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Dynamic Finite Element formulation is a powerful technique that combines the accuracy of the exact analysis with wide applicability
of the finite element method. The infinite dimensionality of the exact solution space of plate equation has been a major challenge
for development of such elements for the dynamic analysis of flexible two-dimensional structures. In this research, a framework
for such extension based on subset solutions is proposed. An example element is then developed and implemented in MATLAB®
software for numerical testing, verification, and validation purposes. Although the presented formulation is not exact, the element
exhibits good convergence characteristics and can be further enriched using the proposed framework.

1. Introduction

Dynamic stiffness modeling is a well-established technique
in vibrational analysis of structural elements. These methods
seek to propose formulations that have the accuracy of the
exact solutions and wider applicability of the finite element
methods by incorporating some form of the closed form
solutions of governing equations instead of polynomials used
by classic finite element method (FEM).

Two of the most famous dynamic stiffness formulations,
mainly applied to various beam-structures, are dynamic
stiffness matrix (DSM) and Dynamic Finite Element (DFE)
methods, which produce accurate results with much coarser
mesh compared to FEM formulations.

Extensively developed in 1970s, and pioneered again by
Banerjee and his coworkers since 1990s [1-8], the beam
DSM formulation dates back to much earlier times [9].
The 1941 work by Kolousek [9] is probably the first to
derive the dynamic stiffness matrix for the Euler-Bernoulli
beam. The DSM formulation is performed by developing
a dynamic relation between force and displacement matrix
for a problem domain, where the displacement functions

are combination of trigonometric and hyperbolic frequency-
dependent functions, which satisfy the Euler-Bernoulli or
Timoshenko beam equations. In this method, the boundary
and loading conditions of the problem in hand are taken into
consideration in developing the force-displacement relation-
ship and thus this process yields a one-step formulation to the
problem but is very case specific [1-6]. Using truncated Taylor
series expansion and assigning penalty for different boundary
conditions, the DSM has been more recently generalized
by Pagani and his coworkers [7, 8] to vibrational analysis
of composite beams and solid and thin-walled structures
subjected to various boundary conditions. This approach
was also further extended to use higher-order 1D dynamic
stiffness elements for the vibration analysis of composite
plates [10].

On the other hand, the DFE technique follows the general
procedure of FEM element development by using the general
displacement solution of beam equation as basis functions.
Next, the element dynamic shape functions are developed
and supplied to a residual minimization scheme, such as
Galerkin’s technique, to develop the frequency-dependent
element matrix. The matrix thus developed is not case specific
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and can be assembled. The boundary and loading conditions
are applied in a manner similar to FEM [11-14].

Both DSM and DFE methods generate one matrix per
problem which has the effects of mass and stiffness combined.
In fact, the mass terms are distributed over the element
displacement as a dynamic force using D’Alembert’s principle.
The assembly of the element dynamic stiffness matrices and
the application of the system boundary conditions then lead
to anonlinear eigenvalue problem, which is then solved using
aroot finding technique, such as Wittrick-Williams algorithm
(15].

Both the DSM and DFE formulations have been very
successful for one-dimensional elements such as rods, beams,
and beam-structures under various loading and bound-
ary conditions. The expansion of such techniques to two-
dimensional (2D) elements such as plates, however, has
led to cumbersome mathematics with limited applicability
which served as a motive for current research. The particular
problems with such extension arise from the fact that the plate
governing equations are two-dimensional partial differential
equations with infinite number of solutions. This is unlike
beam and rod situation where the frequency-dependent
solution of the ordinary differential equation can be used
directly as the basis functions of approximation space to
develop set of dynamic shape functions [16].

The other problem in the case of DFE formulation comes
from evaluating the resulting integral equations, written
in terms of the dynamic shape functions, to develop ele-
ment matrices. Since these functions are transcendentally
dependent on frequency, the integrations are difficult to
handle given the current computational power of computers
especially for infinite dimensional domains. This difficulty
is particularly important when extension of such elements
to irregular shapes is required. In such situations, the area
integrals used in mapping of the element to its natural
coordinate system will involve the absolute value of Jacobian
mapping matrix that is difficult to handle for such compli-
cated displacement functions.

Because the Dynamic Finite Element matrices are a result
of these integrations, use of numerical integration schemes
such as Gauss quadrature formula will require introduction
of numerous evaluation points for an acceptable result. This
is unlike FEM extension to plates of arbitrary shapes where
the polynomial shape functions provide descent result with
small number of evaluation points. Besides, FEM shape
functions are much easier to evaluate numerically as they
do not have any dependency on vibrational frequency and
produce constant matrices of numerical values that can be
manipulated with ease. Therefore, much of the available
literature for exact solution of plates was focused on solving
these equations for simple geometries and loading cases,
as presented by Leissa [17-22], or involved variation error
minimization techniques, such as finite element method [23-
34].

Recently, there have been more researches to extend the
dynamic stiffness matrix scheme to plate vibrations. Since
this method involves force-displacement relationship devel-
opment to arrive at the element DSM, it requires developing
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differential relationships, avoiding the integration problem.
Casimir et al. [16] developed the DSM for rectangular thin
plates and demonstrated that accurate results can be achieved
with limited number of elements. However, their method
involved solving infinite dimensional matrices, limited to
simple cases, and provided problem specific formulation
that must be reformulated for each new configuration. This
reformulation for plate elements would therefore involve
solving large matrices and is less favourable to be used as
a general analysis tool. More recently, Liu and Banerjee
[35-37] presented a novel Spectral-DSM (S-DSM) method
to generalize the DSM using truncation of Fourier series
and the application of spectral analysis. The S-DSM, when
applied to the free vibration analysis of complex problems
involving isotropic laminated plates under various boundary
conditions, demonstrated significantly improved efficiency
over the conventional FEM formulations.

In this paper, the focus is to present an alternate dynamic
stiffness formulation in the form of DFE for the vibration
analysis of Kirchhoff plates. Particularly, the focus is to
generate a model that can be easily extended to plates of
different shapes without loss of accuracy of the original
formulation. The mathematical procedure of beam DFE for-
mulation served as a guideline for development of the current
plate DFE design, as presented in the following section.
An example 4-node 12-DOF element is then developed and
validated against FEM, where its accuracy and efficiency are
demonstrated through the free flexural vibration analysis.

2. Mathematical Modeling

To develop Dynamic Finite Element of thin plates, we begin
with the partial differential equation governing the free
flexural vibration [38]:
4 4 4 2
w, , 0w  dw_ wplw M
oxt  Toy?ox? oyt D

where w is the flexural displacement, p is the mass density, ¢
is the thickness, and
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represents bending coefficient. The terms E and v denote
Young’s modulus and Poisson’s ratio of the plate material,
respectively.

Applying Galerkin’s weighted residual minimization
scheme [39], the integral form of the governing equation (1)
is written as

o'w o'w o'w W’ ptw
N (%) 5= +2 el
# (.5) ( oxt 0y*0x? i oy* D

where N(x, y) is the residual weighting function and dA is
the differential of the area within closed element boundary.

) dA, (3)
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Green’s theorem is a conversion mechanism between area
and line integrals performed over a closed boundary. For
functions B and A Green’s theorem states

4} ((Bi+ Aj)-n)ds = 4} (Bny ~ An,)ds

= 4)de - Adx
(4)
= #(v -(Bi + Aj))dA

_ # (BB 0A > JA;
Oox Oy
here, n, and n, are components of the unit normal vector n
to the element boundary, and ds is differential segment along
the boundary.

Since Galerkin’s method uses the same approximation
for both field variable w and weighting function N, by
applying Green’s theorem (4) to the above area integrals
twice and taking the conformity of virtual displacements and
loads across element boundaries into consideration, one can
change Galerkin’s integral equation (3) to its equivalent weak

form:

826w ’w \ ?*ow
D# 2 2 UW o2
. 82_w o*ow . Uaz_w o* 0w

oy ) 0y? ox? ) 0y?

*w \ P*w
21 (1- dA
(( v) axay>axay>

- (ﬂ) (wzptw) dwdA =0,

where Sw(x, y) = [N(x, y)][6w;] can also be interpreted
as the virtual displacement. Equation (5) is the formulation
generally used for finite element development of plates. The
DEFE derivation will deviate from FEM at this point.

Let w(x, y,w) = [N, (x, y)][w;] be the dynamic flexural
displacement, where [N, (x, y)] is a row vector containing
the dynamic shape function, derived from the frequency-
dependent (dynamic) basis functions of approximation
space, and [w;] is the vector of nodal displacements. The
dynamic basis functions, in this case, are defined to be the
solutions of the Kirchhoff’s plate governing equation.

Applying Green’s theorem (4) to the above area integrals
twice, (5) can be written as

4’)(8_1,0) 826w+0826w . ds
0x 0x? oy> )7
_4’)(8_1.0) 528w+vaz8w . ds
oy 0y? ox* )
2
a5
oxdy

©)

~§(a-05) Saenas

—(JS(w) 0’dw . 0w 0 ds
ox>  oxoy* ) 7
Pow  ow
43( )(a3 " ayox )”"ds

#( )848wdA 2#( ) azc;wz
#( )848wdA iﬁ(wptw)(S JA 0.

(6)

Note that the last 4 area integrals can be combined
to generate Kirchhoff’s plate equation in terms of virtual
displacement dw and thus can be written as

(o] (# (1) [a4a[i\iw] N 2%‘;%&] Lo [1\47“)]

(22 )| ) .

Assuming, as mentioned earlier, the dynamic shape
functions are derived from the dynamic basis function, which
are in turn solutions of Kirchhoft’s equation, the terms in
the bracket [0*[N,]/0x* +2(0*[N,]/dy*0x*) +9* [N, ] /oy* -
(wzpt/D) [N,]] will yield zero. Therefore, the DFE stiffness
matrix [K,] can be obtained using only evaluation of line
integrals performed over element boundaries, as follows:

[K,]
=D ¢ g [ZB\Z‘:]T> (aza[f;w] + vaza[;\sz] )nyds

((1 - ) g [Ia\i‘:’] ) i [N‘“]n ds

7)

oxoy 7 (8)

9[N,]") & [N,]
=95 )axay 9

(L )

o’ [N,] O[N]

T ) 4

+ Cﬁ ([Nw] ) ( o + 3yox? ) n.ds |.

Although not explicitly visible, the above matrix is sym-

metric as it was obtained using mathematical manipulation
of the symmetric Galerkin’s weak integral form.
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FIGURE 1: Natural coordinate system (a) is used to map arbitrary shapes from element coordinate system (b) on a 2 by 2 square.

2.1. Extension to Arbitrary Shapes. The absence of area inte-
grals in DFE stiffness matrix evaluation enables exact inte-
gration of the boundary line integrals when transformed
between different coordinate systems using variable substi-
tution. Consider, for example, the quadrilateral case given in
Figure 1(b).

The variables x and y from element coordinate system can
be related to the variables £ and 7 from natural coordinate
system using bilinear relations:

x =ay+a,&+an+aln
9)
y=by+b&+bn+biy,

where the coefficients g; and b, can be obtained by evaluating
these relations for the nodes of the element. For a;,

X 1 -1-11 a,
X 11 -1 -1 a
2= "L (10)
X3 11 1 1 a,
Xy 1 -1 1 -1 a,

The DFE stiffness matrix (8) defined in last section
was developed for any arbitrary closed area in element
domain. Using relationships between element and natural
coordinate systems (9) developed above, differentials of DFE
matrix can be replaced with appropriate natural coordinate
corresponding terms. The first integral, for example, can be
evaluated in the natural coordinate system as

[ Ka[zav;]T) (az N, 7 a[yw])

7 d£+fl[<—a[la\i‘c"] ) (1)

[N 3*[N !
. ( a[xz“’] +v a[yz“’] (b, + bg))] dn.
E=-1

(b + bsﬂ)]

n=1

In the above integrations, the shape function vector,
[N,], and its element coordinate system (Figure 1(b)) deriva-
tives must be converted to the natural coordinate system
(Figure 1(a)) as well before the integration is performed.
This can be done by evaluating the derivatives in the ele-
ment coordinate system and then replacing the variables x
and y with the respective definitions in natural coordinate
system. Alternatively, one can transfer the shape function
to natural coordinate system and then define the relation
between derivatives in natural coordinate system and element
coordinate system using application of chain rule. It is
important to note that the relationship between the natural
and element coordinate system does not need to be bilinear
and the geometry is not restricted to quadrilaterals. The
same procedure is applicable to any geometry and any
relationship.

3. Development of Example Element

The governing differential equation of Kirchhoff plates is a
two-dimensional homogenous partial differential equation.
The solution to such equations forms an infinite dimensional
Hilbert space, which is usually prescribed in terms of Fourier
series for dynamic formulations of thin plate vibrations.
Although the DFE mathematical formulation presented does
not have any restriction on the dimension of the shape
function vector used, to generate a widely applicable scheme,
a subset of the infinite solution space is used to develop
example element. In this approach, instead of using the
general Fourier trigonometric functions, a solution space is
generated considering the physics of the element equation
rather than a pure mathematical approach. Since in the
development of the DFE the entire solution space is not
used, the solution will not be exact for one element but
would rather converge to an analytical answer. Special focus
will be given to solutions that have both the following
characteristics:

(1) Being symmetric with respect to x and y

(2) Being C* continuous.
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Referring to the differential equation of motion (1),
governing a harmonically oscillating Kirchhoft (thin) plate,
while there are multiple solutions possible to this equation,
one simple subset is obtained by considering the following
reduction:

b . (12)

Note that this simplification has made the plate equation
similar to that of a thin beam in y direction. For this simplifi-
cation, it is necessary that the solution considered must make
the summation 9*w/ox* + 2(0*w/ ayzaxz) equal to zero. One
such solution set can be obtained when each of the terms of
the summation is zero individually. These solutions can be
found using separation of variables and solving the equation
above as an ordinary differential equation. Assigning

" 2\ 1/4
Yxy = (pr > > (13)

two solution sets are thus possible:

cos (yxyy) ,sin (yxyy) , cosh (yxyy) ,sinh (yxyy)
(14)

X cos (yxyy) , X sin (yxyy) , X cosh (yxyy) , x sinh (yxyy) .

The first set is identical to beam differential equation
solutions in y direction. Similar 8 other solutions can be
developed for a reduction in x direction, written as

cos (yxyx) ,sin (yxyx) ,cosh (yxyx) ,sinh (yxyx)
(15)

y cos (yxyx) , ysin (yxyx) , ¥ cosh (yxyx) , ysinh (yxyx) .

Now, the FEM development can be followed to produce
the shape functions using these solutions as basis function.
It is worth noting that although the above 16 basis functions
developed here are linearly independent in a continuous
Hilbert space, when evaluated over some finite nodal points,
they are found to produce linearly dependent values. This
problem is resolved by mixing these solutions to create 12
new basis shape functions which in low frequency values (i.e.,
when the frequency tends to zero; static behavior) will con-
verge to 12 Hermitian polynomial basis functions commonly
used in the conventional FEM formulation of thin plates [38],
thatis, 1, x, y, X7, Xy, yz, X, xzy, xyz, y3, x3y, xy3.

The new dynamic basis functions are written as

X,1 = cos (nyx) + cos (ny)’)

X,2 = xcos (yxyy)

5
X3 = ycos (yxyx)
X4 cosh (yxyx)z— cos (nyx)
X5 = x50 (1) + 7 sin (v, )
YX}/
X6 = cosh (yxyy) 2— cos (ny}’)
YXy
X7 = sinh (yxyx); sin (nyx)
Yxy
X.8= (y) cosh (yxyx)z— () cos (nyx)
YXy
X9 (x) cosh ()/ny) 2— (x) cos (ny)’)
X.10 = sinh (ny)’) 3— sin (nyJ’)
YX}/
X.11 = () sinh (nyx) 3— (y) sin (nyx)
X,12 = (x) sinh (ny)’); (x) sin (ny)’) ‘
YX}/
(16)

The nonnodal displacement function w,, can be defined
as a linear combination of these shape functions, written as

12
w, = Y (CiX,i). 17)
i=1

By evaluating these displacements and corresponding
derivatives at nodes of an element (Figure 1(a)), the following
relations are obtained:

[wy,] = [Prax2] [C]. (18)
The constant matrix [C] can be obtained as
[C] = [P12><12]_1 [wlz] > (19)

where for a 2 by 2 square element, [P,,,;,] matrix is obtained
as



[ X, (-1L-1) X,(-1-1) X;(-1,-1)
0X,(-1,-1) 0X,(-1,-1) 0X;(-1,-1)
ox ox ox
0X, (-1,-1) 39X, (-1,-1) 03X, (-1,-1)
ay ay dy
[P12><12] = :
X, (L1 X, (-L1)  X;(-11)
0X,(-1,1) 0X,(-1,1) 0X5(-1,1)
ox ox ox
0X,(-1,1) 0X,(-1,1) 0X5(-1,1)
L ay oy ay

When premultiplied by the basis function matrix [X,],
the inverse of matrix [P),,,] generates the shape func-
tion vector [N,(x,y)], containing the 12 new dynamic
(frequency-dependent) shape/interpolation functions:

W, (x,y) = [X,] [P12><12]_1 [w;,]

= [N, (e )] [wa]

Note that although the shape functions obtained through
this method are variables of the rotational vibration fre-
quency w on the element domain, they still maintain the
characteristics of Hermitian shape functions at nodes in that
they produce a value of 1 at their corresponding nodes and
zero at other nodes. Also, these shape functions converge
to their FEM counterparts for small values of vibrational
frequency, when w tends to zero. The expressions for dynamic
shape functions are very lengthy and are omitted here
for brevity. For demonstration purposes, the first resulting
dynamic interpolation function is presented graphically in
Figure 2, for two values of y,, = 10e — 6 (approaching
zero, Figure 2(a)) and Yy = 2 (Figure 2(b)), alongside the
corresponding first Hermitian shape function (Figure 2(c)).
As can be seen from Figures 2(a) and 2(c), as the frequency,
w, approaches zero, the dynamic shape function, N, (x, ),
becomes the same as the Hermitian shape function, N1 [40],
that s, (1/8)(1-x/2)(1-y/2)(2—x/2—y/2—(x/2)*~(y/2)*).

Using the displacement and weighting functions (16)
expressed in terms of these dynamic shape functions and
introduced in the DFE boundary integral equation (8), the
DFE frequency-dependent element dynamic stiffness matrix,
[k(w)], is obtained.

Having this matrix, next an illustrative example of a
square plate with three sides simply supported and one side
free boundary condition is analyzed. The natural frequency
is normalized over plate material and mechanical properties
using the relation w+/pt/D. The element length and width are
equal to 2 units and Poisson’s ratio is taken as 0.3. A conven-
tional FEM analysis using Hermitian shape functions [40] is
also performed to highlight the improvements obtained from
DEFE formulation.

(21)
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Xlo(—l,—l) Xll(—l,—l) X, (-1,-1) ]
0X,0(-1,-1) 90X, (-1,-1) 09X}, (-1,-1)
o0x o0x o0x
90X, (-1,-1) 93X, (-1,-1) 09Xy, (-1,-1)
dy 9y dy

: (20)
X0 (-1,1) X, (-1,1) Xp,(-1,1)
90X, (-1,1) 90Xy, (-1,1) 90Xy, (=1,1)
ox ox 0x
0X, (-1,1) 90X, (-1,1) 98X, (~1,1)
dy dy dy |

The element matrices are assembled, where applicable, to
find the system’s global dynamic stiffness matrix [K(w)]. The
system boundary conditions are then applied by modifying
the DFE matrix, where the constrained degrees of freedom
(DOF) are enforced by eliminating the corresponding rows
and columns, in a similar way to the conventional FEM. This
produces a nonlinear eigenvalue problem, written as

(K (w)] {W} =0, (22)

where {W} is the vector of system’s DOFs. The system natural
frequencies are then evaluated by setting the determinant
of DFE matrix equal to zero, |[K(w)| = 0. The determinant
of [K(w)] is a transcendental function of natural frequency
of vibration that must then be swept across the frequency
domain to find the values for which determinant function
is zero. For a plate with 3 sides simply supported and one
side free (SS-SS-SS-F) boundary condition, modeled using a
single DFE, the determinant matrix is plotted in Figure 3.

The determinant function also produces undefined
regions, known as poles [41], where the determinant value
approaches infinity. These regions represent the denominator
of the determinant function [12].

The plate’s first five nondimensionalized natural fre-
quencies (w+/pt/D) were evaluated using FEM and DFE
techniques and compared with the analytical data from [17]
(see Table 1).

As demonstrated in Table 1, for a single element mesh, the
performance of the presented DFE plate surpasses that of its
FEM counterpart, especially for the fundamental frequency
where DFE produces very small error. It is also worth noting
that Hermitian FEM vibrational analysis produces a linear
eigenvalue problem in form of a polynomial in terms of
frequency. This polynomial, in turn, has finite number of
roots (in the case of above boundary condition, two roots
only) and therefore, detection of higher modes requires mesh
refinement. The DFE element, however, leads to a nonlinear
eigenproblem through which one can extract multiple fre-
quencies, even when a single-element mesh is used.
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FIGURE 2: Variation of dynamic shape functions with vibrational frequency and comparison to Hermitian shape functions. The plot of first
DFE shape function, Ny, (x, y), for y,,, = 0.000001 (a) and y,,, = 2 (b). The first Hermitian shape function, N1, is plotted in (c).
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FIGURE 3: Plot of transcendental DFE determinant function for SS-
SS-8S-F boundary condition against y,, = (ptaw?* /D)™

The 2 x 2 square plate is further analyzed using
both FEM and DFE formulations and under three dif-
ferent boundary conditions, for which analytical results

TaBLE 1: Comparison of DFE and FEM formulations under SS-SS-
SS-F boundary condition against analytical solution for values of
w+/pt/D.

Mode Analytical result 1.2 DOEDEE ~ 12 D.OF FEM
Single element Single
number [17]
mesh element mesh
1 2.92 2.91 3.18
2 6.94 6.23 12.98
3 10.30 12.50 —
4 14.77 16.52 —
5 15.47 22.90 —

were reported by Leissa [17]. These boundary conditions
include Clamped-Clamped-Free-Free (C-C-F-F) boundary
condition, Clamped-Free-Simply Supported-Free (C-F-SS-
F) boundary condition, and Simply Supported-Free-Simply
Supported-Free (SS-F-SS-F) boundary condition.
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FIGURE 4: Comparison of convergence of w+/pt/D values to analytical solution provided by [20] between FEM and DFE models for second
mode (a) and fifth mode (b) of vibration of a plate under SS-SS-SS-F boundary condition.

TaBLE 2: Comparison between DFE and FEM formulations against
analytical solution values of w+/pt/D for fundamental natural
frequency under different boundary conditions.

Boundary Analytical result 12 D.OF DFE 12 D(.)F FEM
condition (17] Single Single
element mesh element mesh
C-C-F-F 1.74 1.82 1.92
C-F-SS-F 3.79 3.81 5.13
SS-F-SS-F 2.40 2.42 2.74

Since FEM can capture different number of frequencies
for different boundary conditions, only the fundamental
natural frequencies are reported here for consistency in
comparison. The result of this analysis is reported in Table 2.

Besides the performance of a single DFE element, it is
important to analyze the convergence characteristics of the
developed DFE plate. The convergence of the DFE element
was compared against the 12-DOF plate finite element, which
utilizes Hermitian polynomials. For this study, the mesh
density was increased from a single element to 4 elements (2
by 2), and to 25 elements (5 by 5). For illustration purposes
only, the result for the second and fifth mode of vibration of
a plate with (SS-SS-SS-F) boundary condition is compared
in Figure 4 for DFE and FEM formulations as examples of
monotonic and nonmonotonic convergence to the analytical
solution reported in [17]. Similar convergence was observed
for other modes as well.

As can be seen from Figure 4, the DFE plate has com-
parable convergence rate with FEM. However, as mentioned
earlier, since DFE produces a transcendental determinant
equation, it is capable of providing potentially infinite num-
ber of natural frequencies, while FEM plates create constant
mass and stiffness matrices which can only generate a finite
number of solutions through linear eigenvalue problem. Also,
the plate DFE presented here was produced based on one
subset of solution of the plate equation, which reduced
the plate behavior to two beam-like equations. Many other
solution sets can be found, for example, based on distribution

of dynamic load over the element strain, and combined
with these solutions to enrich element physics further. The
technique can also be extended to generate plate elements
with higher number of nodes and DOFs.

4. Conclusion

The well-established framework for development of beam
Dynamic Finite Element (DFE) formulation, based on exact
solutions of governing differential equation, is extended to
two-dimensional (2D) plate elements. Unlike other dynamic
plate formulations proposed in past, which exploit an infi-
nite dimensional solution, an element with limited number
of solutions was developed. The solutions obtained were
founded on physics-based simplification of Kirchhoft’s equa-
tion to beam-like equations and demonstrated comparable
performance with classic FEM formulations. The research
is underway to further enrich the presented 2D element by
using the proposed framework to potentially achieve a quasi-
exact plate Dynamic Finite Element (DFE) formulation and
further extend DFE plates to arbitrary geometries of various
distortions.
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