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Control of the Metal Rolling Process: A
Multidimensional System Approach

S. Foda
Department of Electrical Engineering
Ryerson Polytechnical Institute
350 Victoria Street, Toronto
Canada M5B 2K3

Abstract

The metal-ring procem Is modelled as a de-
lay differential system with noncommensrate delays.
Stability conditions for delay differential sstem have

been recently developed using asymptotic stabilty
tests and the Lyapunov approach. These results are

applied to the stability analysis and stabilization of
the metal roIlbng process. Conditions on the gains

of finite dimensional controllen such as proportional
plus derivative controllers are developed to ensure

the stability of the controlled process against delay
variations.

Keywords: Metal rolling, mipass processes, delay
differential systems, multidiensional system.
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field of real numbers
rings of polynomials in (zi, z.,) with
coefficients in R
quotient field of Rlzl,.. ,
openleft half plane {( E C I R4sJ1 < 0}
open right haf plane { E C Re[a] > 0}
jw-is {8 EC I Re[81 =0}
closed right half plane D u R
open unit polydisc
{(zi, . - ., ZM) E C'm zsil < 1, i =1,..,m}
closed unit polydisc
{(zi I...Iz) r=CM [ 141 < I, *=1..m}
distinguished boundary of 0J
{((zi,**,-z,CzI)C Izil i1...,m}
n x n unity matrix
n x n zero matrix
direct sum of matrices
transPose of matrix A
conjugate transpose of matrix A

1 Introduction
Metal rolling is a common plastic working technique in
which deformation takes place between two rolls with
parallel axes revolving in opposite directions as shown
in Fig. 1. In practice, the stock is passed through a
series of rolls for successive reductions which requires
more investment in equipment [1]. A more economical
practice is to use a single two high stand; a process often
called 'cogging' 121.
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In this paper, the cogging process is considered as
a multipass process. Multipass processes represent a
class of dynamical systems that operate in repetitive
cycles. Each cycle of operation is called a pass and the
interaction between the outputs generated during suc-
cessive cycles of operation is called pass interaction. Ex-
amples of such processes, besides the metal rolling, are
metal cutting processes, binary distillation colimns, liq-
uid/liquid heat exchangers, automatic ploughing, vehi-
cle convoys, and the standard multipass process 'vertically-
steered longwall cool-cutting machine' [3,4,5]. The ap-
proach taken in this paper is so general to be applicable
to any of the above mentioned processes as well.

The stability of multipass processes has been a-
amined by Edwards [2] where the multipass process is
converted into an infinite-length single-pass process de-
scribed by a functional differential equation and then
the standard inverse-Nyquist stability criteria is applied.
This approach has been examined by Owens [6,7] who
showed that it neglects disturbances at the beginning
of each pass. Therefore, it is natural to introduce pass
delay and to discuss the stability of multipass processes
using multidimensional system stability theory. In two
more recent publications Boland and Owens [8] and Ed-
wards and Owens [5] showed that for discretized mul-
tipass procese two-dimensional (2-D) bounded-input
bounded-output (BEBO) stability is equivalent to what
is known as the stability along the pass [2]. An analo-
gous result for differential multipass processes has been
presented in Foda and Agathoklis [9]. In [10] the coeffi-
cient assignment for 2-D discrete systems has been ap-
plied to design a tracking controller for the metal rolling
process.

Differential multipass processes have been recently
studied using delay differential sytem modeLs [11]. An-
alytic tests for asymptotic stability and stability in-
dependent of delay (i.o.d.) for delay differential sys-
tems are available [12,13,14]. Also, sufficient conditions
for the stability of delay differential systems using the
Lyapunov approach have been developed by Agathok-
lis and Foda [15,9]. These stability results are used to
determine the constraints on the gains of the finite di-
mensional controllers such as proportional plus deriva-
tive (PD) controllers in order that the controlled metal
rolling process would be stable against delay variations.
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The paper is organised as follows. The next section
contains background material and results pertinent to
delay differential and multipass systems. In Section 3,
the metal rolling is modelled as a delay differential sys-
tem with two noncommensurate delays, namely the pass
delay and the gauge sensor measurement delay. In Sec-
tion 4, the stability of the metal rolling process is con-
sidered. Proportional plus derivative (PD) controllers
are desiged for the controlled metal rolling proces us-
ing the asymptotic stability i.o.d. criteria for delay dif-
ferential systems. It is shown that this criteria, which
is stronger than the asymptotic stability criteria for de-
lay differential sytems, is more appropriate, taking into
consideration the nature of the delays involved. Discus-
sion and some concluding remarks follow in Section 6.

2 Delay Differential System
In this setion, delay differential system models and
their stability are discussed. Our interest in this type of
multidimensional systems is derived from the fact that
the metal rolling proces discussed in the next setion
is a differential multipass process [11,i,71 and such pro-
cesses can be modeled via delay differential equation.

An autonomous delay differential system with m
noncommensurate delays is represented by a functional
differntial equation of the form

d=O=OOh_ 1a=0

+ +Y(t) = 0 (1)
where hi,,. . ,.,h are the noncommensurnte delays. De-
lays h1 ..., h. are called- noncommensurte if there a-
ist no integers ,.. I,l& ( not all of them sero) such
that =1 4l hB = 0. Eq. (1) is called comensurat if
m = 1.

The characteristic polynomial associated with this
delay differential system would be a multivariate of the
form

c(s,+C1"n*t.. ;£Ajl,. i

C .il 1 =

(2)

Letting -la ia,i=C l,..,m,i.e. zis a left shift
operator of duration hs, the characteristic polYnomial
would be

e(S,zi, ... 8%5=4J+1+

i=O j1=0 M=O

An autonomous delay differential system of the com-
mensurate type can be modelled via the followi 2-D
state space model [11,16]

Ei(t+Ih) 1 [Al A2 xA(t) (4)
i2 I [A3 A4 x2(t)J ()

where xi E R"l denotes the delay state vector, xz E
t' denotes the differential state vector, and h denotes
the pass delay for a differential multipas process. The
characteristic polynomial of this 2-D state space model
is defined as

LIn, - zA1 -zA,c(s,z) det -As sI,-.-A 1
(5)

whichcn be written in in the form of (3). This 2-D
state space model realizes both neutral (c,,j, $ 0, for
some j E [1, nil) and retarded (C.,sj = 0, V iE ji, ni])
delay differential systms.

Also, a delay differential system with m noncommen-
surate delays may be modelled by the following gener-
alized linear sstem model 117,181

D(zi. ..z,) i:(t) = A(zi, ... . z.) z(t) + (6)
B(Zj',. I ATM) '0)

where A,D E rX¶'zi .z. andB E Jrxrlzz, Z..,]
;i, i= 1, ,maredelayoperatorsofdurationh, i=
1,m. Note that R[zl,...,z,.] is a commutative ring m
general and for m = 1, i.e. the com nsura case, it
is also a principal ideal domain (p.i.d).

Definition 1 [19] A matrix D(z1,.... ,z.)
E MRxz, . .¢, 1z.is atomic at zero if D(O) is nonsin-
gular over R.

Atomicity at eo ialws for D in this paper.
Let OU be the cloed polydiak Or = {((XI,.. , X.) E
C"tI 1Z4< 1 + 6, i= I.s .,tm}, then formal stability of
D is defined as folows:
Dofinition 2 [17] D(zxl..., z,,) is caled formaly sta-
ble if detID(S, ... Iz.J $0 for al (Za, *z.,) C Or
for some 8>0.
Remark: If D is atomic at er ad formally stable,
then it is invertible over 0 and Eq. (7) becomes

X{t) = F(z,,-. za.) z(t) + G(z,,...,z,4 u(t) (7)
where F = D-1A and G = D-B are in general over
R(xj,...,z,).

The stabiity of delay differential sytems has been
studied via the investigation of the zero sets of the char-
actristic polynomial 112,13,14j and using 1-D fequency
dependent Lyapunov equations. Also, m-D constant
parameter Lyapunov equations of a special form, that
combines both known forms of the Lyapunov equation,
have been recently derived 115,20] for the stability analy-
sis of delay differential systems. First let h = max hs, i =
1,...,m and let B denote theBanach space of contin-
uous functions from [-h,01 into R equipped with the
sup norm

[104) = sup1.*_1 It(c)V for any 0 E B (8)

Also let ug E B denote the function segment defined by

yt ( yf)=y(t + ar), a I[- h,0]
Consider the autonomous delay differential stem

given by Eq. (1) which is usually considered with the
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initial condition

yo(t) = b(t), t E [-h,01, where i6 E B

Definition 3 [21] The delay differential system (1) is
said to be asymptotically stable if 3 M,'y > 0 such
that for each 4 E B the solution y(t) of (1) with yo =-
satisfies

(9)

and is said to be asymptotically stable indepen-
dent of delay (i.o.d.) if (9) holds for all h, > 0, i =
l ..,.IM

The following theorem states the necessary and suffi-
cient conditions for the asymptotic stability of (1).

Theorem 1 [22] The delay differential system described
by Eq. (1) is asymptotically stable if and only if

C(s,Chit .. , C') $ 0, Re a > 0, (10)

and asymptotically stable independent of delay (i.o.d.)
if andonly if (10) holds V h > 0,i =1,...,m.

Corollary 1 The delay differential system (7) is asymp-
totically stable

det[sI - F(e- hL,.,c-shi] $ 0 , Vs E 0, (11)

and asymptotically stable independent of delay (i.o.d.)
if and only if (11) holds V h, >0, i= 1,...,m.

The following theorem provides an analytic test for i.o.d.
asymptotic stability.

Theorem 2 [12] The delay differential system (1) is
i.o.d. asymptotically stable if and only if

(i) c(8,1) $ 0, s fE 5 (12)
(11) c(a,-1) 0O, a ER, (as $0) (13)

(iii) (1 +,9T)"l c(,s
1 - T a

09 8 E R, V T >q14)

A stronger notion of stabillty for delay differential sys-
tems called pointwise asymptotic stability has been de-
fined using the characteristic multivariate C(J, z11...X)
as follows.
Definition 4 123924] A delay differential system with
characteristic polynomial c(as,zl,...,z.,) is said to be
pointwise asymptotically stable if and only if

c(s,zi,...,z,.) $ 0, V (s,z1,...,z,,C)ED x Om(15)

Therefore the delay differential system described by Eq.
(7) is pointwise asymptotically stable ff and only if

det[sI-F(zi, ... Xzj)] ¢ °0

V(a,Z1 *... zI) EC XU' (16)

The stability of the 2-D state space model (4) has been
studied via a constant parameter 2-D Lyapunov Equa-
tion as follows [15,20]. Let W = WI S1W2 and Q be
positive definite symmetric (p.d.s.) matrices over R.
Then the proposed 2-D Lyapunov equation for delay
differential systems is

ATWO.1 + W0'1A + ATWIOA - W1'0 = -Q (17)

where W1oAWieOo,f, Wo.1dAo,e W2, and A
A1 A2
As A4J

It is clear that this proposed Lyapunov equation
combines known discrete and continuous forms of the
known Lyapunov equations. The following theorem gives
a sufficient 2-D stability condition using this proposed
Lyapunov equation.

Theorem 3 [15] The delay differential system (4) is
pointwise asymptotically stable if there exist p.d.s. ma-
tries W7, W2, and Q such that the 2-D Lyapunov equa-
tion (17) is satisfied where W = WI E W2 and A is as
given before.

3 The Metal Rolling Process
In this section the metal rolling process is described and
modelled as a delay differential system of the noncom-
mensurate type. Fig. 2 depicts the physical diagram of

the metal rolling process. The dynamics of this process
are given by [5].

- 1/M r k.a A 1

yo() -p+22eup + 72 y[- a yd(t) + , y (t)J
+,> y,(t) (18)

where p denotes the differentiation operator d/dt,
y0(t) is the actual roll-gap thickness,
yi(t) is the thickness of the incoming metal strip,
yd(t) is the desired value of motor deflection from the
unstressed position,
M is the lumped mass of the roll-gap adjusting mecha-
nism,
A1 is the stiffness of the adjusting mechanism spring,
A2 is the hardness of the metal strip,
A = A1A2/(A1+A2) isthe composite stiffness of the metal
strip and the roll mechanism,
wo = [(ka + A)/M]10, e = k./(2w0M) are the angular
natural frequency and the damping ratio of the local
servo,
and k., k6 are the proportional and derivative gains of
the servo controller.

The work strip can be passed back and forth through
a reversing stand (cf. Fig. 3) which requires extra power
[1]. Therefore, it is assumed that the strip is passed
repeatedly through a non-reversing single stand where
the roll-gap is reduced for each pass, a process often
called 'cogging' [2]. Nonetheless, this process is slow
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and ha a variable pass delay since the stock is usually
passed over the top of rolls.

The thickness of the icoming strip can be related to
the actual roll-gap thickness by the foHowing interpas
equation

wh(t) = y4(t - hi) (19)

where the delay ht1 denotes the pas delay and it may be
related to L, the length of the metal strip which varies
from pass to pass. Eq. (19) will be referred to as the
pass interaction equation.

The gauge thickness is usually controlled via a pro-
portional feedback control of the form

y4(t) = -tlk w(t) -y,(t - h2)] (20)
where k. is the loop gain and y,(t) is the adjustable
reference setting for the desired strip thickness. The
delay h2 is the output sensor masurement delay which
is given by h2 = X/v(t) where, as shown in Fig. 3,
X is the distance between the roll-gap and the output
sensor and v(t) is the velocity of the metal strip which
may also vary from pas to pas. Hence, the controlled
metal rolling process is described by the delay differn-
tial equations (19-20) and

ud(t) = 1/M [-el k y(t) + e2 a(t)p +2Cw.p+w (ct P 2i()
+Cs m(t) (21)

when cjA/A, csAc 23a&nd csAA/A .From
Eq. (21)

(9s+ 2Cw,p + w2)1yo(t) - C3y4t)] = el itdt) +

-id(t) (22)

Substituting in the above equation for yj(t) and yl(t)
usin Eqns. (19) and (20), respectively, we get

(p2 + 2Cwop + W2) [y,(t) - Cs y,(t - hf)] =

Ci to [y,.(t) -u.(t- h)1+ yM,(t-hi) (23)

Thus the controlled metal rolling process can be mod-
elled by the following forced delay differential equation

jo(t) + 2ewO jO(t) W+w V(t) '- ICS3y(t - hi)
-2Ewcs3o(t - hi) - (w" cs + k)yo(t - hi) +

cl k. ty(t-A2) - t4ka yk.(t) (24)

where w2-(kt + A)/M and 2Ew = /M . This is
a delay differential system of the neutral type with two
noncommensurate delays hA and h2. The characteristic
mult'ivarate associated with this system can be written
in the form

3 I 1

c(a,z1,z =i2)= + E C aizflW (25)

Given this delay differential equation, it is possible to
write it in a generalized system model over R[zi,z21

as follows. Let z1,2 be the shift operators defined by
zj y,(t) y,(t - hi), i- = 1,2. Also, define xz(t) A yo(t),
xzz(t) A j.(t) and zx(t) A [x1(t) , x2(t)]. Then Eq. (24)
can be modelled by

D(z1,z2) *(t) = A(zi,z2) x(t) + B(zi,z,) yr(t) (26)

where A, B, and D are over the ring R[zi,zsJ- and
A(z, z2) = [ 01(Z.Z) v(] where

anl(ZI,zt) = c4-(jj+c4c)z

+(cl kt k./M) z2
and a"(zi,z) = -26w.(-ces z)

B(zi,z2) =[Cl k/M1

and

D(Z1, x2) [OI 1c0 1

It i clea that D(z,z2) i atomicat so and that it
is formally stable since ct = A2/(A1 + A2) < . Hence,
D(z1,xa) is invertible over the cloed unit bidiac and Eq.
(26) can be written as

t(t) = F(z1,z) x(t)+G(zi,z) v(dt)
whaer

(27)

F(zi,z2) [fj and G(z1,z2) =9
With f = [W.' ( + W.3)ZI

el1k. to
+ M 'z)/(1-s zI),

A = -2w, ,and g el k ke,

If the pass delay is an integer multiple of the out-
put sensor ment delay or the measurement de-
lay can be neglected, the above models would be com-
mensurate. Another case that results in a commensu-
rate model is the so-called previous pass control [5] for

which h2 = hft. For example, if f2 is neglected the
metal rolling process dynamics would be described by
the state space model

t(t) = F(z) z(t) + G(z) yr(t) (28)

where fi = [4+ M, (M +wcsc)z]/(1-cs z)J,

f2, and g are as before.

4 Stability Analysis and Stabi-
lization

In this section the stability of the metal rolling process
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is analysed as a delay differential system. The objective
is to calculate bounds for the PD controller gains k0, kI,
and ke to guarantee the stability of the controlled pro-
cess described by the delay differential equation (24).
h1 and h2 are not constant in general and therefore,
asymptotic stabUity in delay intervals and asymptotic
stability i.o.d. should be considered (cf. Definition 3).
However, it is very difficult in general to check any of
these stability conditions for the noncommensurate case
and, therefore, one can consider pointwise asymptotic
tability us-ig Eq. (16). Condition (16) can be further
simplified due to the fact that the regularity of F(zl, z2)
in Eq. (27) on the closed unit bidisc 02 iplies that
the eigenvalues Ai of F(zl,z2) are regular functions of
(Zi,Z2). Thus if Re A, > 0 for some (z,z) E 02 , it
must be true that Re Ai > 0 V (zi,z2) in an open
neighbourhood of (4t,4;). Therefore, instability of the
multipass process in the pointwise asymptotic stabil-
ity sense can be detected by checking the eigenvalues of
F(z1, z2) on T2. This can be carried out using a suitably
fine partition of T2 which is a finite computation. Fur-
thermore, the testing of the eigenvalues of F(z1, Z2) can
be done by applying existing stability tests for polyno-
mials with complex coefficients [25] to the characteristic
polynomial of F(z1,z2).

The stability analysis can be further simplified by
considering the case where the sensor delay is neglected.
This leads to a commensurate model for which asymp-
totic stability can be checked using the analytic stability
test provided by Theorem 2. Assuming zero reference
input, the delay differential equation (24) becomes

go(t) + 2ewo yo(t) + (wo + I 2t ) yo(t)
-C3 f.(t - hi) - 2CwoCs P0(t - hi) - (w: cs

+Mj) Yo(t - h1) = 0 (29)

and the corresponding characteristic polynomial would
be

c(8,Z) = s2 + 2ew,s + (w + M )-cs z

-2wo.c saz-4(wC3+ j) z=O (30)

where the gains k., k¾, and k, are all assumed to be
positive. The following theorem is a direct application
of the analytic stability test of Theorem 2.

Theorem 4 Consider the multipass process (29) and
assume positive gains k., k, and k, Then the com-
mensurate metal rolling process is asymptotically stable
i.o.d. if and only if

(i) k,> C2 C3(1 ) (31)k./AI) + 1 -c (31

(iii) kg ke < Al + AI(1-C3 k2 (32)
Proof: The proof of this theorem can be developed
based on theorem 2.

Hence, the inequalities (31) and (32) give the design
constraints on the PD controllers gains to guarantee the
asymptotic stability i.o.d. for the controlled commen-
surate metal rolling process.

5 Discussion and Conclusions
The metal rolling process has been modelled using delay
differential equations with commensurate and noncom-
mensurate delays. These delays correspond to pass de-
lay and measurement delays. It has been demonstrated
that the theory of multidimensional systems, delay dif-
ferential or multipass systems, is a natural setting for
the study of the metal rolling process. It has been shown

that the conditions of asymptotic stability i.o.d. can be
employed to calculate bounds for the controlled process
controller gains to guarantee stability against delay vari-
ations.
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