
Research Article
Dynamic Finite Element Analysis of Bending-Torsion Coupled
Beams Subjected to Combined Axial Load and End Moment

Mir Tahmaseb Kashani, Supun Jayasinghe, and Seyed M. Hashemi

Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada M5B 2K3

Correspondence should be addressed to Seyed M. Hashemi; smhashem@ryerson.ca

Received 31 March 2015; Accepted 27 May 2015

Academic Editor: Matteo Aureli

Copyright © 2015 Mir Tahmaseb Kashani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The dynamic analysis of prestressed, bending-torsion coupled beams is revisited.The axially loaded beam is assumed to be slender,
isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based
on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using
the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space,
the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted
residual method to develop the Dynamic Finite Element (DFE) of the system. Having implemented the DFE in a MATLAB-
based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative
beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available
experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM) code and FEM-
based commercial software (ANSYS). In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of
end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive
force for various load combinations.

1. Introduction

Many terrestrial, mechanical, and aerospace structures can
be modeled as beams or assemblies of beams, and, therefore,
modelling and analysis of such structural elements have been
the subject of numerous investigations. Depending on their
applications, diverse geometries, loadings, and boundary
conditions arise in the structural modeling, leading to a
variety of problems. The dynamic, buckling, and vibrational
analyses of diverse beam configurations, represented by
different geometries and loading scenarios, governed by
pertinent theories, have been investigated and reported in
the literature. The vibrational analysis of prestressed beams
has been the subject of several studies. Neogy andMurthy [1]
carried out one of the earliest studies in this area and found
first natural frequency of an axially loaded column for two
different boundary conditions: pinned-pinned and clamped-
clamped. Krishn et al. [2], using Rayleigh-Ritz principle,
introduced an iterative approximate solutionmethod. Gellert

and Gluck [3] investigated the effect of applied axial force
on the lateral natural frequencies of a clamped-free beam
with transverse restraint. Pilkington and Carr [4] introduced
an approximate, noniterative solution for the frequencies of
beams subjected to end moment and distributed axial force.
Wang et al. [5] used Galerkin’s formulation, while Tarnai
[6] exploited the more generalized variational technique
to investigate the lateral buckling of beams hung at both
ends. Later, Jensen and Crawley [7] studied the frequency
determination techniques for cases where coupling is caused
by warping of composite laminate. They also compared the
results of Rayleigh-Ritz and partial Ritz methods with their
experimental results. Mohsin and Sadek [8] and Banerjee
and Fisher [9] implementedDynamic StiffnessMatrix (DSM)
method to find natural frequencies of an axially loaded
coupled beam, while Jun et al. [10] used DSM for vibrational
analysis of a composite beam. The DSM method was first
introduced by Kalousek [11] for an Euler-Bernoulli beam and
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ever since has been taken further by many researchers [9, 12–
16].

With the advent of more powerful computers in recent
years, there has been an increasing interest among researchers
to use computational methods in structural stability and
vibration analyses. This is mainly due to the fact that the
experimental methods are expensive, require extensive test-
ing and measuring techniques, and are limited in their scope
of predictions. On the other hand, the analytical solutions are
limited to special cases. The classical Finite Element Method
(FEM), as themost popular computational technique in solid
and structural mechanics, has been extensively utilized by
researchers [17–20]. In FEM, fixed shape functions are used
to express the field variables in terms of nodal values and
to develop the element matrices. Because of their ease of
manipulation, Hermite cubic shape functions are commonly
used to express elements lateral displacement, resulting in
an approximate solution including mass and static stiffness
matrices.

In 1998, Hashemi [21] introduced a semianalytical
Dynamic Finite Element (DFE) formulation, a hybrid
approach that bridged the gap between DSM and FEM
methods. Analogous to the conventional FEM, the DFE
formulation is based on the general procedure of weighted
residual method. However, in contrast to the FEM, the use of
frequency-dependent trigonometric shape functions in DFE
leads to a frequency-dependent (dynamic) stiffness matrix,
which represents both inertia and stiffness properties of the
element embedded in a singlematrix. As a result, theDFE can
be extended to more complex cases, for which a DSM cannot
be developed. Since its inception, the DFE method has been
extended to vibration analysis of various problems of beam-
like structures [22, 23]. Hashemi and Richard (1999) [22] pre-
sented dynamic shape functions and a DFE for the vibration
analysis of thin spinning beams.Hashemi andRichard (2000)
[23] presented a DFE for the free vibration coupled bending-
torsion beams and investigated the coupled bending-torsion
natural frequencies of axially loaded beams and the DFE
frequency results were validated against FEM and DSM [9]
data and those available in the literature. When compared
to the conventional FEM, the DFE generally exhibited much
higher convergence rates, especially for higher modes of
vibration.

Most of the above-mentioned investigations focused on
either uncoupled lateral or geometric/materially coupled
stability/vibration of beams. The presence of prestress in
structural components can also significantly change the
system’s stability, dynamic behavior, and response.Helicopter,
propeller, compressor and turbine blades, aircraft wing, and
rockets internal structure subjected to axial acceleration are
some examples of such situations where, at the preliminary
design stage, an axially loaded beam model is often used for
the dynamic and stability analyses of the system. Also, a beam
column with two planes of symmetry, connected through
semirigid connections, loaded in the plane of greater bending
rigidity by end moments, exhibits coupled torsional-lateral
displacements (in the plane of smaller bending rigidity).
The former configurations have been thoroughly investigated
and reported in open literature. However, studies on the

latter cases and the cases of coupled buckling and dynamic
behavior of beams subjected to combined axial load and
end moment as well as the coupling effects caused by end
moments are scarce. Joshi and Suryanarayan [24] developed
a closed-form analytical solution for vibrational analysis of a
simple uniformbeam subjected to both constant endmoment
and axial load. Later, they unified their solution for different
boundary conditions [25] and subsequently developed a gen-
eral iterative method for coupled flexural-torsional vibration
of initially stressed beams [26]. More recently, the authors
presented a comprehensive study of the coupled bending-
torsion stability and vibration analysis of such elements
using the conventional FEM, where the flexural and torsional
displacements were expressed using cubicHermite and linear
interpolation functions, respectively [27].

In what follows, a Dynamic Finite Element (DFE) for
the coupled flexural-torsional stability and vibration anal-
yses of slender beams, subjected to combined axial force
and end moment, is presented. Based on the previously
developed applicable governing differential equations of
motion, the weighted residual method and integration by
parts are exploited to develop the weak integral form of
the governing equations. The closed-form solutions of the
differential equations governing uncoupled bending and
torsional vibrations of an axially loaded beam are used as the
basis functions of approximation space to derive the perti-
nent Dynamic (frequency-dependent) Trigonometric Shape
Functions (DTSFs). Introducing the field variables, expressed
in terms of the DTSFs and the nodal displacements, into the
weak integral form of the governing equation followed by
extensive mathematical manipulation leads to the element
Dynamic Stiffness Matrix (DSM). The element matrices are
then assembled and the boundary conditions are applied to
form the system’s nonlinear eigenvalue problem, which is
finally solved to extract natural frequencies and modes of
the system or to evaluate the critical axial load/end moment.
It is worth noting that the present DFE is applicable to the
members composed of closed sections, with the torsional
rigidity, 𝐺𝐽, being very large compared to the warping
rigidity, 𝐸Γ, and with ends free to warp, that is, state of
uniform torsion, where the twist rate is constant along the
span. However, the presented DFE formulation can also be
extended to more complex configurations, such as thin-
walled beams with closed or open cross sections, where
torsion-related warping effects cannot be neglected.

2. Theory

Consider a linearly elastic, homogeneous, isotropic slender
beam subjected to two equal and opposite end moments,
𝑀, about 𝑧-axis and an axial load, 𝑃 (i.e., loaded in the
plane of greater bending rigidity), undergoing linear coupled
torsion and lateral vibrations along 𝑧-axis. Figure 1 depicts
the schematic of the problem, where 𝐿, ℎ, and 𝑡 stand for
the beam’s length, width, and height, respectively. Governing
differential equations of motion can be developed by defining
an infinitesimal element (refer to the authors’ earlier work
[27]) and by using the following assumptions:
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Figure 1: Schematic and coordinate system of the problem, with
axial load and end moment applied at 𝑥 = 0 and 𝑥 = 𝐿.

(1) The beam is made of linearly elastic material.
(2) The displacements are small.
(3) The stresses induced are within the limit of propor-

tionality.
(4) The cross section of the beam has two axes of

symmetry.
(5) The cross-sectional dimensions of the beam are small

compared to the span.
(6) The transverse cross sections of the beam remain

plane and normal to the neutral axis during bending,
and the beam’s torsional rigidity (𝐺𝐽) is assumed to
be very large compared with its warping rigidity (𝐸Γ),
and the ends are free to warp, that is, state of uniform
torsion.

The governing differential equations for a prismatic Euler-
Bernoulli beam (𝐸𝐼 and 𝐺𝐽 constant) subjected to static
constant axial force (𝑃) and end moment (𝑀

𝑧𝑧
), undergoing

coupled flexural-torsional vibrations caused by end moment,
is written as follows [27]:

𝐸𝐼𝑤
󸀠󸀠󸀠󸀠

+𝑃𝑤
󸀠󸀠

+𝑀
𝑧𝑧
𝜃
󸀠󸀠

−𝜌𝐴𝑤̈ = 0, (1)

𝐺𝐽𝜃
󸀠󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠󸀠

+𝑀
𝑧𝑧
𝑤
󸀠󸀠

−𝜌𝐼
𝑃

̈𝜃 = 0, (2)

where ()󸀠 stands for derivative with respect to 𝑥 (0 ≤ 𝑥 ≤ 𝐿)

and ()̇ denotes derivative with respect to 𝑡 (time).The internal
shear force, 𝑆(𝑥), bending moment, 𝑀(𝑥), and torsional
torque, 𝑇(𝑥), are defined as

𝑀(𝑥) = −𝐸𝐼𝑊
󸀠󸀠

,

𝑆 (𝑥) = −𝐸𝐼𝑊
󸀠󸀠󸀠

−𝑀
𝑧𝑧
𝜃
󸀠

−𝑃𝑊
󸀠

,

𝑇 (𝑥) = 𝐺𝐽𝜃
󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠

+𝑀
𝑧𝑧
𝑊
󸀠

.

(3)

As can be observed from (1) and (2), the lateral and torsional
displacements of the system are coupled by the endmoments,

𝑀
𝑧𝑧
. Exploiting the simple harmonic motion assumption,

displacements, 𝑤 and 𝜃, are written as

𝑤 (𝑥, 𝑡) = 𝑊̂ sin (𝜔𝑡) ,

𝜃 (𝑥, 𝑡) = 𝜃 sin (𝜔𝑡) ,
(4)

where 𝜔 denotes the frequency and 𝑊̂ and 𝜃 are the ampli-
tudes of flexural and torsional displacements, respectively.
Substituting (4) into (1) and (2) leads to having

𝐸𝐼𝑊̂
󸀠󸀠󸀠󸀠

+𝑃𝑊̂
󸀠󸀠

+𝑀
𝑧𝑧
𝜃
󸀠󸀠

−𝜌𝐴𝜔
2
𝑊̂ = 0, (5)

𝐺𝐽𝜃
󸀠󸀠

+𝑃𝐼
𝑃
𝜃
󸀠󸀠

+𝑀
𝑧𝑧
𝑊̂
󸀠󸀠

−𝜌𝐼
𝑃
𝐴𝜔

2
𝜃 = 0. (6)

Application of the Galerkin weighted residual formulation
[19, 20] leads to the integral form of the differential equations
(5) and (6), written as

𝑊
𝑓

= ∫

𝐿

0
𝛿𝑊(𝐸𝐼𝑊

󸀠󸀠󸀠󸀠

+𝑃𝑊
󸀠󸀠

+𝑀
𝑧𝑧
𝜃
󸀠󸀠

+𝜌𝐴𝜔
2
𝑊)𝑑𝑥

= 0,

(7)

𝑊
𝑡
= ∫

𝐿

0
𝛿𝜃 (𝐺𝐽𝜃

󸀠󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠󸀠

+𝑀
𝑧𝑧
𝑊
󸀠󸀠

+𝜌𝐼
𝑃
𝜔
2
𝜃) 𝑑𝑥

= 0,
(8)

where 𝛿𝑊 and 𝛿𝜃 are the weighting functions associated with
flexure and torsion, respectively. Performing integrations by
parts twice on (7) and once on (8) leads to the following weak
integral forms:

𝑊
𝑓
= ∫

𝐿

0
(𝐸𝐼𝑊

󸀠󸀠

𝛿𝑊
󸀠󸀠

−𝑃𝑊
󸀠

𝛿𝑊
󸀠

+𝑀
𝑧𝑧
𝜃
󸀠

𝛿𝑊
󸀠

+𝜌𝐴𝜔
2
𝑊𝛿𝑊)𝑑𝑥+ [(𝐸𝐼𝑊

󸀠

+𝑃𝑊
󸀠

+𝑀𝜃
󸀠

) 𝛿𝑊]
𝐿

0

− [(𝐸𝐼𝑊
󸀠󸀠

) 𝛿𝑊
󸀠

]
𝐿

0 = 0,

𝑊
𝑡
= ∫

𝐿

0
(𝐺𝐽𝜃
󸀠

𝛿𝜃
󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠

𝛿𝜃
󸀠

+𝑀
𝑧𝑧
𝑊
󸀠

𝛿𝜃
󸀠

−𝜌𝐼
𝑃
𝜔
2
𝜃𝛿𝜃) 𝑑𝑥− [(𝐺𝐽𝜃

󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠

+𝑀𝑊
󸀠

) 𝛿𝜃]

𝐿

0

= 0.

(9)

The above expressions also satisfy the principle of virtual
work (PVW),

𝑊 = 𝑊INT −𝑊EXT = 0, (10)

where 𝑊 is the total virtual work, 𝑊INT is the internal
virtual work, and𝑊EXT is the external virtual work. For free
vibrations,𝑊EXT = 0, and

𝑊INT = 𝑊
𝑓
+𝑊
𝑡
, (11)
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Figure 2: Discretized domain along the beam span.

where 𝑊
𝑓
and 𝑊

𝑡
denote the components of the virtual

work associated with flexure and torsion, respectively. It is
worth noting that the bracketed boundary terms in (6) and
(7) will vanish regardless of the type of boundary conditions
applied, for example, zero displacements and slope, 𝑊 =

𝑊
󸀠

= 𝜃 = 0, and virtual displacements and slope, 𝛿𝑊 =

𝛿𝑊
󸀠

= 𝛿𝜃 = 0, at the fixed end (i.e., where the field variables
are imposed) and zero resultant internal shear force, 𝑆(𝑥),
bending moment, 𝑀(𝑥), and torsional torque, 𝑇(𝑥), at the
free end (see expressions (3)).

The system is then discretized along the beam span by a
certain number of 2-noded, 6-DOF elements, such that (see
Figure 2)

𝑊INT =
NE
∑

𝑘=1
(𝑊
𝑘

𝑓
+𝑊
𝑘

𝑡
) , (12)

where the discretized (element) weak form equations are

𝑊
𝑘

𝑓
= ∫

𝑥𝑗+1

𝑥𝑗

(𝐸𝐼𝑊
󸀠󸀠

𝛿𝑊
󸀠󸀠

−𝑃𝑊
󸀠

𝛿𝑊
󸀠

+𝑀
𝑧𝑧
𝜃
󸀠

𝛿𝑊
󸀠

+𝜌𝐴𝜔
2
𝑊𝛿𝑊)𝑑𝑥,

𝑊
𝑘

𝑡
= ∫

𝑥𝑗+1

𝑥𝑗

(𝐺𝐽𝜃
󸀠

𝛿𝜃
󸀠

+
𝑃𝐼
𝑃

𝐴
𝜃
󸀠

𝛿𝜃
󸀠

+𝑀
𝑧𝑧
𝑊
󸀠

𝛿𝜃
󸀠

−𝜌𝐼
𝑃
𝜔
2
𝜃𝛿𝜃) 𝑑𝑥.

(13)

with the geometric andmaterial parameters all assumed to be
constant per element.

At this point, a conventional FEM can be developed,
where polynomial interpolation functions are used to express
the field variables in terms of nodal variables (see, e.g.,
[19, 27]). The Dynamic Finite Element (DFE), as mentioned
earlier in introduction section, is a highly convergent and
efficient hybrid approach combining the classic Finite Ele-
ment (FEM) and Dynamic Stiffness Matrix (DSM) methods.
The DFE method is equipped with frequency-dependent
trigonometric shape functions inspired by DSM formulation
with averaged value parameters over each element. The
solutions of uncoupled governing differential equations are
used as basis functions of approximation space to derive the
dynamic shape functions, which are then exploited to find the
element (frequency-dependent) dynamic stiffness matrix.

TheDFE formulation starts with theweak formof element
equations (13), where further integration by parts is applied

on the first two terms of each equation, leading to the
following form of the equations:

𝑊
𝑘

𝑓

= ∫

𝑥𝑗+1

𝑥𝑗

(𝐸𝐼𝑊𝛿𝑊
󸀠󸀠󸀠󸀠

−𝑃𝑊𝛿𝑊
󸀠󸀠

+𝜌𝐴𝜔
2
𝑊𝛿𝑊)𝑑𝑥

+∫

𝑥𝑗+1

𝑥𝑗

𝑀
𝑧𝑧
𝜃
󸀠

𝛿𝑊
󸀠

𝑑𝑥

+ [𝐸𝐼𝑊
󸀠

𝛿𝑊
󸀠󸀠

−𝐸𝐼𝑊𝛿𝑊
󸀠󸀠󸀠

+𝑃𝑊𝛿𝑊
󸀠

] ,

𝑊
𝑘

𝑡

= ∫

𝑥𝑗+1

𝑥𝑗

−(𝐺𝐽𝜃𝛿𝜃
󸀠󸀠

+
𝑃𝐼
𝑝

𝐴
𝜃𝛿𝜃
󸀠󸀠

+𝜌𝐼
𝑝
𝜔
2
𝜃𝛿𝜃) 𝑑𝑥

+∫

𝑥𝑗+1

𝑥𝑗

𝑀
𝑧𝑧
𝑊
󸀠

𝛿𝜃
󸀠

𝑑𝑥+ [𝐺𝐽𝜃𝛿𝜃
󸀠

+
𝑃𝐼
𝑝

𝐴
𝜃𝛿𝜃
󸀠

] .

(14)

Substituting 𝜉 = 𝑥/𝑙 (0 ≤ 𝜉 ≤ 1) in the above equations
results in the following element nondimensional equations:

𝑊
𝑘

𝑓
(𝜉)

= ∫

1

0
𝑊(

1
𝑙3
𝐸𝐼𝛿𝑊

󸀠󸀠󸀠󸀠

−
1
𝑙
𝑃𝛿𝑊
󸀠󸀠

+ 𝜌𝐴𝜔
2
𝑙𝛿𝑊)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∗

𝑑𝜉

+∫

1

0

1
𝑙
𝑀
𝑧𝑧
𝜃
󸀠

𝛿𝑊
󸀠

𝑑𝜉

+ [
1
𝑙3
[𝐸𝐼𝑊

󸀠

𝛿𝑊
󸀠󸀠

−𝐸𝐼𝑊𝛿𝑊
󸀠󸀠󸀠

]+
1
𝑙
[ 𝑃𝑊𝛿𝑊

󸀠

]] ,

𝑊
𝑘

𝑡
(𝜉)

= ∫

1

0
−𝜃(

1
𝑙
𝐺𝐽𝛿𝜃
󸀠󸀠

+
1
𝑙

𝑃𝐼
𝑝

𝐴
𝛿𝜃
󸀠󸀠

+ 𝜌𝐼
𝑝
𝜔
2
𝑙𝛿𝜃)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∗∗

𝑑𝜉

+∫

1

0

1
𝑙
𝑀
𝑧𝑧
𝑊
󸀠

𝛿𝜃
󸀠

𝑑𝜉 +
1
𝑙
[𝐺𝐽𝜃𝛿𝜃

󸀠

+
𝑃𝐼
𝑝

𝐴
𝜃𝛿𝜃
󸀠

] .

(15)

The closed-form solutions of the integral terms (∗) and (∗∗),
respectively, can be written as [9]

𝑊(𝜉) = 𝐶1 sin (𝛼𝜉) +𝐶2 cos (𝛼𝜉) +𝐶3 sinh (𝛽𝜉)

+𝐶4 cosh (𝛽𝜉) ,

𝜃 (𝜉) = 𝐷1cos (𝜏𝜉) +𝐷2sin (𝜏𝜉) ,

(16)

where 𝐶
1,2,3,4

and𝐷
1,2

are constants and

𝛼 = √
󵄨󵄨󵄨󵄨𝑋2

󵄨󵄨󵄨󵄨 ,

𝛽 = √
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨,

𝜏 = √
𝜌𝐼
𝑝
𝜔
2
𝑙
2
𝐴

𝐴𝐺𝐽 + 𝑃𝐼
𝑝

,

(17)

with

𝑋1 =
{−𝐵 + √𝐵2 − 4𝐴𝐶}

2𝐴
,
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𝑋2 =
{−𝐵 − √𝐵2 − 4𝐴𝐶}

2𝐴
,

(18)

𝐴 =
𝐸𝐼

𝑙3
,

𝐵 = −
𝑃

𝑙
,

𝐶 = − (𝑚𝑙𝜔
2
) .

(19)

Specific linear combinations of components of solutions
(16) are used as the basis functions of approximation space,
and the general FEM procedure is exploited to derive the

interpolation functions used to express element variables
in terms of the nodal properties (which also satisfy the
integral terms marked as (∗) and (∗∗)). For this purpose, the
nonnodal solution functions,𝑊 and 𝜃, and the test functions,
𝛿𝑊 and 𝛿𝜃, are written in terms of generalized parameters
⟨𝑎⟩, ⟨𝛿𝑎⟩, ⟨𝑏⟩, and ⟨𝛿𝑏⟩ as follows:

𝑊 = ⟨𝑃 (𝜉)⟩
𝑓
{𝑎} ,

𝛿𝑊 = ⟨𝑃 (𝜉)⟩
𝑓
{𝛿𝑎} ,

𝜃 = ⟨𝑃 (𝜉)⟩
𝑡
{𝑏} ,

𝛿𝜃 = ⟨𝑃 (𝜉)⟩
𝑡
{𝛿𝑏} ,

(20)

with the dynamic (frequency-dependent) basis functions of
approximation space defined as

⟨𝑃 (𝜉)⟩
𝑓
= ⟨cos (𝛼𝜉) sin (𝛼𝜉)

𝛼

cosh (𝛽𝜉) − cos (𝛼𝜉)
(𝛼2 + 𝛽2)

sinh (𝛽𝜉) − sin (𝛼𝜉)
(𝛼3 + 𝛽3)

⟩ ,

⟨𝑃 (𝜉)⟩
𝑡
= ⟨cos (𝜏𝜉) sin (𝜏𝜉)

𝜏
⟩ .

(21)

Replacing the generalized parameters, ⟨𝑎⟩, ⟨𝛿𝑎⟩, ⟨𝑏⟩,
and ⟨𝛿𝑏⟩ with the nodal variables, ⟨𝑊1 𝑊

󸀠

1
𝑊2 𝑊

󸀠

2
⟩,

⟨𝛿𝑊1 𝛿𝑊
󸀠

1
𝛿𝑊2 𝛿𝑊

󸀠

2
⟩, ⟨𝜃
1
𝜃
2
⟩, and ⟨𝛿𝜃

1
𝛿𝜃
2
⟩, respec-

tively, expressions (20) can be rewritten as

{𝑊
𝑛
} = [𝑃

𝑛
]
𝑓
{𝑎} ,

{𝛿𝑊
𝑛
} = [𝑃

𝑛
]
𝑓
{𝛿𝑎} ,

{𝜃
𝑛
} = [𝑃

𝑛
]
𝑡
{𝑏} ,

{𝛿𝜃
𝑛
} = [𝑃

𝑛
]
𝑡
{𝛿𝑏} ,

(22)

where the matrices [𝑃
𝑛
]
𝑓
and [𝑃

𝑛
]
𝑡
are defined as

[𝑃
𝑛
]
𝑓
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0

0 1 0
(𝛽 − 𝛼)

(𝛼3 + 𝛽3)

cos (𝛼) sin (𝛼)
𝛼

[cosh (𝛽) − cos (𝛼)]
(𝛼2 + 𝛽2)

[sinh (𝛽) − sin (𝛼)]
(𝛼3 + 𝛽3)

−𝛼 sin (𝛼) cos (𝛼)
[𝛽 sinh (𝛽) + 𝛼 sin (𝛼)]

(𝛼2 + 𝛽2)

[𝛽 cosh (𝛽) − 𝛼 cos (𝛼)]
(𝛼3 + 𝛽3)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (23)

[𝑃
𝑛
]
𝑡
= [

[

1 0

cos (𝜏) sin (𝜏)
𝜏

]

]

. (24)

By combining expressions (20) and above matrices, [𝑃
𝑛
]
𝑓

(23), and [𝑃
𝑛
]
𝑡
(24), the nodal approximations for flexural

displacement, 𝑊(𝜉), and torsional displacement, 𝜃(𝜉), are
written as

𝑊(𝜉) = ⟨𝑃 (𝜉)⟩
𝑓
[𝑃
𝑛
]
−1
𝑓
{𝑊
𝑛
} = ⟨𝑁 (𝜉)⟩

𝑓
{𝑊
𝑛
} ,

𝜃 (𝜉) = ⟨𝑃 (𝜉)⟩
𝑡
[𝑃
𝑛
]
−1
𝑡
{𝜃
𝑛
} = ⟨𝑁 (𝜉)⟩

𝑡
{𝜃
𝑛
} ,

(25)

where ⟨𝑁(𝜉)⟩
𝑓
and ⟨𝑁(𝜉)⟩

𝑡
are the frequency-dependent

(dynamic) trigonometric shape functions for flexure and
torsion, respectively. Then, (25) can also be rewritten as

{
𝑊(𝜉)

𝜃 (𝜉)
} = [𝑁] {𝑤

𝑛
} , (26)
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where,

[𝑁]

= [
𝑁1𝑓 (𝜔) 𝑁2𝑓 (𝜔) 0 𝑁3𝑓 (𝜔) 𝑁4𝑓 (𝜔) 0

0 0 𝑁1𝑡 (𝜔) 0 0 𝑁2𝑡 (𝜔)
] ,

{𝑤
𝑛
} = ⟨𝑊1 𝑊

󸀠

1 𝜃1 𝑊2 𝑊
󸀠

2 𝜃2⟩
𝑇

.

(27)

The expressions of flexural frequency-dependent trigono-
metric shape functions are as follows:

𝑁1𝑓 (𝜔) =
(𝛼𝛽)

𝐷
𝑓

{− cos (𝛼𝜉) + cos (𝛼 (1− 𝜉)) cosh (𝛽)

+ cos (𝛼) cosh (𝛽 (1− 𝜉)) − cosh (𝛽𝜉) −(
𝛽

𝛼
)

⋅ sin (𝛼 (1− 𝜉)) sinh (𝛽) +(𝛼
𝛽
) sin (𝛼)

⋅ sinh (𝛽 (1− 𝜉))} ,

𝑁2𝑓 (𝜔) =
1
𝐷
𝑓

{𝛽 [cosh (𝛽 (1 − 𝜉)) sin (𝛼)

− cosh (𝛽) sin (𝛼 (1 − 𝜉)) − sin (𝛼𝜉)]

+ 𝛼 [cos (𝛼 (1 − 𝜉)) sinh (𝛽)

− cos (𝛼) sinh (𝛽 (1 − 𝜉)) − sinh (𝛽𝜉)]} ,

𝑁3𝑓 (𝜔) =
(𝛼𝛽)

𝐷
𝑓

{− cos (𝛼 (1− 𝜉)) + cos (𝛼𝜉) cosh (𝛽)

− cosh (𝛽 (1− 𝜉)) + cos (𝛼) cosh (𝛽𝜉) −(
𝛽

𝛼
)

⋅ sin (𝛼𝜉) sinh (𝛽) +(𝛼
𝛽
) sin (𝛼) sinh (𝛽𝜉)} ,

𝑁4𝑓 (𝜔) =
1
𝐷
𝑓

{𝛽 [− cosh (𝛽𝜉) sin (𝛼)

+ sin (𝛼 (1 − 𝜉)) + cosh (𝛽) sin (𝛼𝜉)]
+ 𝛼 [− cos (𝛼𝜉) sinh (𝛽) + sinh (𝛽 (1 − 𝜉))
+ cos (𝛼) sinh (𝛽𝜉)]} ,

(28)

where

𝐷
𝑓
= − 2𝛼𝛽 (1− cos (𝛼) cosh (𝛽))

+ (𝛼
2
−𝛽

2
) sin (𝛼) sinh (𝛽)

(29)

and the torsional trigonometric shape functions are written
as

𝑁1𝑡 (𝜔) = cos (𝜏𝜉) − cos (𝜏) sin (𝜏𝜉)
𝐷
𝑡

,

𝑁2𝑡 (𝜔) =
sin (𝜏𝜉)
𝐷
𝑡

,

(30)

where𝐷
𝑡
= sin(𝜏) [21].

Using expressions (15) and the shape functions (28)–
(30), the element dynamic stiffness matrix, [𝐾(𝜔)]𝑘, is
derived which consists of uncoupled and coupled dynamic
stiffness matrices, [𝐾(𝜔)]𝑘

𝑢
and [𝐾(𝜔)]

𝑘

𝑐
, respectively. The

uncoupled [𝐾(𝜔)]
𝑘

𝑢
, in turn, is composed of four matrix

components, [𝐾(𝜔)]𝑘
𝑢1, [𝐾(𝜔)]

𝑘

𝑢2, [𝐾(𝜔)]
𝑘

𝑢3, and [𝐾(𝜔)]
𝑘

𝑢4,
and the coupled one, [𝐾(𝜔)]𝑘

𝑐
, is composed of two coupled

matrices, [𝐾(𝜔)]𝑘
𝐵𝑇,𝑐

and [𝐾(𝜔)]
𝑘

𝑇𝐵,𝑐
. The four uncoupled

element stiffness matrices are as follows:

[𝐾 (𝜔)]
𝑘

𝑢1 =
𝐸𝐼

𝐿3

⋅

[
[
[
[
[
[
[
[
[
[
[

[

𝑁
󸀠

1𝑓𝑁
󸀠󸀠

1𝑓 𝑁
󸀠

1𝑓𝑁
󸀠󸀠

2𝑓 𝑁
󸀠

1𝑓𝑁
󸀠󸀠

3𝑓 𝑁
󸀠

1𝑓𝑁
󸀠󸀠

4𝑓

𝑁
󸀠

2𝑓𝑁
󸀠󸀠

1𝑓 𝑁
󸀠

2𝑓𝑁
󸀠󸀠

2𝑓 𝑁
󸀠

2𝑓𝑁
󸀠󸀠

3𝑓 𝑁
󸀠

2𝑓𝑁
󸀠󸀠

4𝑓

𝑁
󸀠

3𝑓𝑁
󸀠󸀠

1𝑓 𝑁
󸀠

3𝑓𝑁
󸀠󸀠

2𝑓 𝑁
󸀠

3𝑓𝑁
󸀠󸀠

3𝑓 𝑁
󸀠

3𝑓𝑁
󸀠󸀠

4𝑓

𝑁
󸀠

4𝑓𝑁
󸀠󸀠

1𝑓 𝑁
󸀠

4𝑓𝑁
󸀠󸀠

2𝑓 𝑁
󸀠

4𝑓𝑁
󸀠󸀠

3𝑓 𝑁
󸀠

4𝑓𝑁
󸀠󸀠

4𝑓

]
]
]
]
]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

,

(31)

[𝐾 (𝜔)]
𝑘

𝑢2 =
−𝐸𝐼

𝐿3

⋅

[
[
[
[
[
[
[
[
[
[
[

[

𝑁1𝑓𝑁
󸀠󸀠󸀠

1𝑓 𝑁1𝑓𝑁
󸀠󸀠󸀠

2𝑓 𝑁1𝑓𝑁
󸀠󸀠󸀠

3𝑓 𝑁1𝑓𝑁
󸀠󸀠󸀠

4𝑓

𝑁2𝑓𝑁
󸀠󸀠󸀠

1𝑓 𝑁2𝑓𝑁
󸀠󸀠󸀠

2𝑓 𝑁2𝑓𝑁
󸀠󸀠󸀠

3𝑓 𝑁2𝑓𝑁
󸀠󸀠󸀠

4𝑓

𝑁3𝑓𝑁
󸀠󸀠󸀠

1𝑓 𝑁3𝑓𝑁
󸀠󸀠󸀠

2𝑓 𝑁3𝑓𝑁
󸀠󸀠󸀠

3𝑓 𝑁3𝑓𝑁
󸀠󸀠󸀠

4𝑓

𝑁4𝑓𝑁
󸀠󸀠󸀠

1𝑓 𝑁4𝑓𝑁
󸀠󸀠󸀠

2𝑓 𝑁4𝑓𝑁
󸀠󸀠󸀠

3𝑓 𝑁4𝑓𝑁
󸀠󸀠󸀠

4𝑓

]
]
]
]
]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

,

(32)

[𝐾 (𝜔)]
𝑘

𝑢3 =
𝑃

𝐿

⋅

[
[
[
[
[
[
[
[
[
[
[

[

𝑁1𝑓𝑁
󸀠

1𝑓 𝑁1𝑓𝑁
󸀠

2𝑓 𝑁1𝑓𝑁
󸀠

3𝑓 𝑁1𝑓𝑁
󸀠

4𝑓

𝑁2𝑓𝑁
󸀠

1𝑓 𝑁2𝑓𝑁
󸀠

2𝑓 𝑁2𝑓𝑁
󸀠

3𝑓 𝑁2𝑓𝑁
󸀠

4𝑓

𝑁3𝑓𝑁
󸀠

1𝑓 𝑁3𝑓𝑁
󸀠

2𝑓 𝑁3𝑓𝑁
󸀠

3𝑓 𝑁3𝑓𝑁
󸀠

4𝑓

𝑁4𝑓𝑁
󸀠

1𝑓 𝑁4𝑓𝑁
󸀠

2𝑓 𝑁4𝑓𝑁
󸀠

3𝑓 𝑁4𝑓𝑁
󸀠

4𝑓

]
]
]
]
]
]
]
]
]
]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

,

(33)

[𝐾 (𝜔)]
𝑘

𝑢4 =
1
𝐿
(𝐺𝐽+

𝑃𝐼
𝑃

𝐴
)
[
[

[

𝑁1𝑡𝑁
󸀠

1𝑡 𝑁1𝑡𝑁
󸀠

2𝑡

𝑁2𝑡𝑁
󸀠

1𝑡 𝑁2𝑡𝑁
󸀠

2𝑡

]
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

(34)

and the two coupled element matrices are written as

[𝐾 (𝜔)]
𝑘

𝐵𝑇,𝑐

= ∫

1

0

𝑀

𝐿

[
[

[

𝑁
󸀠

1𝑡𝑁
󸀠

1𝑓 𝑁
󸀠

1𝑡𝑁
󸀠

2𝑓 𝑁
󸀠

1𝑡𝑁
󸀠

3𝑓 𝑁
󸀠

1𝑡𝑁
󸀠

4𝑓

𝑁
󸀠

2𝑡𝑁
󸀠

1𝑓 𝑁
󸀠

2𝑡𝑁
󸀠

2𝑓 𝑁
󸀠

2𝑡𝑁
󸀠

3𝑓 𝑁
󸀠

2𝑡𝑁
󸀠

4𝑓

]
]

]

𝑑𝜉,

(35)
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[𝐾 (𝜔)]
𝑘

𝑇𝐵,𝑐
= ∫

1

0

𝑀

𝐿

[
[
[
[
[
[
[
[
[

[

𝑁
󸀠

1𝑓𝑁
󸀠

1𝑡 𝑁
󸀠

1𝑓𝑁
󸀠

2𝑡

𝑁
󸀠

2𝑓𝑁
󸀠

1𝑡 𝑁
󸀠

2𝑓𝑁
󸀠

2𝑡

𝑁
󸀠

3𝑓𝑁
󸀠

1𝑡 𝑁
󸀠

3𝑓𝑁
󸀠

2𝑡

𝑁
󸀠

4𝑓𝑁
󸀠

1𝑡 𝑁
󸀠

4𝑓𝑁
󸀠

2𝑡

]
]
]
]
]
]
]
]
]

]

𝑑𝜉. (36)

The element dynamic stiffness matrix, [𝐾(𝜔)]𝑘, is deter-
mined by adding these six coupled and uncoupled subma-
trices and the global dynamic stiffness matrix, [𝐾(𝜔)], is
then obtained by assembling all the element matrices and
applying the system boundary conditions, carried out using
a MATLAB code. According to the principle of virtual work
(10), for arbitrary virtual displacement, {𝛿𝑈

𝑛
}, the nonlinear

eigenvalue problem of the system resulting from the DFE
process is written as follows:

[𝐾 (𝜔)] {𝑈
𝑛
} = {0} , (37)

where {𝑈
𝑛
} contains all the nodal displacements of the

system. The natural frequencies of the system would be the
nontrivial solutions of expression (37), that is, values of 𝜔
which yields a zero determinant for the global dynamic
stiffness matrix, |𝐾(𝜔)| = 0. Consequently, the system
natural modes, {𝑈

𝑛
}, can be found by extracting data from

corresponding eigenvectors.
It is worth noting that the basis functions of approxima-

tion space have been specifically designed such that when
the frequency of oscillations tends to zero, the roots, 𝛼,
𝛽, and 𝜏 of the characteristic equations also tend to zero.
Consequently, the limits of basis function (17) and (18),
formed as linear combinations of the closed-form solutions
to the starred characteristic equations in expressions (15),
change to those used in the classical beam FEM. In other
words, expression (17) and (18) become cubic Hermite and
linear polynomials, respectively, commonly used as flexural
and torsional basis functions in FEM. Subsequently, element
dynamic stiffness matrices (31) through (36) reduce to the
static stiffness matrices obtained from conventional FEM;
that is, DFE transformed to FEM (see, e.g., [27]). However,
this would not be possible if the individual components
of solution functions (21) were simply taken as the basis
functions.

It is also worth noting that if the beam’s warping rigidity
(𝐸Γ) is large compared with its torsional rigidity (𝐺𝐽), then
torsion equation (2) changes to a 4th-order differential
equation, similar in form to the bending equation (8). While
the presented DFE is developed for the state of uniform
torsion, the formulation can be extended to include the
warping effects. This could be done by following the above-
presented procedure and using the four dynamic interpo-
lation functions in a form similar to (28)–(29) instead of
(30) currently used to express torsional displacements. The
development of such formulation, however, is beyond the
scope of this paper.
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Figure 3: DFE convergence analysis for cantilevered beam; 𝑃 =

1.23MN,𝑀
𝑧𝑧
= 0 (5th natural frequency).
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3. Numerical Results
In this section, the validity and practical applicability of the
presented DFE method are demonstrated through various
illustrative examples. At first, the DFE was validated against
limited existing analytical data in the literature. A generic
beammade of structural steel, subjected to different combina-
tions of axial load, end moment, and various end conditions,
was then investigated. The DFE results were compared with
those obtained froman in-house FEM-based code [27] aswell
as ANSYS and limited experimental data available in the open
literature.

Consider a slender beam of rectangular cross-sectional
area, with Young modulus 𝐸 = 200GPa, density 𝜌 =

7800 kg/m3 (steel), length of 8m, width of 0.4m, and depth
of 0.2m. The DFE convergence for the beam’s 5th natural
frequency was first established, as depicted in Figure 3. The
relative error is found based on the reference values found
from analytical closed-form solution (𝑃 = 1.23MN, 𝑀

𝑧𝑧
=

0) presented by Joshi and Suryanarayan [24]. A comparison
between the DFEmethod and conventional FEMwith regard
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Table 1: DFE fundamental frequencies (Hz) for cantilevered (C-F) boundary condition.

Force (MN)

End moment (𝑀
𝑧𝑧
)

𝑀
𝑧𝑧
= 0 (MN⋅m) 𝑀

𝑧𝑧
= 6.14 (MN⋅m)

DFE
(1 element) Analytical [23] DFE

(5 elements)
FEM

(5 elements)
FEM

(40 elements)
0 2.556 2.556 2.237 2.345 2.234
0.62 2.884 2.884 2.617 2.710 2.614
1.23 3.169 3.169 2.935 3.082 2.934
1.85 3.422 3.422 3.213 3.306 3.213

Table 2: DFE fundamental frequencies (Hz) for clamped-clamped (C-C) boundary condition.

Force (MN)

End moment (𝑀
𝑧𝑧
)

𝑀
𝑧𝑧
= 0 (MN⋅m) 𝑀

𝑧𝑧
= 6.14 (MN⋅m)

DFE
(1 element) Analytical [23] DFE

(5 elements)
FEM

(5 elements)
FEM

(40 elements)
0 16.266 16.266 16.157 16.243 16.141
0.62 16.413 16.413 16.306 16.399 16.290
1.23 16.559 16.559 16.451 16.530 16.437
1.85 16.703 16.703 16.597 16.685 16.582

Table 3: DFE fundamental frequencies (Hz) for pinned-pinned (P-P) boundary condition.

Force (MN)

End moment (𝑀
𝑧𝑧
)

𝑀
𝑧𝑧
= 0 (MN⋅m) 𝑀

𝑧𝑧
= 6.14 (MN⋅m)

DFE
(1 element) Analytical [23] DFE

(5 elements)
FEM

(5 elements)
FEM

(40 elements)
0 7.175 7.175 6.955 7.058 6.947
0.62 7.440 7.440 7.228 7.398 7.220
1.23 7.695 7.695 7.488 7.552 7.483
1.85 7.942 7.942 7.743 7.847 7.736

Table 4: DFE fundamental frequencies (Hz) for pinned-clamped (P-C) boundary condition.

Force (MN)

End moment (𝑀
𝑧𝑧
)

𝑀
𝑧𝑧
= 0 (MN⋅m) 𝑀

𝑧𝑧
= 6.14 (MN⋅m)

DFE
(1 element) Analytical [23] DFE

(5 elements)
FEM

(5 elements)
FEM

(40 elements)
0 11.209 11.209 11.051 11.183 11.040
0.62 11.408 11.408 11.254 11.321 11.242
1.23 11.604 11.604 11.451 11.574 11.441
1.85 11.796 11.796 11.646 11.724 11.636

to the convergence rate is illustrated in Figure 4. For the
5th natural frequency, a 5-element DFE model produces
results with less than 0.2 percent error compared to the
analytical result or an error less than 0.1 percent using an 8-
element mesh, whereas an 8-element FEMmodel shows a 0.3
percent error, that is, three times larger error than DFE. The
convergence tests were also carried out for the 1st through 4th
frequencies and showed even better performances for DFE
over conventional FEM.

Tables 1–4 present theDFE and FEMresults for the beam’s
fundamental frequency, subjected to various combinations

of preloads, and different boundary conditions: cantilever
(C-F), clamped-clamped (C-C), pinned-pinned (P-P), and
pinned-clampled (P-C). Preload combinations include two
end moments of 𝑀

𝑧𝑧
= 0 and 6.14 (MN⋅m) and four axial

loads of 𝑃 = 0, 0.62, 1.23, and 1.85MN.
It is worth noting that, in absence of end moment, the

equations of motion are uncoupled, and, as a result, the DFE
method yields exact results [21]. In other words, when𝑀

𝑧𝑧
=

0, the DFE method leads to exact frequency data. However,
when the system is subjected to an end moment (𝑀

𝑧𝑧
̸= 0),

an exact solution does not exist and, therefore, the frequencies
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Table 5: Critical buckling moment for cantilevered boundary
condition with varying compressive force (5-element DFE model).

Force, 𝑃
(MN)

Buckling moment
(MN⋅m)

−1.85 3.91
−1.23 7.82
−0.62 10.31
0 12.33
0.62 14.07
1.23 15.59
1.85 17.00

Table 6: Critical buckling compressive force for cantilevered
boundary condition with varying end moment (5-element DFE
model).

End moment,
𝑀
𝑧𝑧
(MN⋅m)

Buckling force
(MN)

0 −2.06
3.07 −1.93
6.14 −1.55
9.21 −0.91

obtained from a 40-element FEMmodel are used as reference
values. As it can be inferred for all the four investigated
boundary conditions, with same number of elements, the
DFE outperforms FEM. For example, in Table 1, the relative
errors for the beam’s fundamental frequency (subjected to
𝑃 = 0.62MN and𝑀

𝑧𝑧
= 6.14MN⋅m) are found to be 0.11%

and 3.67% for 5-element DFE and FEMmodels, respectively.
In order to investigate the effect of axial force and end

moment on the beam stability, a buckling analysis is carried
out. Table 5 presents the beam’s critical bucklingmoments for
different applied axial forces, and Table 6 shows the buckling
forces for different applied end moments (𝑀

𝑧𝑧
), obtained

using a 5-element DFE model.
Figures 5–8 are graphical representations of the results

presented in Tables 1 through 4. These figures illustrate the
variation of the system’s fundamental frequency with tensile
axial force (𝑃) and end moment.

Figure 9 illustrates variation of critical buckling end
moment (𝑀

𝑧𝑧-cr) with axial force (𝑃) for cantilevered bound-
ary condition, and Figure 10 depicts critical buckling com-
pressive force (𝑃cr) with end moment (𝑀

𝑧𝑧
) for cantilevered

boundary condition. Figures 11 and 12 show bending and
torsion components of the mode shapes, respectively, for
a cantilevered system subjected to a tensile force of 𝑃 =

1.85MN and end moment of𝑀
𝑧𝑧
= 9.21MN⋅m.

For further validation, the DFE and conventional FEM
(in-house code andANSYS)methods were used to reproduce
the first three flexural natural frequencies of an axially loaded
clamped-clamped beam, for which the experimentally evalu-
ated values are available in the open literature [28]. It is worth
noting that, in this case, the end moment is null, 𝑀

𝑧𝑧
= 0,

and as a result the system exhibits uncoupled displacements.
Therefore, as discussed before, the DFE frequency results are
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Figure 5: Variation of natural frequencies when tensile force and
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Figure 6: Variation of natural frequencies when tensile force and
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exact, even if only one element is used (see also [21, 22]).
In this experiment, the beam is made of Aluminum with
𝜌 = 2700 kg/m3, 𝐺 = 26GPa, 𝐸 = 70GPa, and dimension
of beam is 𝐿 × 𝐻 × 𝐵 = 1290 × 75 × 35. As can be seen
from the results shown in Table 7, although there is a very
close match between the frequencies obtained from all the
methods, the DFE results match the best experimental data,
in general, and for higher modes in particular. Additionally,
as it can be observed from Table 7, the frequency results
obtained from in-house and commercial FEM codes are
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Table 7: The first three bending natural frequencies (Hz) of the clamped-clamped aluminium beam for various axial loads: 1-element DFE,
5-element FEM, and ANSYS models.

Load (N) 1st 2nd 3rd
DFE Experiment FEM ANSYS DFE Experiment FEM ANSYS DFE Experiment FEM ANSYS

1962 36.0 35.9 36.1 36.1 93.1 92.8 94.0 94.1 177.0 176.2 180.3 180.5
4022 40.0 39.9 40.1 40.1 98.9 98.5 99.8 99.8 184.0 183.3 187.7 187.7
6671 44.5 44.3 44.6 44.6 106.6 106.3 107.4 107.4 193.9 192.2 196.5 196.7
7750 46.4 45.3 46.5 46.5 109.6 109.4 110.5 110.6 197.6 196.8 200.9 201.2
9810 49.5 49.4 49.6 49.6 114.9 114.7 115.7 115.6 204.4 203.8 207.4 207.4
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Figure 7: Variation of natural frequencies when tensile force and
end moment are applied for pinned-pinned boundary condition.

virtually identical, as they both use the same number of
elements and interpolation functions.

4. Discussion and Concluding Remarks

ADynamic Finite Element (DFE) formulationwas developed
to conduct vibrational and buckling analysis of beams sub-
jected to axial load and end moment. Neglecting the shear
deformation, rotary inertia, andwarping effects, the bending-
torsion coupled nature of vibration caused by applied end
moment about the perpendicular axis to bending axis was
demonstrated. The DFE results were compared with exact
results from DSM, those obtained from FEM and ANSYS
models, and limited existing experimental results for the
simple case of an axially loaded beam. For the last case,
contrary to FEM, the results obtained from a one-element
DFE model are exact within the limits of the theory. Similar
comparisons were made between DFE, FEM, and ANSYS
results for an axially loaded beam subjected to various end
moments, and higher rates of convergence for DFE were
observed for various classical boundary conditions.
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As expected, tensile axial load increases the natural
frequencies of the beam, indicating an increase in the stiffness
of the beam for all classical boundary conditions. When
subjected to end moment only, the natural frequencies
decrease for all boundary conditions, indicating a reduction
in stiffness of the beam. Holding the end moment constant,
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the natural frequencies directly increase with tensile load
(increased beam stiffness). A compressive axial load has the
opposite effect and the critical buckling moment reduces
with a progressive increase in the compressive load applied.
Conversely, if the tensile load is held constant, the beam
stiffness is inversely related to the magnitude of endmoment.
The coupled vibration of the beam, however, is found to be
predominantly flexural in the first few natural frequencies
(the first three, for the case studied here) and torsion becomes
predominant at a higher natural frequency.

In summary, the DFE is shown to be a powerful method,
exhibiting higher convergence rates than FEM in free vibra-
tional and stability analyses of preloaded beams, in general,
and particularly when the higher modes of vibration are of
interest. It is also worth noting that the presented DFE is
designed to account for the axial load, end moment, or com-
bined effects automatically. Carrying out a similar analysis
using the FEM-based software available (e.g., ANSYS) needs
special care, as the preloads should be introduced in the
model through a prestressed analysis. Furthermore, unlike
the analytical formulations, the presented DFE can also be
readily extended to the dynamic and stability analyses of
more complex cases, such as nonuniform preloaded layered
beams and beam structures, and include the warping effects
neglected in the present study.
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