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Abstract

Previous empirical work suggests that emotion can influence accuracy and cognitive biases
underlying recognition memory, depending on the experimental conditions. The current
study examines the effects of arousal and valence on delayed recognition memory using
the diffusion model, which allows the separation of two decision biases thought to underlie
memory: response bias and memory bias. Memory bias has not been given much attention
in the literature but can provide insight into the retrieval dynamics of emotion modulated
memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-
day later and the other half 7-days later. Analyses revealed that emotional valence generally
evokes liberal responding, whereas high arousal evokes liberal responding only at a short
retention interval. The memory bias analyses indicated that participants experienced
greater familiarity with high-arousal compared to low-arousal items and this pattern became
more pronounced as study-test lag increased; positive items evoke greater familiarity com-
pared to negative and this pattern remained stable across retention interval. The findings
provide insight into the separate contributions of valence and arousal to the cognitive mech-
anisms underlying delayed emotion modulated memory.

Introduction

The effect of emotion on episodic long-term memory has been the topic of much research in
psychology and neuroscience. Both the arousal and valence dimensions of emotion have been
shown to affect recognition performance (for reviews, see Hamann, 2001[1]; LaBar & Cabeza,
2006(2]). However, the cognitive mechanisms underlying emotional modulation of recognition
memory are still unclear. For example, some studies indicate that in addition to discriminabil-
ity [3-5], decision biases are also sensitive to emotion. These include both response bias—the
tendency to classify stimuli as “old” or “new” [6-9] and memory bias—the tendency to extract
familiarity or novelty signals from memory [10,11]. In this context we use the term familiarity
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loosely, without specific reference to its role in dual-process models of recognition memory
[12]. Furthermore, there is evidence that the emotional modulation of memory may require a
period of consolidation [5,13-16], but it is not known whether emotion effects on decision
biases are similarly time-dependent. The purpose of the current study was to elucidate the
effects of emotional arousal and valence on response bias and memory bias at different study-
test lags using diffusion modeling [17].

Emotional memory enhancement and consolidation

Emotion has two distinct dimensions, arousal and valence [18,19], both of which influence
long-term memory [1,2]. High-arousal stimuli capture attention and are prioritized over low-
arousal stimuli at encoding [20,21], sometimes leading to a memory advantage [22]. Valence
effects on memory are also common. In younger adults, some studies have shown a memory
advantage for negatively valenced material, relative to positive and neutral material [4,23,24],
although there have also been reports of superior memory for neutral, compared with emo-
tional, stimuli [6,25-28].

One factor that may account for some of the variability of emotion effects on memory
reported in the literature is variation in retention intervals. After encoding, memory traces are
thought to require a period of time to stabilize [29-31]. Indeed, some studies have reported an
increased memory advantage for emotional material at longer, as compared to shorter, study-
test delays, consistent with the idea that emotion modulates long-term memory consolidation
[5,13,14,16,22,32-35].

Mechanisms underlying the emotional modulation of memory

Performance on old-new recognition tests is influenced by memory processes (e.g., encoding,
storage, and retrieval) as well as by decision processes that operate on memory representations
(e.g., response bias, memory bias). While memory processes have received the most attention
in the literature on emotional memory, decision processes are also affected by emotion, and are
of particular relevance to the current study.

The bulk of the existing literature on emotion and decision processes of recognition has
employed a signal-detection approach [36], involving the analysis of receiver-operating charac-
teristic curves, to separate the effects of emotion on response bias from those on discriminabil-
ity [6-8]. Some of these studies have suggested that emotion effects on memory reflect more
liberal responding for emotional items, rather than improved memory. In Dougal and Rotello’s
study of immediate recognition of emotional and neutral words [6], for example, negative sti-
muli were found to produce a liberal response bias, whereas neither negative nor positive
valence affected discriminability. Similar findings were reported by Kapucu and colleagues [8]
and, using a similarity choice model [37], by Thapar and Rouder [9]. In a study examining
valence and arousal effects, Grider and Malmberg [7] found that both dimensions influenced
discriminability. In addition, positive words, but not negative or neutral words, produced a lib-
eral response bias. Arousal did not affect response bias, providing evidence that valence and
arousal have distinct effects on cognitive processing.

A limitation of the studies reviewed thus far is their focus on immediate memory tests,
which—as noted—may be less sensitive to emotion effects than delayed tests. Additionally, the
studies cited above all used verbal materials, which may evoke a more subdued emotional
response than pictures [38], and may engage a different set of mnemonic processes [39]. Two
more recent studies have addressed these limitations. Using the discrimination index P, and
bias index B,, derived from Two-High Threshold Theory [40], Weymar, Léw, Melzig, and
Hamm [41] found enhanced discrimination for negative and positive arousing pictures as
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compared to neutral, low-arousing pictures after a 1-week study-test lag. They also found that
emotional pictures were associated with a more liberal response bias than neutral pictures. A
subsequent study [42] examined emotion effects on memory at study-test lags of 1 week and 1
year. Again, emotion enhanced memory at both intervals, although, not surprisingly, overall
memory performance was lower at the 1-year compared to the 1-week lag. Additionally,
response bias was more liberal for emotional items (both negative and positive), and this effect
was smaller after one year. These findings suggest that the length of the retention interval may
play a critical role in influencing emotion-induced changes in accuracy but may not influence
bias to the same extent.

Most of the literature reviewed thus far has used accuracy-based modeling procedures to
examine how emotion affects memory and bias. However, accuracy is in a trade-off relation-
ship with reaction time (RT), and RT data provide a rich source of additional information
about emotion effects on memory. To tap into this information, some researchers [10,25,43,44]
have used the diffusion model [17], a sequential-sampling model that is well suited to the anal-
ysis of binary decision tasks such as old-new recognition. The diffusion model also allows us to
access a second type of decision bias, memory bias—the relative accessibility of memories—
which has largely been ignored in the literature but may be important in understanding emo-
tion modulated memory. As such, we believe that investigations into the influence of emotion
and study-test lag on cognitive mechanisms underlying memory are well served by this model.
Before we describe the specific aims of the current study, we provide a brief overview of the dif-
fusion model.

The Diffusion Model

The main assumption of the model is that information is accumulated over time toward one of
two decision criteria, and this evidence-accumulation process is noisy. The model takes into
account all aspects of the data, including full distributions of correct and error RTs, and the
probabilities of correct and error responses [17,45,46]. The diffusion model analysis provides
estimates of the processing components thought to underlie the decision process [11,17,45].
Critically, non-decisional processes (perceptual-motor RT; model parameter t,), are separated
from decisional processes. For example, Fig 1 illustrates the decision process for two stimulus
categories, “old” (upper boundary) and “new” (lower boundary).

The decision process begins at a starting point (parameter z) and gradually advances toward
one of the two response boundaries. If z is closer to one of the two boundaries than to the other,
response bias is present. In the current example, if z is closer to the upper boundary, the “old”
response is favored, and if it is closer to the lower boundary, the “new” response is favored. The
starting point can vary from trial to trial, and its variability is captured by parameter s,. The dis-
tance between the two boundaries (parameter a) indicates the amount of information needed to
make a decision. Starting point and boundary separation can be experimentally manipulated.
For example, if a particular response is associated with a reward, the starting point tends to
move closer to the corresponding boundary [47,48]. If instructions emphasize speed, boundary
separation is reduced, resulting in short RTs but low accuracy because the accumulation process
is more likely to hit the wrong boundary by mistake. Alternatively, when accuracy is empha-
sized, boundary separation is large, accuracy is high but RT's are long.

The drift rate (parameter v) is the average rate at which information accumulates towards
either the upper or the lower boundary. Once a boundary is reached, the decision process ends
and a response is given (i.e., button press). A positive drift rate indicates that the decision pro-
cess is being driven toward the upper boundary, as illustrated in the example by the single arrow
pointing up. Negative drift rate indicates the process is being driven toward the lower boundary.
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Fig 1. The Diffusion Model [17]. lllustration of the diffusion process for the classification of an “old” item as
either “old” or “new”. The decision process starts at pointzand moves toward the upper boundary or lower
boundary by a drift rate v. In this example, “old” response corresponds to the upper (and correct) boundary a,
and is driven by a positive drift rate. Three sample paths are illustrated with responses 1 and 2 endingin a
correct response at the upper boundary (“old”) but path 3 drifts toward the lower boundary 0, ending in an
incorrect response “new”. RT = reaction time; t, = perceptual motor RT.

doi:10.1371/journal.pone.0146769.g001

Drift rate captures the strength or quality of the retrieved information, and is similar to signal
detection parameter d’. Unlike d’, however, drift depends on both accuracy and speed. Steeper
(i.e., larger) drift rates are associated with higher accuracy and shorter reaction times. Within-
trial variability in drift (i.e., the diffusion constant), illustrated by the jagged lines, contributes to
the incidence of error responses, and to variability in finishing times (i.e., RT distributions;
[45]). Drift also varies across trials with a standard deviation of s, (not depicted in the figure).
The non-decision time (#,) sums up the duration of all non-decision processes before and
after the decision process (i.e., encoding and response execution, respectively). The model allows
non-decision time to vary across trials (variability parameter s,,). Total response time is mod-
eled as the sum of decision time (as predicted by the diffusion process) and non-decision time.

The current study

The primary goal of the current study was to examine the effects of arousal (high vs. low) and
valence (negative vs. positive) on the decision biases affecting delayed recognition. Our
approach was novel in a number of ways. First, although time-dependent effects of arousal and
valence on memory have been examined previously, no study has investigated the effects of
these factors in a single experiment. Second, most previous studies have contrasted emotional
with neutral items. Our primary analysis focused on positive and negative materials only,
which allowed us to assess the effects of valence and arousal within a relatively homogenous set
of emotional items. Furthermore, we used the diffusion model [17] to determine whether emo-
tion and time affect two distinct decision biases: response bias and memory bias [10,11]. This
approach was uniquely suited to test two independent hypotheses about possible influences of
emotion on decision biases: a motivational (response-bias) hypothesis, and a mnemonic
(memory-bias) hypothesis.

Motivational (response bias) hypothesis

Response bias (z/a) is a preference for “old” or “new” responses. In terms of diffusion parame-
ters, it is defined as the placement of the starting point (z) relative to the distance of decision
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boundaries (0 and a; see Fig 1). If the starting point is closer to the “old” threshold than to the
“new” threshold (z/a > 0.5), a liberal response bias is present, whereas the reverse pattern (z/a
< 0.5) represents a conservative response bias. This response bias measure is conceptually sim-
ilar to the signal-detection criterion ¢ ([49]; see Leite & Ratcliff, 2011 and Wagenmakers, 2009
[50,51] for a discussion on the similarities between signal detection and diffusion model
accounts and see White and Poldrack, 2014 [52] for a more detailed account of bias).

We predicted that both valence and arousal would modulate response bias, as has been shown
previously in the literature. Response bias is thought to reflect the influence of goals and motiva-
tions at the retrieval stage (e.g., Healy & Kubovy, 1978 [53]). Emotional stimuli are motivationally
significant because they signal rewarding or aversive experiences (e.g., see Rolls, 2000 [54]). The
motivation to prioritize these signals should be stable over time, leading us to predict that response
bias would not be influenced by the length of the retention interval (i.e., study-test delay).

Mnemonic (memory bias) hypothesis

Memory bias is a general tendency, across recognition targets and distractors, to extract mne-
monic information from memory that favors either an “old” or a “new” response [10,11]. Sig-
nal-detection measures of recognition memory confound response bias and memory bias,
making it impossible to distinguish the effects of emotion on the two types of bias. In the diffu-
sion model, memory bias is defined by the position of the drift criterion—the participant’s
standard for how strong memory evidence has to be to move toward the top versus the bottom
boundary. This type of bias is thus located at the level of memory retrieval processes, rather
than at the response level. In terms of diffusion parameters, memory bias is defined as the sum
of the drift rates of old and new items (V14 + Vnew). When familiarity and novelty signals are
equally strong, their sum is zero because drift rates for targets are positive while drift rates for
distractors are negative (see Fig 1). Memory bias scores above zero indicate familiarity bias,
whereas scores below zero indicate novelty bias.

We predicted that high arousal and negative valence would produce familiarity bias, as both
factors have been shown to produce mnemonic benefits relative to low arousal and positive
valence. Furthermore, we predicted that familiarity bias would increase over time for high-
arousal items, but not for negative items. In other words, the arousal effect on memory bias
was predicted to interact with study-test lag, whereas the valence effect was expected to remain
stable over time. This prediction was made because arousal—but not valence—has been shown
to affect the consolidation of memory traces [13,22].

Method
Participants

Ninety-seven undergraduate students from Ryerson University participated in return for par-
tial course credit. Participants completed a health questionnaire assessing a history of brain or
head injuries, psychiatric illness, use of psychotropic medications, and current depression.
Twenty-four participants were excluded because of responses on the health questionnaire or
because they failed to return for the second testing session. As a result, the final sample
included 73 participants, with 38 participants (7 males) in the 1-day test delay condition and
35 participants (4 males) in the 7-day condition. The median age was 20.4 (range: 18-30 years)
in the 1-day group and 20.7 (range: 18-35 years) in the 7-day group.

Ethics Statement

All procedures were approved by the Research Ethics Board at Ryerson University (REB 2008-
123-1). Participants provided written and informed consent.
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Design

The study employed a mixed factorial design that included the between-subjects factor test
delay (1-day, 7-day) and the within-subjects factors test status (target, distractor) and arousal
(high, low). Valence (positive, negative, neutral) was also manipulated within subjects but was
not fully crossed with arousal (see next section and Table 1). There are not enough high-
arousal neutral stimuli to be included as a separate category, thus we did not include this class
of stimuli in the current experiment.

Stimuli and apparatus

The experimental stimuli included 270 pictures from the International Affective Picture System
(IAPS; [55]). The 270 stimuli were selected from a collection of 350 IAPS images used by
Bowen and Spaniol [25], and were grouped into five sets of 54 stimuli selected to represent the
different combinations of valence and arousal (see Table 1). The sets were equated for semantic
content. This was accomplished by classifying the images according to semantic categories
(e.g., animals, faces, inanimate objects) and matching the sets on the number of items from
each category.

Given the central role of arousal and valence for the rationale of the study, it was important
to establish how these properties varied across the stimulus sets. To this end, we conducted a
series of analyses of variance (ANOV As) on arousal and valence ratings.

A 2 (arousal category: high vs. low) x 2 (valence category: negative, positive) ANOVA on
arousal ratings for emotional items (i.e., excluding neutral items) yielded a main effect of arousal
category, such that arousal ratings in the high-arousal category (M = 5.97) were higher than
arousal ratings in the low-arousal category (M = 4.63), F(1, 212) = 538.123, p < .001, np2 =.72.
There was also an effect of valence category on arousal ratings, such that arousal ratings for neg-
ative items (M = 5.5) were higher than those for positive items (M = 5.1), F(1, 212) = 44.34,p <
.001, npz =.17. There was also a significant interaction, F(1, 212) = 8.80, p =.003, np2 = .04, such
that negative compared to positive items had higher arousal ratings in both the high, #(106) =
2.61,p=.01, W = .06, (Mpyeg = 6.08, Mpos - 5.86) and low-arousal category, t(106) = 6.80, p <
001, = 31, (Myeg = 4.91, Mpo, - 4.35).

A 2 (arousal) x 2 (valence) ANOVA on valence ratings for emotional items yielded a main
effect of valence category, F(1, 212) = 2363.82, p < .001, n,> = 92, such that valence ratings in
the negative-valence category (M = 2.83) were lower than those in the positive-valence category
(M =7.06). There was no main effect of arousal category, nor an Arousal x Valence Category
interaction, F(1,212) < 2.19, p > .14,1,” < .0L.

Table 1. Mean Arousal and Valence Ratings of the Experimental Stimuli.

Valence Category Arousal Category
Low-Arousal High-Arousal
Positive A: 4.35 (.41) A: 5.86 (.48)
V:7.08 (.64) V:7.03 (.60)
Negative A: 4.91 (.43) A: 6.08 (.36)
V: 2.94 (.59) V:2.72 (.72)
Neutral A: 3.59 (.55) =
V: 4.92 (.41) _

Note. A = Mean arousal rating. V = Mean valence rating. Standard deviations are shown in parentheses.
No high-arousal neutral items were included. Ratings were taken from published norms [55].

doi:10.1371/journal.pone.0146769.t001
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We also conducted one-way ANOV As of valence category on ratings in the 3 low-arousal
categories (left column of Table 1). Valence ratings differed significantly as a function of
valence category, F(2, 159) = 749.88, p < .001, n,> = .90, such that valence ratings in the nega-
tive category were lower than in the neutral category, and ratings in the neutral category were
lower than those in the positive category, £(106) > 20.19, p < .001,m> > .79. Arousal ratings
also differed among the three categories, F(2, 159) = 107.14, p < .001, n,> = .57. Arousal ratings
in the negative category (M = 4.9) were higher than those in the positive category (M = 4.3),
and arousal ratings in the positive category were higher than those in the neutral category
(M =3.6), t(106) > 6.80, p < .001,1* = .30.

In summary, the item sets differed on valence and arousal in the required ways. In addition,
items in the three valence categories also differed on rated arousal, with negative items being
rated as more arousing than positive and neutral items. However, these effects were relatively
small.

We divided the stimuli in each cell of Table 1 into two sub-lists (A and B), so that the assign-
ment of specific stimuli to target or distractor status on the recognition test would be counter-
balanced across participants. For half of the participants, List A stimuli served as targets and
List B stimuli served as distractors, whereas the other half of the participants received the
reverse assignment. The lists were again equated for semantic content by assigning roughly
equal numbers of exemplars from different semantic categories (e.g., animals, faces, inanimate
objects) to each list. When we included List (A, B) as an additional between-item factor in the
analyses reported above, we observed no significant main effects of List, nor any interactions.

The experimental tasks were created in E-Prime (Psychology Software Tools, Inc.). Stimulus
presentation was controlled by a Tribus desktop with a 19” monitor and a viewing distance of
approximately 50 cm. All study and test stimuli appeared in the centre of the screen against a
black background.

Procedure

During the first session, participants were told that the study investigated the effect of emotion
on attention. No mention was made of the upcoming memory test. After providing informed
consent and filling out the health questionnaire, participants completed the study phase of the
experiment. One-hundred thirty-five stimuli (54 high-arousal and 81 low-arousal) were pre-
sented in random order, intermixed with twenty-one additional stimuli (also from the IAPS)
which served as buffer items and were not included in the analyses. Each trial started with a fix-
ation cross lasting 750 ms, followed by a 500-ms pause and a 3-s stimulus presentation. Partici-
pants were asked to view the stimuli passively as if they were watching television. Participants
in the 1-day condition returned for the memory test 24 hours after the study session, whereas
participants in the 7-day condition returned one week later. During the recognition test, 135
studied targets, 135 unstudied distractors, and 30 buffer items (half old, half new) were pre-
sented in random intermixed order. Participants made old-new judgments using the “x” and
. keys. The key assignment was counterbalanced across participants. Each stimulus remained
on screen until a response was made.

Results

Because the research questions motivating the current study focused on memory for emotional
stimuli, neutral items were not included in the first two analyses. Inclusion of neutral items in
the arousal analyses would have doubled the number of items in the low-arousal category and
likely “artificially” deflated the low-arousal ratings. In order to keep analyses consistent, neutral
items were therefore included in the first set of valence analyses. To test the hypotheses about
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arousal effects (high vs. low) on memory, we collapsed across negative and positive items (i.e.,
top two rows of Table 1). Likewise, to test the hypotheses about valence effects (positive vs. neg-
ative), we collapsed across high-arousal and low-arousal items. This “two-step” analysis
approach, alternately collapsing over the valence or the arousal dimension, was necessary
because estimating separate diffusion models for all combinations of arousal and valence was
not practically feasible (see also the section on ‘limitations and future directions’ in the
Discussion).

To facilitate a comparison of our results with previous studies on emotional memory, we
also report an analysis of valence and delay effects. This analysis included negative, positive
and neutral items of low-arousal only (i.e., the left-hand column of Table 1).

For each analysis, extreme outlier RT's were eliminated using Tukey’s method [56]. Tables 2,
3 and 4 present data after outlier removal. Additional details regarding the treatment of outliers
are provided in the description of the diffusion model fitting. For each analysis, the critical
results involve the diffusion-model measures (response bias, memory bias), but we also report
statistics for other common measures (hit rate, false alarm rate, &', median RT) to facilitate
comparison with other studies (see Tables 3 and 4).

Table 2. Means of Diffusion Model Parameters for Participants with Good Model Fit.

1-day 7-day

Parameter Analysis of Arousal Effects

to .66 (.16) .74 (.16)
z/a_nign .57 (.12) .53 (.09)
7/a 0w 62 (.13) 51 (.10)
Vold_high .69 (.61) A7 (.47)
Vold_low .48 (.56) .33 (.34)
Vnew_high -.61 (.30) -.01 (.28)
e ey -.57 (.27) -1.23 (.60)
St .27 (.15) .34 (.23)
Sz .46 (.29) 47 (.26)
Sy .55 (.32) .37 (.26)
P .51 (.24) .50 (.25)

Analysis of Valence Effects

to .65 (.17) .73 (.16)
z/a _neg .56 (.09) .53 (.10)
z/a_pos .60 (.11) .59 (.09)
Voldineg .79 (.70) .55 (.51)
Vst e .48 (.48) .30 (.41)
Vnenines -.05 (.22) -.05 (.23)
Ve ses -1.35 (.61) -1.17 (.50)
St .27 (.16) .30 (.16)
Sz .48 (.30) 47 (.28)
Sy .60 (.43) 42 (.29)
o} 41 (.28) .51 (.28)

Note: to = non-decision time; z/a = response bias value (starting point value divided by boundary
separation); v g = drift rate for target items; v\, = drift rate for target items; s; = non-decision time
variability; s, = starting point variability; s, = drift rate variability; p = values which indicate goodness-of fit.
1-day = 1-day study-test lag; 7-day = 7-day study-test lag. High = high-arousal; Low = low-arousal;

Neg = negative; Pos = positive; Standard deviations are shown in parentheses.

doi:10.1371/journal.pone.0146769.t002
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Table 3. Arousal and Valence Effects: Means of Signal Detection Parameters and Median Reaction Times for Participants with Good Model Fit.

Arousal Analysis (N =

High
Low

Valence Analysis (N =

Negative
Positive

Arousal Analysis (N =

High
Low

Valence Analysis (N =

Negative
Positive

HR

38)
71 (13)
64 (.16)
37)
71 (.15)
67 (.13)

34)
68(.14)
61 (.14)
37)
68 (.13)
61 (.14)

FAR a’ RThit RTcr
1-day

30 (.08) 1.14 (.48) 1,266 (577) 1,377 (398)

31 (.05) .88 (.53) 1,197 (374) 1,276 (378)

49 (.04) .62 (.45) 1,161 (285) 1,259(272)

13 (.11) 1.75 (.74) 1.195 (353) 1,240 (280)
7-day

50 (.07) .48 (.37) 1,236 (271) 1,372(427)

15 (.10) 1.42 (.45) 1,250 (276) 1,257 (315)

48 (.06) .55 (.36) 1,259 (272) 1,379 (404)

18 (.13) 1.36 (.49) 1,240 (280) 1,329 (402)

Note: HR = hit rate; FAR = false alarm rate; d’ = discriminability index; RT;; = reaction time for hits; RTcr = reaction time for correct rejections.
1-day = 1-day study-test lag; 7-day = 7-day study-test lag. Standard deviations are in parentheses. Outlier RTs were removed before the calculation of

these values.

doi:10.1371/journal.pone.0146769.t003

Diffusion model fit

Because outlier RT's can significantly bias the parameter estimates of the diffusion model
[45,46], extreme responses were excluded using Tukey’s method of outlier detection on log
transformed RT's. Tukey’s method leverages interquartile range (IQR = Q3 -Q1) to filter out
very small (low outliers = Q1—k*IQR) and very large data points (high outliers = Q3
+k*IQR), and is independent of distributional assumptions, making it ideal for inherently
skewed RT data [56]. Further, to utilize as many trials as possible we used a conservative k-
value of 2.5 for the Tukey calculation. As a result, trials were removed for 15 participants in the
1-day delay condition and 10 participants in the 7-day delay condition. Each of these 25 partic-
ipants had an average of 2.71 trials removed (approximately 1% of their total responses).
Across participants, 65 trials (0.3% of all trials) were removed in total. The number of trials
removed varied as a function of valence, F(1, 23) = 5.06, p = .03, with more negative trials than
positive trials removed. The number of trials removed did not vary significantly as a function
of test delay, test status, or arousal, or their interactions, F < 3.67, p > .07.

Using the fast-dm program [57,58] we estimated diffusion model parameters separately for
each participant and experimental condition of interest. By arbitrary assignment, the upper
threshold was associated with “old” responses, whereas the lower threshold was associated with
“new” responses (see Fig 1). There are two empirical cumulative RT distributions, one for the
upper response boundary and one for the lower response boundary. The upper boundary (i.e.,
old responses) was arbitrarily assigned a positive sign, and the lower boundary (i.e., new
responses) was assigned a negative sign. The Kolmogorov-Smirnov (KS) test statistic was used
to estimate model fit between the predicted and empirical RT distributions [48]. A significant
KS statistic (p-value parameter < .05) indicates that the maximal vertical distance between the
two RT distributions is large, indicating poor model fit.

To test the hypotheses about arousal effects, we collapsed data across positive and negative
valence. Separate models were estimated for each participant and test delay. Of particular
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Table 4. Means of Signal Detection Parameters, Median Reaction Times and Mean Diffusion Model
Parameters of Low-Arousal Valence Analyses for Participants with Good Model Fit.

Parameter 1-day 7-day

to .66 (.17) .69 (.15)
z/a_neg .53 (.12) .59 (.12)
z/a_pos .56 (.15) .58 (.11)
z/a_neu .53 (.15) .52 (.13)
Vold_neg 57 (.78) .42 (.60)
Vold_pos 41 (.63) .23 (.48)
Vold_neu 17 (.32) 01 (:42)
Vi mes .06 (.24) -1.21 (.53)
Ve zee -1.42 (.62) -1.22 (.69)
N fEw -1.47 (.74) -1.17 (.47)
St .25 (.16) .23 (.12)
Sz .56 (.33) .52 (.23)
sy 46 (.27) 34 (.21)
HR_neg .67 (.18) .65 (.16)
HR_pos 61 (17) 57 (.16)
HR_neu .55 (.16) .48 (.15)
FAR_neg .53 (.06) .16 (.10)
FAR_pos .10 (.11) .16 (.13)
FAR_neu .10 (.112) 1 (.09)
d’_neg 44 (.63) 1.51 (.59)
d’_pos 1.79 (.78) 1.39 (.60)
d’_neu 1.61 (.69) 1.30 (.46)
RThit_neg 1215 (376) 1265 (356)
RThit_pos 1222 (366) 1229 (262)
RThit neu 1208 (397) 1245 (256)
RTcR_neg 1386 (461) 1333 (408)
RTcR pos 1260 (367) 1264 (341)
RTcr neu 1145 (283) 1206 (404)

Note: HR = hit rate; FAR = false alarm rate; d’ = discriminability index; RT;; = reaction time for hits; RTcr =
reaction time for correct rejections; ty = non-decision time; z/a = response bias value (starting point value
divided by boundary separation); v,4 = drift rate for target items; v, = drift rate for target items; s; = non-
decision time variability; s, = starting point variability; s, = drift rate variability. 1-day = 1-day study-test lag;
7-day = 7-day study-test lag. Neg = negative; Pos = positive; Neu = neutral. Standard deviations are shown
in parentheses. Outlier trials removed.

doi:10.1371/journal.pone.0146769.t004

interest were drift rates and starting point, because these parameters affect the critical measures
(response bias, and memory bias). Separate drift rates (v) were estimated for targets and dis-
tractors at each level of arousal (high, low). Separate starting point (z) and boundary separation
(a) values were estimated at each level of arousal. This resulted in the estimation of 2 target
drift rates, 2 distractor drift rates, 2 starting points, and 2 boundary separation values per par-
ticipant. The remaining parameter—non-decision time (t,), and variances in non-decision
time (s,), starting point (s,), and drift rate (s,)—were constrained to be constant over condi-
tions. In total, 12 parameters were estimated per participant at each test delay.

A similar logic was used to estimate models to test hypotheses about valence effects. Again,
separate models were estimated for each test delay (1-day vs. 7-day). Separate drift rates were
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estimated for targets and distractors at both levels of valence (negative vs. positive). Separate
starting point (z) and boundary separation (a) values were estimated at each level of valence.
Non-decision time (t,), and variance in non-decision time (s;), starting point (s.) and drift rate
(s,) were not estimated separately for each level of valence but were constrained to be equal
across experimental conditions. In total, 12 parameters were estimated per participant at each
test delay. Group-level descriptive statistics of the diffusion model parameters are presented in
Table 2. Inferential statistics will be reported only for the hypothesis-relevant measures of
response bias and memory bias.

Model fit was assessed with a Monte-Carlo simulation [57]. Only participants with good dif-
fusion-model fit were included in the analyses of model-based measures. Additional analyses
were run that included all participants (including those with poor model fit) and the pattern of
results remained the same. For the analyses of arousal effects, of the 73 participants 3 had poor
fit (all in the 7-day condition), leaving 38 and 32 participants in the 1-day and 7-day condi-
tions, respectively. For the analyses of valence effects, 2 of the 73 participants had poor model
fit (1 in the 1-day and 1 in the 7-day delay conditions). This left 37 participants in the 1-day
delay and 34 in the 7-day delay condition, respectively. In the supporting information S1-54
Figs, model fit is displayed graphically for each of the conditions.

Emotional items: Effects of arousal and delay

Discriminability and RT. We conducted a 2 x 2 repeated-measures ANOVA on d’ [36]
with test delay (1-day, 7-day) as a between-subjects variable and arousal (high, low) as a
within-subjects variable. There was no main effect of delay, F(1, 68) = .37, p = .54, npz =.01.
The main effect of arousal, F(1, 68) = 36.04, p < .001,1,” = .35, was qualified by a significant
Arousal x Delay interaction, F(1,68) = 111.42, p < .001, npz =.62. Follow-up comparisons
revealed that d’ was higher for high-arousal stimuli than for low-arousal stimuli at the 1-day
delay, t(37) = 4.75, p < .001, " = .38, but the reverse was true at the 7-day delay, t(31) = 8.90, p
< .001,n* = .72. See Table 3 for the means for each condition.

A 2 x 2 repeated-measures ANOVA on median RTs, separately for hits and correct rejec-
tions, with study-test delay (1-day, 7-day) as the between subjects variable and arousal (high,
low) as the within-subjects variable. For hits, there were no significant effects of either variable,
nor a significant interaction, F(1, 68) < 1.86, p > .18. For correct rejections, there was a signifi-
cant main effect of arousal, F(1, 68) = 21.37, p < .001,m,” = .24, such that participants
responded faster to low-arousal (M = 1266 ms) compared to high-arousal (M = 1374 ms) dis-
tractor items. Neither the interaction with delay, nor the main effect of delay, was significant, F
(1,68) <.09,p > .77.

Response bias. Response bias was defined as z/a, that is, as the relative placement of the
starting point between the two response boundaries. Values above .5 indicate a liberal or “old”
bias, and values below .5 a conservative or “new” bias.

The response bias indices are shown in Fig 2.There was significant main effect of arousal
and delay, F(1,68) > 5.75, p < .01,m,” > .08, qualified by a significant Arousal x Delay interac-
tion, F(1, 68) = 21.49, p < .001, nP2 =.24. Follow-up paired ¢-tests indicated that low-arousal
items produced a more liberal response bias at the 1-day delay, #(37) = 4.50, p < .001, n,> = .35,
but at the 7-day delay, there was a statistical trend in the reverse direction, #(31) = 2.34, p = .05,
N> =.11. One-sample t-tests showed that response bias for high-arousal and low-arousal items
was significantly greater than .5 (no bias) at the 1-day delay, #(37) > 3.80, p < .001,n° > .28,
but response bias for high and low-arousal items was not significantly different from .5 at the
7-day delay, #(31) < 1.67,p > .11,1> < .08.
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Fig 2. Response Bias (z/a). Box plots of the distribution of response bias values for high and low-arousal
items and negative and positive items at each lag. The line in each box represents the median. Response
bias values above .5 (to the right of the dotted line) indicate a bias to classify items as “old”, whereas values
below .5 indicate a bias to classify items as “new”. Error bars represent standard error. Hi = high-arousal
items; Lo = low-arousal items; Neg = negative items; Pos = positive items; 1-day = 1-day study-test lag;
7-day = 7-day study-test lag.

doi:10.1371/journal.pone.0146769.9g002

Memory bias. Memory bias was operationalized as Vojg + Vpew- Positive values indicate a
familiarity bias, that is, a tendency to extract information favoring an “old” response, indepen-
dent of discriminability. Negative values indicate a novelty bias, that is, a tendency to extract
information in favor of a “new” response, independent of discriminability.

Memory bias indices are shown in Fig 3. There was a marginally significant main effect of
study-test delay, F(1, 68) = 2.92, p =.09,n,” < .001 and a significant main effect of arousal, F(1,
68) =75.22, p < .001, np2 = .53, qualified by a significant Arousal x Delay interaction, F(1, 68)
=44.10, p < .001, n,” = .39. Follow-up comparisons revealed that memory bias indices were
more negative for low-arousal items than for high-arousal items. This difference was margin-
ally significant at the 1-day delay, #(37) = 1.70, p < .09, > < .001, and it was significant at the
7-day delay, £(31) = 9.27, p < .001, 1’ = .73. Post-hoc one-sample t-tests revealed that at the
1-day delay, memory bias for high-arousal and low-arousal items did not differ significantly
from zero (no bias), (37) < .77, p > .33, 1> < .003. At the 7-day delay, the memory bias value
was significantly greater than zero for high-arousal items, #(31) = 4.50, p < .001, n2 =.39,and
significantly below zero for low-arousal items, #(31) = 7.30, p < .001,n = .63.

1.00 7
“Familiarity”
A
50 1 1 |
f .00 o=k =
3 = |-day
-.50 1 7-day
I I v
-1.00 T “Novelty”
-1.50 -

hi lo neg pos

Fig 3. Memory Bias (Voiq + Vnew)- Mean memory bias values for high and low-arousal items, and negative
and positive items at each lag. Positive memory bias values indicate familiarity bias, whereas negative values
indicate novelty bias. Error bars represented the standard errors. Hi = high-arousal items; Lo = low-arousal
items; Neg = negative items; Pos = positive items; 1-day = 1-day study-test lag; 7-day = 7-day study-test lag.

doi:10.1371/journal.pone.0146769.9g003
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Emotional items: Effects of valence and delay

Discriminability and RT. A 2 x2 ANOVA on d’ was conducted with valence (negative,
positive) as the within-subjects variable. There was a main effect of delay, F(1, 69) = 5.24,p =
.03, np2 =.07, and a main effect of valence, F(1, 69) = 176.44, p < .001, np2 =.72. These effects
were qualified by a significant interaction, F(1, 69) = 4.44, p = .04, n,” = .06. Follow-up compar-
isons revealed that & was higher for positive items compared to negative items at the 1-day
delay, #(37) = 10.87, p < .001, > = .77. The effect was also present—though slightly diminished
—at the 7-day delay, #(33) = 7.95, p < .001, 1 = .66.

A 2 x 2 repeated-measures ANOVA was conducted on median RTs, separately for hits and
correct rejections, with study-test delay as the between-subjects variable and valence (negative,
positive) as the within-subjects variable. For hits, there were no significant effects of either vari-
able, nor a significant interaction, F(1, 69) < 2.16, p > .15. For correct rejections, there was a
significant main effect of valence, F(1, 69) = 12.92, p = .001, n,> = .16, such that participants
were faster at responding to positive (M = 1314 ms) compared to negative items (M = 1394
ms).There was no main effect of delay, nor a significant interaction, F(1, 68) < 1.90, p > .17.

Response bias. Response bias indices are shown in Fig 2. There was a significant main
effect of valence, F(1, 69) = 17.98, p < .001, nP2 = .21, such that response bias was more liberal
for positive compared to negative items. There was no significant main effect of delay and no
significant Valence x Delay interaction, F(1, 69) < .83, p > .37, np2 < .01. One-sample t-tests
showed that response bias values for positive and negative items were significantly greater than
5,4(70) > 3.49, p < .001,1> > .15.

Memory bias. Memory bias indices are shown in Fig 3. The main effect of valence was sig-
nificant, F(1, 69) = 150.40, p < .001, n,” = .69, such that memory bias values for negative items
were more positive than memory bias values for positive items. The main effect of delay was
not significant, nor was the Valence x Delay interaction, F(1, 68) < 1.30, p >.31, np2 < .02. Fol-
low-up one-sample t-tests showed that negative items elicited significant familiarity bias, #(70)
=7.14,p <.001, 1’ = 42, whereas positive items elicited significant novelty bias, #(70) = 9.94, p
<.001,1% = 56.

Low-arousal emotional and neutral items: Effects of valence and delay

To examine the emotional memory advantage and compare to previous work with neutral sti-
muli, all analyses were run with low-arousal stimuli (left column of Table 1) comparing nega-
tive, positive and neutral items. One participant in the 1-day delay condition had poor model

fit and is excluded from the results presented below. All mean values of the diffusion model as
well as hit rate, false alarm rate, d’ and median reaction times are presented in Table 4.

Discriminability and RT. There was no significant main effect of delay on d, F(1, 70) =
1.02, p = .34,m,” = .01, but there was a significant main effect of valence, F(2, 140) = 37.46, p <
.001,m,> =35, qualified by a significant Valence x Delay interaction F(2, 140) = 60.10, p <
.001,m,” = .40. A follow-up one-way ANOVA at the 1-day delay revealed a significant valence
effect, F(2,72) =97.71, p < .001, np2 =.73. Follow-up t-tests indicated that d’ was significantly
lower for negative items (M = .44) than for positive (M = 1.79), and neutral items (M = 1.61), ¢
(36) > 10.81, p < .001, 1> > .76, but d’ values were only marginally different for positive and
neutral items, £(36) = 1.90, p = .07 1° = .09. A follow-up one-way ANOVA at the 7-day lag indi-
cated no significant effect of valence, F(2, 68) = 1.87, p = .16,m,> = .05.

Separate ANOV As were carried out on median RTs for hits and correct rejections (see
Table 4). For hits, there were no significant effects of either variable, or a significant interaction,
F <1.8,p > .68. For correct rejections, the main of valence was significant, F(2, 140) = .22.11, p
<.001,7m,” = .24, but there was no main effect of delay nor a significant interaction F < 2.17, p
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> 12, np2 < .03. Follow-up t-tests for the main effect of valence indicated that RT's were faster
for neutral stimuli (M = 1174) than for positive (M = 1262) and negative (M = 1360), #(71) >
3.85, p < .001, " > .17, and positive were faster than negative #(71) = 3.29, p = .002, W =.13.

Response bias. A 2X 3 ANOVA on response bias values indicated a significant main effect
of valence, F(2, 140) = 3.75, p = .03,m,” = .05, but no significant main effect of delay, nor a sig-
nificant Valence x Delay interaction, F < 2.02, p > .14. Pairwise comparisons revealed that
response bias indices were significantly higher for emotional items (both positive and negative)
than for neutral items, #(71) > 2.13, p < .04, n2 > .06. One-sample t-tests indicated that
response bias values were significantly greater than .5 for emotional items, #(71) > 4.23,p <
.001, > > .20, but that neutral items did not significantly differ from .5, £(71) = 1.47, p = .15.

Memory bias. A 2x3 ANOVA on memory bias indices revealed a significant main effects
of valence, F(2, 140) = 51.65, p < .001,m,” = .43, and delay, F(1, 70) = 10.78, p = .002, n,> = .13,
qualified by a significant Valence x Delay interaction, F(2, 140) = 26.00, p < .001,n,> = .27. A
follow-up repeated measures ANOVA at the 1-day delay revealed a significant valence effect, F
(2,72) =67.99, p < .001, np2 =.65. Follow-up t-tests indicated that memory bias values for neg-
ative items (M = .63) were significantly different from those for positive items (M = -1.04) and
neutral items (M = -1.32), #(37) > 9.63, p < .001, 1> > .71, but the difference between positive
and neutral was only marginally significant, £(37) = 1.82, p = .08. One-sample ¢-tests indicated
that all values were significantly different from zero, £(37) > 4.68, p < .001,n> > .37. The fol-
low-up repeated measures ANOVA at the 7-day delay, indicated that the effect of valence was
only marginally significant, F(2, 68) = 2.83, p = .07, nP2 =.08, (Mpeg = -.79, Mpos = -.99 My =
-1.17).

Discussion

The goal of this study was to examine how decision biases involved in recognition are affected
by emotional arousal and valence over time. During study, participants viewed emotional sti-
muli that varied in arousal (high vs. low) and valence (negative, neutral, positive). Half of the
participants completed an old-new recognition test 24 hours post-encoding, whereas the other
half completed the test one week after encoding. Discriminability and RT data for emotional
items were submitted to diffusion model analyses to capture the effects of arousal (high, low),
valence (negative, positive), and study-test lag (1-day, 7-day) on two outcomes of theoretical
significance: response bias, and memory bias. The data support our hypotheses about the
effects of emotion and study-test lag on memory bias, but predictions regarding response bias
were only partially supported. Before discussing the findings of the diffusion model in more
detail, we discuss the results of the discriminability and RT measures. We also provide a sepa-
rate discussion of valence analyses that incorporate only low-arousal stimuli after the main
analyses involving high and low-arousal stimuli.

Discriminability and RT

The analyses of the signal-detection measure of discriminability (d’) revealed that both valence
and arousal interacted with study-test delay. Discriminability was enhanced for high-arousal
compared to low-arousal items, but only at the short delay. Further, discriminability was
enhanced for positive compared to negative items at both study-test lags, but overall discrimi-
nability decreased over time for both positive and negative stimuli. At first glance, these find-
ings appear to be at odds with prior reports of emotional enhancement of memory at extended
delays of 1 week [35,41] or longer [32,34]. However, in those earlier studies, valence and
arousal contributions were not assessed separately, and emotional enhancement was defined
relative to a neutral (non-valenced, low-arousal) baseline. In contrast, the principal analyses of
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the current study focused on emotional items, which allowed for a relatively fine-grained look
at the impact of valence and arousal on delayed recognition. The results do converge with prior
literature indicating that emotional arousal and valence have dissociable effects on discrimina-
bility [59,60] (see Kensinger, 2004 [13], for a review).

Median RT analyses revealed main effects of arousal and valence, but they were not influ-
enced by study-test lag. Responses were slower for high-arousal compared to low-arousal
items, and for negative compared to positive items. It is clear that reaction time patterns do not
easily map on to patterns associated with accuracy. Furthermore, response bias and memory
bias cannot be assessed on the basis of accuracy and RT which do not allow for the separation
of motivational and mnemonic influences. The parameters of the diffusion model allow us to
look more specifically at these measures. These results are discussed next.

Response bias

The preference to choose one response over another was defined as the placement of the start-
ing point parameter relative to the decision boundary (z/a). A value greater than .5 refers to a
liberal (i.e., “old”) response bias, whereas a value less than .5 indicates a conservative (i.e.,
“new”) response bias. According to the motivational hypothesis, the emotional goals that may
induce a tendency to endorse arousing and valent stimuli as old should not change as function
of time. This prediction was not fully supported. Contrary to the motivational hypothesis,
arousal-based modulation of response bias was affected by retention interval. We found that
low-arousal items elicited a more liberal response bias than high-arousal items at the short
retention interval, but at the longer retention interval these values did not significantly differ
from each other. Indeed, after 1 week, neither low-arousal nor high-arousal gave rise to signifi-
cant response bias. This mirrors the finding of Grider and Malmberg [7], who also found no
influence of arousal on response bias at a delayed retention interval. Similarities to this earlier
study were also found with respect to valence effects on response bias. Specifically, in line with
findings from Grider and Malmberg [7], positive valence was associated with a more liberal
response bias than negative valence. Furthermore, as predicted, valence did not interact with
the length of the retention interval.

Opverall, these findings suggest that response bias may be sensitive to both delay-dependent
mnemonic factors and delay-independent motivational factors. Liberal responding to emo-
tional arousing and emotionally valent stimuli may be the result of a heuristic strategy (“I was
shown several pictures of violent scenes, so any pictures of violent scenes are probably old”).
Lack of an interaction with delay suggests that response bias is relatively stable over time when
assessing valence, but may be modulated by the neural mechanisms underlying consolidation
processes when examining influence of arousal. It is possible response bias is not only at the
level of motivational goals but involves more memory processes that for arousal, but not
valence, require consolidation. A future study assessing immediate and delayed recognition of
arousing and valence stimuli is necessary to answer this question.

Memory bias

To examine bias at the level of memory retrieval, we combined diffusion drift for targets and
distractors (Vojq + Vpew)- Positive values of this measure indicate more efficient retrieval of evi-
dence in favor of an “old” response (familiarity bias), whereas negative values indicate more
efficient retrieval of evidence in favor of a “new” response (novelty bias). According to the
mnemonic hypothesis, the effect of arousal (but not of valence) on memory bias should
increase with delay, due to arousal's influence on consolidation processes. This hypothesis was
supported. Specifically, high-arousal stimuli produced a familiarity memory bias and low-
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arousal items a novelty bias and this pattern became pronounced as study-test delay increased,
driving the Arousal x Lag interaction and consistent with prior observations in the literature
[10,43]. With respect to valence influences on memory bias, positive items elicited novelty bias
and negative items gave rise to a familiarity bias at both retention intervals. Taken together,
these findings indicate that, over time, high arousal and negative valence provide a mnemonic
familiarity advantage over low arousal and positive valence. Additionally, in accordance with
our hypothesis, arousal but not valence interacted with retention interval as arousal specifically,
has been shown to modulate the memory trace.

Low-arousal emotional and neutral items

Although the primary goal of the current study was to characterize strictly emotional influ-
ences on recognition memory, we also tested the effects of valence with the inclusion of neutral
stimuli. Only low-arousal stimuli were included in these analyses to minimize differences in
average arousal for positive, neutral, and negative stimulus sets. As noted, even within the low-
arousal stimulus set, there remained significant differences in average arousal among the
valence categories (negative > positive > neutral). However, the pattern emerging from these
analyses is quite distinct from the pattern in the arousal analyses, lending confidence that the
results indeed captured valence-specific effects. Overall, the results did not reveal anything
additional about emotional memory that was not reported above, but it is clear that emotional
memory and the cognitive biases underlying it are different from processes engaged during
memory for neutral items. Perhaps not surprising, results for accuracy and RT revealed that
sensitivity for neutral items was lower than for emotional items (at the 1-day delay), but correct
rejection RTs were faster than for emotional items. The diffusion model results indicated that
across retention intervals, neutral items did not elicit a response bias in either direction, but
emotional items were associated with a liberal response bias as reported in the results above.
One interesting finding was that neutral items elicited a novelty bias, even more so than posi-
tive items, and negative items again induced a familiarity bias at the 1-day delay. At the 7-day
delay, all three valence categories were associated with a novelty bias. This finding in particular
goes against an arousal explanation for these differences in valence, as negative items had the
highest arousal ratings but these results do not match the pattern of results from the high and
low-arousal analyses.

Limitations and future directions

Diffusion modeling requires relatively large numbers of observations in each experimental con-
dition [46], and it was important to match the stimulus sets on semantic features [61]. These
constraints made it impossible to fully equate the positive, neutral, and negative low-arousal
stimulus sets on average rated arousal. Second, within the emotional stimuli, a significant dif-
ference in average arousal was present between the valence categories (negative > positive).
Ideally, these items sets would have been matched on arousal to avoid potential confounds.
However, the pattern emerging from the valence analyses was quite distinct, and in the oppo-
site direction from that obtained in the arousal analyses, lending confidence that the results of
the analyses indeed captured valence-specific and arousal-specific effects. For example, mem-
ory sensitivity was better for high-arousal compared to low-arousal items, and for positive
compared to negative items—even though negative items were significantly more arousing
than positive items. Third, our two-step analysis approach did not permit an analysis of poten-
tial interactions of valence and arousal on memory for emotional items. This was again related
to the difficulty of fitting the diffusion model to noisy individual-participant data. Fitting sepa-
rate models to each cell of the design (see Table 1) instead of collapsing across cells for the
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analyses of arousal and valence effects, respectively, would have further increased the propor-
tion of participants with poor model fit in the current study. The investigation of Arousal x
Valence interactions thus remains a challenge for future research. Fourth, we did not include
an immediate test of memory and therefore cannot make conclusions about the effects of con-
solidation per se. Future work examining the effects of emotion on decision biases before and
after consolidation is an important comparison for future research. Finally, we included neutral
stimuli even though the critical hypotheses and analyses focused on positive and negative items
only, and we presented all three valence categories in mixed trial blocks. Considering the possi-
bility of “bleed-over” valence effects during encoding, future work should test whether the cur-
rent findings would hold if positive and negative items were presented in blocked, rather than
intermixed, fashion during the study phase.

Conclusions

Understanding how emotion influences memory is important because so many of our memo-
ries have an affective tone, and many affective disorders are associated with memory bias
toward highly arousing and negative experiences. The diffusion model can improve analysis of
two-choice tasks often employed when investigating differences in healthy and patient popula-
tions—such as individuals with PTSD, depression and anxiety—by decomposing accuracy and
RT distributions into distinct components of processing to better inform cognitive training
[11]. The role of retention interval is particularly important given the constructive nature and
malleability of memory made particularly salient in the false memory and eyewitness testimony
literature (e.g., Loftus [62]).

The current study is the first to separate the effect of arousal from that of valence on the
delayed recognition of incidentally encoded pictures. We utilized the diffusion model to exam-
ine two decision biases: response bias and memory bias. There are two novel findings from the
study. First, while both arousal and valence lead to a liberal response bias which has been
reported previously, we found that the motivations that influence these response preferences at
retrieval are stable across long study-test delays for valent stimuli, but bias is reduced for arous-
ing stimuli after a longer delay. Second, memory bias analyses indicated that arousal and valence
differentially influence familiarity and novelty signals on memory decisions. In particular, high
arousal and negative valence boost familiarity signals relative to low arousal and positive
valence, respectively. These findings confirm a “special role” of high arousal and negative
valence in emotion-cognition interactions in younger adults [4,23,24] and the impact of arousal,
rather than emotional valence on consolidation processes during long-term memory. The disso-
ciation of arousal and valence effects on memory bias illustrates the utility of diffusion modeling
for the study of emotion-cognition interactions (see also [11,63]). By jointly analyzing accuracy
and RT data and providing individual measures of model fit, diffusion modeling provides a
powerful alternative to accuracy-based measures commonly used in the literature on emotional
memory which cannot distinguish between response bias and memory bias.

The memory bias findings are particularly interesting because the pattern is quite different
from the pattern that emerged for accuracy and reaction time. For example, accuracy was bet-
ter, and reaction times were shorter, for positive compared to negative items. However, the
memory bias results suggest that positive items elicit novelty signals rather than familiarity sig-
nals. Thus, participants were more efficient in detecting positively-valenced new stimuli than
in recognizing positively-valenced old stimuli. We think this contradiction speaks to the need
to examine accuracy and reaction time in a model that allows the inclusion of both simulta-
neously and how diffusion modeling is particularly useful for examining how emotion affects
retrieval dynamics, an issue that has received little empirical study to date.
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S1 Fig. Model Fit for Arousal at 1-day Delay. Fit of the model predictions for response time
quartiles and accuracy values for high and low arousal at the 1-day delay.
(TTF)

S2 Fig. Model Fit for Arousal at 7-day Delay. Fit of the model predictions for response time
quartiles and accuracy values for high and low arousal at the 7-day delay.
(TIF)

S3 Fig. Model Fit for Valence at 1-day Delay. Fit of model predictions for response time quar-
tiles and accuracy values for negative and positive valence at the 1-day delay.
(TTF)

S4 Fig. Model Fit for Valence at 7-day Retention. Fit of model predictions for response time
quartiles and accuracy values for negative and positive valence at the 7-day delay.
(TIF)
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