrices, 
where each element of the vector or matrix is referred to as neuron. The simplest network is 
comprised of three layers, an input layer, a hidden layer, and an output. 

 
Figure 2: The most basic neural network configuration. 

As shown in Figure 1, each layer is connected to following layer by a thread with some random 
weight. The neural network operates by first passing a know value to the input neuron, Ni. To 
pass a value to the hidden neuron, N1, some mathematical operation is performed on the value in 
Ni with the result being N1. The same process is repeated to find the value at No, the output 
neuron. This value is the prediction. The prediction is compared to the expected value and the 
difference is know as the loss. The loss is then used to adjust the values of the weights such that 
loss would equal zero, meaning the neural network would make perfect predictions. However, 
the input data is never the same, so the weights that result in a loss of zero for one input will not 
necessarily result in a loss of zero for another. The goal then is to minimize the loss for the great 
number of variables. 

 Sophistication is added to model through the addition of multiple neurons in the hidden 
layers, functions of which the out becomes the value in the connected neuron. The input layer 
has as many neurons as needed such that the number of neurons equals the length of the input 
data. The output is sized according to the data on which the network is making a prediction. 
There is no limit to the number of hidden neurons or hidden layers, but they are generally limited 
due to computational concerns. A bias neuron can be added before subsequent layers. When bias 
neurons are used, the formula between two neurons becomes,  

 
𝑁𝑁1  =  𝑤𝑤1 ∗ 𝑁𝑁𝑖𝑖  +  𝐵𝐵1                                                             (1)  

If there is a wide range in input values, a function can be used to limit the output of wi*N + B to a 
certain range of values. These functions are known as activation functions and their general 
formula to find N1 is,  
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𝑁𝑁1 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎.(𝑤𝑤𝑁𝑁𝑖𝑖 + 𝐵𝐵)                                                            (2) 

Finally, the connections between one layer and the next is not limited to one. If every neuron in a 
layer is connected to every neuron in the preceding layer, that (second) layer is referred to as a 
densely connected layer. This is visualized in Figure 2. 

 

Figure 3: Example of a densely connected hidden layer, and a densely connect output layer [6]. 

The mathematics connecting the neurons are the same, but in a densely connected neuron, its 
value is the sum of all the values coming from each neuron feeding into it from the previous 
layer.   

 Neural Networks learn by back-propagation of error through the network to change the 
weights assigned at the beginning of the training session. This involves differentiation along each 
path between each input neuron and each output neuron. It is beyond the scope of this thesis to 
explain its operation further. However, the algorithm that determines how this done is called the 
optimizer. To optimize training results and training time multiple inputs can be given to the 
model. The loss from each input is then averaged and that average is used to adjust the weights. 
The number of inputs between weight updates is called the batch size. When all the batches have 
been put through the model, one training epoch is finished. In complex models, the model may 
not have learned all that it can. In this case multiple epochs can be used until a predetermined 
stopping point is reach.  

1.3.2 Convolutional Neural Networks 

 Convolutional Neural Networks (CNN) are a type of network where the outputs of each 
layer are feature maps built by applying filters to input data. CNN excel at feature recognition 
and, according to Saha, “…able to successfully capture the spatial and temporal dependencies in 
an image… [7]”  If the input data is a 9 x 9-pixel photo, it can be represented a 9 x 9 matrix with 
cell values corresponding to color or grayscale value of the photo. The filters are square 
matrices, typical sized 3x3 or 5x5 filled with some pattern of ones and zeros. The filter is placed 
over a section of the photo so that all the cells in the filter are within the bounds of the photo. 
The pixels in the photo are multiplied by the corresponding filter value resulting in either the 
pixel value or a zero and then all the results are summed and stored in a new matrix. This is 
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repeated for ever position in the filter can take in the matrix, creating a feature map 
corresponding to the sum at each filter position. 

 
Figure 4: A 3x3 feature map (convolved feature)  

created by convoluting a 5x5 image by a 3x3 filter [7]. 

 Figure 3 represents a simple convolution of an image into a feature map. The values in 
the feature map can then be connect to an output layer make a prediction on the data. CNNs are 
limited to photos, they can used with any data, but they excel at extracting features from input 
data. The number of filters passed over each data input is limited only by the practicality of that 
number. Eventually there won’t be any benefit to adding more layers, and it may actually end up 
hurting the model. Furthermore, there is no limit to the amount of convolution steps performed 
on the data. In this case, filters are applied to the feature maps creating a feature map of the 
feature map. Normally this would eventually reduce the data to only a few data points, the input 
data can be padded around its borders to increase the number of positions available to the filter. 

1.3.3 Long Short-Term Memory Layers 

 There is a specific type of machine learning model known as Recurrent Neural Networks 
(RNN). RNN are similar to the model in Figure 2 except there are usually more than one hidden 
layer and there are connections that also feed back to previous layers. Instead of the input to a 
layer comprised of only the sum of values passed to it from previous layers, weighted 
connections from subsequent layers also produce values that feed into the layer. A Long Short-
Term Memory (LSTM) layer is a RNN with the addition of a memory cell that stores 
information about the data in the LSTM layer previously and the design of the LSTM layer 
allows it to hold onto that information for some arbitrary amount of time. The information in the 
memory cell allows the LSTM layer to make temporal connections between subsequent inputs. 
This makes LSTM layers well suited to time-series data. There is no limit to the number of 
neurons, but eventually either no further performance can be reach, or the computation cost 
outweighs the benefits of adding more neurons. 

1.3.4 Input Layer Design 

 The input layer is where the information used to make prediction is loaded into the 
model. The size of the input layer is determined by the size of the input data and remains fixed 
throughout the lifetime of the model. The individual data points are known as the features. In 
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time-series data it useful to design the model to take in multiple timesteps worth of a data. The 
number of time steps chosen is known as the window size. In the APH model the window size 
can vary between the model so a variation in size will be tested to find the optimal number. The 
number of data features is multiplied by the window size to find the total input dimension. In the 
original APH model, the timestep chosen was limited by the lowest number of engine cycles in 
the testing data. However, this is accounted for in the design algorithm by dropping engines from 
the dataset and test sets, that do not meet the window size criteria. The algorithm designed for 
this thesis also adds a third dimension to the input by changing the number of engines included 
in the dataset. Finally, all of the model parameters that can be changed by the user are know as 
hyperparameters. This is in respect to the parameters of the model, the weights connecting 
neurons, which are not able to be changed by the user directly. 

1.3.5 Model Accuracy Scoring 

 The ability of the model to predict the RUL of an engine is the primary purpose the APH 
model. To gauge that ability, the predictions made by the model are scored using Root Mean 
Squared Error (RMSE) of predictions made with the test portion of each dataset. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

(𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑛𝑛−12 + 𝑥𝑥𝑛𝑛2)                                               (3) 

 The RMSE score is effectively the absolute value of the average difference between the 
predicted RUL and the actual RUL. A score of zero is preferred as it would indicate the model 
predicts engine RUL perfectly. A score of 1 would indicate that the model’s average prediction 
was correct to within 1 cycle of the engines true RUL. From Figure 4 though, it can be seen that 
the best model in literature on average made predictions within 12.2 cycles of the true RUL.  

2. Algorithm Design 

2.1 Problem Statement 

 In attempting to learn how the model operated internally, as well learn the fundamentals 
of machine learning and ANN’s, it was discovered that it is effectively impossible to replicate 
any previous results. The reasons for this will be discussed in more detail in the next section, but 
the underlying source was the genetic optimization algorithm used to tune the models’ 
hyperparameters. Because of these difficulties, the main goal of this thesis shifted from creating 
a new model, into developing an algorithm for the existing APH model that enabled the user to 
generate consistent results. With these results, it was theorized that distinct trends can be found 
within hyperparameter combinations. Which could then be used to guide the evolutionary 
algorithm of original APH model. 
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2.2 Objectives and Requirements 

The main objective of the design algorithm is that the results generated shall show clearly 
discernable trends in RMSE, attributable to changes in a specific hyperparameter or a specific 
hyperparameter combination. This requirement will be considered met, if in isolating a single 
variable, smooth and continuous changes, or no changes, are observed in the time and/ or 
accuracy results. It should be noted that it is important to find the variables that have no effect on 
accuracy and time, as they can be removed from future iterations. Removing variables with no 
discernable effect allows for a reduction in permutations, thus computation time.  

 The second objective of the algorithm under design is to generate consistent results in 
conjunction with the APH model designed by Amin [2]. The need for this arises from the 
complexity and randomness of the output data, stemming from the optimization algorithm used 
to optimize hyperparameters of the APH model. It was determined that to improve the 
consistency of the results generated by the model, the effect each hyperparameter has on the 
models’ performance needed to be more effectively isolated to the adjustments of individual 
hyperparameters. The main objective of the design algorithm contains two conditions, both of 
which have to be met. First, the algorithm shall use a consistent and broad set of 
hyperparameters. Second, the algorithm generates consistent RUL predictions between training 
runs, for a given dataset. Condition A shall be confirmed if the hyperparameter permutations 
used are repeatable between training runs, while using multiple options from 8 out of 10 of the 
hyperparameters listed in Amin’s Master’s thesis. Condition B is confirmed if the algorithm 
produces RUL predictions with consistent Root Mean Square Errors (RMSE) between training 
iterations. 

Finally, though not as import for the purposes of this thesis, the model should perform 
comparable to Amin’s [2] genetic algorithm. This is not strictly necessary, as the main objective 
is to find relationships between hyperparameter selection and accuracy and/or time. It would, 
however, serve to validate the assumptions made in designing the algorithm.  

2.3 Trade-off Study 

 Two alternate methods to generate meaningful results were considered. The first method 
was the original method developed by Amin [2]. This involves running the APH model over and 
over again, tying to generate enough data such that total sample size was statistically significant. 
The major problem with this approach is that each iteration for the smaller datasets, FD001 and 
FD003, can take up 2 hours to train on, and the FD002 and FD004 over 4 hours. Furthermore, 
there is no guarantee that the performance is repeatable. This issue persists on multiple levels. 
For example, the genetic algorithm was manipulated to retrain one specific model, for 100 
separate training iterations. 
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Table 3: Average, minimum, and maximum RMSE of a  
single model, retrained 100 different times. 

Minimum RMSE Average RMSE Maximum RMSE 
36.5 43.7 50.0 

Table 3 shows that the variance in RMSE is great 6. This means that on average a single model 
may guess within 6 cycles of the actual RMSE. This is due to the way the model weights are 
randomly generated when it is initialized.  

Table 4: Minimum accuracy out of 263 different models. 
Minimum Accuracy Totals Models Trained 

48.8 263 
 

Table 5: Minimum accuracy out of 479 different models. 
Minimum Accuracy Total Models Trained 

17.6 479 

The data in Tables 3 and 4 were both generated during training on dataset FD001. The large 
variance in RMSE scores further demonstrates the difficulties in trying to derive associations 
between hyperparameters and training scores. 

The second approach considered was a brute-force training regime. This approach seems 
ideal as it attempts every permutation of hyperparameters. Amin [2] selected 10 different 
hyperparameters, with a range between 3 to 6 options for each hyperparameter to be evolved for 
in the algorithm [2]. In addition, the model had the capability to change the window size of the 
input tensor. This adds several more options for permutations. A rough estimate puts the total 
permutations at nearly 4,000,000. At an average time of 10 seconds per model, the total time to 
calculate all permutation would be about 1.25 years! This is clearly not a feasible approach given 
equipment availability and time constraints. 

Given the numerous possible permutations of hyperparameters, it is easy to see why any 
given training run, using Amin’s [2] genetic algorithm and AHP model, can finish with high 
RMSE scores. One training run of 30 generations, each comprised 30 unique genomes would 
only test 900 different permutations, a tiny fraction of the possibilities. The genetic algorithm 
trades off certainty in finding the best solution for the ability to find a good solution in a fraction 
of the time. This is desirable as it shows capability for deployment in a wide range of PHM 
applications with out the need for a years and three months’ worth of computation time. 
Furthermore, there is no guarantee that the best solution will be significantly better than those 
generated by the genetic algorithm meaning the time investment may not return a significant 
accuracy gain. Finally, both approaches may be fundamentally limited by the design of the 
model and abundance of data. This strengthens the need for a more controllable algorithm, that 
has the ability to find trends in the data as it can help determine the maximum model 
performance. Ideally the design algorithm would reduce the total number or variables to an 
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amount where a computer could go through every remaining permutation in a reasonable amount 
of time.  

2.4 Design Process 
2.4.1 Preliminary Hyperparameter Selection  

 Although there was a clear need for a more ordered approach to model performance 
tuning, some meaningful insights were discovered during the original study of the APH model. 
One of the hyperparameters used in the genetic algorithm was the number epochs allotted for 
model to train. In the genetic algorithm a range of total epochs was chosen from 200-600, in 100 
epoch increments. 

 
Figure 5: RMSE scores relative to training time and epochs used, example 1. 

 
Figure 6: RMSE score relative to training time and epochs used, example 2. 
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Figures 2 and 3 demonstrate that regardless of the overall performance of the training run, the 
best performing models never required the entire allotted epochs. In fact, models that used all of 
the allotted epochs were almost always among the worst performing, as gauged by both RMSE 
score and length of training period. Figures 2 and 3 show that the epoch variable can be removed 
from rotation and set to a constant value. The first design choice was to limit epochs to 50 as no 
best performing model required more than 50 epochs to train. This ability is directly attributable 
to the Early Stopping callback built into the AHP model. The early stopping callback is designed 
to stop training when the validation loss metric changes by less than 10% between epochs. This 
limits overfitting the data while also limiting maximum training time. By extension it renders the 
epoch variable obsolete except in cases where model progress enough to avoid early stopping but 
slow enough that their computation far outweighs any potential benefit.  

 Further study of the data generated using Amin’s [2] genetic algorithm and AHP model 
show that the dropout value has little effect on accuracy.   

Table 6: Average RMSE relative 
to various dropout values; FD001 

Dropout Average RMSE 
0.3 19.15163254 
0.2 19.39653863 
0.4 19.42844662 
0 19.72313942 

 

Table 7: Average RMSE relative 
 to various dropout values; FD003 

Dropout Average RMSE 
0.3 22.07 
0.4 23.22 
0.2 23.29 
0 24.14 

 Tables 5 and 6 are just a sample of the data used to make this determination, but the results are 
similar across every training run. Although the effect is almost negligible, the dropout value of 
0.3 consistently has the lowest average RMSE scores. For this reason, it was decided to set the 
dropout value to a constant value of 0.3 in further testing. 

2.4.2 Final Hyperparameter Selection 

After setting these two values as constants, little else was gleaned from further study of 
the data, as generated using Amin’s [2] genetic algorithm. Removing the allotted epoch number 
and dropout parameters from consideration decreased the breadth of hyperparameter selection, so 
to satisfy Condition A of the first objective, two more variables were selected for analysis. The 
added hyperparameters selected were the number of engines and window-size. These bring the 
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total number of individual hyperparameters to 10; the values and types of which are listed in 
Table 6.  

Table 8: Hyperparameter selection table, grouped by purpose, listed by order of testing. 

 Hyperparameter Value/ Type 

Feature  
Selection 

CNN Activation Function ['relu', 'tanh', 'sigmoid'] 
Number of CNN Filters [10, 16, 32, 64] 
Number of CNN Layers [1, 2, 3, 4] 

Time 
Dependency 

LSTM Activation Function ['relu', 'tanh', 'sigmoid'] 
Number of LSTM Neurons [10, 30, 50, 80] 
Number of LSTM Layers [1, 2] 

Model 
Optimization 

Optimizer ['rmsprop', 'adam', 'adagrad', 'acadelta'] 
Batch-size [200, 400, 500, 600] 

Learning-rate [0.1, 0.01, 0,001] 
Number of Engines [1, 2, 3] 

Window Size [10, 20, 30, 40] 

 The APH model consists of two distinct parts. The CNN layers, whose purpose is to 
extract features, and the LSTM layers, whose purpose is to extract time-dependencies between 
data inputs. Table 7 groups the hyperparameters according to those two parts, with the third 
group distinguished by there effect on the model as a whole. Within those groups, the 
hyperparameters are listed in the order by which they will be varied as the algorithm progresses. 

 The grouping and order of the hyperparameters were chosen according to the 
requirements of the second objective. The grouping isolates changes in the effectiveness of the 
CNN layers to extract features, in the effectiveness of the LSTM layers to extract time-
dependencies, and in the effectiveness over overall model optimization hyperparameters. The 
APH model was built with sequential layers, so the ordering was chosen to reflect the flow of 
data through the model. The general idea was to first build a CNN model that best extracts data-
features, then build an LSTM model that best determines time-variations between the data-
features. Following the construction of individual models, the performance as whole was 
optimized by testing the hyperparameters that were thought to have the least effect on individual 
model variations. In keeping with the data flow hierarchy, the ordering of the Model 
Optimization group began with testing individual optimizers. Finally, last four hyperparameters, 
batch-size were then tested individually with the intent of fine-tuning the model performance, in 
an effort to satisfy the final objective. 

2.4.3 Design Assumptions 

 Several assumptions were made in the determining the hyperparameter optimization 
groupings and orderings. The first assumption was that the performance of the CNN portion of 
the model was correlated with the performance of the LSTM. This can be verified by comparing 
the performance of the model during the LSTM optimization stage to the performance of the 
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corresponding subset of model configurations during the CNN optimization stage. If the 
performance changes between individual configurations are linearly correlated, then the 
performance of the LSTM model is not affected by the performance of the CNN model. If the 
results are random, then the CNN model does not reliably enhance the effectiveness of the 
LSTM model. Finally, if the performance of the LSTM model is always better, and in an 
exponential manner, the effectiveness of the LSTM model is indeed enhanced by the CNN 
model. The second assumption is that the performance of any individual configuration of the 
model is not correlated to the specific use of any individual hyperparameter in the Model 
Optimization group. This assumption can be verified by comparing the performance changes 
between configurations generated before the Model Optimization stage, to the performance 
changes during testing of each Model Optimization hyperparameter. If the changes are consistent 
between model configurations, then the assumption that the Model Optimization are only general 
optimization and not specific to individual model configurations holds true. For example, if each 
iteration of the optimizer stage are ranked by performance, the rankings shouldn’t change after 
the batch-size optimization stage. 

2.4.4 Algorithm Operation 

 The overall design of the algorithm is quite simple, but this is necessary to achieve the 
desired outcome. Each odd numbered stage creates of a list of all the permutations of the 
hyperparameters associated with that stage. The top ten performing permutations are then passed 
to an even numbered stage. In the even numbered stage, the top 20 genomes are retrained 5 times 
each, with the top 10 performers passed to the on to the following stage odd numbered stage. The 
second step decreases the risk that a good model is passed over because it had a bad training run, 
while decreasing the number of models that need to be train in an odd number stage.  

  In this manner, each possible configuration, of up to four CNN layers was tested, and 
every possible configuration of up to 2 LSTM layers. Following this each separate optimizer was 
tested, with the top 20 performing configurations passed to the retraining stage, and the top 10 
moving to the batch-size optimization stage. The model continues until the window-size stage, at 
which point the results are output to the Google Colab Notebook and saved to an excel file. 
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Figure 7: Training and data generation algorithm 

Figure 4 is visualisation representation of the training algorithm and data throughput at each 
stage. The numbers by certain paths represent the total unique permutations that are passed to the 
next stage. 

3. Results and Analysis 

The results generated in this section were generated using only the FD001 dataset. Difficulties 
arose during the design process that limited the ability for the author to produce more results. 
Although this may reduce confidence in the ability of the design algorithm to extrapolate 
meaningful data outside the FD001 dataset, the design was not, in any way, tailored specifically 
for the FD001 dataset. As a result, the author is certain the results contained in this section are 
representative of future results generated with datasets FD002,3 and 4, or with any other machine 
learning model.  

3.1 CNN Layers - Filters and Activation Functions 

Section 3.1 explores the possible connections between RMSE score, the number of filters in a 
CNN layer, and the activation function. In each example, one hyperparameter was allowed to 
vary while the others were held constant. 
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Figure 8: Effect of changing filter size and constant CNN activation function. 

Figure 8 shows a clear link between the RMSE score and activation function. The sigmoid 
function enables the CNN layer to achieve the best performance. However, there does not appear 
to be a link between the number of filters and performance of the CNN layers. This doesn’t mean 
there is not any correlation, rather it suggest that there are too few datapoints for a distinction to 
be made.   

 

 

 

 

 

 

 

 
 
 

Figure 10: 1 

 

 

 

Figure 9: Effect of CNN activation functions and 10 
filters, with a single CNN layer. 

Figure 10: Effect of CNN activation functions and 16 filters, 
with a single CNN layer. 

Figure 11: Effect of CNN activation functions and 32 
filters, with a single CNN layer. 

Figure 12: Effect of CNN activation functions and 64 
filters, with a single CNN layer. 
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 The HCL models used in Figures 8-11 were compiled with the following constant 
hyperparameters: 

• A single CNN layer 
• A single LSTM layer with 80 neurons and using tanh activation function 
• Window-sizes of 30 cycles 
• Batch sizes of 200 
• The rmsprop optimizer 
• A learning rate of 0.1 

The only variation between each of Figures 8 to 11 is the number of filters used to build the 
feature maps. In each of Figures 8 to 11, the number of filters is held constant, and the colour of 
the line corresponds to the activation function used with the CNN layer. It is clear from Figures 8 
to 11 that the sigmoid function helps the achieve the best RMSE scores regardless of number of 
filters used. The relu and tanh functions rank 2nd and 3rd in nearly every scenario.  

 
Figure 13: Effect of CNN activation functions with varying numbers of filters. 

Figure 12 graphs the RMSE scores of each permutation of the available CNN hyperparameters. 
The groupings in the Sigmoid layer (bottom row) correspond to groups whose members all had 
10 filters used in their first (or only) layer. Travelling in the positive vertical direction, from any 
point in the sigmoid layer, one will arrive a at point on either the relu curve or tanh curve where 
the only variation between hyperparameter selection. Figure 12 provides further evidence that 
the using the sigmoid activation allows the CNN layer to achieve their maximum effectiveness. 
The sigmoid layer of Figure 12 also shows a weak in connection between the number of filters 
used in each layer and the model’s RMSE score, with presence of a global minimum in the 
model using two layers, with 16 filters in the first layer and 32 filters in the second layer. 
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However, with only one data point for each permutation, and given the results in Tables 4 and 5 
(large possible variation in individual model performance), the connection is tenuous at best.  

3.2 LSTM Layers – Neurons and Activation Functions 

 Section 3.2 expands upon the testing performed in section 3.1. In this section, the links 
between the RMSE score, number of neurons in a LSTM layer, and the activation function of 
choice was explored. Furthermore, the number of layers was varied to gauge whether any trends 
continue as the number of layers was increased. In each example one hyperparameter was 
changed while the rest were held constant. The top 5 configurations from the CNN tuning stage 
were carried forward to the LSTM tuning stage and train on each of the 60 unique LSTM layer 
configurations.  

 

Figure 14: Effect of activation function and number of neurons on RMSE score. 

Figure 14 displays the effect of increasing the number of neurons, relative to each of the LSTM 
activation functions, had on RMSE score, when a single LSTM layer was selected. The plots in 
Figure 14 suggest that the choice of activation function had little effect on the performance of the 
model. There was, however, a much stronger correlation between the number of neurons and the 
performance of the model. The model with 50 neurons using the tanh activation function 
performed the best overall, but the results of Table 4 and 5 suggest that there may be enough 
variation in RMSE scores that this conclusion may prove incorrect if each model is all given 
more chances to train. 
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Figure 15: Effect of increasing number of neurons in 2nd LSTM layer, with  

10 Filters in CNN layer and 10 Neurons in 1st LSTM layer. 

 

 
Figure 16: Effect of increasing number of neurons in 2nd LSTM layer, with  

10 Filters in CNN layer and 30 Neurons in 1st LSTM layer. 
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Figure 17: Effect of increasing number of neurons in 2nd LSTM layer, with  

10 Filters in CNN layer and 50 Neurons in 1st LSTM layer. 

 

 
Figure 18: Effect of increasing number of neurons in 2nd LSTM layer, with  

10 Filters in CNN layer and 50 Neurons in 1st LSTM layer. 

 

Figures 15-18 compare the effects of the three activation functions when there is a second LSTM 
layer, with an increasing number of neurons. A significant trend exist between a low number of 
neurons in an LSTM layer and the performance of the relu function relative to the sigmoid and 
tanh functions. This suggests in cases where computation time (less filters means less 
calculations) is prioritized over accuracy, the relu function will achieve the best results. In the 2 
CNN layer, 2 LSTM layer configuration this effect became most pronounced in Figure 16, where 
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30 filters in the CNN layer were used with an LSTM layer of 10 neurons. Comparing Figure 16 
to Figure 14 shows that there was a decrease in RMSE score of 10, just by adding a second 10-
neuron LSTM layer. However, overall, there was not a significant performance gain by adding a 
second LSTM layer.  

 
Figure 19: Effects of adding a second CNN layer and a second LSTM Layer. 

 The results shown in Figure 19 compare a single CNN layer, single LSTM layer HCL 
model with a double CNN layer, double LSTM layer HCL model. The results in Figure 19 were 
generated using single layer HCL model that used a 10 filter CNN layer, and double CNN layer 
HCL model using 16 filters in the first layer and 10 filters in the second. In both models the final 
LSTM layer was increased from 10 and 80 neurons, and in the two-layer HCL model the first 
layer had 10 neurons. Ultimately, the Figure 19 demonstrates that there was no performance gain 
inherent in doubling the amounts of unique layers, and that the only consistent gains come from 
adjusting the CNN filters and LSTM neurons.  

3.3 Optimizer 

 Following the construction and training of each HCL model with unique CNN and LSTM 
hyperparameters, the top 5 performing models were selected to pass through to the optimizer 
testing stage. In this stage each model was trained using each of the four unique optimizers.  
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Figure 20: Effects of optimizer on model performance. 

 Figure 20 compares the results generated by each of the top 5 HCL models with each of 
the four optimizers. Each of the models used the sigmoid activation function, with 10 filters. The 
lone HCL model with 2 CNN layers used 16 filters in its second layer. Both single LSTM layer 
models had 80 neurons in their LSTM layer. The single-CNN, double-LSTM layer model using 
the sigmoid activation function had 80 neurons in its first layer and 50 neurons in its second. The 
other single-CNN, double-LSTM layer HCL model had 10 and 80 neurons in its first and second 
LSTM layers, respectively. Among the four optimizers, the adagrad and rmsprop optimizers 
performed the most consistently, with the rmsprop optimizer generating the top three, 5th and 6th 
best RMSE scores. Unexpectedly, the adadelta optimizer performed better, relative to itself, 
when the tanh function is used in the LSTM layers. This suggests that performs better when the 
output of a neuron maintains its sign, as the sigmoid only produces positive numbers as an 
output.  
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3.4 Batch Size 

 
Figure 21: Effect of batch size on performance. 

  Figure 19 compares the performance of each HCL model as its batch size was increased 
from 200 to 600. Each model contains a single CNN layer using 10 filters and the sigmoid 
activation function. The legend contains information pertaining to the LSTM layer(s) parameters, 
indicating the number of layers, the layer(s)’s respective number of neurons, the activation 
function and finally the model’s optimizer. Except for the single-layer LSTM HCL model with 
using the tanh activation function and rmsprop optimizer, each HCL model showed an increase 
in performance as the batch size was increased. The model that did not, had a local minimum 
RMSE score with a batch size of 400, suggesting a batch size of 400 was the optimum size for 
that particular configuration. Given the consistency of the other models’ performance with batch 
size, it would appear that further performance gains could be achieved by testing a lower range 
of batch sizes. 

3.5 Number of Engines 

The results of this section were generated by increase the number of engines from which data 
could be included in each training input. The original HCL model only trained on data input 
containing information from one engine at a time. The idea was to allow the HCL model to 
establish patterns more easily in data sourced from different engines enabling greater 
generalization.  
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Figure 22: Effect of number of engines in input on performance. 

 Figure 21 shows that increasing the number of engines in the input data clearly inhibits 
model performance. This suggests the model may have become over specialized to the input data 
or that the idea is fundamentally flawed.  

3.6 Window Size 

This section varied the size of the input data tensor. For time-series data, the window size is the 
number of time dependent cycles of data given to input into the model during training. For this 
stage of optimization, the window size ranged from 10 to 40 cycles in 10 cycle increments. 

 
Figure 23: Effects of window size on performance. 
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Figure 22 shows a that there was a correlation between window size and performance. In all 
cases, increasing the window size improved performance, however, the shapes of each graph 
indicate whether further increase will improve performance. Both double-layer models indicate 
that they are at or very near local minima, thus further increases will not improve performance. 
The curve of the single-layer LSTM model indicates that it the rate of increasing performance is 
decreasing as the window size grows. This suggests that further increases in window size would 
allow that HCL model to achieve better results. The curve of the single-layer LSTM model 
utilizing the rmsprop optimizer and tanh activation function appears to have an increasing slope 
suggesting that further increases in window size will result in greater relative gain. Finally, in the 
curve of the single-layer LSTM model utilizing the adam optimizer, there is a local minimum 
indicating further increases in window size will result in decreased performance. 

 4 Conclusion 

 There were three objectives established in section 3.1, of which the second objective had 
two qualifying conditions. The main objective and second objective were design requirements, 
while the third object was a design goal. 

1. The results generated using the design algorithm shall generate results that show clearly 
discernable trends in RMSE, attributable to changes in a specific hyperparameter or a 
specific hyperparameter combination. 
 

2. The algorithm under design shall generate consistent results in conjunction with the APH 
model designed by Amin [2]. 

a. The algorithm shall use a consistent and broad set of hyperparameters. 
b. The algorithm shall generate consistent RUL predictions between training runs, 

across all four datasets. 
 

3. The algorithm under design should generate results comparable to those generated by 
Amin outlined in Figure 1. 

 There is overwhelming support that the requirements of Objective 1 were met. The 
design of the algorithm only ever alters one hyperparameter while keeping the remaining 
hyperparameters constant. This is reflected in Figures 14-22 all showing discernable trends in the 
results allowing for simple validation of the effect of a hyperparameter or lack thereof. There 
were limited cases of complex or seemingly random variations in performance, such as the effect 
of the adam optimizer in Figure 20, but even that result showed discernable trends correlating to 
the changes in hyperparameters permutations. Therefore objective 1 was met. 

 The confirmation of Condition A of Objective 2 is easily verified by the design of the 
algorithm itself, which uses lists of predetermined hyperparameters. The ordered manner in 
which the lists of hyperparameter permutations are generated, using “for loops” further satisfies 
Condition A. The requirement for a broad array of hyperparameters, in Condition A is verified 
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by evidence of the use of the 8 of 10 of the hyperparameters used in Amins genetic algorithm 
[2], with the addition of two more, by the author. Condition B was designed for, by including a 
retraining loop between each hyperparameter testing stage. However, a lack of repeated results 
precludes the verification of Condition A. Therefore, objective two can only be considered 
partially met. 

 Finally, Objective 3 was not met. The author was unable to replicate the performance 
obtained by Amin as presented in Figure 1. This was not achieved using either Amin’s genetic 
algorithm or the author’s algorithm. However, results below an RMSE of 18 were generated in 
trial runs of the algorithm. 

 In conclusion, this algorithm shows promise as a tool to help improve the results generated not 
only using the genetic algorithm designed by Amin [2], but for any machine learning model with 
a large number of hyperparameters. The algorithm has shown that individual components of a 
model can be isolated, tested and tuned eliminating the need to try every possible permutation of 
hyperparameters. This helps the genetic algorithm immensely as certain hyperparameters, such 
as the sigmoid activation function used in the CNN layers, can be set to a constant. This allows 
the user to increase to options for specific hyperparameter classes without decreasing confidence 
in the final result. The algorithm is not perfect though, so a number of suggestions are made for 
future work, in the next section. 

5 Future Work 

 As mentioned in the preface of section 3, the results in this thesis were generated only 
using the FD001 dataset. Testing was done using the other three datasets, so there is no reason 
why the algorithm will not generate similar results with the other datasets. Furthermore, 
Condition B was not fully verified. More testing should be done on dataset FD001 as well to 
confirm whether or not the steps taken to reduce inherent model training inconsistency in the 
algorithm are adequate. More can be done to increase ease of use. The current version of code is 
effectively a script. The algorithm could be further reduced to function calls and a “for loop” to 
progress the algorithm through each stage.  
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