
Ryerson University
Digital Commons @ Ryerson

Computer Science Technical Reports Computer Science

4-16-2013

SQLite Page Caching Algorithm
Jason V. Ma
Ryerson University, jason.ma@ryerson.ca

Follow this and additional works at: http://digitalcommons.ryerson.ca/compsci_techrpts
Part of the Databases and Information Systems Commons

This Technical Report is brought to you for free and open access by the Computer Science at Digital Commons @ Ryerson. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Commons @ Ryerson. For more information, please
contact bcameron@ryerson.ca.

Recommended Citation
Ma, Jason V., "SQLite Page Caching Algorithm" (2013). Computer Science Technical Reports. Paper 3.
http://digitalcommons.ryerson.ca/compsci_techrpts/3

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/compsci_techrpts?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/comm_compsci?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/compsci_techrpts?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/compsci_techrpts/3?utm_source=digitalcommons.ryerson.ca%2Fcompsci_techrpts%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

SQLite Page Caching algorithm
Modification

Jason Ma
jason.ma@ryerson.ca

April 16, 2013.

 1

Contents

Introduction 3

Project Objective 3

SQLite Page Cache Overview 4

SQLite Page Cache Modifications 5

Performance Benchmarks 7

Conclusion 15

Appendix 16

Reference 18

 2

Introduction

SQLite is a database which can be easily embedded inside an application written in the C
programming language. One common use is inside the Mozilla Firefox web browser. It supports a
subset of the SQL language but was not intended to be a replacement for a multi-user database such
as MySQL, Oracle or Microsoft SQL Server.

The entire database is integrated into one *.c file and the command shell for the command line
interface is inside another file. Thus to embed the database a developer just has to copy and paste
the source code into their database. It also comes in another format with separate files for each
component but is not recommended for use due to slower performance. SQLite's developers
indicate there is a 5-10% performance improvement when using the amalgamation due to compiler
optimizations for a single file [3].

SQLite supports connections via multiple threads, but it does not support intra-query parallelism.
For example commercial databases can divide a large query so that it is run concurrently across
separate CPUs. SQLite has a very coarse locking level. Since the database is located inside one file,
the entire file is locked for writing. Concurrent reads can still occur on the file. It does not support
finer levels of locking such as table or row locks.

Project Objective

Modify SQLite's page caching algorithm so that it will be able to determine which page cache to evict
based on the number of historical memory references to a page.

 3

SQLite Page Cache Overview

Illustration 1 displays the overall page cache architecture for SQLite. It implements two linked lists.
The first is the dirty page list which is a linked list of pointers pointing to the actual data in the LRU
list. The dirty page list keeps track of transient pages which have been marked as dirty. Once the
number of memory references reaches zero, the page is moved from the dirty list to the LRU list.

The source code (pcache.h, struct PGroup) documents this list as Least Recently Used (LRU) list,
however from studying the source code it operates in a simple (First In First Out) FIFO mode. There is
no indication in the data structures (struct PGroup, PgHdr1, PgHdr, PCache and struct PCache1) that
it keeps track of how often a page was used in the past, nor is there any sort of order.

When a page needs to be evicted the first item pointed to by the LRU list is removed. In our case this
would be the page pointed to by the head pointer.

The cache can operate in two modes:

• Shared: There is a global Page Group which can contain multiple caches. Each cache belongs
to only one Page Group.

• Separate: Each Page Group has only one cache. Each cache belongs to only one Page Group.

SQLite also permits a third party to implement their own page caching algorithm for the LRU list via
the function pointers seen below. A developer can write their own implementation and point the
function pointers below to their own implementation. SQLite does not provide an interface for
developers to modify the Dirty Page list.

typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
struct sqlite3_pcache_methods2
{
 int iVersion;
 void *pArg;
 int (*xInit)(void*);
 void (*xShutdown)(void*);
 sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
 void (*xCachesize)(sqlite3_pcache*, int nCachesize);
 int (*xPagecount)(sqlite3_pcache*);
/* Truncated list of functions */
}

SQLite's documentation also explicitly states that “The cache must not perform any reference
counting. A single call to xUnpin() unpins the page regardless of the number of prior calls to xFetch()”
[1]

 4

SQLite Page Cache Modifications

Two changes were made to the LRU a algorithm in two stages:

1. Sort the LRU list so that the head contains the least frequently referenced memory page and
the tail contains the most frequently used page.

2. The array histLookup was added to improve insertion speed into the LRU list.

The first change is self explanatory. To keep track of the historical references to the page, the
function sqlite3PCacheSynchHist() was added to synchronize the historical reference (histRef
member) between the structures PgHdr (dirty list structure) and PgHdr1 (LRU structure). Additional
changes were made to the function pcache1Unpin.

Change #2 was made to try and improve on the slow performance after making modification #1
above. The goal was to improve insertion performance to reduce the length taken to insert a new
item into the LRU list. The idea is to add an index to the linked list so that an insert goes quickly
without having to traverse the entire linked list to perform an inserted sorted by histRef value.

 5

Illustration 1: SQLite Page Cache Overview. Note each page in the LRU list can belong to different
caches.

This was implemented by adding an array with a size the same as the largest number of histRef
counts. For example if histRef wraps around when it reaches 30, the histLookup[] array is the same
size. Illustration 2 displays the change.

A detailed list of changes such as functions change is in the Appendix section.

 6

Illustration 2: Modifications made to LRU algorithm. A reference count was added (e.g. Ref:0) and the
index histLookup to permit quick inserts. histLookup always points to the last element with the same
histRef so that an insert will be made immediately after the node it points to. After the insert
histLookup is updated to point to the new node.

Performance Benchmarks

SQLite includes its own set of benchmarks under the test directory which is called from a Tcl script.
The test run was speed1.test which contains many other sub tests.

The tests require that development tcl libraries and headers be installed.
1. Add -g (symbols) to TCC and BCC makefile variables
2. Add -ltcl8.5 to LIBTCL makefile variable
3. make test
4. ./testfixture test/speed1.test

Illustration 3 displays the output. Orig is the unmodified SQLite, Mod. LRU is the first modification in
which the LRU list is sorted. Opt. LRU is when the histLookup index was added to try and improve
insert performance into the list. The number behind it is the maximum histRef count before it wraps
around. The histLookup array for each test was set to the same size as the maximum histRef. The
initial modifications have disappointingly slowed the performance of the database down by 3 to 5
times compared to the unmodified SQLite.

Illustration 4 is a closeup of some copy/update/drop/delete operations. We can see that after adding

 7

Illustration 3: Mod. is the first modification where the LRU list is sorted. Opt. is when the
histLookup index was added to try and improve insert performance.

insert1
select1

createidx
select4

select6
update1

update3
delete1

delete2
drop1

random1
random-del2

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Speed1.test

Orig
Mod. LRU (15)
Mod. LRU (30)
Opt. LRU (15)
Opt. LRU (30)
Opt. LRU (60)

Subtest from Speed1.test

E
xe

cu
tio

n
tim

e
(m

ic
ro

 s
ec

on
ds

)

the histLookup array index it improves performance over the original modification of just sorting the
LRU list. However it is still much slower than the unmodified SQLite.

The Valgrind tool [2] was used to determine where most of the slow down was occurring.

valgrind –tool=callgrind –trace-children=yes ./testfixture
../test/speed1.test

After making change #1 we see that pcache1Unpin is consuming a lot of time (6.56 CPU execution
time). The window on the right shows the source code where the slowdown is occurring. It is the
code to traverse the linked list. Illustration 5 shows this output. If Valgrind is run on the unmodified
SQLite, pcache1Unpin's CPU usage is only a small fraction and thus very far down the list.

After implementing change #2 by adding the histLookup array index for quick inserts performance
improves slightly and we see the overall CPU execution for this time go down from 8th place down to
23rd place in Illustration 6. Valgrind shows the same parts of the source code which is slow. This is a
decent improvement but is still slower than the unmodified SQLite. Illustration 6 shows this output.

 8

Illustration 4: Closeup of update/copy/delete operations since these ran faster then the
histLookup index was added.

update3
update4

delete1
copy1

delete2
copy2

drop1
copy3

random1
random-del1

random-del2

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

Speed1.test (close up of update/copy/delete)

Subtest from Speed1.test

E
xe

cu
tio

n
Ti

m
e

(m
ic

ro
 s

ec
on

ds
)

Orig
Mod. LRU (15)
Mod. LRU (30)
Opt. LRU (15)
Opt. LRU (30)
Opt. LRU (60)

The algorithm for pcache1Unpin works by:

1. Check if histRef is smaller or equal to the value in the head node of the linked list. If so we can
quickly insert it to before the head node.

2. Check if histRef is larger or equal to the value in the tail node of the linked list. If so we can
quickly append the new page to the end of the list.

3. Check histLookup index to see if we can quickly insert the value into the list.
4. Traverse list if #3 fails.

Most of the cases should fall into step #1 to step #3, except when the histLookup array is being
populated the first time. Additional coding improvements were made by adding the newly inserted
page into the histLookup index in step #1 and step #2. After making these changes performance has
significantly improved and is close to the original performance of SQLite as seen in Illustration 7

As the maximum number of historical references (histRef) for each page is increased from 15 to 30
there is a slight performance decrease as well. This value does not have any effect on the length of
the LRU list.

In Illustration 7 there will still be some overhead during the initial insert into the LRU linked list before
the histLookup index array is populated.

SQLite has a hash table for quick lookup of a memory page (**apHash in struct PCache1) when
specifying a key (iKey) associated with the page. This is not useful for sorting of the LRU list since it is
sorted on histRef instead of iKey.

 9

 10

Illustration 5: Valgrind output after making change #1 (sorting LRU list). pcache1Unpin is consuming
6.56 CPU units during execution. Code on right side shows 2.39 CPU units consumed just to traverse
the linked list. Note: I'm unable to find how what units are used by Valgrind to measure CPU
execution time.

 11

Illustration 6: Valgrind output after adding the histLookup index for quick inserts. Performance is
improved but still much slower than the unmodified SQLite.

From Illustration 7 and the associated data performance is close a few percentage points within
original SQLite for most benchmarks. Illustration 8 shows the numbers used to generate the graph in
Illustration 7.

Random deletes (random-del1, random-del2) are still significantly worse by approximately 2 to 8.5x
worse than default SQLite. SELECT benchmarks select4 and select5 are 25% and 27% slower
compared to Opt2 LRU (15). update1 and delete1 are about 18% and 11% slower than default SQLite
respectively.

 12

Illustration 7: Significant performance increase after adding original optimizations,
performance almost the same as the default SQLite. Opt2 is the new optimization by ensuring
histLookup is populated for all cases (see p.9). Opt2 is almost as fast as the unmodified
database.

insert1
select1

createidx
select4

select6
update1

update3
delete1

delete2
drop1

random1
random-del2

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Speed1.test after further optimization

Orig
Mod. LRU (15)
Opt2 LRU (15)
Opt2 LRU (30)

Subtest from Speed1.test

E
xe

cu
tio

n
Ti

m
e

(m
ic

ro
 s

ec
on

ds
)

 13

Illustration 8: Numbers which generated the graph for Illustration 7

Orig Mod. LRU (15) Opt2 LRU (15) Opt2 LRU (30)
insert1 465582 1594615 457555 464109
insert2 773463 2799851 766634 770597
select1 635233 2832418 568456 563469
select2 1838341 11893310 1815030 1858608
createidx 396145 1551221 382539 377332
select3 287580 1434262 287498 285867
select4 1318412 4925507 1650302 1683368
select5 1683413 6467880 2139556 2171434
select6 859303 2719964 849291 863764
vacuum 665195 1910530 658362 658689
update1 180882 658463 213863 216163
update2 1155061 4207034 1420840 1443180
update3 499155 1640951 506391 499641
update4 1498018 4506684 1507706 1511417
delete1 9973 701283 11159 10984
copy1 558177 1704603 543964 540905
delete2 441137 1793114 438189 433722
copy2 569343 1971115 549928 544757
drop1 11848 592399 12612 12603
copy3 43747 129779 41917 42014
random1 145629 574572 141679 140712
random-del1 233280 1334421 582503 573923
random-del2 168091 3225259 1477310 1433234

Illustration 9 shows the Valgrind output for unmodified SQLite and Illustration 9 shows the Valgrind
output after the final optimization.

 14

Illustration 10: Numbers for Illustration #7

Orig Mod. LRU (15) Opt2 LRU (15) Opt2 LRU (30)
insert1 465582 1594615 457555 464109
insert2 773463 2799851 766634 770597
select1 635233 2832418 568456 563469
select2 1838341 11893310 1815030 1858608
createidx 396145 1551221 382539 377332
select3 287580 1434262 287498 285867
select4 1318412 4925507 1650302 1683368
select5 1683413 6467880 2139556 2171434
select6 859303 2719964 849291 863764
vacuum 665195 1910530 658362 658689
update1 180882 658463 213863 216163
update2 1155061 4207034 1420840 1443180
update3 499155 1640951 506391 499641
update4 1498018 4506684 1507706 1511417
delete1 9973 701283 11159 10984
copy1 558177 1704603 543964 540905
delete2 441137 1793114 438189 433722
copy2 569343 1971115 549928 544757
drop1 11848 592399 12612 12603
copy3 43747 129779 41917 42014
random1 145629 574572 141679 140712
random-del1 233280 1334421 582503 573923
random-del2 168091 3225259 1477310 1433234

Illustration 9: Valgrind output for unmodified SQLite.

Conclusion

SQLite's page caching algorithm was modified so the LRU list is sorted by the number of past
historical references so that the most frequently used page is kept in memory, but the least recently
used is evicted. SQLite's unmodified LRU algorithm is just a FIFO and exhibits no signs that it keeps
track of past references.

An index was also added so that items added to the LRU list do not have to traverse the linked list to
to perform a sorted insert. After two stages of optimizations, the final performance is very close to
the unmodified SQLite database except for a few benchmarks which are still slow than the
unmodified SQLite database.

 15

Illustration 10: Valgrind output for all modifications made so that the speed1.test is approximately the
same as unmodified SQLite. These correspond to Illustration 7's Opt2 runs.

Appendix

List of functions modified. Each modification has a comment beside it called “Jason” so it can easily
be found by using the UNIX/Linux grep function.

pcache.h
Function/Structure Purpose Change(s) Made

struct PgHdr Structure used to keep meta data
for dirty list page.

Added histRef member to keep
track of how many times the page
was referenced in the past.

struct PgHdr1 Structure used to keep meta data
for LRU list page.

Added histRef member to keep
track of how many times the page
was referenced in the past.

struct pcache.h Moved some function declarations
from pcache.c to pcache.h so some
functions can be called from both
pcache*.c files.

pcache.c
Function/Structure Purpose Change(s) Made

sqlite3PCacheFetch Obtain page from cache. • Initialization of histRef=0
• Call pcache1HistRefInc

sqlite3PcacheRelease Decrement reference count on page. This
is different than histRef count.

• Call sqlite3PcacheSyncHist

sqlite3PcacheRef Increase reference count on page.
This is different than histRef count.

• Increment PgHdr->histRef
and wrap around when it
reaches the max e.g. 15

sqlite3PcacheDrop Remove page from dirty list. • Call sqlite3PcacheSyncHist

sqlite3PcacheMakeClean Mark page as clean • Call sqlite3PcacheSyncHist

sqlite3PCacheSyncHist Synchronize histRef counts between the
dirty list and LRU list.

• New function.

pcache1.c
Function/Structure Purpose Changes Made

pcache1HistRefInc Increment histRef count for LRU
page.

• New function

pcache1Fetch Fetch page by key value. Also • Initialize histRef=0

 16

allocates new pages as well.

pcache1Unpin Mark page as unpinned (eligible for
recycling)

• Inserted page based on
histRef order

• Created quick look up table
for inserts into list based on
histRef

pcache1PrintList Used for debug purposes to print
out LRU linked list.

• New function

Debug information was added during testing to ensure the linked list contained histRef values in
order. Sample of debug fprintf() messages below.

====== pcache1Unpin - Enter =====

pcache1Unpin - pCache->nRecyclable: 6
pcache1Unpin - pPage->iKey: 15
pcache1Unpin - pPage->histRef: 0
pcache1Unpin - pGroup->pLruHead.iKey: 13
pcache1Unpin - pGroup->pLruHead.histRef: 0
pcache1Unpin - pGroup->pLruTail.iKey: 14
pcache1Unpin - pGroup->pLruTail.histRef: 2

pcache1Unpin - Adding page to front of list pPage->iKey: 15 pPage->histRef:
0
============ Printing Linked list after adding to tail ==============
PgHdr1->iKey 15 PgHdr1->histRef 0
PgHdr1->iKey 13 PgHdr1->histRef 0
PgHdr1->iKey 10 PgHdr1->histRef 0
PgHdr1->iKey 9 PgHdr1->histRef 0
PgHdr1->iKey 11 PgHdr1->histRef 0
PgHdr1->iKey 12 PgHdr1->histRef 1
PgHdr1->iKey 14 PgHdr1->histRef 2
============ Linked list end ==============
inc pCache->nRecyclable 7
====== pcache1Unpin - Exit =====
pcache1PinPage - Dec. to pPage->pCache->nRecyclable: 6
pcache1PinPage -exit
pcache1PinPage - Dec. to pPage->pCache->nRecyclable: 5
pcache1PinPage -exit
====== pcache1Unpin - Enter =====

pcache1Unpin - pCache->nRecyclable: 5
pcache1Unpin - pPage->iKey: 15
pcache1Unpin - pPage->histRef: 0
pcache1Unpin - pGroup->pLruHead.iKey: 13
pcache1Unpin - pGroup->pLruHead.histRef: 0
pcache1Unpin - pGroup->pLruTail.iKey: 12
pcache1Unpin - pGroup->pLruTail.histRef: 1

 17

pcache1Unpin - Adding page to front of list pPage->iKey: 15 pPage->histRef:
0
============ Printing Linked list after adding to tail ==============
PgHdr1->iKey 15 PgHdr1->histRef 0
PgHdr1->iKey 13 PgHdr1->histRef 0
PgHdr1->iKey 10 PgHdr1->histRef 0
PgHdr1->iKey 9 PgHdr1->histRef 0
PgHdr1->iKey 11 PgHdr1->histRef 0
PgHdr1->iKey 12 PgHdr1->histRef 1
============ Linked list end ==============
inc pCache->nRecyclable 6
====== pcache1Unpin - Exit =====

References

[1] SQLite – Application Defined Page Cache
http://www.sqlite.org/c3ref/pcache_methods2.html

[2] Valgrind
http://valgrind.org/

[3] SQLite Amalgamation
http://sqlite.org/amalgamation.html

 18

http://www.sqlite.org/c3ref/pcache_methods2.html
http://sqlite.org/amalgamation.html
http://valgrind.org/

	Ryerson University
	Digital Commons @ Ryerson
	4-16-2013

	SQLite Page Caching Algorithm
	Jason V. Ma
	Recommended Citation

