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Extreme Dependence in International Stock Markets�

Cathy Ningy

Department of Economics, Ryerson University, Toronto, Canada

April 2009

Abstract

This paper investigates the structure and degree of extreme dependence in inter-

national equity markets using carefully selected tools from the theory of copulas. We

examine both the static and dynamic dependence via unconditional and conditional

copulas. We �nd signi�cant asymmetric tail dependence in equity markets, with the

overall larger lower tail dependence than upper tail dependence. Moreover, in Europe

and East Asia but not in North America, the extreme dependence is time-varying in

both its structure and degree. Our results also indicate a higher intra-continental than

inter-continental tail dependence. Our �ndings have important implications in global

risk management strategies.

�The author would like to thank Loran Chollete, John Knight, Leo Michelis, Stephen Sapp,Yuguo Sun,

Tony Wirjanto, and participants of 2008 CEA meeting for valuable comments and suggestions. Financial

support from Ryerson University is also acknowledged.
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1 Introduction

The interdependence between international stock markets strongly a¤ects risk management

across countries. The interdependence between stock markets bears on the joint distribution

and diversi�cation of international portfolios and thus their joint risk and overall returns.

Therefore, it is crucial for global investors to understand and measure the structure and

degree of dependence in the international markets.

This paper investigates the dependence between international stock markets using a rel-

atively new but fast developing approach-copulas, which allows us to examine both the

structure and the degree of dependence and how they evolve over time.

Three approaches have been mainly used to study dependence between �nancial markets:

a joint distribution approach, a conditional correlation approach and a copula approach.

A joint distribution approach is usually limited to a joint Gaussian distribution and the

correlation coe¢ cient is used to measure dependence. However, the linear correlation does

not give information of the structure of the dependence and is only applicable to elliptical

marginal distributions, which are not true for many asset returns. Thus it is a rather limited

measure of dependence. More detailed study of the limitation and pitfalls of linear correlation

appears in Embrechts et al. (2002).
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The second approach is to use conditional correlations. This approach measures correla-

tions by taking into consideration the conditional information, making it more complete than

unconditional linear correlation. However, Forbes and Rigobon (2002) point out that con-

ditional correlations can change dramatically under di¤erent conditions, making the results

often misleading and hard to interpret.

The third approach, a copula model, is a direct and �exible measure of dependence.

It measures not only dependence strength but also dependence structure, in particular,

and it can capture the dependence when markets are at extremes, ie, extreme dependence.

Moreover, it can be applied to any distributions and can capture nonlinear dependence.

The copula approach has recently become the most signi�cant new tool to address co-

movement between markets in a �exible way. Longin and Solnik (2001) use a Gumbel copula

to study the dependence across international equity markets. Hu (2006) employs a mixture

copula to investigate the dependence of international stock markets. Both studies focus on

static copula models and use monthly data. Goorbergh (2004) and Jondeau and Rockinger

(2006) use time-varying copulas for the dependence in the four major international stock

markets. Rodriguez (2006) applies mixture copula models to investigate �nancial contagion

in the East Asian stock markets and four Latin American stock markets during crises. These

papers allow for dependence dynamics and use daily data. More application of copulas in

market dependence and comovements can be found in Marshal and Zeevi(2002), Forbes and

Rigobon (2002), Chollete et al. (2006), and Patton (2006).

In the current paper we explore the static and dynamic dependence of international
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stock markets using both the unconditional and conditional copula models. We examine the

structure of dependence directly via a mixture copula model. We then allow the weights in

the mixture copula model to vary conditionally, following an ARMA-like process. We also

investigate the dynamics in the degree of dependence using the time-varying symmetrized

Joe-Clayton copula of Patton (2006).

Our paper is similar to the previous literature in that it also examines dependence and

co-movements of international �nancial markets. It is di¤erent from and contributes to the

literature in the following ways. First, it studies dynamics of extreme dependence in inter-

national �nancial markets, not only in the degree of dependence but also in the structure of

the dependence. Second, it uses carefully selected tools for complete measure of dependence

from the theory of copulas. Third, it examines both unconditional and conditional copula

models. Moreover, it examines a broader range of stock markets from the North America,

Europe and East Asia.

We �nd signi�cant asymmetric tail dependence in most of the return pairs, with lower

tail dependence being greater than upper tail dependence on average. Furthermore, we

�nd evidence that the dependence structure changes with the market status: the weight

on the lower tail dependence increases during market stresses or crashes but decreases with

market booms. The degree of extreme dependence tends to become stronger in Europe and

East Asia but not in North America (US-Canada pair). This �nding provides evidence of

increasing comovements in European and East Asian regions. The absence of time-varying

of dependence in the US-Canada markets re�ects the fact that these two markets have
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long remained co-moving together at a high and stable level. Our results also indicate that

dependence is higher between market pairs from the same continent than from di¤erent

continents, which might re�ect a higher market integration within the continent than across

di¤erent continents.

Our �ndings have a number of important implications. First, the asymmetric tail depen-

dence con�rms the previous �nding that international stock markets are more likely to go

into a downturn, or even a crisis, together than into a boom together. Thus diversi�cation

across international markets would have very limited use since these markets are likely to

su¤er loss at the same time. Second, the time varying in both the structure and degree of

the tail dependence implies that investors need to adjust their portfolios in a timely fashion.

Third, diversi�cation is more useful across continents than within a continent.

The paper is organized as follows. Section 2 presents the methodology used and Section

3 describes data and discusses empirical results with Section 4 o¤ering a conclusion.

2 The Methodology

2.1 The copula concepts and measures of dependence

A copula is a function that links the marginal distributions into a joint distribution. The

marginal distributions in a copula are uniformly distributed on the interval [0,1]. The most

important result in copula theory is known as Sklar�s theorem. For simplicity, we consider

the bivariate case.
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Sklar�s Theorem: Let FXY (:) be a joint distribution function with margins FX(:) and

FY (:). Then there exists a copula C(.) such that for all xt, yt in R,

FXY (x; y; �x; �y;�c) = C(FX(x; �x); FY (y; �y); �c): (1)

If FX(:) and FY (:) are continuous, then C(:) is unique; otherwise, C(:) is uniquely deter-

mined on RangeFX�RangeFY . Conversely, if C(:) is a copula and FX(:) and FY (:) are the

marginal cumulative distribution functions, then the function FXY (:) de�ned by (1) is a joint

cumulative distribution function with margins FX(:) and FY (:).

By Sklar�s theorem, a joint distribution can be decomposed into its univariate marginal

distributions and a copula, which captures the dependence structure between the variablesX

and Y . As a result, copulas allow us to model the marginal distributions and the dependence

structure of multivariate random variables separately.

Di¤erent copulas usually represent di¤erent dependence structures with the so called as-

sociation parameters �c indicating the strength of the dependence. Some commonly used

copulas in economics and �nance include the bivariate Gaussian copula, the student-T cop-

ula, the Gumbel copula, and the Clayton copula.

Copulas have several desirable properties. One key property is that they are invariant

under increasing and continuous transformations. This property is useful, as such transfor-

mations are commonly used in economics and �nance. For example, the copula is invariant

to logarithmic transformation of variables. This is not a property of the correlation coe¢ -

cient, which is invariant only under linear transformations. Another property of copulas is

that they provide complete information about the structure of dependence among random
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variables over their whole range of joint variation and not just over certain portions of it.

Third, unlike correlation, copulas do not require elliptically distributed random variables of

the marginals. As a result, they are especially useful when modeling the dependence between

asset returns (especially from high frequency data). Fourth, copulas allow us to separately

model the marginal behavior and the dependence structure. This property gives us more

options in model speci�cation and estimation. Finally, a useful property of copulas, which

we exploit in this study, is that they provide analytic measures of dependence in the tails of

the joint distribution.

Based on the selected copulas, we can de�ne two alternative nonparametric measures

of dependence between the two variables, namely the Spearman�s � and Kendall�s � rank

correlation coe¢ cients. Unlike the simple correlation coe¢ cient, these rank correlations do

not require a linear relationship between the variables. For this reason, they are commonly

studied with copula models. The relationship between Spearman�s � measure and copulas

can be expressed as:

� = 12

Z 1

0

Z 1

0

uvdC(u; v)� 3 (2)

Kendall�s � , for variables X and Y , is de�ned as the di¤erence between the probability of the

concordance and the probability of the discordance. Speci�cally, the higher the � value, the

stronger the dependence between X and Y . The relationship between Kendall�s � measure

and copulas can be stated as:

� = 4

Z 1

0

Z 1

0

C(u; v)dC(u; v)� 1 (3)

From the above expression, we see that the Kendall�s � measure does not depend on the
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marginal distributions.

A more informative dependence measure based on copulas is tail dependence, which is

used to measure co-movements of variables in extreme situations. Tail dependence measures

the probability that both variables are in their lower or upper joint tails. Intuitively, upper

(lower) tail dependence refers to the relative amount of mass in the upper (lower) quantile of

their joint distribution. Because tail dependence measures are derived from copula functions,

they possess all the desirable properties of copulas mentioned above. The lower (left) and

upper (right) tail dependence coe¢ cients are de�ned as

�l = lim
u�!0

Pr[FY (y) � ujFX(x) � u] = lim
u�!0

C(u; u)

u
; (4)

�r = lim
u�!1

Pr[FY (y) � ujFX(x) � u] = lim
u�!1

1� 2u+ C(u; u)
1� u ; (5)

where �l and �r 2 [0; 1]. If �l or �r are positive, X and Y are said to be left (lower) or right

(upper) tail dependent; see Joe (1997) and Nelson (1999).

2.2 The mixture copula model

By copula theory, a linear combination of copulas gives a new copula. To study the de-

pendence structure between variables, we compose a new copula by combining copulas with

di¤erent tail dependence properties. That is, a mixture of a Clayton and a survival Clayton

copula:

CM(u; v) = wCC + (1� w)CSC , where u = FX(x) and v = FY (y); (6)

where CC , and CSC are the Clayton and survival Clayton copula to capture the left and

right tail dependence respectively, 0 � u; v � 1 and 0 � w � 1. The weight of each copula

8



would re�ect the dependence structure. A higher value (greater than 0.5) of w indicates a

stronger left tail dependence than right tail dependence. The function form of each copula

in the mixture copula is as follows:

CC(u; v) = (u��1 + v��1 � 1)�1=�1

CSC(u; v) = u+ v � 1 + [(1� u)��2 + (1� v)��2 � 1]�1=�2

where 0 � u; v � 1 and �1; �2 > 0.

2.2.1 The SJC copula model

To examine the degree of dependence, we adopt the symmetrised Joe Clayton (SJC) copula

used in Patton (2006). The SJC copula is a modi�cation of the so called �BB7�copula of

Joe (1997). It is de�ned as

CSJC(u; vj�r; �l)

= 0:5� (CJC(u; vj�r; �l) + CJC(1� u; 1� vj�l; �r) + u+ v � 1); (7)

where CJC(u; vj�r; �l) is the BB7 copula (also called Joe-Clayton copula) de�ned as

CJC(u; vj�r; �l)

= 1� (1�
n�
1� (1� u)k

��r
+
�
1� (1� v)k

��r � 1o�1=r)1=k; (8)

with k = 1=log2(2� �r) and r = �1=log2(�l)

where �l and �r 2 (0; 1). By construction, the SJC copula is symmetric when �l=�r. This

copula is very �exible since it allows for both asymmetric upper and lower tail dependence

and symmetric dependence as a special case.
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2.2.2 Dynamics of the dependence

To examine the possibility of dynamic or time-varying tail dependence in the data, similar

to that in Patton (2006), we estimate the following ARMA-type process for the weight

parameter wt in the mixture copula model :

wt = (1 + exp(�ht))�1; (9)

ht = h0 + bht�1 + a

pX
j=1

jut�j � vt�jj; (10)

and for the tail dependence parameters �l;t and �r;t:

�l;t = (1 + exp(�hl;t))�1; �r;t = (1 + exp(�hr;t))�1; (11)

hl;t = hl;0 + blhl;t�1 + al

pX
j=1

jut�j � vt�jj; (12)

hr;t = hr;0 + brhr;t�1 + ar

pX
j=1

jut�j � vt�jj: (13)

The dynamic models contain an autoregressive term designed to capture persistence in de-

pendence and a variable which is a mean absolute di¤erence between u and v. The latter

variable is positive when the two probability integral transforms are on the opposite side of

the extremes of the joint distribution and close to zero when they are on the same side of

the extremes. The logistic transformation of the ARMA process guarantees that the weight

and tail dependence parameters lie in the [0,1] interval.

The focus of this paper is on the dependence between the returns of indices from di¤erent

markets. This dependence is fully modeled by the copula models. To avoid any distortion of

the parametric assumption of the marginal distributions, we do not specify any parametric
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form for the marginal distributions of the index returns. We use the empirical cumulative

distribution function (ECDF) for the margins of each return series. As a result, our approach

is a semiparametric approach, with a nonparametric form for the margins and a parametric

form for the joint distribution.

After computing the empirical cumulative distribution functions of the return series (u

and v in the copula function), we use a maximum likelihood approach to estimate the copula

models. Under standard regularity conditions the ML estimator is consistent, asymptotically

e¢ cient, and asymptotically normal. The log likelihood function is the log of the copula

density function.

3 The data and empirical results

3.1 The Data

We investigate the interdependence between eight stock indices from north America, Europe

and East Asia. The labels are US for the S&P 500, CA for the TSX composite index, UK

for the Financial Times 100 stock index, GM for the Deutsche Aktien Index, FR for the

French Cotation Automatique Continue index, JP for the NIKKEI 225 stock average index,

KO for the Korea SE composite index, and HK for the Datastream-computed Hong Kong

stock market index. All indices are in US dollars.

Our sample covers the period from August 3, 1990 to January 31, 2008. All data are

from Datastream, sampled at a daily frequency. The index returns are computed as the log
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di¤erence between the stock index at time t and t-1, multiplied by100. Data during holidays

are deleted to avoid holiday impact.

Table 1 summarizes the descriptive statistics for the return series. The standard deviation

is much higher than the absolute value of the mean, re�ecting highly volatile stock markets.

The excess kurtoses for all return series are greater than zero, ranging from 2.5 to 9.3 and

their skewness is not zero. Thus the stock returns re�ect typical features of fat tail and

skewed distribution, showing evidence of not-normal returns, and linear correlation is not

suitable for measuring their dependence since it is only de�ned on elliptical distributions.

Table 2, Table 3 and Table 4 present the three conventional measures of dependence:

linear correlation, Spearman rank correlation and Kendall�s tau rank correlation. Since the

East Asian markets are about 12 hours ahead of the north America markets, we also in-

clude the lagged US and CA returns. The linear correlations between the European pairs

are strongest, ranging from 0.68 to 0.77, followed by the US-CA pair, the pairs between the

US market and European markets, and the East Asian pairs. The weakest correlations are

between the north American and East Asian pairs. The correlations between the contem-

porary US market and East Asian markets are smaller than the correlations between the

one-day lag of the US returns and East Asian returns, providing evidence that the US mar-

ket in�uences the East Asian markets more than the other way around. On the other hand,

the correlation between the one-day lagged Canadian market and the East Asian markets

is smaller than that of the same day. Thus the Canadian market does not seem to lead the

East Asian market. This could be due to the fact that Canada has a small open economy.
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Consequently, we use one-day lagged US returns but same-day Canadian returns when ex-

amining the dependence between the North American and East Asian markets. The results

from Spearman rank correlation and Kendall�s tau correlation exhibit a pattern similar to

that of the linear correlation. However, they are smaller than the linear correlations for the

same pair in general.

3.2 Results for the dependence structure

For the mixture copula model de�ned in (6), we �nd the following interesting results pre-

sented in Table 5.

First, the copula association parameters �1, �2 and the weight parameter w are strongly

statistically signi�cant (most at 1% level, a few at 5% level) except for the FR-JP pair and

the CA-JP pair (signi�cant at 10% level). This result indicates that international stock

markets are dependent at both the left and the right tails of the joint distribution. In other

words, international markets tend to move to the extremes (stress or boom) together.

Second, the weight on the Clayton copula, w, is greater than 0.5 for all pairs except the

US-KO, FR-KO, and CA-HK pairs. We then formally test the null hypothesis of w > 0:5

against the alternative hypothesis of w < 0:5 using a t test. From the p values of the test,

we can not reject the null hypothesis for any pairs except the US-KO, FR-KO, and CA-HK

pairs. The higher weight on the Clayton copula indicates that the dependence is biased to the

left tail, making the dependence asymmetric. Therefore, it is more likely that international

markets crash together than boom together.
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Third, judging from the log likelihood and the AIC criteria, we �nd that the European

pairs have the strongest dependence among all pairs. This result is consistent with other

measures of dependence presented in Section 2 and re�ects a higher degree of market inte-

gration in the European region. The North American markets are more dependent with the

European markets than with the East Asian markets, which is shown in the higher parame-

ter values and a higher log likelihood and a lower AIC criteria. Meanwhile, the European

markets are more dependent with the North American markets than with the East Asian

markets. On the other hand, the East Asian markets are more dependent with the European

markets than with the US markets.

Finally, markets are more dependent within the continent than across continents. For

example, the Japanese market is much more dependent with the Hong Kong and Korean

markets than with the US, UK, German and French markets, while the German market is

much more dependent with the UK and French markets than with the US or East Asian

markets. This might be related to a stronger trading, economic and �nancial relationship

and more similarities in the market structure within the continent than across continents. It

also implies a higher degree of market integration within a continent than across continents.

Next, we investigate the dynamics of the structure of dependence. We examine these

dynamics by studying how the weight parameter w changes overtime1. We focus on the

pairs within the same continents, which have been found to have relatively stronger tail

dependence in the static model. The result is presented in Table 6. The copula parameters

1The lags of p are set to 10 in all pairs except for the JP-HK pair, where p is chosen to be 5.
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are still statistically signi�cant, con�rming the tail dependence found in the static model.

The parameters that control the variation of the weight parameter are signi�cant for most

of the pairs ( except for the US-CA and UK-FR pairs), indicating the time varying of the

weight parameter. Thus the dependence structure changes over time for most markets.

To visually represent how the dependence changes over time, we plot the dynamics of the

weight parameter w in Figure 1. We notice that the average weight line (the dashed line)

lies above the w = 0:5 line (the solid line), con�rming on average the higher left than right

tail dependence found in the static model. For the US-CA pair, w only �uctuates around

the mean, showing no systematic change of the dependence structure. For the European

pairs, w stays above 0.5 until the �rst quarter of 2003, when it decreases below 0.5 and stays

low until the third quarter of 2007. Thus the dependence structure is biased more to the

left tail up to 2003 and then biased to the right tail until late 2007. This pattern re�ects

the generally booming markets in Europe during 2003-2007. The phenomenon is strong and

apparent in the GM-FR and GM-UK pairs, but much more weakly shown in the UK-FR

pair. For the East Asian pairs, a sharp increase occurs in w from 1997 to 1998, showing

that the dependence structure moves rapidly towards the lower tail dependence, re�ecting

the East Asian �nancial market crisis during that period. On the other hand, for the period

of late 2003 to late 2007, as in the European markets, w decreases and stays low, indicating

the dependence moves towards upper tail dependence, re�ecting the booming of the East

Asian markets during this period. Thus the dependence structure changes with the status

of the markets in both the European and East Asian markets.
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If we compare the dynamic mixture model with the static mixture model, we �nd that the

AIC is reduced for each pair. Some reductions in AIC are quite large. For example, for the

JP-KO pair, the AIC decreases from -354.0 for the static model to -469.4 for the dynamic

model. As a result, the dynamic mixture model performs better than the static mixture

model. Therefore, it is important to capture the dynamics of the dependence structure.

3.3 Results for the degree of dependence

The SJC copula model is used to directly examine the degree of tail dependence. We present

the result for the static SJC model in Table 7. First the lower and upper tail dependence

parameters are strongly signi�cant for almost all pairs, the exception being the right tail

dependence of the CA-KO pair. Second, the lower tail dependence parameter is signi�cantly

larger than the upper tail dependence in all pairs except for the GM-KO pair, indicating

asymmetric tail dependence, with stronger dependence in the left tail than in the right tail.

This �nding is consistent with our �ndings in the mixture copula model and it implies that

international diversi�cation is of limited value since the pairs tend to be in the downturn

together when diversi�cation is most needed. Third, the pairs from Europe have the highest

degree of tail dependence, again re�ecting a higher degree of market integration than other

regions. Finally, the degree of tail dependence is higher within a continent than across

continents. For example, the lower tail dependence is 0.6179 for the GM-FR pair while it is

0.2125 for the US-GM pair. Therefore, the degree of market integration is higher within the

continent than across continents.
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Table 8 gives the result for the dynamic SJC model. The parameters for dynamics for the

US-CA pair are not signi�cantly di¤erent from zero, indicating insigni�cant change of the

degree of the tail dependence in North America. For pairs in Europe and East Asia, most

dynamic parameters are signi�cant. Consequently the degree of tail dependence in these

markets changes over time.

To illustrate how the degree of tail dependence evolves over time, we plot the lower and

upper tail dependence coe¢ cients in Figure 2. In each graph, the solid curve, dotted curve,

and dashed line are for the lower tail dependence, upper tail dependence, and the mean of

the di¤erence between the lower and upper tail dependence respectively. For all pairs, we

�nd that the mean line lies above the zero line. This result means that the average lower

tail dependence is greater than the upper tail dependence, showing asymmetry of the tail

dependence overall. For the US-CA pair, the tail dependencies �uctuate around the mean,

showing no systematic dynamics. For the European pairs, the degrees of the tail dependence

are higher and less volatile after 2003. This seems to show the evidence that the European

markets move towards a higher degree of market integration after 2003. For the East Asian

pairs, the degrees of the dependence tend to increase gradually. This might be the evidence

that they are in the process of becoming more integrated.

Comparing the results of the static and dynamic SJC models, we �nd a reduction of the

AIC in the dynamic SJC model, which performs better than the static SJC model. For the

East Asian pairs, the reduction of AIC is almost doubled; for instance, for the HK-KO pair,

the AIC decreases from -491.0 to -744.6.
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Furthermore, the two copula models produce a similar tail dependence structure, log

likelihood, and AIC. We interpret this result as the evidence of well performance of our

models.

4 Conclusion

In this paper, we examine the extreme dependence of international stock markets via copula

functions. We investigate the dependence using both the static and dynamic copula models.

To investigate the structure of dependence, we compose a mixture copula model. Further, we

allow the weight to change over time to capture the dynamics of the dependence structure.

To analyze the degree of dependence, we use the Symmetrised Joe-Clayton copula of Patton

(2006) and again allow the dependence degree to be time-varying. We use daily returns on

the stock indices from North America, Europe and East Asia. We �nd signi�cant asymmetric

tail dependence in most of the return pairs, with lower tail dependence being greater than

upper tail dependence. Furthermore, the dependence is time varying in both its structure

and degree in the European and East Asian markets but not in the North American markets.

The dependence dynamics re�ect that the European and the East Asian markets are moving

towards more integration. Finally, we also �nd that dependence is higher between market

pairs from the same continent than from di¤erent continents. Our �ndings have important

implications to risk management and diversi�cation in the international stock markets.
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Table 1:  Descriptive Statistics of Returns 
 

________________________________________________________________ 
                                 Variable    N        Mean    Maximum Minimum Std Dev  Skewness   Kurtosis 
 

r_us       2919     0.0210     5.5732     -7.1127     0.9986    -0.1607    3.8443 
r_ca       2919     0.0200     4.7581     -6.9262     1.0020    -0.5398    4.1680 
r_gm      2919     0.0193     9.331    -13.0580     1.4452    -0.1743     5.1935 
r_uk       2919     0.0152     5.7656    -5.6577     1.0855    -0.0028     2.5004 
r_fr        2919     0.0195     9.0585   -10.2874     1.333     -0.0790     3.6303 
r_jp        2919   -0.0230    12.5711    -6.8306     1.6312     0.1522     2.9060 
r_ko       2919   -0.0006    27.4437  -19.1055     2.8204     0.1361     7.7957 
r_hk       2919    0.0560    15.5566   -13.5741     1.6178   -0.0437     9.2858 

_______________________________________________________________ 
 
 
 

Table 2:  Linear  Correlations 
_____________________________________________________________ 

          r_us     r_ca        r_uk         r_gm       r_fr      r_jp       r_ko       r_hk 
 

r_us   1.0000   0.6123   0.3813    0.4068   0.3945   0.0891   0.0964   0.1235 
r_ca   0.6123   1.0000   0.4376    0.4220   0.4332   0.1753   0.1583   0.2312 
r_uk   0.3813   0.4376   1.0000    0.6590   0.7453   0.2632   0.2328   0.3066 
r_gm   0.4068   0.4220   0.6590    1.0000   0.7748   0.2645   0.1934   0.3210 
r_fr    0.3945   0.4332   0.7453    0.7748   1.0000   0.2508   0.2086   0.2953 
r_jp    0.0891   0.1753   0.2632    0.2645   0.2508   1.0000   0.2730   0.3838 
r_ko   0.0964   0.1583   0.2328    0.1934   0.2086   0.2730   1.0000   0.3431 
r_hk   0.1235   0.2312   0.3066    0.3210   0.2953   0.3838   0.3431   1.0000 
lr_us -0.0404   0.1259   0.1956    0.1769   0.1958   0.2079   0.1730   0.2991 
lr_ca -0.0344   0.0829   0.1120    0.0944   0.1043   0.1658   0.1487   0.2559 

___________________________________________________________________ 
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Table 3: Spearman’s Rho 
___________________________________________________________________ 

                                                r_us        r_ca       r_uk     r_gm      r_fr        r_jp       r_ko        r_hk 
 

r_us       1.0000   0.5400   0.3349   0.3212   0.3411   0.0771   0.0839   0.1236 
r_ca       0.5400   1.0000   0.4138   0.3916   0.4161   0.1805   0.1512   0.2429 
r_uk       0.3349   0.4138   1.0000   0.6307   0.7078   0.2473   0.2325   0.3001 
r_gm       0.3212   0.3916   0.6307   1.0000   0.7159   0.2704   0.2023   0.3096 
r_fr        0.3411   0.4161   0.7078   0.7159   1.0000   0.2290   0.2015   0.2875 
r_jp        0.0771   0.1805   0.2473   0.2704   0.2290   1.0000   0.3000   0.3564 
r_ko       0.0839   0.1512   0.2325   0.2023   0.2015   0.3000   1.0000   0.3700 
r_hk       0.1236   0.2429   0.3001   0.3096   0.2875   0.3564   0.3700   1.0000 
lr_us     -0.0586   0.1139   0.1382   0.1527   0.1504   0.1947   0.1531   0.2384 
lr_ca     -0.0505   0.0629   0.0776   0.0771   0.0765   0.1597   0.1435   0.2131 

_____________________________________________________________________ 
 
 
 
 

Table 4: Kendall’s Tau 
____________________________________________________________________ 

            r_us       r_ca      r_uk       r_gm      r_fr       r_jp         r_ko      r_hk 
 

r_us       1.0000   0.3845   0.2321   0.2223   0.2370   0.0519   0.0584   0.0836 
r_ca       0.3845   1.0000   0.2865   0.2704   0.2884   0.1214   0.1041   0.1661 
r_uk       0.2321   0.2865   1.0000   0.4610   0.5265   0.1676   0.1604   0.2069 
r_gm      0.2223   0.2704   0.4610   1.0000   0.5425   0.1854   0.1409   0.2138 
r_fr        0.2370   0.2884   0.5265   0.5425   1.0000   0.1560   0.1401   0.1974 
r_jp        0.0519   0.1214   0.1676   0.1854   0.1560   1.0000   0.2109   0.2457 
r_ko       0.0584   0.1041   0.1604   0.1409   0.1401   0.2109   1.0000   0.2620 
r_hk       0.0836   0.1661   0.2069   0.2138   0.1974   0.2457   0.2620   1.0000 
lr_us     -0.0402   0.0771   0.0941   0.1048   0.1029   0.1322   0.1055   0.1634 
lr_ca     -0.0345   0.0427   0.0526   0.0524   0.0518   0.1076   0.0986   0.1457 

_________________________________________________________________________ 
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Table 5: Static  Dependence Structure—Mixture Copula 

 
 

Pairs θ1 θ2 w lnL AIC P value for 
test 
H0: w >=0.5 
H1: w <0.5 

 North America      
US-CA 1.1052(15.0495) 1.3236(11.2534) 0.5827(15.8239) 634.5212 -1263.0 1.0000 

 Europe      
UK-GM 1.3399(15.6463) 2.0771(11.1643) 0.5783(18.7593) 868.9 -1731.8 1.0000 
UK-FR 1.8403(21.4293) 2.3578(14.2413) 0.6074(21.8330) 1167.7 -2329.4 1.0000 
GM-FR 1.8437(17.9833) 3.0184(11.7035) 0.5827(21.6890) 1287.9 -2569.8 1.0000 

 East Asia      
JP-KO 0.3050(8.0569) 1.5001(5.6411) 0.7415(17.7722) 180.0 -354.0 1.0000 
JP-HK 0.5575  (7.5146) 0.7291(4.9073) 0.6190(9.9244) 241.5 -477.0 1.0000 
HK-KO 0.4358  (9.0764) 1.5441(7.1286) 0.6745(16.8638) 287.4 -568.8 1.0000 

 North America. - Europe      
US-GM 0.5446(5.8624) 0.6980(5.0294) 0.5609(7.5895) 250.8 -495.6 1.0000 
US-UK 0.5238(5.6191) 0.8172(3.4671) 0.6291(7.5325) 243.5 -481.0 1.0000 
US-FR 0.4507(8.0366) 1.0792(5.0292) 0.6458(11.9791) 257.1 -508.2 1.0000 
CA-UK 0.6700(10.3720) 0.9834(6.6814) 0.6347(13.6260) 328.1 -650.2 1.0000 
CA-GM 0.6507(9.2700) 0.7956(8.5799) 0.5384(10.9567) 295.2 -584.4 1.0000 
CA-FR 0.7335(11.5357)  0.8401(11.9995) 0.5640(14.7141) 322.4 -638.8 1.0000 

 North  America.–East Asia      
US-JP 0.2646(3.1643) 0.3838 (1.9666) 0.6282(3.994) 72.6 -139.2 0.2302 
US-KO 0.7871(3.4420) 0.1346(4.0056) 0.2605(3.7901) 64.7 -123.4 0.0000 
US-HK 0.3016(8.0400) 0.8391(3.9946) 0.7127(10.8870) 138.7 -271.4 1.0000 
CA-JP 0.1849(5.9228 ) 0.8233(1.8447) 0.8539(12.4023) 53.8 -101.6 1.0000 
CA-KO 0.1585(4.5423) 0.5859(2.2271) 0.7850(8.9092) 47.8 -89.6 0.8351 
CA-HK 0.7186(3.7440) 0.2235(4.5724) 0.3739(4.1414) 107.1 -208.2 0.0011 

 Europ-East Asia      
GM-JP 0.2885(7.1943) 1.0401(3.2216) 0.7599(12.8507) 125.0 -244.0 1.0000 
GM-KO 0.1504( 4.4016) 1.4833(4.9764) 0.7876(19.2563) 88.3 -170.6 1.0000 
GM-HK 0.6466(2.7770) 0.3730(2.0131) 0.5562(3.9912) 175.6 -345.2 0.1810 
UK-JP 0.2910 (7.0807) 0.7007(3.5251) 0.7197(9.9567) 115.5 -225.0 1.0000 
UK-KO 0.2339(6.1526) 0.9567(2.7156) 0.7594(10.5041) 100.0 -194.0 1.0000 
UK-HK 0.3777( 8.7968) 1.1612(3.0289) 0.7813(13.9067) 174.0 -342.0 1.0000 
FR-JP 0.4077(1.8505) 0.3234(1.7754) 0.5532(2.4333) 101.3 -196.6 0.2186 
FR-KO 1.0679 ( 2.9713) 0.1583(4.4171) 0.2479(3.7701) 82.9 -159.8 0.0000 
FR-HK 0.3832   (7.1361) 0.9099(2.8118) 0.7880(13.4842) 154.9 -303.8 1.0000 

      Note: Numbers in brackets are t statistics. 
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Table 6: Dynamic  Dependence Structure—Mixture Copula 

 
Pairs θ1 θ2 h0 a b lnL AIC 
North America        
US-CA 1.0786** 

(15.6182) 
1.3721** 
(12.7104) 

-0.5256 
(-1.0054) 

4.1255 
(1.4121) 

0.0735 
(0.1646) 

636.1 -1262.2 

 Europe       
UK-GM 1.0752**      

(18.1107) 
2.8490** 
(12.6414) 

-0.0382** 
(-2.3635) 

0.2281* 
(2.1763) 

0.9916** 
(203.5983) 

891.8 -1773.6 

UK-FR 1.6932**      
(16.9540) 

2.7040** 
(11.2254) 

-0.4931 
(-1.1033) 

6.0009 
(1.4654) 

0.1154 
(0.2232) 

1171.1 -2332.2 

GM-FR 1.3741**      
(24.4371) 

5.7579** 
(18.0087) 

-0.1441** 
(-2.9129) 

1.1714** 
(2.8355) 

0.9726** 
(105.3813) 

1415.2 -2820.5 

 East Asia       
JP-KO 0.2079**      

(6.3465) 
1.5301** 
(10.0578) 

-0.2291** 
(-2.7222) 

0.9772** 
(2.6774) 

0.9695** 
(85.8623) 

239.7 -469.4 

JP-HK 0.3768**      
(10.7550) 

1.7246** 
(8.6914) 

-0.1531** 
(-2.5180) 

0.7221** 
(2.4721) 

0.9797** 
(136.6172) 

271.8 -533.6 

HK-KO 0.3024** 
(7.9247) 

1.9344** 
(9.9035) 

-0.1010** 
(-2.5460) 

0.4536** 
(2.4499) 

0.9850** 
(160.9558) 

347.1 -684.2 

Note:. Numbers in brackets are t ratios. ** and  * indicate significance at 1% and 5% level respectively. 
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Table 7: Static Tail Dependence—SJC Copula 
 
 

Pairs λl λr lnL AIC P value for Test 
H0 : λl >=λr   H1 : λl <λr 

 North America     
US-CA 0.4252 (24.1504) 0.3674(17.9063) 662.6 -1321.2 1.0000 

 Europe     
UK-GM 0.4969 (31.4554) 0.4544 (27.1508) 878.3 -1752.6 1.0000 
UK-FR 0.5992 (50.4302) 0.5103 (28.5302) 1202.4 -2400.8 1.0000 
GM-FR 0.6179 (53.8966) 0.5658 (44.2598) 1332.9 -2661.8 1.0000 

 East Asia     
JP-KO 0.1798 (7.3395) 0.1328 (5.2391) 174.1 -354.2 1.0000 
JP-HK 0.2276 (9.8751) 0.1680 (6.7049) 247.5 -491.0 1.0000 
HK-KO 0.2548 (11.5549) 0.2089 (8.4055) 283.7 -563.4 1.0000 

 North America-Europe     
US-UK 0.2219 (9.5331) 0.1802 (7.3734) 250.2 -496.4 1.0000 
US-GM 0.2125 (9.2463) 0.2019 (8.7433) 266.1 -528.2 1.0000 
US-FR 0.2136 (9.1476) 0.2046 (8.5340) 262.7 -521.4 1.0000 
CA-UK 0.2832 (12.8832) 0.2115 (8.4748) 327.5 -651.2 1.0000 
CA-GM 0.2326 (10.3341) 0.2291 (9.8833) 297.6 -591.2 1.0000 
CA-FR 0.2642 (11.5282) 0.2267 (9.1691) 320.1 -636.2 1.0000 

 North America-East Asia     
US-JP 0.0764 (3.4114) 0.0514 (2.4527) 73.4 -142.8 1.0000 
US-KO 0.0661 (3.0659) 0.0461 (2.3873) 64.7 -125.4 1.0000 
US-HK 0.1362 (5.8073) 0.1085 (4.7270) 141.3 -278.6 1.0000 
CA-JP 0.0623 (2.8605) 0.0193 (1.2382) 51.2 -98.4 1.0000 
CA-KO 0.1000 (2601.1) 0.1000 (1496.8) 43.1 -82.2 0.0000 
CA-HK 0.1214 ( 5.0529) 0.0719 (3.0669) 106.9 -209.8 1.0000 

 Europe-East Asia     
UK-JP 0.1127 (4.7183) 0.0857 (3.7355) 114.5 -225.0 1.0000 
UK-KO 0.1029 (4.2755) 0.0826 (3.4502) 101.4 -198.8 1.0000 
UK-HK 0.1982 (8.7398) 0.1004 (4.1018) 175.3 -336.6 1.0000 
GM-JP 0.1358 (5.5374) 0.0835 (3.5173) 121.3 -238.6 1.0000 
GM-KO 0.0735 (3.1536) 0.0785 (3.2827) 81.7 -159.4 0.0000 
GM-HK 0.2049 (8.7617) 0.0949 (3.9806) 176.8 -349.6 1.0000 
FR-JP 0.1151 (4.7466) 0.0644 (2.9448) 102.7 -201.4 1.0000 
FR-KO 0.0859 (3.7346) 0.0636(2.8417) 82.5 -161.0 1.0000 
FR-HK 0.1978 (8.5909) 0.0645 (2.7935) 154.6 -305.2 1.0000 

      Numbers in brackets are t ratios. 
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Table 8: Dynamic Tail Dependence --SJC Copula 
 

Pairs h0,l al bl h0,r ar br LnL AIC 
 North America        

US-CA -1.0654 
(-1.1200) 

0.2603 
(0.4532) 

1.6550 
(0.7197) 

0.2282 
(0.2196) 

-1.7990 
(-1.3916) 

-1.1019 
(0.4576) 

663.9 -1315.8 

 Europe        
GM-UK 1.9825** 

(2.4364) 
-6.1059 ** 
(-3.5775) 

-1.8071 
(-1.4925) 

-10.518** 
(4.1754) 

-2.0911** 
(-4.8595) 

2.6791** 
(-2.5722) 

919.1 -1826.1 

GM-FR 1.7253** 
( 6.4444) 

-10.3554** 
(-7.3890) 

0.4597** 
(2.0575) 

1.2036** 
(3.6645) 

-8.7370** 
(-5.2399) 

0.6928** 
(4.6444) 

1510.1 -3008.2 

UK-FR 1.2234**      
(10. 6997) 

-7.0151** 
(-15.8109) 

0.4526** 
( 6.2725) 

1.0014 
(1.6973) 

-4.7034** 
(-4.8066) 

-0.3056 
(-1.3806) 

1254.9 -2497.8 

 East Asia        
JP-KO -1.6086** 

(-14.1074) 
-2.2881** 
(-5.2084) 

4.0194** 
(37.8461) 

1.4349 
(1.1214) 

-12.9984** 
(-3.0508) 

-0.2950 
(-0.1493) 

260.5 -509.0 

JP-HK -1.8788** 
(-60.2677) 

-1.0471** 
(-7.0318) 

4.1532** 
(100.0420) 

0.7570 
(0.8216) 

-9.7303** 
(-2.9015) 

-2.8745 
(-1.0549) 

286.5 -561.0 

HK-KO -1.8224** 
(-30.7884) 

-1.4206** 
(-4.8588) 

4.1283** 
(63.2069) 

-1.9229** 
(-28.5593) 

-1.1988* 
(-3.9916) 

4.2675** 
(87.1642) 

378.3 -744.6 

Note:. Numbers in brackets are t ratios. ** and  * indicate significance at 1% and 5% level respectively. 
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Figure 1: Dynamics of the Weight for the Clayton Copula w 
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Figure 2: Dynamics of the Tail Dependence 
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UK-GM 
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