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Abstract: This paper proposes a traffic-flow evolutionary model under a dual updating mechanism
that describes the day-to-day (DTD) dynamics of traffic flow and travel cost. To illustrate the concept,
a simple two-route network is considered. Based on the nonlinear dynamic theory, the equilibrium
stability condition of the system is derived and the condition for the division between the bifurcation
and chaotic states of the system is determined. The characteristics of the DTD dynamic evolution of
network traffic flow are investigated using numerical experiments. The results show that the system
is absolutely stable when the sensitivity of travelers toward the route cost parameter (θ) is equal to or
less than 0.923. The bifurcation appears in the system when θ is larger than 0.923. For values of θ

equal to or larger than 4.402, the chaos appears in the evolution of the system. The results also show
that with the appearance of chaos, the boundary and interior crises begin to appear in the system
when θ is larger than 6.773 and 10.403, respectively. The evolution of network traffic flow is always
stable when the proportion of travelers who do not change the route is 84% or greater.
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1. Introduction

With the rapid development of the social economy and the acceleration of urbanization,
traffic congestion becomes widespread during peak hours in urban areas. The fundamental reason for
this phenomenon is the imbalance of supply and demand, where the existing urban transportation
infrastructure cannot meet the travel demand. Traffic congestion increases vehicle emissions,
which contribute to air pollution. Two solutions to reduce traffic congestion are possible, namely:
(1) building new transportation infrastructure and/or (2) optimizing the existing transportation system
by means of traffic management and control. To achieve the desired results for either solution, it is
necessary to master the day-to-day evolution characteristics of traffic flow on the transport network.
Based on this cognition, traffic congestion may be alleviated, and in turn, the adverse environment
may be reduced.

As it is known, traffic assignment focuses on how travelers choose routes and allocate the total
origin–destination (OD) demand to each route, in order to obtain link flows that reflect the congestion
degree of the road network. The results of traffic assignment are the basis for traffic planning and
management decisions. Existing models, such as the user equilibrium (UE) model and the stochastic
user equilibrium (SUE) model, concentrate on the final results of the equilibrium assignment of
network traffic flows. However, the equilibrium model cannot explain how to achieve the equilibrium
state. Actually, the travelers’ day-to-day (DTD) route choice behavior is a dynamic non-cooperative
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game process that is long-term and repetitive. From a macroscopic viewpoint, this behavior leads to
the DTD dynamic evolution process of network traffic flows [1–3].

Researchers have studied the DTD dynamic evolutionary characteristics of network traffic flows
from two perspectives, namely: an individual perspective and an aggregate perspective. The individual
perspective focuses on the choice behavior of individual travelers. After each traveler chooses a route,
the route flows are aggregated in the network. On the other hand, considering all travelers as a system
and handling them together, the aggregate perspective can be further classified as continuous or
discrete. The continuous approach assumes that the number of days of network traffic flow is
a continuous variable [4–7], while the discrete approach considers the number of days of network
traffic flows as a discrete variable and is closer to reality. Typical references related to each perspective
are presented in Table 1. For each reference, the table shows the type of analytical model considered,
the updating variables (e.g., travel time, travel cost, and traffic flow), and the evolutionary elements
analyzed (e.g., travelers’ habituation, stability, bifurcation, and chaos), as well as any main findings.
It is useful to present a brief review of the references in each category and to highlight the main
differences among them.

In the individual perspective, a microscopic numerical simulation or a laboratory experiment
is adopted. For example, Nakayama et al. [8] developed a drivers’ route choice model based on the
hypothesis that drivers were not rational or homogeneous, and concluded that the final convergence
state of the network did not necessarily converge to UE through microscopic simulation. Klügl et al. [9]
designed an adaptive updating rule to describe the DTD route choice behavior based on an agent
simulation environment. The results showed that the traffic flow distribution could converge to
UE. Selten et al. [10] conducted laboratory experiments of a DTD route choice game with two
parallel roads by selecting 18 college students as subjects, and reported that large fluctuations do not
diminish with individual experiences. Kim et al. [11] employed a DTD evolutionary approach and
developed agent-based simulation models that included a drivers’ learning model, preference model,
and preference sensitivity. The results showed that the assumption of perfect information is the most
influencing on traffic assignment results. Recently, Zhang et al. [12] developed a DTD route choice
model with social interaction information from friends, and then conducted a laboratory experiment.
The experimental results show that a larger proportion of social interactions do not necessarily lead to
better route choice results either for individuals or for the whole system.

Research related to the aggregate-continuous perspective has two limitations, (1) the continuous-
time approach is not plausible in reality and (2) homogeneous population assumptions require
additional dispersion modules. Extensive research related to the aggregate-discrete perspective
has been conducted. Typical publications include Cantarella and Cascetta [13], who developed DTD
dynamic models for both deterministic and stochastic process. They proposed conditions for the
existence, uniqueness, and stability of equilibrium in the deterministic model, and proposed conditions
for stochastic process regularity in the stochastic model. Zhang and Jarrett [14] developed a dynamic
model based on the conventional gravity model, which described the variations of OD flows over
discrete-time periods. The authors showed that chaos occurs when the system dimension is relatively
high. Watling and Hazelton [15] proposed a DTD dynamic evolutionary model considering the route
flow and travel cost as basic variables. The authors derived the stability condition for the network
equilibrium using a simple example. Guo and Huang [16] developed a dynamic evolutionary model
of traffic assignment with endogenous OD demands. The model stability was analyzed and the
resultant UE was shown to be stable under certain conditions. Bie and Lo [17] investigated the
stability of UE pursued by a DTD adjustment process, and provided tools to determine the stability
of the equilibrium and to estimate its domain of attraction. Subsequently, further research has been
conducted by He et al. [18,19], Han and Du [20], Guo et al. [21], Rambha and Boyles [22], Ye et al. [23],
and Zhou et al. [24]. Recently, Cantarella and Watling [25] presented a unified approach for both
discrete and continuous-time models.
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Table 1. Characteristics of existing and proposed day-to-day dynamic traffic evolution models.

Evolution Type Reference Updating
Variables Analyzed Elements/Findings

Individual

Nakayama et al. [8] TT a UE a is not necessarily reached

Klügl et al. [9] Reward UE can be reached

Selten et al. [10] Payoff UE cannot be reached

Kim et al. [11] TT Perfect information has the most effect on route
assignment

Zhang et al. [12] TT Social information is not necessarily beneficial for
individuals or the whole system

Aggregate
(Continuous)

Smith and Watling [4] TF a UE can be reached

Guo et al. [5] TT, TF Proved equivalent, uniqueness, and stability of
stationary points

Cho and Hwang [6] TT, TF Proved uniqueness of stationary state

Mounce [7] TT, TF Derived global convergence condition for UE

Aggregate
(Discrete)

Cantarella and Cascetta [13] TT, TF Proposed conditions for stability of
stationary points

Zhang and Jarrett [14] TC a Chaos occurs when system dimension is high

Watling et al. [15] TC Derived condition for stability of SUE a

Guo and Huang [16] TC Derived condition for stability of UE

Bie and Lo [17] TC Analyzed stability and attraction domain of UE

He and Liu [18,19] TC Proposed correction model for equilibrium

Han and Du [20] TC, TF Proposed and analyzed a link-based model

Guo and Yang [21] TC, TF Proved unique. and convergence of stationary state

Rambha and Boyles [22] TC, TF Dynamic pricing reduced total system travel time

Ye et al. [23] TC Analyzed effect of path flow/time on
route switching

Zhou et al. [24] TF Analyzed the convergence of day-to-day flow
dynamic model to mixed equilibrium state

Liu et al. [1,2], Li et al. [3] TC Analyzed bifurcation, stability, and chaos

Cantarella [26] TC, TF Analyzed bifurcation and stability

Zhao and Orosz [27] TC, TF Analyzed travelers’ habituation, stability,
and bifurcation

Proposed model in this
paper TC, TF Analyzed travelers’ habituation, stability,

bifurcation, and chaos. Derived stability condition
a TT = travel time; TC = travel cost; TF = traffic flow; UE = user equilibrium; SUE = stochastic user equilibrium.

Liu et al. [1,2] investigated the DTD dynamic evolution of the network traffic flow with fixed
and elastic demand. Li et al. [3] developed a bounded rational binary logit (BRBL) model to describe
travelers’ route-choice behavior. The preceding authors derived the stability condition of network
traffic flow evolution and focused on the bifurcation and chaos phenomena when the system was
unstable. However, they considered only the DTD updating of travel cost and did not consider the
travelers’ habituation. On the other hand, the DTD dynamic assignment model by Cantarella [26],
and Zhao and Orosz [27] considered updating both the travel cost and traffic flow, but analyzed only
the stability and bifurcation behavior (the chaos phenomena was not analyzed). Clearly, there is a need
to develop a model of the entire evolution spectrum (stability-bifurcation-chaos) under a dual updating
mechanism, considering traveler’s habits.

What are the characteristics of the evolution of network traffic flow when travelers’ habits are
considered? And what are the characteristics of chaos when the evolution is unstable? To answer these
questions, taking the two-route network as the research object, this paper formulates a traffic flow
evolutionary model under a dual updating mechanism considering travelers’ habits. The conditions
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for the equilibrium stability of the system and the division between the bifurcation and chaotic states
of the system are established. The chaotic phenomenon in the DTD dynamic evolution of the network
traffic flow is emphatically analyzed. The rest of this paper is organized as follows. In Section 2,
we present the traffic flow evolutionary model under the dual updating mechanism of flow and
travel cost. The final state of the network traffic flow evolution and critical condition are presented in
Section 3. Numerical experiments and related insights are presented in Section 4. Some conclusions
are drawn in Section 5.

2. Mathematical Model

Consider a simple network that consists of one OD pair connected by two parallel routes. The total

demand between the single OD pair is d. Let f (n)1 and f (n)2 denote the actual flows and C(n)
1 and C(n)

2
denote the actual travel costs of Routes 1 and 2 on day n, respectively. It is assumed that the travel cost
of each route is related only to the traffic flow of the route. The travel cost functions are expressed as

C(n)
1 = g1( f (n)1 ) and C(n)

2 = g2( f (n)2 ).

According to assumptions of the SUE principle, let Ĉ(n)
k = C(n)

k + εk be the perceived travel cost of

route k (k = 1, 2) on day n, where C(n)
k and εk are the deterministic and random components, respectively.

It is assumed that ε1 and ε2 are independent of each other and identically distributed Gumbel.
The deterministic component of the perceived travel cost is used subsequently. Then, according to the
authors of [28], the route-choice probabilities for Routes 1 and 2 on day n are expressed as follows:

P1
(n) =

1

1 + eθ(C(n)
1 −C(n)

2 )
, (1)

P2
(n) = 1− P1

(n) =
1

1 + e−θ(C(n)
1 −C(n)

2 )
, (2)

where θ is a parameter associated with the traveler’s characteristic, and describes the random degree
of their route choice (θ > 0). The greater θ is, the lower the randomness of the travelers’ route choice is,
and the more sensitive travelers are to the route cost, and vice versa. According to the SUE principle,
the traffic flow on day n is assigned according to the logit model as follows:

f1
(n)

= d · P(n)
1 =

d

1 + eθ(C(n)
1 −C(n)

2 )
, (3)

f2
(n)

= d− f1
(n)

, (4)

where f1
(n)

and f2
(n)

represent the traffic flows assigned by the logit model for Routes 1 and 2 on day
n, respectively.

In reality, there are a certain number of travelers who do not change the route because of their
preferences and habits in daily travel. Let the percentage of travelers who do not change the route be
denoted by ρ. Then, the actual traffic flow on day n is updated according to the actual traffic flows on
day (n − 1), and those assigned by the logit model on day n, which is expressed as follows:

f (n)1 = ρ f (n−1)
1 + (1− ρ) f1

(n)
, (5)

f (n)2 = d− f (n)1 , (6)

where ρ is the habituation weight coefficient, and ρ ∈ [0, 1). The parameter ρ reflects the habituation
of route-choice behavior. In other words, a part of travelers still choose the route of the previous
day, following their habituation. A larger ρ means that more travelers do not change the route,
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and vice versa. Equation (5) describes the evolution of traffic flow, which has not been considered in
Liu et al. [1,2] or Li et al. [3].

The perceived travel cost on day n is updated using the perceived and actual travel cost on day
(n − 1), which is expressed as follows:

C(n)
i = ϕ C(n−1)

i + (1− ϕ)Ci
(n−1)

(i = 1, 2), (7)

C(n)
i = ϕ C(n−1)

i + (1− ϕ)gi( f (n−1)
i )(i = 1, 2), (8)

where ϕ is the cost weight coefficient and ϕ ∈ [0, 1). The parameter ϕ reflects the traveler’s dependence
on the actual travel cost of the previous day. A larger ϕ means that travelers are less dependent on the
actual travel cost of the previous day, and vice versa.

Thus, the DTD dynamic evolutionary model of network traffic flows is obtained as follows:

C(n)
1 = ϕ C(n−1)

1 + (1− ϕ)g1( f (n−1)
1 ), (9)

C(n)
2 = ϕ C(n−1)

2 + (1− ϕ)g2(d− f (n−1)
1 ), (10)

f (n)1 = ρ f (n−1)
1 + (1− ρ) f1

(n)
, (11)

Let C̃(n) = C(n)
1 −C(n)

2 . From Equations (1) and (2), in view of the fact that route-choice probability
depends only on the difference in route cost, the preceding model may be further simplified to
a two-dimensional system by subtracting Equation (9) from Equation (10), as follows:

C̃(n) = ϕC̃(n−1) + (1− ϕ)g1( f (n−1)
1 )− (1− ϕ)g2(d− f (n−1)

1 ). (12)

3. Evolution State and Critical Condition

Cantarella and Cascetta [13] proposed the stability conditions of general networks, but the
derivation process is complicated. Relatively simple stability conditions and proof methods are
provided as follows.

Assumption: The functions of travel cost about path flow are monotonically increasing and
continuously differentiable.

This assumption reflects the characteristic of the road impedance function and conforms to the
actual traffic flow characteristics. This assumption is also usually used in the study of network traffic
flows. Before a theorem for the stability condition and its proof, it is useful to first present Lemma 1,
whose proof is presented elsewhere [29].

Lemma 1. The sufficient and necessary condition that the modulus of the two roots of the quadratic equation
r2 + p1r + p2 > 0 are both less than 1 is [29]

1 + p1 + p2 > 0, 1− p1 + p2 > 0, 1− p2 > 0.

At the equilibrium point, let the evolution Equations (11) and (12) be written as C̃(n) = C̃∗,

f (n)1 = f ∗1 , P′1 = − ∂P(n)
1

∂C̃(n)

∣∣∣∣
C̃∗

, g′1 = dg1( f1)
d f1

∣∣∣
f ∗1

, g′2 = − dg2(d− f1)
d f1

∣∣∣
f ∗1

.

Theorem 1. At the equilibrium point, the condition that the DTD dynamic assignment system is asymptotically
stable in a two-parallel route network is

dP′1
(

g′1 + g′2
)
<

(1 + ϕ) (1 + ρ)

(1− ϕ) (1− ρ)
. (13)
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Proof. The Jacobian matrix of dynamical system of Equations (11) and (12) is

J =


∂C̃(n)

∂C̃(n−1)
∂C̃(n)

∂ f (n−1)
1

∂ f (n)1
∂C̃(n−1)

∂ f (n)1

∂ f (n−1)
1

. (14)

At the equilibrium point, the characteristic equation of the matrix J is λ2 −[
ϕ + ρ− (1− ϕ)(1− ρ)dP′1(g′1 + g′2)

]
λ + ϕρ = 0. The roots of the characteristic equation are

λ1, λ2. According to the stability theory of nonlinear dynamics, it can be known that the modulus
of two roots of the characteristic equation of the matrix J are both less than 1. Then, by considering
Lemma 1, the stability conditions can be formulated as

1−
[
ϕ + ρ− (1− ϕ)(1− ρ)dP′1(g′1 + g′2)

]
+ ϕρ > 0 (15)

1 + ϕ + ρ− (1− ϕ)(1− ρ)dP′1(g′1 + g′2) + ϕρ > 0 (16)

1− ϕρ > 0 (17)

where P′1 > 0, g′1 > 0, g′2 > 0, ϕ ∈ [0, 1), and (1− ϕ) (1− ρ)
[
1 + dP′1

(
g′1 + g′2

)]
> 0. It can be

obviously shown that Equation (17) is always satisfied. Equation (15) can be easily transformed into
(1− ϕ) (1− ρ)

[
1 + dP′1

(
g′1 + g′2

)]
> 0. Thus, Equation (15) is also satisfied consistently. Equation (16)

can be transformed into dP′1
(

g′1 + g′2
)
< (1+ϕ) (1+ρ)

(1−ϕ) (1−ρ)
. Thus, Theorem 1 has been proved. �

As ϕ ∈ [0, 1) and ρ ∈ [0, 1), it is not difficult to derive the following Corollary 1 from Theorem 1.

Corollary 1. If dP′1
(

g′1 + g′2
)
< 1, at the equilibrium point, the DTD dynamic evolutionary system of

traffic flow is asymptotically stable in a two-route parallel network, regardless of the values that the
parameters ρ and ϕ take within the interval [0, 1).

Corollary 1 shows that as long as the traffic system satisfies certain conditions, the DTD dynamic
evolutionary system of network traffic flows is asymptotically stable at the equilibrium point, no matter
how much information the travelers depend on and how many people do not change the route.

It can be seen from Theorem 1 that bifurcation or chaos may appear in the traffic flow evolution
of the road network when Equation (13) is not satisfied. In order to determine whether the system is in
a chaotic state, we need to solve the Lyapunov exponent (LE) of the system [30]. If LE is greater than 0,
the system is in a chaotic state. Then, the LE of the dynamic system of Equations (11) and (12) is

Li = lim
n→∞

1
n

log|λi|, i = 1, 2. (18)

where λ1 and λ2 are the roots of the characteristic equation of the matrix J.
The maximum LE of the dynamic system is

L = max(L1, L2). (19)

The condition for the division of the dynamic system into three states, stability, bifurcation
(periodic motion), and chaos, are summarized in Table 2.
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Table 2. Day-to-day dynamical evolution state’s condition for division.

Final Evolution State Condition

Stability and convergence to equilibrium point dP′1
(

g′1 + g′2
)
< (1+ϕ) (1+ρ)

(1−ϕ) (1−ρ)

Bifurcation (periodic motion) dP′1
(

g′1 + g′2
)
≥ (1+ϕ) (1+ρ)

(1−ϕ) (1−ρ)
and L ≤ 0

Chaotic motion L > 0

From the preceding analysis, we can see that the dynamic system will be stable under certain
conditions (Theorem 1), otherwise bifurcation or chaotic motion will occur. Subsequently, numerical
experiments are conducted to investigate the effect of the parameters on the DTD dynamic evolution
of network traffic flows.

4. Numerical Experiments

4.1. Network Description

We consider the same traffic network, which includes two routes. The travel time is calculated for
each route as a function of traffic flow using the following Bureau of Public Roads (BPR) function,

t = t f [1 + 0.15(q/C)4)] (20)

where t is the actual travel time, t f is free-flow link travel time, q is link traffic flow, and C is the link
capacity. It is noted that each route contains one link. The following data are considered: t f 1 = 22 min,
C1 = 1500 pcu/h, and t f 2 = 25 min, C2 = 2000 pcu/h, and d = 1500 pcu/h. We assume that the travel
cost is measured only by travel time. In the network, when the OD demand is fully loaded onto Route
1, the travel time of two routes is 25.3 min and 25 min, respectively. When the OD demand is fully
loaded onto Route 2, the travel time of two routes is 22 min and 26.2 min, respectively. Substituting
the initial value into Equations (11) and (12), then the evolutionary model can be obtained as

C̃(n) = ϕC̃(n−1) + (1− ϕ)t f 1

[
1 + 0.15

(
f (n−1)
1
C1

)4
]

,

−(1− ϕ)t f 2

[
1 + 0.15

(
d− f (n−1)

1
C2

)4
] (21)

f (n)1 = ρ f (n−1)
1 + (1− ρ) · d

1 + eθC̃(n)
. (22)

4.2. Evolution Characteristics

The dynamic evolution characteristics of the system of Equations (21) and (22) are discussed in
this section, when ρ, θ, and ϕ take different values, where θ ∈ (0, +∞), ρ ∈ [0, 1), and ϕ ∈ [0, 1).
According to Corollary 1, the stability of the equilibrium point is in a critical situation when
dP′1
(

g′1 + g′2
)
= 1. At this point, θ = 0.923 can be calculated, which is the same as that by Liu et al. [1].

Case 1: θ ≤ 0.923

For θ ≤ 0.923, the equilibrium point is asymptotically stable, regardless of the values that ρ and ϕ

take. For example, for θ = 0.8, ρ = 0.5 (Figure 1a), the relation between the flow bifurcation and ϕ

will be constant, where the flow of Route 1 is 1192 pcu/h. Similarly, for θ = 0.8 and ϕ = 0.5 (Figure 1b),
the relation between the flow bifurcation and ρ will be constant, where the flow of Route 1 is also
1192 pcu/h.
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Figure 1. Variation of flow bifurcation diagram when θ = 0.8.

Case 2: 0.923 < θ ≤ 4.402

We fix θ = 4 and discuss the bifurcation variation of the flow of Route 1 when ρ and ϕ take
different values (Figure 2). Consider first the variation of the flow bifurcation with ϕ, when ρ takes
different values. For ρ = 0 (all travelers change routes), the bifurcation sequence of the system is
“stability to period-2 orbit”, as ϕ decreases (Figure 2a). Then, the bifurcation sequence is “stability to
period-2 orbit to period-4 orbit” as ρ increases (Figure 2b). From the horizontal view, the system is
stable in a large area and the bifurcation point evolves to the left. As ρ increases to 0.4, the bifurcation
sequence is “stability to period-2 orbit” again, and the bifurcation point evolves further to the left
(Figure 2c). The system is always stable when ρ is greater than 0.497, regardless of the value of
ϕ ∈ [0, 1).

Now consider the variation of flow bifurcation with ρ when ϕ takes different values. For ϕ = 0
(all travelers rely on the actual cost for travel), the bifurcation sequence of the system is “stability
to period-doubling bifurcation to period-halving bifurcation” as ρ decreases (Figure 2e). Finally,
period-2 orbit occurs at ρ = 0. Then, the bifurcation sequence is only “stability to period-2 orbit” as ϕ

increases (Figure 2f,g). Moreover, the stability region becomes larger and larger, and the bifurcation
point gradually moves to the left. However, the system is always stable when ϕ is greater than 0.497,
regardless of the value of ρ ∈ [0, 1). It can be noted that the system is always stable when parameter ρ

or ϕ is greater than 0.497. This indicates that these two parameters have the same effect on the stability
of the system.
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Case 3: θ > 4.402

Many numerical experiments have shown that the Lyapunov exponent of the system will be larger
than 0 when θ > 4.402, where the chaotic phenomena will appear in the dynamic system. Taking θ = 5
as an example, the influence of ρ and ϕ on the chaos is discussed (Figure 3). For ρ = 0.2, the variations
of the bifurcation of flow of Route 1 and the LE with ϕ are shown in Figure 3a,b, respectively. As noted,
the bifurcation sequence of the system is “stability to period-doubling bifurcation to chaos” as ϕ

decreases. Finally, the chaotic motion occurs at ϕ = 0. For ϕ = 0, the variation of the bifurcation of
flow of Route 1 and the LE with ρ are shown in Figure 3c,d, respectively. As noted, the bifurcation
sequence is “stability to period-doubling bifurcation to chaos to period-halving bifurcation” as ρ

decreases. Eventually, the period-doubling motion occurs at ρ = 0, coinciding with the conclusions of
Liu et al. [1].
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Figure 3. Variation of flow bifurcation diagram and the Lyapunov exponent of the system when θ = 5.

The evolution state can be also verified through the time series and power spectrum, which can
be obtained by fast Fourier transform (FFT). When θ = 5, for ρ = 0.2, ϕ = 0.2, or 0, the flow of Route 1
with time and its power spectrum are shown in Figure 4. For ρ = 0.2 and ϕ = 0.2, it can be seen from
Figure 4a that the evolution is periodic. Seen from Figure 4b, only the power spectrum of frequency
1/4 is large, and the others are small. Therefore, we can deduce that the evolution is periodic with
period 4. For ρ = 0.2 and ϕ = 0, Figure 4c shows that the flow evolution is irregular. The spectrum
is broadband and has a broad peak from Figure 4d, so we can deduce that the evolution is chaotic.
However, in practice, it is difficult to distinguish the very noisy data from chaotic behavior using
power spectrum. Therefore, the Lyapunov exponent is used next to distinguish whether the evolution
is chaotic.

The boundary crisis appears in the dynamic evolution of the system when θ > 6.773
(the explanation of the boundary crisis can be referred to Lim and Kim [31], and Jiang et al. [32]).
Taking θ = 9 as an example, for ρ = 0.3, the variation of the bifurcation of flow of Route 1 with ϕ is
shown in Figure 5a. The boundary crisis obviously appears in the system at ϕ = 0.2 and ϕ = 0.27.
For ϕ = 0.2, the boundary crisis obviously appears in the system at ρ = 0.3, ρ = 0.34, and ρ = 0.38
(Figure 5c). In Figure 5b,d, the crisis is confirmed by LE, which suddenly changes at two and three
points, respectively.
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The interior crisis appears in the dynamic evolution of the system when θ > 10.403 (an explanation
of the interior crisis can be referred to Lim and Kim [31] and Jiang et al. [32]). Taking θ = 11 as an
example, for ρ = 0.4, the variation of the bifurcation of flow of Route 1 with ϕ is shown in Figure 6a.
The interior crisis obviously appears in the system’s chaotic region at ϕ = 0.06, ϕ = 0.11, ϕ = 0.18,
and ϕ = 0.19. In Figure 6b the crisis is also confirmed by LE, which suddenly changes at two points
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(ϕ = 0.18 and ϕ = 0.19). As shown in Figure 6c, for ϕ = 0.3, the boundary and interior crises appear
in the system at the same time, where the interior and boundary crises appear in the system at ρ = 0.3
and ρ = 0.36, respectively. The crisis is also confirmed by LE (Figure 6d).
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The larger the parameter of θ, the more obvious the chaotic motion is. Figure 7 shows the variation
of the bifurcation of flow of Route 1 with ϕ when θ = 22 for different ρ. For ρ = 0, from the horizontal
view, the chaotic region is divided into several zones (Figure 7a). As ρ increases, the chaotic zones
gradually move to the left and shrink into almost one chaotic region, as shown in Figure 7b–d. In fact,
for ρ = 0.5, the chaotic region also has a periodic motion with very narrow windows (in Figure 7e).
As ρ continues to increase, the chaotic region disappears and eventually the system becomes stable
(Figure 7f). Moreover, the chaotic crisis still exists in the system when ρ has some median values.

The variation of the bifurcation of flow of Route 1 with ρ for different ϕ is shown in Figure 8.
For ϕ = 0 (Figure 8a), from the horizontal view, the chaotic region is similarly divided into several
zones. As ϕ increases, the chaotic zones move to the left and gradually shrink, as shown in Figure 8b–d.
The narrow periodic windows disappears in some chaotic zones. For ϕ = 0.6, the chaotic zones
converge into one region (Figure 8e). The chaotic region disappears and eventually the system is stable
as ϕ continues to increase (Figure 8f). Meanwhile, the chaotic crisis also exists in the system when
ϕ takes some median values. As ρ and ϕ are both weight coefficients, and based on the preceding
analysis, it is clear that these parameters have the same influence on the evolution of the system.
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Note that the parameters θ (travelers’ sensitivity to travel cost) and ϕ (traveler’s reliance on the
previous day’s actual cost) have been analyzed in detail by Liu et al. and Li et al. [1–3]. However,
they considered only the DTD updating of the travel cost and did not consider travelers’ habituation
in their evolutionary model. The traffic-flow evolutionary model presented here considers dual
updating mechanism and considers travelers’ habituation. Figure 7a corresponds to the case of ρ = 0
(no travelers’ habituation). As the evolutionary model of this paper is degenerated to the model
formulated by Liu et al. [1], Figure 7a is similar to the corresponding figure in this reference. However,
the travelers’ habituation is involved for other values of the bifurcation parameter (ρ 6= 0), so more
characteristics are explored. Accordingly, this paper focuses on the influence of the parameter ρ on the
stability of system evolution.

When ρ is different, the variation of the system’s state with θ and ϕ is shown in Figure 9. As noted,
the stability, bifurcation, and chaos appear in the dynamic evolution of the system when ρ is relatively
small. As ρ increases, the area of the stable region becomes larger, while the area of the unstable region
becomes smaller, until the chaos and bifurcation disappear. Based on many numerical experiments,
for 0.84 ≤ ρ < 1, we found that the evolution of the network traffic flow is always stable regardless of
the values of the parameters θ ∈ (0, +∞) and ϕ ∈ [0, 1).
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5. Concluding Remarks

This paper has presented a traffic flow evolutionary model under a dual updating mechanism that
describes DTD traffic flow and travel cost dynamics. Considering travelers’ learning and habituation,
not only the travel cost, but also the traffic flow is updated in the evolution process. In the numerical
experiments, the evolution characteristics of the dynamic system are analyzed by changing the
parameters θ, ρ, and ϕ, which are related to the characteristics of the travelers. Based on this study,
the following comments are offered:

(1) Based on the developed Theorem 1, the equilibrium point of dynamic system is asymptotically
stable under certain conditions. The results show that for θ ≤ 0.923, the equilibrium point is
asymptotically stable regardless of the values of the parameters ρ and ϕ. Bifurcation appears in
the evolution of the system when 0.923 < θ ≤ 4.402. The results also show that the parameters ρ

and ϕ have the same effect on the stability of the system.
(2) Chaos appears in the evolution of the system when θ > 4.402. As θ increases, the system will

develop two kinds of chaotic crises, boundary crisis (θ > 6.773) and interior crisis (θ > 10.403).
This indicates that when travelers are more sensitive to the route cost, the traffic flow will change
suddenly with small variations in the parameters ρ or ϕ, and the network system becomes
extremely unstable. As θ continues to increase, taking θ = 22 for example, the chaotic region will
be divided into several zones, indicating that the parameters ρ and ϕ have the same influence on
the evolution of the system.

(3) The evolution of network traffic flow is always stable for 0.84 ≤ ρ < 1, regardless of the values
of the parameters θ ∈ (0, +∞) and ϕ ∈ [0, 1). This result shows that when the proportion
of travelers who do not change the route selected in the previous day is not less than 84%,
the evolution of the network traffic flows is always stable.

(4) The findings of this paper are applicable to only a two-route parallel network. For more complex
traffic networks, the research method of this paper would provide a useful background for
analyzing the network. The DTD dynamic evolution characteristics of the network traffic
flows are analyzed by establishing a higher dimensional nonlinear dynamic model. However,
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the bifurcation and chaos phenomenon may be more complicated at present, such as the
occurrence of hyperchaos. This research topic will be investigated in a future study. Additionally,
more parameters can be analyzed. For example, the parameters of traffic network, such as
free-flow link travel time and link capacity, can be discussed. If the number of lanes of one link
increases, the link capacity will increase and may affect the results. In the future, the authors will
conduct further research on this subject.

(5) As this line of research is still in the theoretical stage, it needs to be verified using actual data.
First, we can verify the applicability of the model, the stability of the evolution of network traffic
flow, the accuracy of bifurcation condition, and whether it will be chaotic in traffic using morning
peak-hour flow of road network over time. Such data can be obtained from the traffic management
departments of the cities. Second, if the chaos phenomenon of traffic flow is proved to exist using
a large amount of field data, it will raise new research questions. For example, how chaos control
can be carried out to make network traffic flow reach a stable state. This definitely will help
traffic management departments to effectively manage and control road traffic. On the contrary,
if the chaos of traffic flow is ignored, the traffic flow may be free today and congested tomorrow.
Thus, it will cause the increase of fuel consumption of automobiles, and then air pollution will be
aggravated. Therefore, the finding of chaos of network traffic-flow evolution and how to control
chaos in the future is meaningful, because it is beneficial to sustainable transportation systems
and the environment.
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