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Abstract 

Background:  It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma 
by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides 
cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were 
compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, 
plus ice cold plasma to control for pre-analytical variation.

Methods:  The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were 
analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water 
with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and 
tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian 
cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. 
Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts 
were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts 
by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R 
statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test.

Results:  Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed 
increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large 
changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, 
LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, 
CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, 
LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in 
proteins that showed a complex set of previously established functional and structural relationships by STRING analy‑
sis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, 
TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus 
normal female and other diseases or controls by the Tukey–Kramer HSD test.

Conclusion:  Here we show that separation of endogenous peptides with a step gradient of organic/water and 
differential centrifugation followed by random and independent sampling by LC–ESI–MS/MS with analysis of pep‑
tide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides 
between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered 
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Introduction
Blood peptides
Blood peptides may be identified by C18  liquid chro-
matography electrospray ionization and tandem mass 
spectrometry (LC-ESI-MS/MS)  [1].  The endogenous 
peptides of human blood were first identified by MS/
MS fragmentation that demonstrated that a tryptic like 
endoproteinase activity cleaves peptides from proteins 
but an exopeptidase activity degraded the peptides cre-
ating a pseudo steady state [1–5]. The alternative RNA 
splicing of pre, pro or protein substrates combined with 
complex pathways of post translational processing may 
result in the cleavage of many peptides from proteins in 
circulation that may help mediate, or mark, important 
physiological processes [6]. Protein cleavage products 
from pro-opiomelanocortin, natriuretic peptides, insulin 
like growth factors, coagulation factor XIII, proglucagon-
derived peptides, human kallikrein-related peptidase 
SERPINA1, ENOSF1, neurofilament medium polypep-
tide, circulating IGFBP-4 fragments and many others 
have been suggested to have some diagnostic or mecha-
nistic importance [7–18]. Multivariate analysis provided 
about the same statistical power compared to univariate 
ANOVA of the main feature(s) [1, 19, 20]. Random and 
independent sampling of the endogenous tryptic pep-
tides from clinical plasma samples revealed individual 
analytes that show significant variation by standard sta-
tistical tests such as the Chi Square test and ANOVA [1, 
2, 4, 21–23]. Pre-analytical variation was exhaustively 
studied between fresh EDTA plasma samples on ice ver-
sus plasma samples degraded for various lengths of time 
to control for differences in sample handling and storage 
and showed the observation of peptides from many pro-
teins may increase by on average twofold after incubation 
at room temperature [2–4] but that Complement C3 and 
C4B vary sharply with incubation time [2, 4] in agree-
ment with previous results [1].

Sample preparation
Without pre-fractionation, only peptides from a few high 
abundance proteins may be observed by LC-ESI-MS/MS 
[24–26]. In contrast, with one step sample preparation by 
partition chromatography or differential centrifugation, 
low abundance proteins of ~ 1  ng/ml could be detected 

and quantified in blood samples by electrospray mass 
spectrometry [26–28]. The sensitive analysis of human 
blood fluids by LC–ESI–MS/MS is dependent on selec-
tive fractionation strategies, such as partition chroma-
tography or organic extraction, to relieve suppression 
and competition for ionization, resulting in high signal to 
noise ratios and thus low error rates of identification and 
quantification [28]. Simple and single-use, i.e. disposable, 
preparative and analytical separation apparatus permits 
the identification and quantification of blood peptides 
and proteins with no possibility of cross contamination 
between patients that guarantees sampling is statistically 
independent [1, 2, 25–27]. Previously, the use of precipi-
tation and selective extraction of the pellet [5, 27, 29, 30] 
was shown to be superior to precipitation and analysis of 
the ACN supernatant [31], ultra-filtration, [32] albumin 
depletion chromatography [33] or C18 partition chroma-
tography alone [25]. Precipitating all of the polypeptides 
with 90% ACN followed by step-wise differential cen-
trifugation with mixtures of organic solvent and water 
was the optimal method to sensitively detect endogenous 
peptides from cellular proteins in blood [24]. Here a ten-
step gradient of acetonitrile/water with differential cen-
trifugation to extract 200 µl of EDTA plasma for analysis 
by LC–ESI–MS/MS showed a high signal to noise ratio 
[24] and resulted in the confident identification of tryptic 
peptides [2] from ovarian cancer versus normal control 
samples.

Computation
Partitioning each clinical sample into multiple selec-
tive sub-fractions, that each must be separately resolved 
by analytical C18, provides sensitivity [24] but creates a 
computational challenge. Previously the 32 bit computer 
power was lacking to compare all the peptides of all the 
proteins of the many sub-factions from each patient in 
a large experiment [34]. At present the MS/MS spec-
tra from random and independent sampling of peptides 
from thousands of LC–ESI–MS/MS may be fit to pep-
tides using a 64 bit server and then compared across 
treatments using SQL SERVER/R that provides excellent 
data compression, relation and analysis [2, 21]. The pro-
tein p-values and FDR q-values as well as the peptide-
to-protein distribution of the precursor ions of > 10,000 

from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results 
indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC–ESI–MS/MS that will 
be a powerful tool for clinical research.

Keywords:  Human EDTA plasma, Organic extraction, Nano chromatography, Electrospray ionization tandem mass 
spectrometry, LC–ESI–MS/MS, Linear quadrupole ion trap, Discovery of variation, Ovarian cancer, Random and 
independent sampling, Chi Square test and ANOVA, SQL SERVER & R
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counts from organic extraction were confirmed against 
a null (i.e. known false positive) model of noise or com-
puter generated random MS/MS spectra [2, 22, 35–37]. 
The standard SQL Server system permits the direct inter-
rogation of the related data by the open source R statisti-
cal system without proteomic-specific software packages. 
Here for the first time the use of SQL/R has permitted 
the detailed statistical analysis of randomly and inde-
pendently sampled LC–ESI–MS/MS data from multiple 
clinical locations and treatments in parallel that would be 
requisite for a multisite clinical trial.

Cancer proteins in blood fluids
Many non-specific, i.e. common, or so called “acute 
phase” proteins have been detected to increase by the 
analysis of blood fluids such as amyloids, complement, 
haptoglobin, alpha 1 antitrypsin, clusterin, (ApoJ), com-
plement components, heat shock  proteins, fibrinogens, 
hemopexin, alpha 2 macroglobulin and others that may 
be of limited diagnostic value [28, 38, 39]. There is good 
evidence that cellular proteins may exist in circulation, 
and even form supramolecular complexes with other 
molecules in the blood [40]. Proteins and RNA may be 
packaged in exosomes [41, 42] that are challenging to 
isolate and it appears that supramolecular complexes of 
proteins, including DNA/RNA binding proteins, from 
cells may exist in circulation [40, 43, 44]. Apolipoprotein 
A IV (APOA4) and vitamin D binding protein (VDBP) 
significantly discriminated malignant from benign cases 
of ovarian cancer but was not as good as CA125 for diag-
nostic accuracy [45]. A proteomic signature of ovarian 
cancer tumor fluid was identified and verified by targeted 
proteomics [46]. Protein Z was identified as a putative 
novel biomarker for early detection of ovarian cancer 
[47]. Cystatin B (CYTB) may be a potential diagnostic 
biomarker in ovarian clear cell carcinoma [48]. Here, the 
combination of step wise organic partition [24], random 
and independent sampling by nano electrospray LC–
ESI–MS/MS, and large scale 64 bit computation with 
SQL SERVER/R [21] permitted the sensitive detection 
of peptides and/or phosphopeptides, and thus the pres-
ence of the parent protein chains and complexes, from 
human plasma for comparison of variation in ovarian 
cancer patients versus controls by the classical statistical 
approaches of the Chi Square test followed by univariate 
ANOVA [1, 22, 23].

Materials and methods
Materials
The HPLC was an Agilent 1100 (Santa Clara CA USA). 
The linear ion trap mass spectrometer was an LTQ XL 
(Thermo Electron Corporation, Waltham, MA, USA). 
The anonymous human EDTA plasma (9–20 per disease 

or normal control) with no identifying information was 
obtained from multiple clinical locations of St Joseph’s 
Hospital of McMaster University, The Ontario Tumor 
Bank of the Ontario Institute of Cancer Research, St 
Michaels Hospital Toronto, Amsterdam University Medi-
cal Centers, Vrije Universiteit Amsterdam, and IBBL 
Luxembourg under Ryerson Ethic Review Board Protocol 
REB 2015-207. The arbitrarily selected disease population 
samples were from patients that received a confirmed 
diagnoses of the disease indicated at the source institu-
tion. The plasma samples were collected before therapeu-
tic intervention and no additional information about the 
samples were made available. C18 ZipTips were obtained 
from Millipore (Bedford, MA). C18 HPLC resin was 
from Agilent (Zorbax 300 SB-C18 5-micron). Solvents 
were obtained from Caledon Laboratories (George-
town, Ontario, Canada). All other salts and reagents 
were obtained from Sigma-Aldrich-Fluka (St Louis, MO) 
except where indicated.

Sample preparation
Human EDTA plasma samples (200 μl) were precipitated 
with 9 volumes of acetonitrile (90% ACN) [27], followed 
by the selective extraction of the pellet using a step gra-
dient to achieve selectivity across sub-fractions and thus 
greater sensitivity [24]. Disposable plastic 2  ml sample 
tubes and plastic pipette tips were used to handle sam-
ples. The acetonitrile suspension was separated with 
a centrifuge at 14,000 RCF for 5  min. The acetonitrile 
supernatant, that contains few peptides, was collected, 
transferred to a fresh sample tube and dried in a rotary 
lyophilizer. The organic precipitate (pellet) that contains 
a much larger total amount of endogenous polypeptides 
[27] was manually re-suspended using a step gradient of 
increasing water content to yield 10 fractions from those 
soluble in 90% ACN to 10% ACN, followed by 100% H2O, 
and then 5% formic acid [24]. The extracts were clarified 
with a centrifuge at 14,000 RCF for 5 min. The extracted 
sample fractions were dried under vacuum in a rotary 
lyophilizer and stored at − 80 °C for subsequent analysis.

Preparative C18 chromatography
The peptides of EDTA plasma precipitated in ACN, and 
extracted from the pellet in a step-gradient were then 
re-dissolved in 5% formic acid  and collected  over C18 
preparative partition chromatography. Preparative C18 
separation provided the best results for peptide and 
phosphopeptide analysis in a “blind” analysis [49]. Solid 
phase extraction with C18 for LC–ESI–MS/MS was per-
formed as previously described [1, 25–27, 29]. The C18 
chromatography resin (Zip Tip) was wet with 65% ace-
tonitrile before equilibration in water with 5% formic 
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acid. The plasma extract was dissolved in 200  μl of 5% 
formic acid in water. The resin was washed with at least 
five volumes of the same binding buffer. The resin was 
eluted with ≥ 3 column volumes of 65% acetonitrile (2 µl) 
in 5% formic acid. In order to avoid cross-contamination 
the preparative C18 resin was discarded after a single use.

LC–ESI–MS/MS
In order to entirely prevent any possibility of cross con-
tamination, a new disposable nano analytical HPLC col-
umn and nano emitter was fabricated for recording each 
patient sample-fraction set. The ion traps were cleaned 
and tested for sensitivity with angiotensin and glu-fibrin-
ogen prior to recordings. The new column was condi-
tioned and quality controlled with a mixture of three 
non-human protein standards using a digest of Bovine 
Cytochrome C, Yeast alcohol dehydrogenase (ADH) and 
Glycogen Phosphorylase B to confirm the sensitivity and 
mass accuracy of the system prior to each patient sample 
set  [35]. The statistical validity of the linear quadrupole 
ion trap for LC–ESI–MS/MS of human plasma [24] was 
in agreement with the results from the 3D Paul ion trap 
[22, 35–37]. The stepwise extractions were collected and 
desalted over C18 preparative micro columns, eluted in 2 
µl of 65% ACN and 5% formic acid, diluted tenfold with 
5% formic acid in water and 5% ACN, and immediately 
loaded manually into a 20  μl metal sample loop before 
injecting onto the analytical column via a Rhodynne 
injector. Endogenous peptide samples were analyzed 
over a discontinuous gradient generated  at a flow rate 
of ~ 10 μl per minute with an Agilent 1100 series capillary 
pump split upstream of the injector during recording to 
about ~ 200 nl per minute. The separation was performed 
with a C18 (150 mm × 0.15 mm) fritted capillary column. 
The acetonitrile profile was started at 5%, ramped to 12% 
after 5  min and then increased to 65% over ~ 90  min, 
remained at 65% for 5 min, decreased to 50% for 15 min 
and then declined to a final proportion of 5% prior to 
injection of the next step fraction from the same patient. 
The nano HPLC effluent was analyzed by ESI ionization 
with detection by MS and fragmentation by MS/MS with 
a linear quadrupole ion trap [50]. The instrument was set 
to collect the precursor for up to 200 ms prior to MS/MS 
fragmentation with up to four fragmentations per pre-
cursor ion that were averaged. Individual, independent 
samples from disease, normal and ice cold control were 
precipitated, fractionated over a step gradient and col-
lected over C18 for manual injection.

Correlation analysis
In this study we accepted about 15 million precursor ions 
with intensity > E4 counts that was previously shown to 
be at the 99% percentile of the noise distribution with an 

average signal to noise of approximately one hundred [2, 
24]. Correlation analysis of ion trap data was performed 
with the X!TANDEM [51] and SEQUEST [52] algorithms 
to match tandem mass spectra to peptide sequences from 
a library of 158,071 unique Homo sapien proteins that 
differ by at least one amino acid from RIKEN, IMAGE, 
RefSeq, NCBI, Swiss Prot, TrEMBLE, ENSEMBL, UNI-
PROT and UNIPARC along with available Gene Symbols, 
all previous accession numbers, description fields and 
any other available annotation rendered non-redundant 
by protein sequence in SQL Server last assembled in May 
2015. Endogenous peptides with precursors > 10,000 
(E4) arbitrary counts were searched as fully tryptic pep-
tides and/or phosphopeptides and the results compared 
in SQL Server/R. The X!TANDEM default ion trap data 
settings of ± 3 m/z from precursors peptides considered 
from 300 to 2000 m/z with a tolerance of 0.5 Da error in 
the fragments were used [22, 26, 36, 37, 51, 53]. The best 
fit peptide of the MS/MS spectra to fully tryptic and/or 
phospho-tryptic peptides at charge states of + 2 versus 
+ 3 were accepted with additional acetylation, or oxi-
dation of methionine and with possible loss of water or 
ammonia. The resulting accession numbers, actual and 
estimated masses, correlated peptide sequences, peptide 
and protein scores, resulting protein sequences and other 
associated data were captured and assembled together in 
an SQL Server relational database [21].

Data sampling, sorting, transformation and visualization
The linear quadrupole ion trap provided the precursor 
ion intensity and m/z  values plus the peptide fragment 
MS/MS spectra. The MS/MS spectra were redundantly 
correlated to specific tryptic peptide sequences by the 
X!TANDEM and SEQUEST algorithms. The MS and MS/
MS spectra together with the results of the X!TANDEM 
and SEQUEST algorithms were parsed into an SQL 
Server database and filtered [21] before statistical and 
graphical analysis with the generic R data system [21–23, 
35, 54]. The peptide to protein correlation frequency 
counts for each gene symbol were summed over ovar-
ian cancer versus control to correct the observation fre-
quency prior to the Chi Square test using Eq. (1):

The precursor intensity data for MS/MS spectra were 
log10 transformed, tested for normality and analyzed 
across institution/study and diseases verses controls by 
means, standard errors, quantile box plots and ANOVA 
[22, 23, 35]. The Chi Square test, and entirely independ-
ent analysis of the precursor intensity using the rigorous 
ANOVA with Tukey–Kramer HSD test, versus multiple 
controls was achieved using a 64 bit R server.

(1)(i) χ2 = (Disease−Control)2/(Control+ 1)
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Results
The aim and objective of this study was proof of con-
cept towards a method to compare the endogenous 
tryptic peptides of ovarian cancer plasma to that from 
multiple clinical locations that utilized random and 
independent sampling with a battery of robust and 
sensitive linear quadrupole ion trap ion traps where 
the results were compiled using a central SQL Server 
R statistical system. The method shows great sensitiv-
ity and flexibility but relies on the fit of MS/MS spectra 

to assign peptide identity, and statistical analysis of 
peptide observation frequency and intensity, and so is 
computationally intensive.

LC–ESI–MS/MS
The pool of endogenous tryptic peptides (TRYP) and/
or tryptic phosphopeptides (STYP) were randomly and 
independently sampled without replacement by liquid 
chromatography, nano electrospray ionization and tan-
dem mass spectrometry (LC–ESI–MS/MS) [2] from 

Fig. 1  Quantile plots of the corrected difference in observation frequency (Delta) and Chi Square values of the ovarian 
cancer (i.e. disease treatment) versus control as indicated. The difference of ovarian cancer (n ≥ 10) versus each of the female normal (n ≥ 5) using 
the Quantile plot tended to zero (see red line). Similar results were obtained by comparison to breast cancer or other controls (not shown). a Tryptic 
peptide corrected difference (delta) in observation frequency; b tryptic peptide Chi Square χ2; c tryptic and/or STYP the corrected difference (delta) 
in observation frequency; d tryptic and/or STYP peptide Chi Square χ2
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ovarian versus breast cancer, or female normal, other 
disease and normal plasma, and ice cold controls  (see 
Additional file  1: Table  S1) to serve as a baseline. The 
raw correlations were filtered to retain only the best fit 
by charge state and peptide sequence in SQL Server to 
entirely avoid re-use of the same MS/MS spectra. The 
filtered results were then analyzed by the generic R sta-
tistical system in a matrix of disease and controls that 
revealed the set of blood peptides specific to each disease 
state. The statistical validity of the extraction and sam-
pling system were previously established by computa-
tion of cumulative p-values and FDR corrected q-values 
for each gene symbol by the method of Benjamini and 
Hochberg [55] and frequency comparison to null (i.e. 
known  false positive) noise or random MS/MS  spec-
tra [2, 24]. The experimental  LC–ESI–MS/MS resulted 
in 15,968,550 MS/MS spectra of which 1,916,672 (12%) 
were fit by X!TANDEM to distinct best fit peptides 
with p-values that were computed together to provide 
the cumulative p-value for each protein accession that 
resulted in over 14,000 types of protein gene symbols 
with p-values and FDR corrected q-values of < 1/10,000 
(q ≤ 0.0001).

Frequency correction
A total of 269,371 tryptic (TRYP) and 274,356 phospho-
tryptic (TRYP-STYP) MS/MS were correlated to pro-
teins from female normal plasma. Similarly, 660,251 
(TRYP) and 667, 467 (TRYP-STYP) MS/MS were corre-
lated to proteins from ovarian cancer plasma and these 
sums were used to correct observation frequency. The 
observed frequency difference plot passed through the 
0 point (no difference in observed frequency) at the 0 
quantile point (mean of difference distribution) clearly 
indicating the observation frequency values were pro-
portionally corrected prior to Chi Square comparison 
(Fig. 1).

Comparison of ovarian cancer to female normal by Chi 
Square analysis
A set of ~ 500 gene symbols showed Chi Square (χ2) 
values of ≥ 15 between the ovarian cancer versus 
the normal female samples. Ovarian-cancer-specific 
peptides and/or phosphopeptides from cellular pro-
teins, membrane proteins, nucleic acid binding pro-
teins, signaling factors, metabolic enzymes and others 
including uncharacterized proteins showed signifi-
cantly greater observation frequency. In agreement 
with the literature, peptides from many common pro-
teins including acute phase response proteins such 
as Haptoglobin (HP) [39], Haptoglobin Related Pro-
tein (HPR), Alpha Anti Trypsin (SERPINA1) [15] 
and others were more frequently observed in ovarian 

cancer samples [38] (Table  1). The Chi Square analy-
sis showed some proteins with χ2 values that were 
apparently far too large (χ2 ≥ 60, p < 0.0001, df 1) to 
all have resulted from random sampling error (Fig. 1). 
Many proteins showed an  observation frequency that 
was  significantly greater in ovarian cancer plasma 
including ZNF91, ZNF254, F13A1, LOC102723511, 
ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, 
NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, 
ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, 
PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, 
LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2 
and DHCR24 (Table  1). The full list of Chi Square 
results are found in Additional file 2: Table S2.

Pathway and gene ontology analysis using the STRING 
algorithm
In a computationally independent method to ensure 
the variation in proteins associated with ovarian can-
cer were not just the result of some random process, we 
analyzed the distribution of the known protein–protein 
interactions and the distribution of the cellular location, 
molecular function and biological processes of the pro-
teins identified with respect to a random sampling of the 
human genome. There were many interactions apparent 
between the proteins computed to be specific to ovarian 
cancer from fully tryptic (Fig.  2) and/or phospho tryp-
tic peptides (Fig. 3). The ovarian cancer samples showed 
statistically significant enrichment of protein interac-
tions and Gene Ontology terms that were consistent with 
structural and functional relationships between the pro-
teins identified in ovarian cancer compared to a random 
sampling of the human genome (Table 2).  

ANOVA analysis across disease, normal and control plasma 
treatments
Many proteins that showed greater observation fre-
quency in ovarian cancer also showed significantly 
greater precursor intensity compared to breast can-
cer, the female normal controls, male and female EDTA 
plasma from other diseases and normals by ANOVA 
comparison. The mean precursor intensity values from 
gene symbols that varied by Chi Square (χ2 > 15) were 
analyzed by univariate ANOVA followed by the Tukey–
Kramer Honestly Significant Difference (HSD) test in 
R [1, 23] (Table  3, Figs.  4, 5 and 6). For example, HPR 
showed precursor intensity quantile plots with   a linear 
and Gaussian distribution that ranged from E4 to more 
than E6 (Fig.  4). The common  acute phase proteins 
HP, HPR, HPX, and SERPINA all showed significant 
increases with ovarian cancer (Fig.  5). Ovarian cancer 
showed a higher intensity of cellular proteins including 
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Table 1  Ovarian cancer specific proteins detected by fully 
tryptic peptides and/or  fully tryptic phosphopeptides 
that show a Chi Square (χ2) value of ≥ 60

Gene symbol Average X2 statistic 
per gene symbol

Accessions 
per gene 
symbol

Fully tryptic peptides

HP 2.61E+04 14

HPR 7.27E+03 3

SERPINA1 2.42E+03 6

ZNF91 1.52E+03 7

ZNF254 5.29E+02 9

C4B_2 4.89E+02 1

HPX 4.33E+02 1

F13A1 3.13E+02 8

LOC102723511 3.10E+02 1

ZNF253 3.03E+02 2

QSER1 2.92E+02 6

P4HA1 2.59E+02 3

GPC6 2.53E+02 2

LMNB2 2.22E+02 2

PYGB 1.73E+02 2

C4A 1.64E+02 6

NBR1 1.61E+02 11

CCNI2 1.60E+02 3

LOC101930455 1.39E+02 1

TRPM5 1.38E+02 6

IGSF1 1.26E+02 6

ALB 1.18E+02 8

ITGB1 1.08E+02 15

CHD6 1.07E+02 8

SIRT1 1.04E+02 5

NEFM 1.02E+02 5

SKOR2 1.00E+02 3

C4B 9.94E+01 10

SUPT20HL1 9.93E+01 2

PLCE1 9.83E+01 8

CFB 9.65E+01 7

SRGN 8.87E+01 1

DGCR14 8.69E+01 5

SOWAHC 8.64E+01 1

DKFZp434P0729 8.64E+01 1

HEL-S-82p 8.64E+01 1

USP45 8.35E+01 16

ST8SIA2 7.87E+01 5

REST 7.80E+01 17

ANKRD49 7.51E+01 6

GPR101 7.49E+01 1

TMC3 7.46E+01 2

TAT​ 6.96E+01 2

Phosphotryptic peptides

HP 4.35E+04 14

Table 1  (continued)

Gene symbol Average X2 statistic 
per gene symbol

Accessions 
per gene 
symbol

HPR 2.62E+04 3

SERPINA1 2.56E+03 6

CCDC148 2.17E+03 11

CPSF3 1.26E+03 5

MORN3 1.06E+03 1

C4B_2 8.88E+02 1

QSER1 6.28E+02 6

SIRT1 6.26E+02 5

CCNI2 4.62E+02 3

NMI 3.45E+02 3

Nbla03646 3.45E+02 1

XTP11 3.45E+02 1

HPX 3.35E+02 1

LOC101927572 3.28E+02 1

F13A1 3.22E+02 8

SMC5 3.11E+02 4

C4A 3.01E+02 6

SEMA6B 2.85E+02 2

LOXL3 2.81E+02 10

SEZ6L2 2.31E+02 9

DHCR24 2.24E+02 4

RTTN 2.23E+02 8

DBR1 2.18E+02 3

ALCAM 2.08E+02 6

LOC401437 2.03E+02 1

BAI1 2.02E+02 3

NID2 1.92E+02 8

SOWAHC 1.91E+02 1

C6orf165 1.90E+02 3

C4B 1.80E+02 10

FGA 1.75E+02 6

RGS22 1.75E+02 15

OXER1 1.69E+02 2

ARHGEF25 1.60E+02 3

hCG_2031321 1.60E+02 1

FAM110B 1.58E+02 1

LOC102725271 1.58E+02 1

ORC1 1.58E+02 2

ORC1L 1.58E+02 1

VWA5B1 1.57E+02 10

KCNQ2 1.57E+02 15

DGKH 1.54E+02 5

PTGFRN 1.53E+02 4

CCDC37 1.52E+02 3

DKFZp686H14204 1.48E+02 1

ISL1 1.47E+02 2

GIMAP4 1.45E+02 4

LOC375295 1.44E+02 1
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Zinc Finger protein 91 (ZFN91), apparently extracellular 
protein LOC101930455 (XP_005275896 spidroin-1-like), 
Regulating Synaptic Membrane Exocytosis 1 (RIMS1), 
Transient Receptor Potential cation channel subfamily 
M member 5 (TRPM5), Helicase DNA Binding Protein 
6 (CHD6), GTPase IMAP Family Member 4 (GIMAP4), 

and others by ANOVA followed by the Tukey–Kramer 
HSD test (Fig.  6). However, many proteins showed no 
difference between the ovarian versus the breast cancer 
clinical treatments such as APOA1 (Fig. 6).   

Fig. 2  The Ovarian Cancer STRING network where Chi Square χ2 ≥ 15 from fully tryptic peptides. Ovarian Cancer tryptic peptide frequency 
difference > 15 and χ2 value > 15 at degrees of freedom of 1 (p < 0.0001). Network Stats: number of nodes, 173; number of edges, 260; average node 
degree, 3.01; avg. local clustering coefficient, 0.378; expected number of edges, 206; PPI enrichment p-value, 0.000175
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Discussion
Random and independent sampling of peptides from 
step-wise fractionation followed by LC–ESI–MS/MS 
is a time and manual labor intensive approach that is 
sensitive, direct, and rests on few assumptions [2, 56]. 
High signal to noise ratios of blood peptides is depend-
ent on sample preparation to partition the sample into 
many selective sub-fractions to relieve competition and 
suppression of ionization and thus achieve sensitiv-
ity [24–26] but then requires large computing power 
to re-assemble, organize and analyze the sub-fractions 

together into samples within treatments  for statistical 
analysis [21, 24–26, 56]. Here three independent lines 
of evidence, Chi Square analysis of observation fre-
quency, ANOVA analysis of peptide intensity, together 
with previously established structural/functional rela-
tionships from STRING all agreed that there was 
significant differences in the peptides from specific pro-
teins  of ovarian cancer patients compared to controls. 
The previous careful study of pre-clinical variation over 
time, and under various storage and preservation con-
ditions, seems to rule out pre-clinical variation as the 
most important source of variation between ovarian 

Fig. 3  The Ovarian Cancer STRING network where Chi Square χ2 ≥ 15 from fully tryptic phospho peptides. Ovarian Cancer STYP, frequency 
difference > 15 and χ2 value > 15 at degrees of freedom of 1 (p < 0.0001). Network Information: number of nodes, 191; number of edges, 182; 
average node degree, 1.91; avg. local clustering coefficient, 0.335; expected number of edges, 152; PPI enrichment p-value, 0.00911
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Table 2  The summary of  STRING analysis with  respect to  a  random sampling of  the  human genome for  gene symbols 
that show a Chi Square (χ2) value ≥ 15 (see Additional file 1: Table S1, Additional file 2: Table S2)

Pathway ID Pathway description Count in gene set False discovery rate

Biological process (GO)

GO:0007017 Microtubule-based process 17 0.00251

GO:0007018 Microtubule-based movement 11 0.00251

GO:1902589 Single-organism organelle organization 34 0.0265

Molecular function (GO)

GO:0003774 Motor activity 12 3.17E−06

GO:0003777 Microtubule motor activity 9 2.55E−05

GO:0043167 Ion binding 81 0.000114

GO:0032559 Adenyl ribonucleotide binding 30 0.00325

GO:0097159 Organic cyclic compound binding 71 0.00325

GO:1901363 Heterocyclic compound binding 70 0.00325

GO:0005524 ATP binding 29 0.004

GO:0036094 Small molecule binding 41 0.00734

GO:0005515 Protein binding 60 0.00741

GO:0005488 Binding 107 0.0114

GO:0043169 Cation binding 56 0.0114

GO:0016887 ATPase activity 12 0.0122

GO:0046872 Metal ion binding 55 0.0122

GO:0043168 Anion binding 40 0.014

GO:0032549 Ribonucleoside binding 30 0.0393

GO:0000166 Nucleotide binding 35 0.0419

Cellular component (GO)

GO:0005875 Microtubule associated complex 10 0.000239

GO:0072562 Blood microparticle 9 0.000239

GO:0032991 Macromolecular complex 62 0.00102

GO:0015630 Microtubule cytoskeleton 23 0.00182

GO:0043233 Organelle lumen 57 0.00182

GO:0044446 Intracellular organelle part 86 0.00317

GO:0044430 Cytoskeletal part 26 0.00399

GO:0030286 Dynein complex 5 0.0049

GO:0044422 Organelle part 86 0.00587

GO:0030426 Growth cone 7 0.00767

GO:0043232 Intracellular non-membrane-bounded organelle 48 0.00767

GO:0070013 Intracellular organelle lumen 53 0.00771

GO:0005868 Cytoplasmic dynein complex 4 0.0102

GO:0005858 Axonemal dynein complex 3 0.0174

GO:0043226 Organelle 116 0.0174

GO:0043234 Protein complex 50 0.0174

GO:0097513 Myosin II filament 2 0.0174

GO:0043229 Intracellular organelle 109 0.0203

GO:0005856 Cytoskeleton 29 0.0272

GO:0030027 Lamellipodium 7 0.0272

GO:0031988 Membrane-bounded vesicle 45 0.0272

GO:0033553 rDNA heterochromatin 2 0.0272

GO:0071682 Endocytic vesicle lumen 3 0.0272

GO:0071013 Catalytic step 2 spliceosome 5 0.0299

GO:0001725 Stress fiber 4 0.0301

GO:0044441 Ciliary part 9 0.0315
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Table 2  (continued)

Pathway ID Pathway description Count in gene set False discovery rate

GO:0070062 Extracellular exosome 38 0.0318

GO:0005929 Cilium 11 0.0325

GO:0060205 Cytoplasmic membrane-bounded vesicle lumen 5 0.0325

GO:0005874 Microtubule 10 0.0331

GO:0005654 Nucleoplasm 38 0.0343

GO:0005871 Kinesin complex 4 0.0353

GO:0042641 Actomyosin 4 0.0353

GO:0043227 Membrane-bounded organelle 109 0.0363

GO:0042995 Cell projection 25 0.0441

GO:0044463 Cell projection part 16 0.0441

KEGG pathways

5205 Proteoglycans in cancer 11 0.000747

Molecular function (GO)

GO:0003774 Motor activity 12 9.83E−06

GO:0032559 Adenyl ribonucleotide binding 34 0.000836

GO:0005524 ATP binding 33 0.000971

GO:0000166 Nucleotide binding 42 0.00237

GO:0032550 Purine ribonucleoside binding 36 0.00237

GO:0032555 Purine ribonucleotide binding 36 0.00237

GO:0036094 Small molecule binding 45 0.00237

GO:0043168 Anion binding 46 2.37E−03

GO:0035639 Purine ribonucleoside triphosphate binding 35 3.07E−03

GO:0097367 Carbohydrate derivative binding 39 0.00529

GO:0043167 Ion binding 78 0.0171

GO:0031267 Small gtpase binding 8 0.0221

GO:0008092 Cytoskeletal protein binding 14 0.0392

GO:0017111 Nucleoside-triphosphatase activity 17 0.0417

GO:0005219 Ryanodine-sensitive calcium-release channel activity 2 0.0462

Cellular component (GO)

GO:0016459 Myosin complex 8 0.000231

GO:0005737 Cytoplasm 114 0.00491

GO:0005856 Cytoskeleton 35 0.00491

GO:0042995 Cell projection 32 0.00491

GO:0043232 Intracellular non-membrane-bounded organelle 54 0.00491

GO:0016461 Unconventional myosin complex 3 0.00638

GO:0072562 Blood microparticle 7 0.0127

GO:0005874 Microtubule 12 0.0176

GO:0030016 Myofibril 9 0.0176

GO:0044430 Cytoskeletal part 25 0.0315

GO:0097458 Neuron part 22 0.0315

GO:0097513 Myosin II filament 2 0.0315

GO:0044449 Contractile fiber part 8 0.0449

GO:0015630 Microtubule cytoskeleton 20 0.0462

GO:0044463 Cell projection part 18 0.0462

GO:0071682 Endocytic vesicle lumen 3 0.0462

GO:0043005 Neuron projection 18 0.0472
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cancer and other disease and control treatments [2–4]. 
Together the results amount to a successful proof of 
principal for the application of random and independ-
ent sampling of plasma from ovarian cancer versus 
multiple clinical treatments by LC–ESI–MS/MS to 
identify and quantify proteins and peptides that show 
variation between sample populations.

Pre‑analytical variation
Collecting blood plasma samples directly onto ice might 
prevent the secretion of enzymes or proteins from blood 
cells, and prevent the degradation of proteins by pro-
teases ex  vivo. The effect of ex  vivo proteolysis on the 
endogenous peptides of blood samples can be prevented 
by acid quench, protease inhibitors, freeze drying or ice 
to preserve the sample [1, 2, 4, 5]. EDTA plasma from 
blood collected on ice was stable when freeze dried with 
low peptide frequency and intensity but liquid plasma 
slowly degrades at room temperature [2, 4, 5]. Blood fluid 
contains a net weak tryptic activity [57] that may cleave 
endogenous peptides in  vivo (peptidome) and endoge-
nous proteolytic activities generate high levels of some of 
these same peptides ex vivo (degradome) [58, 59] where 
these two pools show some overlap [2]. The frequency 
and/or intensity of peptide observations increased in 
samples incubated at room temperature compared to 
ice cold samples that shared some peptides and proteins 
[1–3, 5, 24]. The increased frequency and average precur-
sor intensity values of cellular proteins across the clini-
cal samples compared to the ice cold controls indicates 
the some of the peptides and or proteins observed were 
released from cells, or degraded by proteases released or 
activated, ex vivo. There was apparently statistically sig-
nificant variation in the cleavage of endogenous peptides 
from cellular proteins across the different disease and 
normal treatments, female samples and ice cold controls.

Chi Square analysis of ovarian cancer versus female normal
Specific endogenous tryptic peptides, were detected 
from ovarian cancer versus the corresponding normal 
female or the other diseases and controls. The large dif-
ferences in observation frequency support the existence 
of disease-specific peptides in the blood plasma of ovar-
ian cancer patients. The results here with Haptoglobin 
(HP) in Ovarian Cancer agree with previous results 
[39]. Large increases in the frequency and intensity of 
Haptoglobin Related Protein (HPR), alpha antitrypsin 
(SERPINA1), Hemopexin (HPX) or other proteins were 
observed, but the greater representation of these com-
mon, acute-phase response proteins is not likely to be 
highly specific to one disease [38]. Many of the proteins 
that were significantly increased in disease, compared to 
the 6 sets of controls, included amyloids, complements, 
haptoglobin, IgG chains, IITI, anti-trypsin, alpha 2 mac-
roglobulin, fibrinogens, hemopexin, apolipoproteins that 
are elevated in more than one disease [38]. However, spe-
cific phosphorylations or other post translational modifi-
cations of acute phase or other common blood proteins 
might provide some greater utility than increases in these 
proteins alone [5, 60–63]. Many of the proteins that var-
ied in ovarian cancer were previously shown to play a 

Table 3  The analysis of  mean peptide intensity per  gene 
symbol for  Haptoglobin related protein by  ANOVA 
with Tukey–Kramer multiple means comparison

Response: log10_Intensity

Sum Sq Df F value Pr(>F)

Peptide_Sequence 102.746 58 13.867 < 2.2e−16 ***

Treatment_ID 29.231 18 12.712 < 2.2e−16 ***

Peptide_Sequence:Treatment_ID  21.039   37   4.451 < 2.2e−16 ***

Residuals 219.478 1718

Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer normal control STYP; 
3, Alzheimer’s dementia; 4, Alzheimer’s dementia STYP; 5, Cancer breast; 6, 
Cancer breast STYP; 7, Cancer control; 8, Cancer control STYP; 9, Cancer ovarian; 
10, Cancer ovarian STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack Arterial; 
14, Heart attack Arterial STYP; 15, Heart attack normal control; 16, Heart attack 
normal Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple 
Sclerosis normal control; 20, Multiple Sclerosis normal control STYP; 21, Multiple 
Sclerosis; 22, Multiple Sclerosis STYP; 23, Sepsis; 24, Sepsis STYP; 25, Sepsis 
normal control; 26, Sepsis normal control STYP. STYP: serine, threonine, tyrosine 
phosphorylation. Note that many proteins were not detected in the ice cold 
plasma

Treatment_ID Mean SD SE (mean) data:n Tukey

1 4.62 0.35 0.08 20 bc

2 4.63 0.91 0.30 9 abc

3 5.07 NA NA 1 cd

4 5.03 0.19 0.11 3 cd

5 5.12 0.58 0.09 46 ad

6 4.46 0.17 0.05 14 c

7 4.97 0.07 0.03 6 cd

9 5.34 0.42 0.02 687 d

10 5.35 0.41 0.01 951 d

13 4.51 0.64 0.14 21 c

14 4.45 0.65 0.17 14 c

15 4.63 0.23 0.09 7 abc

16 4.45 0.18 0.06 8 bc

17 4.81 0.81 0.40 4 cd

18 4.25 0.63 0.45 2 abc

19 4.62 0.86 0.35 6 abc

20 4.30 0.58 0.20 8 c

21 4.45 0.63 0.21 9 c

22 4.43 0.49 0.22 5 abc

23 5.30 0.00 0.00 2 cd

24 5.31 1.01 0.45 5 bd

25 5.38 1.02 0.51 4 bd
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role in cancer biology, or  were previously established 
tumor diagnostic or prognostic markers and several have 
previously been detected in the plasma of cancer: Coagu-
lation factor XIII has been suggested to be a biomarker 
for screening colorectal cancer [9]; P4HA1 is a prolyl 
4-hydroxylase that may be a prognostic marker for glioma 
[64]; Glipican has been localized to exosomes and previ-
ously implicated as a biomarker of cancer [42]; Laminin 
B2 promotes non-small cell lung cancer [65]; CSR1 is a 
tumor suppressor gene that activates CPSF3 preventing 
the interaction of XIAP with caspase [66]; MORN3 is a 
testes-cancer antigen that recruits the Sirtuin deacety-
lase that modifies P53 [67]; SIRT1 (Sirtuin) is a histone 
deacetylase that may regulate tumor formation [68]; 
Cyclin 1-like (CCN12) plays a role in cell cycle progres-
sion and proliferation [69]; NMI is an N-MYC and STAT 
interactor shown to increase in protein expression with 
tumor grade and plays a role in cell cycle progression 
[70]; Increased ITGB1 integrin beta 1 has been shown to 
be associated with some, but not all, solid cancers [71]; 
A gene expression array identified NEFM as indicative 
of the risk of prostate cancer [72]; PLEC1 was shown to 
promote esophageal cancer cell progression by maintain-
ing the expression of SNAIL [73]; SRGN was show to be 
expressed in the exosomes of adenocarcinoma by LC–
ESI–MS/MS [74]; DHCR reduces cholesterol, may play a 
role in cancer [75] and selective and potent inhibitors of 
DHCR have been developed [76]; SMC5 complexes with 
MMS21 that acts as an E3 ligase required to avoid gross 
chromosomal rearrangements [77]; Semaphorins such as 
SEMA6B were strongly down regulated in breast cancer 

[78]; Lysyl oxidase-like 3 was required for melanoma 
cell survival [79]; Seizure related 6 homolog (SEZ6L2) 
showed increased gene expression in primary lung can-
cer by RT-PCR and Western blot [80].

Pathway and gene ontology analysis by the STRING 
algorithm
The set of gene symbols that were significant from Chi 
Square analysis of the peptide frequency counts were 
independently confirmed by STRING analysis. The net-
work analysis by STRING indicated that the peptides and 
proteins detected were not merely a random selection of 
the proteins from the human genome but seemed to show 
statistically significant protein–protein interactions, and 
showed significant enrichment of cellular components, 
biological processes, and molecular functions associated 
with the biology of cancer. The significant results from 
STRING analysis seemed to indicate that at least some 
of the differences observed could not have resulted from 
random sampling error between ovarian cancer and the 
female normal controls. The previously established struc-
tural or functional relationships observed among the 
ovarian cancer specific gene symbols filtered by χ2 were 
consistent with the detection of bone fide variation spe-
cific to ovarian cancer. The STRING results apparently 
indicate that specific protein complexes are released into 
the circulation of ovarian cancer patients [40].

Ovarian cancer specific variation by ANOVA
After testing the discrete frequency data using the com-
putationally extensive Chi Square (χ2) test, the significant 
protein gene symbols were then analyzed by computa-
tionally intensive ANOVA of the continuous and nor-
mally distributed (Gaussian) log10 intensity values [22, 
23, 35]. A potential role has been suggested for ZNF91 
in some cancer pathogenesis [81, 82] and zinc finger pro-
teins may play a role attenuating the cellular effects of 
viral genes [83] that may account for some 15% of cancer 
[84]. The large zinc finger superfamily that may bind RNA 
and DNA have been detected in human blood by parti-
tion chromatography, organic extraction of endogenous 
peptides and Western blot [25, 26, 30]. Regulation of the 
chromatin remodeling enzyme CHD6 was observed in 
the molecular analysis of urothelial cancer cell lines [85]. 
A novel translocation of LMBRD1-CHD6 (6;20)(q13;q12) 
was observed in acute myeloid leukemia [86]. Dis-regu-
lation of CHD6 was also observed in models of colorec-
tal cancer [87]. Sirtuin 1 (SIRT1) may promote cellular 
proliferation, migration and invasion in epithelial ovar-
ian cancer [88] and inhibits p53-dependent apoptosis in 
human melanoma cells [89]. Hemopexin is expressed in 
a model of hepatocellular carcinoma from hepatitis B in 

Fig. 4  The quantile plot showing the normality of the Log10 peptide 
intensity values of HPR. The dashed red lines define an ideal Gaussian 
or Normal distribution
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woodchucks [90]. In contrast, there is no previous study 
of LOC102723511, (adhesive plaque matrix protein-like) 
that remains a hypothetical protein. Similarly, the glycine 
rich unknown protein XP_005275896 that is encoded 
by LOC101930455 may show some cryptic sequence 
homology to bacterial proteins and general features con-
sistent with extracellular structural proteins that might 

be important for biochemical marker development [62]. 
In general, many of the proteins that showed greater fre-
quency and/or intensity in ovarian cancer from plasma 
peptides were consistent with the previously established 
role of the proteins in cancer or tumor biology.

Fig. 5  The variation in known plasma proteins across the clinical treatments. Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer 
normal control STYP; 3, AlzHeimer’s dementia; 4, Alzheimer’s dementia STYP; 5, Cancer breast; 6, Cancer breast_STYP; 7, Cancer_control; 
8, Cancer control STYP; 9, Cancer ovarian; 10, Cancer ovarian_STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack Arterial; 14 Heart attack 
Arterial STYP; 15, Heart attack normal control, 16, Heart attack normal Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple Sclerosis 
normal control; 20, Multiple Sclerosis normal control STYP; Multiple Sclerosis; 22, Multiple Sclerosis STYP, 23 Sepsis; 24, Sepsis STYP; 25, Sepsis normal 
control; 26, Sepsis normal control STYP. The ANOVA analysis of the proteins shown across treatments produced a significant F Statistic for means 
comparisons by Tukey–Kramer HSD test that showed significant differences between ovarian cancer or ovarian cancer STYP, versus the normal 
female control and/or breast cancer (see Additional file 1: Table S1, Additional file 2: Table S2 for Tukey–Kramer results for each protein shown). STYP: 
serine, threonine, tyrosine phosphorylation. Note that many proteins were not detected in the ice cold plasma
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Ovarian cancer EDTA plasma peptides and proteins
It is not clear if the observed variation results from 
greater expression of the specific proteins, expression of 
proteases that target the observed proteins, greater sus-
ceptibility to endoproteolytic attack, greater resistance to 
exopeptidase activity, or the combinations, as the source 
of variation between proteins and sample treatments. It 

should be possible to specifically compare and confirm 
the levels of disease specific peptides and parent pro-
teins by automatic targeted proteomics [4] after extrac-
tion of peptides in one step [30] or after collection of the 
intact protein chains over the best partition chromatog-
raphy resin [26] followed by tryptic digestion and analy-
sis. For example, C4B peptides discovered by random 

Fig. 6  The variation in apparently cellular proteins in plasma across the clinical treatments. Treatment ID numbers: 1, Alzheimer normal; 2, 
Alzheimer normal control STYP; 3, Alzheimer’s dementia; 4, Alzheimer’s dementia STYP; 5, Cancer breast; 6, Cancer_breast STYP; 7, Cancer control; 
8, Cancer control STYP; 9, Cancer ovarian; 10, Cancer ovarian STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack Arterial; 14 Heart attack 
Arterial_STYP; 15, Heart attack normal control, 16, Heart attack normal Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple Sclerosis 
normal control; 20, Multiple Sclerosis normal control STYP; Multiple Sclerosis; 22, Multiple Sclerosis STYP, 23 Sepsis; 24, Sepsis STYP; 25, Sepsis 
normal control; 26, Sepsis normal control STYP. The ANOVA analysis of the proteins shown across treatments produced a significant F Statistic 
for means comparisons by Tukey–Kramer means comparison that showed a significant difference between ovarian cancer or ovarian cancer 
STYP (see Additional file 1: Table S1, Additional file 2: Table S2 for Tukey–Kramer results for each protein shown). STYP: serine, threonine, tyrosine 
phosphorylation. Note that many proteins were not detected in the ice cold plasma
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and independent sampling were shown to be a marker of 
sample degradation by automatic targeted assays [2–4]. 
Automatic targeted analysis of peptides from independ-
ent analysis provided relative quantification to rapidly 
confirm the potential utility of C4B peptide as a marker 
of sample degradation [4]. There is strong evidence 
that the action of disease-specific tryptic endoprotein-
ase activity cleaves specific peptides in blood fluids that 
may sensitivity reflect changes in the corresponding par-
ent proteins [1]. We cannot rule out that at least some 
of the endogenous peptides detected more specifically 
in ovarian cancer may reflect an increased concentra-
tion of the parent protein [38]. Attempts to analyze the 
proteins of blood by depletion and tryptic digestion first, 
followed by separation of peptides over strong cation 
exchange and C18 cannot be used to focus on one pro-
tein in a targeted manner [91]. In contrast, the separa-
tion of the proteins first by partition chromatography 
followed by tryptic digestion of the enriched fraction and 
C18 separation of peptides may permit the efficient, and 
automated,  targeted assay of specific proteins  without 
the use of immunological reagents [26]. Traditional par-
tition chromatography using quaternary amine, propyl 
sulfate, concanavalin A, heparin or DEAE resin followed 
by trypsin digestion and LC–ESI–MS/MS robustly iden-
tify at least 4396 blood proteins by X!TANDEM using 
disposable preparative micro chromatography resins fol-
lowed by LC-ESI-MS/MS [25, 26]. Thus one step organic 
extraction [27], and/or the partition chromatography of 
the parent proteins followed by tryptic digestion [25, 26], 
may be used to automatically  confirm the peptides and 
proteins and provide relative quantification by ANOVA 
[35]. Subsequently, the best performing peptides and pro-
teins may be absolutely quantified by external or internal 
isotopic standards [92].

Conclusion
The step wise organic extraction of peptides [24] pro-
vided for the enrichment of endogenous tryptic peptides 
with high signal to noise for random sampling [4] across 
disease and control (normal) treatments. A large amount 
of proteomic data from multiple diseases, controls and 
institutions may be stored, related and statistically ana-
lyzed in 64 bit SQL Server/R. The random and independ-
ent sampling of plasma endogenous tryptic peptides  by 
LC-ESI-MS/MS identified many new blood proteins that 
were previously associated with the biology of cancer or 
that have been shown to be biomarkers of solid tumors 
by genetic or biochemical methods. The striking level 
of agreement between the results of random and inde-
pendent sampling of plasma by mass spectrometry with 
those from cancer tissues and cells seems to indicate that 
clinical discovery of plasma by LC–ESI–MS/MS will be a 

powerful tool if it can be applied at a larger scale. A larger 
scale of extraction, and larger C18 preparative bed vol-
ume, would be required to automate the discovery and 
confirmation process for clinical applications by a modi-
fication of the existing method [24] to create a highly 
concentrated sample sufficient to fill and saturate the 
surface of an auto-sampling vial. Previous C4B peptides 
that were discovered as markers of sample degradation 
by random and independent sampling of tryptic peptides 
and were subsequently confirmed by automatic targeted 
analysis from independent samples [2–4] that strongly 
indicate a similar work flow could be applied to disease 
versus normal samples. 

Additional files

Additional file 1: Table S1 The number of successful LC-ESI-MS/MS 
experiments that resulted in successful correlations to peptides from the 
various disease and normal treatments.

Additional file 2: Table S2 Average Chi Square value per gene symbol for 
ovarian cancer versus normal female plasma.
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