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A dynamic stiffness element for flexural vibration analysis of delaminated multilayer beams is developed and subsequently used to
investigate the natural frequencies and modes of two-layer beam configurations. Using the Euler-Bernoulli bending beam theory,
the governing differential equations are exploited and representative, frequency-dependent, field variables are chosen based on the
closed form solution to these equations. The boundary conditions are then imposed to formulate the dynamic stiffness matrix
(DSM), which relates harmonically varying loads to harmonically varying displacements at the beam ends. The bending vibration
of an illustrative example problem, characterized by delamination zone of variable length, is investigated. Two computer codes,
based on the conventional Finite Element Method (FEM) and the analytical solutions reported in the literature, are also developed
and used for comparison. The intact and defective beam natural frequencies and modes obtained from the proposed DSM method
are presented along with the FEM and analytical results and those available in the literature.

1. Introduction

Layered structures have seen greatly increased use in civil,
shipbuilding, mechanical, and aerospace structural applica-
tions in recent decades, primarily due to their many attractive
features, such as high specific stiffness, high specific strength,
good buckling resistance, and formability into complex
shapes, to name a few. The replacement of traditionally me-
tallic structural components with laminated composites has
resulted in new and unique design challenges. Metallic struc-
tures exhibit mainly isotropic material properties and failure
modes. By contrast, composite materials are anisotropic,
which can result in more complex failure modes. Delamina-
tion is a common failure mode in layered structures. It may
arise from loss of adhesion between two layers of the struc-
ture, from interlaminar stresses arising from geometric or
material discontinuities, or from mechanical loadings. The
presence of delamination may significantly reduce the stif-
fness and strength of the structures. A reduction in the stiff-
ness will affect the vibration characteristics of the structures,
such as the natural frequencies and mode shapes. Changes in
the natural frequency, as a direct result of the reduction of

stiffness, may lead to resonance if the reduced frequency is
close to an excitation frequency.

The dynamic modeling of flexible delaminated multi-
layer beams has been a topic of interest for many researchers.
With the increase in use of laminated composite structures,
the requirement for accurate delamination models has also
grown. The earliest delamination models, formulated in the
1980s [1], dealt with the vibration of two-layer sandwich
beams, where layers were governed by the Euler-Bernoulli
bending beam theory. The upper and lower intact portions
of the delaminated segment were assumed to vibrate freely—
independent of each other; as a result, this model is known
as “free mode” delamination. It was later discovered that the
free mode underpredicted natural frequencies for off-mid-
plane delaminations due to unrestricted penetration of the
beams into each other. This was accounted for in 1988
[2] by constraining the transverse displacements of the
top and bottom beams to be equal. The resulting model,
known as the “constrained mode” delamination model, pre-
dicts vibration behaviour much more accurately for off-mid-
plane delamination. However, in modeling terms, the con-
strained mode is simply a limiting case of the free mode
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delamination model, from which it can be derived. Thus, in
the present study, the free mode delamination model will be
investigated, and the constrained mode delamination model
can be derived in the same manner as presented. It is also
worth noting that, in general, a laminated composite beam
may have orthotropic layerwise material properties, result-
ing in displacement coupling behaviour. The model used in
this study assumes an isotropic material and is not readi-
ly applicable to fibre-reinforced laminated composite beams,
as there would, in general, be a torsional and/or extensional
response coupled with flexural vibration [3–5]. While the
model used in this study assumes an isotropic materials
(i.e., no coupled response), the proposed technique could
be extended—keeping the delamination continuity condi-
tions—to include more realistic composite response.

The accuracy of dynamic analysis, and forced response
calculation, of a flexible structure depends greatly on the
reliability of the modal analysis method used and the result-
ing natural frequencies and modes. There are various nu-
merical, semianalytical, and analytical methods to extract
the natural frequencies of a system. The conventional Finite
Element Method (FEM) has a long well-established history
and is the most commonly used method for modal analysis.
The FEM is a general systematic approach to formulate the
constant element mass and stiffness matrices for a given sys-
tem and is easily adaptable to complex systems containing
variations in geometry or loading. Nonuniform geometry,
for example, is often modeled as a stepped, piecewise-uni-
form configuration. The conventional FEM formulation,
based on polynomial shape functions, leads to constant mass
and stiffness matrices and results in a linear eigenvalue prob-
lem from which the natural frequencies and modes of the
system can be readily extracted. Lee [6], amongst others, in-
vestigated the free vibration analysis of laminated beams with
delamination using a conventional FEM. Based on layerwise
theory, equations of motion were derived from Hamilton’s
principle, a Finite Element Method (FEM) was developed
to formulate the problem, and the effects of location, size,
and number of delaminations on vibration frequencies of
delaminated beams were investigated [6]. During the last
decade, sandwich and composite elements have been made
available in some commercial software packages and are used
to analyze the vibration of composite structures.

Alternatively, one can use semianalytical formulations,
such as the so-called Dynamic Finite Element (DFE) method
[7, 8], to carry out structural modal analysis. The hybrid DFE
formulation results in a more accurate prediction method
than traditional and FEM modeling techniques, allowing for
a reduced mesh size. The main principle of the DFE is the
Weighted Residual Integral formulation, providing a general
systematic modeling procedure. The word Dynamic in DFE
acronym refers to the frequency-dependent shape functions
used to express the displacements, which in turn lead to the
stiffness matrix of the system. The DFE technique follows the
same typical procedure as the FEM by formulating the ele-
ment equations discretized to a local domain, where element
stiffness matrices are constructed and then assembled into
a single global matrix. The application of the DFE to free

vibration analysis of a delaminated 2-layer beam has been
reported in an earlier work by the authors [9].

Analytical methods, namely the dynamic stiffness matrix
(DSM), have also been used for the vibrational analysis of
isotropic [10, 11], sandwich [12–14], and composite struc-
tural elements [15] and beamstructures [15, 16]. The DSM
approach makes use of the general closed-form solution to
the governing differential equations of motion of the system
to formulate a frequency-dependent stiffness matrix. The
DSM describes the free vibration of the system and exhibits
both inertia and stiffness properties of the syetem. Based on
this exact member theory, the DSM produces exact results
for simple structural elements, such as uniform beams, using
only one element [10, 11]. Banerjee and his coworkers [10–
16] have developed a number of DSM formulations for var-
ious beam configurations, where the root-finding technique
proposed by Wittrick-Williams (W-W) [17] was exploited to
determine the eigenvalues of the system. The DSM has also
been used by Wang et al. [18] to simulate a cracked beam.
Wang [19] also investigated the effects of a through-thick-
ness crack on the free vibration modes, aeroelastic flutter,
and divergence of a composite wing. Borneman et al. [20]
presented explicit expressions of a DSM for the coupled
composite beams, exhibiting both material and geometric
couplings. These expressions were consequently used to
develop a cracked DSM formulation, and the free vibration
of doubly coupled cracked composite beams was investigat-
ed. Given these considerations, the DSM method for a single
beam can be modified to accurately model delaminated mul-
tilayer beams. A DSM-based preliminary analysis of a two-
layer split beam has laso been presented in an earlier work by
the authors [21].

The aim of this paper is to present a DSM formulation for
the free vibration analysis of a delaminated two-layer beam,
using the free mode delamination model. The delamination
is represented by two intact beam segments; one for each
of the top and bottom sections of the delamination. The
delaminated region is bounded on either side by intact, full-
height beams. The beams transverse displacements are gov-
erned by the Euler-Bernoulli slender beam bending theory.
Shear deformation and rotary inertia, commonly associated
with Timoshenko beam theory, are neglected. For harmonic
oscillation, the governing equations are developed and used
as the basis for the DSM development. Continuities of forces,
moments, displacements, and slopes at the delamination tips
are enforced, leading to the DSM of the system. Assembly
of element DSM matrices and the application of boundary
conditions results in the nonlinear eigenvalue problem of
the defective system. In addition, two computer codes, based
on the conventional Finite Element Method (FEM) and the
analytical solutions reported in the literature [7, 8], taking
into account the same continuity conditions, are also devel-
oped and used as a benchmark for comparison. The FEM
model exploits cubic Hermite interpolation functions of ap-
proximation to express the flexural displacement functions,
that is, field variables and weighting functions [22, 23]. Both
DSM and FEM models are used to compute the natural fre-
quencies of an illustrative example problem characterized
by delamination zone of variable length. The frequency
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Figure 1: The coordinate system and notation for a delaminated
composite beam.
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Figure 2: The faces of the delamination remain planar after defor-
mation.

values are then compared with those from the literature. Cer-
tain modal characteristics of the system are also discussed.

2. Mathematical Model

Figure 1 shows the general coordinate system and notation
for a delaminated beam, with total length L, intact beam
segment lengths L1 and L4, delamination length a, and total
height H1. This model incorporates a general delamination,
which can include laminated composites or bilayered iso-
tropic materials, with different material and geometric prop-
erties above and below the delamination plane. Thus, the top
layer has thickness H2, Young’s modulus E2, density ρ2, cross-
sectional area A2, and second moment of area I2. The bottom
layer has corresponding properties, with subscript 3. The
delamination tips occur at stations x2 and x3, and torsion,
shear deformation, axial (warping effects and axial deforma-
tion), and out-of-plane delamination are ignored. Following
this notation, the general equation of motion for the ith
Euler-Bernoulli beam in free vibration is written as [8, 9]:

EIi
∂4wi

∂x4
+ ρiAi

∂2wi

∂t2
= 0, i = 1, . . . , 4. (1)

For harmonic oscillations, the transverse displacements can
be described in the frequency domain by using the trans-
formation

wi(t) =Wi sin(ωt), (2)

where ω is the circular frequency of excitation of the system,
Wi is the amplitude of the displacement wi, and subscript “i”
represents the beam segment number. By backsubstituting
(2) into (1), the equations of motion reduce to

EIi
∂4Wi

∂x4
− ρiAiω

2Wi = 0, i = 1, . . . , 4. (3)

The general solution to the 4th-order, homogeneous differ-
ential equation (3) can be written in the following form:

Wi(x) = Ai cos
(
λi
xi
Li

)
+ Bi sin

(
λi
xi
Li

)
+ Ci cosh

(
λi
xi
Li

)

+ Di sinh
(
λi
xi
Li

)
,

(4)

which represents the bending displacement Wi of beam seg-
ment “i,” Li is the beam segment length, and λi stands for
nondimensional frequency of oscillation, defined as:

λi
4 = ω2ρiAi

EIi
L4
i . (5)

Coefficients Ai, Bi, Ci, and Di (i = 1, . . . , 4) are evaluated
to satisfy the displacement continuity requirements of the
beam segments and the system boundary conditions. As
also observed and reported by several researchers [8, 9], the
inclusion of delamination into the beam model results in a
coupling between axial and transverse motion of the delami-
nated beam segments. This is primarily due to the continuity
requirements imposed on the delaminated beam endpoints
at the delamination tips. Since the delamination tip cross-
sections are assumed to remain planar after deformation, the
ends of the top and bottom beams must have the same rela-
tive axial location after deformation, preventing interlaminar
slip. Since the midplanes (assumed to be the neutral axes of
the beam segments) in the delaminated segments are located
at a distance from the midplanes of the intact segments, they
will not have the same axial deformation unless some in-
ternal axial force is imposed. This imposed axial force is fully
derived and discussed in [2], however, the final result will be
briefly presented here for completeness.

Consider a delamination tip after deformation. Accord-
ing to the numbering scheme in Figure 1, and since no exter-
nal axial load is applied, the top and bottom beam segments
must have equal and opposite internal axial forces, that is,
P3 = −P2, applied to prevent interlaminar slip (Figure 2),
where

P3 = Λ∗
[
W ′

1(x2)−W ′
4(x3)

]
. (6)

W ′
i is the slope of the ith beam segment, where “prime”

represents the differentiation with respect to the beam longi-
tudinal axis, x, and the parameter Λ∗ is defined as

Λ∗ = H1

2L2

(
EA2EA3

EA2 + EA3

)
, (7)
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which can be further simplified if the cross-sectional shape is
known. With explicit expressions (6) and (7) for the internal
axial force, continuity conditions for bending moment can
be derived as follows:

at stations x = x2, x3, continuity of bending moments
leads to

at x = x2 : M1(x2) =M2(x2) + M3(x2)− P2
H3

2
+ P3

H2

2
,

(8)

at x = x3 : M4(x3) =M2(x3) + M3(x3)− P2
H3

2
+ P3

H2

2
.

(9)

Using expression (8) and the previous conditions (6) and (7)
for internal axial force, and noting that from beam theory,
bending moments and shear forces in beam segment “i” are
related to displacements, Wi, through Mi = −EIiW ′′

i , and
Si = EIiW

′′′
i , respectively, one can write

EI1W
′′
1 (x2) = EI2W

′′
2 (x2) + EI3W

′′
3 (x2)

+ Λ
[
W ′

4(x3)−W ′
1(x2)

]
,

(10)

for x = x2, where

λ = H2
1

4L2

(
EA2EA3

EA2 + EA3

)
. (11)

Likewise, using (9) for x = x3, a similar relationship
can be derived. Two boundary conditions at the intact beam
ends, continuity of displacements and slopes, at the delam-
ination tips results in 12 equations. Along with an additional
four equations resulting from the continuity of bending
moments and shear forces at the delamination tips, the total
16 equations can be used to solve for the 16 unknowns,
Ai − Di for each beam, i = 1, . . . , 4, as appearing in
(4). This solution method, based on finding the coefficient
matrix of the system, herein refered to as the “Coefficients
Method (CM),” has been used to predict the vibration be-
havior of different systems of varying complexity (see, e.g.,
[7, 8]). However, it remains a relatively problem-specific
solution technique. Thus, in what follows, this technique is
reformulated into an equivalent, yet more readily and more
conveniently applicable DSM formulation.

Through continuity conditions, a coupling relationship
can be found within the delamination region to reduce
the total number of unknowns from eight (Ai − Di, i =
2, 3, for the top and bottom beams within the delaminated
region) to four. Of particular interest are the continuity con-
ditions for displacement and slope at the delamination tips,
from which a coupling between the coefficients for the top
beam and the bottom one can be derived. Stemming from
the requirement that the displacement and slope of each
beam, at the delamination tips, must be equal, the transverse

displacements of beam segments 2 and 3 can be linked
through the following relationship:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0
λ2

L2
0
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(12)

Similarly, using the continuity of shear forces and moments
across the delamination tips, and the beam theory relation-
ships, the shear force and bending moment response at the
delamination tips can be represented as a function of both
sets of coefficients, written as:

{F} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S(x2)

M(x2)

S(x3)

M(x3)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
= [B1]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A2

B2

C2

D2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ [B2]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A3

B3

C3

D3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (13)

where the Bi matrices are functions of the problem geometry
and continuity conditions, related to the coefficients using
beam theory relationships and (4). Using the relationships
given in expressions (12) and (13), the force vector can be
written as a function of one set of coefficients only (i.e.,
i = 2 or i = 3). Here, the choice was made to have the
top beam’s coefficients, A2 −D2, as the reference parameters.
Consequently, from expressions (12) and (13) one can write:

F = Ba, where a = [A2 B2 C2 D2]T , (14)

furthermore, from (4), the end displacements and slopes can
be related to coefficient vector, a, through the following ex-
pression:

u = Da, where u = [W2(x2)W ′
2(x2)W2(x3)W ′

2(x3)
]T
.

(15)

Finally, using expressions (14) and (15) leads to

F = BD−1u = Ku, (16)

where K = [K(ω)] is the frequency-dependent, dynamic
stiffness matrix of the system. The standard assembly process
similar to FEM leads to the nonlinear eigenvalue problem of
the system:

[
K(ω)

]{
U
}
= {0}, (17)
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Table 1: Natural frequencies λ2 of the delaminated beam, with a split occurring symmetrically about the midsection along the midplane [1];
DSM, CM, FD-FEM, and standard FEM models.

Delamination
Length a/Ltot

Present DSM Wang et al., as reported in
[8, Table 1]

Della and Shu [8] FEM [6]

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

Intact 22.39 61.67 22.39 61.67 22.37 61.67 22.36 61.61

0.1 22.37 60.80 22.37 60.76 22.37 60.76 22.36 60.74

0.2 22.36 55.99 22.35 55.97 22.36 55.97 22.35 55.95

0.3 22.24 49.00 22.23 49.00 22.24 49.00 22.23 48.97

0.4 21.83 43.89 21.83 43.87 21.83 43.87 21.82 43.86

0.5 20.89 41.52 20.88 41.45 20.89 41.45 20.88 41.50

0.6 19.30 41.03 19.29 40.93 19.30 40.93 19.28 41.01

where [K(ω)] is the overall (global) dynamic stiffness matrix,
and {U} represents the vector of defrees of freedom of
the system. The solution of the problem consists of finding
the eigenvalue, ω, and corresponding eigenvector, {U}, that
satisfy (17) and the boundary conditions imposed using,
for example, the penalty method [22]. Powerful algorithms
exist for solving a linear eigenvalue problem (i.e., system’s
natural frequencies), resulting from discrete or lumped mass
models. In the case of the nonlinear eigenproblem (17),
involving frequency-dependent dynamic stiffness matrices
arising from the DFE or DSM formulations, one can use
the Wittrick-Williams (W-W) root-finding technique [17] to
determine the eigenvalues of the system. The W-W algorithm
is a simple method of calculating the number of natural fre-
quencies of a system that are below a given trial frequency
value. The method exploits the bisection method and the
Sturm sequence properties of the dynamic stiffness matrix to
converge on any particular natural frequency of the system,
to any desired accuracy. This allows one to solve for any spe-
cific frequency number without having to solve for all pre-
vious frequencies, which is the requirement of some linear
eigenvalue solvers. Consequently, the corresponding modes
can be evaluated [10–17, 24].

3. Numerical Tests

Numerical checks were performed to confirm the predict-
ability, accuracy, and practical applicability of the proposed
DSM method. DSM and FEM formulations, as well as the
Coefficient Method (CM), were programmed in Matlab
codes. To solve the nonlinear eigenproblem (17) resulting
from DSM formulation, a determinant search method was
used; the nondimensional frequency was swept, searching a
particular frequency, ω, which would make the determinant
of the global dynamic stiffness matrix zero, |K(ω)| = 0,
whose corresponding eigenvector, {U}, represented the de-
grees of freedom of the mode shape associated with the nat-
ural frequency. The linear eigenvalue problem resulting from
the conventional FEM formulation, was solved using Matlab
“eig” function. The use of the nondimensional frequency (5)
in the calculations removed material dependencies from the
system, provided that the material was isotropic, or at least
orthotropic with principal axes aligned with the Cartesian
coordinate system in Figure 1.

In what follows, an illustrative example of fixed-fixed, ho-
mogeneous, 2-layer delaminated beam is examined. The na-
tural frequencies of the system with a central split, about the
midsection (L1 = L4), of various lengths up to 60% of the
span (0 ≤ a/L ≤ 0.6), occurring symmetrically along the
midplane of the beam and surrounded by intact beam seg-
ments, are considered. This split beam configuration has also
been presented and studied in [1, 2, 8, 9]. The DSM was
used to compute the natural frequencies and mode shapes
of various delamination cases. As the benchmarks for com-
parison, the results from references [1, 8] —and reference [2]
for the constrained mode—were used to validate the solution
method presented here. As also suggested in [1], the first
few frequencies were computed for a delamination length of
0.0002 L and showed negligible discrepancies from those of
a solid intact beam to check for numerical instability when
the split length becomes extremely small. The effect of the
longitudinal motion of the upper and lower parts of the
split region on the frequencies, examined in [1], has been
neglected here for this class of example problems.

Table 1 summarizes the DSM results for the first two na-
tural frequencies of the system. The DSM results are com-
pared to those presented by Wang et al. [1] and Della and
Shu [8] and Erdelyi and Hashemi [9]. The DSM model in-
corporates a total of only three elements; one intact element
on each end of the delamination representing the undam-
aged beam segments (1 and 4) obtained using the methods
outlined in [25, 26], and one fully delaminated element
(Figure 1). The DSM natural frequencies are in excellent
agreement with those reported in references [1, 7], with a
maximum difference of 0.24% (see the last row in Table 1),
which could be simply attributed to the extensive use of ma-
trix manipulations in both DSM and CM methods (the re-
sults obtained from the CM-based code developed by the au-
thors [23] are not reported here, as they were found to be in
perfect match with tabulated frequency data and graphs re-
ported in the literature). It is also worth noting that the au-
thors found a slight dissimilarity between the 2nd natural
frequency values (61.67, 60.76, 55.97, 49.00, 43.87, 41.45,
40.93, resp.) reported in Table 1 of [1] and the same data
appearing in 5th column of Table 1 of [8], cited and reported
from [1] (see the 5th column of Table 1). Conventional FEM
natural frequencies obtained based on layerwise theory, as
reported by Lee [6], are also presented for comparison (last
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Table 2: Natural frequencies λ2 of the split beam; DSM, FD-FEM, and standard FEM models.

Delamination
Length a/Ltot

Present DSM FEM; 6 elements FEM; 10 elements Layerwise FEM [6]

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

Intact 22.39 61.67 — — — — 22.36 61.61

0.5 20.89 41.52 20.89 41.57 20.89 41.55 20.88 41.50

0.6 19.30 41.03 19.29 41.08 19.29 41.04 19.28 41.01
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Figure 3: The first two natural modes for a 2-layered beam with centrally located midplane delamination, compared with those of the intact
configuration. (Element totals are based on 1 element each for the outer intact segments, and equal element divisions for the top and bottom
delaminated beam segments. Delamination tips and beam endpoints are visualized.), (a): 1st mode shapes, (b): 2nd mode shapes.

two columns in Table 1). Excellent agreement was found
between the DSM and the FEM results.

A split beam FEM, exploiting cubic Hermite [22] inter-
polation functions, was also developed [23]. The weighted
residual method is applied on the differential equations (3),
governing the free vibration of 2-layer delaminated beams.
The residual was made orthogonal to a virtual displacement
over the domain of the element, and two integrations by
parts were carried out to reduce the continuity requirements
of displacement functions. The principle of virtual work was
used to determine the element system equations. As pre-
sented earlier, the differential stretching of the top and bot-
tom layers should be present to keep the delamination faces
planar after deformation (i.e., no interlaminar slip at the
delamination faces). The FEM formulation results in an
additional stiffness term not present if interlaminar slip
were included. This “delamination stiffness” has the effect
of stiffening the system at the delamination tips (for more
information on the split beam FEM, the reader may refer
to [23]). Table 2 summarizes the first two natural frequen-
cies obtained using the developed (cubic Hermite-type)
Finite Element Model (FEM), with 6- and 10-element dis-
cretizations of midplane delaminated region (60% of span).
The intact beam segments were modeled using single-beam

elements. As can be seen from Table 2, the FEM frequen-
cies exhibit a convergence towards the DSM results, as the
number of elements is increased. Conventional FEM natu-
ral frequencies reported by Lee [6] are also presented for
reference.

Figure 3 shows the first two natural modes of the 2-layer-
ed beam, with 60% of span midplane delamination, com-
pared with those of an intact configuration. It is worth noting
that the conventional FEM-based models are characterized
by constant mass and stiffness matrices of limited number
of total degrees of freedom (DOF), that is, number of nodes
times number of DOF per node. Accordingly, the natural
modes obtained from the conventional FEM model—being
the eigenmodes of the governing linear eigenvalue pro-
blem—have the same dimension as the total degrees of
freedom of the FEM model. Unlike the conventional FEM
(e.g., 4-DOF Hermite beam element), the DSM and frequen-
cy-dependent FEM matrices are formulated based on
continuous element assumptions, which introduces infinite
number of degrees of freedom within each element (see, e.g.,
[11–17, 25, 26]). Therefore, through the use of these tech-
niques, additional modes of vibration can be found. These
modes are the result of the denominator of the global
stiffness matrix going to zero, and correspondingly the deter-
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Figure 4: The inadmissible mode: interpenetration of equi-thick-
ness top and bottom beams. While mathematically possible, this
situation would not be encountered in practical applications; 60%
of span, midplane delamination.
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Figure 5: The first opening mode for a delaminated beam with top
beam thickness equal to 40% the height of the intact beam; 60% of
span, off-midplane delamination.

minant of the global stiffness matrix approaching infinity,
|K(ω)| → ∞. Also known as the poles of a system, they can
represent real physical mode shapes, describing the structure
vibrating at zero nodal displacements [18, 25] outside of the
delaminated region. Through simplification, it was found
that the denominator of the stiffness matrix, in this case, has
the following form:

DEN = cos(λ2) cosh(λ2)− 1. (18)

While the mode shapes of the poles were not analytically
important in this analysis, their corresponding natural
frequencies are important when using more advanced root
solving techniques [18, 25]. Zero-nodal-displacement modes
have also been observed and reported in the literature for
other structural configurations (see, e.g., [18, 24–26]). There
are also certain frequencies captured through the system
modal analysis whose mode shapes, while mathematically
possible, do not represent physically admissible displace-
ments. These modes—for example a second mode (λ = 31.0)
in the case of present study—are simply the result of the free
model assumptions [5]. They correspond to interpenetration
of the beams, as illustrated in Figure 4, and would not be
present in a constrained mode analysis. As seen in Figure 4,
the vibration of the top and bottom delaminated beams
would be inadmissible due to non-linear phenomena such as
contact, which cannot be modeled in the frequency domain.
Similar inadmissible partial and complete interpenetration
modes have also been reported in the literature [27]. In ad-
dition to real natural modes of vibration, poles and inadmis-
sible interpenetration modes examined above, under small
vibration amplitudes a split layered beam may exhibit a
mode at a frequency corresponding to a delamination-open-
ing mode. Figure 5 shows the first opening mode for a dela-
minated beam with top beam thickness equal to 40% the
height of the intact beam, 60% of span, off-midplane dela-
mination, obtained using 3-element DSM and FEM models
(FEM nodes visualized). Similar opening modes have also
been reported in the literature (see, e.g., [7, 8]).

4. Conclusion

Based on the “exact” dynamic stiffness matrix (DSM) formu-
lation, a new element for the free vibration analysis of a
delaminated layered beam has been developed using the
free mode delamination model. The DSM element exploits
the closed form solution to the governing equation of the
system and is “exact” within the limitations of the theory.
For homogeneous beams with a central, midplane delamina-
tion, a 6-element model of the delaminated system provides
excellent agreement with those models presented in the lit-
erature. A conventional finite element model was also briefly
discussed. System natural modes, pole behaviour and open-
ing modes for both midplane and off-midplane delamina-
tions were also examined and illustrated.
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