Crystal Structure of *trans*-Bis[2-(p-fluorophenyl)-2-oxazoline- $\kappa^4 N$]platinum(II) dichloride]

Paras N. YADAV,* Robert A. GOSSAGE,*** and Andreas DECKEN***

*Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6 Canada

**Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto ON M5B 2K3 Canada

***Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 6E2 Canada

The title material was synthesised by the treatment of PtCl₂ with 2-(4'-fluorophenyl)-2-oxazoline in a MeOH solution. The crystal system is monoclinic (space group $P2_1/n$; Z = 2); the unit-cell dimensions are a = 7.7152(7)Å, b = 11.517(1)Å, c = 11.168(1)Å with $\beta = 110.123(2)^\circ$; V = 931.8(2)Å³). The final *R* value was 0.0149 (2030 observed reflections: $I > 2\sigma(I)$). The Pt atom coordinates with two *N*-bound oxazolines in addition to two (transoidally disposed) chloride atoms; these interactions result in a square planar geometry around the metal center.

(Received June 9, 2008; Accepted November 28, 2008; Published on web December 24, 2008)

Platinum containing heterocyclic compounds has been used extensively as regio- and enantio-selective catalysts, biomedical agents and in many fundamental studies of coordination chemistry.¹ As part of our continuing investigations into the coordination chemistry of oxazoles, and specifically 2-oxazolines (*i.e.*, 4,5-dihydrooxazoles),² we report herein on the synthesis and characterisation of a halide complex of formally Pt²⁺ containing the ligand 2-(*p*-fluorophenyl)-2-oxazoline. This ligand was chosen as part of a larger program under development to investigate the medicinal properties of an extensive series of Pt-oxazole systems.

A methanol (10 mL) suspension of PtCl₂ (0.266 g: 1.0 mmol) was treated with 2-(*p*-fluorophenyl)-2-oxazoline (0.454 g: 2.5 mmol), and the resulting mixture was stirred at room temperature for 4 days. The solid that had formed during this time period was filtered off and washed with additional MeOH (10 mL), Et₂O (2×5 mL), and then dried in air to give the *product* in the form of a light-grey coloured powder. Recrystallization (CH₂Cl₂/Et₂O) of this material leds to the isolation of colorless crystals of the title complex. mp 225-227°C (decomp.); *Anal.* calcd (found): C 36.25 (35.34); H 2.70 (2.69); N 4.70 (4.61) %.

A single crystal of the complex of approximate dimensions $(0.25 \times 0.20 \times 0.15 \text{ mm})$ was chosen for a structure determination. A schematic representation of the complex appears in Fig. 1 and the molecular structure is shown in Fig. 2. Crystallographic

Fig. 1 Schematic representation of the title complex.

[†] To whom correspondence should be addressed. E-mail: gossage@ryerson.ca; fax: +1(416)9795044. data and the experimental details are given in Table 1. The atomic coordinates and equivalent isotropic displacement parameters for the non-hydrogen atoms appear in Table 2; selected atomic distance and angles are listed in Table 3.

The crystal-structure determination reveals that the central Pt atom is coordinated by two pairs of identical ligands. The coordination sphere contains two transoidally disposed monodentate oxazolines and a pair of chloride atoms. Hence, the title complex is best described as *trans*-bis[2-(*p*-fluorophenyl)-2-oxazoline- $\kappa^4 N$]platinum(II) chloride. The observed Pt-Cl bond length (~2.30 Å) is typical of that found in other *trans*-[PtCl₂(*N*-donor)₂] complexes, such as [PtCl₂(8-dqmp)₂] (2.306(1)Å: CCDC No. 103231).³ 8-dqmp = diethyl 8-

Table 1 Crystal data and structure refinement for the title complex

CCDC No. 690330 Empirical formula: C18H16Cl2F2N2O2Pt Formula weight = 596.32 T = 198 KCrystal system: monoclinic Space group: $P2_1/n$ a = 7.7152(7)Å b = 11.517(1)Å $\beta = 110.123(2)^{\circ}$ c = 11.168(1)Å V = 931.8(1)Å³ Z = 2 $D_{calc} = 2.125 \text{ g/cm}^3$ θ range for data collection: 2.63 to 27.49° Reflections collected = 6096Independent reflections = 2030Final R indices $[I > 2\sigma(I)] R_1 = 0.0149, wR_2 = 0.0365$ λ (Mo K_{α}) = 0.71073 Å $(\Delta \rho)_{\rm max} = 0.857 \text{ e.} \text{\AA}^{-3}$ $(\Delta \rho)_{\rm min} = -0.770 \text{ e.Å}^{-3}$ Measurement: Bruker AXS P4/SMART 1000 Structure determination: direct methods (SHELXTL) Refinement: full-matrix least-squares on F^2 Molecular Structure: ORTEP (L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565)

Fig. 2 Molecular structure of the title material with atom labeling.

Table 2 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³). $U_{(eq)}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

	x	у	z	$U_{(eq)}$
Pt	0	5000	5000	20(1)
Cl	2974(1)	4492(1)	6201(1)	31(1)
C(1)	1015(3)	7338(2)	4264(2)	22(1)
N(2)	738(3)	6675(2)	5099(2)	22(1)
C(3)	843(4)	7373(2)	6230(2)	27(1)
C(4)	1227(4)	8600(2)	5859(3)	29(1)
O(5)	1263(2)	8468(2)	4564(2)	28(1)
C(6)	1093(3)	7028(2)	3004(2)	23(1)
C(7)	608(3)	7866(2)	2043(2)	27(1)
C(8)	674(4)	7610(3)	851(3)	32(1)
C(9)	1255(4)	6528(3)	660(3)	33(1)
C(10)	1767(4)	5685(3)	1586(3)	32(1)
C(11)	1686(3)	5942(2)	2773(3)	28(1)
F	1371(3)	6271(2)	-502(2)	51(1)

quinolylmethylphosphonate- $\kappa^{1}N$. The two symmetry related oxazoline ligands are coordinated via the N-atoms (Pt-N bond length ~ 2.00 Å), as expected.² This latter interaction displays typical Pt-oxazoline bond lengths, and can be compared with complexes such as the cisoidal isomer of [PtCl₂(2-diethylamino-2-oxazoline)₂] (CCDC No. 199088).⁴ The aromatic groups appending the coordinated heterocyclic ligands of the title material are tilted out of the plane of the oxazoline rings with a torsion angle (∠O5-C1-C6-C7) of approximately 27.5°. A similar situation is observed with the structurally related *trans*-[PdCl₂(2-phenyl-2-oxazoline)₂] complex (~28.2°: identified as the complementary O1-C9-C1-C6 torsion angle in CCDC No. 138520).5 Crystallographic symmetry imposes Cl-Pt-Cl and N-Pt-N angles of 180°, and therefore the geometry about the metal centre is close to true square planar in nature. The only deviations from this geometry occur because of the differences between the Pt-N and Pt-Cl bond lengths and the corresponding Cl-Pt-N angles; these latter values are slightly

Table 3 Bond lengths [Å] and angles $[\degree]$ for the crystal of the title complex

	-			
	Pt-N(2)	2.004(2)	N(2)-Pt-Cl#1	89.68(6)
	Pt-Cl	2.2996(7)	N(2)-Pt-Cl	90.32(6)
	C(1)-N(2)	1.279(3)	N(2)-C(1)-O(5)	116.2(2)
	C(1)-O(5)	1.341(3)	N(2)-C(1)-C(6)	128.6(2)
	C(1)-C(6)	1.473(3)	O(5)-C(1)-C(6)	115.1(2)
	N(2)-C(3)	1.476(3)	C(1)-N(2)-C(3)	109.0(2)
	C(3)-C(4)	1.530(4)	C(1)-N(2)-Pt	130.56(17)
	C(4)-O(5)	1.464(3)	C(3)-N(2)-Pt	120.15(15)
	C(6)-C(11)	1.387(4)	N(2)-C(3)-C(4)	103.25(19)
	C(6)-C(7)	1.395(4)	O(5)-C(4)-C(3)	104.1(2)
	C(7)-C(8)	1.382(4)	C(1)-O(5)-C(4)	107.33(19)
	C(9)-F	1.363(3)	C(11)-C(6)-C(7)	120.0(2)
	C(9)-C(10)	1.373(4)	C(11)-C(6)-C(1)	121.4(2)
	C(10)-C(11)	1.381(4)	C(7)-C(6)-C(1)	118.6(2)
			C(8)-C(7)-C(6)	120.3(3)
			C(9)-C(8)-C(7)	117.9(3)
			F-C(9)-C(8)	118.6(3)
			F-C(9)-C(10)	117.9(3)
			C(8)-C(9)-C(10)	123.6(3)
			C(9)-C(10)-C(11)	118.4(3)
			C(10)-C(11)-C(6)	119.9(3)
_				

Symmetry transformations used to generate equivalent atoms: #1 - x, -y+1, -z+1

offset from the idealised right angle.

Acknowledgements

The authors are indebted to the support of NSERC (Canada) and the Canadian Breast Cancer Foundation.

References

- F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, "Advanced Inorganic Chemistry", 6th ed., John Wiley & Sons, Toronto, 1999, Chapter 18-H and references therein.
- For example: R. A. Gossage, H. A. Jenkins, N. D. Jones, R. C. Jones, and B. F. Yates, *Dalton Trans.*, 2008, 3115.
- I. Matijašić, G. Bocelli, C. Rizzoli, and L. Tušek-Božić, Croat. Chem. Acta, 1999, 72, 531.
- C. M. P. Ferreira, M. F. C. Guedes da Silva, R. A. Michelin, V. Yu. Kukushkin, J. J. R. Frausto da Silva, and A. J. L. Pombeiro, *Dalton Trans.*, 2003, 3751.
- I. P. Smoliakova, K. J. Keuseman, D. C. Haagenson, D. M. Wellmann, P. B. Colligan, N. A. Kataeva, A. V. Churakov, L. G. Kuz'mina, and V. V. Dunina, *J. Organomet. Chem.*, 2000, 603, 86.