

ARTIFICAL NEURAL NETWORK
HYPERPARAMETER EFFECTIVENESS DETERMINATION

AND OPTIMIZATION ALGORITHM

James VanderVeen

AER870 Aerospace Engineering Thesis – Final Report

Faculty Advisor: Dr. Krishna D. Kumar

 Date: April 2021

i

Acknowledgements

 The author would like to acknowledge the following people. Dr. Kumar, whose guidance
and patience enable me to complete this thesis. My family for their infinite love and support
throughout my life. And my partner, Chantel, for the love, support, encouragement I couldn’t do
without.

ii

Abstract

 Machine learning models can contain many layers and branches. Each branch and layer,
contain individual variables, know as hyperparameters, that require manual tuning. For instance,
the genetic algorithm designed by Unit Amin [2] was designed to mimic the reproductive process
of living organisms. The genetic algorithm and the Artificial Neural Network (ANN) training
processes contain inherent randomness that reduces the replicability of results. Combined with
the sheer magnitude of hyperparameter permutations, confidence that model has arrived at the
best solution may be low. The algorithm designed for this thesis was designed to isolate portions
of a complex ANN model and generate results showing the effect each hyperparameter has on
the performance of the model as a whole. The results of this thesis show that the algorithm
effectively generates data correlating model performance to hyperparameter selection. This is
evident in section 3.1, and 3.2, where it is shown that using the sigmoid activation function with
CNN layers, regardless of the number of filters, or hyperparameters used in the subsequent
LSTM layers, produces superior RMSE scores. Section 3.2 also reveals that the model does not
improve in performance as the number of CNN and LSTM layers are added to the model.
Finally, the results in section 3.3 show that the rmsprop optimizer generates superior results
regardless of the hyperparameters used in the rest of the model.

iii

Table of Contents
Acknowledgements .. i

Abstract ... ii

Table of Contents ... iii

Nomenclature .. v

List of Figures .. vi
List of Tables ... viii

1 Introduction .. 1

1.1 Alternate PHM Approaches ... 1

1.1.1 Model-Based PHM .. 2

1.1.2 Usage-Based PHM ... 2

1.1.3 Condition-based Maintenance ... 2

1.2 C-MAPPS Dataset .. 3

1.3 Artificial Neural Networks and Machine Learning.. 4

1.3.1 Basics of Neural Networks .. 4

1.3.2 Convolutional Neural Networks .. 5

1.3.3 Long Short-Term Memory Layers ... 6

1.3.4 Input Layer Design .. 6

1.3.5 Model Accuracy Scoring ... 7

2. Algorithm Design.. 7

2.1 Problem Statement .. 7

2.2 Objectives and Requirements ... 8

2.3 Trade-off Study ... 8

2.4 Design Process .. 10

2.4.1 Preliminary Hyperparameter Selection .. 10

2.4.2 Final Hyperparameter Selection .. 11

iv

2.4.3 Design Assumptions .. 12

2.4.4 Algorithm Operation .. 13

3. Results and Analysis ... 14

3.1 CNN Layers - Filters and Activation Functions ... 14

3.2 LSTM Layers – Neurons and Activation Functions ... 17

3.3 Optimizer .. 20

3.4 Batch Size ... 22

3.5 Number of Engines ... 22

3.6 Window Size ... 23

4 Conclusion ... 24

5 Future Work ... 25

References ... 26

v

Nomenclature

ANN Artificial Neural Network

AHP AIPAAS Hybrid Project

CMB Condition Based Maintenance

CMAPSS Commercial Modular Aero-Propulsion System Simulation

CNN Convolutional Neural Network

HPC High-Pressure Compressor

HPT High-Pressure Turbine

HCL Hybrid CNN/LSTM

LPC Low-Pressure Compressor

LPT Low-Pressure Turbine

LSTM Long Short-Term Memory

PHM Prognostics and Health Management

RMSE Root Mean Square Error

RUL Remaining Useful Life

vi

List of Figures

Figure 1: Comparison of APH to other models [1]... 1

Figure 2: The most basic neural network configuration. .. 4

Figure 3: Example of a densely connected hidden layer, and a densely connect output layer [6]. 5

Figure 4: A 3x3 feature map (convolved feature) ... 6

Figure 5: RMSE scores relative to training time and epochs used, example 1. 10

Figure 6: RMSE score relative to training time and epochs used, example 2. 10

Figure 7: Training and data generation algorithm .. 14

Figure 8: Effect of changing filter size and constant CNN activation function............................ 15

Figure 9: Effect of CNN activation functions and 10 filters, with a single CNN layer. 15

Figure 10: Effect of CNN activation functions and 16 filters, with a single CNN layer……….. 15

Figure 11: Effect of CNN activation functions and 32 filters, with a single CNN layer………...15

Figure 12: Effect of CNN activation functions and 64 filters, with a single CNN layer………...15

Figure 13: Effect of CNN activation functions with varying numbers of filters………………...16

Figure 14: Effect of activation function and number of neurons on RMSE score………………17

Figure 15: Effect of increasing number of neurons in 2nd LSTM layer, with

 10 Filters in CNN layer and 10 Neurons in 1st LSTM layer…………………………………18

Figure 16: Effect of increasing number of neurons in 2nd LSTM layer, with

 10 Filters in CNN layer and 30 Neurons in 1st LSTM layer…………………………………18

Figure 17: Effect of increasing number of neurons in 2nd LSTM layer, with

 10 Filters in CNN layer and 50 Neurons in 1st LSTM layer…………………………………19

Figure 18: Effect of increasing number of neurons in 2nd LSTM layer, with

 10 Filters in CNN layer and 50 Neurons in 1st LSTM layer…………………………………19

vii

Figure 19: Effects of adding a second CNN layer and a second LSTM Layer…………………20

Figure 20: Effect of optimizer on performance…………………………………………………21

Figure 21: Effect of batch size on performance…………………………………………………22

Figure 22: Effect of number of engines in input on performance……………………………….23

Figure 23: Effect window size on performance………………………………………………….23

viii

List of Tables

Table 1: Dataset division, fault-mode, and operating condition summary………………………..3

Table 2: Data features used to train and test APH model [1]……………………………………..3

Table 3: Average, minimum, and maximum RMSE of a single model, retrained 100 different
times………………………………………………………………………………………………9

Table 4: Minimum accuracy out of 263 different models………………………………………...9

Table 5: Minimum accuracy out of 479 different models………………………………………...9

Table 6: Average RMSE relative to various dropout values; FD001……………………………11

Table 7: Average RMSE relative to various dropout values; FD003……………………………11

Table 8: Hyperparameter selection table, grouped by purpose, listed by order of testing………12

Table 9:

1

1 Introduction

 The original goal of this thesis was to design a novel model to predict the Remaining
Useful Life (RUL) of a turbojet engine using simulation data generated by the National
Aeronautics and Space Administration’s (NASA) Commercial Modular Aero-Propulsion
Simulation System (CMAPSS) [1]. In preparation for the design, the hybrid Convolutional
Neural Network (CNN)/ Long Short-Term Memory (LSTM) neural network developed by Amin
[2], for his master’s thesis, was utilized to learn how to build and train neural networks. During
that training period, the author was advised to investigate the discrepancies in the results
generated by the Hybrid CNN-LSTM (HCL) model.

Figure 1: Comparison of APH to other models [2].

Figure 4 shows the results of the HCL model compared to results of other models from Amin’s
literature review. What stands out is that the HCL model didn’t consistently perform better or
worse than the other models across all four datasets. In ranking the HCL’s performance it can be
seen that the best relative results come from the model trained using the FD002 dataset, where it
achieved the 3rd lowest Root Mean Square Error (RMSE). Whereas the FD001, FD003, and
FD004 results are ranked 6th, 6th, and 4th, respectively. From these observations it was decided
that instead of blindly learning how to build and train neural networks, it would be wiser to also
learn about the inner workings of the model.

1.1 Alternate PHM Approaches

It is never a good idea to follow a path, without knowing why that path is the correct choice.
With that in mind, alternate methods of determining the RUL of a system were also studied.
According to Goodman et al. [3], there are three main approaches to PHM, classical, usage-

2

based, and condition-based. Classical based methods are further broken down into three
categories, model-based, data-driven, or hybrid-driven [3].

1.1.1 Model-Based PHM

Model-based PHM is the most familiar for an undergraduate student as it uses physics, and
reliability statistics to determine the RUL of a system. Determining the yield point of a steel bar
is a good example. Data-driven models use previous generated data, and statistics to predict the
RUL of a system. Data-driven models attempt to derive probabilities of future events from a
history of a past event chains. For example, if the weather was 7°C and cloudy on Monday, what
is the likelihood of rain on Tuesday? A hybrid system combines model-based and data-driven to
optimize a PHM system for precision and ease-of-development [3]. Model-based designs are
highly accurate because physics and statistics are inherently accurate. Model-based designs lose
their abilities as systems become more complex, not because the underlying principle are wrong,
but because it becomes harder to determine the conditions to which each component is subjected.
Whereas a data-driven model only gives answers for the conditions in which it was generated. A
hybrid approach then takes the strengths of each model type, achieving greater performance than
either alone [3].

1.1.2 Usage-Based PHM

Usage-based models are those that monitor a system and make predictions on the future
health of a system by accounting for the past and present usage history and the physics-based
model of the system [4]. This is basically a hybrid model that updates the statistical models as
the usage history is gained. The need for this type of model arises from the weakness in physical
models, the uncertainty in operating conditions. Furthermore, the uncertainty in a future event
grows the further into the future a prediction is made. This can be demonstrated by an object
travelling in a straight line, whose intent is to travel 1 meter forward. If it is known that the
objects path may deviate, from directly forward, by one centimeter after one meter of forward
travel, then after 10 timesteps the actual location could be between 10 centimeters to the left and
10 centimetres to the right. A usage-based model would update itself at each timestep, such that
the model could predict the outcome of each future step within one centimeter.

1.1.3 Condition-based Maintenance

A Condition-Based Maintenance (CBM) system continuously monitors system parameters in
order detect deviations from the expected performance. In some cases, this data is used to make
RUL predictions on the system or its components. In an aircraft, this system could monitor the
temperature, pressure, environmental, variables of a turbofan and analyze that data to detect
when the performance of a component, such as the High-Pressure Turbine, begins to degrade. In
this case it would alert the airline and guide the maintenance crew in diagnosing and repairing
the engine. This is the approach upon which the HCL model is founded.

3

1.2 C-MAPPS Dataset

 The CMAPPS dataset is a run-to-failure simulation dataset based on a MATLAB and
Simulink model of large turbofan engine [5]. The dataset is separated into four main subsets,
FD001, FD002, FD003, and FD004. They are separated according to the number of operating
conditions and fault-modes present in the data. The six operating conditions ranging from sea-
level to 40,000 feet and the fault-modes relate to the degradation of the High-Pressure
Compressor (HPC) performance and degradation of the fan’s performance. The datasets are
further comprised of the sensor data for a number of engines operating through a number of
cycles, and the total number of cycles the engine operated for until failure. The dataset also
comes pre-split by the total number of engines into training and test sets. These details and
divisions of each dataset is summarized in Table 1.

Table 1: Dataset division, fault-mode, and operating condition summary.
Dataset FD001 FD002 FD003 FD004

Number of Training Engines 100 260 100 248
Number of Test Engines 100 259 100 249

Operating Conditions 1 6 1 6

Fault Mode HPC YES YES YES YES
Fan NO NO YES YES

 The data for each engine is a comprised of 26 sensor readings from those that would be
available in a typical commercial turbofan engine. However, Amin’s model uses only 14 of these
sensors that according to previous research, had meaningful impacts predicting RUL [2]. The
sensor data used to train the model are listed in Table 2.

Table 2: Data features used to train and test APH model [2].
Sensor Number Data Type

2 Total temperature at LPC exit
3 Total temperature at HPC exit
4 Total temperature at LPT exit
7 Total pressure at HPC exit
8 Physical fan speed
9 Physical core speed

11 Static pressure at HPC exit
12 Fuel flow ratio to Ps30
13 Corrected fan speed
14 Corrected core speed
15 Bypass ratio
17 Bleed enthalpy
20 HPT coolant bleed
21 LPT coolant speed

4

The data in Table 6 are know as the features when used as the input the Neural Networks (NN),
as discussed in section 1.3.

1.3 Artificial Neural Networks and Machine Learning
1.3.1 Basics of Neural Networks

 Artificial Neural Networks (ANN) are essential computer algorithms that have the ability
to improve themselves as calculations are performed on each input of data. The core
mathematics of a neural network involve matrix-multiplication, linear equations, and simple
piecewise or trigonometric functions. The model is built in layers of column vectors or matrices,
where each element of the vector or matrix is referred to as neuron. The simplest network is
comprised of three layers, an input layer, a hidden layer, and an output.

Figure 2: The most basic neural network configuration.

As shown in Figure 1, each layer is connected to following layer by a thread with some random
weight. The neural network operates by first passing a know value to the input neuron, Ni. To
pass a value to the hidden neuron, N1, some mathematical operation is performed on the value in
Ni with the result being N1. The same process is repeated to find the value at No, the output
neuron. This value is the prediction. The prediction is compared to the expected value and the
difference is know as the loss. The loss is then used to adjust the values of the weights such that
loss would equal zero, meaning the neural network would make perfect predictions. However,
the input data is never the same, so the weights that result in a loss of zero for one input will not
necessarily result in a loss of zero for another. The goal then is to minimize the loss for the great
number of variables.

 Sophistication is added to model through the addition of multiple neurons in the hidden
layers, functions of which the out becomes the value in the connected neuron. The input layer
has as many neurons as needed such that the number of neurons equals the length of the input
data. The output is sized according to the data on which the network is making a prediction.
There is no limit to the number of hidden neurons or hidden layers, but they are generally limited
due to computational concerns. A bias neuron can be added before subsequent layers. When bias
neurons are used, the formula between two neurons becomes,

𝑁𝑁1 = 𝑤𝑤1 ∗ 𝑁𝑁𝑖𝑖 + 𝐵𝐵1 (1)

If there is a wide range in input values, a function can be used to limit the output of wi*N + B to a
certain range of values. These functions are known as activation functions and their general
formula to find N1 is,

5

𝑁𝑁1 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎.(𝑤𝑤𝑁𝑁𝑖𝑖 + 𝐵𝐵) (2)

Finally, the connections between one layer and the next is not limited to one. If every neuron in a
layer is connected to every neuron in the preceding layer, that (second) layer is referred to as a
densely connected layer. This is visualized in Figure 2.

Figure 3: Example of a densely connected hidden layer, and a densely connect output layer [6].

The mathematics connecting the neurons are the same, but in a densely connected neuron, its
value is the sum of all the values coming from each neuron feeding into it from the previous
layer.

 Neural Networks learn by back-propagation of error through the network to change the
weights assigned at the beginning of the training session. This involves differentiation along each
path between each input neuron and each output neuron. It is beyond the scope of this thesis to
explain its operation further. However, the algorithm that determines how this done is called the
optimizer. To optimize training results and training time multiple inputs can be given to the
model. The loss from each input is then averaged and that average is used to adjust the weights.
The number of inputs between weight updates is called the batch size. When all the batches have
been put through the model, one training epoch is finished. In complex models, the model may
not have learned all that it can. In this case multiple epochs can be used until a predetermined
stopping point is reach.

1.3.2 Convolutional Neural Networks

 Convolutional Neural Networks (CNN) are a type of network where the outputs of each
layer are feature maps built by applying filters to input data. CNN excel at feature recognition
and, according to Saha, “…able to successfully capture the spatial and temporal dependencies in
an image… [7]” If the input data is a 9 x 9-pixel photo, it can be represented a 9 x 9 matrix with
cell values corresponding to color or grayscale value of the photo. The filters are square
matrices, typical sized 3x3 or 5x5 filled with some pattern of ones and zeros. The filter is placed
over a section of the photo so that all the cells in the filter are within the bounds of the photo.
The pixels in the photo are multiplied by the corresponding filter value resulting in either the
pixel value or a zero and then all the results are summed and stored in a new matrix. This is

6

repeated for ever position in the filter can take in the matrix, creating a feature map
corresponding to the sum at each filter position.

Figure 4: A 3x3 feature map (convolved feature)

created by convoluting a 5x5 image by a 3x3 filter [7].

 Figure 3 represents a simple convolution of an image into a feature map. The values in
the feature map can then be connect to an output layer make a prediction on the data. CNNs are
limited to photos, they can used with any data, but they excel at extracting features from input
data. The number of filters passed over each data input is limited only by the practicality of that
number. Eventually there won’t be any benefit to adding more layers, and it may actually end up
hurting the model. Furthermore, there is no limit to the amount of convolution steps performed
on the data. In this case, filters are applied to the feature maps creating a feature map of the
feature map. Normally this would eventually reduce the data to only a few data points, the input
data can be padded around its borders to increase the number of positions available to the filter.

1.3.3 Long Short-Term Memory Layers

 There is a specific type of machine learning model known as Recurrent Neural Networks
(RNN). RNN are similar to the model in Figure 2 except there are usually more than one hidden
layer and there are connections that also feed back to previous layers. Instead of the input to a
layer comprised of only the sum of values passed to it from previous layers, weighted
connections from subsequent layers also produce values that feed into the layer. A Long Short-
Term Memory (LSTM) layer is a RNN with the addition of a memory cell that stores
information about the data in the LSTM layer previously and the design of the LSTM layer
allows it to hold onto that information for some arbitrary amount of time. The information in the
memory cell allows the LSTM layer to make temporal connections between subsequent inputs.
This makes LSTM layers well suited to time-series data. There is no limit to the number of
neurons, but eventually either no further performance can be reach, or the computation cost
outweighs the benefits of adding more neurons.

1.3.4 Input Layer Design

 The input layer is where the information used to make prediction is loaded into the
model. The size of the input layer is determined by the size of the input data and remains fixed
throughout the lifetime of the model. The individual data points are known as the features. In

7

time-series data it useful to design the model to take in multiple timesteps worth of a data. The
number of time steps chosen is known as the window size. In the APH model the window size
can vary between the model so a variation in size will be tested to find the optimal number. The
number of data features is multiplied by the window size to find the total input dimension. In the
original APH model, the timestep chosen was limited by the lowest number of engine cycles in
the testing data. However, this is accounted for in the design algorithm by dropping engines from
the dataset and test sets, that do not meet the window size criteria. The algorithm designed for
this thesis also adds a third dimension to the input by changing the number of engines included
in the dataset. Finally, all of the model parameters that can be changed by the user are know as
hyperparameters. This is in respect to the parameters of the model, the weights connecting
neurons, which are not able to be changed by the user directly.

1.3.5 Model Accuracy Scoring

 The ability of the model to predict the RUL of an engine is the primary purpose the APH
model. To gauge that ability, the predictions made by the model are scored using Root Mean
Squared Error (RMSE) of predictions made with the test portion of each dataset.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛

(𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑛𝑛−12 + 𝑥𝑥𝑛𝑛2) (3)

 The RMSE score is effectively the absolute value of the average difference between the
predicted RUL and the actual RUL. A score of zero is preferred as it would indicate the model
predicts engine RUL perfectly. A score of 1 would indicate that the model’s average prediction
was correct to within 1 cycle of the engines true RUL. From Figure 4 though, it can be seen that
the best model in literature on average made predictions within 12.2 cycles of the true RUL.

2. Algorithm Design

2.1 Problem Statement

 In attempting to learn how the model operated internally, as well learn the fundamentals
of machine learning and ANN’s, it was discovered that it is effectively impossible to replicate
any previous results. The reasons for this will be discussed in more detail in the next section, but
the underlying source was the genetic optimization algorithm used to tune the models’
hyperparameters. Because of these difficulties, the main goal of this thesis shifted from creating
a new model, into developing an algorithm for the existing APH model that enabled the user to
generate consistent results. With these results, it was theorized that distinct trends can be found
within hyperparameter combinations. Which could then be used to guide the evolutionary
algorithm of original APH model.

8

2.2 Objectives and Requirements

The main objective of the design algorithm is that the results generated shall show clearly
discernable trends in RMSE, attributable to changes in a specific hyperparameter or a specific
hyperparameter combination. This requirement will be considered met, if in isolating a single
variable, smooth and continuous changes, or no changes, are observed in the time and/ or
accuracy results. It should be noted that it is important to find the variables that have no effect on
accuracy and time, as they can be removed from future iterations. Removing variables with no
discernable effect allows for a reduction in permutations, thus computation time.

 The second objective of the algorithm under design is to generate consistent results in
conjunction with the APH model designed by Amin [2]. The need for this arises from the
complexity and randomness of the output data, stemming from the optimization algorithm used
to optimize hyperparameters of the APH model. It was determined that to improve the
consistency of the results generated by the model, the effect each hyperparameter has on the
models’ performance needed to be more effectively isolated to the adjustments of individual
hyperparameters. The main objective of the design algorithm contains two conditions, both of
which have to be met. First, the algorithm shall use a consistent and broad set of
hyperparameters. Second, the algorithm generates consistent RUL predictions between training
runs, for a given dataset. Condition A shall be confirmed if the hyperparameter permutations
used are repeatable between training runs, while using multiple options from 8 out of 10 of the
hyperparameters listed in Amin’s Master’s thesis. Condition B is confirmed if the algorithm
produces RUL predictions with consistent Root Mean Square Errors (RMSE) between training
iterations.

Finally, though not as import for the purposes of this thesis, the model should perform
comparable to Amin’s [2] genetic algorithm. This is not strictly necessary, as the main objective
is to find relationships between hyperparameter selection and accuracy and/or time. It would,
however, serve to validate the assumptions made in designing the algorithm.

2.3 Trade-off Study

 Two alternate methods to generate meaningful results were considered. The first method
was the original method developed by Amin [2]. This involves running the APH model over and
over again, tying to generate enough data such that total sample size was statistically significant.
The major problem with this approach is that each iteration for the smaller datasets, FD001 and
FD003, can take up 2 hours to train on, and the FD002 and FD004 over 4 hours. Furthermore,
there is no guarantee that the performance is repeatable. This issue persists on multiple levels.
For example, the genetic algorithm was manipulated to retrain one specific model, for 100
separate training iterations.

9

Table 3: Average, minimum, and maximum RMSE of a
single model, retrained 100 different times.

Minimum RMSE Average RMSE Maximum RMSE
36.5 43.7 50.0

Table 3 shows that the variance in RMSE is great 6. This means that on average a single model
may guess within 6 cycles of the actual RMSE. This is due to the way the model weights are
randomly generated when it is initialized.

Table 4: Minimum accuracy out of 263 different models.
Minimum Accuracy Totals Models Trained

48.8 263

Table 5: Minimum accuracy out of 479 different models.
Minimum Accuracy Total Models Trained

17.6 479

The data in Tables 3 and 4 were both generated during training on dataset FD001. The large
variance in RMSE scores further demonstrates the difficulties in trying to derive associations
between hyperparameters and training scores.

The second approach considered was a brute-force training regime. This approach seems
ideal as it attempts every permutation of hyperparameters. Amin [2] selected 10 different
hyperparameters, with a range between 3 to 6 options for each hyperparameter to be evolved for
in the algorithm [2]. In addition, the model had the capability to change the window size of the
input tensor. This adds several more options for permutations. A rough estimate puts the total
permutations at nearly 4,000,000. At an average time of 10 seconds per model, the total time to
calculate all permutation would be about 1.25 years! This is clearly not a feasible approach given
equipment availability and time constraints.

Given the numerous possible permutations of hyperparameters, it is easy to see why any
given training run, using Amin’s [2] genetic algorithm and AHP model, can finish with high
RMSE scores. One training run of 30 generations, each comprised 30 unique genomes would
only test 900 different permutations, a tiny fraction of the possibilities. The genetic algorithm
trades off certainty in finding the best solution for the ability to find a good solution in a fraction
of the time. This is desirable as it shows capability for deployment in a wide range of PHM
applications with out the need for a years and three months’ worth of computation time.
Furthermore, there is no guarantee that the best solution will be significantly better than those
generated by the genetic algorithm meaning the time investment may not return a significant
accuracy gain. Finally, both approaches may be fundamentally limited by the design of the
model and abundance of data. This strengthens the need for a more controllable algorithm, that
has the ability to find trends in the data as it can help determine the maximum model
performance. Ideally the design algorithm would reduce the total number or variables to an

10

amount where a computer could go through every remaining permutation in a reasonable amount
of time.

2.4 Design Process
2.4.1 Preliminary Hyperparameter Selection

 Although there was a clear need for a more ordered approach to model performance
tuning, some meaningful insights were discovered during the original study of the APH model.
One of the hyperparameters used in the genetic algorithm was the number epochs allotted for
model to train. In the genetic algorithm a range of total epochs was chosen from 200-600, in 100
epoch increments.

Figure 5: RMSE scores relative to training time and epochs used, example 1.

Figure 6: RMSE score relative to training time and epochs used, example 2.

0

100

200

300

400

500

600

RMSE

Epochs Used Time [s]

0

50

100

150

200

250

300

350

RMSE

Epochs Used Time [s]

11

Figures 2 and 3 demonstrate that regardless of the overall performance of the training run, the
best performing models never required the entire allotted epochs. In fact, models that used all of
the allotted epochs were almost always among the worst performing, as gauged by both RMSE
score and length of training period. Figures 2 and 3 show that the epoch variable can be removed
from rotation and set to a constant value. The first design choice was to limit epochs to 50 as no
best performing model required more than 50 epochs to train. This ability is directly attributable
to the Early Stopping callback built into the AHP model. The early stopping callback is designed
to stop training when the validation loss metric changes by less than 10% between epochs. This
limits overfitting the data while also limiting maximum training time. By extension it renders the
epoch variable obsolete except in cases where model progress enough to avoid early stopping but
slow enough that their computation far outweighs any potential benefit.

 Further study of the data generated using Amin’s [2] genetic algorithm and AHP model
show that the dropout value has little effect on accuracy.

Table 6: Average RMSE relative
to various dropout values; FD001

Dropout Average RMSE
0.3 19.15163254
0.2 19.39653863
0.4 19.42844662
0 19.72313942

Table 7: Average RMSE relative
 to various dropout values; FD003

Dropout Average RMSE
0.3 22.07
0.4 23.22
0.2 23.29
0 24.14

 Tables 5 and 6 are just a sample of the data used to make this determination, but the results are
similar across every training run. Although the effect is almost negligible, the dropout value of
0.3 consistently has the lowest average RMSE scores. For this reason, it was decided to set the
dropout value to a constant value of 0.3 in further testing.

2.4.2 Final Hyperparameter Selection

After setting these two values as constants, little else was gleaned from further study of
the data, as generated using Amin’s [2] genetic algorithm. Removing the allotted epoch number
and dropout parameters from consideration decreased the breadth of hyperparameter selection, so
to satisfy Condition A of the first objective, two more variables were selected for analysis. The
added hyperparameters selected were the number of engines and window-size. These bring the

12

total number of individual hyperparameters to 10; the values and types of which are listed in
Table 6.

Table 8: Hyperparameter selection table, grouped by purpose, listed by order of testing.

 Hyperparameter Value/ Type

Feature
Selection

CNN Activation Function ['relu', 'tanh', 'sigmoid']
Number of CNN Filters [10, 16, 32, 64]
Number of CNN Layers [1, 2, 3, 4]

Time
Dependency

LSTM Activation Function ['relu', 'tanh', 'sigmoid']
Number of LSTM Neurons [10, 30, 50, 80]
Number of LSTM Layers [1, 2]

Model
Optimization

Optimizer ['rmsprop', 'adam', 'adagrad', 'acadelta']
Batch-size [200, 400, 500, 600]

Learning-rate [0.1, 0.01, 0,001]
Number of Engines [1, 2, 3]

Window Size [10, 20, 30, 40]

 The APH model consists of two distinct parts. The CNN layers, whose purpose is to
extract features, and the LSTM layers, whose purpose is to extract time-dependencies between
data inputs. Table 7 groups the hyperparameters according to those two parts, with the third
group distinguished by there effect on the model as a whole. Within those groups, the
hyperparameters are listed in the order by which they will be varied as the algorithm progresses.

 The grouping and order of the hyperparameters were chosen according to the
requirements of the second objective. The grouping isolates changes in the effectiveness of the
CNN layers to extract features, in the effectiveness of the LSTM layers to extract time-
dependencies, and in the effectiveness over overall model optimization hyperparameters. The
APH model was built with sequential layers, so the ordering was chosen to reflect the flow of
data through the model. The general idea was to first build a CNN model that best extracts data-
features, then build an LSTM model that best determines time-variations between the data-
features. Following the construction of individual models, the performance as whole was
optimized by testing the hyperparameters that were thought to have the least effect on individual
model variations. In keeping with the data flow hierarchy, the ordering of the Model
Optimization group began with testing individual optimizers. Finally, last four hyperparameters,
batch-size were then tested individually with the intent of fine-tuning the model performance, in
an effort to satisfy the final objective.

2.4.3 Design Assumptions

 Several assumptions were made in the determining the hyperparameter optimization
groupings and orderings. The first assumption was that the performance of the CNN portion of
the model was correlated with the performance of the LSTM. This can be verified by comparing
the performance of the model during the LSTM optimization stage to the performance of the

13

corresponding subset of model configurations during the CNN optimization stage. If the
performance changes between individual configurations are linearly correlated, then the
performance of the LSTM model is not affected by the performance of the CNN model. If the
results are random, then the CNN model does not reliably enhance the effectiveness of the
LSTM model. Finally, if the performance of the LSTM model is always better, and in an
exponential manner, the effectiveness of the LSTM model is indeed enhanced by the CNN
model. The second assumption is that the performance of any individual configuration of the
model is not correlated to the specific use of any individual hyperparameter in the Model
Optimization group. This assumption can be verified by comparing the performance changes
between configurations generated before the Model Optimization stage, to the performance
changes during testing of each Model Optimization hyperparameter. If the changes are consistent
between model configurations, then the assumption that the Model Optimization are only general
optimization and not specific to individual model configurations holds true. For example, if each
iteration of the optimizer stage are ranked by performance, the rankings shouldn’t change after
the batch-size optimization stage.

2.4.4 Algorithm Operation

 The overall design of the algorithm is quite simple, but this is necessary to achieve the
desired outcome. Each odd numbered stage creates of a list of all the permutations of the
hyperparameters associated with that stage. The top ten performing permutations are then passed
to an even numbered stage. In the even numbered stage, the top 20 genomes are retrained 5 times
each, with the top 10 performers passed to the on to the following stage odd numbered stage. The
second step decreases the risk that a good model is passed over because it had a bad training run,
while decreasing the number of models that need to be train in an odd number stage.

 In this manner, each possible configuration, of up to four CNN layers was tested, and
every possible configuration of up to 2 LSTM layers. Following this each separate optimizer was
tested, with the top 20 performing configurations passed to the retraining stage, and the top 10
moving to the batch-size optimization stage. The model continues until the window-size stage, at
which point the results are output to the Google Colab Notebook and saved to an excel file.

14

Figure 7: Training and data generation algorithm

Figure 4 is visualisation representation of the training algorithm and data throughput at each
stage. The numbers by certain paths represent the total unique permutations that are passed to the
next stage.

3. Results and Analysis

The results generated in this section were generated using only the FD001 dataset. Difficulties
arose during the design process that limited the ability for the author to produce more results.
Although this may reduce confidence in the ability of the design algorithm to extrapolate
meaningful data outside the FD001 dataset, the design was not, in any way, tailored specifically
for the FD001 dataset. As a result, the author is certain the results contained in this section are
representative of future results generated with datasets FD002,3 and 4, or with any other machine
learning model.

3.1 CNN Layers - Filters and Activation Functions

Section 3.1 explores the possible connections between RMSE score, the number of filters in a
CNN layer, and the activation function. In each example, one hyperparameter was allowed to
vary while the others were held constant.

15

Figure 8: Effect of changing filter size and constant CNN activation function.

Figure 8 shows a clear link between the RMSE score and activation function. The sigmoid
function enables the CNN layer to achieve the best performance. However, there does not appear
to be a link between the number of filters and performance of the CNN layers. This doesn’t mean
there is not any correlation, rather it suggest that there are too few datapoints for a distinction to
be made.

Figure 10: 1

Figure 9: Effect of CNN activation functions and 10
filters, with a single CNN layer.

Figure 10: Effect of CNN activation functions and 16 filters,
with a single CNN layer.

Figure 11: Effect of CNN activation functions and 32
filters, with a single CNN layer.

Figure 12: Effect of CNN activation functions and 64
filters, with a single CNN layer.

16

 The HCL models used in Figures 8-11 were compiled with the following constant
hyperparameters:

• A single CNN layer
• A single LSTM layer with 80 neurons and using tanh activation function
• Window-sizes of 30 cycles
• Batch sizes of 200
• The rmsprop optimizer
• A learning rate of 0.1

The only variation between each of Figures 8 to 11 is the number of filters used to build the
feature maps. In each of Figures 8 to 11, the number of filters is held constant, and the colour of
the line corresponds to the activation function used with the CNN layer. It is clear from Figures 8
to 11 that the sigmoid function helps the achieve the best RMSE scores regardless of number of
filters used. The relu and tanh functions rank 2nd and 3rd in nearly every scenario.

Figure 13: Effect of CNN activation functions with varying numbers of filters.

Figure 12 graphs the RMSE scores of each permutation of the available CNN hyperparameters.
The groupings in the Sigmoid layer (bottom row) correspond to groups whose members all had
10 filters used in their first (or only) layer. Travelling in the positive vertical direction, from any
point in the sigmoid layer, one will arrive a at point on either the relu curve or tanh curve where
the only variation between hyperparameter selection. Figure 12 provides further evidence that
the using the sigmoid activation allows the CNN layer to achieve their maximum effectiveness.
The sigmoid layer of Figure 12 also shows a weak in connection between the number of filters
used in each layer and the model’s RMSE score, with presence of a global minimum in the
model using two layers, with 16 filters in the first layer and 32 filters in the second layer.

17

However, with only one data point for each permutation, and given the results in Tables 4 and 5
(large possible variation in individual model performance), the connection is tenuous at best.

3.2 LSTM Layers – Neurons and Activation Functions

 Section 3.2 expands upon the testing performed in section 3.1. In this section, the links
between the RMSE score, number of neurons in a LSTM layer, and the activation function of
choice was explored. Furthermore, the number of layers was varied to gauge whether any trends
continue as the number of layers was increased. In each example one hyperparameter was
changed while the rest were held constant. The top 5 configurations from the CNN tuning stage
were carried forward to the LSTM tuning stage and train on each of the 60 unique LSTM layer
configurations.

Figure 14: Effect of activation function and number of neurons on RMSE score.

Figure 14 displays the effect of increasing the number of neurons, relative to each of the LSTM
activation functions, had on RMSE score, when a single LSTM layer was selected. The plots in
Figure 14 suggest that the choice of activation function had little effect on the performance of the
model. There was, however, a much stronger correlation between the number of neurons and the
performance of the model. The model with 50 neurons using the tanh activation function
performed the best overall, but the results of Table 4 and 5 suggest that there may be enough
variation in RMSE scores that this conclusion may prove incorrect if each model is all given
more chances to train.

10

30
50 80

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100

RM
SE

Number of Neurons

Relu Sigmoid Tanh

18

Figure 15: Effect of increasing number of neurons in 2nd LSTM layer, with

10 Filters in CNN layer and 10 Neurons in 1st LSTM layer.

Figure 16: Effect of increasing number of neurons in 2nd LSTM layer, with

10 Filters in CNN layer and 30 Neurons in 1st LSTM layer.

10
30

50
80

0

10

20

30

40

50

60

70

0 20 40 60 80 100

RM
SE

Number of Neurons in 2nd Layer

Relu Sigmoid Tanh

10
30

50

80

0

10

20

30

40

50

60

70

0 20 40 60 80 100

RM
SE

Number of Neurons in 2nd Layer

Relu Sigmoid Tanh

19

Figure 17: Effect of increasing number of neurons in 2nd LSTM layer, with

10 Filters in CNN layer and 50 Neurons in 1st LSTM layer.

Figure 18: Effect of increasing number of neurons in 2nd LSTM layer, with

10 Filters in CNN layer and 50 Neurons in 1st LSTM layer.

Figures 15-18 compare the effects of the three activation functions when there is a second LSTM
layer, with an increasing number of neurons. A significant trend exist between a low number of
neurons in an LSTM layer and the performance of the relu function relative to the sigmoid and
tanh functions. This suggests in cases where computation time (less filters means less
calculations) is prioritized over accuracy, the relu function will achieve the best results. In the 2
CNN layer, 2 LSTM layer configuration this effect became most pronounced in Figure 16, where

10

30
50 80

0

10

20

30

40

50

60

70

0 20 40 60 80 100

RM
SE

Number of Neurons in 2nd Layer
Relu Sigmoid Tanh

10
30 50 80

0

10

20

30

40

50

60

70

0 20 40 60 80 100

RM
SE

Number of Filters in 2nd Layer
Relu Sigmoid Tanh

20

30 filters in the CNN layer were used with an LSTM layer of 10 neurons. Comparing Figure 16
to Figure 14 shows that there was a decrease in RMSE score of 10, just by adding a second 10-
neuron LSTM layer. However, overall, there was not a significant performance gain by adding a
second LSTM layer.

Figure 19: Effects of adding a second CNN layer and a second LSTM Layer.

 The results shown in Figure 19 compare a single CNN layer, single LSTM layer HCL
model with a double CNN layer, double LSTM layer HCL model. The results in Figure 19 were
generated using single layer HCL model that used a 10 filter CNN layer, and double CNN layer
HCL model using 16 filters in the first layer and 10 filters in the second. In both models the final
LSTM layer was increased from 10 and 80 neurons, and in the two-layer HCL model the first
layer had 10 neurons. Ultimately, the Figure 19 demonstrates that there was no performance gain
inherent in doubling the amounts of unique layers, and that the only consistent gains come from
adjusting the CNN filters and LSTM neurons.

3.3 Optimizer

 Following the construction and training of each HCL model with unique CNN and LSTM
hyperparameters, the top 5 performing models were selected to pass through to the optimizer
testing stage. In this stage each model was trained using each of the four unique optimizers.

10

30 50 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90

RM
SE

Number of Neurons in 2nd LSTM Layer

2 CNN Layers vs 1 CNN Layer, 2 LSTM Layer

Relu, 2 CNN Layers Sigmoid, 2 CNN Layers

Tanh, 2 CNN Layers Relu, 1 CNN Layer

Sigmoid, 1 CNN Layer Tanh, 1 CNN Layer

21

Figure 20: Effects of optimizer on model performance.

 Figure 20 compares the results generated by each of the top 5 HCL models with each of
the four optimizers. Each of the models used the sigmoid activation function, with 10 filters. The
lone HCL model with 2 CNN layers used 16 filters in its second layer. Both single LSTM layer
models had 80 neurons in their LSTM layer. The single-CNN, double-LSTM layer model using
the sigmoid activation function had 80 neurons in its first layer and 50 neurons in its second. The
other single-CNN, double-LSTM layer HCL model had 10 and 80 neurons in its first and second
LSTM layers, respectively. Among the four optimizers, the adagrad and rmsprop optimizers
performed the most consistently, with the rmsprop optimizer generating the top three, 5th and 6th
best RMSE scores. Unexpectedly, the adadelta optimizer performed better, relative to itself,
when the tanh function is used in the LSTM layers. This suggests that performs better when the
output of a neuron maintains its sign, as the sigmoid only produces positive numbers as an
output.

adadelta

adagrad

adam rmsprop
0

20

40

60

80

100

RM
SE

Optimizer
1 CNN, 1 LSTM, Sigmoid 1 CNN, 1 LSTM, Tanh
1 CNN, 2 LSTM, Sigmoid 1 CNN, 2 LSTM, Tanh
2 CNN, 2 LSTM, Tanh

22

3.4 Batch Size

Figure 21: Effect of batch size on performance.

 Figure 19 compares the performance of each HCL model as its batch size was increased
from 200 to 600. Each model contains a single CNN layer using 10 filters and the sigmoid
activation function. The legend contains information pertaining to the LSTM layer(s) parameters,
indicating the number of layers, the layer(s)’s respective number of neurons, the activation
function and finally the model’s optimizer. Except for the single-layer LSTM HCL model with
using the tanh activation function and rmsprop optimizer, each HCL model showed an increase
in performance as the batch size was increased. The model that did not, had a local minimum
RMSE score with a batch size of 400, suggesting a batch size of 400 was the optimum size for
that particular configuration. Given the consistency of the other models’ performance with batch
size, it would appear that further performance gains could be achieved by testing a lower range
of batch sizes.

3.5 Number of Engines

The results of this section were generated by increase the number of engines from which data
could be included in each training input. The original HCL model only trained on data input
containing information from one engine at a time. The idea was to allow the HCL model to
establish patterns more easily in data sourced from different engines enabling greater
generalization.

0

10

20

30

40

50

0 100 200 300 400 500 600 700

RM
SE

Batch Size
1 LSTM, 80 N, Sigmoid, Rmsprop
1 LSTM, 80 N, Tanh, Adam
1 LSTM, 80 N, Tanh, Rmsprop

23

Figure 22: Effect of number of engines in input on performance.

 Figure 21 shows that increasing the number of engines in the input data clearly inhibits
model performance. This suggests the model may have become over specialized to the input data
or that the idea is fundamentally flawed.

3.6 Window Size

This section varied the size of the input data tensor. For time-series data, the window size is the
number of time dependent cycles of data given to input into the model during training. For this
stage of optimization, the window size ranged from 10 to 40 cycles in 10 cycle increments.

Figure 23: Effects of window size on performance.

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5

RM
SE

Number of Engines
1 LSTM, Sigmoid, Rmsprop 1 LSTM, Tanh, Adam
1 LSTM, Sheet4!N8:N10 2 LSTM, [80, 50] N, Sigmoid, Rmsprop
2 LSTM, [80, 50] N, Tanh, Adam

15

17

19

21

23

25

27

29

0 10 20 30 40 50

RM
SE

Window Size
1 LSTM, 80 N, Sigmoid, Rmsprop 1 LSTM, 80 N, Tanh, Adam

1 LSTM, 80 N, Tanh, Rmsprop 2 LSTM, [80, 50] N, Sigmoid, Rmsprop

2 LSTM, [80, 50], Tanh, Adam

24

Figure 22 shows a that there was a correlation between window size and performance. In all
cases, increasing the window size improved performance, however, the shapes of each graph
indicate whether further increase will improve performance. Both double-layer models indicate
that they are at or very near local minima, thus further increases will not improve performance.
The curve of the single-layer LSTM model indicates that it the rate of increasing performance is
decreasing as the window size grows. This suggests that further increases in window size would
allow that HCL model to achieve better results. The curve of the single-layer LSTM model
utilizing the rmsprop optimizer and tanh activation function appears to have an increasing slope
suggesting that further increases in window size will result in greater relative gain. Finally, in the
curve of the single-layer LSTM model utilizing the adam optimizer, there is a local minimum
indicating further increases in window size will result in decreased performance.

 4 Conclusion

 There were three objectives established in section 3.1, of which the second objective had
two qualifying conditions. The main objective and second objective were design requirements,
while the third object was a design goal.

1. The results generated using the design algorithm shall generate results that show clearly
discernable trends in RMSE, attributable to changes in a specific hyperparameter or a
specific hyperparameter combination.

2. The algorithm under design shall generate consistent results in conjunction with the APH
model designed by Amin [2].

a. The algorithm shall use a consistent and broad set of hyperparameters.
b. The algorithm shall generate consistent RUL predictions between training runs,

across all four datasets.

3. The algorithm under design should generate results comparable to those generated by
Amin outlined in Figure 1.

 There is overwhelming support that the requirements of Objective 1 were met. The
design of the algorithm only ever alters one hyperparameter while keeping the remaining
hyperparameters constant. This is reflected in Figures 14-22 all showing discernable trends in the
results allowing for simple validation of the effect of a hyperparameter or lack thereof. There
were limited cases of complex or seemingly random variations in performance, such as the effect
of the adam optimizer in Figure 20, but even that result showed discernable trends correlating to
the changes in hyperparameters permutations. Therefore objective 1 was met.

 The confirmation of Condition A of Objective 2 is easily verified by the design of the
algorithm itself, which uses lists of predetermined hyperparameters. The ordered manner in
which the lists of hyperparameter permutations are generated, using “for loops” further satisfies
Condition A. The requirement for a broad array of hyperparameters, in Condition A is verified

25

by evidence of the use of the 8 of 10 of the hyperparameters used in Amins genetic algorithm
[2], with the addition of two more, by the author. Condition B was designed for, by including a
retraining loop between each hyperparameter testing stage. However, a lack of repeated results
precludes the verification of Condition A. Therefore, objective two can only be considered
partially met.

 Finally, Objective 3 was not met. The author was unable to replicate the performance
obtained by Amin as presented in Figure 1. This was not achieved using either Amin’s genetic
algorithm or the author’s algorithm. However, results below an RMSE of 18 were generated in
trial runs of the algorithm.

 In conclusion, this algorithm shows promise as a tool to help improve the results generated not
only using the genetic algorithm designed by Amin [2], but for any machine learning model with
a large number of hyperparameters. The algorithm has shown that individual components of a
model can be isolated, tested and tuned eliminating the need to try every possible permutation of
hyperparameters. This helps the genetic algorithm immensely as certain hyperparameters, such
as the sigmoid activation function used in the CNN layers, can be set to a constant. This allows
the user to increase to options for specific hyperparameter classes without decreasing confidence
in the final result. The algorithm is not perfect though, so a number of suggestions are made for
future work, in the next section.

5 Future Work

 As mentioned in the preface of section 3, the results in this thesis were generated only
using the FD001 dataset. Testing was done using the other three datasets, so there is no reason
why the algorithm will not generate similar results with the other datasets. Furthermore,
Condition B was not fully verified. More testing should be done on dataset FD001 as well to
confirm whether or not the steps taken to reduce inherent model training inconsistency in the
algorithm are adequate. More can be done to increase ease of use. The current version of code is
effectively a script. The algorithm could be further reduced to function calls and a “for loop” to
progress the algorithm through each stage.

26

References

[1] National Air and Space Administration: Prognostics Center of Excellence, "PCoE Datasets,"
2008. [Online]. Available: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/.

[2] U. Amin, "Prediction of Remaining Useful Life for Aircraft Engines Using Convolutional
and Reccurent Neural Networks," Ryerson University, Toronto, 2021.

[3] D. L. Goodman, J. Hofmeister and F. Szidarovszky, "Approaches For Prognosis and Health
Management/ Monitoring (PHM)," 2019. [Online]. Available: DOI:
10.1002/9781119356677.ch2.

[4] G. J. Vachtsevanos and K. P. Valavanis, "A Novel Approach to Integrated Vehicle
Management," 2018. [Online]. Available:
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-AVT-
305/MP-AVT-305-11.pdf.

[5] National Air and Space Admiistration, "NASA Software: Commercial Modular Aero-
Propulsion System Simulation," [Online]. Available:
https://software.nasa.gov/software/LEW-18315-1.

[6] Offnfopt, Multi-Layer Neural Network-Vector-Blank.svg, Wikimedia Commons, the free
media repository, 2015.

[7] S. Sumit, "A Comprehensice Guide to Convolutional Neural Networks," Towards Data
Science, 15 December 2018. [Online]. Available: https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[8] M. ElDali and K. D. Kumar, "Fault Diagnosis and Prognosis of Aerospace Systems Using
Growing Reccurent Neural Networks and LSTM," Ryerson University, Toronto, 2020.

	Thesis Title Page
	Thesis Body
	Acknowledgements
	Abstract
	Table of Contents
	Nomenclature
	List of Figures
	List of Tables
	1 Introduction
	1.1 Alternate PHM Approaches
	1.1.1 Model-Based PHM
	1.1.2 Usage-Based PHM
	1.1.3 Condition-based Maintenance

	1.2 C-MAPPS Dataset
	1.3 Artificial Neural Networks and Machine Learning
	1.3.1 Basics of Neural Networks
	1.3.2 Convolutional Neural Networks
	1.3.3 Long Short-Term Memory Layers
	1.3.4 Input Layer Design
	1.3.5 Model Accuracy Scoring

	2. Algorithm Design
	2.1 Problem Statement
	2.2 Objectives and Requirements
	2.3 Trade-off Study
	2.4 Design Process
	2.4.1 Preliminary Hyperparameter Selection
	2.4.2 Final Hyperparameter Selection
	2.4.3 Design Assumptions
	2.4.4 Algorithm Operation

	3. Results and Analysis
	3.1 CNN Layers - Filters and Activation Functions
	3.2 LSTM Layers – Neurons and Activation Functions
	3.3 Optimizer
	3.4 Batch Size
	3.5 Number of Engines
	3.6 Window Size

	4 Conclusion
	5 Future Work
	References

