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Damage to composite structures occurs from impact, fatigue, or over stress and can be critical in the safe operation of wings or any
structural member.)is paper presents a method for detection of multiple cracks present in laminated composite bending-torsion
coupled cantilevered beams using natural frequency data, a type of Nondestructive testing (NDT). )is methodology relies on
both experimentally collected natural frequencies and frequencies calculated using a mathematical model. Precise natural
frequencies are calculated using a new dynamic finite cracked element (DFCE) formulated within and based on dynamic
trigonometric shape functions. An algorithm is devised based on the Adam–Cawley criterion and extended to laminated
composites with multiple cracks. )is method has shown exceptional convergence on the size and location of cracks using
a number of modes of free vibration with and without error in measured frequencies.

1. Introduction

A wealth of information is bundled up in a sequence of
numbers that define the way in which beams deform in time.
Lightweight structures with complex anisotropic behavior
are trending in industry because of their low weight to
stiffness/strength ratio. Additionally, the stiffness of these
materials can be tailored through ply orientation and stacking
sequence to achieve unique modal responses tailored for
specific applications. Analytical methods for evaluating the
vibration of laminated composite structures have progressed
rapidly in recent years incorporating more complex behaviors
to facilitate amore accurate evaluation of dynamics, structural
integrity, and fatigue. Natural frequencies are numbers that
describe the cyclic time required for a flexible structure to take
forms in correspondingly naturally deformed shapes or
modes. Knowledge of these frequencies can be used to avoid
stability issues in design of buildings, bridges, and any other
structures where natural frequencies are critical. Wings are
common cantilevered beam-like structures, where the

knowledge of crack initiation or propagation is critical in flight
safety. Currently, the structural integrity of aircraft wings is
tested when aircraft are grounded, generally with X-ray
scanning equipment. Although this process can be time
consuming, the safety of passengers and operators is para-
mount and essential in preventing catastrophic failure of
commercial or military aircraft. Wings consist of a unique set
of natural frequencies that are fundamentally based on mass,
stiffness, and geometry. If the mass and geometry of a beam is
constant, any changes in natural frequencies can be attributed
to stiffness. When a crack is introduced in a beam, an in-
stantaneous drop in stiffness consequently results in a change
in the characteristic frequencies. Analyzing and tracking these
changes by implementing the correct methodology can pro-
vide significant information about a structure and its integrity.

)is paper involves the study of how natural frequencies
can be used to find cracks of various sizes and locations in
laminated composite Euler–Bernoulli and St. Venant beams
nondestructively, a type of structural health monitoring. A
number of authors in the past have shown how altered mode
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shapes can be visually inspected in an attempt to indicate
possible defects in beams; however, often the size and location
of the crack remains ambiguous and difficult to determine with
confidence. Correspondingly, this becomesmore difficult when
errors in measured data are accounted for, or if the size of the
crack is small, visual detection of cracks using modes can be
very difficult, particularly when modes often contain noise.
)is research provides a definitive method to find defects in
complex coupled structures such as laminated composite
Euler–Bernoulli and St. Venant cantilever beams by simply
using frequency data. Collecting frequency data experimentally
from a structure with an unknown defect and subsequently
comparing these data with various natural frequencies obtained
from amodel with a known defect can provide detection of the
size and location of structural defects in a wing if these data are
managed by an appropriate algorithm. A crack can initiate
from over stress, impact, or fatigue, subsequently generating
reduction in stiffness and altering fundamental vibrations.

Cawley and Adams [1] first proposed a method for de-
termining the location of cracks in a cylindrical geometry
composed of homogeneous material using frequency data. In
contrast, there exist crack detection approaches that rely
solely on visual inspection of discontinuous natural modes;
however, visual changes in mode shapes can be difficult to
isolate crack locations and corresponding sizes, especially
when considering complex coupled responses inherent in
composites. A good review on damage identification methods
is done by Doebling et al. [2] who compared a number of
approaches including frequency-based crack detection, one of
which is the Adam–Cawley criterion [3], which was de-
veloped to determine the size and location of cracks in ho-
mogeneous materials, and subsequently provided excellent
results. )e criterion is much less accurate when used to
detect cracks in composite material where modes of free
vibration are naturally coupled. As a result, Wang [4] devised
a way to overcome this problem by resequencing the modes
by ordering the frequencies by themagnitude of the difference
between intact and crack frequencies from largest to smallest
change. Wang’s enhancement to the Adam–Cawley criterion
has shown to produce excellent detection of the size and
location of cracks in bending-torsion coupled composite
material. )is enhanced criterion can be described as
a damage index that involves the ratio of the change in ex-
perimental frequencies with the change in frequencies cal-
culated by model prediction. )ese changes in both
experimental and calculated frequencies are evaluated by
taking the difference of these frequencies from their respective
intact frequency values. )is forms a basis for the damage
index which is then normalized such that the size and location
of a crack are indicated by unity.

Amultiple crack detection strategy is devised herein based
on this criterion by implementing dual damage indices ca-
pable of confidently detecting two or more cracks for size
and location. )e introduction of this second indicator ul-
timately provides a measure of the primary indicator, si-
multaneously exposing both cracks. Accordingly, multiple
cracks are evaluated for both size and location using se-
quential order of modes and implementation of dual damage

indices. Correspondingly, it is important to have an accurate
model of a defective composite beam for the crack detection
to be successful. )is is accomplished with dynamic finite
elements (DFEs) combined with the appropriate local com-
pliance model of the cracks in a coupled bending-torsion
composite beam, thus establishing a dynamic finite cracked
element (DFCE). DFE has been validated by comparison of
both the finite element method (FEM) and the exact solution
of the natural frequencies of various beams. Although this
paper presents a new DFCE for damaged beams, it is envi-
sioned that the methodology could also be extended to two-
dimensional structural elements based on a new DFE recently
formulated for thin rectangular plates [5]. A laminated
composite DFE stiffness matrix is similar to the exact DSM
(dynamic stiffness matrix) [6], having a frequency-dependent
stiffness matrix, and is solved to extract the natural fre-
quencies using the Wittrick–William algorithm [7].

With these enhanced dynamic elements and the
methodology introduced in this paper, a highly robust de-
tection algorithm is capable of detecting multiple through
thickness cracks in a composite beam.

2. Dynamic Finite Cracked Element (DFCE)

Crack detection using natural frequencies relies considerably
on the accuracy of the representative of the beam. DFEs have
been shown in Reference [8] to provide highly accurate
natural frequencies for various beam geometries, for ex-
ample, uniform and nonlinear geometries and materials. For
this reason, the following formulation of a DFCE is created
and achieved using two DFEs adjoined with a local com-
pliance (Figure 1), where yc represents the length of the beam
from the fixed boundary along the span to the crack and L
denotes the length of the beam. Also, b and t denote the
width and thickness of the beam, respectively.

)e governing differentials governing the motion of
a coupled bend-twist composite beam based on the
Euler–Bernoulli bending and St. Venant torsion are given in
the following:

EI
z4h

zy4 + K
z3ψ
zy3 + m

z2h

zt2
� 0,

GJ
z2h

zy2 + K
z3h

zy3 + Iα
z2ψ
zt2

� 0,

(1)

where EI, GJ, and K are the bending, twisting, and coupled
bending-twisting rigidity of the laminated composite beam,
respectively, and defined in Appendix A, based on reduced
stiffness coefficients. m denotes the mass per unit length, and
Iα denotes mass moment of inertia per unit length of the
composite beam.)ese equations of motion are strictly valid
for symmetric stacking and unidirectional unbalanced
stacking of laminate plies. )e following variables for
bending and twisting displacements are defined based on the
assumption of harmonic motion:

h(y, t) � H(y)expiωt
,

ψ(y, t) � Ψ(y)expiωt
.

(2)
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�e Galerkin weighted residual method is used, ap-
propriate integration by parts is applied, and the continuity
requirements on the �eld variablesH andΨ are relaxed toC1
and C0, respectively, so that the integral weak form can then
be obtained. �e resulting weak integrals are then split over
two domains (0≤y≤yc and yc ≤y≤ L), each representing
one of the intact beam segments adjoined at the crack lo-
cation. �e weak form of �exural motion is then

Wf � ∫
yc

0
[EI(y)H1,yyδH1,yy +K(y)Ψ1,yδH1,yy

−m(y)ω2H1δH1] dy + ∫
L

yc
[EI(y)H2,yyδH2,yy

+K(y)Ψ2,yδH2,yy −m(y)ω
2H2δH2] dy

+ EI(y)H1,yy +K(y)Ψ1,y( )
y
δH1[ ]

yc

0

− EI(y)H1,yy +K(y)Ψ1,y( )δH1,y[ ]
yc
0

+ EI(y)H2,yy +K(y)Ψ2,y( )
y
δH2[ ]

L

yc

− EI(y)H2,yy +K(y)Ψ2,y( )δH2,y[ ]
L

yc
.

(3)

And twisting motion is

Wt � ∫
yc

0
[−GJ(y)Ψ1,yδΨ1,y −K(y)H1,yyδΨ1

+ Iα(y)ω
2Ψ1δΨ1] dy + ∫

yc

0
[−GJ(y)Ψ2,yδΨ2,y

−K(y)H2,yyδΨ2 + Iα(y)ω
2Ψ2δΨ2] dy

+ GJ(y)Ψ1,y +K(y)H1,yy( )δΨ1[ ]
yc
0

+ GJ(y)Ψ2,y +K(y)H2,yy( )δΨ2[ ]
yc
0 ,

(4)

which also satis�es the principle of virtual work (WEXT� 0,
for free vibrations):

Wf +Wt � total internal virtual work. (5)

Boundary conditions associated with a clamped-free
cantilever beam are such that

@y � 0, H1(0) � θ1(0) � Ψ(0) � 0,
δH1 � δθ1 � δΨ1 � 0, and

@y � L, Sh2(L) �M2(L) � T2(L) � 0,
(6)

where resulting shear force, Sh(y), bending moment,M(y),
and torsional torque, T(y), are

Sh(y) �
d

dy
EI(y)

d2H

dy2
+K(y)

dΨ
dy

( ),

M(y) � −EI(y)
d2H

dy2
−K(y)

dΨ
dy
,

T(y) � GJ(y)
dΨ
dy

+K(y)
d2H

dy2
.

(7)

�e nonzero boundary conditions (Figure 2) generated
at the crack can be written in the following matrix form:

WBC
f �

Sh1(y) 0 0 0
0 M1(y) 0 0
0 0 Sh2(y) 0
0 0 0 M2(y)


 and (8)

WBC
t �

T1(y) 0
0 T2(y)

[ ]. (9)

A local �exibility at the crack location is developed by
combining two intact beam members with a spring, rep-
resenting the sti�ness at the crack [4]. �e natural fre-
quencies can then be calculated for this damaged composite
beam structure. Forces and moments are continuous across
the crack, whereas displacements are discontinuous and
given by the following expression:

H2

H2,y

Ψ2,y






�

c22 0 c26

0 c44 0

c26 0 c66




Sh

M

T






+

H1

H1,y

Ψ1






, (10)

where c22, c44, c26, and c66 are the components of the local
�exibility at the crack location and are based on the stress
intensity factors and correction functions corresponding to
a particular mode of the crack. �ese components are de-
�ned by the following equation:

cij �
z2

zPizPj
∫
t/2

−t/2
∫
a

0
{D1 KI1 + KI4 +KI5( )2 +D2K

2
II3

+D12 KI1 +KI4 +KI5( )KII3 +D3 KIII3 +KIII6( )2}dα dz.
(11)

Fundamentally, three distinct modes of a crack are il-
lustrated in Figure 3.

KI, KII, and KIII are the stress intensity factors, re-
spectively, for each crack mode. Coe�cientsD1,D2,D12, and
D3 were developed by Nikpour et al. [9] to describe the strain
energy release rate per unit crack width. A local �exibility is
then de�ned for the crack location (Figure 4) using these
stress intensity factors, based in part by Tada’s geometric
correction functions [10] (homogeneous material), and also
corrected for material anisotropy by Bao et al. [11]. Ac-
cordingly, the �nal sti�ness matrix representing the local
�exibility at the crack location (Figure 4) can be derived as

Kc �
[C]−1 −[C]−1

−[C]−1 [C]−1
 . (12)

Integration by parts is performed second time on the
system after the equations have been discretized over the

a
b

xy

t

xc L – xc 

z

Figure 1: Geometry of a laminated cracked composite beam.
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length of the beam. Nondimensional bending and torsional
contributions to the element’s virtual work, Wk

f and Wk
t ,

respectively, are

Wk
f � ∫

ξc

0
H1

EI/l3kδH1,ξξξξ − lkmω
2δH1︸�����������︷︷�����������︸

∗a1

 dξ

+ ∫
1

ξc
H2

EI/l3kδH2,ξξξξ − lkmω
2δH2︸�����������︷︷�����������︸

∗a2

 dξ

+
EI

l3k
δH1,ξξH1,ξ − δH1,ξξξH1[ ]ξc0

+
EI

l3k
δH2,ξξH2,ξ − δH2,ξξξH2[ ]

ξc
0

+
K

l2k
∫
ξc

0
Ψ1,ξδH1,ξξdξ +

K

l2k
∫
1

ξc
Ψ2,ξδH2,ξξ dξ

+WBC
f ξc( ) and

Wk
t � ∫

ξc

0
Ψ1 −GJ/lkδΨ1,ξξ − lkIαω

2δΨ1︸����������︷︷����������︸
∗b1

 dξ

+ ∫
1

ξc
Ψ2 −GJ/lkδΨ2,ξξ − lkIαω

2δΨ2︸����������︷︷����������︸
∗b2

 dξ

+
GJ

lk
δΨ1,ξΨ1[ ]ξc0 +

GJ

lk
δΨ2,ξΨ2[ ]1ξc

+
K

l2k
∫
ξc

0
H1,ξξδΨ1,ξdξ +

K

l2k
∫
1

ξc
H2,ξξδΨ2,ξ dξ

+WBC
t ξc( ),

(13)

where the length of the beam is discretized to ξ � y/lk,
satisfying

∑
NE

k�1
Wk

f +∑
NE

k�1
Wk

t � 0. (14)

Local virtual work expressions evaluated at the crack
boundary, WBC

f (ξc) and WBC
t (ξc), can be replaced in the

sti�ness matrix with the new local �exibility matrix. DFE is
a hybrid numerical method combining the accuracy of the
DSM method [6] with the �nite element method (FEM).
Shape functions are derived such that integral expressions
∗a1,
∗a2,
∗b1, and ∗b2 in (9) and (10) are equal to zero.

Consequently, dynamic trigonometric shape functions must
be frequency dependent (Appendix B), and accordingly, the
�nal globally sti�ness matrix is also frequency dependent
and given as

K � KIN,1 +Kc +KIN,2. (15)

�is �nal frequency-dependent sti�ness matrix, denoted
by K, represents the sti�ness of a cracked beam element,
where KIN,1 and KIN,2 are the intact beam sti�ness matrices
andKc is the local crack sti�ness.�is results in the following
nonlinear eigenvalue problem:

K(ω) U{ }n[ ] � 0{ }. (16)

�e solution of the natural frequencies pertaining to
this nonlinear eigenvalue problem can be attained by
implementation of the Wittrick–William root counting
algorithm [7].

3. Multiple Crack Detection

In this section, a frequency-based strategy to detect both
multiple sizes and locations of cracks within a damaged
laminated composite cantilevered beam is presented. �e
technique was �rst devised by Adams et al. [3] for revealing
the presence of a single crack in homogeneous material.
Naturally, by inspection of themodal response of a structure,
if the natural frequencies are lower as compared to its
original measurements, it can be reasonably postulated that
there is a corresponding drop in sti�ness potentially in-
dicating a discontinuity along the length of the beam.

M M
T T

S

S

Figure 2: Sign convention, where S denotes the transverse force, M denotes the bending moment, and T denotes the torque.

a

(a)

a

(b)

a

(c)

Figure 3:�ree fundamental modes of a crack. (a) Mode I: opening of the crack (extension). (b) Mode II: sliding of the crack (shearing). (c)
Mode III: tearing of the crack (twisting).

1 2
Kc

ξc lk – ξc

Figure 4: Cracked beam element.
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Although changes in natural frequencies of a structure may
indicate the presence of a crack, the challenge is using these
data to determine how large and the location of such a local
damage(s). )e following methodology is based on dual
damage indices, where the primary index follows the
equation derived by the Cawley–Adams and the second
index evaluates the accuracy of the primary index. Corre-
spondingly, the second index simultaneously determines the
locations and sizes of both cracks. In the following defini-
tions, it is important to be consistent with the definition of
each crack; therefore, crack-1 is defined as the discontinuity
closest to the fixed boundary of the cantilevered beam,
whereas crack-2 is defined as the crack closest to the free end
of the beam. )e frequency ratio of different modes, i and j,
as a function of both crack size and location for crack-1 and
crack-2 is defined as

eij α1, η1, α2, η2( 􏼁 �

δλi/δλj

δωi/δωj

− 1 if
δλi

δλj

≥
δωi

δωj

,

δωi/δωj

δλi/δλj

− 1 if
δωi

δωj

≥
δλi

δλj

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

for
i � 1, 2, 3, . . . , n− 1,

j � 2, 3, . . . , n,

⎧⎪⎨

⎪⎩

(17)

where δω is the change in frequency between intact and
damaged frequencies by model prediction and δλ is the
change in frequency between intact and damaged fre-
quencies collected by experiment. )e size and location of
crack-1 are denoted by α1 and η1, respectively, whereas the
second crack by α2 and η2. For each crack-2 size and lo-
cation, there exists a normalized primary indicator, Eqrst,
with counters q, r, s, and t, which are equal to 10α1, 10η1,
10α2, and 10η2, respectively.

Eqrst α1, η1, α2, η2( 􏼁 �
min ζqrst􏼐 􏼑

ζqrst α1, η1, α2, η2( 􏼁
, 0≤Eqrst ≤ 1.

(18)

For each crack-1 size and location, there exists (s × t) – 1
primary indices for crack-2, where

ζqrst α1, η1, α2, η2( 􏼁 � 􏽘
n−1

i�1
􏽘

n

i�i+1
eij α1, η1, α2, η2( 􏼁. (19)

)e normalized damage index Eqrst indicates unity
when crack-2 is likely found, and less than unity for
crack-2 size α2 and location η2 that do not coincide with
a crack. )e key is to determine which primary index is
indicating the correct crack-2. )is is accomplished by
implementing a second index to measure the relative
accuracy of each (s × t)–1 primary index using the fol-
lowing equation:

Fqr �
−1

ln μqr − 1􏼐 􏼑
, (20)

where

μqr �
􏽐

k
s�1􏽐

l
t�1Eqrst α1, η1, α2, η2( 􏼁− 1􏼐 􏼑

(kl− 1)
, (21)

where k is the total number of incremental locations and l is
the total number of incremental sizes sweeping across the
beam for the second crack. )e accuracy of this primary
indicator is then evaluated by this normalized secondary
indicator, Fqr. )e secondary index provides a value of unity
for the correct primary index. Subsequently, the secondary
index indicates the size and location of the first crack while
simultaneously indicating which primary index is specifying
the correct size and location of crack-2.

Detection becomes more difficult when considering
error in measured frequencies. However, by increasing the
number of modes when computing the two indices more
precision in the detection is achieved diminishing the effects
of this error. )e number of modes is increased until the
prediction of both the primary and secondary indices is
unchanged for the location and size of each crack (i.e., Fqr

and Eqrst remain constant with increasing modes).

4. Numerical Examples

4.1. Free Vibration and Validation. Evaluation of the free
vibration of a damaged Euler–Bernouilli and St. Venant
torsion uniform cantilevered composite beam is demon-
strated in the following example. By implementing the
theory of a new dynamic finite cracked element (DFCE)
based on the theoretical development in Section 2 and
comparing these results with the well-established exact
closed-form DSM solution, validation of a new cracked
element is confirmed.

Consider a laminated composite beam with unidirec-
tional plies at 70 degrees, length of 0.5m, width of 0.1m, and
thickness of 5mm, with a crack introduced at midspan. )e
fiber has an elastic modulus of 275.6GPa, shear modulus of
114.8GPa, Poisson’s ratio of 0.2, and a density of
1900 kg/m3. )e matrix has an elastic modulus of 2.76GPa,
shear modulus of 1.036GPa, and Poisson’s ratio of 0.33 with
a density of 1600 kg/m3. Moreover, the laminate is designed
with a fiber volume fraction of 0.5.

Natural frequencies of this beam are presented in Ta-
ble 1 for various crack sizes. For a beam with no damage,
the natural frequencies calculated using both the DFE and
DSM are nearly identical. When a crack is introduced, and
the size of the crack is increased, a reduction in the fun-
damental frequencies is observed for all modes. )e
amount of frequency decay depends on the type of mode
and stress intensity factor most influencing the crack mode.
For example, the first three modes are presented in
Figures 5–7 for both bending and twisting displacements.
)e mode most influenced by the introduction of a crack,
both by change in frequency value and modal displace-
ment, is the third mode, which is prominently influenced
by torsion.

4.2. Multiple Crack Detection. Consider a slender beam
assembled with DFE beam elements with DFCE elements at
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the appropriate damaged locations. �e beam is now con-
sidered to be damaged in two distinct locations by two
through thickness edge cracks present at η1 � 0.1 and η2 �
0.8 with corresponding crack sizes of α1 � 0.3 and α2 � 0.6.
Mechanical and geometric properties of this beam remain
identical as the previous example with exception of the
unidirectional ply angle of 15 degrees. For expediency,
a cracked beam numbering system is implemented such that
a multicracked beamwith the �rst crack η1, α1 and the second
crack η2,α2 is referred to as a 10η1 10α1 10η2 10α2[ ] beam.
For example, the current beam is a [1386] beam. An illus-
tration of this nondimensional multicracked beam is shown
in Figure 8.

�e motivation for presenting this example is to show
that a multicracked detection algorithm can be used to
successfully converge on more than one crack, for both size
and location, using frequency data. �e �rst �ve natural
frequencies are calculated and presented in Table 2, for both
a damaged and intact laminated composite beam. Primary
and secondary damage indexes are then calculated using the

method described in Section 3 (Figures 9 and 10). �ese
results are based on zero error between experimentally
collected frequencies and frequencies calculated using
DFCE.

It is reasonable to conclude, natural frequencies collected
by experiment have uncertainty in measurement. Sub-
sequently, it is practical to test the detection methodology
with error included in these pseudoexperimental frequency
values, in the order of 2-3%. Consequently, this structural
health monitoring technique requires additional modes to
accurately converge on the location and size of each crack,
namely, 5 modes of free vibration (Figures 11 and 12). In
contrast, detection of cracks when zero error exists in
measured frequencies ideally requires the minimum number
of modes (2 modes). It is important to note the order of the
frequencies when forming the damage indices. Natural
frequencies must be ordered based on the largest to smallest
percent di�erence between intact and damaged frequencies.
�is is speci�c requirement when searching for damage in
laminated composite beams [4].

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

No crack
a/b = 0.1
a/b = 0.2

a/b = 0.3
a/b = 0.4

a/b = 0.5
a/b = 0.6

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

No crack
a/b = 0.1
a/b = 0.2

a/b = 0.3
a/b = 0.4

a/b = 0.5
a/b = 0.6

(b)

Figure 5: First mode: (a) bending and (b) torsion of a composite beam with a crack located at 50% span and unidirectional ply angle of 70°.

Table 1: Natural frequencies of a composite beam with a crack at midspan.

Crack ratio 1st mode (Hz) 2nd mode (Hz) 3rd mode (Hz)
No crack, DSM 11.97 70.92 145.80
No crack, DFE 11.97 71.08 145.85
α � 0.2 10.92 70.35 119.85
α � 0.4 7.78 67.53 90.33
α � 0.6 4.16 62.29 79.64
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Figure 7:�ird mode: (a) bending and (b) torsion of a composite beam with a crack located at 50% span and unidirectional ply angle of 70°.
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Figure 6: Second mode: (a) bending and (b) torsion of a composite beam with a crack located at 50% span and unidirectional ply angle of 70°.
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5. Conclusion

�is paper presents a robust method for detecting multiple
cracks in laminated composite bending-torsion coupled
cantilevered beams using frequency data, a type of non-
destructive testing (NDT). In addition, a dynamic �nite
cracked element (DFCE) is formulated where the trigono-
metric shape functions used to generate the sti�ness matrix
are fundamentally frequency dependent. It has been shown,
by applying DFCEs with a dual damage index methodology,
damages in the form of through thickness edge cracks can
be detected for both size and location. �e results have
further demonstrated that cracks are identi�ed when error in
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Figure 10: Damage index for the second crack of a multicracked
[1386] composite beam with no measured errors.
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Figure 11: Damage index for the �rst crack of a multicracked
[1386] composite beam using 5modes with measured error ranging
from 2 to 3%.
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Figure 12: Damage index for the second crack of a multicracked
[1386] composite beam using 5modes with measured error ranging
from 2 to 3%.

Table 2: Frequency data collected for an intact and multicracked
Euler–Bernoulli [1386] laminated composite beam.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
fi (Hz) 6.82 42.72 71.40 119.59 214.22
fd (Hz) 5.65 29.88 67.62 69.87 176.40
Measured error (%) 2.8 2.8 3 2 2.3
f̃d with error (Hz) 5.81 30.72 69.65 71.27 180.46

Location, η
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e, α

0.1 

0.1 

Figure 8: Nondimensional plot (η� y/L, α� a/b) with actual crack
locations and sizes illustrated for an Euler–Bernoulli and St. Venant
torsion [1386] beam.
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Figure 9: Damage index for the �rst crack of a multicracked [1386]
composite beam with no measured errors.
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measured frequencies exists, by using multiple modes free
vibration.

Appendix

A

)e following relationships define the effective rigidities of
a unidirectional laminate beam [12, 13].

Flexural rigidity:

EI � b
D22 −D2

12
D11

􏼠 􏼡. (A.1)

Torsional rigidity:

GJ � 4b
D66 −D2

16
D11

􏼠 􏼡. (A.2)

Coupled bending-torsion rigidity:

K � 2b
D26 −D12D16

D11
􏼠 􏼡, (A.3)

where the bending terms of the constitutive equation are

Dij �
1
3

􏽘

NL

k�1
Qij􏼐 􏼑

k
h
3
k
− h

3
k−1

􏼐 􏼑, (A.4)

where Qij are the reduced stiffness coefficients of a unidi-
rectional laminate.

B

Four dynamic trigonometric shape functions (DTFSs)
pertaining to bending are

Nf1 �
cos(β(1− ξ))cosh β− cos(βξ) + cosh(β((1− ξ))cos β− cosh(βξ) + sinh(β((1− ξ))sin β− sin(β((1− ξ))sinh β􏼈 􏼉

Δ
,

Nf2 �
(1/β) −sin(β((1− ξ))cosh β− sin(βξ) + cosh(β(1− ξ))sin β− sinh(β(1− ξ))cos β + cos(β(1− ξ))sinh β− sinh(βξ)􏼈 􏼉

Δ
,

Nf3 �
−cosh(β(1− ξ)) + cosh(βξ)cos β + cos(βξ)coshβ− cos(β(1− ξ)) + sinh(βξ)sin β− sin(βξ)sinh β􏼈 􏼉

Δ
,

Nf4 �
(1/β) sinh(β(1− ξ))− cosh(βξ)sin β− cos(βξ)sinh β + sin(β(1− ξ)) + sinh(βξ)cos β + sin(βξ)cosh β􏼈 􏼉

Δ
,

(B.1)

where

Δ � 2(cosh β cos β− 1). (B.2)

Similar DTSFs have also been used previously [5, 8]. For
torsion, one can write

Nt1 �
sin c(1− ξ)

sin c
,

Nt2 �
sin(cξ)

sin c
,

β �

�����

mω2l4k
EI

4

􏽳

,

c �

������

Iαω2l2k
GJ

􏽳

.

(B.3)
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