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Abstract 

 

A Manipulating Unmanned Aerial Vehicle (MUAV) is an aerial platform equipped with a 

mechanism to physically interact with its environment. The interaction is realized by means of 

robotic arm(s), vehicle body or suspension cable(s) and enables a wide range of novel 

applications including perching, grasping, pick–and–place, load transportation, etc. However, 

this is a challenging task as MUAVs are inherently unstable platforms with highly nonlinear and 

coupled dynamics, often associated with moving parts that result in complex modelling, 

estimation and control problems.  

This thesis deals with the problem of estimation and control of MUAVs. First, a 

comprehensive literature survey covering various aspects of MUAVs such as those related to 

modelling, estimation and control is presented. In the first approach for MUAV state estimation 

and control, effects of robotic manipulator on Unmanned Aerial Vehicle (UAV) dynamic 

equations of motion is treated by adding process noise with unknown noise statistics to 

conventional UAV dynamic model. With that in mind, state estimating and control of a UAV by 

means of conventional Kalman filters and their adaptive counterparts are formulated. Having 

designed Linear Quadratic Regulator (LQR) laws, it is shown that adaptive Kalman filters 

provide accurate satisfactory estimation and overall control of a UAV, even with simultaneous 

uncertain process and measurement noise statistics. 

Next, in order to improve the estimation and overall control performance of the previous 

approach, full nonlinear and coupled dynamic modelling of a MUAV based on Euler–Lagrange 

formulation is presented.  Then, a General Unscented Kalman Filter (GUKF) is proposed to 

accomplish full state estimation of a MUAV, along with LQR control laws. Finally, in order to 

improve the execution time of GUKF, a computationally–efficient UKF known as Scaled 
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Spherical UKF (SSUKF) with estimation and overall control performance comparable to GUKF 

is formulated. It is shown that both UKF–based algorithms result in satisfactory estimation and 

setpoint/trajectory tracking of quadcopter UAV and its robotic manipulator, even in scenarios 

with increased noise level and a period of total outage of sensory data. 
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Chapter 1 Introduction 

 

1.1 Background and motivation 

In recent years, a significant growth in Unmanned Aerial Vehicle (UAV) industry has been 

realized. As an example, in the United States only, there were approximately a million UAV or 

“drone” gifts for Christmas 2015 [1]. To this date, UAVs have been used in applications such as 

remote sensing of agricultural products [2], forest fire monitoring [3], search and rescue [4], 

border monitoring [5], transmission line inspection [6], and plant assets inspection [7]. Fully 

functional UAVs for plant inspection have appeared as recently as 2010 for UK onshore oil 

refineries [8]. In 2012, the supermajor oil and gas company, British Petroleum, established 

research teams to develop the necessary technologies to use UAVs for oil pipeline inspection in 

Prudhoe, Alaska [9] and over the course of only a few years, the technology has matured to 

become the standard practice for onshore and offshore platforms [7]. The above achievements 

have benefited various industries tremendously; however, an important common shortcoming in 

the mentioned applications is that the UAV is employed to merely sense, monitor and “see” the 

environment, but physical interaction with the environment is strictly avoided.  

Motivated by this, researchers in the last few years have begun examining applications in which 

a UAV is required to perform perching, grasping, and manipulation [10]–[15]. This new area of 

research, usually known as aerial manipulation, encourages physical interaction of the UAV with 

its surrounding environment and enables UAVs to perform a whole new set of missions. 

Aerial manipulation falls within a relatively well–studied broad research category known as 

mobile manipulation. However, most of the research carried out in mobile manipulation focuses 

on ground robots. The main distinct challenges in the aerial manipulation problem are: 

1. Unlike ground robots, UAVs do not have a stable base and therefore forces and torques 

generated by the presence and movement of the manipulation mechanism and/or the 

payload directly affect the vehicle’s position, attitude and even its stability; 

2. Unlike ground robots, UAVs’ propulsion system acts relatively poorly in close vicinity of 

the ground and/or walls; 
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3. UAVs are often underactuated platforms with highly nonlinear coupled dynamics, 

introducing further complications into their control design; and 

4. UAVs usually have stringent payload weight constraints and therefore cannot 

accommodate industrial dexterous robotic manipulators. 

The above challenges encourage the development of a new research theme for the aerial 

manipulation problem. Aerial manipulation is a relatively new field of research. Some of the 

pioneering works in this area appeared in the first years of the current decade [10], [11], [16]–

[18] where the manipulation usually consisted of a gripper rigidly attached to a UAV body or 

was based on tethered configurations. Over the course of a few years, aerial manipulation has 

considerably evolved and more recent works, e.g. [14], [15], [19]–[22], address challenging 

problems such as valve turning and pick–and–place by several Degrees–of–Freedom (DoF) 

robotic manipulators. 

In aerial manipulation, accurate and reliable state estimation is a fundamental challenge that has 

not been addressed in detail yet. In the majority of previous works, precise estimates of MUAV 

states is obtained from costly motion capture systems such as NaturalPoint OptiTrack™ or 

VICON™ systems [10], [12], [17], [20], [23], [24] or by extensive redundant sensor suites 

including GPS, Inertial Measurement Units (IMUs), barometers, and/or onboard cameras [23], 

[25]–[27]. The primary drawback of the mentioned approaches is that they either confine 

MUAVs to lab environment with precise sensing infrastructure or require extensive use of 

sensors onboard a MUAV. The main motivation of this thesis is to provide reliable and time–

efficient state estimation for onboard MUAV implementation, solely based on onboard sensors. 

Therefore, the findings of this research enable autonomous operation of MUAVs in real–life 

scenarios. Our results show that the proposed algorithms perform well in various scenarios, 

including setpoint/trajectory tracking and increasing noise level, and can regain accurate MUAV 

state estimation and control even after periods of sensory data outage. 

 

1.2 Research objectives 

This manuscript–based dissertation consists of 5 main chapters, based on journal papers 

encompassing our research results. The main objective of this dissertation is to investigate state 
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estimation and control of a MUAV. The following steps serve as milestones to achieve the main 

objective: 

Chapter 1 highlights the background and motivation behind the current research. Also, the main 

milestones and research objectives are described. 

In Chapter 2, a comprehensive literature survey is presented. Various aspects of MUAVs 

including their physical subsystems, sensors, mission scenarios, modelling, state estimation and 

control are discussed in detail. This chapter is based on the following submitted paper: 

H. Bonyan Khamseh, F. Janabi–Sharifi, and Abdelkader Abdessameud “Aerial manipulation – 

a literature survey,” Journal of Robotics and Auton. Sys., vol. 107, pp. 221–235, 2018. (Bonyan 

Khamseh was the main author of the paper. Abdessameud contributed to the sections on sensory 

configurations, dynamic modelling, and overall structure of the paper) 

In Chapter 3, dynamic modelling of a quadcopter UAV, along with LQR control design, is 

discussed. Conventional and adaptive EKF and UKF algorithms are then developed for a 

quadcopter with known/unknown noise statistics to investigate manipulator effects on UAV 

estimation and control. This chapter is based on the following submitted paper: 

H. Bonyan Khamseh, A. Assa and F. Janabi–Sharifi, “Adaptive Extended and Unscented 

Kalman Filters for Quadcopter State Estimation,” Submitted to Robotica. (Bonyan Khamseh was 

the main author of the paper. Assa provided guidance and consultation on adaptive unscented 

Kalman filtering)  

In Chapter 4, full dynamic modelling and LQR control design of a MUAV is undertaken. Then, 

general and computationally–efficient variants of UKF–based state estimation algorithms are 

developed. Estimation accuracy and overall control performance of UKF–based approaches with 

various initial conditions, noise scenarios, total sensory loss and trajectory tracking scenarios are 

investigated. This chapter is based on the following papers: 

H. Bonyan Khamseh and F. Janabi–Sharifi, “UKF–based LQR control of a Manipulating 

Unmanned Aerial Vehicle,” Unmanned Systems, vol. 5, no. 3, pp. 131–139, 2017.  
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H. Bonyan Khamseh and F. Janabi–Sharifi, “Unscented Kalman Filter State Estimation for 

Manipulating Unmanned Aerial Vehicles,” Submitted to Journal of Aerospace Science and 

Technology.  

Finally, Chapter 5 summarizes the conclusions, important findings and contributions of this 

research. Also, possible directions for future research are suggested. 
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Chapter 2 Literature survey 

This chapter is based on the following submitted paper: 

 

H. Bonyan Khamseh, F. Janabi–Sharifi, and Abdelkader Abdessameud “Aerial manipulation – a 

literature survey,” Journal of Robotics and Auton. Sys., vol. 107, pp. 221–235, 2018. 

 

* Bonyan Khamseh was the main author of the paper. Abdessameud contributed to the sections 

on sensory configurations, dynamic modelling, and overall structure of the paper 

 

 

2.1 Introduction 

In this section, a literature review is presented to discuss various aspects of MUAVs ranging 

from MUAV physical subsystems, sensory configurations, missions and operational scenarios, 

dynamic modelling, to estimation and control problems. Also, at the beginning of subsequent 

chapters, in–depth literature review pertaining to specific topic of the given chapter is presented. 

 

2.2 Literature review 

2.2.1 The physical subsystems of a MUAV 

In general, an aerial manipulation system contains two main physical subsystems, a UAV 

platform and a manipulation mechanism, with the necessary sensors and control systems for its 

autonomous or semi–autonomous functionality. In this section, we describe the most common 

subsystems of a MUAV as well as the possible sensory configurations considered for various 

applications.   

 

2.2.1.1 UAV platform 

Structurally, Heavier–Than–Air (HTA) UAVs present the most common configurations and can 

be divided into fixed–wing and rotary–wing vehicles. Fixed–wing UAVs, in general, are 

required to maintain a minimum forward velocity (stall velocity) and therefore cannot hover with 

zero forward velocity. Not surprisingly, fixed–wing UAVs have not been employed in aerial 

manipulation problems and therefore are not discussed in this work. A number of rotary–wing 

vehicles have been used in MUAVs and are discussed in the following paragraphs. Airships, a 

class of Lighter–Than–Air (LTA) vehicles, can also be used as the UAV in aerial manipulation 

applications. As an example, in [28], [29], the authors proposed a hybrid UAV (quadcopter + 
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airship) equipped with 3 identical robotic arms to perform grasping tasks. However, despite their 

promising characteristics, airship systems are not frequently employed today, mainly due to their 

limited payload mass budget and also lack of proper infrastructure required for their operation. 

The authors do not expect to see widespread use of airships in aerial manipulation unless they 

first become popular in more conventional aerial missions such as monitoring and surveillance. 

Among rotary–wing UAVs with hovering capability, octoquads [29], hexquads [30], [31], 

quadcopters [32]–[38], tri–rotors [39], conventional helicopters [20], [40]–[43], and ducted–fan 

vehicles [44]–[46] have been used in MUAV systems. From the available literature, it can be 

concluded that quadcopters are by far the most popular UAV platforms used for aerial 

manipulation, followed by small–size helicopters. This is mainly due to the simplicity of 

quadcopter mechanical design and hovering capability, complemented by the low–cost, agility 

and existing precise control schemes for these flying vehicles. Flight characteristics of the above 

mentioned types of UAVs are given in Table 2.1 (partially adopted from [47]).  

 

Table 2.1 Flight characteristics of the common types of UAVs (1=Bad, 4=Very good) 

 Fixed–wing Multicopters Conventional 

helicopters 

Airships 

Payload  4 3 2 1 

Hovering 1 4 4 3 

Low speed flight 1 4 4 4 

Vertical take–off 

and landing 

1 4 4 3 

Indoor usage 1 4 3 2 

Feasibility for 

MUAV applications 

N/A
*
  4 3 2 

   * Not applicable (to this date) 

 

The characteristics of some UAV platforms used in aerial manipulation are presented in Table 

2.2 where the very limited payload weight budget of most of these platforms is clearly seen. In 

fact, except for the octoquad AMUSE [26], most multi–rotor UAVs used for research weigh less 

than 2 kg with a payload of a few hundreds of grams [30]. This constitutes a real problem in the 

design of MUAVs since most manipulation mechanisms to be attached to the UAV system 

impose a total allowable payload exceeding the capabilities of the majority of the available 
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UAVs (as given in Table 2.2). For instance, it was reported in [31], [32] that a total UAV 

payload of approximately 10 kg is generally required in most practical applications involving 

MUAVs equipped with fully actuated robotic arms. For example, in [28], a 6.5 kg robotic arm 

known as MK1 was exploited onboard a MUAV for hazardous material removal, perching, and 

security applications. As a matter of fact, to this date, an order–of–magnitude shortcoming in 

payload weight budget of current UAVs has been a key limitation in aerial manipulation. 

Although some progress in increasing payload capabilities of UAVs is observed in the recent 

years, the authors believe that this technological issue will still remain a key concern in this 

research area at least in the near future. 

 

Table 2.2 Characteristics of multirotor UAVs used in aerial manipulation 

Name Developer UAV type UAV 

weight 

Payload 

weight 

size Remarks 

Smart 

Xcopter 

[14] 

XCopter quadcopter 900 gr 450 gr  50 cm,  

(shaft to 

shaft) 

– 

QARM1 

[33] 

University of 

Seville custom 

design 

quadcopter 980 gr More than 

600 gr  

– 200 gr 

manipulator 

payload 

AscTec™    

Pelican 

[34] 

Ascending 

Technologies 

quadcopter 1 kg 650 gr 65 cm, 

(shaft to 

shaft) 

– 

T–Rex 

600 ESP 

[16] 

Align helicopter 4 kg More than 

1 kg 

1.5 m 

rotor 

Up to1 kg 

manipulator 

payload 

AMUSE 

[26]  

University of 

Seville custom 

design 

octoquads – Up to 8 

kg 

82 cm  

(shaft to 

shaft) 

4 pairs of co–

axial rotors,  

1.5 kg  

manipulator 

payload 

 

2.2.1.2 Manipulation/interaction mechanism 

The physical mechanisms interacting with the environment in aerial manipulation can be divided 

into the following four main categories (summarised in Table 2.3): (i) robotic manipulators, (ii) 

grippers, (iii) UAV body or a rigid tool, and (iv) tethers. Each of these mechanisms is discussed 

as follows. 
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Table 2.3 Characteristics of interaction mechanisms used in aerial manipulation 

Manipulation 

type 
Application Remarks 

Robotic 

manipulator 

Perching, load transportation, 

force/torque exertion, pick–and–

place, structure inspection, drawer 

opening, valve turning, peg–in–hole 

insertion tasks 

1–DoF, 2–DoF and several–DoF 

manipulators, the most common type 

at the present, manipulator 

instantaneous workspace limited by the 

presence of UAV 

Gripper directly 

attached to 

UAV body 

Perching, Load transportation 

Compliant and non–compliant 

grippers, common in early MUAV 

applications 

UAV body or 

rigid tool 

attached to it 

Force/torque exertion, structure 

inspection, aerial writing 

Rigid tools attached to tilt–rotor UAVs 

efficient for large force exertion 

Tether Load transportation 
Confined to applications requiring 

tensile forces only 

 

The most popular category consists of an actuated robotic manipulator attached (usually 

underneath) to the body of an aerial platform. Quadcopters, as most common aerial platforms in 

MUAV applications, are underactuated systems as they have 6 DoF with only 4 control inputs. 

Complementing the underactuated UAV with a robotic arm with additional DoFs can result in 6–

DoF control of the aerial manipulator end–effector. From this perspective, diverse configurations 

ranging from 1–DoF [35] to 2–DoF [14], [22], [36] and several–DoF [26], [37] manipulators 

were considered. While some of these mechanisms have been adapted from other robotic 

contexts, some have been specifically designed for aerial manipulation applications, e.g., [31], 

[33], [38]–[42]. In particular, incorporating redundant and hyper–redundant manipulators in 

MUAVs has been investigated in [25], [26], [38], [39], [43]–[45] to achieve higher reliability, 

optimization of a given secondary task, and granting access to hard–to–reach locations. A 

lightweight 5–DoF arm was developed in [38] to accomplish manipulation tasks onboard a 

MUAV. In that work, the main features of the arm are its compact design, reduced variation in 

MUAV center of gravity and self–folding during landing manoeuvres. In  [26], a dextrous 7–

DoF robotic arm with maximum payload of 1.5 kg was assembled underneath an octocopter. 

Through experiments, it was demonstrated that several joints of the arm can be actuated 

simultaneously while the MUAV maintains its attitude reasonably well in an outdoor 
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environment.  In [43], a lightweight 6–DoF robotic arm was developed and integrated under an 

AscTec™ Pelican quadcopter. The robotic arm redundancy in [43] enabled the realization of 

primary mission of end–effector trajectory tracking, along with fulfilling a number of 

complementary tasks, such as MUAV center of gravity and arm joints control, with minimized 

joints velocities. In a similar context, a hierarchical–task formulation was proposed in [25] to 

prioritize a number of subtasks including control of gripper position and orientation, camera field 

of view, MUAV center of gravity and joint–limits avoidance. In [39], [44], a hyper–redundant 

manipulator was considered and three different approaches, namely, pseudo–inverse Jacobian, 

weighted pseudo–inverse Jacobian and a heuristic approach, were exploited to determine the 

inverse kinematics of the manipulator. The redundant DoFs were then employed to move the 

links such that the destabilizing effects on the manipulator base were minimized. Moreover, the 

manipulator redundancy resulted in a highly reachable workspace where the end–effector can be 

accurately controlled to track desired position and orientation inputs. It is important to mention 

here that most of the manipulator joints used in MUAVs are servo–driven revolute joints [15], 

[33]–[36] and only few works have used prismatic joints onboard MUAVs [46][47]. As an 

example, a servo–driven robotic arm for MUAV applications developed at Robotics, 

Mechatronics and Manufacturing Automation Laboratory (RMAL) of Ryerson University is 

shown in Fig. 2.1. 

 

 

Fig. 2.1 RMAL robotic arm for MUAV applications 
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Grippers, directly attached under a UAV, are also popular mechanisms in aerial manipulation. 

Some previous works, e.g. [11], [16], [48], take advantage of simple grippers to grasp a given 

object and transport it. In the current literature, two main types of grippers are identified. The 

first type, i.e., non–compliant grippers such as those in [11], [49], resembles solid claws that 

grasp the object. The second type, i.e. compliant grippers presented in [16], [48], [50], can 

usually grasp the object, despite some level of position and orientation (pose) uncertainty. From 

manipulation perspective, non–compliant grippers are mainly for fine manipulation of objects 

and hence are not of primary importance in aerial manipulation. A chronological study of the 

literature indicates that the use of versatile actuated manipulator arms is becoming more common, as 

opposed to simple grippers used in early years of MUAVs. 

A third category of interaction mechanisms in aerial manipulation is the UAV body itself [51]–

[55] or a rigid tool attached to the UAV [13], [56]–[59]. In this context, some interesting 

applications have been presented in the literature such as [51] where the authors developed a 

ducted–fan VTOL vehicle capable of trajectory tracking during direct contact with vertical 

surfaces (walls). Similarly, the authors of [52], [53] used the propeller protection structure to 

establish contact and obtain a line (or surface) contact, as opposed to a point contact. Another 

interesting application was shown in [55] where the UAV body was employed to open a door. A 

more common subcategory here is to employ a rigid tool attached to the UAV to interact with the 

environment. As an example, the authors in [13] developed a quadcopter platform endowed with 

a rigid tool to exert 3D force to the environment. The latter work suggested that a counterweight 

(or simply an identical copy of the tool) can be mounted on the opposite side of the vehicle to 

balance the weight of the one actually in use. While this approach minimizes the non–

symmetrical configuration of the MUAV (and thus minimizing vehicle products of inertia), it has 

the drawback of consuming important payload budget of the MUAV. Another interesting 

application was examined in [60] where a marker, rigidly attached to a quadcopter, was used to 

perform aerial writing tasks. The mentioned experiment verified successful physical interaction 

of the MUAV with the environment and may pave the way for more complicated missions 

involving inspection through contact. In scenarios where the tool is required to exert a large 

amount of force to the environment, e.g. to physically move objects obstructing vehicle’s path, 

thrust–vectoring has been shown to be an effective approach [57]. Finally, for quadcopter UAVs, 
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an important constraint was analytically revealed in [59] stating that tool tip must be strictly 

above vehicle center of mass to maintain stability, which was taken into account in other works 

such as [13]. 

Use of tethers (or analogously cables) is also a popular scheme when interaction with the 

environment only requires tensile forces (as opposed to compressive forces) [10], [18]. This 

method is extremely popular in load transportation missions. However, it becomes ineffective in 

other missions that include force exertion and/or pick–and–place missions. 

 

2.2.1.3 Sensory configuration of MUAVs 

To this date, due to considerable challenges in MUAV state estimation, various sensor 

configurations have been examined. In most cases, UAV platforms use Inertial Measurement 

Units (IMUs) consisting of a 3–axis accelerometer, a 3–axis gyroscope, and a 3–axis 

magnetometer [23], [34]. This popular and efficient set of sensors provides the necessary set of 

inputs for various estimation algorithms (usually Extended Kalman Filter or Unscented Kalman 

Filter) which provide attitude state estimation of the UAV [61]–[64]. Also, GPS sensors [34], 

[65], [66], altimeters [67] and ultrasonic distance sensors [68] are used to provide further sensory 

input for state estimation algorithms.  

In indoor environments, visual sensors constitute an efficient alternative to GPS in different 

applications [20], [23], [26], [43]. As an example, a motion capture system consisting of 18 

V100:R2 OptiTrack™ cameras was used in [23] to provide position and velocity measurements 

of a quadcopter in a MUAV platform. Similarly, in [20], NaturalPoint® OptiTrack™ motion 

capture system was utilized to provide precise and reliable state measurements of a quadcopter–

based MUAV. In the latter paper, a lightweight PointGrey™ Firefly camera was also installed 

onboard the MUAV to enable recognition and tracking of the object to be manipulated. Using a 

different approach, the authors in [48] used a monocular camera to enable a vision–based 

Simultaneous Localization And Mapping (SLAM) algorithm for navigation purposes. A 

secondary onboard camera was also used to detect infrared light sources embedded in the object 

to be manipulated. In [26], a camera mounted on the MUAV end–effector was used to extract 

relative position of an object to be manipulated and a secondary camera was attached to the UAV 
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body to improve relative positioning and hovering control of the MUAV. In [69], an eye–in–

hand fisheye camera was used in the palm of a 3–DoF manipulator to provide omni–directional 

view of the hemisphere in front of the camera. In the next step, a polynomial camera calibration 

tool was used to compensate the distortion of the image obtained from the fisheye camera [70]. 

Then, contour of the target object was derived and used in an Image–Based Visual Servoing 

(IBVS) velocity control scheme. Another interesting application of visual sensors in MUAVs 

was demonstrated in [21] where the authors used circle (and ellipse) detection algorithms such 

that a MUAV could detect valves by means of its on–board camera. The authors believe that the 

currently available visual sensors in UAV applications will be extended and widely adopted in 

the coming years for such applications. 

 

2.2.2 Missions and operational scenarios 

In this section, the missions and operational scenarios considered for MUAVs are discussed. 

  

2.2.2.1 Aerial manipulation missions 

A wide variety of MUAV platforms are mainly used for load transportation [10], [11], [18], [71], 

[72]. Recently, more challenging milestones such as automatic barrel transportation, autonomous 

retrieval and transportation of ground robots, and cooperative load transportation by ground 

robots and MUAVs have been achieved [73]–[76]. To this date, three main approaches to load 

transportation are considered in the literature. In the first method, the load is hung below the 

UAV by tether. This is indeed an extension of a rich amount of literature under the general 

umbrella of slung load transportation [77], [78]. In the second and third approaches, the load is 

actually picked up by either a gripper or a manipulator, respectively. While all these load 

transportation methods are constrained by the limited low payload capabilities of MUAVs, the 

use of tethers alleviates the need of an additional mechanism attached to the aircraft and hence 

increases the payload of the MUAV. However, the first approach prevents pick up process 

automation and the stability of the UAV may be jeopardized due to load swings resulting from 

the system motion and environmental effects.   
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Tasks requiring force/torque exertion to the environment are a second important class of aerial 

manipulation missions. In this class, a wide range of applications such as infrastructure 

inspection, valve turning, door opening and drawer operation have been realized [54], [55], [79]–

[81]. The authors in [80] introduced a MUAV that includes a 3–DoF robotic manipulator 

attached to the top of an octoquad, contrary to the majority of the literature where the arm is 

attached underneath the vehicle, and experimental results in bridge structure inspection have 

been presented. Another interesting application was investigated in [81] where the authors 

proposed an aerial manipulator capable of opening a drawer with unknown mechanical 

properties. The authors of [55] claimed that closed doors are a major obstacle for effective 

operation of aerial robots in indoor environment and proposed a force exertion scheme to 

overcome this problem. In their design, a quadcopter first approaches a door, changes its attitude 

and perches on the door by means of suction cups. Then, it uses a soft–bag actuator to twist the 

door knob and the thrust force of quadcopter is used to open the door. Finally, valve turning is 

another example of force/torque exertion by aerial manipulators. In [21], [22], the authors 

presented an aerial manipulator consisting of a quadcopter with dual 2–DoF robotic 

manipulators, where the two manipulators are used for grasping the valve and the UAV’s yaw 

motion is employed to accomplish the valve turning task. 

A third category of aerial manipulation missions consists of assembly and structural 

construction. Flight Assembled Architecture (FSA), a tower with the height of 6 m, is one of the 

first structures built exclusively by a team of quadcopters [82]. Also, in [17], the authors 

developed a team of quadcopters to build simplified truss–like structures consisting of nodes and 

members (rectangular prism) equipped with magnets. This work was further extended in [83] 

where a team of quadcopters was used to build a 3D truss structure, frequently used in scaffolds, 

tower cranes, and power transmission towers. Using reinforcement learning, the construction of 

3D cubic truss–like structures with a quadcopter was realized in [84]. In [85], the authors 

employed quadcopters with a set of simple construction elements such as ropes, cables, and 

wires to build lightweight tensile structures. In [86], a framework was presented to enable 

quadcopters to perform one of the main challenges in building tensile structures, i.e. knot–tying, 

and an iterative learning algorithm was discussed to improve the quality of the resulting knots. 
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Furthermore, a number of other aerial manipulation applications that do not strictly fall into 

above categories have also been achieved. For instance, some researchers have proposed aerial 

missions for autonomous water sampling [67], forest canopy sampling [87], and sprinkling 

dispersants over areas affected by oil spills [88]. Also, aerial manipulation has been used for in–

situ oil–spill cleanup operation, due to its cost–effectiveness an efficiency compared to 

alternative approaches such as mechanical cleanup [89]. Perching, as described in [12], [90], is 

another application that can help MUAVs save and/or restore energy and quickly place sensors 

in a given environment. Another interesting mission was realized in [91] in which a team of 

quadcopters was employed to transport a hose, where the hose was considered as a deformable 

linear object. More specifically, catenary curves were used in dynamic modeling of the hose 

which result in fast computation of the forces exerted to the quadcopters and, in turn, make real–

time implementation possible. Finally, the work in [92] presented a force compliance 

methodology to insert a hose into a given pump. The authors of the latter work claim that the 

same methodology can be applied to accomplish valve turning and door opening missions as 

well. 

 

2.2.2.2 Aerial manipulation scenarios 

To this date, two main operational scenarios are observed in aerial manipulation. The popular 

scenario is a sequential one during which a MUAV first flies toward an object (to be 

manipulated) while locking the manipulation mechanism [11], [15], [22], [33]. In this phase, the 

manipulator is usually maintained in a configuration that minimizes its disturbance effects on the 

UAV motion. Once the MUAV is in close vicinity of the object, the manipulator (or simple 

gripper) is actuated to grasp the object and manipulates it accordingly. For MUAVs with simple 

grippers, the aerial platform flies over the object and once the object is within its reach, the 

gripper is actuated to grasp the object [11], [93], [94]. For MUAVs with manipulators, the 

MUAV tries to maintain its hovering condition while the manipulator is actuated to reach and 

grasp the object [15], [33]. Locking the manipulator during the first phase of the mission 

simplifies motion control problem of the system at the cost of extended operation time. 

In the second scenario, the concurrent one, a UAV and its manipulator operate simultaneously to 

reduce the required time to carry out a given aerial manipulation task [20], [35], [95]. In [20], it 
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was experimentally shown that this method significantly improve the time required to perform a 

pick and place task. In addition, the manipulator and/or tether dynamics can be exploited in this 

approach to improve hovering and tracking performance of a UAV and to significantly extend a 

UAV flight envelope [46]. For instance, the tension of the cable linking a small–scale helicopter 

to the ground was employed in [96] to improve hovering performance under several 

environmental/disturbance scenarios. It is worth mentioning that the cable can also serve as 

unlimited power supply and/or wideband data transmission in such contexts. In conclusion, as 

compared to the sequential method, concurrent operation of the MUAV subsystems presents 

several advantages and might be adopted more widely in the future with improved dynamic 

modeling methods and control algorithms. 

 

2.2.3 Modeling of a MUAV 

In this section, kinematic and dynamic modeling of a MUAV and its interaction with the 

environment are discussed. For sake of simplicity, a MUAV consisting of a quadcopter and a 

manipulator with 𝑛𝑚 DoF is considered. The MUAV model presented in this section is similar to 

that in [19] and can be used for other aerial platforms (such as tri–rotors or ducted–fan vehicles) 

with minor modification. Consider the schematic view of a MUAV in Fig. 2.2, where ℱ𝐼 is an 

inertial coordinate frame, a frame ℱ𝐵 is attached to the quadcopter center of mass, and ℱ𝐸 is 

considered as the frame attached to manipulator end–effector. 

 

 
Fig. 2.2 Schematic view of a MUAV and coordinate frames 
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The position of the origin of ℱ𝐵 expressed in ℱ𝐼 is denoted by 𝒑𝐵 ∈ ℝ
3. The roll, pitch and yaw 

angles representing the orientation of ℱ𝐵 with resepct to ℱ𝐼 are, respectively, the components of 

the vector 𝚽𝐵 = [𝜑 𝜃 𝜓]𝑇. Similarly, the position and orientation of ℱ𝐸 with respect to ℱ𝐼 

are denoted by 𝒑𝐸 ∈ ℝ
3 and 𝚽𝐸 = [𝜑𝐸 𝜃𝐸 𝜓𝐸]

𝑇, respectively. With these definitions, one 

can write: 

 

�̇�𝐸 = �̅�(𝚽𝐵, 𝚽𝐸 , 𝒒)�̇�, (2.1) 

 

where 𝒙𝐸 = [𝒑𝐸
𝑇 𝚽𝐸

𝑇]𝑇, 𝝃 = [𝒙𝐵
𝑇 𝒒𝑇]𝑇, 𝒒 ∈ ℝ𝑛𝑚  denotes the manipulator generalized 

coordinates, and 𝒙𝐵 = [𝒑𝐵
𝑇 𝚽𝐵

𝑇]𝑇, see [19] for the Jacobian �̅�. A well–known drawback of the 

above kinematics is the inevitable singularity inherent to Euler–angle representation of the 

attitude. However, the above formulation is acceptable for the majority of aerial manipulation 

applications, where aggressive maneuvers close to singularity conditions are generally avoided. 

Otherwise, singularity–free unit quaternion representation of the vehicle attitude can always be 

adopted, see [97], [98]. A mathematical extension of the unit quaternion representation, namely 

dual–quaternion representation, has been recently formulated to address kinematic and dynamic 

modeling of a MUAV [99]. An important advantage of dual–quaternion modeling of a MUAV is 

that it results in relatively simple transformations for consecutive rotations and translations of 

reference frames. However, in general, dual–quaternion representation is still not well explored 

and therefore its application to MUAV modeling is not expected to grow within the foreseeable 

future.  

Regarding the dynamics of MUAVs, the equations of motion of such systems can be derived 

using either the Newton–Euler or Euler–Lagrange formulations [100], [101]. While both 

methods lead to identical equations of motion, it is well known that the former is more 

convenient for actual implementation whereas the latter is better suited for the study of dynamic 

properties and analytical investigation. In fact, the compact analytical form obtained from Euler–

Lagrange formulation explicitly provides the inertia matrix, centrifugal and Coriolis forces 

matrix, and the gravitational forces vector and therefore is advantageous for control design 

purposes. On the other hand, solving the inverse dynamics problem can be done more efficiently 
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if the equations of motion are obtained using Newton–Euler formulation. Each of these methods 

is discussed separately in the following subsections. 

 

2.2.3.1 Newton–Euler method 

In Newton–Euler formulation, quadcopter and manipulator are considered as two distinct 

subsystems, interacting at the manipulator base frame. The dynamic equations of motion of a 

quadcopter UAV equipped with a manipulator are given by: 

 

[
𝑴𝑞 𝑂3
𝑂3 𝑰𝑞

] [
�̈�𝐵
�̇�𝐵
] + [

𝑶3
𝝎𝐵 × (𝑰𝑞𝝎𝐵)

] = [
𝑻𝑞 − 𝑔𝒆𝟑

𝑇

𝑸𝑞 +𝑫𝑞
] + [

𝒇
𝒏
], (2.2) 

 

where 𝑴𝑞 and 𝑰𝑞 are the mass and inertia matrices of the quadcopter and 𝝎𝐵 is the angular 

velocity of  the quadcopter. Also, 𝑻𝑞 is the thrust (lift) force generated by 4 rotors, 𝑸𝑞 is the 

vector of input torques and 𝑫𝑞 is the rotor–induced drag. Additionally, 𝑔 is the gravity 

acceleration and 𝒆𝟑 = [0 0 1]𝑇. Finally, 𝒇 and 𝒏 are the forces and torques exerted by the 

manipulator on the quadcopter. It is clear that Eq. 2.2 presents some major differences as 

compared to the conventional quadcopter dynamics found in the literature [102], [103]. In fact, 

Eq. 2.2 takes the static and dynamic effects of the manipulator into account, as well as the fact 

that the thrust force in the MUAV generates undesirable torques as the center of mass of the 

combined system moves away from that of the quadcopter. 

 

2.2.3.2 Euler–Lagrange method 

In this formulation, the quadcopter and its manipulator are treated as a single system [104]. The 

equations of motion of the system satisfy: 

 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝜉𝑖
= 𝑢𝑀𝑈𝐴𝑉,𝑖,               𝑖 = 1, 2, … , 6 + 𝑛𝑚 (2.3) 
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where ℒ = 𝒦 −𝒰, is the Lagrangian, 𝒦 and 𝒰 are , respectively, the system total kinetic energy 

and potential energy, and 𝒖𝑀𝑈𝐴𝑉 is the generalized force vector. Having computed the total 

kinetic and potential energy, the combined system dynamics can be written as: 

 

𝑴(𝝃)�̈� + 𝑪(𝝃, �̇�)�̇� + 𝒈(𝝃) = 𝒖𝑀𝑈𝐴𝑉 (2.4) 

 

with a generic element of 𝑪 being given by Christoffel symbols of the first type [100]: 

 

𝐶𝑖𝑗 = ∑
1

2
(
𝜕𝑀𝑖𝑗

𝜕𝜉𝑘
+
𝜕𝑀𝑖𝑘

𝜕𝜉𝑗
−
𝜕𝑀𝑗𝑘

𝜕𝜉𝑖
) �̇�𝑘,

6+𝑛𝑚

𝑘=1

 (2.5) 

 

and 𝒈(𝝃) = (
𝜕𝒰

𝜕𝝃
)
𝑇

. The above derivation presents a unified dynamic model of MUAV and can 

be conveniently used for control design purposes. 

Unlike the dynamic model of a UAV with no moving arm, a distinct characteristic of MUAV 

model is that its elements are configuration–dependent and hence time–varying. Also, the above 

model is subject to various uncertainties due to, for instance, imperfect knowledge of mass and 

inertia matrices and aerodynamics modeling. Furthermore, the majority of manipulators used in 

MUAVs are lightweight and custom–made, resulting in further uncertainties due to modeling 

errors/simplifications.  

 

2.2.3.3 MUAV interaction with the environment 

It is also important to note that modeling the MUAV interaction with the environment is an 

ongoing research area. In [50], bogie suspension approximation was used to study a helicopter 

and its compliant gripper mechanism grasping a fixed object. The bogie suspension 

approximation was further simplified later to a single–joint prismatic link subject to torsional 

spring forces at its both ends. This way, a relatively simple model of the contact between the 

MUAV and the object was derived and used for MUAV stability analysis during the contact 
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phase. In [79], the environment was considered as a compliant surface in the inertial frame and 

the dynamics of the MUAV end–effector interaction with the environment was described by 

Hunt–Crossley interaction model. In this model, the environment applies a force to the end–

effector, directed along the opposite direction of surface penetration where the magnitude of the 

applied force depends on penetration depth and penetration velocity. The interaction of a MUAV 

tool–tip with the environment was studied in [13] using the so–called hard finger contact model, 

which is usually used when dealing with significant contact friction over a relatively small 

contact patch. In this model, the environment exerts a 3D force on the tool–tip but interaction 

torque is discarded. A last remark is that while the contact model used in MUAV applications 

needs to be accurate, it must be computationally–efficient as well. In this manner, the contact 

model can be accommodated within the MUAV onboard computational resources, to be used in 

practical applications. 

 

2.2.4 Estimation and Control of MUAV 

2.2.4.1 State and parameter estimation 

Accurate and efficient estimation of the state and parameters of MUAVs is an important element 

of autonomous aerial manipulation missions. However, dynamic modeling of a MUAV results in 

tedious, coupled and highly nonlinear equations of motion and therefore conventional estimation 

algorithms are generally difficult to apply for MUAV applications. Among the limited works in 

this context, a least square problem was formulated in [11], using control input and acceleration 

measurements, to estimate the mass, center of mass and inertia parameters of a load grasped by a 

MUAV. A similar approach was used in [15] to estimate the MUAV center of mass and 

associated gravity torque. The performance of the proposed algorithm in [15] was shown to be 

adequate for static scenarios, however, dynamic changes due to arm movement degraded the 

performance of the overall system. Carrying an unknown mass was recently addressed in [105] 

as well, where the equations of motion were parameterized with respect to the unknown load 

mass. An important advantage of the method in [105] is that the load does not need to be hanging 

from underneath the MUAV and therefore it can be applied to missions where the MUAV is 

required to extend its robotic arm and grasp an object from its vicinity. From state estimation 

perspective, while EKF is the most popular and widely–used state estimation algorithm in UAV 
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applications [106]–[108], its linearization step along with its poor performance for highly 

nonlinear systems limit its application for MUAVs. Alternatively, Unscented Kalman Filter 

(UKF) has been formulated in [109], [110] to remedy the limitations of EKF in such 

applications. However, the improved performance of UKF–based state estimation methods 

comes, in general, at the cost of high computational complexity [110], [111]. In [110], scaled 

spherical UKF was formulated for MUAVs applications, and was shown to be computationally 

more efficient than conventional UKF, but the latter outperforms in terms of estimation 

accuracy.   

Visual state estimation has also been examined in MUAV applications in recent years. For 

instance, in [26], a downward pointing camera was used to obtain relative position and 

orientation of a MUAV with respect to a known target. These estimates were then fused with 

centimeter–level position estimates obtained from a differential GPS suite, enabling precise 

control of the MUAV in various maneuvers. Accurate velocity estimation can be obtained using 

optical flow sensors; see [112], [113] for similar problems involving UAVs. The above works 

mostly require accurate a priori knowledge of camera intrinsic parameters. In order to relax this 

requirement, the authors in [114] addressed the problem of imperfect knowledge of onboard 

camera focal length due to poor camera initialization or unpredicted zoom changes. The camera 

focal length was iteratively estimated in [114] by solving a least–square problem and the 

proposed approach was shown to be robust to noise. Despite the interesting results mentioned 

above, most current MUAVs applications require precise state measurements/estimates provided 

by expensive sensors confined in indoor environments only, such as motion capture systems. As 

a matter of fact, the state and parameter estimation problem of MUAVs is yet largely unsolved, 

and a lot has to be done in this area to enable efficient autonomous functionality in indoor and 

outdoor MUAV scenarios. 

 

2.2.4.2 MUAV control 

Control of MUAVs can be studied from different perspectives discussed in this section.  
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Position Control 

The primary control objective for MUAVs is to drive the attitude and/or position of the UAV and 

the manipulator end–effector to a desired position/trajectory such that a given mission is 

accomplished. Position control design of such nonlinear systems can be categorised as decoupled 

or coupled, depending on the dynamic models discussed earlier.  In the first category, separate 

controllers for the UAV and the manipulation mechanism are developed [36], [101], [115], 

[116], whereas in the second, the overall system dynamics is considered [20], [35], see Table 2.4.  

 

Table 2.4 Decoupled and coupled control strategies in MUAV applications 

MUAV 

Control 

Control algorithms Advantages Disadvantages 

Decoupl

ed 

UAV control algorithm: 

various simple and Gain–

scheduling Proportional–

Derivative (PD) and PID 

control [15], [23], [36], 

feedback linearization [20], 

backstepping [26] and adaptive 

control [15], [117] 

Complex model of MUAV is 

not required. 

A wealth of literature is 

available for UAV control 

(similarly for manipulator 

control). 

It is computationally less 

expensive. 

It usually requires 

that UAV and 

manipulator are 

not actuated 

simultaneously. 

Relatively less 

accurate control 

Manipulator control algorithm: 

Independent joint control (PID, 

PID + gravity compensation) 

[36], [101] 

Coupled Feedback linearization [46], 

impedance control [104], 

nonlinear backstepping [95], 

LQR [35], adaptive control 

[69], [118] and model–

predictive control [20], [60] 

UAV and manipulator are 

actuated together and 

therefore less time is required 

for a given scenario. 

More accurate control can be 

achieved. 

Complex model 

of MUAV is 

required. 

It is 

computationally 

expensive.  

 

Decoupled control design of the UAV and manipulator 

In this approach, the UAV and the manipulator are treated as separate subsystems [33], [119]. A 

general schematic diagram of this control approach is depicted in Fig. 2.3 where 𝑅𝑒𝑓𝑈𝐴𝑉 and 

𝑅𝑒𝑓𝑀 are the reference (desired) states of the UAV and manipulator, respectively [33].  
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Fig. 2.3 Schematic diagram of decoupled UAV and manipulator control approach 

 

In the simplest implementation, the effects of manipulator on the UAV are treated as 

disturbances and therefore are not explicitly taken into account in controller design. In [36], for 

instance, simple PD/PID control laws were separately designed for a UAV and each joint of the 

attached manipulator. As expected, it was concluded in [36] that such control design might lead 

to satisfactory behavior in simple scenarios but its performance considerably degrades in real and 

more realistic applications with variable inertia and center of mass of the system. The latter 

shortcoming was addressed in [11] by taking into account the MUAV center of mass offset from 

its geometric center in the control design to improve the performance of the system as compared 

to simple PID controllers. In [33], a Variable Parameter Integral Backstepping (VPIB) approach 

was considered to design a position controller with better performance, as compared to the PID 

controller, by taking (partially) into account the mutual effects of a quadcopter and a 

manipulator. Specifically, the moment of inertia and center of mass of the quadcopter were 

explicitly computed as functions of manipulator joint angles, and the quadcopter motion was 

compensated in the manipulator control. A further improvement was introduced in [26] where 

the authors included full MUAV dynamic model with the VPIB controller initially proposed in 

[33]. In this manner, the authors were able to incorporate dynamic effects of manipulator 

movements in the controller design and proposed a system capable of outdoor operations, 

outperforming conventional PID controllers. 

Adaptive control is also another relevant control approach for MUAV position control that 

allows to systematically deal with time–varying parameters of the system, such as center of mass 

UAV 

controller 

Manipulator 

controller 

 

 

RefUAV 

Ref
M

 

xV 
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control signal 
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and moment of inertia. In [101], a Lyapunov–based method was used to design a decoupled 

adaptive control taking into account variable moments of inertia and the center of mass of a 

MUAV (with a 2–DoF manipulator). The main theme in [101] is that disturbances due to 

manipulator and its possible payload can be effectively handled by an appropriate adaptation law 

in the outer position control loop of a quadcopter. Specifically, it was shown that decoupled PID 

control of the manipulator joints, PD control of the inner attitude control loop, and adaptive 

control of the outer position control loop can successfully achieve precise hovering flight and 

trajectory tracking. In [15], [117], PID control laws were augmented with a model reference 

adaptive control and two gain–scheduling schemes to control a multi–arm MUAV. More 

precisely, a switching automaton was used to trigger the adaptation phase depending on changes 

of the center of mass and moments of inertia of the aerial manipulator. While a simple non–

adaptive PID controller can lead to instability of MUAVs in manipulation tasks, the use of the 

mentioned adaptive techniques guarantees stable flight during free–flight, manipulator motion, 

and also picking up small objects. From the above results in decoupled position control of 

MUAVs, further improvements in this direction can be attained using the various control 

techniques from UAV and robot manipulator control literature. 

 

Coupled control of the UAV and manipulator 

In the coupled approach, the UAV and manipulator are simultaneously controlled as a unified 

system. Fig. 2.4 illustrates a basic schematic of the control system in this case with 𝑅𝑒𝑓𝑀𝑈𝐴𝑉 

being the reference (desired) states of the combined system.  

 

 
Fig. 2.4 Schematic diagram of coupled MUAV control approach 
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It should be noted that the equations of motion of the combined dynamic model of a MUAV take 

the nonlinear and coupled dynamics of the UAV and its manipulator into account. Therefore, 

unified model–based controller design for MUAVs is theoretically difficult and its actual 

implementation depends on the onboard computational resources of the system. Despite this fact, 

a number of control design techniques for MUAVs, such as feedback linearization [46], 

Cartesian impedance control [104], nonlinear backstepping [95], LQR [35], adaptive control [69] 

and Model–Predictive Control (MPC) [20], [60] can be found in the current literature. For 

example, the authors in [46] considered the planar motion of a quadcopter with a 2–DoF 

manipulator and designed tracking control laws based on feedback linearization. The approach in 

[46] takes advantage of the dynamics of the manipulator to enhance the maneuverability and 

tracking performance of the quadcopter. The robustness of the closed–loop system with respect 

to measurement errors, uncertainties and disturbances was also addressed in that work using 

additional integral terms in the proposed control schemes.  

Backstepping is another technique implemented for coupled control in some aerial manipulation 

applications. In [95], the authors proposed control laws for simultaneous trajectory control of a 

hexquad (also known as hexrotor) and a 2–DoF manipulator. With a particular choice of the 

manipulator orientation with respect to the aerial vehicle, the proposed MUAV was able to 

perform maneuvers with the manipulator reaching beyond the perimeter of the UAV.  

In a different approach, using the coupled dynamics of an unmanned helicopter and its attached 

1–DoF manipulator, the authors of [35] applied a standard LQR design method to the linearized 

equations of motion of the system and feedback control laws were designed based on the 

solution of an algebraic Riccati equation. The result in [35] shows that standard design methods, 

such as LQR, can be used to stabilize the MUAV position in close vicinity of the trim point. 

However, not surprisingly, the performance degrades drastically or the system becomes unstable 

as the initial conditions deviate from the trim point. A similar LQR controller was proposed in 

[120], for a MUAV consisting of a quadcopter and a 2–DoF manipulator, where additional 

integral action was considered to eliminate the steady–state errors in the manipulator’s position.  

Adaptive control has also been applied to control a coupled system of UAV and its manipulator 

in [69], [118]. The authors in [118] introduced adaptive control laws, based on the inner–outer 

loop control of quadcopters, at the position control level to cope with modeling uncertainties. 
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The proposed approach in the latter paper takes perturbations due practical implementation into 

account such that simultaneous 3D trajectory tracking of the UAV and its manipulator was 

achieved. In [69], the authors proposed a sliding–mode adaptive controller for MUAV that is 

robust to environmental disturbances and can be applied to both position and velocity control, 

waypoint tracking, and visual servoing. 

In [20], MPC control laws were designed such that pick–and–place missions were accomplished 

by a quadcopter equipped with a 2–DOF manipulator capable of reaching more than twice the 

radius of UAV. As a coupled control scheme, the proposed control algorithm in [20] was shown 

to improve the required time of a given task against a decoupled control approach. In fact, in one 

experiment, the required time to retrieve an object was improved from 15 𝑠 in a decoupled 

control approach to 5 𝑠 in a MPC–based coupled control approach. A drawback of MPC, 

however, is that it requires substantial computational resources, not always available onboard 

small–scale UAVs. Due to this limitation, the authors in [20] considered low–level controllers 

(based on feedback linearization) to follow the high–level trajectory generated by MPC control. 

Another application of MPC was discussed in [60] where a number of missions regarding 

MUAV interaction with the environment, including aerial writing, were discussed. In that work, 

stable interaction with the environment and trajectory control of a MUAV, while in contact with 

a surface, were achieved. Furthermore, by considering polyhedra enclosing the known obstacles 

and incorporating polyhedric constraints in the MPC cost function, obstacle avoidance was also 

realized. As a result, the authors were able to experimentally verify their approach in scenarios 

where the MUAV performed aerial writing and infrastructure inspection, while also avoiding 

obstacles. 

In conclusion, from the abovementioned results on coupled and decoupled position control 

design approaches for MUAVs, it is expected that the coupled control design will receive a 

greater attention in the near future with a substantial development in control system design for 

such vehicles. This is also supported by the recent advances in UAV industry that alleviate the 

limited computational resources of small aerial vehicles in general.  
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Force/Impedance Control 

In force control, it is generally desired to regulate the contact force against a given surface [56]. 

Decomposition of the system dynamics along and perpendicular to the surface is a popular 

approach to address hybrid force/position control. However, original formulation of this 

approach, e.g. [121], cannot be directly applied to aerial manipulation as it assumes that contact 

with a surface is maintained at all times. To overcome this issue, the authors of [56] used passive 

decomposition to decompose tool–tip dynamics to two subsystems, namely the so–called locked 

subsystem and shape subsystem. In this approach, the locked subsystem accounts for tangential 

motion of tool–tip with respect to the contact surface whereas the shape subsystem represents the 

motion perpendicular to the contact surface. In the next step, free–flight (before or after contact) 

motion controller for shape subsystem is defined such that it does not depend on contact–related 

parameters. Once contact is established, the shape subsystem control switches to force regulation 

control, making it possible to maintain the contact and a desired contact force. Control of the 

motion tangential to the surface is in turn possible by controlling the locked subsystem, even if 

the assumption of tool–tip contact with the surface is not met [56].  

Impedance control is another relevant approach that is widely adopted in fixed–base robotic 

manipulation applications [122], [123]. In the context of aerial manipulation, the authors in [47] 

used impedance control to simultaneously achieve hovering flight and also maintain manipulator 

contact with a vertical surface. In [104], the authors employed Cartesian impedance control to 

perform autonomous hovering of a quadcopter equipped with a 3–DoF manipulator, subject to 

contact forces and external disturbances. The latter approach was extended in [124] using a 

redundant 3–DoF manipulator onboard a quadcopter UAV allowing to achieve additional 

subtasks along with the MUAV control. In particular, in [124], the authors studied scenarios 

where maintaining quadcopter initial position and optimizing a manipulability measure of the 

robotic arm were formulated as subtasks. It was also shown, by simulation, that hovering flight 

of a MUAV along with regulating manipulator contact force and performing secondary subtasks 

is achievable, even under environmental disturbances. 
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Vision–based Control 

Use of motion capture systems and onboard vision sensors are also promising in MUAV control 

[12], [20], [26], [34], [45], [48], [69], [125]. In the current literature, stationary motion capture 

systems such as VICON™ and OptiTrack™ are usually employed to provide highly precise 

position and orientation information [20], [126]. However, as mentioned earlier, these sensors 

are primarily used in indoor structured environment and therefore significantly restrict MUAV 

application. Onboard visual sensors have been used to either provide extra input for MUAV state 

estimation [26] or to detect and/or track the target object [20], [48]. For example, in [48] the 

authors embedded an IR LED within the object to be manipulated. Using an onboard camera, the 

MUAV was able to detect the position of the object and successfully grasp it from the above. In 

[20], an onboard camera was used to detect several LED markers, corresponding to known point 

features, and determine the relative position between the MUAV and a given object, to be 

grasped by the manipulator. A more challenging task was accomplished in [127], where the 

authors used stereo cameras to generate a point cloud from which candidate objects for 

manipulation were extracted. The performance of object classification and candidate object 

selection algorithm were experimentally verified in several laboratory and outdoor environments 

but actual aerial grasping was not reported. That work was further improved in [128] where the 

UAV was held in a secure place by a support structure, mimicking its hovering scenario and 

grasping objects based on its visual feedback, however fully autonomous operation was not 

reported. 

Visual servoing of MUAVs has been recently addressed in few works. In [12], based on visual 

features of a cylinder, an IBVS framework with a single monocular camera was proposed such 

that a MUAV can fly towards and grasp a cylindrical object of known radius. In contrast to most 

visual servoing approaches, the IBVS presented [12] is applicable to second–order and 

underactuated systems and therefore is better suited for MUAV applications. However, a 

shortcoming of [12] is that the cylinder axis was assumed to be perpendicular to gravity. In 

addition, an external motion capture system was used to control the MUAV motion along the 

cylinder axis. In [90], the authors mapped MUAV dynamics to image features and proposed an 

IBVS framework to maneuver the vehicle relative to cylinders with unknown orientations, using 

only a monocular camera. Finally, in [69], IBVS of a hexquad with a 3–DoF manipulator 

equipped with a fisheye camera was discussed. Specifically, an eye–in–hand fisheye camera was 
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used to extract the contour of a target object and then, using image moments, desired camera 

velocities were computed and fed to the IBVS control law. Another interesting approach was 

reported in [125], [129], where an IBVS scheme was formulated to bring an assembly part 

carried by a MUAV into a target position. The main difference of such configuration, also 

known as onboard eye–to–hand, with the standard IBVS formulation is that image features in 

both the assembly part and the target position are used in to define appropriate errors in the 

image space. The authors showed that IBVS of a MUAV can be ensured with effective joint–

limits avoidance. The results in [129] were improved in [130] by employing image moments 

such that the assembly part approaches the known target with a predetermined constraint, e.g. 

perpendicular to the target plane. Adopting the image moments as visual features feedback, 

velocity–level control laws were proposed to nullify the image moments errors while the area 

error was set to be the last element converging to zero, i.e. the assembly part (almost) 

perpendicularly approaching the target. 

 

Teleoperation 

Teleoperation of MUAVs is a promising area of research that can further extend possible 

application of such platforms. However, practical teleoperation of MUAVs and its associated 

challenges such as imperfect communication, time–varying delay and information losses have 

not been studied to this date. Moreover, interaction with the environment and possible motion of 

the manipulator may, in general, generate destabilizing effects that are very difficult for a human 

operator to cope with. In [94], the authors affirmed that manual control of MUAVs is extremely 

difficult, even for experienced UAV pilots, and therefore concluded that even simple 

manipulation tasks are unfeasible without computer–aided control. A similar finding was 

reported in [22] where the authors introduced a Human–Machine–Interface (HMI) to address the 

mentioned problem. In that work, low–level control was carried out by an onboard autopilot, 

while a human operator provided the input such that MUAV hovers above a valve and grabs it. 

In a different application, in [13], a human operator was tasked to pilot a MUAV to establish 

contact between the MUAV tool–tip and a given surface. Having established the contact, the 

operator then used a joystick to command a trapezoidal–profile pushing force via the tool–tip to 

the surface. A successful experiment involving partial manual operation of MUAVs was also 
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reported in [94] where the MUAV was stabilized to hover over a rectangular block. Then, a 

human operator manually commanded 3 identical arms of the MUAV to extend and, using visual 

contact with the MUAV, grasp the block. The symmetrical configuration and motion of the arms 

with respect to UAV body played a key role in the successful human operation of the mentioned 

MUAV. Also, intuitively, it is easier for human operators to control the arm movement if the 

MUAV hovers above a given location and the operator is only tasked with controlling 1D arm 

extension.  

First–Person–View (FPV) flight is also another plausible solution that may be adapted in MUAV 

applications. FPV flight, as opposed to Line–of–Sight (LoS) flight, is gaining increasing 

attention among UAV applications [131], [132], and especially among the hobbyists. However, 

to the best of authors’ knowledge, FPV flight has not been used in MUAVs to this date. 

Motivated by the fact that operation of a MUAV is too demanding for a single operator, it is 

possible to design systems where position control of a UAV is carried out autonomously and a 

human pilot controls the arm and manipulation process. This way, the pilot can manually 

compensate for the UAV position error and accomplish the manipulation task. It is also 

important to note that while MUAV operation by a single operator is very challenging, the effect 

of manipulator movement on quadcopter control reduces as the mass ratio of the two subsystems 

decreases. Therefore, for larger quadcopters with smaller manipulators, human–based operation 

of MUAVs is expected to be achievable. However, the authors are unaware of any published 

work that determines such allowable ratio of manipulator to UAV mass. 

 

Human–MUAV interaction 

In general, a rich amount of literature exists on human interaction with fixed and mobile robots 

and, in particular, with humanoids [133]. However, there has been very limited research on 

physical human interaction with aerial robots. An example of such works is [134] where the 

authors used an admittance–based force control approach to enable a human user to physically 

interact with a quadcopter, through a foam brick underbelly of the UAV, and guide the 

quadcopter to a desired position. Such applications are necessary if aerial robots are to be used in 

close proximity of humans; e.g. in construction sites [135]. 



  30 

 

 

2.2.5 Summary 

The area of aerial manipulation was studied in this chapter. The findings are summarized as 

follows: 

 Various types of UAV platforms have been used in aerial manipulation applications. 

Strong hovering capability is the main characteristic that such vehicles should possess 

and therefore fixed–wing UAVs are not appropriate platforms for aerial manipulation 

applications. Among vehicles with hovering capability, quadcopters are the most popular 

ones, followed by helicopters. Other rotary–wing and LTA vehicles such as airships have 

also been used in some cases. 

 At present, there is approximately an order–of–magnitude shortcoming in UAV payload 

budget in research community to incorporate industrial dextrous robotic manipulators 

onboard MUAV platforms. This shortcoming, along with limited computational resources 

of such vehicles, tends to be the main limiting factors in the foreseeable future.  

 Based on the current literature, four main categories for physical interaction with the 

environment were identified. While tether–based configuration is the dominant mode for 

load transportation, its application to other MUAV missions is very limited. The 

configuration of a UAV equipped with actuated robotic manipulators is expected to grow 

more popular in the coming years. 

 A broad range of MUAV missions have been realized to this date. Load transportation, 

infrastructure inspection, and pick–and–place are among the missions that have 

significant potential for further growth. A number of more radical applications such as 

door opening, hose transportation, peg–in–hole missions, and structure assembly have 

also been accomplished. 

 To this date, mission scenarios of MUAVs have been defined in a conservative manner. 

More specifically, mission scenarios usually require either the UAV or its manipulator to 

be actuated at a given time. The authors believe that is going to change, yet requires 

substantial developments in modeling and control design techniques for MUAVs. Also, 

continuous improvement in computational resources of UAVs is an enabling 

development in the context of aerial manipulation. 
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 Two main methods for modeling of the dynamics of MUAVs, i.e. Newton–Euler and 

Euler–Lagrange approaches were discussed in this chapter. The former method is more 

appropriate for actual implementation whereas the latter is more suitable in analytical 

study of dynamic properties. 

 Manual control of MUAVs is an open problem with very little documented work in the 

available literature. While complete control of a MUAV by human operator(s) is 

impractical, few successful efforts in partial manual–autonomous control of MUAVs 

have been reported in the literature. 

 Tele–operation of MUAVs is a promising area of research that can considerably extend 

the horizon of MUAV applications. However, several theoretical and technical challenges 

such as imperfect communication, time–varying delay and information loss need to be 

addressed to enable practical tele–operation of such platforms. 

 External motion capture systems and onboard visual sensors have been utilized in some 

works to enable precise estimation of MUAV states, detecting and tracking target objects 

and relative pose estimation. However, actual visual servoing of MUAVs is still in its 

infancy and is expected to receive considerable attention in the coming years. 

 Different aspects of MUAV control such as decoupled vs. coupled control were studied. 

Although decoupled approach is theoretically simpler, it generally results in relatively 

more time–consuming and less accurate control of a MUAV. On the contrary, the 

coupled control approach is theoretically more complex but results in more efficient and 

accurate control of the MUAV.  Various control algorithms in both of the approaches, 

along with their relative advantages and shortcomings, were discussed throughout the 

chapter.  
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Chapter 3 Adaptive Extended and Unscented Kalman Filters for Quadcopter 

State Estimation 

 
This chapter is based on the following submitted paper: 

 

H. Bonyan Khamseh, A. Assa, and F. Janabi–Sharifi, “Adaptive Extended and Unscented 

Kalman Filters for Quadcopter State Estimation”, Submitted to Robotica. 

 

* Bonyan Khamseh was the main author of the paper. Assa provided guidance and consultation 

on adaptive unscented Kalman filtering. 

 

 

3.1 Introduction  

Unmanned Aerial Vehicles (UAVs) are becoming increasingly popular for various applications 

such as target tracking [136], remote sensing of agricultural products [2], forest fire monitoring 

[3], search and rescue [4] and transmission line inspection [6]. Among different types of UAVs, 

quadcopters have become very popular due to their hovering capability, maneuverability and low 

cost [137]–[140]. Successful realization of various autonomous quadcopter missions heavily 

depends on robust and accurate state estimation algorithms. Regarding the state and parameter 

estimation problem, Extended Kalman Filter (EKF) is a very popular algorithm due to its 

advantages in noise filtering, prediction of future steps and relatively simple implementation. To 

this date, EKF has been used in various applications such as pose estimation [141], [142], visual 

servoing [143]–[145] and autonomous navigation [146]. Also, EKF is a widely used algorithm in 

the emerging field of UAVs [147]–[149]. As an example, in [147], the authors employed EKF to 

perform attitude estimation of a quadcopter and used a Proportional–Derivative (PD) controller 

for its stabilization. What is more, in [148], an EKF–based method was introduced to estimate 

wind speed and direction of a small fixed–wing UAV and to calibrate its airspeed. However, in 

[149]–[151], it was shown that EKF performance considerably degrades if the dynamics of the 

system and/or measurement model are highly nonlinear. Additionally, as reported in [150], EKF 

performance is seriously affected when large deviations between the estimated and actual 

trajectories exist.  

In order to improve the performance of EKF, especially for highly nonlinear process and/or 

measurement models, Unscented Kalman Filter (UKF) can be employed [63], [152]–[154]. The 

main idea behind UKF is that a Gaussian distribution can be approximated relatively easily 

whereas approximating an arbitrary nonlinear function is more difficult [152]. Contrary to EKF, 
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derivation of Jacobian matrices is not necessary in UKF. This can be beneficial in cases where 

the derivation of Jacobian matrices is difficult and noisy, and therefore possible implementation 

difficulties are avoided [153]. To that end, instead of directly linearizing the nonlinear process 

and/or measurement models, UKF uses a deterministic sampling method to generate a minimal 

number of sigma points that capture mean and covariance estimates. The sample points are then 

propagated through the nonlinear process/measurement models and the mean and covariance of 

the estimate are numerically recovered.  

It can be theoretically shown that UKF accuracy is comparable to third–order Taylor series 

expansion, for any nonlinearity [152]. As an example, for the problem of spacecraft localization, 

performance of EKF was compared to UKF in [154]. For two sample missions of Earth–Moon 

transfer and geostationary orbit rising, it was observed that UKF offers better performance in 

terms of localization accuracy and consistency of the estimates. Also, in [63], three–axis attitude 

determination of a UAV was considered. In that work, the authors found that UKF robustness to 

noise is much better than EKF and concluded that it is a better alternative, compared to 

conventional EKF. In summary, UKF performance is superior to EKF as (i) it better copes with 

nonlinearities in process and measurement models and (ii) it avoids use of Jacobian matrices, 

which can be noisy and difficult to derive/implement. 

It is worthwhile to mention that the performance of both EKF and UKF heavily depends on 

accurate a priori knowledge of noise statistics i.e., process and measurement covariance matrices. 

It has been reported that uncertain a priori knowledge of noise statistics may result in very poor 

performance of EKF and UKF filters and in extreme cases, the system may become unstable 

[155]–[158]. In such cases, adaptive techniques are effective solutions to improve performance 

of Kalman filters [159], EKF [160]–[162] and UKF [163]–[165]. Some of the areas in which 

adaptive Kalman filtering has been investigated include mobile robot localization [160] and 

parameter estimation [165], pose estimation in visual servoing [141], [142], [155], [162] and 

aerospace vehicle attitude estimation [63], [156], [157]. Regarding the adaptation law, several 

schemes such as maximum likelihood, and correlation and covariance matching techniques have 

been proposed [155]. Among the mentioned schemes, covariance matching is reported to require 

less computational resources [142] and therefore is more appropriate for UAV online 

implementation. 
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Here, formulation of EKF– and UKF–based state estimation with known noise statistics, along 

with Linear Quadratic Regulator (LQR) laws for quadcopter flight are first presented. Two 

metrics will be considered to assess the estimation accuracy and overall control performance of 

each algorithm. Then, Adaptive Extended Kalman Filter (AEKF) and Adaptive Unscented 

Kalman Filter (AUKF) are formulated to achieve autonomous flight of a quadcopter UAV in 

presence of uncertain process and measurement noise statistics. To the best of authors’ 

knowledge, this is the first work to employ covariance matching AEKF and AUKF for 

autonomous quadcopter flight. Contrary to previous works with simplified linear models, e.g. 

[141], [145], full nonlinear dynamic model of the quadcopter is considered in the present section. 

A second advantage of this work, compared to [63], [156], is that the obtained results are not 

used only for state estimation and it is shown that they are accurate enough to be used in 

feedback control laws. This, in turn, provides the solution for autonomous flight control of a 

quadcopter UAV, even in presence of uncertain noise statistics. 

The rest of this chapter is as follows. Mathematical modeling of a quadcopter and design of LQR 

controller are presented in Section 3.2 and Section 3.3, respectively. Then, algorithms for EKF, 

UKF, and their adaptive counterparts, i.e. AEKF and AUKF are discussed in Section 3.4. A case 

study is developed in Section 3.5 to compare the performance of EKF to UKF with known noise 

statistics and various initial conditions through simulations. Then, a scenario is developed to 

compare the performance of conventional EKF and UKF to their adaptive counterparts in 

presence of unknown noise statistics. Summaries are given in Section 3.6. 

 

3.2 Mathematical model of a quadcopter 

A quadcopter UAV is equipped with two pairs of rotors, turning in opposite directions, see Fig. 

3.1 [166]. 
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Fig. 3.1 Schematic view of a quadcopter 

 

Here, let ℱ𝐼 = {𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼} and ℱ𝐵 = {𝑋𝐵, 𝑌𝐵, 𝑍𝐵} be the inertial frame and body frame, 

respectively. What is more, 𝒑𝐵 = [𝑋 𝑌 𝑍]𝑇 and 𝚽𝐵 = [𝜑 𝜃 𝜓]𝑇 denote position of the 

body frame ℱ𝐵 in the inertial frame and quadcopter attitude (roll, pitch and yaw angles), 

respectively. A quadcopter can control its position and attitude by varying its rotors’ speed. 

Vertical motion of a quadcopter is realized by simultaneously changing the speed (and thus lift 

force) of all four rotors. Translational motion in 𝑋𝐵 −direction is realized by variation of the 

speed of rotor #1 and rotor #3. Similarly, an increase in the speed of rotor #2 with associated 

decrease in speed of rotor #4 will result in translation in 𝑌𝐵 −direction. The roll and pitch control 

is obtained by lift imbalance in rotor pairs # (2, 4) and (1, 3), respectively. Finally, the yaw 

motion is also controlled by an equal change in the speed of rotor pairs # (1, 3) and # (2, 4). 

Here, a number of assumptions are made to develop the nonlinear dynamic model of a 

quadcopter. 

Assumption 1: It is assumed that the center of gravity of the quadcopter coincides with the 

origin of its body frame. 

Assumption 2: The UAV is assumed to be symmetric such that its inertial matrix is diagonal. 

Assumption 3: Lift and drag forces are assumed to be proportional to the square of the speed of 

the rotors [167], [168]. 
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Assumption 4: The axes of the rotors are assumed to be fully aligned with the body 𝑧 −axis. 

For a quadcopter (rigid–body), kinematic equations of motion are given by: 

 

{

�̇� = 𝑣𝑋 ,

�̇� = 𝑣𝑌,

�̇� = 𝑣𝑍,

 (3.1) 

 

[

�̇�

�̇�
�̇�

] = [

1 𝑠𝜑𝑡𝜃 𝑐𝜑𝑡𝜃
0 𝑐𝜑 −𝑠𝜑
0 𝑠𝜑/𝑐𝜃 𝑐𝜑/𝑐𝜃

] [
𝑝
𝑞
𝑟
], (3.2) 

 

where 𝜑, 𝜃 and 𝜓 are the roll, pitch and yaw angles and 𝑠(𝛼), 𝑐(𝛼) and 𝑡(𝛼) denote trigonometric 

sine, cosine and tangent functions of the variable 𝛼. Also, 𝑝, 𝑞 and 𝑟 denote the three 

components of the angular velocity vector, where 𝝎𝐵 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧]
𝑇
= [𝑝, 𝑞, 𝑟]𝑇 denotes 

quadcopter angular velocity expressed in the body frame. The corresponding rotation matrix 

from the body frame to the inertia frame is given by: 

 

𝑹𝐵 = [

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜑 + 𝑐𝜓𝑠𝜃𝑠𝜑 𝑠𝜓𝑠𝜑 + 𝑐𝜓𝑠𝜃𝑐𝜑
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜑 + 𝑠𝜓𝑠𝜃𝑠𝜑 −𝑐𝜓𝑠𝜑 + 𝑠𝜓𝑠𝜃𝑐𝜑
−𝑠𝜃 𝑐𝜃𝑠𝜑 𝑐𝜃𝑐𝜑

], (3.3) 

 

Also, from Newton’s second law, the translational dynamics equations of motion in the inertial 

frame are given by [157]: 

 

{
 
 
 
 

 
 
 
 𝑚�̈� = (𝑠𝜓𝑠𝜑 + 𝑐𝜓𝑠𝜃𝑐𝜑)∑𝑓𝑏,𝑖

4

𝑖=1

,

𝑚�̈� = (−𝑐𝜓𝑠𝜑 + 𝑠𝜓𝑠𝜃𝑐𝜑)∑𝑓𝑏,𝑖

4

𝑖=1

𝑚�̈� = 𝑚𝑔 − (𝑐𝜃𝑐𝜑)∑𝑓𝑏,𝑖

4

𝑖=1

,           

, (3.4) 
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in which 𝑚 is the mass of the quadcopter and 𝑔 = 9.81
𝑚

𝑠2
. In Eq. 3.4, 𝑓𝑏,𝑖 is the thrust generated 

by the 𝑖 − 𝑡ℎ motor, expressed in body frame. It is assumed that 𝑓𝑏,𝑖 = 𝑏𝛺𝑖
2, where 𝛺𝑖 is the 

rotation speed of the 𝑖 − 𝑡ℎ rotor and 𝑏 is a proportionality coefficient. The quadcopter rotational 

dynamics is governed by Euler’s second law and is given by [166]: 

 

{

𝐼𝑥𝑥�̇�𝑥 = 𝜔𝑦𝜔𝑧(𝐼𝑦𝑦 − 𝐼𝑧𝑧) + 𝑏𝑙(𝛺4
2 − 𝛺2

2),                       

𝐼𝑦𝑦�̇�𝑦 = 𝜔𝑥𝜔𝑧(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝑏𝑙(𝛺3
2 − 𝛺1

2),                       

𝐼𝑧𝑧�̇�𝑧 = 𝜔𝑥𝜔𝑦(𝐼𝑥𝑥 − 𝐼𝑦𝑦) + 𝑑(−𝛺1
2 − 𝛺3

2 +𝛺2
2 + 𝛺4

2),

 (3.5) 

 

where 𝐼𝑥𝑥, 𝐼𝑦𝑦 and 𝐼𝑧𝑧 are the quadcopter moments of inertia in the body frame. Also, in Eq. 

3.5, 𝑙 and 𝑑 are the distance from a rotor’s center to quadcopter geometric center and the drag 

coefficient, respectively. It can be already seen that the kinematic rotational equations of motion 

and all dynamic equations of motion of the quadcopter are nonlinear. Also, it can be observed 

that the translational dynamics equations of motion are coupled with rotational dynamics. One 

can linearize the above model about a given hovering point to obtain: 

 

�̇� = 𝑨𝒙 + 𝑩𝒖, (3.6) 

 

where 𝒙 is the state vector, i.e. 𝒙 = [𝑋 �̇� 𝑌 �̇� 𝑍 �̇� 𝜑 𝜔𝑥 𝜃 𝜔𝑦 𝜓 𝜔𝑧]𝑻 and 

𝒖 = [𝛺1 𝛺2 𝛺3 𝛺4]𝑇, i.e., the rotor speeds, is the input vector. Also, in Eq. 3.6, 𝑨 and 𝑩 are 

given by: 

 

𝑨 =
𝜕𝑭

𝜕𝑿
|𝒙∗
𝒖∗
, (3.7) 

 

𝑩 =
𝜕𝑭

𝜕𝒖
|𝒙∗
𝒖∗
, (3.8) 

 

where 𝒙∗ and 𝒖∗ denote the hovering trim point and its associated input, respectively. Also, here 

𝑭 represents quadcopter equations of motion obtained in Eqs. 3.1, 3.2, 3.4 and 3.5 in compact 

form. For a hovering mission, the output to be tracked consists of four variables, namely the 
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position vector {𝑋, 𝑌, 𝑍} in the inertial frame and the yaw angle 𝜓. In the next subsection, LQR 

control laws for autonomous flight of a quadcopter UAV will be designed. 

 

3.3 Linear quadratic regulator for the hovering mission 

It can be verified that the obtained (𝑨,𝑩) pair in Eq. 3.7 and Eq. 3.8 is controllable [169]. 

Therefore, one can proceed to design a LQR controller by considering a possible cost function 

over infinite horizon given by [170] : 

 

𝐽(𝒖) = ∫ (𝒙𝑻𝑸𝑳𝑸𝑹𝒙 + 𝒖
𝑻𝑹𝑳𝑸𝑹𝒖)𝑑𝑡

∞

0

, (3.9) 

 

in which 𝑸𝑳𝑸𝑹 ∈ ℝ
12×12 and 𝑹𝑳𝑸𝑹 ∈ ℝ

4×4 are positive definite weight matrices to penalize the 

deviation from the reference setpoint and the magnitude of the control signal, respectively. The 

above cost function can be minimized by state feedback law of the form: 

 

𝒖 = −𝑲𝑳𝑸𝑹(𝒙 − 𝒙
∗) + 𝒖∗, (3.10) 

 

Thus, the optimal gain 𝑲𝑳𝑸𝑹 is obtained from: 

 

𝑲𝑳𝑸𝑹 = 𝑹𝐿𝑄𝑅
−1 𝑩𝑻𝑷, (3.11) 

 

and 𝑷 in turn is obtained from the following Algebraic Riccati Equation (ARE) [170]: 

 

𝑨𝑻𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹𝑳𝑸𝑹
−𝟏 𝑩𝑻𝑷 + 𝑸𝑳𝑸𝑹 = 𝟎. (3.12) 

 

The positive definite matrix 𝑸𝑳𝑸𝑹 can be chosen to be diagonal. For fixed 𝑹𝑳𝑸𝑹, if one increases 

the entries of 𝑸𝑳𝑸𝑹, the deviation from the reference trajectory will be heavily penalized and the 

states rapidly converge to the desired values, i.e. high control gains [169]. The positive definite 

matrix 𝑹𝑳𝑸𝑹 can also be chosen to be diagonal. In that case, for fixed 𝑸𝑳𝑸𝑹, if one increases the 

entries of 𝑹𝑳𝑸𝑹, the magnitude of the control signal will be heavily penalized and the control 
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gains will be small. Thus, large values in the entries of 𝑹𝑳𝑸𝑹 will result in slower system 

response and control laws with relatively small magnitude [169]. Proper selection of 𝑸𝑳𝑸𝑹 and 

𝑹𝑳𝑸𝑹 matrices will result in timely convergence of states to their desired value, without violating 

actuator saturation limits in terms of excessively large control inputs.  

 

3.4 Kalman filtering 

3.4.1 EKF state estimation 

The original formulation of Kalman filter is only applicable to systems with linear process and 

measurement model. EKF is an ad hoc extension of the original Kalman filter that linearizes the 

process and measurement model about the available best estimate of the system states. In 

summary, quadcopter equations of motion were given in Eqs. 3.1, 3.2, 3.4 and 3.5 or, 

equivalently, by �̇� = 𝑭(𝒙, 𝒖) in compact form. Adding the inherent uncertainty in the dynamic 

equations of motion, the discretized process and measurement models are given by: 

 

𝒙𝑘 = 𝒇(𝒙𝑘−1, 𝒖𝑘) + 𝒘𝑘, (3.13) 

 

𝒚𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘, (3.14) 

 

where 𝒇 denotes discretized equations of motion control input and 𝒘𝑘 and 𝒗𝑘 are the process and 

measurement noise with zero mean Gaussian distribution and covariance 𝑸𝑘
∗  and 𝑹𝑘

∗ , 

respectively. In this formulation, the unmodelled dynamics and sensor noise are represented by 

covariance matrices 𝑸𝑘
∗  and 𝑹𝑘

∗ , respectively [171], [172]. It is worthwhile to note that in the 

current problem, the measurement model i.e. {𝑋, 𝑌, 𝑍, 𝜑, 𝜃, 𝜓} is linear and therefore 𝑯 ∈ ℝ6×12 

is a constant matrix, given as follows: 

 

𝑯 =

[
 
 
 
 
 
1
0
0
0

0
0
0
0

0
1
0
0

0
0
0
0

0
0
1
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0]

 
 
 
 
 

.  

 

Time–update equations of EKF are then given by: 
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�̂�𝑘|𝑘−1 = 𝒇(�̂�𝑘−1|𝑘−1, 𝒖𝑘), (3.15) 

𝑷𝑘|𝑘−1 = 𝑨𝑘−1𝑷𝑘−1|𝑘−1𝑨𝑘−1
𝑻 + 𝑸𝑘

∗ , (3.16) 

 

where �̂�𝑘|𝑘−1 and �̂�𝑘−1|𝑘−1 are a priori estimate at step 𝑘 and a posteriori estimate at step 𝑘 − 1, 

respectively. Also, 𝑷𝑘|𝑘−1 denotes 𝒙𝑘|𝑘−1 error covariance and  𝑨𝑘−1 is the Jacobian matrix 

given by: 

 

𝑨𝑘−1 =
𝜕𝒇

𝜕𝒙
|�̂�𝑘−1|𝑘−1 ,   𝒖𝑘−1 . (3.17) 

 

Once the measurements are available, the update equations are given by: 

 

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯
𝑇(𝑯𝑷𝑘|𝑘−1𝑯

𝑻 + 𝑹𝑘
∗ )
−1
, (3.18) 

 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝑲𝑘(𝒚𝑘 −𝑯�̂�𝑘|𝑘−1), (3.19) 

 

𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑯)𝑷𝑘|𝑘−1, (3.20) 

 

where 𝑲𝑘 is the Kalman gain and updated state estimate and updated estimation error covariance 

are obtained from Eq. 3.19 and Eq. 3.20, respectively. It is important to note that EKF is a 

suboptimal filter for nonlinear systems and in cases where the linearization error is large, its 

performance may become unsatisfactory. 

 

3.4.2 UKF state estimation 

UKF is a relatively new technique to improve EKF performance by avoiding the linearization 

step. In UKF, a deterministic sampling technique i.e. unscented transform is utilized to generate 

a minimal set of sample points (called sigma points hereafter) from the state a priori mean and 

covariance. Then, these sample points are propagated through the nonlinear process model and a 
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posteriori mean and covariance are numerically recovered [153], [173]. In UKF algorithm, in the 

first step, 2𝑛 + 1 weighted sigma points are generated [63], [174]: 

 

{
 
 

 
 
𝝌𝑘−1|𝑘−1
0 = 𝒙𝑘−1|𝑘−1,                                                      

𝝌𝑘−1|𝑘−1
𝑖 = 𝒙𝑘−1|𝑘−1 + (√(𝑛 + 𝜆)𝑷𝑘−1|𝑘−1)

𝑖

,         

𝝌𝑘−1|𝑘−1
𝑖+𝑛 = 𝒙𝑘−1|𝑘−1 − (√(𝑛 + 𝜆)𝑷𝑘−1|𝑘−1)

𝑖

,         

 (3.21) 

 

where 𝑖 = 1,… , 𝑛, 𝜆 ∈ ℝ is a scaling parameter, (√(𝑛 + 𝜆)𝑷𝑘−1|𝑘−1)
𝑖

 is the 𝑖 −th column (or 

row) of matrix square root of (𝑛 + 𝜆)𝑷𝑘−1|𝑘−1 and 𝑛 is the number of system states. Then, each 

sigma point is propagated through the process model: 

 

�̂�𝑘|𝑘−1
𝑖 = 𝒇(𝝌𝑘−1|𝑘−1

𝑖 , 𝒖𝑘−1), (3.22) 

 

The predicted state estimate and the estimation error covariance are then given by: 

 

�̂�𝑘|𝑘−1 =∑𝑊𝑖�̂�𝑘|𝑘−1
𝑖 ,

2𝑛

𝑖=0

 (3.23) 

 

𝑷𝑘|𝑘−1 =∑𝑊𝑖(𝒙𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1)(�̂�𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1)
𝑻
+𝑸𝑘

∗ ,

2𝑛

𝑖=0

 (3.24) 

 

where 𝑊𝑖 is given by: 

 

{
 

 𝑊0 =
𝜆

𝑛 + 𝜆
,

𝑊𝑖 =
1

2(𝑛 + 𝜆)
,
 (3.25) 
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and 𝜆 is a scaling parameter in unscented transform [175]. A similar procedure is adopted to 

calculate the measurement and its error covariance: 

 

{
 
 

 
 
𝝌𝑘|𝑘−1
0 = �̂�𝑘|𝑘−1,                                                                  

𝝌𝑘|𝑘−1
𝑖 = �̂�𝑘|𝑘−1 + (√(𝑛 + 𝜆)𝑷𝑘|𝑘−1)

𝑖

,                         

𝝌𝑘|𝑘−1
𝑖+𝑛 = �̂�𝑘|𝑘−1 − (√(𝑛 + 𝜆)𝑷𝑘|𝑘−1)

𝑖

,                         

 (3.26) 

 

�̂�𝑘
𝑖 = 𝑯𝝌𝑘|𝑘−1

𝑖 , (3.27) 

 

�̂�𝑘 =∑𝑊𝑖�̂�𝑘
𝑖 ,

2𝑛

𝑖=0

 (3.28) 

 

𝑷𝑘
𝑦
=∑𝑊𝑖(�̂�𝑘

𝑖 − �̂�𝑘)(�̂�𝑘
𝑖 − �̂�𝑘)

𝑇
2𝑛

𝑖=0

+𝑹𝑘
∗ , (3.29) 

 

𝑷𝑘
𝑥𝑦
=∑𝑊𝑖(�̂�𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1)(�̂�𝑘
𝑖 − �̂�𝑘)

𝑇
.

2𝑛

𝑖=0

 (3.30) 

 

Once the measurements are available, the update equations are given by: 

 

𝑲𝑘 = 𝑷𝑘
𝑥𝑦
(𝑷𝑘

𝑦
)
−1
, (3.31) 

 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝑲𝑘(𝒚𝑘 − �̂�𝑘), (3.32) 

 

𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 −𝑲𝑘𝑷𝑘
𝑦
𝑲𝑘
𝑇. (3.33) 
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3.4.3 AEKF state estimation 

As it was discussed earlier, performance of EKF and UKF heavily relies on accurate knowledge 

of noise statistics i.e. 𝑸𝑘
∗  and 𝑹𝑘

∗ . However, in particular for 𝑸𝑘
∗ , accurate a priori knowledge 

cannot be guaranteed [176]–[178]. To cope with such scenarios, a covariance matching scheme 

is formulated. The main idea behind this scheme is to make the theoretical covariance conform to 

the observed statistics of the system over a given window 𝑁 [155]. In general, small window size 

can better accommodate fast dynamics of the system but may result in reduced accuracy and, in 

extreme cases, lead to instability. On the other hand, a large window size usually avoids system 

instability, at the cost of reduced flexibility to system fast dynamics [142]. For adaptive filtering, 

measurement innovation is defined as: 

 

𝒓𝑘 = 𝒚𝑘 −𝑯�̂�𝑘|𝑘−1. (3.34) 

 

An unbiased estimator for 𝒓𝑘 can written as: 

 

�̅� =
1

𝑁
∑𝒓𝑗

𝑁

𝑗=1

 (3.35) 

 

where the covariance is: 

 

𝑐𝑜𝑣𝒓 =
1

𝑁 − 1
∑(𝒓𝑗 − �̅�)(𝒓𝑗 − �̅�)

𝑇
𝑁

𝑗=1

, (3.36) 

 

The expected value of the above covariance is  : 

 

𝐸[𝑐𝑜𝑣𝒓] =
1

𝑁
∑𝜞𝑘 + 𝑹𝑘

∗

𝑁

𝑗=1

 (3.37) 

 

where: 
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𝜞𝑘 = 𝑯𝑷𝑘
−𝑯𝑻, (3.38) 

 

Therefore, from the above equations, one can write: 

 

𝑹𝑘
† =

1

𝑁 − 1
∑{(𝒓𝑗 − �̅�)(𝒓𝑗 − �̅�)

𝑇
−
𝑁 − 1

𝑁
𝜞𝑘}

𝑁

𝑗=1

 (3.39) 

 

Similarly, for state noise sample, one can write:  

𝒂𝑘 = �̂�𝑘|𝑘 − �̂�𝑘|𝑘−1, (3.40) 

 

And an unbiased estimator for 𝒂𝑘 can be formed as: 

 

�̅� =
1

𝑁
∑𝒂𝑗

𝑁

𝑗=1

 (3.41) 

 

Noting that the covariance of 𝒂 and its expected value are given by [179]: 

 

𝑐𝑜𝑣𝒂 =
1

𝑁 − 1
∑(𝒂𝑗 − �̅�)(𝒂𝑗 − �̅�)

𝑇
𝑁

𝑗=1

, (3.42) 

 

𝐸[𝑐𝑜𝑣𝒂] =
1

𝑁
∑𝜟𝑘 + 𝑸𝑘

∗

𝑁

𝑗=1

, (3.43) 

 

One can write: 
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𝑸𝑘
† =

1

𝑁 − 1
∑{(𝒂𝑗 − �̅�)(𝒂𝑗 − �̅�)

𝑇
−
𝑁 − 1

𝑁
𝜟𝑘}

𝑁

𝑗=1

 (3.44) 

 

where: 

 

𝜟𝑘 = 𝑨𝑘𝑷𝑘−1
+ 𝑨𝑘

𝑻 − 𝑷𝑘
+, (3.45) 

It can be readily seen from the above equations that the computational requirement of adaptive 

scheme depends on the adaptation window size 𝑁. These computationally–expensive 

calculations are a potential drawback, especially for onboard implementation with limited 

computational resources. Therefore, a computationally–efficient recursive formulation is written 

as [141], [145]: 

 

𝑸𝑘+1
† = 𝑸𝑘

† +
𝜛𝑘
𝑁 − 1

{(𝒂𝑘 − �̅�𝑘)(𝒂𝑘 − �̅�𝑘)
𝑻 − (𝒂𝑘−𝑁 − �̅�𝑘)(𝒂𝑘−𝑁 − �̅�𝑘)

𝑻

+
1

𝑁
(𝒂𝑘 − 𝒂𝑘−𝑁)(𝒂𝑘 − 𝒂𝑘−𝑁)

𝑻 +
𝑁 − 1

𝑁
(𝜟𝑘−𝑁 − 𝜟𝑘)}, 

(3.46) 

 

𝑹𝑘+1
† = 𝑹𝑘

† +
𝜛𝑘
𝑁 − 1

{(𝒓𝑘 − �̅�𝑘)(𝒓𝑘 − �̅�𝑘)
𝑻 − (𝒓𝑘−𝑁 − �̅�𝑘)(𝒓𝑘−𝑁 − �̅�𝑘)

𝑇

+
1

𝑁
(𝒓𝑘 − 𝒓𝑘−𝑁)(𝒓𝑘 − 𝒓𝑘−𝑁)

𝑻 +
𝑁 − 1

𝑁
(𝜞𝑘−𝑁 − 𝜞𝑘)}. 

(3.47) 

 

What is more, in the above equations, 𝜛𝑘 is a fading factor such that higher weights are given to 

the most recent samples whereas initial samples are given less significance, see [179] for more 

details. The original formulation of 𝜛𝑘 in [179] was given as: 

 

𝜛𝑘 = (𝑘 − 1)(𝑘 − 2)⋯(𝑘 − 𝜚)/𝑘𝜚,           (3.48) 

 

where lim𝑘→∞𝜛𝑘 = 1 and also use of initial 𝜚 noise samples is delayed to offer better stability. 

However, the above definition results in excessively large numerator/denominator terms for large 

values of 𝑘 and/or 𝜚. As a result, one is confined to choose 𝜚 such that numerical problems are 
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prevented. In order to avoid the mentioned mathematical difficulty, here we define a different 

fading factor: 

 

𝜛𝑘 = tanh(𝑐𝑘),           if  𝑘 ≥ 𝑁, (3.49) 

 

where 𝑐 > 0 is free parameter to adjust the fading factor values (0 < 𝑐 < 10−2 results in fading 

factors similar to those given in Eq. 3.48). One may note that the fading factors in Eq. 3.49 tend 

to offer the same characteristics of the ones in Eq. 3.48 whereas use of excessively large numbers 

is avoided and therefore Eq. 3.49 is applicable to large values of 𝑘 and/or 𝑁. 

 

3.4.4 AUKF state estimation 

A relatively similar recursive approach can be adopted to adjust the noise statistics in AUKF. 

Yet, one must notice that the Jacobian matrices are not available in this approach and therefore 

the modified adaptation laws for AUKF are given by: 

 

𝑸𝑘+1
† = 𝑸𝑘

† +
𝜛𝑘
𝑁 − 1

{(𝒂𝑘 − �̅�𝑘)(𝒂𝑘 − �̅�𝑘)
𝑻 − (𝒂𝑘−𝑁 − �̅�𝑘)(𝒂𝑘−𝑁 − �̅�𝑘)

𝑇

+ (𝒂𝑘 − 𝒂𝑘−𝑁)(𝒂𝑘 − 𝒂𝑘−𝑁)
𝑻

+
𝑁 − 1

𝑁
(𝑷𝑘|𝑘 − 𝑷𝑘|𝑘−1 + 𝑸𝑘

† + 𝑷𝑘−𝑁|𝑘−𝑁−1 − 𝑸𝑘−𝑁
†

− 𝑷𝑘−𝑁|𝑘−𝑁)}, 

(3.50) 

 

𝑹𝑘+1
† = 𝑹𝑘

† +
𝜛𝑘
𝑁 − 1

{(𝒓𝑘 − �̅�𝑘)(𝒓𝑘 − �̅�𝑘)
𝑻 − (𝒓𝑘−𝑁 − �̅�𝑘)(𝒓𝑘−𝑁 − �̅�𝑘)

𝑻

+ (𝒓𝑘 − 𝒓𝑘−𝑁)(𝒓𝑘 − 𝒓𝑘−𝑁)
𝑻 −

𝑁 − 1

𝑁
(𝑷𝑘

𝑦
− 𝑷𝑘−𝑁

𝑦
)}, 

(3.51) 

 

where 𝑷𝑘
𝑦

 was given in Eq. 3.29 and 𝜛𝑘, similar to previous section, is the weight accounting for 

the fading memory approach. In the next section, a case will be developed to evaluate the 

performance of EKF, UKF and their adaptive counterparts in different scenarios. 
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3.5 Case study, simulation results and discussion 

3.5.1 EKF and UKF with certain noise statistics 

In this section, a case study is developed to examine the feasibility of the approaches described 

in previous sections. For a quadcopter with the physical parameters shown in Table 3.1, the LQR 

design process was implemented in MATLAB. In the following simulations, 𝑸𝑳𝑸𝑹 was 

initialized as 𝑰12 ∈ ℝ
12×12, i.e. identity matrix, and the following entries were adjusted by trial 

and error to improve control performance. 

 

{

𝑄𝐿𝑄𝑅(𝑖, 𝑗) = 20                    for 𝑖 = 𝑗 = 1,3,

𝑄𝐿𝑄𝑅(𝑖, 𝑗) = 50                       for 𝑖 = 𝑗 = 5,

𝑄𝐿𝑄𝑅(𝑖, 𝑗) = 50                     for 𝑖 = 𝑗 = 11.

  

 

What is more, the weight matrix 𝑹𝑳𝑸𝑹 was initialized as 0.01 × 𝑰4. Having obtained the 𝑷 

matrix from the solution of the ARE equation, the optimal gain matrix 𝑲𝑳𝑸𝑹 (and thus the 

optimal control law) was obtained. 

 

Table 3.1 Physical parameters of case study quadcopter 

 Numerical value Unit 

m 0.589 kg 

Ixx 6.532 × 10−3 kg.m
2
 

Iyy 6.532 × 10−3 kg.m
2
 

Izz 12.742 × 10−3 kg.m
2
 

l 0.232 m 

 

In the first scenario, it is assumed that the process and measurement noise statistics are a priori 

known. The process noise covariance is assumed to be a constant diagonal matrix and is given 

by: 

 

{
𝑄∗(𝑖, 𝑗) = 10−5                    for 𝑖 = 𝑗 = 2,4,6,

𝑄∗(𝑖, 𝑗) = 10−6               for 𝑖 = 𝑗 = 8,10,12,
0                                                          elsewhere,
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where 𝑄∗(𝑖, 𝑗) is the 𝑖 −th row and 𝑗 −th column of 𝑸∗ and the values are set in accordance with 

the available literature [180]–[182]. Also, the a priori known measurement noise covariance is 

given by: 

 

{

𝑅∗(𝑖, 𝑗) = 10−3                         for 𝑖 = 𝑗 = 1,2,

𝑅∗(𝑖, 𝑗) = 2 × 10−3                     for 𝑖 = 𝑗 = 3,

𝑅∗(𝑖, 𝑗) = 10−3                      for 𝑖 = 𝑗 = 4,5,6.

  

 

Regarding the measurement noise covariance, the values for translational elements comply with 

position accuracy of a few centimeters. This is a conservative assumption as RTK–GPS is 

reported to offer 1–2 cm accuracy and 2–4 cm accuracy in horizontal and vertical measurements, 

respectively [183]–[185]. What is more, the rotational element covariance is consistent with 

angle measurements with a few degrees accuracy. Again, this is a conservative assumption as 

many attitude and heading reference systems provide accuracies up to 1–degree and even better 

than a degree in all three attitude angle measurements [186]–[188]. For the first case study, 

initial condition of the quadcopter is assumed to be 

𝒙(0) = [0.5 0 −0.5 0 1.5 0 10 0 10 0 10 0]𝑇 and the command signal is 

given by 𝒙∗(0) = [01×4 2 01×7]
𝑻. For the initial conditions and setpoint signal, the linear 

position and velocity are given in m and m/s while the angular position and velocity are given in 

deg and deg/s. For the described case study, simulations were carried out and obtained results 

for EKF and UKF are shown in Figs. 3.2–3.5. Also, estimation error mean and standard 

deviation and RMSE metric are given in Table 3.2 and Table 3.3, respectively. 
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Fig. 3.2 EKF–based estimation error with known noise statistics 

 

 
Fig. 3.3 EKF–based LQR control with known noise statistics 
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Fig. 3.4 UKF–based estimation error with known noise statistics 

 

 
Fig. 3.5 UKF–based LQR control with known noise statistics 
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Table 3.2 estimation error mean and standard deviation with known noise statistics 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Table 3.3 RMSE metric with known noise statistics 

 RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

EKF 11.6 12.8 9.7 1.7 2.2 2.0 

UKF 11.3 12.2 9.7 1.7 2.2 2.0 

 

In the above figures, where applicable, “Kalman filter estimate” is the best estimate of a state 

obtained from extended/unscented Kalman algorithms. In real–life scenarios, Kalman filter 

estimates are available for control design purposes and, as a result, these are the values used in 

the LQR feedback control law. The second element, “System state” obtained from Eq. 3.13, 

represents the actual value of a state. Due to the fact that 𝒘𝑘 is not known in real–life scenarios, 

system states are not actually known and therefore cannot be used in feedback control law(s). In 

the mentioned figures, system states merely serve as the reference for comparison purposes and 

are not used as feedback in LQR control. Finally, “Sensor data” represents data obtained from 

sensor(s) for a given state. From Fig. 3.3 and Fig. 3.5, it can be readily seen that sensory data 

obtained from Eq. 3.14 take account of the measurement noise present in real–life scenarios.  

In Fig. 3.2 and Fig. 3.4, 𝒆𝜉  is the estimation error of the state 𝜉 where 𝜉 ∈ {𝑋, 𝑌, 𝑍, 𝜑, 𝜃, 𝜓}. 

Analysis of the results presented in Table 3.2 indicates that subcentimeter–level mean state 

estimation error has been achieved in all translational degrees of freedom, for both EKF and 

UKF. It is worthwhile to mention that noisy data with a few centimeters accuracy, representing 

sensor output, were fed to both EKF and UKF in translational channels and both algorithms have 

resulted in noticeably smoother and several times more accurate state estimates, in comparison 

with raw sensor output.  
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From Table 3.2, it can be seen that UKF mean estimation error is similar to EKF in 𝑌 channel 

but the former outperforms by approximately 0.1 cm in 𝑋 and 𝑍 channels. Similarly, regarding 

the attitude angles, subdegree–level mean estimation error has been achieved in all rotational 

channels. In particular, UKF outperforms EKF in 𝜑 channel by 0.1 degree whereas mean 

estimation errors of both algorithms in 𝜃 and 𝜓 channels are similar. In accordance with Fig. 3.3 

and Fig. 3.5, simulation results indicate that UKF superior pose estimation results in better 

RMSE in 𝑋 and 𝑌 translational degrees of freedom of the quadcopter in its hovering flight. More 

specifically, while RMSEZ in UKF is similar to that of EKF, it is seen that the RMSEX and 

RMSEY of UKF–based algorithm are better than EKF–based results by 0.3 𝑐𝑚 and 0.6 𝑐𝑚, 

respectively. For the rotational degrees of freedom, UKF–based and EKF–based results offer 

similar RMSE metric in all channels. 

It is also important to examine the performance of EKF–based and UKF–based algorithms with 

various initial conditions. With that in mind, 10 scenarios with different initial conditions are 

defined. In the first 5 scenarios, the attitude angles increase in 10–degree steps such that in the 5
th

 

scenario the initial conditions are given by 

𝒙(0) = [0.5 0 −0.5 0 1.5 0 60 0 60 0 60 0]𝑇. Then, in the next 5 

scenarios, the initial displacement of 𝑋 and 𝑌 coordinates from the origin increase in 0.5 m steps 

such that the initial conditions for the last scenario is given by  

𝒙(0) = [3 0 −3 0 1.5 0 10 0 10 0 10 0]𝑇. For the described scenarios, 

simulations were carried out and the obtained results are shown in Table 3.4–3.7. 
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Table 3.4 estimation error mean and standard deviation in attitude–angle initial conditions 

scenarios 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

Scenario 

# 1 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 2 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 3 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.3 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 4 

EKF Mean 0.6 0.5 0.6 0.3 0.3 0.2 

STD 0.7 0.6 0.8 0.3 0.3 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 5 

EKF Mean 0.6 0.5 0.6 0.3 0.3 0.3 

STD 0.7 0.6 0.8 0.3 0.3 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 
 

Table 3.5 RMSE metric in attitude–angle initial conditions scenarios 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

Scenario 

# 1 

EKF 13.4 14.7 10.1 2.5 3.1 3.4 

UKF 13.0 14.1 10.2 2.5 3.1 3.4 

Scenario 

# 2 

EKF 15.3 16.4 10.9 3.3 4.2 4.3 

UKF 15.0 15.7 11.0 3.3 4.2 4.2 

Scenario 

# 3 

EKF 17.7 17.8 12.1 4.1 5.5 4.7 

UKF 17.3 17.0 12.1 4.0 5.4 4.6 

Scenario 

# 4 

EKF 20.5 18.3 13.5 4.8 6.7 4.8 

UKF 20.0 17.5 13.5 4.5 6.6 4.6 

Scenario 

# 5 

EKF 25.6 18.4 16.1 5.8 8.2 5.0 

UKF 25.1 17.7 16.2 5.7 8.0 5.0 
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Table 3.6 estimation error mean and standard deviation in position vector initial conditions 

scenarios 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

Scenario 

# 6 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 7 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 8 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.3 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 9 

EKF Mean 0.6 0.5 0.6 0.3 0.2 0.2 

STD 0.7 0.6 0.8 0.4 0.2 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 

 

Scenario 

# 10 

EKF Mean 0.6 0.5 0.6 0.3 0.3 0.2 

STD 0.7 0.6 0.8 0.4 0.3 0.3 

UKF Mean 0.5 0.5 0.5 0.2 0.2 0.2 

STD 0.6 0.6 0.7 0.2 0.2 0.3 
 

Table 3.7 RMSE metric in position vector initial conditions scenarios 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

Scenario 

# 6 

EKF 21.5 23.7 10.2 2.8 3.5 2.0 

UKF 21.1 23.0 10.2 2.8 3.5 2.0 

Scenario 

# 7 

EKF 31.6 34.3 11.3 4.0 5.0 2.2 

UKF 30.9 33.8 11.3 4.0 4.9 2.2 

Scenario 

# 8 

EKF 41.0 45.6 12.9 5.1 6.2 2.5 

UKF 40.4 44.8 13.0 5.1 6.2 2.5 

Scenario 

# 9 

EKF 51.1 57.0 15.1 6.2 7.8 3.3 

UKF 50.6 56.4 15.1 6.1 7.5 3.2 

Scenario 

# 10 

EKF 61.4 68.8 17.8 7.1 8.9 4.1 

UKF 60.9 68.3 17.8 7.1 8.8 4.0 
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From the above tables, it can be readily seen that both EKF–based and UKF–based algorithms 

maintain accurate state estimation over a wide range of initial conditions. In particular, for 

attitude–angle initial conditions scenarios, both algorithms result in subcentimeter and subdegree 

accuracy in estimation of translational and rotational channels in all scenarios, respectively. A 

marginal increase in estimation error of EKF–based method was observed in 𝜃 channel where 

the estimation error increased to 0.3 degrees in Scenario #4 and Scenario #5 and also in 𝜓 

channel where estimation error increased to 0.3 degrees in Scenario #5. This is due to the fact 

that EKF formulation is based on linearized dynamics of the vehicle and therefore its 

performance marginally degrades in large attitude angles. However, for a hovering mission, both 

algorithms rapidly converge to the vicinity of hovering conditions and therefore estimation 

accuracy is preserved over a wide range of attitude–angle initial conditions. Regarding the 

scenarios with different initial position vectors, it can also be seen that both algorithms maintain 

subcentimeter accuracy in estimation of translational channels and subdegree estimation 

accuracy in rotational channels. For the EKF–based method, a slight 0.1 degree increase in 

estimation error of 𝜃 channel was observed in the 10
th

 scenario. This is due to the fact that the 

quadcopter carries out larger angle maneuvers to compensate the larger initial displacement error 

and therefore EKF–based method slightly degrades before it converges to the vicinity of the 

hovering point. Regarding the overall control performance, it can be seen from Table 3.5 and 3.7 

that the RMSE metrics increase as the initial conditions grow further from the hovering point. 

This is attributed to the fact that the controller requires more time to compensate for larger 

deviations from the setpoint. Also, for LQR being a linear control strategy, the controller 

performance degrades as it starts from larger initial conditions, with respect to the hovering point 

and therefore larger RMSE metrics are obtained. However, simulation results show that the 

controller can successfully accomplish the hovering mission with both EKF–based and UKF–

based algorithms, over a wide range of initial conditions. 

It is also important to mention that UKF improved accuracy in state estimation and overall 

control of the quadcopter is usually associated with higher execution time. In this work, an 

Intel® Core™–i5 3.2 GHz processor based computer with 8.00 GB RAM was used to carry out 

the MATLAB–based simulations. Average execution time of EKF and UKF algorithms is shown 

in Table 3.8 for comparison. 
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Table 3.8 RMSE metric with known noise statistics 

 
Average execution time per iteration (ms) 

EKF 0.13 

UKF 1.23 

 

From the above table, it is observed that EKF average execution time is approximately an order 

of magnitude shorter than UKF. More specifically, while UKF execution on average requires 

1.23 ms in each time step, EKF only requires 0.13 ms for execution in each time step. From the 

computational resources perspective, this is a significant advantage for EKF as it provides 

relatively accurate results, yet at much lower computational cost. This conforms to the 

observation that EKF is a popular choice for state estimation, especially for onboard 

implementation with limited computational resources. It is concluded that for a quadcopter UAV 

with known noise statistics, the ultimate selection between EKF and UKF for state estimation is 

a compromise between available computational resources and estimation and overall control 

performance of the vehicle based on its required mission specifications. 

At this point, it is important to recall that performance of both EKF and UKF heavily depends on 

accurate a priori knowledge of process and/or measurement noise statistics. If such information 

is not available, poor performance of conventional Kalman filters is expected and therefore 

adaptive schemes should be considered. This is the main theme of the next simulation scenarios. 

 

3.5.2 Adaptive EKF and UKF with uncertain noise statistics 

In this case study, it is assumed that the actual process and measurement noise statistics, i.e.  𝑸∗ 

and 𝑹∗ are identical to those of the first scenario, but are not a priori known. In general, while it 

is relatively easier to obtain 𝑹∗ from experimental sensory data and/or sensor specifications, a 

priori knowledge of  𝑸∗ may not be accurate or even not available for design purposes at all 

[142], [145]. Here, we first examine the performance of AEKF and AUKF in a worst–case 

scenario where no a priori knowledge of  𝑸∗ is available. In such cases, one can use the fact that 

𝑸∗, as a covariance matrix, is positive semi–definite and therefore it can be initialized as zero 

matrix. Also, it is assumed that a priori measurement noise statistics are inaccurate such that the 

best estimate of measurement noise covariance is an order of magnitude smaller than its actual 
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value. For such a scenario with unknown noise statistics, simulations were carried out and 

obtained results are shown in Figs. 3.6–3.13, Table 3.9 and Table 3.10. 

From the obtained results, it can be readily observed that the performance of both EKF and UKF 

have degraded severely and both algorithms fail to follow the command signal properly in 

uncertain noise statistics scenario. More specifically, as it can be seen from Fig. 3.6 and Fig. 3.8, 

both algorithms have resulted in excessively increasing mean estimation errors which will 

eventually lead to total loss of quadcopter control. This, in turn, has led to very large RMSE 

metrics, verifying that overall control performance of non–adaptive Kalman methods heavily 

depends on accurate a priori knowledge of noise statistics. Also, it is important to note that non–

adaptive UKF performance is in general better than non–adaptive EKF with unknown noise 

statistics, though neither of the two is satisfactory for meaningful estimation and control 

purposes. Contrary to non–adaptive Kalman filters, it can be seen from Figs. 3.10–3.13 that 

AEKF and AUKF have resulted in accurate estimation and also control of the quadcopter. From 

Table 3.9, it can be seen that AEKF and AUKF have both resulted in subcentimeter mean 

estimation error in all translational channels and subdegree mean estimation error in all rotational 

channels. In general, it is observed that AUKF mean estimation is to some extent superior to 

AEKF, which has resulted in similar trends in overall control performance metrics. In that 

regard, from Table 3.10, it can be seen that AUKF overall control RMSE metrics are better than 

AEKF in in 𝑋 and 𝑌 channels by 1.3 cm and 0.6 cm, respectively. In the 𝑍 channel, AUKF again 

slightly outperforms AEKF by 0.1 cm. In rotational channels, while both algorithms have 

resulted in similar RMSE for 𝜓 channel, AUKF performance is better than AEKF in 𝜑 and 𝜃 

channels by 0.1 degree and 0.3 degree, respectively. In general, it is concluded that AUKF is 

superior to AEKF in scenarios with unknown noise statistics in both mean estimation error and 

overall control performance. However, given the superiority of EKF–based algorithm in terms of 

execution time, the ultimate selection of estimation algorithm is a trade–off between the 

available computational resources and the estimation and control performance requirements of a 

given mission. 

 

 

 



  58 

 

 

 

Fig. 3.6 EKF–based estimation error with unknown noise statistics 

 

 
Fig. 3.7 EKF–based LQR control with unknown noise statistics  
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Fig. 3.8 UKF–based estimation error with unknown noise statistics 

 

 
Fig. 3.9 UKF–based LQR control with unknown noise statistics 
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Fig. 3.10 AEKF–based estimation error with unknown noise statistics 

 

 
Fig. 3.11 AEKF–based LQR control with unknown noise statistics 
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Fig. 3.12 AUKF–based LQR control with unknown noise statistics 

 

 
Fig. 3.13 AUKF–based LQR control with unknown noise statistics 
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Table 3.9 estimation error mean and standard deviation with unknown noise statistics 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

EKF Mean 34.4 34.0 2.5 3.0 2.6 2.7 

STD 38.8 65.2 2.6 4.2 2.7 3.8 

UKF Mean 29.7 20.7 2.3 1.6 2.1 1.5 

STD 39.2 25.1 2.4 1.7 2.7 1.6 

AEKF Mean 0.9 0.7 0.8 0.4 0.4 0.5 

STD 1.3 1.0 1.1 0.4 0.7 0.7 

AUKF Mean 0.6 0.6 0.8 0.3 0.3 0.4 

STD 0.7 0.8 1.2 0.3 0.4 0.6 

 

Table 3.10 RMSE metric with unknown noise statistics 

 RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

EKF 53.8 67.9 10.0 4.6 3.8 2.3 

UKF 52.9 41.5 9.9 2.5 3.8 2.2 

AEKF 12.7 12.9 9.9 1.9 2.7 2.0 

AUKF 11.4 12.3 9.8 1.8 2.4 2.0 

 

Additionally, given that the above simulations assume a worst–case scenario where no a priori 

knowledge of 𝑸∗ is available, it is important to study gradual degradation of EKF–based and 

UKF–based algorithms in scenarios with some degree of confidence in 𝑸∗. For that purpose, here 

we develop 4 more scenarios where in the first scenario the best estimate of 𝑸∗, i.e. 𝑸†, is an 

order of magnitude smaller than the actual value and in each subsequent scenario the mismatch 

increases by an order of magnitude such that the best estimate of 𝑸∗ in the 4
th

 scenario is 4 orders 

of magnitude smaller than the actual value. For the described case studies, simulations were 

carried out and the obtained results are shown in Table 3.11 and 3.12. 
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Table 3.11 EKF/UKF estimation error mean and standard deviation in 𝑸† mismatch scenarios 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

Scenario 

# 1 

EKF Mean 0.7 0.6 0.8 0.3 0.3 0.3 

STD 0.9 0.8 1.0 0.3 0.3 0.4 

UKF Mean 0.5 0.6 0.6 0.3 0.2 0.3 

STD 0.6 0.8 0.8 0.3 0.3 0.3 

 

Scenario 

# 2 

EKF Mean 0.7 0.8 1.0 0.5 0.4 0.4 

STD 1.0 1.0 1.2 0.6 0.5 0.5 

UKF Mean 0.6 0.6 0.7 0.4 0.3 0.3 

STD 0.8 0.7 0.9 0.5 0.5 0.4 

 

Scenario 

# 3 

EKF Mean 1.6 1.9 1.4 0.8 0.8 0.6 

STD 1.9 2.3 1.8 1.0 0.9 0.8 

UKF Mean 1.1 0.8 0.8 0.4 0.4 0.3 

STD 1.1 0.8 1.0 0.4 0.5 0.6 

 

Scenario 

# 4 

EKF Mean 3.8 5.6 2.0 1.2 1.1 0.8 

STD 4.0 7.3 2.1 1.6 1.1 0.9 

UKF Mean 3.0 2.0 1.0 0.5 0.7 0.7 

STD 3.2 2.1 1.3 0.5 0.8 0.9 

 

Table 3.12 EKF/UKF RMSE metric in  𝑸† mismatch scenarios 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

Scenario 

# 1 

EKF 11.8 13.0 9.8 1.8 2.3 2.0 

UKF 11.2 12.1 9.7 1.8 2.3 2.0 

Scenario 

# 2 

EKF 12.2 13.8 9.9 1.9 2.4 2.0 

UKF 11.5 12.3 9.8 1.8 2.3 2.0 

Scenario 

# 3 

EKF 15.1 18.1 9.9 2.1 2.5 2.1 

UKF 12.7 12.9 9.8 1.9 2.3 2.1 

Scenario 

# 4 

EKF 18.5 30.0 9.9 2.7 2.7 2.2 

UKF 17.4 15.1 9.9 2.0 2.5 2.2 
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It can be seen from the above tables that incremental increase of mismatch in initial estimation of 

process noise leads to meaningful degradation of EKF and UKF algorithm estimation accuracy 

and hence overall control performance. More specifically, for the first mismatch scenario where 

the best estimate of 𝑸∗ is on order of magnitude smaller than the actual value, the estimation 

accuracy of EKF–based algorithm worsens by 0.1 cm in 𝑋 and 𝑌 channels and by 0.2 cm in 𝑍 

channel, compared to known noise statistics scenario. Similarly, for 𝜃 and 𝜓 channels, the 

estimation accuracy decreases by 0.1 degree. The UKF–based algorithm also degrades in this 

scenario as its estimation accuracy decreases by 0.1 cm in 𝑌 and 𝑍 channels. In the rotational , 𝜑 

and 𝜓 channels, the estimation accuracy of non–adaptive UKF algorithm also decreases by 0.1 

degree. As the mismatch of best estimate of 𝑸∗ increases to two orders of magnitude in the 

second scenario, the estimation accuracy of both EKF and UKF algorithms further decrease in 

almost all rotational and translational channels. This, in turn, leads to higher overall control 

RMSE metrics as less accurate state estimates are used in the feedback–based LQR control. As 

the mismatch further increases to three orders of magnitude, the estimation accuracy in 

translational and rotational channels decreases to more than 1 cm and close to 1 degree, 

respectively. This is also accompanied by noticeable increase in RMSE metrics of both EKF and 

UKF algorithms which make the performance questionable. Further increase of the mismatch in 

best estimate of 𝑸∗ worsens estimation results of EKF and UKF algorithms, accompanied by 

increasing RMSE metric. While in general, UKF outperforms EKF in the mentioned scenarios, 

both algorithms fail to maintain meaningful estimation and control of the quadcopter in hovering 

flight as the mismatch in best estimate of 𝑸∗ increases to more than two orders of magnitude. 

Therefore, it is concluded that for small mismatch in noise statistics, conventional filters degrade 

to some extent but maintain reasonable estimation and control performance. Yet, as the 

mismatch increases, the performance of conventional non–adaptive EKF and UKF algorithms 

degrade considerably which results in inaccurate estimation and control and this eventually leads 

total loss of the vehicle control. 

What is more, it is also important to examine how the adaptive algorithms perform in case of 

increasing noise statistics mismatch. In general, it is known that the performance of adaptive 

Kalman filter algorithms degrade as simultaneous mismatch in process and measurement noise 

statistics increase and, in severe cases, the algorithm convergence may be jeopardized [155], 
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[189]. For example, for a linear system case study, it was shown that an adaptive Kalman filter 

degraded considerably for cases with simultaneous two orders of magnitude mismatch in process 

and measurement noise statistics [189]. Here, in order to show the sensitivity of AEKF and 

AUKF to various covariance mismatch levels, a number of scenarios are defined. In the first 

scenario, the mismatch in measurement noise statistics is assumed to be an order of magnitude 

smaller than the actual value, i.e. 𝑹† = 0.1𝑹∗ and process covariance mismatch is increased by 

order of magnitude steps until the adaptation algorithm fails. Then, the mismatch in 

measurement noise statistics is increased to two orders of magnitude and various processes noise 

mismatches are examined until the adaption fails. Following the same procedure, mismatch in 

measurement noise is further increased and various incremental mismatches in process noise are 

examined to obtain mismatch scenarios where AEKF and AUKF fail to compensate for 

simultaneous mismatch in noise statistics. For the described case studies, simulations were 

carried out and obtained results are presented in Tables 3.13–3.18. 
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Table 3.13 AEKF/AUKF estimation error mean and standard deviation with 𝑹† = 0.1𝑹∗ 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

𝑸† = 0.1𝑸∗ 

EKF Mean 0.7 0.6 0.7 0.3 0.3 0.3 

STD 0.8 0.8 0.8 0.3 0.3 0.4 

UKF Mean 0.5 0.6 0.7 0.2 0.3 0.3 

STD 0.7 0.7 0.7 0.2 0.3 0.3 

 

𝑸† = 0.01𝑸∗ 

EKF Mean 0.7 0.6 0.7 0.4 0.4 0.3 

STD 0.8 0.7 0.8 0.4 0.4 0.4 

UKF Mean 0.6 0.6 0.7 0.3 0.3 0.3 

STD 0.7 0.7 0.8 0.3 0.3 0.3 

 

𝑸† = 0.001𝑸∗ 

EKF Mean 0.8 0.6 0.7 0.4 0.4 0.3 

STD 0.9 0.8 0.8 0.4 0.5 0.5 

UKF Mean 0.6 0.6 0.7 0.3 0.3 0.3 

STD 0.7 0.8 0.8 0.3 0.3 0.4 

 

𝑸† = 0.0001𝑸∗ 

EKF Mean 0.9 0.6 0.8 0.4 0.4 0.5 

STD 1.0 0.8 1.0 0.4 0.7 0.5 

UKF Mean 0.6 0.6 0.8 0.3 0.3 0.4 

STD 0.7 0.8 0.9 0.3 0.4 0.6 

 

𝑸† = 0 

EKF Mean 0.9 0.7 0.8 0.4 0.4 0.5 

STD 1.3 1.0 1.1 0.4 0.7 0.7 

UKF Mean 0.6 0.6 0.8 0.3 0.3 0.4 

STD 0.7 0.8 1.2 0.3 0.4 0.6 
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Table 3.14 AEKF/AUKF RMSE metric with 𝑹† = 0.1𝑹∗ 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

𝑸† = 0.1𝑸∗ EKF 11.8 12.2 9.7 1.7 2.3 2.0 

UKF 11.3 12.2 9.7 1.7 2.2 2.0 

𝑸† = 0.01𝑸∗ EKF 11.8 12.5 9.7 1.8 2.3 2.0 

UKF 11.3 12.3 9.7 1.7 2.2 2.0 

𝑸† = 0.001𝑸∗ EKF 12.3 12.8 9.7 1.8 2.5 2.1 

UKF 11.4 12.3 9.7 1.8 2.3 2.0 

𝑸† = 0.0001𝑸∗ EKF 12.5 12.8 9.8 1.8 2.4 2.0 

UKF 11.4 12.3 9.8 1.8 2.4 2.0 

𝑸† = 0 EKF 12.7 12.9 9.9 1.9 2.7 2.0 

UKF 11.4 12.3 9.8 1.8 2.4 2.0 

 

In general, it can also be seen that the adaptive algorithms perform well for scenarios with small 

mismatch in measurement statistics, even with large mismatch in process noise statistics. From 

the obtained results, it can be observed that AUKF outperforms AEKF in most scenarios in most 

translational and rotational channels. In particular, for small mismatch in process noise, the 

adaptive algorithms results in estimation accuracy and overall control performance comparable 

to scenarios with known noise statistics. Even for scenarios with large mismatch in process 

noise, i.e. 𝑸† = 0.0001𝑸∗ or in worst–case scenario of  𝑸† = 0, the adaptive algorithms results 

in subcentimeter and subdegree accuracy in translational and rotational channels, respectively. 

Also, similar trend can be observed in control RMSE metrics where adaptive algorithms have 

resulted in successful achievement of hovering flight. This, in turn, is due to the fact that 

measurements with relatively low mismatch level serve as reliable input for adaptation 

algorithms to compensate for even large mismatch in process noise statistics. Yet, estimation 

accuracy and overall control performance degrade more noticeably in scenarios with larger 

mismatch in measurement noise statistics, as shown in Table 3.15 and Table 3.16. 
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Table 3.15 AEKF/AUKF estimation error mean and standard deviation with 𝑹† = 0.01𝑹∗ 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

𝑸† = 0.1𝑸∗ 

EKF Mean 0.8 0.8 0.8 0.5 0.5 0.6 

STD 1.0 0.9 1.0 0.6 0.6 0.6 

UKF Mean 0.6 0.8 0.8 0.5 0.5 0.5 

STD 0.8 1.0 1.0 0.6 0.6 0.6 

 

𝑸† = 0.01𝑸∗ 

EKF Mean 0.8 0.9 1.2 0.7 0.7 0.7 

STD 1.1 1.1 1.2 0.9 0.9 0.8 

UKF Mean 0.8 0.8 1.1 0.7 0.6 0.7 

STD 1.0 1.0 1.2 0.9 0.8 0.8 

 

𝑸† = 0.001𝑸∗ 

EKF Mean 11.9 15.3 17.5 0.7 0.7 0.7 

STD 15.0 19.1 22.4 1.0 0.9 0.9 

UKF Mean 10.2 12.6 14.4 0.7 0.7 0.8 

STD 13.6 16.1 18.7 0.9 0.9 1.0 

𝑸† = 0.0001𝑸∗ N/A 

 

Table 3.16 AEKF/AUKF RMSE metric with 𝑹† = 0.01𝑹∗ 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

𝑸† = 0.1𝑸∗ EKF 12.0 13.5 10.2 2.0 2.5 2.0 

UKF 11.6 12.4 10.0 2.1 2.5 2.0 

𝑸† = 0.01𝑸∗ EKF 12.8 13.8 10.4 2.4 2.7 2.4 

UKF 11.6 12.5 10.3 2.2 2.7 2.4 

𝑸† = 0.001𝑸∗ EKF 13.6 22.6 14.8 4.5 2.8 2.6 

UKF 11.8 16.2 12.0 3.1 2.8 2.7 

𝑸† = 0.0001𝑸∗ N/A 

 

From Table 3.15 and Table 3.16, it is observed that estimation errors in both translational and 

rotational channels are close to 1 cm and 1 degree even for small mismatch in process noise 

statistics, e.g. 𝑸† = 0.1𝑸∗ and 𝑸† = 0.01𝑸∗. Also, relatively large RSME metrics for such 
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scenarios indicate that both AEKF and AUKF have degraded considerably, but are still able to 

accomplish quadcopter hovering task with simultaneous two orders of magnitude mismatch in 

process and measurement noise statistics. Further increasing the mismatch in process noise 

statistics, i.e. 𝑸† = 0.001𝑸∗, results in excessively large estimation errors for both AEKF and 

AUKF where very large RMSE metrics indicate that meaningful accomplishment of hovering 

mission has not been maintained. If one increases process noise mismatch to 𝑸† = 0.0001𝑸∗ 

and larger, both AEKF and AUKF drastically fail. Similar to our results, in the relevant 

literature, it has been reported that simultaneous adaptation of process and measurement noise 

statistics with large mismatch is prone to poor performance as neither of the two provide reliable 

information for adaptation algorithms [155], [189]. Next, one may further increase the 

measurement noise statistics mismatch to three orders of magnitude, i.e. 𝑹† = 0.001𝑹∗ to 

examine the performance of adaptation algorithms. The obtained results for such scenario are 

given in Table 3.17 and 3.18. 

 

Table 3.17 AEKF/AUKF estimation error mean and standard deviation with 𝑹† = 0.001𝑹∗ 

 eX 

(cm) 

eY 

(cm) 

eZ 

(cm) 

eφ 

(deg) 

eθ 

(deg) 

eψ 

(deg) 

 

𝑸† = 0.1𝑸∗ 

EKF Mean 0.8 0.8 0.8 0.5 0.5 0.6 

STD 1.0 0.9 1.0 0.6 0.6 0.6 

UKF Mean 0.6 0.8 0.8 0.5 0.5 0.5 

STD 0.8 1.0 1.0 0.6 0.6 0.6 

𝑸† = 0.01𝑸∗ N/A 

 

Table 3.18 AEKF/AUKF RMSE metric with 𝑹† = 0.001𝑹∗ 

  RMSEX 

(cm) 

RMSEY 

(cm) 

RMSEZ 

(cm) 

RMSEφ 

(deg) 

RMSEθ 

(deg) 

RMSEψ 

(deg) 

𝑸† = 0.1𝑸∗ EKF 12.0 13.5 10.2 2.0 2.5 2.0 

UKF 11.6 12.4 10.0 2.1 2.5 2.0 

𝑸† = 0.01𝑸∗ N/A 
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In this extreme case with 𝑹† = 0.001𝑹∗, for 𝑸† = 0.1𝑸∗, it is observed that both AEKF and 

AUKF have successfully accomplished hovering mission of the quadcopter. More specifically, 

both algorithms have resulted in subcentimeter and subdegree estimation accuracy in 

translational and rotational channels. In general, it can be observed that AUKF outperforms 

AEKF in most channels both in terms of estimation accuracy and overall control performance. 

However, if one increases the mismatch in process noise statistics to two orders of magnitude, 

i.e. 𝑸† = 0.01𝑸∗, both algorithms fail abruptly. This is due the fact that measurement 

information in this scenario are extremely unreliable (𝑹† = 0.001𝑹∗) and therefore the adaptive 

algorithms fail to compensate for two (or more) orders of magnitude mismatch in process noise. 

It is concluded that if large mismatch in process noise statistics are expected, it is important to 

assure relatively precise knowledge of measurement noise statistics. Based on our results, if 

simultaneous large mismatch in both process and measurement noise statistics are present, 

performance of adaptive algorithms is questionable and this, in extreme cases, results in total loss 

of vehicle control.  

Finally, the effect of adaptation window size on the performance of AEKF and AUKF 

algorithms is studied. For that purpose, we considered the average mean estimation error in 

translational 𝑋, 𝑌, 𝑍 channels and rotational 𝜑, 𝜃, 𝜓 channels, denoted by 𝑒𝑋𝑌𝑍 and 𝑒𝜑𝜃𝜓 , 

respectively. Based on these average mean estimation metrics, adaption window size of 𝑁 = 15 

was found to provide satisfactory results in our simulations. In order to provide insight into the 

effects of adaptation window size on those metrics in AEKF and AUKF, 𝑁 is varied from 5 to 50 

with a step of 5 and simulation results are presented in Table 3.19. 
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Table 3.19 Average mean estimation error with different adaptation window size 

N Adaptive 

filter 

eXYZ 

(cm) 

eφθψ 

(deg) 

5 AEKF 1.1 0.7 

AUKF 0.9 0.6 

10 AEKF 0.9 0.5 

AUKF 0.8 0.5 

15 AEKF 0.8 0.4 

AUKF 0.7 0.3 

20 AEKF 0.8 0.5 

AUKF 0.7 0.4 

25 AEKF 0.9 0.6 

AUKF 0.8 0.4 

30 AEKF 0.9 0.5 

AUKF 0.8 0.5 

35 AEKF 0.9 0.6 

AUKF 0.7 0.4 

40 AEKF 0.9 0.5 

AUKF 0.8 0.5 

45 AEKF 0.8 0.6 

AUKF 0.8 0.5 

50 AEKF 0.9 0.6 

AUKF 0.8 0.5 

 

In general, it has been reported in pervious works that adaptation window size does not 

significantly affect the performance of adaptive Kalman filters [142], [159]. Our simulation 

results also show that both Kalman–based algorithms perform well for a wide range of the 

adaptation window size, without excessive variation in mean estimation errors and therefore the 

algorithm can be used robustly regarding the selection of 𝑁. To be more specific, from Table 

3.19, it can be seen that both AEKF and AUKF result in relatively larger estimation errors for 

small window size of 𝑁 = 5. This is expected as very small window size is not representative of 
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noise statistics and therefore the covariance matching technique cannot properly compensate for 

the difference between the estimated and actual noise statistics. As the window size increases to 

𝑁 = 10, both error metrics 𝑒𝑋𝑌𝑍 and 𝑒𝜑𝜃𝜓  slightly improve in AEKF and AUKF and similar 

improvement continues as one increases the window size to 𝑁 = 15. As one further increases the 

adaptation window size to 𝑁 = 20, no further improvement in 𝑒𝑋𝑌𝑍 and 𝑒𝜑𝜃𝜓  is observed. From 

Eq. 3.35 and Eq. 3.41, it is readily seen that larger adaptation window size is associated with 

higher computational time and therefore 𝑁 = 15 was selected for the unknown noise statistics 

scenario in this subsection. As one further increases the adaptation window size, the two metrics 

begin to slightly worsen as the system is less flexible to incorporate fast dynamic of the 

quadcopter. In general, it is concluded that very small adaptation window size results in less 

accurate estimations, whereas very large adaptation window size results in reduced flexibility to 

system dynamics. 

 

3.6 Summary 

In this chapter, extended and unscented Kalman filters along with their adaptive counterparts for 

estimation and control of a quadcopter were formulated. Based on covariance matching 

approach, adaptive filters taking account of uncertainties in both process and measurement noise 

statistics with a new fading memory formulation were presented. Simulation results show that for 

known noise statistics, UKF slightly outperforms EKF both in terms of estimation and overall 

control performance, however with approximately an order–of–magnitude higher execution time. 

Simulation results also show that both algorithms successfully achieve hovering flight of the 

quadcopter starting from a wide range of initial conditions. For unknown noise statistics, it was 

shown that both EKF and UKF result in very poor estimation and control performance, 

eventually leading to total loss of quadcopter control. In such cases, AEKF and AUKF resulted 

in satisfactory estimation and overall control of the quadcopter, even with uncertainty in both 

process and measurement noise statistics. For relatively accurate measurement noise statistics, it 

was shown that adaptive algorithms successfully compensated for very large mismatch in 

process noise statistics. For increasing mismatch in measurement noise statistics, performance of 

adaptive filters degraded in scenarios with increasing uncertainties in process noise statistics to 

an extent where eventually loss of hovering mission was encountered. 



  73 

 

 

Chapter 4 Unscented Kalman Filter State Estimation for Manipulating 

Unmanned Aerial Vehicles 

 
This chapter is based on the following published paper: 

 
H. Bonyan Khamseh and F. Janabi–Sharifi, “UKF–Based LQR Control of a Manipulating 

Unmanned Aerial Vehicle”, Unmanned Systems, vol. 5, no. 3, pp. 131–139, 2017. 

 

and the following submitted paper: 

 

H. Bonyan Khamseh and F. Janabi–Sharifi, “Unscented Kalman Filter State Estimation for 

Manipulating Unmanned Aerial Vehicles”, Submitted to Journal of Aerospace Science and 

Technology. 

 

 

4.1 Introduction 

Traditionally, Unmanned Aerial Vehicles (UAVs) have served applications such as forest fire 

monitoring [3], search and rescue [4], transmission line inspection [6], and border monitoring [5], 

to name a few. An important limitation of the above applications is that the UAV tends to fly and 

obtain remote–sensing data from its surrounding, but physical interaction with the environment is 

strictly avoided. However, in recent years, there has been increasing interest in applications where 

the UAV is required to perform perching, grasping, and manipulation [10], [11], [15], [190]. In 

order to enable such applications, a new area of research, i.e. aerial manipulation, studies varying 

configuration of UAVs and their physical interaction with the surrounding environment. 

Accurate and efficient state estimation of an aerial manipulation system, viz. Manipulating 

Unmanned Aerial Vehicle (MUAV) hereafter, is an important element to enable autonomous 

aerial manipulation missions. This is a fundamental challenge that has been left largely intact to 

this date and is the main theme of the present work. Indeed, current MUAV systems either obtain 

precise state estimates from costly motion capture systems such as NaturalPoint OptiTrack™ or 

VICON™ systems [10], [12], [17], [20], [23] or employ redundant sensory data from GPS, 

Inertial Measurement Units (IMUs), barometers, and/or onboard cameras [23], [25]–[27]. This is 

further complicated as the most common state estimation algorithm for UAV applications, namely 

Extended Kalman Filter (EKF) [106]–[108], cannot be used for MUAVs with complex, coupled 

and highly nonlinear dynamics. In such cases, Unscented Kalman Filter (UKF) has been shown to 
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be a feasible solution as it effectively deals with nonlinearities and dynamic couplings [63], [111], 

[142], [154]. For instance, performance of EKF– and UKF–based state estimation algorithms for 

spacecraft localization problem was discussed in [154]. For earth–moon transfer and 

geostationary orbit rising scenarios, it was shown that UKF outperforms EKF, in terms of 

localization accuracy and estimation consistency. In another work [63], 3 Degrees–of–Freedom 

(DoF) orientation estimation of a fixed–wing UAV was investigated. The results obtained in that 

work showed that UKF outperforms EKF as it is more robust to noise and bias in process and 

measurement models. However, in general, a certain disadvantage of UKF–based state estimation 

is that its improved performance usually comes at the cost of high computational complexity, 

even for system with simple dynamics e.g. [111]. In order to remedy that shortcoming, in this 

chapter, Spherical unscented transform is formulated to improve the computational complexity of 

General UKF state estimation in MUAV applications. Also, a scaling method with improved 

distribution of sigma points will be integrated to improve the state estimation accuracy, especially 

for attitude estimation applications. 

In order to assess the feasibility of the proposed state estimation schemes, dynamic modelling and 

control of a MUAV are first addressed. Here, Euler–Lagrange approach is adopted to obtain 

coupled nonlinear dynamic model of a MUAV because, in general, this approach is suitable for 

controller design and analytical investigation. From the control perspective, we adopt a Linear 

Quadratic Regulator (LQR) to simultaneously control a quadcopter UAV and its 2–DoF 

manipulator. LQR is a popular control scheme where the main advantages are that it provides 

optimal performance for given weight matrices, along with its easy implementation [35], [191], 

[192]. LQR has also been previously used in aerial manipulation applications [35], [109]. In [35], 

control of a small helicopter and its 1–DoF revolute–joint robotic arm was achieved using LQR 

scheme. In that work, it was discussed that LQR offers stability and acceptable performance of the 

MUAV near its trim point. Here, similar to [109], we extend LQR controller augmented with 

integral action such that simultaneous control a quadcopter and its 2–DoF manipulator is 

achieved. 

The main contributions of this chapter are as follows. To the best of authors’ knowledge, our 

proposed algorithm in [109] is the first work where an onboard UKF–based state estimation 
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algorithm for a MUAV with robotic arm was presented. The main advantages of the proposed 

algorithms in this work, common with those in [109], are summarized in the following. 

 Avoiding the use of costly motion capture systems and not being confined to indoor 

environment; 

 Degrading gracefully in case of increasing noise levels and/or loss of sensory data, 

preventing abrupt loss of MUAV control. 

This, in turn, will enable autonomous operation of MUAVs for various real–life applications with 

solely onboard sensory information. Another novel aspect of the current work is that, in view of 

limited computational resources onboard MUAVs, a computationally–efficient UKF algorithm is 

formulated for MUAV state estimation for the first time. Also, in scenarios with increasing noise 

level and total loss of sensory data, sensitivity of UKF–based algorithms for MUAV state 

estimation is studied for the first time. 

The rest of this chapter is organized as follows. Using Euler–Lagrange formulation, the coupled 

nonlinear dynamic model of a MUAV is presented in Section 4.2. LQR control design for a 

MUAV is presented in Section 4.3. In Section 4.4, two variants of UKF–based state estimation 

algorithm, based on General and Spherical unscented transforms, are discussed. Finally, 

simulation results and summaries are presented in Sections 4.5 and 4.6, respectively. 

 

4.2 MUAV dynamic modelling 

In the following, kinematic equations of a generic MUAV, schematically shown in Fig. 4.1, are 

presented. 
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Fig. 4.1 Schematic view of a MUAV 

 

In Fig. 4.1, ℱ𝐼 = {𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼} with the origin 𝑂𝐼 and ℱ𝐵 = {𝑋𝐵, 𝑌𝐵, 𝑍𝐵} with the origin 𝑂𝐵 denote 

the inertial frame and body frame, respectively. The number of manipulator DoF is denoted by 

𝑛𝑀. Also, position of the body frame ℱ𝐵 in the inertial frame is given by 𝒑𝐵 = [𝑋 𝑌 𝑍]𝑇. 

Finally, 𝚽𝐵 = [𝜑 𝜃 𝜓]𝑇 represents the UAV attitude, where 𝜑, 𝜃 and 𝜓 are the roll, pitch and 

yaw angles. Consequently: 

 

{

�̇� = 𝑣𝑋 ,

�̇� = 𝑣𝑌 ,

�̇� = 𝑣𝑍 ,

 (4.1) 

 

𝝎𝐵
𝐼 = 𝑻�̇�𝐵 (4.2) 

 

Here, 𝝎𝐵
𝐼  is the angular velocity of ℱ𝐵 with respect to ℱ𝐼. In body frame, (2) can be written: 

 

𝝎𝐵 = 𝑹𝐵
𝑇𝝎𝐵

𝐼 = 𝑹𝐵
𝑇𝑻�̇�𝑏 = 𝑸�̇�𝑏 . (4.3) 

 

where 𝑹𝐵 is the rotation matrix from the body frame to the inertial frame. In order to obtain the 

kinematic equations of the end–effector, it is helpful to consider a frame at the center of mass of 

𝓕𝑰 

𝓕𝑩 

Link #1 

Link #2 

Link #nM 

End 

Effector 

𝑿𝑩 

𝒀𝑩 
𝒁𝑩 
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each link, where the frame coordinates coincide with link principal axes of inertia. Denoting the 

position of the frame on link 𝑖 by 𝒑𝑙𝑖, one can write: 

 

𝒑𝑙𝑖 = 𝒑𝐵 + 𝑹𝐵𝒑𝐵𝑙𝑖 , (4.4) 

 

where 𝒑𝐵𝑙𝑖 denotes the position vector of the frame on link 𝑖 with respect to ℱ𝐵, expressed in ℱ𝐵. 

�̇�𝐵𝑙𝑖 is given by [100]: 

 

�̇�𝐵𝑙𝑖 = 𝑱𝑃1
(𝑙𝑖)�̇�1 +⋯+ 𝑱𝑃𝑖

(𝑙𝑖)�̇�𝑖 = 𝑱𝑃
(𝑙𝑖)�̇�, (4.5) 

 

where 𝑱𝑃
(𝑙𝑖) represents contribution of the manipulator Jacobian to linear velocity up to link 𝑖. 

Also, the robotic manipulator joint variables are denoted by 𝒒 = [𝑞1 … 𝑞𝑛𝑀]𝑇. What is more, 

the angular velocity of the frame on link 𝑖 with respect to the body frame is obtained as: 

 

𝝎𝐵𝑙𝑖
= 𝑱𝑂1

(𝑙𝑖)�̇�1 +⋯+ 𝑱𝑂𝑖
(𝑙𝑖)�̇�𝑖 = 𝑱𝑂

(𝑙𝑖)�̇�. (4.6) 

 

Similarly, 𝑱𝑂
(𝑙𝑖) represents contribution of the manipulator Jacobian to angular velocity up to link 𝑖. 

Therefore, one can write: 

 

�̇�𝑙𝑖 = �̇�𝐵 − 𝑆(𝑹𝐵𝒑𝐵𝑙𝑖)𝝎𝐵
𝐼 + 𝑹𝐵𝑱𝑃

(𝑙𝑖)�̇�, (4.7) 

 

where 𝑆(∙) is the skew–symmetric matrix operator. Similarly, the kinematic angular velocity 

equation is obtained as: 
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𝝎𝑙𝑖
= 𝝎𝐵

𝐼 + 𝑹𝐵𝑱𝑂
(𝑙𝑖)�̇�. (4.8) 

 

Regarding dynamic modeling of MUAVs, there are two main methods in the current literature, 

namely Newton–Euler and Euler–Lagrange approach [101], [104]. While both methods result in 

valid equations of motion, the latter is more suitable for controller design and analytical 

investigations and therefore is adopted here. In the Euler–Lagrange approach, the UAV and its 

manipulator are treated as a unified system. To that end, the system Lagrangian is ℒ = 𝒦 −𝒰, 

where 𝒦 and 𝒰 represent the system kinetic and potential energy, respectively. Consequently: 

 

𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�𝑖
−
𝜕ℒ

𝜕𝜉𝑖
= 𝑢𝑀𝑈𝐴𝑉,𝑖, (4.9) 

 

where 𝜉𝑖 is the 𝑖 − 𝑡ℎ element of the generalized vector 𝝃 = [𝒑𝐵
𝑇 𝚽𝐵

𝑇 𝒒𝑇]𝑇 ∈ ℝ𝑛𝜉×1, 𝑛𝜉 = 6 +

𝑛𝑀, and 𝑢𝑀𝑈𝐴𝑉,𝑖 is the 𝑖 − 𝑡ℎ input. The total kinetic energy of the MUAV is given by: 

 

𝒦 = 𝒦𝐵 +∑𝒦𝑙𝑖

𝑛𝑀

𝑖=1

, 
(4.10) 

 

where 𝒦𝐵 and 𝒦𝑙𝑖
 denote the kinetic energy of the quadcopter and link 𝑖, respectively. Kinetic 

energy of the quadcopter, in turn, is given by: 

 

𝒦𝑏 =
1

2
𝑚𝐵�̇�𝐵

𝑇 �̇�𝐵 +
1

2
�̇�𝐵
𝑇𝑸𝑇𝑯𝐵𝑸�̇�𝐵, 

(4.11) 

 

where 𝑚𝐵 and 𝑯𝐵 are the mass and inertia matrix of the UAV, respectively. Also, kinetic energy 

of link 𝑖 is given by: 

𝒦𝑙𝑖
=
1

2
𝑚𝑙𝑖

�̇�𝑙𝑖
𝑇 �̇�𝑙𝑖 +

1

2
𝝎𝑙𝑖
𝑇𝑹𝐵𝑹𝑙𝑖

𝐵𝑯𝑙𝑖
𝑹𝐵
𝑙𝑖𝑹𝐵

𝑇𝝎𝑙𝑖
, (4.12) 
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where 𝑹𝑙𝑖
𝐵 is the rotation matrix from the frame on link 𝑖 to the body frame. Also,  𝑚𝑙𝑖

 and 𝑯𝑙𝑖
 are 

the mass and inertia matrix of link 𝑖, respectively. As a result, the total kinetic energy can be 

expressed in compact form as: 

 

𝒦 =
1

2
�̇�𝑇𝑴�̇�, 

(4.13) 

 

where 𝑴 ∈ ℝ(6+𝑛𝑀)×(6+𝑛𝑀) is the symmetric and positive definite inertia matrix whose elements 

are given by [104]: 

 

𝑴11 = (𝑚𝐵 +∑𝑚𝑙𝑖

𝑛𝑀

𝑖=1

) 𝑰𝟑, 
(4.14) 

 

𝑴33 =∑(𝑚𝑙𝑖
(𝑱𝑃
(𝑙𝑖))

𝑇

𝑱𝑃
(𝑙𝑖) + (𝑱𝑂

(𝑙𝑖))
𝑇

𝑹𝑙𝑖
𝐵𝑯𝑙𝑖

𝑹𝐵
𝑙𝑖𝑱𝑂
(𝑙𝑖))

𝑛𝑀

𝑖=1

, 
(4.15) 

 

𝑴12 = 𝑴21
𝑇 = −∑(𝑚𝑙𝑖

(𝑹𝐵𝒑𝐵𝑙𝑖
𝐵 )𝑻)

𝑛𝑀

𝑖=1

, 
(4.16) 

 

𝑴13 = 𝑴31
𝑇 =∑(𝑚𝑙𝑖

𝑹𝐵𝑱𝑃
(𝑙𝑖))

𝑛𝑀

𝑖=1

, 
(4.17) 

 

𝑴23 = 𝑴32
𝑇 =  ∑(𝑸𝑇𝑹𝑙𝑖

𝐵𝑯𝑙𝑖
𝑹𝐵
𝑙𝑖𝑱𝑂
(𝑙𝑖) −𝑚𝑙𝑖

𝑻𝑇𝑆(𝑹𝐵𝒑𝐵𝑙𝑖
𝐵 )

𝑇
𝑹𝐵𝑱𝑃

(𝑙𝑖))

𝑛𝑀

𝑖=1

, 
(4.18) 

 

where 𝑰𝛼 denotes the (𝛼 × 𝛼) identity matrix. The potential energy of the system can be written 

as: 
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𝒰 = 𝒰𝐵 +∑𝒰𝑙𝑖

𝑛𝑀

𝑖=1

, 
(4.19) 

 

where 𝒰𝐵 and 𝒰𝑙𝑖 are the potential energy of the quadcopter and that of link 𝑖, respectively. The 

quadcopter potential energy is given by: 

 

 

𝒰𝑏 = −𝑚𝑏𝑔𝒆3
𝑇𝒑𝑏 , 

(4.20) 

 

in which 𝒆3 = [0 0 1]𝑇 if the gravity acts along the opposite direction of 𝑍𝐵. The potential 

energy of link 𝑖 is given by: 

 

 

𝒰𝑙𝑖 = −𝑚𝑙𝑖
𝑔𝒆3

𝑇(𝒑𝐵 + 𝑹𝐵𝒑𝐵𝑙𝑖
𝐵 ). 

(4.21) 

 

Therefore, the total potential energy of the MUAV is given by: 

 

 

𝒰 = −𝑚𝐵𝑔𝒆3
𝑇𝒑𝐵 − 𝑔∑[𝑚𝑙𝑖

𝒆3
𝑇(𝒑𝐵 + 𝑹𝐵𝒑𝐵𝑙𝑖

𝐵 )]

𝑛𝑀

𝑖=1

. 
(4.22) 

 

Having obtained the MUAV total kinetic and potential energy, one can use (9) to obtain: 

 

𝑴(𝝃)�̈� + 𝑪(𝝃, �̇�)�̇� + 𝒈(𝝃) = 𝒖𝑀𝑈𝐴𝑉 . (4.23) 
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where 𝑴 ∈ ℝ𝑛𝜉×𝑛𝜉  is the symmetric and positive definite inertia matrix whose elements are given 

in [104]. Also, the input vector 𝒖𝑀𝑈𝐴𝑉 is given by: 

 

𝒖𝑀𝑈𝐴𝑉 = �̅�𝑵𝒖, (4.24) 

 

in which 𝒖 is a vector consisting of thrust forces from quadcopter rotors and torques from 

manipulator joints. What is more, 𝑵 = 𝑑𝑖𝑎𝑔(𝜴, 𝑰𝑛𝑀) and 𝜴 is given by [104]: 

 

𝜴 =

[
 
 
 
 
 
0
0
1
0
−𝑙
−𝑐

0
0
1
−𝑙
0
𝑐

0
0
1
0
𝑙
−𝑐

0
0
1
𝑙
0
𝑐]
 
 
 
 
 

, (4.25) 

 

where 𝑙 and 𝑐 are the distance from a rotor to UAV geometric center and drag factor, respectively. 

What is more, �̅� = 𝑑𝑖𝑎𝑔(𝑹𝐵, 𝑸
−1, 𝑰𝑛𝑀), 𝑪(𝝃, �̇�) is the centrifugal and Coriolis matrix and 𝒈 is 

the gravitational vector, obtained from the following equations: 

 

𝑐𝑖𝑗 =∑
1

2
{
𝜕𝑀𝑘𝑗

𝜕𝜉𝑖
+
𝜕𝑀𝑘𝑖

𝜕𝜉𝑗
−
𝜕𝑀𝑖𝑗

𝜕𝜉𝑘
} �̇�𝑖,

𝑛𝜉

𝑖=1

 (4.26) 

 

𝒈(𝝃) =
𝜕𝒰

𝜕𝝃
, (4.27) 

 

where 𝑀𝑖𝑗 is the element on the 𝑖 − 𝑡ℎ row and 𝑗 − 𝑡ℎ column of 𝑴. In the next section, LQR 

scheme is employed to design the input to simultaneously control the UAV and its robotic 

manipulator. 
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4.3 LQR control of a MUAV 

For the LQR controller design, in the first step, an infinite horizon quadratic cost function is 

considered [170]: 

 

𝐽(𝒖) = ∫ (𝒙𝑇𝑸𝐿𝑄𝑅𝒙 + 𝒖
𝑇𝑹𝐿𝑄𝑅𝒖)𝑑𝑡

∞

0

, (4.28) 

 

where 𝒙 = [𝝃𝑻 �̇�𝑻]𝑇, 𝑸𝐿𝑄𝑅 ∈ ℝ
(12+2∗𝑛𝑀)×(12+2∗𝑛𝑀) and 𝑹𝐿𝑄𝑅 ∈ ℝ

(4+𝑛𝑀)×(4+𝑛𝑀) are positive 

definite weight matrices to penalize the deviation from the reference trajectory and the magnitude 

of the control signal, respectively. In order to minimize the above cost function, one can select a 

state feedback law of the form: 

 

𝒖 = −𝑲𝑳𝑸𝑹(𝒙 − 𝒙
∗) + 𝒖∗, (4.29) 

 

in which 𝒙∗ is the desired setpoint. In that manner, the optimal gain 𝑲𝑳𝑸𝑹 is obtained from: 

 

𝑲𝑳𝑸𝑹 = 𝑹𝐿𝑄𝑅
−1 𝑩𝑇𝑷, (4.30) 

 

and 𝑷 in turn is obtained from the following algebraic Riccati equation [170]: 

 

𝑨𝑇𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−1𝑩𝑇𝑷+ 𝑸𝐿𝑄𝑅 = 𝟎. (4.31) 

 

where 𝑨 and 𝑩 are linear state and input matrices, respectively. The positive definite matrices 

𝑸𝐿𝑄𝑅 and 𝑹𝐿𝑄𝑅 can be chosen to be diagonal. In that case, increasing the entries of 𝑸𝐿𝑄𝑅 results 

in heavy penalizing of the deviation of the states from the reference trajectory. Therefore, the 

states tend to rapidly converge to their desired values, albeit with high control input [170]. 

Similarly, if one increases the entries of 𝑹𝐿𝑄𝑅, the magnitude of the control signal will be heavily 
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penalized and the control gains will be small. Given control input with relatively small magnitude, 

the convergence of states to their desired setpoint occurs in a longer time interval which will 

result in slower system response. Therefore, proper tuning of the weight matrices should result in 

timely convergence of the system states to their desired values, while not requiring excessively 

large control input. Finally, finite (non–zero) steady state error is an expected shortcoming in the 

performance of the proposed approach.  In order to remedy that drawback, one may add an 

integral action to the LQR scheme. In [109], it was shown that LQR scheme along with an 

integral action outperforms the above scheme in that it can effectively control a UAV and its 

endowed manipulator and also successfully remove the steady state error. Consequently, a LQR 

control scheme with an integral action is adopted in this work. Finally, it is important to note a 

shortcoming of LQR controller in that it performs well when the MUAV initially begin from 

conditions close to its operational trim point. However, if the MUAV is expected to start from 

arbitrarily large deviations from its trim point, or if the MUAV is to compensate for real–world 

conditions e.g. windy environment, one should consider nonlinear MUAV control design which 

can better accommodate such scenarios. In the next section, UKF–based MUAV state estimation 

is discussed. 

 

4.4 UKF state estimation of a MUAV 

Kalman filter is probably the most popular scheme in state estimation [153]. Although the original 

formulation of Kalman filter was developed for linear systems, it is straightforward to extend it to 

nonlinear systems. The extended Kalman filter can be applied to nonlinear systems as it linearizes 

the dynamic model (also the measurement model) about the best estimate of the current mean and 

covariance. It has been shown that EKF performs considerably well in many cases but its 

performance degrades for highly nonlinear and coupled systems. Unscented Kalman Filter is a 

relatively new technique to address the shortcomings of EKF. In UKF, a deterministic sampling 

technique i.e. unscented transform is utilized to generate a minimal set of sample points from the 

state priori mean and covariance. These sampled points, also known as sigma points, are then 

propagated through the nonlinear process model and posterior mean and covariance are 

numerically recovered [153], [173]. To that end, discretized dynamic equations of a MUAV and 

the measurement model can be written in compact form as: 
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𝒙𝑘 = 𝒇(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘, (4.32) 

 

𝒚𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘, (4.33) 

 

where 𝒚 is the measurement vector, and 𝒘𝑘 and 𝒗𝑘 are process and measurement noise with zero 

mean Gaussian distribution and covariance 𝑸𝑘
∗  and 𝑹𝑘

∗ , respectively. It is worthy to note that in 

our problem, the measurement vector consists of 𝒑𝐵,  𝚽𝐵, and 𝒒 and therefore 

𝑯 ∈ ℝ(6+𝑛𝑀)×(12+2∗𝑛𝑀) is a constant matrix. However, in the general case, the measurement 

model can be nonlinear as well. In the following, the General UKF–based state estimation 

algorithm along with a computationally–efficient variant, known as Spherical UKF, is presented. 

 

4.4.1 MUAV general UKF state estimation 

The general unscented Kalman filter for a quadcopter UAV state estimation was discussed in 

detail in Section 3.4.2. A similar procedure was carried out for GUKF–based MUAV state 

estimation, summarized in the following algorithm. 

 

GUKF Algorithm    

1. Generate the sigma points 𝝌𝑘−1|𝑘−1
𝑖  and propagate them through 

�̂�𝑘|𝑘−1
𝑖 = 𝒇(𝝌𝑘−1|𝑘−1

𝑖 , 𝒖𝑘−1). 

 

2. Predict state estimate 𝒙𝑘|𝑘−1 and the estimation error covariance 𝑷𝑘|𝑘−1 

 

3. Generate new sigma points 𝝌𝑘|𝑘−1
𝑖 , �̂�𝑘

𝑖  and �̂�𝑘  

 

4. Propagate covariance matrices 𝑷𝑘
𝑦

 and 𝑷𝑘
𝑥𝑦

 and Kalman gain matrix 𝑲𝑘 

 

5. Update state measurement �̂�𝑘|𝑘 and covariance matrix 𝑷𝑘|𝑘 
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While the GUKF–based state estimation along with the LQR scheme can successfully control a 

MUAV, its computation complexity can potentially become a bottleneck in actual onboard 

implementation for autonomous MUAV flight. Therefore, in the next subsection, a 

computationally efficient variant, Spherical UKF, is presented. 

 

4.4.2 MUAV scaled spherical UKF state estimation 

In the current literature, there are two main approaches to improve computational requirements of 

the GUKF, namely the Simplex UKF (SiUKF) and Spherical UKF (SUKF) [111], [171]. The 

underlying principle of these methods is that a reduction in number of sigma points reduces 

computational load of UKF algorithm. To that end, the minimum number of sigma points that 

provide estimation accuracy in the order of GUKF is found to be 𝑛 + 2 [193], [194]. However, 

the particular weight allocation procedure in SiUKF can rapidly lead to numerical instability as 

dimension of the states increases. For MUAV applications, in particular, SiUKF was implemented 

and it was observed that the algorithm fails for state estimation purposes. The SUKF offers a 

possible solution to the above shortcoming as it rearranges the sigma points and introduces a 

much more even weight allocation procedure that provides improved numerical stability [194], 

[195]. The Spherical sigma points are found using the following algorithm. 

 

SSUKF Algorithm 1 

1. Choose the weight 𝑊0 ∈ [0, 1). The first weight only affects the sigma points fourth and 

higher–order moments [152], [193]. 

 

2. The remaining weights are computed from: 

 

𝑊𝑖 =
1 −𝑊0

𝑛 + 1
,         𝑖 = 1,⋯ , 𝑛 + 1 (4.34) 

 

It is important to note that the above weight allocation procedure results in identical weights, 

except for 𝑊0, and therefore effectively avoids numerical instability of SiUKF algorithm. 
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3. Initialize the following 𝛼 vectors: 

 

{
 
 

 
 𝛼1

(0) = 0,

𝛼1
(1) =

−1

√2𝑊1

,

𝛼1
(2) =

1

√2𝑊1

.

 (4.35) 

 

4. Expand each 𝛼(𝑖) vector, 𝑖 = 0,⋯ , 𝑛 + 1, recursively with the following steps for 

𝑗 = 2,⋯ , 𝑛: 

𝛼𝑗
(𝑖) =

{
 
 
 
 

 
 
 
 [𝛼𝑗−1

(0)

0
] ,                   𝑖 = 0

[

𝛼𝑗−1
(𝑖)

−1

√𝑗(𝑗 + 1)𝑊1

] ,        𝑖 = 1,⋯ , 𝑗

[

𝟎𝑗−1
𝑗

√𝑗(𝑗 + 1)𝑊1

] ,          𝑖 = 𝑗 + 1

 (4.36) 

 

where in the above equation 𝟎𝑗−1 ∈ ℝ
(𝑗−1)×1 is a vector containing 𝑗 − 1 zeros. 

 

5. Having obtained 𝛼(𝑖) vectors recursively, the sigma points are determined by: 

 

𝝌𝑘−1|𝑘−1
𝑖 = �̂�𝑘−1|𝑘−1 + (√𝑷𝑘−1|𝑘−1)

𝑖

. 𝛼(𝑖)  𝑖 = 0,⋯ , 𝑛 + 1. (4.37) 

 

The sigma points obtained from the above algorithm are propagated through the process model 

given in (20). Also, a similar procedure is repeated to obtain 𝝌𝑘|𝑘−1
𝑖  which, in turn, will be used in 
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the measurement model given in (24). It is also important to note that the particular choice of 

𝑊0 = 0 in Algorithm 1 can reduce the number of sigma points to 𝑛 + 1, while only affecting 

fourth and higher–order moments of the estimation. 

The above algorithm has been shown to provide accurate state estimation for systems with 

relatively simple dynamics, e.g. induction motors [111]. However, for systems with attitude angle 

estimation its performance is questionable. Due to the periodic nature, attitude angles do not 

belong to vector space and this, in turn, leads to problems in sigma point generation. To overcome 

this drawback, one can employ Scaled Spherical UKF (SSUKF) by scaling the sigma points using 

the following algorithm. 

SSUKF Algorithm 2 

1. Scale the sigma points by modifying step 5 of Algorithm 1: 

 

𝝌𝑘−1|𝑘−1
𝑖 = �̂�𝑘−1|𝑘−1 + 𝛾 (√𝑷𝑘−1|𝑘−1)

𝑖

. 𝛼(𝑖), (4.38) 

 

where 10−4 ≤ 𝛾 ≤ 1 is the scaling factor. Note that for 𝛾 = 1, SSUKF simplifies to SUKF given 

in SSUKF Algorithm 1. 

 

2. Update the weights 𝑊𝑖 for calculating the mean: 

 

𝑊𝑖
𝑚 =

{
 

 
𝑊0 − 1

𝛾2
+ 1               𝑖 = 0

𝑊𝑖

𝛾2
                           𝑖 ≠ 0

 (4.39) 

 

3. Update the weights 𝑊𝑖 for calculating the covariance: 
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𝑊𝑖
𝑐 =

{
 

 
𝑊0 − 1

𝛾2
+ 2 + 𝛽 − 𝛾2           𝑖 = 0

𝑊𝑖

𝛾2
                                         𝑖 ≠ 0

 (4.40) 

 

where 𝛽 is a parameter to reduce higher order effects and 𝛽 = 2 is optimal for Gaussian 

distribution considered in this work. A final note is that the function given in Algorithm 3 should 

be used in computing angular distance in mean and covariance computation [196]. 

 

 

SSUKF Algorithm 3 (Computation of angular distance) 

Considering two angles −𝜋 ≤ 𝜃𝑖 , 𝜃𝑗 ≤ 𝜋, the angular distance 𝑑𝑖𝑗 from 𝜃𝑖 to 𝜃𝑗  is computed as: 

 

1. 𝑑𝑖𝑗 = 𝜃𝑗 − 𝜃𝑖 . 

 

2. If 𝑑𝑖𝑗 > 𝜋, then modify step 1 as 𝑑𝑖𝑗 = 𝜃𝑗 − 𝜃𝑖 − 2𝜋. 

 

3. If 𝑑𝑖𝑗 < −𝜋, then modify step 1 as 𝑑𝑖𝑗 = 𝜃𝑗 − 𝜃𝑖 + 2𝜋. 

 

With the above modification, the GUKF and SSUKF algorithms can be applied to state estimation 

problem in MUAV applications.   

 

4.4.3 MUAV low–pass filter state estimation 

In order to provide a baseline for comparison purposes, a Low Pass Filter (LPF) is designed to 

provide MUAV state estimation based on camera pose estimation and encoder data. Here, an 

Infinite Impulse Response (IIR) LPF of the following form is adopted: 
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�̂�𝑘 =∑Π𝑘�̂�𝑛−𝑘 +∑Υ𝑘𝒚𝑛−𝑘

𝑁

𝑘=0

𝑀

𝑘=1

 (4.41) 

 

where the weight elements are shown as 𝚷 = Π1, Π2, ⋯ , Π𝑀 and 𝚼 = Υ0, Υ1, ⋯ , Υ𝑁 in compact 

form. Also, �̂�𝑘 ∈ ℝ
𝑛𝜉×1 consists of the first eight elements of �̂� = [�̂�𝑻 �̂̇�𝑻]

𝑇
in the 𝑘 − 𝑡ℎ step 

and 𝒚 denotes the actual measurements. It is trivial to see that 𝜫 in the first term of Eq. 4.41 

signifies the weight of best estimations (in 𝑀 previous steps) whereas 𝚼 signifies the weight of 

actual measurements (in the current and 𝑁 previous steps). Finally, �̂̇� is obtained from discrete–

time difference of �̂� in consecutive time steps. 

In the next section, a case study will be developed to evaluate the performance of LPF–based, 

GUKF–based and SSUKF–based state estimation algorithms along with optimal control scheme 

to control a MUAV. 

 

4.5 Case study, simulation results and discussion 

In this section, a MUAV consisting of a quadcopter equipped with a 2–DoF Revolute–Revolute 

robotic manipulator, confined to 𝑋𝐵 − 𝑍𝐵 plane of ℱ𝐵, with the characteristics given in Table 4.1, 

is considered. The LQR design process was carried out in MATLAB where 𝑸𝐿𝑄𝑅 was initialized 

as 0.05𝑰12 ∈ ℝ
16×16 and the following entries were tuned for satisfactory control performance. 

 

𝑄𝐿𝑄𝑅(𝑖, 𝑗) = 5                    for 𝑖 = 𝑗 = 1,2.  

 

Also, 𝑹𝑳𝑸𝑹 weight matrix was initialized as 0.01 × 𝑰4 and the entries associated with joint 

angles were tuned by trial and error: 

 

𝑅𝐿𝑄𝑅(𝑖, 𝑗) = 1                    for 𝑖 = 𝑗 = 5,6.  

 

Having obtained the 𝑷 matrix from the solution of the ARE equation, the optimal gain matrix 

𝑲𝑳𝑸𝑹 (and thus the optimal control law) was obtained. 
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Table 4.1 Characteristics of MUAV case study (partially from [42]) 

Parameter Value Unit 

UAV mass 4.34 kg 

UAV moments of inertia 
diag (

0.0820,
0.0845
0.1377

) 
Kg.m

2
 

Distance from a motor to UAV geom. center 0.33 m 

Link(s) mass 0.20 kg 

Link(s) length 0.20 m 

 

Here, the links are assumed to be identical and servo–driven, see Fig. 2.1 as an example of a 

robotic manipulator developed for aerial manipulation applications at Robotics, Mechatronics and 

Automation Laboratory (RMAL) of Ryerson University. What is more, the process noise 

covariance is assumed to be a constant diagonal matrix given by: 

 

{
𝑄∗(𝑖, 𝑗) = 10−5                            for 𝑖 = 𝑗 = 9,10,11;

𝑄∗(𝑖, 𝑗) = 10−6              for 𝑖 = 𝑗 = 12,13,14,15,16;
0                                                                      elsewhere;

  

 

where 𝑄∗(𝑖, 𝑗) is the 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ column of 𝑸∗. Also, the measurement noise covariance is 

given by: 

 

{
 
 

 
 
𝑅∗(𝑖, 𝑗) = 10−3                        for 𝑖 = 𝑗 = 1,2,

𝑅∗(𝑖, 𝑗) = 2 × 10−3                     for 𝑖 = 𝑗 = 3,

𝑅∗(𝑖, 𝑗) = 10−3                      for 𝑖 = 𝑗 = 4,5,6

𝑅∗(𝑖, 𝑗) = 10−4                        for 𝑖 = 𝑗 = 7,8,
0                                                          elsewhere.

  

 

Regarding the measurement noise covariance, similar to the previous chapter, the values for 

translational elements are conservatively associated with RTK–GPS accuracies of 1–2 cm and 2–

4 cm in horizontal and vertical measurements, respectively [183]–[185]. Also, measurement noise 
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covariance of rotational element conservatively assumes angle measurements with a few degrees 

accuracy, reasonably complying with commercial attitude and heading reference systems [186]–

[188]. Similarly, measurement of robotic manipulator joint angles conservatively complies with 

subdegree–level measurement accuracy. Finally, MUAV initial conditions and the reference 

signal were considered as [0.5 m −0.5 m 1 m 0 deg 0 deg 5 deg 0 55 deg 01×8]
𝑇 

and [01×2 2 m 01×4 90 deg 01×8]
𝑇, respectively.  For the described case study, 

simulations were carried out and results are shown in Figs. 4.2–4.7 and Table 4.2 and Table 4.3. 
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Fig. 4.2 GUKF–based state estimation error of a case study MUAV 

 

 

Fig. 4.3 GUKF–based control of a case study MUAV  
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Fig. 4.4 SSUKF–based state estimation error of a case study MUAV 

 

 
Fig. 4.5 SSUKF–based control of a case study MUAV 
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Fig. 4.6 LPF–based state estimation error of a case study MUAV 

 

 
Fig. 4.7 LPF–based control of a case study MUAV 

 

 

 

 

 

0 5 10 15
-0.1

0

0.1

time (t)

e
X
 (

m
)

0 5 10 15
-0.1

0

0.1

time (t)

e
Y
 (

m
)

0 5 10 15
-0.2

0

0.2

time (t)

e
Z
  
(m

)

0 5 10 15
-5

0

5

time (t)

e
q

1
  
(d

e
g

)

0 5 10 15
-10

0

10

time (t)

e

 (

d
e
g

)

0 5 10 15
-5

0

5

time (t)

e

 (

d
e
g

)

0 5 10 15
-5

0

5

time (t)

e


 (
d

e
g

)

0 5 10 15
-10

0

10

time (t)

e
q

2
  
(d

e
g

)

0 5 10 15
-1

0

1

time (t)

X
 (

m
)

 

 

Sensor data LPF estimate System state

0 5 10 15
-1

0

1

time (t)

Y
 (

m
)

0 5 10 15
0

2

4

time (t)

Z
 (

m
)

0 5 10 15
-10

0

10

time (t)


 (

d
e
g

)

0 5 10 15
-20

0

20

time (t)


 (

d
e
g

)

0 5 10 15
-10

0

10

time (t)


 (

d
e
g

)

0 5 10 15
-10

0

10

time (t)

q
1
 (

d
e
g

)

0 5 10 15

60

80

100

time (t)

q
2
 (

d
e
g

)



  95 

 

 

Table 4.2 Estimation error mean and standard deviation 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.3 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

Table 4.3 RMSE of translational and rotational degrees of freedom 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

GUKF 11.0 13.0 22.6 0.8 1.3 1.2 0.8 6.1 

SSUKF 11.0 13.1 22.6 0.9 1.6 1.4 1.0 6.1 

LPF 12.2 13.7 22.9 1.6 2.0 3.2 1.3 6.4 

 

From Fig. 4.2–4.7, it can be readily seen that GUKF–based, SSUKF–based and LPF–based 

approaches along with LQR control successfully accomplish simultaneous control of the 

quadcopter and its robotic manipulator. In general, from Table 4.2 and Table 4.3, it can be seen 

that GUKF–based approach marginally outperforms SSUKF–based approach in estimation 

accuracy and overall control performance and LPF–based approach is the least accurate in both 

estimation and control performance. More specifically, estimation of MUAV position vector i.e. 

𝑋, 𝑌, 𝑍 has been achieved with sub–centimeter level accuracy in both GUKF and SSUKF 

whereas LPF results in 2–3 times less accurate estimation. Similarly, for the attitude angles, 

GUKF and SSUKF result in estimation accuracy of 0.2 degree whereas LPF offers accuracies 

close to 1 degree. Similar pattern is observed in manipulator joints angles where UKF–based 

algorithms result in 0.1 degree and 0.2 degree mean estimation error for 𝑞1 and 𝑞2 whereas LPF 

results in a few times less accurate estimations. From the overall control performance 

perspective, in translational 𝑋, 𝑌, 𝑍 channels, GUKF and SSUKF performance are comparable. 

For LPF, while overall performance in 𝑍 channel is slightly worse than UKF–based approaches, 

meaningful degradation in 𝑋 and 𝑌 channels control is observed. In particular, the largest 
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degradation occurs in 𝑋 channel as it is most negatively affected by cumulative effect of 

imperfect control of the UAV and also less–accurate robotic manipulator control, as presented in 

Table 4.3. For the attitude angles, GUKF performance is slightly better than that of SSUKF, 

while LPF is again the least accurate. In particular, from Fig. 4.7, it can be seen that LPF 

performance is questionable in 𝜓 channel where RMSE metric is more than 3 degrees. This is 

mainly attributed to the estimation accuracy of 0.8 degree, approximately 4 times worse than 

UKF–based approaches. For the manipulator control, GUKF outperforms SSUKF, and the latter 

outperforms LPF, in terms of overall control performance. It is concluded that for scenarios with 

low noise level, GUKF and SSUKF result in accurate and comparable estimation and overall 

control performance metrics, whereas LPF results in stable, yet less accurate metrics. 

Next, performance of UKF–based approaches starting with a number of initial conditions is 

investigated. For that purpose, we define 10 initial conditions scenarios.  In the first 5 scenarios 

the attitude MUAV angles grow further from the hovering point whereas in the next five 

scenarios manipulator joint angles vary. More specifically, in the first 5 scenarios, attitude angles 

vary with 5–degree steps such that the initial conditions in the 5
th

 scenario are given by 

[0.5 m −0.5 m 1 m 25 deg 25 deg 30 deg 0 55 deg 01×8]
𝑇. Then, in the next 5 

scenarios, manipulator joint angles grow further from the setpoint in 5–degree steps such that in 

the 10
th

 scenario the initial conditions are given by 

[0.5 m −0.5 m 1 m 0 deg 0 deg 5 deg −25 deg 30 deg 01×8]
𝑇. For the 

described case studies, simulations were carried out and the obtained results are presented in 

Table 4.4–4.7. 
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Table 4.4 Estimation error mean and standard deviation in attitude–angle initial conditions 

scenarios 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

 

 

Scenario 

#1 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.3 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#2 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.3 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#3 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.2 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.4 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#4 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.2 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.3 0.2 0.3 

LPF Mean 1.4 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#5 

GUKF Mean 0.6 0.5 0.6 0.2 0.3 0.2 0.1 0.2 

STD 0.8 0.6 0.8 0.3 0.3 0.3 0.2 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.3 0.2 0.1 0.2 

STD 0.8 0.7 1.0 0.3 0.4 0.3 0.2 0.3 

LPF Mean 1.4 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.4 1.4 1.0 0.7 0.6 
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Table 4.5 RMSE metric in attitude–angle initial conditions scenarios 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

Scenario 

#1 

GUKF 11.9 14.6 22.6 1.1 1.5 2.1 0.9 6.5 

SSUKF 11.9 14.7 22.7 1.2 1.8 2.6 1.1 6.5 

LPF 13.2 15.1 23.2 1.8 2.3 3.3 1.4 6.6 

Scenario 

#2 

GUKF 12.9 16.5 22.8 1.5 1.9 3.2 1.0 6.9 

SSUKF 13.1 16.4 22.9 1.7 2.3 3.8 1.4 6.9 

LPF 14.4 16.5 23.6 2.1 2.6 3.8 1.4 6.9 

Scenario 

#3 

GUKF 13.8 19.2 23.0 2.1 2.5 4.4 1.2 7.4 

SSUKF 14.6 19.0 23.2 2.3 2.9 5.0 1.7 7.5 

LPF 15.5 19.0 24.2 2.4 3.0 4.5 1.8 7.8 

Scenario 

#4 

GUKF 14.9 23.5 23.4 2.8 3.1 5.8 1.5 7.8 

SSUKF 14.9 23.8 23.6 2.8 3.4 6.0 1.7 8.0 

LPF 16.5 24.9 24.8 2.8 3.5 6.8 1.8 8.2 

Scenario 

#5 

GUKF 16.2 30.0 23.9 3.8 3.9 7.5 1.8 8.3 

SSUKF 16.5 30.2 24.2 3.8 3.9 7.8 1.8 8.4 

LPF 17.3 32.0 25.5 4.1 4.0 8.5 1.9 8.8 

 

 

 

 

 

 

 

 

 

 

 

 

 



  99 

 

 

Table 4.6 Estimation error mean and standard deviation in joint–angle initial conditions 

scenarios 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

 

 

Scenario 

#6 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.6 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.3 1.3 1.9 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.5 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#7 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.2 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.3 0.3 

LPF Mean 1.3 1.3 2.0 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.8 1.3 1.4 1.0 0.7 0.6 

 

 

Scenario 

#8 

GUKF Mean 0.5 0.5 0.6 0.2 0.2 0.2 0.2 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.3 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.2 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.3 0.3 

LPF Mean 1.4 1.3 2.0 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.8 1.3 1.4 1.0 0.8 0.6 

 

 

Scenario 

#9 

GUKF Mean 0.5 0.5 0.6 0.2 0.3 0.2 0.2 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.3 0.3 

SSUKF Mean 0.6 0.6 0.9 0.3 0.3 0.2 0.2 0.2 

STD 0.7 0.7 1.1 0.3 0.3 0.3 0.3 0.3 

LPF Mean 1.4 1.3 2.0 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.7 1.3 1.4 1.0 0.8 0.6 

 

 

Scenario 

#10 

GUKF Mean 0.5 0.5 0.6 0.3 0.3 0.2 0.2 0.3 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.3 0.4 

SSUKF Mean 0.6 0.6 0.9 0.3 0.3 0.3 0.2 0.3 

STD 0.7 0.7 1.1 0.3 0.3 0.3 0.3 0.4 

LPF Mean 1.4 1.3 2.0 1.1 1.1 0.8 0.6 0.4 

STD 1.7 1.7 2.7 1.3 1.4 1.0 0.8 0.6 
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Table 4.7 RMSE metric in joint–angle initial conditions scenarios 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

Scenario 

#6 

GUKF 11.0 13.1 22.6 0.8 1.4 1.2 1.0 6.9 

SSUKF 11.0 13.1 22.6 0.9 1.6 1.4 1.2 6.9 

LPF 12.1 13.8 22.9 1.6 2.0 3.2 1.3 7.0 

Scenario 

#7 

GUKF 11.2 13.2 22.6 0.8 1.4 1.2 1.4 7.6 

SSUKF 11.2 13.4 22.6 0.9 1.6 1.4 1.6 7.5 

LPF 12.2 13.8 22.9 1.6 2.0 3.2 1.6 7.7 

Scenario 

#8 

GUKF 11.4 13.4 22.6 0.8 1.4 1.2 1.9 8.2 

SSUKF 11.5 13.7 22.6 0.9 1.7 1.5 2.0 8.0 

LPF 13.1 13.9 22.9 1.6 2.0 3.3 2.1 8.3 

Scenario 

#9 

GUKF 12.0 13.8 22.7 0.8 1.6 1.2 2.3 8.5 

SSUKF 12.2 14.3 22.6 0.9 1.8 1.8 2.4 8.5 

LPF 13.4 14.4 22.9 1.7 2.0 3.4 2.5 8.7 

Scenario 

#10 

GUKF 12.2 14.0 22.7 0.8 1.6 1.2 2.8 8.8 

SSUKF 12.4 14.7 22.6 1.0 1.8 1.9 3.0 9.2 

LPF 13.8 14.7 22.9 1.7 2.0 3.5 2.5 9.7 

 

For a wide range of initial conditions, it can be seen that both UKF–based algorithms and also 

the LPF–based algorithm provide accurate state estimation. More specifically, for varying initial 

attitude angles, subcentimeter and subdegree accuracy in translational and rotational channels is 

maintained over all 5 scenarios. Similarly, estimation accuracy in translational and rotational 

channels is well maintained for scenarios with variation in joint angles. Yet, as the difference 

between joint angles initial conditions and setpoint increase, it is observed that estimation 

accuracy worsens to some extent. For instance, in the last scenario (Scenario #10), estimation 

accuracy of GUKF and SSUKF algorithm has decreased by 0.1 degree in both joint angle 

channels. It is interesting to note that estimation accuracy of LPF–based algorithm has remained 

almost constant in all scenarios as the LPF–based approach does not explicitly rely on MUAV 

dynamics for state estimation and therefore is least disturbed by variations in initial conditions. 

From the control perspective, for scenarios with variation in attitude angle initial conditions, it is 
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observed that all translational, rotational, and also joint angle channels RMSE metric worsen 

consistently as the initial deviation from the setpoint increases. For scenarios with variation in 

joint angles initial conditions, translational and rotational channels experience moderate variation 

whereas more noticeable degradation in RMSE metric of rotational channels is observed. It is 

concluded that UKF–based algorithm and the LPF–based approach maintain their performance 

with marginal degradation for scenarios with various initial conditions of attitude angles and 

manipulator joint angles. Also, LQR–based controller was able to accomplish the setpoint 

tracking mission, albeit with increasing RMSE metric. 

It is also worthy to mention that algorithm execution time is an important element, especially for 

sample–based approaches such as UKF. The MATLAB–based simulations in this work were 

carried out on an Intel® Core™–i5 3.2 GHz processor based computer with 8.00 GB RAM. 

From Table 4.8, it can be readily seen that the average execution time for GUKF estimation is 

approximately 4.7 ms whereas SSUKF offers approximately 35% improvement, resulting in 3.1 

ms for state estimation in each time step. This considerable improvement in execution time is 

directly attributed to the reduced number of sigma points required in SSUKF, compared to 

GUKF. It is also important to note that both UKF–based algorithms result in approximately 2 

orders of magnitude longer execution time, compared to simple LPF algorithm. The noticeable 

advantage in execution time of LPF–based approach is related to the fact that it first obtains 

position, orientation and joint variables based on the sensory data and best estimates in current 

and previous steps and then uses first–order differentiation to obtain the associated derivatives. 

As such, the LPF–based approach completely discards the complex and coupled MUAV 

dynamic model, does not generate/propagate a finite number of sigma points, and also does not 

require computationally–expensive matrix operations (e.g. computation of matrix square root, 

covariance matrices, Kalman gain) in UKF–based approaches. Yet, the advantageous execution 

time of this approach, compared to UKF–based approaches, comes at the cost of less accurate 

state estimation and control, and sensitivity to increasing noise levels. 

  

Table 4.8 Execution time comparison of GUKF and SUKF schemes 

 
Average execution time per iteration (ms) 

GUKF 4.7 

SSUKF 3.1 

LPF 0.1 
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Sensitivity to increasing noise levels is also important consideration for real–life applications. In 

the next subsection, the effect of increasing noise level on UKF algorithms estimation and overall 

control performance is examined. 

 

4.5.1 Noise level scenarios 

Here, two noise level scenarios are defined to examine sensitivity of GUKF and SSUKF to 

increasing noise levels. In the first scenario, measurement noise covariance matrix is considered 

to be 2 times larger than the scenario in previous subsection whereas measurement noise 

covariance matrix in the second scenario is 3 times larger than its original value. For the 

mentioned scenarios, simulations were carried out and obtained results for the first noise level 

scenario are shown in Figs. 4.8–4.11 and Table 4.9 and Table 4.10. 
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Fig. 4.8 GUKF–based state estimation error of a case study MUAV in noise level scenario #1 

 

 

Fig. 4.9 GUKF–based control of a case study MUAV in noise level scenario #1 
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Fig. 4.10 SSUKF–based state estimation error of a case study MUAV in noise level scenario #1 

 

 
 

Fig. 4.11 SSUKF–based control of a case study MUAV in noise level scenario #1 
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Table 4.9 Estimation error mean and standard deviation in noise level scenario #1 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

GUKF Mean 0.8 0.8 1.1 0.3 0.3 0.3 0.2 0.3 

STD 1.0 1.0 1.4 0.4 0.4 0.4 0.3 0.4 

SSUKF Mean 0.8 0.8 1.0 0.4 0.3 0.4 0.4 0.4 

STD 1.0 1.0 1.4 0.5 0.4 0.5 0.5 0.5 

LPF N/A 
 

Table 4.10 RMSE metric in noise level scenario #1 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

GUKF 11.4 14.0 23.1 0.8 1.4 1.6 0.8 6.1 

SSUKF 11.3 16.5 23.1 0.8 1.4 2.3 0.9 6.1 

LPF N/A 

 

It is important to mention that LPF was found to be particularly sensitive to increased noise level 

and simulation results show that LPF fails to achieve meaningful control of the MUAV in this 

scenario. This complies with the observation that most MUAVs without efficient state estimation 

algorithms in the current literature either heavily depend on highly–precise motion capture 

system or employ sensor suites with various redundant sensors. Regarding our proposed UKF–

based algorithms, in accordance with Fig. 4.8 and Fig. 4.9, GUKF approach can still successfully 

control the MUAV, in spite of increased noise level. However, comparing metrics of Table 4.9 

and Table 4.10 to those in the previous subsection, it can be readily seen that the estimation 

errors and overall control performance have degraded to some extent. More specifically, 

estimation errors of translation channels i.e. 𝑋, 𝑌, 𝑍 have worsened to be close to 1 cm, along 

with minor degradation in attitude angles estimation. Similarly, estimation of the manipulator 

angles has worsened, leading to minor degradation of overall control performance in manipulator 

control. Based on the obtained data, it is concluded that GUKF–based approach has degraded 

gracefully in increased noise level Scenario #1. Compared to GUKF, simulation results show 

that estimation and control degradation is more important in the SSUKF–based approach. In 
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particular, while the estimation errors in translational channels are similar to those in GUKF 

approach, the overall control performance in 𝑌 channel has degraded approximately 18%. Also, 

for the attitude angle 𝜓, both estimation and overall control performance are noticeably 

degraded, compared to GUKF. Most importantly, from Fig. 4.10, it can be observed that 

estimation of manipulator first angle 𝑞1 has led to a recurring behaviour where periodic 

estimation error persists over simulation time. While the amplitude of this periodic behaviour is 

relatively small, as reflected in marginal degradation in overall control performance in  𝑞1 

channel, it indicates that SSUKF is more severely affected by increasing noise levels. This will 

be more prominent in the next scenario where even larger noise levels, 5 times greater than the 

original values, are considered. For such a scenario, simulation results are presented in Fig. 4.12 

and Fig. 4.13, along with Table 4.11 and Table 4.12. 
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Fig. 4.12 GUKF–based state estimation error of a case study MUAV in noise level scenario #2 

 

 
Fig. 4.13 GUKF–based control of a case study MUAV in noise level scenario #2 
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Table 4.11 Estimation error mean and standard deviation in noise level scenario #2 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

GUKF Mean 1.0 1.1 0.9 0.5 0.4 0.4 0.2 0.2 

STD 1.2 1.3 1.2 0.7 0.5 0.4 0.2 0.3 

SSUKF N/A 

LPF N/A 
 

Table 4.12 RMSE metric in noise level scenario #2 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

GUKF 11.4 15.1 23.2 1.1 1.5 1.7 0.7 6.2 

SSUKF N/A 

LPF N/A 

 

Similar to noise Scenario #1, LPF fails to properly control the MUAV in Scenario #2 as well. 

This was expected as increased noise levels lead to inaccurate results from LPF which will 

further worsen with excessive noise levels. What is more, SSUKF also fail to achieve stable 

control of the MUAV in noise Scenario #2. This was also expected as poor estimation in attitude 

angles and also recurring behaviour in state estimation of manipulator angles was already 

observed in the previous scenario with lower noise level. In this scenario, increasing the noise 

level has resulted in even less accurate state estimation which has eventually led to lack of 

MUAV stable control. Unlike SSUKF, it is observed that GUKF–based approach undergoes 

graceful degradation in this scenario as well. In particular, the estimation of the translational 

channels 𝑋, 𝑌, 𝑍 has worsened to about 1 cm wheras attitude angle estimations are worsened to 

about 1 degree. Combined with relatively accurate manipulator angles of 0.2 degrees, the overall 

control performance has degraded gracefully as well, yet preventing complete loss of MUAV 

control. It is important to note that relatively small oscillation have begun to occur in 

manipulator angle estimation, suggesting that further increase of noise level will result in total 

loss of MUAV control in GUKF as well. It is concluded that LPF is the most sensitive to 

increasing noise levels, whereas SSUKF performs well to some extent and results in control loss 
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for larger noise levels. GUKF–based approach was found to be the least sensitive to noise levels 

as its performance degrades gracefully even for noise levels several times larger than the original 

values. Excessively increasing the noise levels will eventually degrade GUKF performance to 

the extent where inevitable control loss is experienced. 

In the next subsection, another important scenario for MUAV real–life applications, i.e., total 

sensory loss, is studied. 

 

4.5.2 Total loss of sensory data 

Here, a scenario where all sensory data are lost over a period of time is introduced. In order to 

study the performance of UKF–based algorithms in terms of estimation and overall control 

performance, it is assumed that no sensory data is available for a 2.5 s period. For that scenario, 

simulations were carried out and obtained results are shown in Fig. 4.14–4.17, Table 4.13 and 

Table 4.14. 
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Fig. 4.14 GUKF–based state estimation error of a case study MUAV in loss of sensory data 

scenario 

 

 
Fig. 4.15 GUKF–based control of a case study MUAV in loss of sensory data scenario 
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Fig. 4.16 SSUKF–based state estimation error of a case study MUAV in loss of sensory data 

scenario 

 

 
Fig. 4.17 SSUKF–based control of a case study MUAV in loss of sensory data scenario 
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Table 4.13 Estimation error mean and standard deviation in loss of sensory data scenario 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

GUKF Mean 1.8 3.8 1.7 0.5 0.2 0.5 0.1 0.4 

STD 3.6 9.0 2.6 0.6 0.3 0.8 0.2 0.6 

SSUKF Mean 5.6 2.4 1.2 0.4 0.5 0.9 0.2 0.6 

STD 13.8 4.9 1.6 0.6 0.9 1.6 0.3 1.0 

LPF N/A 
 

Table 4.14 RMSE metric in loss of sensory data scenario 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

GUKF 11.8 19.7 23.1 2.8 1.7 2.2 0.9 6.5 

SSUKF 22.8 16.0 22.8 1.9 5.4 3.8 3.0 7.5 

LPF N/A 

 

From Figs. 4.14–4.17 it can be readily seen that no sensory data are available to remedy state 

estimation for a period of 2.5 s, beginning at time 6 s. During the mentioned period, state 

estimates begin to excessively diverge from the actual system states, resulting in increasing 

estimation errors observed in Fig. 4.14 and Fig. 4.16. The excessive errors in state estimation 

degrade the overall control performance. After the sensor outage period, sensory data becomes 

available and the objective of this simulation is to verify whether LPF and UKF–based 

approaches can regain reliable state estimation and control of the MUAV. Our simulation results 

show that basic LPF approach leads to complete loss of MUAV control in this scenario which 

conforms to the observation that current MUAV systems are equipped with redundant sensor 

suites to avoid MUAV control loss in case of sensory data outage. On the other hand, both UKF–

based approaches successfully retrieve proper estimation and control of the MUAV, albeit with 

different performance metrics. While GUKF generally outperforms SSUKF in most channels, its 

performance is strongly superior to SSUKF in 𝑋, 𝜃 and  

𝑞1 channels. From Table 4.13, in 𝑋 channel, GUKF state estimation error is better than 2 cm 
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whereas SSUKF results in more than 5 cm estimation error, with maximum estimation error 

reaching more than 70 cm. This can also be observed in overall control performance where 

RMSE of SSUKF is almost two times worse than GUKF. Similarly, in 𝜃 channel, SSUKF 

estimation error and overall control performance metrics are more than 2 times worse than 

GUKF. This is best shown in Fig. 4.17 where SSUKF results in large–amplitude oscillation 

before retrieving proper control of 𝜃 channel. Finally for  

𝑞1 channel, GUKF and SSUKF result in mean estimation errors of 0.1 and 0.2 degrees, 

respectively. The increase in estimation error is proportionally extended to overall control 

performance where SSUKF results in relatively large oscillations reaching approximately 15 

degrees after sensory data becomes available. 

In general, it is concluded that unlike LPF, UKF–based approaches are much less sensitive to 

sensory data loss and can retrieve MUAV control even in scenarios with full sensor outage for 

time periods as long as 2.5 s. Also, simulation results show that GUKF outperforms SSUKF in 

most channels, both in terms of estimation accuracy and overall control performance. Finally, in 

the next subsection, the performance of our proposed approaches in a trajectory tracking scenario 

is investigated. 

 

4.5.3 Trajectory tracking scenario 

In this section, a helix trajectory tracking scenario is developed. For that purpose, MUAV initial 

conditions are assumed to be identical to those in the previous subsections, 

i.e. [0.5 m −0.5 m 1 m 0 deg 0 deg 5 deg 0 55 deg 01×8]
𝑇 and the reference 

helical trajectory is defined by 𝑋𝐻 = cos(0.3𝜋𝑡) ,    𝑌𝐻 = sin(0.3𝜋𝑡) ,    𝑍𝐻 = 2 + 0.1𝑡. For the 

described case study, simulations were carried out and results are shown in Figs. 4.18–4.26 and 

Table 4.15 and Table 4.16. 
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Fig. 4.18 GUKF–based state estimation error in helical trajectory tracking scenario 

 

 

Fig. 4.19 GUKF–based MUAV control in helical trajectory tracking scenario 
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Fig. 4.20 GUKF–based MUAV helical trajectory tracking scenario 

 

 

Fig. 4.21 SSUKF–based state estimation error in helical trajectory tracking scenario 
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Fig. 4.22 SSUKF–based MUAV control in helical trajectory tracking scenario 

 

 

Fig. 4.23 SSUKF–based MUAV helical trajectory tracking scenario 
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Fig. 4.24 LPF–based state estimation error in helical trajectory tracking scenario 

 

 

Fig. 4.25 LPF–based MUAV control in helical trajectory tracking scenario 
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Fig. 4.26 LPF–based MUAV helical trajectory tracking scenario 

 

Table 4.15 Estimation error mean and standard deviation in helical trajectory tracking scenario 

 eX 

(cm) 
eY 

(cm) 
eZ 

(cm) 
eφ 

(deg) 
eθ 

(deg) 
eψ 

(deg) 
eq1 

(deg) 
eq2 

(deg) 

GUKF Mean 0.6 0.5 0.6 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.6 0.7 0.3 0.3 0.3 0.1 0.2 

SSUKF Mean 0.6 0.6 0.8 0.2 0.2 0.2 0.1 0.2 

STD 0.7 0.7 1.0 0.3 0.3 0.2 0.2 0.3 

LPF Mean 1.6 1.6 2.0 1.1 1.1 0.8 0.6 0.4 

STD 2.0 2.0 2.6 1.3 1.4 1.0 0.8 0.7 

 

Table 4.16 RMSE metric in helical trajectory tracking scenario 

 RMSEX 

(cm) 
RMSEY 

(cm) 
RMSEZ 

(cm) 
RMSEφ 

(deg) 
RMSEθ 

(deg) 
RMSEψ 

(deg) 
RMSEq1 

(deg) 
RMSEq2 

(deg) 

GUKF 11.6 16.5 23.7 4.2 3.7 1.3 0.8 6.5 

SSUKF 12.8 16.9 23.7 4.2 3.8 1.5 0.9 6.5 

LPF 15.5 17.0 25.3 4.7 4.4 5.1 1.6 7.0 
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The obtained results show that both GUKF and SSUKF well maintain their estimation accuracy 

in the helical trajectory tracking scenario. It can also be observed that LPF estimation accuracy 

degrades more noticeably, in particular in 𝑋 and 𝑌 channels. Regarding the overall control 

performance, while both UKF–based algorithms and LPF–based approach have successfully 

tracked the helical trajectory, their performances vary. First of all, it can be observed that non–

zero error between MUAV trajectory, blue line in Fig. 4.20, 4.23 and 4.26, and the reference 

helix, black line in the aforementioned figures, persists in trajectory tracking of both UKF–based 

and LPF–based approaches. This is a well–known drawback of LQR and similar linear control 

approaches, e.g. PID control, and has been reported in the existing literature [192], [197], [198]. 

Yet, the overall RMSE metrics reported in Table 4.16 also depend on state estimation accuracy 

provided to feedback–based LQR control laws. In particular, accurate state estimation of GUKF 

algorithm has resulted in more accurate trajectory tracking, compared to SSUKF, as reported in 

Table 4.16. Less accurate state estimation of LPF–based approach has in turn resulted in large 

RMSE metrics, compared to UKF–based algorithms, in translational, rotational and also joint 

angle channels. It is concluded that our proposed UKF–based approaches maintain accurate state 

estimation and, along with LQR control laws, can successfully accomplish a trajectory tracking 

scenario. 

 

4.6 Summary 

Two state estimation schemes, i.e. General Unscented Kalman Filter and Scaled Spherical 

Unscented Kalman Filter, were formulated for manipulating unmanned aerial vehicles. A basic 

LPF approach was also formulated to serve as a basis for comparison purposes. It was shown that 

both UKF–based algorithms and LPF–based approach, along with LQR controller, can 

successfully accomplish a setpoint tracking scenario starting from various initial conditions. What 

is more, in scenarios with low noise level, obtained results show that SSUKF performance is 

comparable to GUKF while LPF provides mediocre estimation and overall control performance. 

Increasing the noise level, LPF soon fails to properly control the MUAV while UKF–based 

approaches result in degraded estimation and control performance, without abrupt control loss. 

Compared to SSUKF, GUKF was found to perform better for moderate increase in noise level and 

also experiences graceful degradation in scenarios with large noise level, where SSUKF fails to 

maintain stable MUAV control. Finally, for scenarios with total sensory data loss, LPF fails to 
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maintain MUAV control where GUKF again outperforms SSUKF in terms of estimation and 

overall control performance. For a helical trajectory tracking scenario, both UKF–based 

algorithms outperformed LPF–based approach in terms of estimation and overall control 

performance where, in general, GUKF resulted in more accurate results compared to SSUKF–

based algorithm. However, given that SSUKF outperformed GUKF in terms of execution time, 

the ultimate choice for MUAV state estimation algorithm should be based on required estimation 

and overall control performance, while also recognizing the computational requirements of each 

algorithm. 
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Chapter 5 Summary and Conclusions 

5.1 Summary 

This dissertation was mainly focused on state estimation and control of manipulating unmanned 

aerial vehicles.  

In Chapter 2, a comprehensive literature survey on MUAVs including physical subsystems, 

sensory configurations, missions and operational scenarios, dynamic modelling, estimation and 

control problems was presented. 

 In Chapter 3, a framework was presented where effects of robotic manipulator on UAV 

dynamics was modelled as additive process noise with unknown noise statistics. For that 

purpose, dynamic equations of motion of a quadcopter were presented and LQR control laws 

were designed to achieve stable flight. Formulating extended and unscented Kalman filters (EKF 

and UKF, respectively), it was shown that both algorithms result in accurate estimation and 

overall control of a quadcopter starting from various initial conditions. Given poor performance 

of EKF and UKF algorithms for systems with uncertain process/measurement noise statistics, 

adaptive extended and unscented Kalman filters (AEKF and AUKF, respectively) were 

formulated for UAV state estimation. Based on covariance–matching recursive AEKF and 

AUKF formulation along with LQR control laws, UAV state estimation and control with 

uncertain process and measurement noise statistics in various covariance mismatch scenarios 

was achieved. 

 In order to improve the performance of previous approach and achieve simultaneous control of a 

UAV and its robotic manipulator, full dynamic model of a MUAV was presented in Chapter 4. 

For a MUAV consisting of a quadcopter and a 2–DoF robotic manipulator, Euler–Lagrange 

formulation was used to obtain MUAV dynamic equations of motion. Then, a general unscented 

Kalman filter (GUKF) was formulated to achieve MUAV state estimation along with LQR 

control laws, starting from various initial conditions. Given computational complexity of GUKF, 

a scaled spherical transform was considered to improve execution time based on reduced number 

of sigma points, compared to GUKF. To that end, a scaled spherical unscented Kalman filter 

(SSUKF) was formulated to achieve mean estimation error and overall control performance 
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comparable to GUKF, albeit with reduced execution time. Sensitivity of both algorithms in 

scenarios with increased noise levels and periods of total loss of sensory data, and also a 

trajectory tracking scenario were studied. 

 

5.2 Conclusions 

The main conclusions of this dissertation are: 

 

1. It was shown that EKF and UKF both result in accurate state estimation of a 

quadcopter UAV with subcentimeter mean estimation error in translational 

channels and subdegree mean estimation error in rotational channels. In general, it 

was found that UKF outperforms EKF in mean estimation error and overall 

control performance. Yet, EKF offers an order–of–magnitude improvement in 

execution time, compared to UKF. Therefore, the ultimate selection of state 

estimation algorithm for a quadcopter UAV is a compromise between the required 

estimation and control performance metrics and available onboard computational 

resources. 

2. For a quadcopter with uncertain noise statistics, it was shown that EKF and UKF 

result in excessively large estimation errors and very poor control performance. 

Covariance–matching adaptive filtering was used to improve conventional 

Kalman filters for a UAV with uncertain process and measurement noise 

statistics. It was shown AEKF and AUKF result in accurate estimation and overall 

control of a quadcopter with uncertain process and measurement noise statistics. 

Both adaptive filters failed as simultaneous mismatch in process and measurement 

noise increased to several orders of magnitude. In general, AUKF performance 

was found to be better than AEKF both in estimation and overall control.  

3. General UKF was found to be a practical solution for MUAV state estimation. It 

was shown that subcentimeter estimation of translational channels and subdegree 

estimation of rotational channels of a MUAV with noisy sensory data was 

achievable. A modified UKF algorithm based on scaled transform was formulated 

to achieve performance comparable with GUKF, yet at approximately 35% 
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improvement in execution time. In cases of increasing noise level, GUKF was 

found to be less sensitive as it degraded gracefully in various noise scenarios. 

Both algorithms were found to be able to retrieve MUAV control after a period of 

total sensory data loss. Again, GUKF was found to outperform SSUKF in such 

scenarios, in terms of estimation error and overall control performance. Finally, 

GUKF was found to outperform SSUKF in a trajectory tracking scenario as well. 

 

5.3 Contributions 

The novel contributions of this dissertation can be summarized as: 

 

1. Extended and Unscented Kalman filters were investigated for state estimation and 

control of a quadcopter autonomous flight. It was shown that UKF–based approach, 

in general, outperforms EKF in estimation and control of a quadcopter. For scenarios 

with uncertain noise statistics, it was shown that performance of conventional Kalman 

filters degrades severely, or in extreme cases, abrupt loss of UAV control occurs. For 

such scenarios, recursive covariance–matching adaptive Extended and Unscented 

Kalman filters were formulated for the first time for state estimation and control of a 

quadcopter autonomous flight. It was shown that AEKF and AUKF can achieve 

accurate UAV state estimation and control in scenarios with uncertain process and 

measurement noise statistics. 

2. For a MUAV consisting of a quadcopter and a 2–DoF robotic manipulator, it was 

shown for the first time that UKF–based algorithms can effectively be used to provide 

accurate state estimation of a MUAV. LQR control based on the estimated states was 

found to result in satisfactory control of the MUAV starting from various initial 

conditions. 

3. For the described MUAV case study, it was shown that GUKF–based state estimation 

and its computationally–efficient counterpart, i.e. SSUKF, can be carried out in real–

time in MATLAB with an Intel® Core™–i5 3.2 GHz processor based computer with 

8.00 GB RAM. SSUKF was found to outperform GUKF by approximately 35% in 

terms of execution time. 
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4. Sensitivity of UKF–based approaches (GUKF and SSUKF) to various noise levels 

and total loss of sensory data for MUAV state estimation and control was investigated 

for the first time. It was shown that GUKF degraded gracefully in such scenarios 

whereas SSUKF was more sensitive to noise levels and sensory data outage. Also, it 

as shown that both GUKF and SSUKF state estimation, along with LQR, can be used 

for trajectory tracking scenarios, where GUKF was found to outperform SSUKF–

based results. 
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5.4 Recommendations for Future work 

The research presented in this dissertation has the potential to be extended in the 

following aspects: 

I. The UKF–based state estimation algorithms in Chapter 3 rely on GPS and attitude 

heading and reference system for sensory information. One possible improvement is 

to equip the quadcopter with an onboard camera which, in turn, will provide position 

and orientation angles sensory information and can be used as the only required 

onboard sensor for autonomous quadcopter missions.  

II. The adaptive state estimation algorithm in Chapter 3 can be readily extended to 

MUAVs with state estimation and control schemes described in Chapter 4. This will 

enable autonomous operation of a MUAV even with uncertainties in process and/or 

measurement noise statistics, where even state of the art non–adaptive UKF–based 

algorithms lead to abrupt loss of MUAV control. 

III. The MUAV dynamic model in Chapter 4 does not take vibration/noise caused by 

propellers and manipulator servos into account. Explicitly formulating the mentioned 

effects in MUAV dynamic modelling will lead to more accurate representation of the 

systems. 

IV. The low–level state estimation and control algorithms in Chapter 4 can be 

implemented along with a high–level path planning scheme to provide autonomous 

operation of a MUAV. This will enable more sophisticated missions where a MUAV 

is required to navigate through known/unknown environment to localize objects of 

interest and then interact with them. 

V. The proposed state estimation algorithms in Chapter 4 can be readily augmented with 

other control techniques such as MPC, robust and/or adaptive control. This is 

promising because MUAV mission can be optimized to meet certain mission 

requirements, provide robustness to unmodelled dynamics, and adapt to certain 

changes in the dynamics and/or environment. 

VI. Wind effect in outdoor environment is expected to be an important source of 

disturbance to MUAVs. Two possible solutions are suggested. First, it is possible to 

measure wind speed by means of onboard sensors and augment it with MUAV 
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dynamic model. Second, it is also possible to formulate a parameter estimation 

problem to obtain an online estimation of wind speed based on available sensory 

information. 

VII. Inclusion of force feedback can open the door to investigate 6D force estimation 

techniques and hybrid force–position control for realizing compliant MUAV motions. 

VIII. Teleoperation issues have not been well studied in the context of MUAVs.  Issues in 

teleoperation (e.g., imperfect communication, time–varying delay and information 

losses) and design of robust controllers in such scenarios could be another interesting 

extension for this research. 

IX. This research has provided the necessary elements for autonomous operation of a 

MUAV in real–life scenarios, including uncertainties in MUAV dynamics and 

sensory measurements. Experimental validation of the proposed algorithms is a 

promising extension of this research as it will result in a MUAV that can operate 

solely based on its onboard sensory data.  
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