

 library.ryerson.ca

Re-Configurable Parallel Stream
Processor with Self-Assembling and
Self-Restorable Micro-Architecture

Lev Kirischian
Ryerson University

Irina Terterian
Ryerson University

Pil Woo Chun
Ryerson University

Vadim Geurkov
Ryerson University

digital.library.ryerson.ca/object/416

Please Cite:
Kirischian, L., Terterian, I., Chun, P. W., & Geurkov, V. (2004). Re-configurable
parallel stream processor with self-assembling and self-restorable micro-
architecture. Proceedings of the International Conference on Parallel Computing
in Electrical Engineering 2004, 165–170.
doi:10.1109/PCEE.2004.60

https://library.ryerson.ca/
https://digital.library.ryerson.ca/object/416
https://doi.org/10.1109/PCEE.2004.60

Re-Configurable Parallel Stream Processor with Self-Assembling and

Self-Restorable Micro-architecture

Lev Kirischian, Irina Terterian, Pil Woo Chun, Vadim Geurkov

Ryerson University Ryerson University Ryerson University Ryerson University

Toronto, CANADA Toronto, CANADA Toronto, CANADA Toronto, CANADA

lkirisch@ee.ryerson.ca iterteri@ee.ryerson.ca pchun@ee.ryerson.ca vgeurkov@ee.ryerson.ca

Abstract

In this paper we present a concept of the self-

assembling micro-architectures of Application Specific

Virtual Processors for data-stream processing. The

procedure for micro-architecture assembling is developed

for Xilinx “Virtex” FPGA devices. It is shown that

proposed approach allows a minimization of system

resources for multi-task data-stream workload and gives

ability for self-restoration of processing micro-

architectures when hardware fault occurs. This Paper

presents a description of system level architecture of run-

time re-configurable multi-stream parallel processor for

video applications and results gained on the prototype.

1. Introduction

 In many industrial data-stream processing systems

such as: video-surveillance, video-recognition, digital

video-broadcasting and digital communication systems

it is required to process multiple streams of data with a

very high rate (Gb/s). The usual approach is an

implementation of application specific integration circuits

(ASICs), or a Field Programmable Gate Array (FPGA)

devices were application specific processor core (ASPC)

is loaded. This approach seems more cost-effective when

ASIC or ASPC architecture is designed for one specific

application (task) [1]. However, there are several

disadvantages associated with this approach. One of the

main problems associated with ASICs is the lack of

hardware flexibility and the inability for a modification of

its micro-architecture. Thus, if any change in the

processing algorithm is required or hardware bug is

found, the ASIC micro-architecture cannot be modified.

Generally, FPGA utilization can mitigate this problem.

However, FPGA by its nature requires much more logic

resources (configuration SRAM, routing switches, look-

up table logic etc.) than ASIC for the same application.

On the other hand, in most of real applications multiple

streams should be processed in parallel and processing

algorithms can vary in different processing modes. ASIC

and ASPC approach assumes that their processing micro-

architecture is designed for all tasks, and all task modes.

Thus, this micro-architecture that reflects all possible

processing algorithms should be stored in the ASIC or

FPGA in the form of real hardware. Taking in account

that: a) not all tasks are initiated at the same time in the

multi-task workload and b) only one mode from the

selected many can be requested for each task, we can

predict a greater waste of logic resources and power to

feed big portion of non-active hardware. To solve this

problem the concept of run-time re-configurable (RTR)

systems can be implemented. RTR approach assumes a

utilization of FPGA devices with partially re-configurable

micro-architecture [2]. This approach allows loading into

the FPGA only that processing core, which is needed for

the task and task mode going to be activated. However, in

the existing RTR computing platforms [3] each

processing core has to be developed and pre-compiled

using CAD system that is associated with utilized FPGA

family (e.g. ISE Foundation for Xilinx FPGA devices).

Instead, our approach assumes assembling a complete

Application Specific Virtual Processor (ASVP) on-chip

on the basis of uniformed “LEGO” blocks: sub-cores,

which we call Virtual Hardware Components (VHC).

Furthermore, the proposed approach assumes that the

ASVP assembling procedure is fully automated because it

should be performed during hundreds of microseconds

without any influence of the operator. Thus, the process

of creation of ASVP micro-architecture is organized as

self-assembling procedure. Same procedure can be

activated when any hardware fault is detected in any of

ASVP active in the FPGA. In this case any damaged

Virtual Hardware Component can be restored by

scrubbing procedure [4] or re-loaded to another available

slot of the FPGA. Thus, our goal is to create a universal

computing platform with self-assembling micro-

architecture for parallel acquisition, processing and

transmitting (via high-bandwidth network) multiple data-

streams, where each data-stream task can be initiated,

terminated and re-loaded without interruption of other

stream executions and data transmission processes.

The rest of the paper is organized as follows: Section 2

describes architectural organization of Virtual Hardware

Components (VHC) in Xilinx Virtex-type FPGA devices.

In Section 3 the ASVP assembling procedure is

discussed, Section 4 gives brief overview of system

architecture of the proposed Re-configurable Parallel

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

Stream Processor (RPSP). Following Section 5 is where

we will discuss self-restoration aspect of a proposed

approach. As well as, Section 6 presents analysis of

gained results. Lastly, the summary is presented in

Section 7 to finalize this paper’s purpose.

2. Organization of Virtual Hardware

Components (VHC)

Most of the data-stream processing architectures can be

represented as a pipeline reflecting the structure of Data-

Flow Graph (DFG) [1]. In consideration of the structural

organization of different FPGA families we found that the

best candidate for these requirements was Xilinx

“Virtex”, family of partially re-configurable FPGA

devices [2]. The structure of “Virtex” FPGA consists of

(Figure 1): Arrays of CLBs (Configurable Logic Blocks);

Arrays of IOBs (Input Output Blocks), SRAM memory

blocks (Block RAM); Clock logic resources (DLLs, etc.)

and routing resources (Global and local routing).

Figure 1. Structure of “Virtex” FPGA

These resources can be configured into one or more data-

paths for one or more pipelined data-stream processors.

The configuration can be done by loading configuration

data file into the Configuration SRAM, which programs

logic functions of Look-Up-Table (LUT) of each CLB

and interconnections in-between logic, I/O, clock and

memory resources. The configuration data file for entire

FPGA device can be divided into smaller configuration

data files for partial FPGA reconfiguration. Also, each

small configuration data file can represent a Virtual

Hardware Component (VHC) to be downloading into

addressable FPGA slots (CLB-columns). The micro-

architecture of VHC consists of two major components

visualized in (Figure 2):

a) Processing Element (PE): Adder, Multiplier, FFT, etc.

b) Interface Element (IE): 8-bit, 16-bit, 32-bit, etc.

 Xilinx “Virtex” FPGA structure allows loading of

VHC partially, because partial reconfiguration for this

family of FPGAs allows addressable configuration of

each frame (part of a CLB-column). As it was shown in

“Virtex” FPGA device data sheet [5] the special tri-state

buffers (T-buffers) can be implemented to connect or

disconnect Virtual Hardware Components (VHCs) to the

Global Routing Lines. Those T-buffers can be dedicated

to specific global routing lines. Thus, each VHC, which

contains the Interface Element with T-buffers associated

with specific global routing lines, will be connected to

those lines but initially tri-stated at the initial architecture

loading state.

Figure 2. Micro-architecture of a VHC

3. Application Specific Virtual Processor

assembling procedure

The Architectural synthesis of the application specific

processor normally is based on application (task)

algorithm analysis. That creation of the Data Flow Graph

(DFG) and architectural is the optimization based on

DFG and data-path synthesis [6]. As a result, a complete

processing architecture described in one of Hardware

Description Languages (VHDL, AHDL or Verilog) is

usually compiled to be implemented in the ASIC or

FPGA. Although instead, we propose the approach of

self-assembling of task optimized Application Specific

Virtual Processor (ASVP) inside the partially re-

configurable FPGA using pre-compiled sub-cores -

VHCs. This is similar to “Port Map” procedures in

Hardware Descriptive Language but in an on-chip level.

To illustrate this concept let us consider the following

example. Let us assume that the task requires to process

four streams of data A, B, C and D. These streams should

be processed as follows: Y= (A+B)* (C+D)

In this case task algorithm can be represented by the Data

Flow Graph shown in Figure 3. To simplify the case, in

our example we will not consider scheduling and binding

procedures together [6] and just assume that the DFG

should be mapped in the hardware “as is”. In reality, we

I O B I O B I O B I O B I O B I O B I O B

C L B C L B C L B C L B I O B

B l o c k R A M

C L B C L B C L B C L B I O B

C l o c k D i s t r i b u t i o n C i r c u i t s

C L B C L B C L B C L B I O B

B l o c k R A M

C L B C L B C L B C L B I O B

I O B I O B I O B I O B I O B I O B I O B

D i s t r i -
b u t e d

G l o b a l

R o u t i n g

L i n e s

P r o c e s s i n g

E l e m e n t (P E i)

I n t e r f a c e

E l e m e n t (I E j)

L o c a l r o u t i n g

T r i -

s t a t e

B u f -

f e r s

V

H

C

G l o b a l

R o u t i n g

L i n e s

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

use special Architecture-to-Task Optimization System

(ATOS) for finding an optimal task DFG mapping [7].

Figure 3. Data Flow Graph of stream processing task

To assemble any micro-architecture by VHCs – we have

to have the library of available VHCs. Because Virtual

Hardware Components (VHSc) are pre-compiled cores

(configuration data files for certain FPGA device) and

each VHC has to be located in VHC-memory at a certain

location. The VHC-identifier consists of two parts: One

being the Processing Element Type Identifier (PETID)

and the other Interface Element Type Identifier (IETID).

Based on this ID- information requested VHC can be

retrieved from VHC-library and loaded into the FPGA to

the selected slot (addressed CLB-column). All above

operations such as: getting VHC from the library assigned

available FPGA slot for the VHC and loading the VHC to

the FPGA has to be done by special hardware unit which

we call Hardware Operating System (HOS). In our

example, (Figure 3) we require to have two adders and

one multiplier. Let us assume that 8-bit adder has PETID

= 01 and 8-bit multiplier PETID = 02. Let us also assume

that Interface Element with two groups of input lines

connected to Global Routing Lines (Figure 2) with

numbers from 0 to 7 and from 8 to 15, and with output

tri-state buffers (T-buff) connected to Global Routing

Lines (GRL) with numbers from 16 to 23 has IETID =

00. Similarly, Interface Element with IETID=01 will have

two groups of 8-bit inputs connected to GRL #24 - #39

and on output of T-buffs connected to GRL #40 - #47.

Interface Element with IETID =12 has two groups of

input lines connected to GRL #16 - #23 and #40 – 47 and

16 output T-buffs connected to GRL #48 - #63. Thus,

VHSs, which should be requested to create Application

Specific Virtual Processor for our task will have the

following ID: a) Adder #1: [0100] for (A+B) - operation,

b) Adder #2: [0101] for (B+C) - operation, c) Multiplier:

[0212] for Y calculation. Other components, which have

to be provided for ASVP configuration, are as follow: a)

External interface: Input / Output blocks (IOBs), b)

Internal links routing and c) Clock routing scheme. All of

these components are usually task-specific and should be

combined to the fixed part of ASVP architecture. Thus,

for task Ti we will have a fixed part of ASVP[i]

architecture – Afix[i]. Now we can start to consider the

complete process of ASVP creation in a partially re-

configurable FPGA. This process consists of the

following steps: 1) hardware Operating System (HOS)

which receives a request for task activation and loads a

fixed part of ASVP optimized for this task, 2) HOS

retrieves from task code VHC-identifiers to be loaded

into the FPGA, 3) using Core Address Conversion Table,

HOS generates one after another, addresses of each VHC-

configuration data files, 4) each VHC-core HOS stores in

the VHC-loading buffer. Then, HOS concatenates the

FPGA-slot address to the VHC-core and creates

configuration bit-stream for this Virtual Hardware

Component, 5) Bit-stream of the selected component

HOS loads to the FPGA into selected slot (CLB-column)

and 6) When all components are loaded, HOS initiates

data processing by sending start-signal to all VHCs in

ASVP.

For our example ASVP architecture is shown in Figure 4:

Figure 4. ASVP architecture assembled in the FPGA

from pre-compiled VHCs reflecting task DFG (Figure 3)

Let us assume that mode of task has to be switched from

Mode 1: Y= (A+B)*(C+D) to Mode 2: Y=(A+B) / (C+D)

In our case only Multiplier should be replaced by Divider

with the same Interface Element. Therefore, if Divider’s

PETID = 04 the VHC ID= [0412]. This replacement can

be done very fast. In our experiments we measured time

for replacement of one CLB-column VHC equal to 280

uS (for Xilinx XCV-400E, 50MHz parallel load). This

was 142 times faster than if complete ASVP is replaced

by re-configuration of entire FPGA. We would like to

mention that the process of VHC replacement in existing

ASVP architecture looks like an automated plug-in

operation of virtual component in Virtual Bus. Thus, the

mode switching in a proposed system can be done not by

switching between existing hardware modules (Multiplier

and Divider) but by re-configuring same logic resources

(CLB) in very short period (hundreds of microseconds).

This in result will allow for a dramatic minimization of

A B C D Y (IO B B locks)

Adder # 1

V HC [0100]

Adder # 2

V HC [0101]

M ultip lier

V HC [0212]

FP G A

addressable

slo ts (C LB-

colum ns) for

V H C

allocation

Global R outing Lines (#0 - #63)

reserved for this ASV P and in terfaced

to respective Input / Output buffers

+

+

*

A

B

C

D

Y

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

hardware resources and associated cost, dimensions,

weight and power consumption. Comparison with regular

FPGA-based systems will be discussed in Section 6.

4. Re-configurable Parallel Stream Processor

Architecture organization

 Re-configurable Parallel Stream Processor (RPSP)
architecture, adaptable for the multi-task and multi-mode
workload, implements the micro-architecture assembling
mechanism described in Section 3. Architecture of RPSP
includes the following components shown in Figure 5:

Figure 5. Architecture of Re-configurable Parallel Stream

Processor (RPSP) for multi-task & multi-mode workload.

a) Re-configurable Functional Module (RFM) is based on

partially re-configurable FPGA and can be configured to

a number of task-optimized data-stream processors.

b) VHC memory based on ROM (Read Only Memory)

contains configuration data files for all available VHCs,

c) Task memory based on ROM (Read Only Memory)

stores the configuration data files of the fixed part of

architecture {Afix[i]} for all tasks in workload.

d) VHC cash based on SRAM (Static Random Access

Memory) stores all VHC-cores that can be used for active

tasks (loaded in RFM).

f) Hardware Operating System (HOS) based on the

FPGA, performs the following major functions: i) Task

initiation and termination; ii) Mode switching by loading

a respective set of VHCs to certain slots of RFM; iii)

Data-streams switching and interface control; vi) RFM

diagnostic and restoration functions.

 The proposed architecture allows a great minimization

within hardware resources, for processing multi-task

workload when each task can work in multiple modes of

operation. Our approach is based on the fact that

“density” of a data processing structure is much higher in

a form of configuration data files, rather than in a form

of real hardware logic. It can be “squeezed” even more

when configuration of data files for an entire Application

Specific Processor is assembled from “LEGO”-type

component cores (VHC in our terminology). It is possible

for the reason of utilization of same component cores in a

different ASVP. Thus, the architecture of RPSP contains

hierarchy of memory units reflecting on previously

explained concept: i) non-volatile memory for fixed and

re-configurable parts of ASVP’s architectures, ii) cache

for VHCs to be used for active ASVPs and iii)

Configuration of SRAM in the Functional Module itself.

Let us consider the process of task activation under the

HOS control. Firstly, HOS receives the code of the

application (task) to be activated (Figure 5). The task

code being the ASVP code contains the following: i) code

of a fixed part of ASVP architecture and ii) list of all

VHCs associated with a requested version of ASVP. For

instance, in the case of an example discussed earlier in

Section 3, that application code of ASVP will look as

shown in Figure 6.

Fixed part # VHC1 VHC2 VHC3 VHCn

0001 0100 0101 0212 0000

Figure 6. Code of a task = Code of associated ASVP

Secondly, HOS converts VHC# to the start-address of

VHC configuration file in VHC Memory. The conversion

mechanism is based on a table which is located in the

VHC-Cache and appearances as shown in Figure 7.

 IETID#

PETID#

00 01 ……. 12

01 0x01100 0x01200 ……. 0x01C00

02 0x02000 0x02200 ……. 0x03800

…..

Figure 7. VHC# to VHC-core address conversion table

Afterwards, HOS retrieves an address of the first VHC

and sends it to VHC Memory, then starts VHC1 loading

process to the RFM FPGA to the dedicated slot(s). In our

example for VHC1: Adder 1 [0100], the start-address of

configuration data file is equal to 0x01100. This

procedure HOS repeats for all VHCs in the ASVP code

till the end (0000). At this moment of time a complete

processing architecture is assembled in the RFM FPGA,

and HOS can initiate the data-stream processing. We have

described this process to demonstrate major steps of

FPGA1: RFM (Re-

configurable Functional

M d l)

 Input data-streams Output data-streams

ROM: Task

memory for

fixed part of

ASVPs

architecture

ROM: VHC

memory for

sub-cores of

configurable

part of

ASVPs

architecture

FPGA 2: HOS

(Hardware

Operating System)

Configuration

data-bus

SRAM:

VHC Cache

VHC-

address bus

Code of a task to be activated

or terminated

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

interaction between HOS, Cache memory and RFM to

show the high-level of ASVP self-assembling mechanism

implemented in the RPSP.

5. Self-restoration mechanism for ASVP

 There are a few main reasons for hardware faults to

occur in SRAM-based FPGA devices: i) Physical defects

in wafer; ii) Hidden manufacturing defects; iii) Radiation

effects. In our project, we considered faults occurring

however, in small amounts of CLBs or in configuration

SRAM of the FPGA. Mostly this type of faults occurs as

a result of radiation effects (SEU – single event upset and

SEL– Single Event Lutch-up) usual for space applications

[4] or applications for radiation intensive environments

(nuclear power stations, etc). Instead of usual approach

based on protection of materials from radiation intensive

environment, we proposed a self-restoration mechnism

[8] based on re-assembling of damaged processing

structures. This mechanism utilize so-called scrubbing

procedure [4] but allows functional re-storation much

faster. In this paper we will give only a brief description

of the proposed method. Thus, to restore ASVP we

propose a two-level procedure. The First level of self-

restoration is based on VHC-scrubbing: re-loading of

same VHC configuration data-file to the same address

area of configuration SRAM. Which is of the FPGA

where this VHC was located. This can correct wrong state

of Flip-Flops in the configuration SRAM and thus,

correct damaged VHC-structure. This prosedure can be

performed using the same ASVP assembling mechanism

discussed in Sections 3 and 4.

The necessity of second level of self-restoration appears

when other reasons than just SEU make one of logic gates

damaged. This case can be considered when VHC

scrubbing does not help. In this case the damaged gate

should be avoided. In our implementation based on Xilinx

Virtex family of FPGA devices the smallest addressable

unit of FPGA is a frame. Thus, if any gate appears to be

damaged by any reason except SEU, we have no other

choise than to avoid a complete frame where this gate is

located. However, because any VHC is based on CLB-

column organization we developed a mechanism for re-

location of VHC from the damaged slot into a spare slot.

In this approach extra hardware costs are involved to

increase reliability of the system. However, it is possible

that after some period of time all reserved slots will be

used. In the case of a hardware fault the third level of

restoration with performance of degradation will be

initiated. In this case it is possible to load the existing

CLB-columns with another variant of VHC with reduced

area and functional parameters. It allows the computing

system to overcome the damaged CLB in the column

being corrupted. In this case we “pay” extra processing

time to increase the reliability. Let us consider the process

of replacement of damaged slot by reserved ones. This

process consists of the following steps:

a) Pausing the data-stream processing pipeline.

b) Disabling damaged Virtual Hardware Component by

loading a “dummy” VHC (with code [0000]) to tri-state

all outputs and to prevent data contention on the bus.

c) Selecting the available CLB-column(s) for loading

configuration data files of VHC to be restored.

d) Composing the configuration bit-stream by inserting

the selected frame address and associated information

into the VHC- configuration data file.

e) Loading the VHC configuration file into the selected

column(s) while continuing data-stream processing.

 In case if there is a lack of spare CLB-columns, the

same procedure can be performed but with different

variant of VHC. For example, a 16-bit VHC architecture

can be replaced by 8-bit VHC, which can restore

functionality of ASVP, but with reduced performance.

Experiments in this regard were performed on the

prototype of RPSP with restoration of different ASVPs

for executing different video-stream processing

algorithms.

6. RPSP Implementation and analysis of

 experimental results

Performance results were gained on the first prototype of

RPSP based on Xilinx XCV-400E (RFM) and XCV-50E

(HOS) devices. Aggregate bandwidth of I/O interface was

equal to 7.2 Gb/s (LVDS) and 8.5 Gb/s (LVTTL). Cache

volume = 2MB. Configuration bus bandwidth = 528

Mb/s.
RPSP was interfaced with CMOS digital camera (388 x
280 pixels) as high speed video-input (86.9 Mb/s) and 3
SVGA CRT monitors as video-outputs (3 x 1.258 Gb/s).
To evaluate the performance characteristics for multi-task
and multi-mode workload, three ASVP were developed.
All three ASVP performed different types of video-
stream processing algorithms. It was then proved that all
three independent tasks could run on the RPSP
simultaneously. Initial (fixed part) architecture loading
period was equal to 6.6 ms. Mode switching time was as
low as 280 us for one CLB-column VHC replacement.
Mode switching time was 420 us for 2 column-wide
VHC. Furthermore, mode switching time for 3 CLB-
column wide VHC was 560 us. Based on these results the
comparison analysis was made with a common approach.
That is when a complete FPGA device has to be re-
configured to switch from one task to another or from one
task mode to another. The acceleration of mode switching
- Ams was calculated for Xilinx Virtex FPGAs by the
following formula: Ams = Tfpga / Tasvp, where Tfpga is re-
configuration time for complete FPGA and Tasvp is re-
configuration of 2 CLB-column wide VHC in a ASVP.

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

We considered that in a bit-stream loading time in
SelectMAP programming mode to be at a 50MB/s
loading rate. Results of this comparison for Xilinx Virtex
II family are presented in Table 1.

Table 1. Acceleration of task / mode switching

Device
XC2V

250 500 1000 4000 8000

Ams: 1 CLB-
column VHC

13.9 22.9 33.6 127.1 234

Ams: 2 CLB-
column VHC

9.3 15.2 22.4 87.8 156

Ams: 3 CLB-
column VHC

6.9 11.4 16.8 63.6 117

 Thus, the proposed approach gives very high
acceleration in task or task mode switching, which
increases when FPGA with more logic gates is used and
decreases when VHC with more CLB-columns has to be
replaced.
 We also estimated minimization of hardware resources
(in times) comparing RPSP approach and common
FPGA-based systems. Comparison was conducted for the
workload, which consists of N different tasks. Each task
can work in M different modes. For simplification of this
analysis we assumed that each ASVP for each task in the
workload requires 10 CLB-columns and only 4 of them
can be modified in mode switching. We also assumed that
at any period of time only 50% of possible tasks can work
simultaneously. Obviously, each task could work only in
one of possible modes at a time. Results of this
comparison are presented in Table 2.

Table 2. Minimization of hardware resources

M
N

2 4 8 16

 4 2.8 4.4 7.6 14
 8 5.6 8.8 15.2 28
16 11.2 17.6 30.4 56

 Digits in the cells of this table shows a minimization
(in times) of hardware resources (number of logic gates)
if RPSP architecture is used. It is compared with the usual
approach when one multi-stream processing core is
implemented in the same family of FPGA devices. This
table illustrates that for the workload that consists of
small number of tasks and task modes, minimization of
hardware resources is not so high. When number of
different tasks and modes increases in a workload,
respectively it increases the effectiveness of proposed
RPSP approach. This hardware resources minimization
will also decrease cost, power consumption and power
dissipation as well as mass and dimensions of the system.
Not only that, but it will also increase the reliability and

radiation tolerance, because the smaller area of logic
gates has less probability for radiation effects.

7. Summary

 The proposed concept of RPSP: Re-configurable

Parallel Stream Processor can be a very effective solution

to the multi-task and multi-mode data-stream processing

workload for many real-time embedded computing

platforms. It provides architectural adaptability and ASIC

comparable system performance which keeps most of the

hardware in “virtual” form in the non-volatile memory

rather than in a form of acting hardware. As was

investigated on the prototype of RPSP running video-

processing tasks, the proposed approach allows large

reduction of hardware resources and power consumption.

Switching from mode to mode can be done much faster

than in regular FPGA-based systems without interruption

of other tasks running in parallel on the RPSP. Lastly, the

ability of self-restoration of stream-processing pipelines

was also investigated and tested on the RPSP prototype.

References

[1] Scott Rixner, “Stream Processor Architecture”, Kluwer
Academic Publishers, 2002, 120 p.

[2] XAPP151 v1.6: “Virtex Series Configuration Architecture
User Guide”, Xilinx Inc., March 2003

[3] R. Hartenstein, “A Decade of Reconfigurable Computing: a

Visionary Retrospective”, In Design, Automation and Test

in Europe, pp. 642-649, 2001
[4] XAPP216 v1.0: “Correcting Single-Event Upsets Through

Virtex Partial Configuration”, Xilinx Inc., June 1, 2000

[5] XILINX. Virtex II Platform FPGA Handbook, UG002 (v1.0)
December 6, 2000.

[6] Giovani De Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, Inc. 1994, 580 p.

[7] L. Kirischian, L. Szajek, F. Chayab, “Architecture-to-Task
Optimization System (ATOS) for Parallel Multi-Mode Data-
Flow Architectures on a Base of a Partially Re-configurable
Computing Platform”, in Proc. PARELEC 2002
International Conference on Parallel Computing in
Electrical Engineering, Warsaw, September 2002.

[8] L. Kirischian, V. Geurkov, I. Terterian and J. Kleiman,
“Self-Restoration as SEU Protection Mechanism for Re-
configurable On-board Computing Platforms”, to appear in
Proc. of 7-th International Conference on Protection of
Materials and Structures from Space Environment –
ICPMSE-7, May10-13, 2004, Toronto, Canada

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’04)
0-7695-2080-4/04 $ 20.00 IEEE

	Ryerson University
	Digital Commons @ Ryerson
	9-1-2004

	Re-Configurable Parallel Stream Processor with Self-Assembling and Self-Restorable Micro-Architecture
	Lev Kirischian
	Irina Terterian
	Pil Woo Chun
	Vadim Geurkov
	Recommended Citation

