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Heterogeneous networks with dense deployment of small cells can employ cognitive features to efficiently utilize the available
spectrum resources. Spectrum sensing is the key enabler for cognitive radio to detect the unoccupied channels for data transmission.
In order to deal with shadowing and multipath fading in sensing channels, cooperative spectrum sensing is designed to increase
the accuracy of the sensed signal. In this paper, an optimized local decision rule is implemented for the case that the received data
from primary users are possibly correlated due to the sensing channel impairments. Since the prior information is unavailable in
the real systems, Neyman-Pearson criterion is used as the cost function.Then, a discrete iterative algorithm based on Gauss-Seidel
process is applied to optimize the local cognitive user decision rules under a fixed fusion rule. This method with low complexity
can minimize the cost using the golden section search method in a finite number of iterations. ROC curves are depicted using
the achieved probability of detection and false alarm by numerical examples to illustrate the efficiency of the proposed algorithm.
Simulation results also confirm the superiority of the proposed method compared to the conventional topologies and decision
rules.

1. Introduction

Heterogeneous networks are the next generation of cellu-
lar networks with densely deployed low power small cells
that may reuse spectrum resources across the space. Since
heterogeneous networks may experience spectral crowd-
ing, the main challenge is to coexist efficiently with other
licensed users. According to the Federal Communication
Commissions (FCC) frequency allocation chart, the spec-
trum bands dedicated to the licensed or primary user (PU)
are highly underutilized [1]. Cognitive radio features may
equip heterogeneous networks with spectrum sensing within
the small cells to acquire available channels and enhance their
operations [2]. Cognitive radio can provide opportunistic
spectrum access for unlicensed or secondary users and
optimize the spectral efficiency [3, 4]. The most critical
requirement of cognitive radio is the sensing mechanism

to exploit the spectrum holes while suppressing the mutual
interference with PUs [4–6].

An optimal spectrum sensingmechanism is necessary for
cognitive radios tomaximize detection probability of the PUs’
signal subject to the constraint of the limited probability of
false alarm. Among various signal detection schemes, energy
detection has been recognized with low computational com-
plexity to be used for spectrum sensing.This method is based
on measuring and comparing the received signal strength
from the PUs with a threshold, within the channels and a
certain sensing time [7]. However, the performance of energy
detector is degraded with sensing channel impairments
which leads to attenuation and variations of the sensed signal.
Multipath fading, path loss, shadowing, and hidden node
problem inevitably compromise the sensing reliability. An
effective approach to overcoming these uncertainty problems
and improving the performance is cooperative sensing [8–11].
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Cooperative sensing can be used to acquire information
of an intelligent wireless network with various applications
including radar and sensor networks [12, 13]. The design
of cooperative sensing can increase the reliability, flexibility,
speed, and coverage area of the sensing network. In a cogni-
tive radio with large number of sensing nodes, cooperative
spectrum sensing can increase the detection probability
of primary users and the channel utilization. Cooperative
spectrum sensing can enhance the sensing performance by
exploiting the spatial diversity in the observations of spatially
located secondary users which transmit their sensing infor-
mation to a fusion center for final decision. It has been shown
that increasing the number of cooperative users can decrease
the required detector sensitivity and sensing time. Moreover,
a cooperative approach needs lower communication band-
width and is more robust to channel fading [14–16].

The drawback of the feedback overhead of spectrum
sensing is overcome in [14] by using a fixed number of
common feedback channels so that each node compares the
sensing result with a threshold and selects the appropriate
data to be sent to the fusion center. In [15], a sensor selection
strategy is proposed to minimize the energy consumption
for cooperative spectrum sensing under satisfactory pri-
mary user detection performance. A decentralized spectrum
sensing approach is proposed in [16] to reduce the overall
overhead and power consumption of the network by elim-
inating the need for fusion center node. In this scheme,
each secondary user communicates only with its adjacent
nodes via one-hop transmissions within several rounds to
reach global convergence. The performance of cooperative
spectrum sensing over Rayleigh fading channel is improved
in [17] using an adaptive linear combiner with weights to
secondary user decisions.

In this paper, a cooperative spectrum sensing is deployed
for cognitive heterogeneous network with a parallel approach
instead of centralized topology that needs wideband chan-
nels. With correlated local sensing observations, a numerical
algorithm is proposed to optimize the local decisions of
local cognitive users (LCUs) and send the information to a
common cognitive user (CCU) as fusion center. The design
of parallel topology increases the reliability, flexibility, speed,
and coverage area of the sensing network. Based on Bayesian
optimality criteria with independent observations, the opti-
mized rule for decision making of each LCU is likelihood
ratio test (LRT) [18–20]. Since the prior probabilities of
hypotheses and accurate illustration of cost coefficients are
not available in real systems, common Bayesian method for
maximizing LRT is not practical.Therefore,Neyman-Pearson
criterion is adopted for optimum local decision rule (OLDR)
so that the probability of false alarm is limited to a desired
value while the probability of missed detection is minimized
[21].

The rest of this paper is organized as follows. Section 2
describes cooperative sensing schemes and Section 3 illus-
trates the systemmodel.The proposed iterative algorithm for
decision making at LCUs is described in Section 4.Then, this
method is simulated and the results are analyzed in Section 5.
The paper is concluded in Section 6 and the open issues for
future researches are addressed.

2. Cooperative Sensing Schemes

Various cooperative sensing schemes by LCUs depending on
the decision making methods of the fusion center can be
used to carry out PU detection. In a centralized network
approach, local sensors send the raw sensing information to a
fusion center which decides on the presence or absence of the
PU.However, the transmission of these unprocessed observa-
tions does not efficiently utilize the bandwidth. Cooperative
sensing methods perform some preliminary data processing
at each sensor to condense the information [21]. The major
cooperative configurations include parallel, serial, and tree
topologies as shown in Figure 1.

In a parallel sensing model, each LCU can decide inde-
pendently based on its sensed information and pass the
quantized local decision to a CCU whose role as a fusion
center is to make a final decision on PU existence according
to the spatially collected results. Even though extensive inves-
tigations have been done for cooperative sensing schemes to
increase the sensing accuracy, most of the research assumed
that the sensed information is independent and identically
distributed within the local sensors [22]. This assumption is
practically unrealistic as shadowing is highly correlated when
several cognitive users are geographically proximate with
similar shadowing effects. Spatially correlated shadowing
which exponentially depends on the distance can bound the
achievable gain of cooperative sensing [23].

For optimal PU detection, Bayesian criterion with maxi-
mizing LRT is the most common method in signal detection
theory. For a given set of observations,𝑌 = [𝑦

1
, . . . , 𝑦

𝑁
], it has

been shown that when the prior information of probabilities
is known, LRT is the optimized detection method in which
the likelihood ratio is calculated for the received signals and
compared to a threshold 𝜃 as Λ(𝑌) = 𝑃(𝑌 | 𝐻

1
)/𝑃(𝑌 |

𝐻
0
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. In

many cases, it is difficult to know these cost coefficients and
prior probabilities. Instead, Neyman-Pearson cost function 𝐹

is replaced under a condition that false alarmprobability𝑃
𝑓
is

less than a certain value 𝛼 as𝐹 = 𝜆(𝑃
𝑓

−𝛼)+𝑃
𝑚
, where 𝜆 is the

Lagrange multiplier, 𝑃
𝑓
is the probability of false alarm, and

𝑃
𝑚
is the probability of detection, respectively. To provide the

final relations for𝑃
𝑑
and𝑃
𝑓
, note that𝑃

𝑑
= 1−∫

Ω
𝑃(𝑌 | 𝐻

1
)𝑑𝑌

and 𝑃
𝑓

= 1 − ∫
Ω

𝑃(𝑌 | 𝐻
0
)𝑑𝑌, where Ω is decision region

of 𝐻
0
determined due to the type of local decision rules and

fusion rules.
In the case of Bayesian criterion for centralized network,

as shown in Figure 1(a), there are 𝑁 sensors that send their
observations directly to one fusion center before processing
and the final decision 𝑈

𝑓
is made based on a fusion rule as

𝐺(𝑌) while

𝑈
𝑓

=

{

{

{

0, 𝐻
0
decision, if 𝐺 (𝑌) ≤ 0

1, 𝐻
0
decision, if 𝐺 (𝑌) > 0.

(1)

The region of final decision based on 𝐻
0
is ΩCN = {𝑌 :

𝐺(𝑌) ≤ 0}. The fusion rule 𝐺(𝑌) is defined while minimizing
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Figure 1: Major topologies of cooperative sensing networks.

the cost function of 𝐹 = 𝑐 + ∫
ΩCN

𝑓(𝑌)𝑑𝑌, where 𝑐 = (𝑝
0
𝑐
10

+

𝑝
1
𝑐
11

), 𝑓(𝑌) = 𝑎
1
𝑃(𝑌 | 𝐻

1
) − 𝑎
0
𝑃(𝑌 | 𝐻

0
), with 𝑎

1
= (𝑐
01

−

𝑐
11

)𝑝
1
, and 𝑎

0
= (𝑐
10

−𝑐
00

)𝑝
0
.Therefore, the optimumdecision

region of centralized network is ΩCN = {𝑦
𝑖

: Λ(𝑌) < 𝜃CN, 𝑖 =

1, . . . , 𝑁}, where Λ(𝑌) = 𝑃(𝑌 | 𝐻
1
)/𝑃(𝑌 | 𝐻

0
), 𝜃CN is the

threshold of decision making for centralized network, and 𝑁

is the number of sensors.
In parallel topology with distributed local observations

as shown in Figure 1(b), Bayesian criterion leads to LRT for
local decision rule. For a network with 𝑁 receivers and OR
fusion rule, it can be written that ΩLRT,OR = {𝑦

𝑖
: Λ(𝑦

𝑖
) ≤

𝜃
𝑖
, 𝑖 = 1, . . . , 𝑁}, where 𝜃

𝑖
is the threshold for the 𝑖th receiver.

Meanwhile, for AND fusion rule, it is given that ΩLRT,AND =

𝑆 − {𝑦
𝑖

: Λ(𝑦
𝑖
) > 𝜃

𝑖
, 𝑖 = 1, . . . , 𝑁}, where 𝑆 is the whole

decision region. Based on Neyman-Pearson criterion, the
values of thresholds 𝜃

𝑖
can be achieved byminimizing the cost

function of 𝐹, which in the case of OR fusion rule is

𝐹LRT,OR = 𝛾 + ∫
ΩLRT,OR

𝑓 (𝑌) 𝑑𝑌 (2)

and for AND fusion rule is

𝐹LRT,AND = 𝛾 + ∫
ΩLRT,AND

𝑓 (𝑌) 𝑑𝑌, (3)

where 𝛾 = 𝜆(1 − 𝛼), 𝑓(𝑌) = 𝑃(𝑌 | 𝐻
1
) − 𝜆𝑃(𝑌 | 𝐻

0
).

The region of decision making for parallel sensing
approach under cognitive radio channels is discussed in the
next section. The local decision rules of local cognitive users
and fusion rule are formulated to design an optimal algorithm
with Neyman-Pearson criterion.

3. System Model

In this work, a cellular network scenario so called as hetero-
geneous network is considered for densely populated areas
such that macrocells are mixed with low power cells. The
small cells of heterogeneous networks can increase the signal
coverage for the areas that are not accessible by macrobase
stations to optimize the reliability and data rate. However, in
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this network, the coverage areas of small cells and primary
systems can be overlapped. This mutual interference occurs
when they are using the same time-frequency resources while
spatially located in a certain distance apart from each other
as shown in Figure 2. The frequency reusing of adjacent
macrocell user equipment (M-UE) or other primary systems
by small cells can create interferences to heterogeneous
user equipment (H-UE). Hence, H-UE which operates as
secondary users needs to transmit under a certain power
level, which is acceptable by the licensed users, PUs, and at
the same time mitigates the interference from the primary
system.

The decision making on the presence or absence of PU
signals is a critical part of spectrum sensing procedure at
cognitive H-UE. In practice, each cognitive piece of H-UE
plays a role same as distributed LCUs that is equipped with
spectrum sensing by energy detection to locally measure
the PU signal transmission power and frequencies. The
local decisions are the output of certain local rules, at these
distributed pieces of H-UEs that will be sent to H-eNB with
the capability of a CCU to process the received information
and produce the final decision based on the embedded fusion
rule. Then, in the presence of PU signals, pieces of H-UE
adapt their configurations to avoid mutual interferences with
primary network. Since the channel impairments affect the
input observations of each energy detector at H-UE, the
assumption of independency is not correct any more and
a cooperative decision making is required as the solution.

Cognitive features enable the secondary users to analyze
interference using the spectrum sensing mechanism that is
mainly performed in LCUs, whereas the decision is made for
the cooperative network. Let us consider 𝑁 distributed LCUs
as shown in Figure 3. In this figure, the 𝑖th LCU is shown
as LCU

𝑖
that receives the observation signals, 𝑦

𝑖
, from the

PU through the sensing channels. Each LCU
𝑖
sends its local

binary decision, 𝑢
𝑖
, to the fusion center, the CCU, tomake the

final decision using the fusion rule.Themetrics of probability
of detection, 𝑃

𝑑,𝑖
, and probability of false alarm, 𝑃

𝑓,𝑖
, for

local decision at the 𝑖th LCU
𝑖
are derived to be employed

for the performance evaluation. Assuming that during the
sensing time CUs do not broadcast and there is no mutual
interference between them, the vector of the received signal
through the sensing channels is defined as

𝑌 = 𝐻 ⋅ 𝑆
𝑝

+ 𝑉, (4)

where 𝑆
𝑝
denotes PU’s transmitted signal, 𝐻 = [ℎ

1
, . . .,

ℎ
𝑖
, . . . , ℎ

𝑁
] states the sensing channel gain vector, and 𝑌 =

[𝑦
1
, . . . , 𝑦

𝑖
, . . . , 𝑦

𝑁
] shows the observation vector in which

𝑦
𝑖
denotes the received signal at LCU

𝑖
. The vector of addi-

tive white Gaussian noise (AWGN) at LCU receivers is
𝑉 = [V

1
, . . . , V

𝑖
, . . . , V

𝑁
]. The observations of PU’s signal

are received through the sensing channels at LCU
𝑖
. In this

scenario, the correlated channels lead to correlated sensing
observations at the LCU receivers that analyze the data as
a binary hypothesis testing form. 𝐻

0
and 𝐻

1
are the binary

hypotheses which define the absence and presence of PU,
respectively. Then, the general form of the received signal at
the spectrum sensing part of LCU is

𝐻
1

: 𝑦
1

= ℎ
1

⋅ 𝑆
𝑝

+ V
1
, . . . , 𝑦

𝑁
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,
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= V
1
, . . . , 𝑦

𝑁
= V
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.

(5)

Given that 𝑦
𝑖
denotes the available observation of PU

signal at LCU
𝑖
receiver, the local decision rule 𝑔

𝑖
(𝑦
𝑖
) is

employed by LCU
𝑖
to make a binary decision 𝑢

𝑖
about the

existence of PU signal. Based on a set of local decision rules
as 𝐺(𝑌) = [𝑔

1
(𝑦
1
), . . . , 𝑔

𝑖
(𝑦
𝑖
), . . . , 𝑔

𝑁
(𝑦
𝑁

)], the fusion center,
CCU, receives the local decision as

𝑢
𝑖

= {
0, 𝑔

𝑖
(𝑦
𝑖
) ≤ 0,

1, 𝑔
𝑖
(𝑦
𝑖
) > 0.

(6)

TheCCU follows a fusion rule as𝑄(𝑈)which is a Boolean
function and whenever 𝑄(𝑈) = 0 the final decision is taken
as 𝐻
0
; otherwise it is 𝐻

1
. The local decision rule maps the

observation set 𝑌 = 𝑦
1
, . . . , 𝑦

𝑁
to a local decision set 𝑈 =

𝑢
1
, . . . , 𝑢

𝑖
, . . . , 𝑢

𝑁
, where 𝑢

𝑖
∈ {0, 1}, 𝑖 = 1, . . . , 𝑁. The

combination of local binary decisions 𝑢
𝑖
results in 2

𝑁 states.
Thus, the 2

2
𝑁

is the total number of states for final decision
𝑢
𝑓

= 𝑄(𝑈) and

𝑄 (𝑈) = {𝑄
𝑛
, 𝑢
𝑖

= mod (
𝑛 − 1

2(𝑖−1)
, 2) , 1

≤ 𝑛 ≤ 2
𝑁

} ,

(7)
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where mod(𝐴, 2) is the division remaining of 𝐴/2 and 𝑢
𝑖

=

mod((𝑛 − 1)/2
(𝑖−1)

, 2) is the 𝑖th bit of 𝑛. Hence, 𝑄(𝑈) =

{𝑄
𝑛
, 𝑛 = ∑

𝑁

𝑖=1
𝑢
𝑖
2
𝑖−1

+ 1}. Consider two different sets as
𝑆
0

= {𝑛 : 𝑄
𝑛

= 0} and 𝑆
1

= {𝑛 : 𝑄
𝑛

= 1} such that
𝑆
0

∪ 𝑆
1

= {1, 2, . . . , 2
𝑁

}; then ΩOLDR = {𝑦
𝑖

: 𝑄
𝑛

= 0, 𝑛 ∈ 𝑆
0
},

where ΩOLDR defines the region of optimal decision making
for parallel cooperative cognitive network which leads to the
final decision of 𝐻

0
. With a given set of 𝑆

0
, the fusion rule

𝑄(𝑈) is deterministic and constant and, for every 𝑛 belonging
to 𝑆
0
, 𝑛th composition will result in a decision on 𝐻

0
. For

a fixed fusion rule, the region of final decision is ΩOLDR =

⋃
𝑛∈𝑆
0

Ω
𝑛
, where Ω

𝑛
denotes the region of 𝑛th combination of

𝑄 as

Ω
𝑛

= {𝑌 : 𝑢
𝑖

= mod (
𝑛 − 1

2(𝑖−1)
, 2) , 𝑄

= 𝑄
𝑛
} .

(8)

In the next section, the optimization problem for parallel
local decision rules is reduced to solve a set of fixed point
integral equations that minimizes the Neyman-Pearson cost
function. The decision rules are digitized for simplicity, and
Gauss-Seidel algorithm [24] and Golden Section search [25]
are applied to find the final solutions.

4. OLDR Algorithm with Gauss-Seidel Process

Each distributedH-UE/LCU
𝑖
performs the spectrum sensing

by energy detection to detect the initial PU signal obser-
vation, 𝑦

𝑖
. This distributed information from all LCUs is

used by the OLDR algorithm to cooperatively optimize local
decision rules, 𝑔

𝑖
, according to the fix central fusion rule at

H-eNB/CCU, AND/OR, and achieve the final minimized 𝑃
𝑓

with Gauss-Seidel process. Based on the Neyman-Pearson
criterion, the optimum local decision rule is defined to
minimize the corresponding cost function 𝐹:

𝐹 (𝐺; 𝑄) = 𝜆 (1 − 𝛼) + ∫
ΩOLDR

𝑓 (𝑌) 𝑑𝑌, (9)

where 𝑄 is the Boolean fusion function, 𝑌 denotes local
observations, and 𝑓(𝑌) = 𝑃(𝑌 | 𝐻

1
) − 𝜆𝑃(𝑌 | 𝐻

0
). Given

that 𝛾 = 𝜆(1 − 𝛼), according to the above relations, it can be
concluded that

𝐹 (𝐺; 𝑄) = 𝛾 + ∫
𝑌∈ΩOLDR

𝑓 (𝑌) 𝑑𝑌 = 𝛾

+ (∫
𝑔
𝑖
(𝑦
𝑖
)≤0

(∫
⋃
𝑛∈𝑆
01,𝑖

Ω
𝑛/𝑖

− ∫
⋃
𝑛∈𝑆
02,𝑖

Ω
𝑛/𝑖

) + ∫
𝑦
𝑖

∫
⋃
𝑛∈𝑆
02,𝑖

Ω
𝑛/𝑖

)

⋅ 𝑓 (𝑌) 𝑑𝑌,

(10)

where Ω
𝑛/𝑖

is Ω
𝑛
excluding 𝑦

𝑖
, 𝑆
01,𝑖

, 𝑆
02,𝑖

are two subsets
of 𝑆
0
such that 𝑆

01,𝑖
∪ 𝑆
02,𝑖

= 𝑆
0
. 𝑆
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is a subset of 𝑛

belonging to 𝑆
0
with 𝑢

𝑖
= 0, 𝑆

01,𝑖
= {𝑛 : 𝑄

𝑛
=

0, 𝑢
𝑖

= 0}, and similarly 𝑆
02,𝑖

is a subset of 𝑛 belonging
to 𝑆
0
with 𝑢

𝑖
= 1, 𝑆

02,𝑖
= {𝑛 : 𝑄

𝑛
= 0, 𝑢

𝑖
= 1}.

The set of optimum local decision rules that minimizes the
𝐹 function in (10) can be defined as 𝐺 = (𝑔

1
, . . . , 𝑔

𝑁
)

[26]:

𝑔
𝑖
(𝑦
𝑖
) = (∫

⋃
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Ω
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− ∫
⋃
𝑛∈𝑆
02,𝑖

Ω
𝑛/𝑖

)

⋅
𝑓 (𝑌) 𝑑𝑌

𝑑𝑦
𝑖
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(11)

where Ω
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= {(𝑦
1
, . . . , 𝑦

𝑖−1
, 𝑦
𝑖+1

, . . . , 𝑦
𝑁

) : 𝜙(𝑔
𝑖
, 𝑢
𝑖
) ≤ 0},

and 𝜙(𝑔
𝑖
, 𝑢
𝑖
) = (1/2 − 𝑢

𝑖
)𝑔
𝑖
. Consequently, each set of

optimum local decisions is derived by solving several fixed
point integral equations as

Γ
𝑄

(𝐺) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
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∪
𝑛∈𝑆
01,1

Ω
𝑛
/1

− ∫
∪
𝑛∈𝑆
02,1

Ω
𝑛/1

)
𝑓 (𝑌) 𝑑𝑌

𝑑𝑦
1

.

.

.

(∫
∪
𝑛∈𝑆
01,𝑖

Ω
𝑛/𝑖

− ∫
∪
𝑛∈𝑆
02,𝑖

Ω
𝑛/𝑖

)
𝑓 (𝑌) 𝑑𝑌

𝑑𝑦
𝑖

.

.

.

(∫
∪
𝑛∈𝑆
01,𝑁

Ω
𝑛/𝑁

− ∫
∪
𝑛∈𝑆
02,𝑁

Ω
𝑛/𝑁

)
𝑓 (𝑌) 𝑑𝑌

𝑑𝑦
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

Therefore, the problem of optimum cooperative sensing
is essentially reduced to optimizing a set of 𝐺 = (𝑔

1
, . . . , 𝑔

𝑁
)

that satisfies the integral equations. An iterative algorithm
based on Gauss-Seidel process can approximate the solution
of the above equations [26]. This method is used for solving
a matrix of linear equations when the number of system
parameters is too high to find a solution by common PLU
techniques. The initial requirement is that the diagonal
elements of the matrix of equations must be nonzero and
convergence is provided when this matrix is either diagonally
dominant or symmetric and positive definite [24]. Let us
consider the local decision rule in 𝑗th iteration stage of the
algorithm as 𝐺

(𝑗) and the initial set as 𝐺
(0). Gauss-Seidel

process for optimum local decision rules can be defined
as

𝐺
(𝑗+1)

= Γ
𝑄

(𝐺
(𝑗)

) , ∀𝑗 = 0, 1, 2, . . . , (13)
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where

𝑔
𝑖

(𝑗+1)
(𝑦
𝑖
)

= (∫
⋃
𝑛∈𝑆
01,𝑖

Ω
𝑛
/𝑖

− ∫
⋃
𝑛∈𝑆
02,𝑖

Ω
𝑛
/𝑖

)

⋅
𝑓 (𝑌) 𝑑𝑌

𝑑𝑦
𝑖

.

(14)

To reduce the computation complexity, the discrete vari-
ables 𝑡

𝑖
are extracted from 𝑦

𝑖
as 𝑇 = {𝑡

1
, . . . , 𝑡

𝑖
, . . . , 𝑡

𝑁
} and

(14) can be described as

𝑔
𝑗+1

𝑖
(𝑡
𝑖
)

= ( ∑

⋃
𝑛∈𝑆
01,𝑖

Ω
𝑛
/𝑖

− ∑

⋃
𝑛∈𝑆
02,𝑖

Ω
𝑛
/𝑖

)
𝑓 (𝑇) Δ𝑇

Δ𝑡
𝑖

.

(15)

Hence, the discrete local decision rules are defined as:

𝑍
𝑖
(𝑡
𝑖
) = 𝐼 (𝑔

𝑖
(𝑡
𝑖
)) ,

𝐼 (𝑥) = {
0, 𝑥 ≤ 0,

1, 𝑥 > 0.

(16)

Accordingly, the cost function 𝐹 is approximated as

𝐹 (𝑍; 𝑄) = 𝛾

+ ∑

𝑛∈𝑆
0

( ∑

{𝑡
1
:𝑍
1
=𝑢
1
}

∑

{𝑡
𝑖
:𝑍
𝑖
=𝑢
𝑖
}

∑

{𝑡
𝑁
:𝑍
𝑁
=𝑢
𝑁

}

𝑓 (𝑇) Δ𝑇) .

(17)

Therefore,

𝑔
𝑗+1

𝑖
(𝑡
𝑖
) = ( ∑

𝑛∈𝑆
01,𝑖

− ∑

𝑛∈𝑆
02,𝑖

)

∑

𝑡
1

⋅ ⋅ ⋅ ∑

𝑡
𝑖−1

∑

𝑡
𝑖+1

⋅ ⋅ ⋅ ∑

𝑡
𝑁

𝑖−1

∏

𝐿=1

(1 −


mod (

𝑛 − 1

2(𝐿−1)
, 2) − 𝑍

𝐿

(𝑗+1)
(𝑡
𝐿
)


)

𝑁

∏

𝐿=𝑖+1

(1 −


mod (

𝑛 − 1

2(𝐿−1)
, 2) − 𝑍

𝐿

(𝑗)
(𝑡
𝐿
)


)

𝑓 (𝑇) Δ𝑇

Δ𝑦
𝑖

.

(18)

For the simplicity of computations, discrete local decision
rules 𝑍

𝑖
(𝑡
𝑖
) are substituted instead of 𝑔

𝑖
(𝑡
𝑖
) as both of them

have the same region of decision making. Note that the iter-
ative process converges when absolute relative approximate
error |(𝑍

𝑖

(𝑗+1)
(𝑡
𝑖
) − 𝑍

𝑖

(𝑗)
(𝑡
𝑖
))/𝑍
𝑖

(𝑗+1)
(𝑡
𝑖
)| × 100 ≪ 𝜀, where

𝜀 > 0 is prespecified tolerance parameter. For each positive
value of Δ𝑡

𝑖
and initial selection of 𝑍

0

𝑖
, the algorithm is

converged after a certain number of iterations to a set of
𝑍
𝑗

𝑖
that satisfies the convergence condition. Figure 4 presents

the flowchart of the developed optimization algorithm based
on the golden section search method for Neyman-Pearson
criterion. Golden section ratio of golden section search is
applied with 𝜑 = 0.618 or symmetrically (1 − 0.618) = 0.382

to condense the width of the range in each step [25].

5. Simulation and Discussion

For the performance evaluation of the proposed OLDR
algorithm and compared to the other methods, the receiver
operating characteristic (ROC) curve is depicted as a graph of
𝑃
𝑑
versus 𝑃

𝑓
. To depict ROC curves for the OLDR algorithm,

in each iteration, the values of 𝑃
𝑑
and 𝑃

𝑓
are provided based

on the OLDR rules. As a benchmark, the simulation results
are compared to centralized network and parallel network
with LRT local decision rule.

When normal pdf is assumed for the sensed signals,
the conditional pdf ’s under both hypotheses 𝐻

0
and

𝐻
1
are defined as 𝑝(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
| 𝐻
0
) = 𝑁(𝜇

0
, 𝐶
0
)

and 𝑝(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
| 𝐻
1
) = 𝑁(𝜇

1
, 𝐶
1
), where 𝐶

0

and 𝐶
1
are the covariance matrices under 𝐻

0
and 𝐻

1
,

respectively. With correlation coefficient −1 ≤ 𝜌 ≤ 1,
the covariance matrix is written as 𝐶(𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
) =

[𝜎
2

1
, 𝜌
12

𝜎
1
𝜎
2
, . . . , 𝜌

1𝑁
𝜎
1
𝜎
𝑁

; . . . ; 𝜌
𝑁1

𝜎
𝑁

𝜎
1
, 𝜌
𝑁2

𝜎
𝑁

𝜎
2
, . . . , 𝜎

2

𝑁
].

The performance of OLDR algorithm for cooperative
spectrum sensing is shown in this section. Centralized
network (CN) with a fusion center is considered as the
optimum benchmark for the evaluation of the proposed
method. Numerical results are analyzed for both OLDR
and LRT local decision rules with AND/OR fusion rules.
Then, the effect of various correlation coefficients (𝜌)
on ROC curves is investigated with correlated sensed
signals.

In the first case, a cooperative spectrum sensing with two
local cognitive users is considered. Given that the received
observations from PU are random Gaussian signal 𝐻 ⋅ 𝑆

𝑝

with mean 𝜇
𝐻⋅𝑆
𝑝

= 2 and variance 𝜎
2

𝐻⋅𝑆
𝑝

= 1, added to 𝑛
1

and 𝑛
2
as independent zero mean Gaussian noises such that

𝜎
2

𝑛
1

= 2 and 𝜎
2

𝑛
2

= 1, then the conditional pdf ’s under both
hypotheses, 𝐻

0
and 𝐻

1
, are 𝑝(𝑦

1
, 𝑦
2

| 𝐻
0
) = 𝑁(𝜇

0
, 𝐶
0
) and

𝑝(𝑦
1
, 𝑦
2

| 𝐻
1
) = 𝑁(𝜇

1
, 𝐶
1
). Therefore, 𝜇

0
= [0; 0], 𝐶

0
= [2, 0;

0, 1], 𝜇
1

= [2; 2], 𝐶
1

= [3, 1; 1, 2].
Figure 5 compares the performance of OLDR and LRT

with centralized network. As illustrated in this figure, OLDR
withAND fusion rule outperforms the other techniques since
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Pf(𝜆
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P(y1, . . . , yN |H0)dy1· · · dyN

Figure 4: The proposed optimization algorithm (OLDR).

it is closer to the CN curve. Meanwhile, OLDR performs
better than LRT with the same fusion rules; for example, at
𝑃
𝑓

= 0.02, OLDR shows 4% improvement in 𝑃
𝑑
compared to

the LRT with the same fusion rules.
In the second case, parallel spectrum sensing with two

local cognitive users are considered with correlated received
signals as 𝜇

0
= [0; 0], 𝜇

1
= [2; 2], 𝐶

0
= 𝐶
1

= [𝜎
2

1
, 𝜌𝜎
1
𝜎
2
;

𝜌𝜎
1
𝜎
2
, 𝜎
2

2
]. The results of simulations with 𝜌 = 0.1 are

presented in Figure 6 which illustrates that the OLDR with
AND fusion rule is more proximate to the CN curve and
achieves a better performance than OR fusion rule; for
instance, at 𝑃

𝑓
= 0.02 the improvement is about 4%.

The performance of the same network for various values
of correlation coefficient (𝜌) is shown in Figure 7. According
to these results, the performance is enhanced by the reduction
of the correlation coefficient (𝜌).

Now a network of three local cognitive users with Gaus-
sian signal observations is considered with mean 𝜇

𝐻⋅𝑆
𝑝

= 2

and variance 𝜎
2

𝐻⋅𝑆
𝑝

= 1, added to zero mean independent
noises with 𝜎

2

𝑛
1

= 3, 𝜎2
𝑛
2

= 2, and 𝜎
2

𝑛
3

= 1.Thus, the covariance
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Figure 6: ROC comparison for deterministic received signal in
correlated Gaussian noises with two LCUs.

matrices under 𝐻
0
and 𝐻

1
are described as 𝐶

0
= [3, 0, 0;

0, 2, 0; 0, 0, 1] and 𝐶
1

= [4, 1, 1; 1, 3, 1; 1, 1, 2].
Figures 8 and 9 show that increasing the number of local

cognitive users enhances the performance of the network. For
Gaussian received signals with independentGaussian noise at
𝑃
𝑓

= 0.02, the 𝑃
𝑑
is enhanced about 3% for OLDR with three

LCUs comparing to OLDR with two LCUs.
From these results, it is concluded that, for a fixed fusion

rule, OLDR algorithm shows a superior performance of
local decision rules to detect primary users compared to
LRT method. Apparently, the probability of primary user
detection is increased with the number of cooperative local
cognitive users equipped with spectrum sensing. When the
sensing channels are correlated, results show performance
degradation in higher correlation coefficients.
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pendent Gaussian noises with different numbers of LCUs.

OLDR method is a low complexity solution for the
problem of (11) which is reduced to optimizing a set of local
decision rules, 𝐺 = (𝑔

1
, . . . , 𝑔

𝑁
), that satisfies the integral

equations (12). In addition, the computation complexity of
(14) has been reduced by considering discrete variables for
the observations 𝑦

𝑖
, as well as local decision rules 𝑔

𝑖
, to 𝑡
𝑖
,

and 𝑍
𝑖
, respectively. For the centralized network, there is

no local decision rule, and the local decision rule of LRT
method is defined as Λ(𝑦

𝑖
) ≤ 𝜃

𝑖
, where 𝜃

𝑖
is the threshold

for the 𝑖th receiver. In each iteration of the algorithm with
LRT,Λ(𝑌

𝑖
) is calculated for all observations,𝑦

𝑖
, and compared

with threshold 𝜃
𝑖
. For the initial threshold within a range

of 𝑀 levels, the time complexity of each local decision rule
can be written as 𝑂(𝑀). According to (18), the local decision
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Figure 9: ROC comparison for deterministic signal in correlated
Gaussian noises with different numbers of LCUs.
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Figure 10: Time complexity comparison of local decision rules.

rule of OLDR algorithm, 𝑔
𝑗+1

𝑖
, has to be updated at each

iteration with the time complexity of 𝑂(𝑁
2
) compared to the

other local decision rules.The time complexity comparison of
local decision rules for 𝑀 = 20 is shown in Figure 10 which
describes the increase of the calculations number propor-
tional to the number of the receivers, 𝑁. However, since CN
method consumes too large bandwidths for sending the data
to the fusion center and LRT method assumes independent
observations, they cannot be considered as optimum solution
for cooperative cognitive users with correlated sensed signals.

6. Conclusion

In this paper, the cooperative spectrum sensing for cognitive
heterogeneous network has been designed with a parallel
configuration. An optimum algorithm for local decision
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rule based on Neyman-Pearson criterion with correlated
observations from PUs has been proposed. This scheme,
based on a discrete Gauss-Seidel iterative algorithm, leads to
a low complexity method of finding an optimum solution for
LCU’s decision rules. The performance evaluation shows the
efficiency of this algorithm with fixed fusion rules in which
AND rule outperforms the OR fusion rule. Furthermore,
with lower correlation coefficients, a better performance is
achieved. The experimental measurements and implemen-
tation of OLDR algorithm for a distributed heterogeneous
cognitive network are a challenging open area for the future
work. Meanwhile, optimizing the fusion rule simultaneously
with the local decision rules, study of different topologies
of cooperative cognitive networks, the performance analysis
of multilevel decision rules, and shadowing in reporting
channels are among the other suggestions for the future
exploration.
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