
TECHNICAL NOTE Open Access

Efficient computation of spaced seeds
Silvana Ilie

Abstract

Background: The most frequently used tools in bioinformatics are those searching for similarities, or local
alignments, between biological sequences. Since the exact dynamic programming algorithm is quadratic, linear-
time heuristics such as BLAST are used. Spaced seeds are much more sensitive than the consecutive seed of BLAST
and using several seeds represents the current state of the art in approximate search for biological sequences. The
most important aspect is computing highly sensitive seeds. Since the problem seems hard, heuristic algorithms are
used. The leading software in the common Bernoulli model is the SpEED program.

Findings: SpEED uses a hill climbing method based on the overlap complexity heuristic. We propose a new
algorithm for this heuristic that improves its speed by over one order of magnitude. We use the new
implementation to compute improved seeds for several software programs. We compute as well multiple seeds of
the same weight as MegaBLAST, that greatly improve its sensitivity.

Conclusion: Multiple spaced seeds are being successfully used in bioinformatics software programs. Enabling
researchers to compute very fast high quality seeds will help expanding the range of their applications.

Keywords: Similarity search, Local alignment, Spaced seed, Heuristic algorithm, Sensitivity

Background
The most frequently used tools in bioinformatics are
those searching for similarities, or local alignments,
between biological sequences. This problem can be
solved exactly using the dynamic programming algo-
rithm of Smith-Waterman in quadratic time. Many
instances, including all database searches, are too large
for this approach to be feasible and heuristic algorithms
are used instead [1,2]. The most widely used program in
bioinformatics, BLAST [2,3], is one such tool. It uses
the so-called “hit and extend” approach: a hit consists of
11 consecutive matches between two sequences and
represents a potential local alignment. The hit is then
extended both ways in search for similarity.
It is clear that not all local alignments have to include

an identical stretch of length 11. It has been already
noticed in [4] and then again in [5] that requiring that
the matches are not consecutive increases the chances
of finding alignments. The idea of optimizing the way
the required matches are placed has been investigated in
[6,7], the latter having used it in a similarity search soft-
ware, PatternHunter. Much work has been dedicated to

spaced seeds. For a survey of earlier work, we refer the
reader to [8].
The 11 consecutive matches of BLAST are called a

contiguous seed, denoted 11111111111 (for 11 consecu-
tive matches), whereas the one of PatternHunter is a
spaced seed, 111*1**1*1**11*111; a 1 represents a match
and * a don’t care position. The number of 1’s repre-
sents the weight of the seed. The probability of finding
local alignments, under specific conditions, to be made
precise later, is called sensitivity.
We notice an essential trade off. Decreasing the num-

ber of matches, that is, the weight of the seed, increases
the sensitivity but also the number of random hits,
decreasing specificity. On the other hand, it is intuitively
clear that several different seeds will hit different align-
ments, thus having increased sensitivity. It has been
noticed by [9] that doubling the number of seeds can
account for the decrease in weight, thus simultaneously
increasing sensitivity without reducing specificity. Pat-
ternHunterII [9] uses 16 different seeds of weight 11.
For comparison, under similar conditions, the sensitivity
of the BLAST, PatterHunter, and PatternHunterII seeds,
all of weight 11, are 0.30, 0.47, and 0.92, respectively, a
very large difference.Correspondence: silvana@ryerson.ca

Department of Mathematics, Ryerson University, Toronto, ON M5B 2K3,
Canada

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

© 2011 Ilie et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:silvana@ryerson.ca
http://creativecommons.org/licenses/by/2.0

Multiple spaced seeds represent the current state of
the art in similarity search and are used by many soft-
ware programs, in a variety of applications, such as
sequence alignment [6,9,10], read mapping [11,12], or
oligonucleotide design [13]. It is therefore of great
importance to be able to compute seeds with high sensi-
tivity. The only way to find optimal seeds seems to be
by trying all possible ones. This brute force approach
includes two exponential steps. First, there are exponen-
tially many candidates. Second, computing sensitivity is
exponential as well. Therefore, only single seeds can be
computed this way. For multiple seeds, since the rele-
vant problems are hard [14,15], heuristic algorithms
must be used. Among many such algorithms, such as
Mandala [16] and Iedera [17], only one works in polyno-
mial time: SpEED [18]. SpEED is based on the notion of
overlap complexity [19], that is very well correlated with
sensitivity but polynomial-time computable. A hill
climbing algorithm is used that iteratively swaps a 1
with a * in a random seed in order to improve the over-
lap complexity.
Our contribution in this paper is to improve the best

existing software, SpEED, by increasing its speed and,
consequently, the sensitivity of the computed seeds. The
first algorithm we give is a bit-parallel algorithm for
computing overlap complexity. This is of independent
interest and alone can speed up the hill climbing of
SpEED significantly. However, we give a better algo-
rithm for this heuristic that improves its speed by one
order of magnitude. Several tests are provided to prove
these claims. Then, the new implementation is
employed to compute improved seeds for PatternHun-
terII as well as BFAST, as they use some of the most
demanding seeds. Finally, we show a very significant
improvement of the MegaBLAST seeds. At weight 28
they are significantly larger than everything else, yet we
manage to compute up to 16 seeds of this weight, with
very large improvement in sensitivity over MegaBLAST.

Spaced seeds
A spaced seed is any string containing 1’s and *’s. Since
having a * at one end of a seed is not useful, we assume
that all seed start and end with a 1. For a seed s, the
weight w of s is the number of 1’s and the length ℓ is
the number of all letters. The ith letter of s is denoted s
[i]. A multiple spaced seed is a set of seeds S = {s1, s2,
..., sk}. In the Bernoulli model [9] an alignment is repre-
sented as a (random) sequence R of 1’s and 0’s (matches
and mismatches) where the probability p of a match is
called similarity. The length N of this region R plays an
essential role in the sensitivity. We say that a seed s hits
R if there is a position i in R such that, for any j, 0 ≤ j ≤
ℓ-1, if s[j] = 1, then R[i + j] = 1. That means, aligning s
with R starting at position j causes all 1’s in s to

correspond to 1’s in R. This definition extends naturally
to multiple seeds: S hits if one of its seeds does so.
The sensitivity of s (or S) is then defined as the prob-

ability that s (or S, respectively) hits R. It depends on
the distribution of matches in the seed as well as on the
length N of the region to be hit and the similarity level
p. The sensitivity can be computed by the dynamic pro-
gramming (exponential) algorithm given in [9].

Overlap complexity
Since the number of expected seeds is proportional to
the weight of a seed, it is fair to compare seeds of the
same weight. Thus, given two seeds of weight w, one
contiguous and one spaced, the spaced one may have
higher sensitivity because its hits do not overlap as
much and are therefore better distributed, covering
more similarities. The distribution of the 1’s is neverthe-
less crucial for the quality of the seed. For instance, per-
iodically spaced seeds are worse than contiguous. The
problem of finding optimal seeds seems difficult and
heuristic algorithms are employed. The only polyno-
mial-time algorithm, implemented in SpEED [18], is
based on the notion of overlap complexity [19], that cap-
tures the amount of overlaps between hits. Given two
seeds s1 and s2, for each of the possible |s1| + |s2|-1
overlaps between them, denote by si the number of
overlapping positions where both seeds have a 1.
The overlap complexity is defined as OC(s1, s2) =

∑
i
2σi.

The overlap complexity of any seed S = {s1,s2, ...,sk} is

defined by: OC(S) =
∑

i≤j
OC(si, sj) As an example,

OC(1 ∗ 11, 1 ∗ ∗1 ∗ 1) = 21 + 20 + 22 + 21 + 21 + 22 + 20 + 21 + 21 = 20.
The overlaps are shown in Figure 1.
A very strong experimental correlation between over-

lap complexity and sensitivity has been observed in [19].
Seeds with low overlap complexity have high sensitivity.
The algorithm of [18] employs a hill climbing algorithm

1 * 1 1 σ
1 * * 1 * 1 1
1 * * 1 * 1 0
1 * * 1 * 1 2
1 * * 1 * 1 1
1 * * 1 * 1 1
1 * * 1 * 1 2
1 * * 1 * 1 0
1 * * 1 * 1 1
1 * * 1 * 1 1

Figure 1 Overlap complexity example. An example of the
overlap complexity between two spaced seeds. Letters not taking
part in the overlaps are grey and the overlapping pairs of 1’s are
underlined; the values of s for each overlap are given in the last
column

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 2 of 7

to constructs highly sensitive seeds. Iteratively, (1, *)
pairs are swapped to reduce the overlap complexity of a
random seed (see [18] for details). The SpEED software
runs much faster and produces better seeds than all the
other programs.

Faster overlap complexity
Our first algorithm computes the overlap complexity
faster than the one in [18,19]. It first converts each seed
into 64-bit integers by interpreting 1 and * as bits 1 and
0, respectively. For instance, 1**11 is converted into the
integer 10011 = 19. The overlap between two seeds is
then computed by shifting the bits and AND-ing the
integer representation of the seeds. In order to compute
the number of 1’s in an integer, we assume a precom-
puted array onesInBytes with 256 components such that
onesInBytes[i] given the number of 1’s in the binary
representation of i. Then, the number of 1’s in a 64-bit
integer is computed by iteratively shifting right 8 posi-
tions, AND-ing with 255 and then using the onesInBytes
array. The pseudocode (procedure FastOC) is given in
Figure 2. For simplicity, the computation of the overlap
complexity of a single seed is shown. It extends immedi-
ately to any multiple seed.
A slightly faster algorithm is obtained by using a pre-

computed onesInTwoBytes array that stores the number
of 1’s in the binary representation of 16-bit integers,
that is, between 0 and 65536. We shall call this algo-
rithm VFastOC. We have compared the FAstOC and
VFastOC algorithms with the original one implemented

in SpEED in Table 1. The VFastOC algorithm is the
fastest, its running time being up to four times lower
than the original. The algorithm VFastOC is of interest
in itself and also replacing the original one with VFas-
tOC would improve the speed of the heuristic corre-
spondingly. However, we give a better solution in the
next subsection.

Faster hill climbing
The heuristic of SpEED uses a hill climbing algorithm
that gradually improves a multiple seed by swapping a 1
with a * in order to reduce as much as possible the
overlap complexity. In this section we give a faster algo-
rithm for this hill climbing heuristic. Assume a multiple
seed S = {s1,s2,..., sk} each of weight w and denote the
length of si by ℓ i , for 1 ≤ i ≤ k. We shall construct, for
each pair (i,j) with 1 ≤ i ≤ j ≤ k, an ℓi × ℓ j matrix OMij

defined by

OMij[r][q] =

⎧⎨
⎩

1, if si[r] = sj[q] = 1,
0, if si[r] = sj[q] = 0,

−1, otherwise.

We also consider an array sij of size ℓi + ℓj- 1 defined
as follows. The two seeds si and sj can overlap in ℓi + ℓj-
1 ways, each identified by the distance r between the
right end of sj and left end of si; we have 0 ≤ r ≤ ℓi + ℓ

j- 2. We then define sij[q] to be the number of positions
where both seeds have a 1 for the rth overlap. We shall
also store a k × k matrix OCM where OCM[i][j] = OC
(si, sj), for all 1 ≤ i ≤ j ≤ k. An example of the above
data structures is shown in Figure 3.
We notice that the value of oij[q] is obtained by

counting the number of 1’s in a NW-SE diagonal ofFastOC(s)

input: a seed s of length �
output: OC(s)
1. oc ← 0
2. b ← 1
3. for i from 1 to �− 1 do
4. if (s[i] = 0) then b ← b � 1
5. else b ← (b � 1) | 1
6. b2 ← b
7. for i from 1 to �− 1 do
8. b2 ← b2 � 1
9. b3 ← b2 & b

10. σ ← 1
11. for j from 1 to � �

8� do
12. σ ← σ � onesInBytes[b3&255]
13. b3 ← b3 � 8
14. oc ← oc+ σ
15. return(oc)

Figure 2 The pseudocode of FastOC. The pseudocode of the
new faster implementation for overlap complexity computation,
FastOC

Table 1 Comparison of overlap complexity computation
algorithms

w ℓ OC FastOC VFastOC

9 15 0.012 0.004 0.004

10 17 0.064 0.028 0.024

11 18 0.116 0.048 0.044

12 19 0.204 0.084 0.072

13 20 0.340 0.136 0.116

14 21 0.564 0.208 0.184

15 23 2.792 0.948 0.828

16 24 4.564 1.484 1.300

17 25 7.276 2.648 1.992

18 26 11.368 3.968 2.984

Speed comparison between the existing and the new implementations of the
overlap complexity function. Seeds of optimal length for weights between 9
and 18 are considered. In each case, the time (in seconds) is given for the
computation of overlap complexity for all

(
�

w

)
seeds with the given

parameters. The VFastOC algorithm is the fastest (times in bold), up to 3.8
times faster than the original OC algorithm.

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 3 of 7

OMij; precisely, the positions considered are OMij[r][t]
with r-t = q - ℓj + 1.
The new algorithm for hill climbing, FastHC, works as

follows; the pseudocode is shown in Figure 4 with the
additional functions given in Figures 5, 6, and 7. First,
all matrices and arrays as above are computed according
to their definitions (step 1). Then, for all seeds sq (step
4) and all pairs of positions in each with a 1 (at position
i) and a * (at position j) (step 5), the potential reduction
in OC is computed (steps 7-10) without actually chan-
ging the OM matrices or a arrays. The UpdateSigma
procedure computes in linear time the new a obtained
assuming a swap between positions i and j in sq. If a
better OC than the current best is obtained, the current
seed and positions are stored together with the new best

OC (steps 11-13). Either way the previous OC is
restored (step 14). Once the best swap is found, every-
thing is updated: s arrays (steps 15-16), seeds (step 17),
OM matrices (steps 18-19), and OCM matrix (steps 20-
21). The s arrays are updated before the seeds in order
to be able to use the same UpdateSigma procedure, that
works without the actual swap being performed.
To simplify the code, we employ the convention that

any time we use srq, OMrq, or OCM[r][q], we assume r
<q, otherwise, we would use q, r instead.
A difference needs to be made in both UpdateSigma

and UpdateOM between the case r <q and r = q, since
in the former the swap affects only one seed whereas in
the latter it affects both. Notice also that the value of
max(OMrq[t][i],0) is 1 when (OMrq[t][i],0) = 1 and 0
otherwise. Therefore, only when the previous value was
1 we subtract 1 from the appropriate component of s.
The value min(OMrq[t][i],0) is -1 only when OMrq[t][i]
= -1 and, since a swap would cause this -1 to become a
1, the corresponding component of s is incremented.
Two other values, min(-OMrq[t][i],0) and max(-OMrq[t]
[i]), behave similarly. For the code of OCSigma it is suf-
ficient to observe that (1 ≪ s[t]) = 2s[t].

Results
The new implementation of the hill climbing heuristic is
one order of magnitude faster than the current imple-
mentation in SpEED. The results are summarized in
Table 2, for a variety of parameters.

OM11 1 * 1 1

1 1 -1 1 1
* -1 0 -1 -1
1 1 -1 1 1
1 1 -1 1 1

OM12 1 * * 1 * 1

1 1 -1 -1 1 -1 1
* -1 0 0 -1 0 -1
1 1 -1 -1 1 -1 1
1 1 -1 -1 1 -1 1

OM22 1 * * 1 * 1

1 1 -1 -1 1 -1 1
* -1 0 0 -1 0 -1
* -1 0 0 -1 0 -1
1 1 -1 -1 1 -1 1
* -1 0 0 -1 0 -1
1 1 -1 -1 1 -1 1

OCM s1 s2
s1 20 20
s2 24

σ11 = [1, 1, 1, 3, 1, 1] σ12 = [1, 0, 2, 1, 1, 2, 0, 1, 1] σ22 = [1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 1]

Figure 3 An example of the data structures used in the new algorithm for hill climbing. The matrices OM and OCM and the s arrays are
given for the seeds s1 = 1 * 11 and s2 = 1**1*1

FastHC(S)

input: a multiple seed S = {s1, s2, . . . , sk}
output: modified S with very low OC(S)
1. [compute OMij , σij , for all i, j, and OCM]
2. bestOC ← curOC ← ∑

i,j OCM[i][j]

3. repeat until bestOC stops decreasing
4. for q from 1 to k do
5. for ((i, j)∈ [1 . . k]2, sq[i]=1, sq[j]=*) do
6. oldOC ← curOC
7. for r from 1 to k do
8. σ ← σrq

9. UpdateSigma(OM, σ, r, q, i, j)
10. curOC ← curOC +OCSigma(σ)−OCM[r][q]
11. if (curOC < bestOC) then
12. (qbest, ibest, jbest) ← (q, i, j)
13. bestOC ← curOC
14. curOC ← oldOC
15. for r from 1 to k do
16. UpdateSigma(OM, σrq, r, qbest, ibest, jbest)
17. (sqbest

[ibest], sqbest
[jbest]) ← (*, 1)

18. for r from 1 to k do
19. UpdateOM(OM, r, qbest, ibest, jbest)
20. for r from 1 to k do
21. OCM[r][qbest] ← OCSigma(σr,qbest

)
22. return(S)

Figure 4 The pseudocode of FastHC. The pseudocode of the new
faster algorithm for the hill climbing heuristic, FastHC

OCSigma(σ)

input: σ
output: OC corresponding to σ
1. oc ← 0
2. for t from 0 to length(σ) do
3. oc ← oc + (1 � σ[t])
4. return(oc)

Figure 5 The pseudocode of OCSigma. The pseudocode of the
additional function OCSigma, used by the main function FastHC.

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 4 of 7

We apply the new implementation to compute better
seeds for PatternHunterII and BFAST. The results are pre-
sented in Tables 3 and 4. The new seeds are better than
those computed by Mandala, Iedera, and SpEED. For com-
parison we present also the single seeds of the same weight,
both contiguous and spaced. The single spaced seeds in the
case of BLAST have been computed also using FastHC.
Finally, we have computed several very heavy multiple

seeds, using the weight of the default seed of Mega-
BLAST; see Table 5. We notice the low sensitivity of
the MegaBLAST contiguous seed. Even at similarity 90%
and length of the similar region sought for 200, the sen-
sitivity is only around 67%. We have computed sets of
1, 2, 4, 8, and 16 seeds with the given weight 28, simi-
larity 90% and N Î {100, 150, 200}. The improvement
in sensitivity over MegaBLAST is very large. Whereas
the sensitivity of the MegaBLAST seed for the given
parameters ranges from 39% to 67%, we need 16, 2, and
1 seeds, respectively, to reach sensitivities over 95%. All
new seeds we computed are given in the Additional file
1 newSeeds.pdf.

Discussion
We have provided a much faster implementation of the
hill climbing heuristic of SpEED, the leading software
for computing multiple spaced seeds in the Bernoulli
model. Using the new implementation, some of the
most challenging seeds have been improved and new,
even more difficult ones, were provided. Still, many pro-
blems remain open in this important area. A modified
heuristic is needed to be able to compare seeds of differ-
ent lengths, as well as to address models different from
Bernoulli.

Availability and requirements
Project name: SpEEDfast

UpdateSigma(OM, σ, r, q, i, j)

input: OM, σ, seeds r, q, positions i, j in sq
output: updated σ for swapped i, j in sq
1. if (r < q) then
2. for t from 0 to �r − 1 do
3. σ[�q−1+t−i]← σ[�q−1+t−i]−max(OMrq[t][i], 0)
4. σ[�q−1+t−j]← σ[�q−1+t−j]−min(OMrq[t][i], 0)
5. if (r = q) then
6. for (t ∈ [0 . . (�r − 1)]\{i, j}) do
7. σ[�q−1+t−i]← σ[�q−1+t−i]−max(OMrq[t][i], 0)
8. σ[�q−1+t−j]← σ[�q−1+t−j]−min(OMrq[t][i], 0)
9. σ[�q−1+i−t]← σ[�q−1+i−t]−max(OMrq[i][t], 0)

10. σ[�q−1+j−t] ← σ[�q−1+j−t]−min(OMrq[j][t], 0)
11. return

Figure 6 The pseudocode of UpdateSigma. The pseudocode of the additional function UpdateSigma, used by the main function FastHC

UpdateOM(OM, r, q, i, j)

input: OM, σ, seeds r, q, positions i, j in sq
output: updated OMrq for swapped i, j in sq
1. if (r < q) then
2. for t from 0 to �r − 1 do
3. OMrq[t][i] ← min(−OMrq[t][i], 0)
4. OMrq[t][j] ← max(−OMrq[t][i], 0)
5. if (r = q) then
6. for (t ∈ [0 . . (�r − 1)]\{i, j}) do
7. OMrq[t][i] ← min(−OMrq[t][i], 0)
8. OMrq[t][j] ← max(−OMrq[t][i], 0)
9. OMrq[i][t] ← min(−OMrq[i][t], 0)

10. OMrq[j][t] ← max(−OMrq[j][t], 0)
11. OMrq[i][i] ← 0
12. OMrq[j][j] ← 1
13. return

Figure 7 The pseudocode of UpdateOM. The pseudocode of the
additional function UpdateOM, used by the main function FastHC

Table 2 Comparison of hill climbing algorithms

w N p k [ℓ1..ℓk] HC FastHC

11 64 .70 16 [14..27] 7.79 1.24

22 50 .85 10 [25..37] 10.79 1.35

28 100 .90 8 [36..56] 39.83 3.64

28 150 .90 8 [39..63] 69.14 5.86

28 200 .90 8 [41..70] 108.74 8.49

28 100 .90 16 [33..59] 471.51 41.42

28 150 .90 16 [36..66] 788.79 62.50

28 200 .90 16 [39..72] 1075.10 79.51

Speed comparison between the existing (HC) and the new implementation
(FastHC) of the hill climbing heuristic. Several sets of parameters are used. The
times (in seconds) are given for a single multiple spaced seed with the given
parameters. FastHC is up to 13.5 times faster than HS. Also, the improvement
increases with the size of the input.

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 5 of 7

Project home page: math.ryerson.ca/~silvana/SpEED-
fast.cpp
Operating system(s): Platform independent
Programming language: C/C++
Other requirements: none
License: GNU GPL
Any restrictions to use by non-academics: none

Availability of supporting data
The data sets supporting the results of this article are
included within the article (and its Additional file 1).

Additional material

Additional file 1: This file contains the new seeds computed using
the improved heuristic.

Abbreviations
BLAST: Basic local alignment search tool; OC: Overlap complexity.

Acknowledgements
Research partially supported by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

Authors’ contributions
SI designed and implemented the algorithms, performed the experiments,
and wrote the manuscript. All authors read and approved the final
manuscript.

Competing interests
The author declares that they have no competing interests.

Received: 10 November 2011 Accepted: 28 February 2012
Published: 28 February 2012

References
1. Lipman D, Pearson W: Rapid and sensitive protein similarity searches.

Science 1985, 227(4693):1435-1441.
2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403-410.
3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

4. Califano A, Rigoutsos I: FLASH: a fast look-up algorithm for string
homology. Computer Vision and Pattern Recognition 1993 Proceedings
CVPR’93 1993 IEEE Computer Society Conference on 1993, 353-359.

5. Buhler J: Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics 2001, 17(5):419-428.

6. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive homology
search. Bioinformatics 2002, 18(3):440-445.

7. Burkhardt S, Kärkkäinen J: Better Filtering with Gapped q-Grams. Fundam
Inform 2003, 56(1-2):51-70.

8. Brown DG: A survey of seeding for sequence alignments. In In
Bioinformatics Algorithms: Techniques and Applications. Edited by: Mandoiu I,
Zelikovsky A. Hoboken: J. Wiley and Sons Inc; 2007:117-142.

Table 3 Sensitivity comparison of computed spaced seeds for PatternHunter

w N p BLAST PH PHII Mandala Iedera SpEED FastHC

(contig.) (spaced) (16 seeds)

11 64 0.70 30.0196 46.7122 92.4114 92.3811 92.0708 93.2526 93.3406

11 64 0.75 49.4494 69.5844 98.4289 98.4320 98.3391 98.6882 98.7156

11 64 0.80 71.3993 88.2070 99.8449 99.8448 99.8366 99.8820 99.8859

Sensitivity comparison with Mandala, Iedera, and SpEED (results from [18]). Seeds were computed with the same parameters as those of PatternHunter II. FastHC
(sensitivity values in bold) is the best in all cases. The sensitivity of the original seeds is significantly improved.

Table 4 Sensitivity comparison of computed spaced seeds for BFAST

w N p 1 seed (contig.) 1 seed (spaced) BFAST (16 seeds) Mandala Iedera SpEED FastHC

22 50 0.85 14.4649 26.8064 58.6907 – 60.1535 60.8127 60.9329

22 50 0.90 36.6940 57.9846 87.3359 – 87.9894 88.5969 88.7120

22 50 0.95 74.1153 90.8265 99.2249 – 99.2196 99.3659 99.3959

Sensitivity comparison with Mandala, Iedera, and SpEED (results from [18]). Seeds were computed with the same parameters as those of BFAST. FastHC
(sensitivity values in bold) is the best in all cases. The sensitivity of the original seeds is significantly improved.

Table 5 Sensitivity comparison of computed spaced seeds of MegaBLAST weight

w N p MegaBLAST 1 seed FastHC

(contig.) (spaced) 2 seeds 4 seeds 8 seeds 16 seeds

28 100 0.90 39.1436 69.3241 79.6629 87.5674 92.7762 95.9170

28 150 0.90 55.4870 87.6426 93.4308 97.0118 98.7430 99.5137

28 200 0.90 67.4412 94.9876 97.8936 99.2937 99.7877 99.9409

Using FastHC, we computed multiple seeds with the same weight as the default seed of MegaBLAST for similarity 90% and N Î {100, 150, 200}. The sensitivities
of the new seeds are much higher than those of MegaBLAST. The values in bold show that the new 16, 2 and 2 seeds, respectively, reach sensitivities over 95%
for N equal to 100, 150, and 200, respectively.

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 6 of 7

http://www.biomedcentral.com/content/supplementary/1756-0500-5-123-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/2983426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934743?dopt=Abstract

9. Li M, Ma B, Kisman D, Tromp J: PatternHunterII: Highly Sensitive and Fast
Homology Search. J Bioinformatics and Computational Biology 2004,
2(3):417-440.

10. Noé L, Kucherov G: YASS: enhancing the sensitivity of DNA similarity
search. Nucleic Acids Res 2005, 33(suppl 2):W540-W543.

11. Homer N, Merriman B, Nelson SF: BFAST: An Alignment Tool for Large
Scale Genome Resequencing. PLoS One 2009, 4(11):e7767.

12. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP:
Accurate Mapping of Short Color-space Reads. PLoS Comput Biol 2009,
5(5):e1000386.

13. Feng S, Tillier ER: A fast and flexible approach to oligonucleotide probe
design for genomes and gene families. Bioinformatics 2007,
23(10):1195-1202.

14. Ma B, Li M: On the complexity of the spaced seeds. J Comput Syst Sci
2007, 73(7):1024-1034.

15. Ma B, Yao H: Seed Optimization Is No Easier than Optimal Golomb Ruler
Design. APBC 2008, 133-144.

16. Buhler J, Keich U, Sun Y: Designing seeds for similarity search in genomic
DNA In Proceedings of RECOMB’03 New York: ACM; 2003, 67-75.

17. Kucherov G, Noé L, Roytberg MA: A Unifying Framework for Seed
Sensitivity and its Application to Subset Seeds. J Bioinformatics and
Computational Biology 2006, 4(2):553-570.

18. Ilie L, Ilie S, Mansouri Bigvand A: SpEED: fast computation of sensitive
spaced seeds. Bioinformatics 2011, 27(17):2433-2434.

19. Ilie L, Ilie S: Multiple spaced seeds for homology search. Bioinformatics
2007, 23(22):2969-2977.

doi:10.1186/1756-0500-5-123
Cite this article as: Ilie: Efficient computation of spaced seeds. BMC
Research Notes 2012 5:123.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Ilie BMC Research Notes 2012, 5:123
http://www.biomedcentral.com/1756-0500/5/123

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/15980530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19907642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19907642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21690104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21690104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804438?dopt=Abstract

	Abstract
	Background
	Findings
	Conclusion

	Background
	Spaced seeds
	Overlap complexity
	Faster overlap complexity
	Faster hill climbing

	Results
	Discussion
	Availability and requirements
	Availability of supporting data
	Acknowledgements
	Authors' contributions
	Competing interests
	References

