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Abstract

In this paper we present a concept of the self-

assembling micro-architectures of Application Specific 

Virtual Processors for data-stream processing. The 

procedure for micro-architecture assembling is developed 

for Xilinx “Virtex” FPGA devices. It is shown that 

proposed approach allows a minimization of system 

resources for multi-task data-stream workload and gives 

ability for self-restoration of processing micro-

architectures when hardware fault occurs. This Paper 

presents a description of system level architecture of run-

time re-configurable multi-stream parallel processor for 

video applications and results gained on the prototype.   

1. Introduction 

       In many industrial data-stream processing systems 

such as: video-surveillance, video-recognition, digital 

video-broadcasting and digital communication systems     

it is required to process multiple streams of data with a 

very high rate (Gb/s). The usual approach is an 

implementation of application specific integration circuits 

(ASICs), or a Field Programmable Gate Array (FPGA) 

devices were application specific processor core (ASPC) 

is loaded. This approach seems more cost-effective when 

ASIC or ASPC architecture is designed for one specific 

application (task) [1]. However, there are several 

disadvantages associated with this approach. One of the 

main problems associated with ASICs is the lack of 

hardware flexibility and the inability for a modification of 

its micro-architecture. Thus, if any change in the 

processing algorithm is required or hardware bug is 

found, the ASIC micro-architecture cannot be modified. 

Generally, FPGA utilization can mitigate this problem. 

However, FPGA by its nature requires much more logic 

resources (configuration SRAM, routing switches, look-

up table logic etc.) than ASIC for the same application. 

On the other hand, in most of real applications multiple 

streams should be processed in parallel and processing 

algorithms can vary in different processing modes. ASIC 

and ASPC approach assumes that their processing micro- 

architecture is designed for all tasks, and all task modes. 

Thus, this micro-architecture that reflects all possible 

processing algorithms should be stored in the ASIC or 

FPGA in the form of real hardware. Taking in account 

that: a) not all tasks are initiated at the same time in the 

multi-task workload and b) only one mode from the 

selected many can be requested for each task, we can 

predict a greater waste of logic resources and power to 

feed big portion of non-active hardware. To solve this 

problem the concept of run-time re-configurable (RTR) 

systems can be implemented. RTR approach assumes a 

utilization of FPGA devices with partially re-configurable 

micro-architecture [2]. This approach allows loading into 

the FPGA only that processing core, which is needed for 

the task and task mode going to be activated. However, in 

the existing RTR computing platforms [3] each 

processing core has to be developed and pre-compiled 

using CAD system that is associated with utilized FPGA 

family (e.g. ISE Foundation for Xilinx FPGA devices). 

Instead, our approach assumes assembling a complete 

Application Specific Virtual Processor (ASVP) on-chip 

on the basis of uniformed “LEGO” blocks: sub-cores, 

which we call Virtual Hardware Components (VHC). 

Furthermore, the proposed approach assumes that the 

ASVP assembling procedure is fully automated because it 

should be performed during hundreds of microseconds 

without any influence of the operator. Thus, the process 

of creation of ASVP micro-architecture is organized as 

self-assembling procedure. Same procedure can be 

activated when any hardware fault is detected in any of 

ASVP active in the FPGA. In this case any damaged 

Virtual Hardware Component can be restored by 

scrubbing procedure [4] or re-loaded to another available 

slot of the FPGA. Thus, our goal is to create a universal 

computing platform with self-assembling micro-

architecture for parallel acquisition, processing and 

transmitting (via high-bandwidth network) multiple data-

streams, where each data-stream task can be initiated, 

terminated and re-loaded without interruption of other 

stream executions and data transmission processes.  

The rest of the paper is organized as follows: Section 2 

describes architectural organization of Virtual Hardware 

Components (VHC) in Xilinx Virtex-type FPGA devices. 

In Section 3 the ASVP assembling procedure is 

discussed, Section 4 gives brief overview of system 

architecture of the proposed Re-configurable Parallel 
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Stream Processor (RPSP).  Following Section 5 is where 

we will discuss self-restoration aspect of a proposed 

approach. As well as, Section 6 presents analysis of 

gained results. Lastly, the summary is presented in 

Section 7 to finalize this paper’s purpose.    

2. Organization of Virtual Hardware 

Components (VHC)

Most of the data-stream processing architectures can be 

represented as a pipeline reflecting the structure of Data-

Flow Graph (DFG) [1]. In consideration of the structural 

organization of different FPGA families we found that the 

best candidate for these requirements was Xilinx 

“Virtex”, family of partially re-configurable FPGA 

devices [2].  The structure of “Virtex” FPGA consists of 

(Figure 1): Arrays of CLBs (Configurable Logic Blocks);

Arrays of IOBs (Input Output Blocks), SRAM memory 

blocks (Block RAM); Clock logic resources (DLLs, etc.) 

and routing resources (Global and local routing).  

Figure 1. Structure of “Virtex” FPGA

These resources can be configured into one or more data-

paths for one or more pipelined data-stream processors. 

The configuration can be done by loading configuration 

data file into the Configuration SRAM, which programs 

logic functions of Look-Up-Table (LUT) of each CLB 

and interconnections in-between logic, I/O, clock and 

memory resources. The configuration data file for entire 

FPGA device can be divided into smaller configuration 

data files for partial FPGA reconfiguration. Also, each 

small configuration data file can represent a Virtual 

Hardware Component (VHC) to be downloading into 

addressable FPGA slots (CLB-columns). The micro-

architecture of VHC consists of two major components 

visualized in (Figure 2):  

a) Processing Element (PE): Adder, Multiplier, FFT, etc.   

b) Interface Element (IE): 8-bit, 16-bit, 32-bit, etc. 

     Xilinx “Virtex” FPGA structure allows loading of 

VHC partially, because partial reconfiguration for this 

family of FPGAs allows addressable configuration of 

each frame (part of a CLB-column).  As it was shown in 

“Virtex” FPGA device data sheet [5] the special tri-state 

buffers (T-buffers) can be implemented to connect or 

disconnect Virtual Hardware Components (VHCs) to the 

Global Routing Lines. Those T-buffers can be dedicated 

to specific global routing lines. Thus, each VHC, which 

contains the Interface Element with T-buffers associated 

with specific global routing lines, will be connected to 

those lines but initially tri-stated at the initial architecture 

loading state.

Figure 2. Micro-architecture of a VHC 

3. Application Specific Virtual Processor 

assembling procedure

The Architectural synthesis of the application specific 

processor normally is based on application (task) 

algorithm analysis. That creation of the Data Flow Graph 

(DFG) and architectural is the optimization based on 

DFG and data-path synthesis [6]. As a result, a complete 

processing architecture described in one of Hardware 

Description Languages (VHDL, AHDL or Verilog) is 

usually compiled to be implemented in the ASIC or 

FPGA. Although instead, we propose the approach of 

self-assembling of task optimized Application Specific 

Virtual Processor (ASVP) inside the partially re-

configurable FPGA using pre-compiled sub-cores - 

VHCs. This is similar to “Port Map” procedures in 

Hardware Descriptive Language but in an on-chip level. 

To illustrate this concept let us consider the following 

example. Let us assume that the task requires to process 

four streams of data A, B, C and D. These streams should 

be processed as follows: Y= (A+B)* (C+D) 

In this case task algorithm can be represented by the Data 

Flow Graph shown in Figure 3. To simplify the case, in 

our example we will not consider scheduling and binding 

procedures together [6] and just assume that the DFG 

should be mapped in the hardware “as is”.  In reality, we 
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use special Architecture-to-Task Optimization System 

(ATOS) for finding an optimal task DFG mapping [7].  

Figure 3. Data Flow Graph of stream processing task 

To assemble any micro-architecture by VHCs – we have 

to have the library of available VHCs. Because Virtual 

Hardware Components (VHSc) are pre-compiled cores 

(configuration data files for certain FPGA device) and 

each VHC has to be located in VHC-memory at a certain 

location. The VHC-identifier consists of two parts: One 

being the Processing Element Type Identifier (PETID) 

and the other Interface Element Type Identifier (IETID). 

Based on this ID- information requested VHC can be 

retrieved from VHC-library and loaded into the FPGA to 

the selected slot (addressed CLB-column). All above 

operations such as: getting VHC from the library assigned 

available FPGA slot for the VHC and loading the VHC to 

the FPGA has to be done by special hardware unit which 

we call Hardware Operating System (HOS). In our 

example, (Figure 3) we require to have two adders and 

one multiplier. Let us assume that 8-bit adder has PETID 

= 01 and 8-bit multiplier PETID = 02. Let us also assume 

that Interface Element with two groups of input lines 

connected to Global Routing Lines (Figure 2) with 

numbers from 0 to 7 and from 8 to 15, and with output 

tri-state buffers (T-buff) connected to Global Routing 

Lines (GRL) with numbers from 16 to 23 has IETID = 

00. Similarly, Interface Element with IETID=01 will have 

two groups of 8-bit inputs connected to GRL #24 - #39 

and on output of T-buffs connected to GRL #40 - #47. 

Interface Element with IETID =12 has two groups of 

input lines connected to GRL #16 - #23 and #40 – 47 and 

16 output T-buffs connected to GRL #48 - #63. Thus, 

VHSs, which should be requested to create Application 

Specific Virtual Processor for our task will have the 

following ID: a) Adder #1: [0100] for (A+B) - operation, 

b) Adder #2: [0101] for (B+C) - operation, c) Multiplier: 

[0212] for Y calculation. Other components, which have 

to be provided for ASVP configuration, are as follow: a) 

External interface: Input / Output blocks (IOBs), b) 

Internal links routing and c) Clock routing scheme. All of 

these components are usually task-specific and should be 

combined to the fixed part of ASVP architecture. Thus, 

for task Ti we will have a fixed part of ASVP[i]

architecture – Afix[i]. Now we can start to consider the 

complete process of ASVP creation in a partially re-

configurable FPGA. This process consists of the 

following steps: 1) hardware Operating System (HOS) 

which receives a request for task activation and loads a 

fixed part of ASVP optimized for this task, 2) HOS 

retrieves from task code VHC-identifiers to be loaded 

into the FPGA, 3) using Core Address Conversion Table, 

HOS generates one after another, addresses of each VHC-

configuration data files, 4) each VHC-core HOS stores in 

the VHC-loading buffer. Then, HOS concatenates the 

FPGA-slot address to the VHC-core and creates 

configuration bit-stream for this Virtual Hardware 

Component, 5) Bit-stream of the selected component 

HOS loads to the FPGA into selected slot (CLB-column) 

and 6) When all components are loaded, HOS initiates 

data processing by sending start-signal to all VHCs in 

ASVP.

For our example ASVP architecture is shown in Figure 4: 

Figure 4. ASVP architecture assembled in the FPGA 

from pre-compiled VHCs reflecting task DFG (Figure 3)

Let us assume that mode of task has to be switched from 

Mode 1: Y= (A+B)*(C+D) to Mode 2:  Y=(A+B) / (C+D)

In our case only Multiplier should be replaced by Divider 

with the same Interface Element. Therefore, if Divider’s 

PETID = 04 the VHC ID= [0412]. This replacement can 

be done very fast. In our experiments we measured time 

for replacement of one CLB-column VHC equal to 280 

uS (for Xilinx XCV-400E, 50MHz parallel load). This 

was 142 times faster than if complete ASVP is replaced 

by re-configuration of entire FPGA. We would like to 

mention that the process of VHC replacement in existing 

ASVP architecture looks like an automated plug-in 

operation of virtual component in Virtual Bus. Thus, the 

mode switching in a proposed system can be done not by 

switching between existing hardware modules (Multiplier 

and Divider) but by re-configuring same logic resources 

(CLB) in very short period (hundreds of microseconds). 

This in result will allow for a dramatic minimization of 
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hardware resources and associated cost, dimensions, 

weight and power consumption. Comparison with regular 

FPGA-based systems will be discussed in Section 6. 

4. Re-configurable Parallel Stream Processor

Architecture organization 

     Re-configurable Parallel Stream Processor (RPSP) 
architecture, adaptable for the multi-task and multi-mode 
workload, implements the micro-architecture assembling 
mechanism described in Section 3. Architecture of RPSP 
includes the following components shown in Figure 5:  

Figure 5. Architecture of Re-configurable Parallel Stream 

Processor (RPSP) for multi-task & multi-mode workload. 

a) Re-configurable Functional Module (RFM) is based on 

partially re-configurable FPGA and can be configured to 

a number of task-optimized data-stream processors.    

b) VHC memory based on ROM (Read Only Memory) 

contains configuration data files for all available VHCs,

c) Task memory based on ROM (Read Only Memory)  

stores the configuration data files of the fixed part of 

architecture {Afix[i]} for all tasks in workload.

d) VHC cash based on SRAM (Static Random Access 

Memory) stores all VHC-cores that can be used for active 

tasks (loaded in RFM). 

f) Hardware Operating System (HOS) based on the 

FPGA, performs the following major functions: i) Task 

initiation and termination; ii) Mode switching by loading 

a respective set of VHCs to certain slots of RFM; iii) 

Data-streams switching and interface control; vi) RFM 

diagnostic and restoration functions.

     The proposed architecture allows a great minimization 

within hardware resources, for processing multi-task 

workload when each task can work in multiple modes of 

operation. Our approach is based on the fact that 

“density” of a data processing structure is much higher in 

a form of   configuration data files, rather than in a form 

of real hardware logic. It can be “squeezed” even more 

when configuration of data files for an entire Application 

Specific Processor is assembled from “LEGO”-type 

component cores (VHC in our terminology). It is possible 

for the reason of utilization of same component cores in a 

different ASVP. Thus, the architecture of RPSP contains 

hierarchy of memory units reflecting on previously 

explained concept: i) non-volatile memory for fixed and 

re-configurable parts of ASVP’s architectures, ii) cache 

for VHCs to be used for active ASVPs and iii) 

Configuration of SRAM in the Functional Module itself.  

Let us consider the process of task activation under the 

HOS control. Firstly, HOS receives the code of the 

application (task) to be activated (Figure 5). The task 

code being the ASVP code contains the following: i) code 

of a fixed part of ASVP architecture and ii) list of all 

VHCs associated with a requested version of ASVP. For 

instance, in the case of an example discussed earlier in 

Section 3, that application code of ASVP will look as 

shown in Figure 6. 

Fixed part # VHC1 VHC2 VHC3 VHCn 

0001 0100 0101 0212 0000 

Figure 6. Code of a task = Code of associated ASVP

Secondly, HOS converts VHC# to the start-address of 

VHC configuration file in VHC Memory. The conversion 

mechanism is based on a table which is located in the 

VHC-Cache and appearances as shown in Figure 7.

    IETID# 

PETID# 

00 01 ……. 12

01 0x01100 0x01200 ……. 0x01C00 

02 0x02000 0x02200 ……. 0x03800 

…..     

Figure 7. VHC# to VHC-core address conversion table 

Afterwards, HOS retrieves an address of the first VHC 

and sends it to VHC Memory, then starts VHC1 loading 

process to the RFM FPGA to the dedicated slot(s). In our 

example for VHC1: Adder 1 [0100], the start-address of 

configuration data file is equal to 0x01100. This 

procedure HOS repeats for all VHCs in the ASVP code 

till the end (0000). At this moment of time a complete 

processing architecture is assembled in the RFM FPGA, 

and HOS can initiate the data-stream processing. We have 

described this process to demonstrate major steps of 
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interaction between HOS, Cache memory and RFM to 

show the high-level of ASVP self-assembling mechanism 

implemented in the RPSP.   

5. Self-restoration mechanism for ASVP

   There are a few main reasons for hardware faults to 

occur in SRAM-based FPGA devices: i) Physical defects 

in wafer; ii) Hidden manufacturing defects; iii) Radiation 

effects. In our project, we considered faults occurring 

however, in small amounts of CLBs or in configuration 

SRAM of the FPGA. Mostly this type of faults occurs as 

a result of radiation effects (SEU – single event upset and 

SEL– Single Event Lutch-up) usual for space applications 

[4] or applications for radiation intensive environments 

(nuclear power stations, etc).  Instead of usual approach 

based on protection of materials from radiation intensive 

environment, we proposed a self-restoration mechnism 

[8] based on re-assembling of damaged processing 

structures. This mechanism utilize so-called scrubbing 

procedure [4] but allows functional re-storation much 

faster. In this paper we will give only a brief description 

of the proposed method. Thus, to restore ASVP we 

propose a two-level procedure. The First level of self-

restoration is based on VHC-scrubbing: re-loading of 

same VHC configuration data-file to the same address 

area of configuration SRAM. Which is of the FPGA 

where this VHC was located. This can correct wrong state 

of Flip-Flops in the configuration SRAM and thus, 

correct damaged VHC-structure. This prosedure can be 

performed using the same ASVP assembling mechanism 

discussed in Sections 3 and 4.

The necessity of second level of self-restoration appears 

when other reasons than just SEU make one of logic gates 

damaged. This case can be considered when VHC 

scrubbing does not help. In this case the damaged gate 

should be avoided. In our implementation based on Xilinx 

Virtex family of FPGA devices the smallest addressable 

unit of FPGA is a frame. Thus, if any gate appears to be 

damaged by any reason except SEU, we have no other 

choise than to avoid a complete frame where this gate is 

located. However, because any VHC is based on CLB-

column organization we developed a mechanism for re-

location of VHC from the damaged slot into a spare slot. 

In this approach extra hardware costs are involved to 

increase reliability of the system. However, it is possible 

that after some period of time all reserved slots will be  

used. In the case of a hardware fault the third level of 

restoration with performance of degradation will be 

initiated. In this case it is possible to load the existing 

CLB-columns with another variant of VHC with reduced 

area and functional parameters. It allows the computing 

system to overcome the damaged CLB in the column 

being corrupted. In this case we “pay” extra processing 

time to increase the reliability. Let us consider the process 

of replacement of damaged slot by reserved ones. This 

process consists of the following steps:

a)   Pausing the data-stream processing pipeline.  

b) Disabling damaged Virtual Hardware Component by 

loading a “dummy” VHC (with code [0000]) to tri-state 

all outputs and to prevent data contention on the bus.

c) Selecting the available CLB-column(s) for loading 

configuration data files of VHC to be restored. 

d) Composing the configuration bit-stream by inserting 

the selected frame address and associated information 

into the VHC- configuration data file. 

e) Loading the VHC configuration file into the selected 

column(s) while continuing data-stream processing.  

     In case if there is a lack of spare CLB-columns, the 

same procedure can be performed but with different 

variant of VHC. For example, a 16-bit VHC architecture 

can be replaced by 8-bit VHC, which can restore 

functionality of ASVP, but with reduced performance. 

Experiments in this regard were performed on the 

prototype of RPSP with restoration of different ASVPs 

for executing different video-stream processing 

algorithms.    

6. RPSP Implementation and analysis of

    experimental results

Performance results were gained on the first prototype of 

RPSP based on Xilinx XCV-400E (RFM) and XCV-50E 

(HOS) devices. Aggregate bandwidth of I/O interface was 

equal to 7.2 Gb/s (LVDS) and 8.5 Gb/s (LVTTL). Cache 

volume = 2MB. Configuration bus bandwidth = 528 

Mb/s. 
RPSP was interfaced with CMOS digital camera (388 x 
280 pixels) as high speed video-input (86.9 Mb/s) and 3 
SVGA CRT monitors as video-outputs (3 x 1.258 Gb/s). 
To evaluate the performance characteristics for multi-task 
and multi-mode workload, three ASVP were developed. 
All three ASVP performed different types of video-
stream processing algorithms. It was then proved that all 
three independent tasks could run on the RPSP 
simultaneously. Initial (fixed part) architecture loading 
period was equal to 6.6 ms. Mode switching time was as 
low as 280 us for one CLB-column VHC replacement. 
Mode switching time was 420 us for 2 column-wide 
VHC. Furthermore, mode switching time for 3 CLB-
column wide VHC was 560 us. Based on these results the 
comparison analysis was made with a common approach. 
That is when a complete FPGA device has to be re-
configured to switch from one task to another or from one 
task mode to another. The acceleration of mode switching 
- Ams was calculated for Xilinx Virtex FPGAs by the 
following formula: Ams = Tfpga / Tasvp, where  Tfpga is re-
configuration time for complete FPGA and Tasvp is re-
configuration of 2 CLB-column wide VHC in a ASVP. 
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We considered that in a bit-stream loading time in 
SelectMAP programming mode to be at a 50MB/s 
loading rate. Results of this comparison for Xilinx Virtex 
II family are presented in Table 1.  

Table 1. Acceleration of task / mode switching  

Device
XC2V 

250 500 1000 4000 8000 

Ams: 1 CLB-
column VHC 

13.9 22.9 33.6 127.1 234 

Ams: 2 CLB-
column VHC 

9.3 15.2 22.4 87.8 156 

Ams: 3 CLB-
column VHC 

6.9 11.4 16.8 63.6 117 

 Thus, the proposed approach gives very high 
acceleration in task or task mode switching, which 
increases when FPGA with more logic gates is used and 
decreases when VHC with more CLB-columns has to be 
replaced.
     We also estimated minimization of hardware resources 
(in times) comparing RPSP approach and common 
FPGA-based systems. Comparison was conducted for the 
workload, which consists of N different tasks. Each task 
can work in M different modes. For simplification of this 
analysis we assumed that each ASVP for each task in the 
workload requires 10 CLB-columns and only 4 of them 
can be modified in mode switching. We also assumed that 
at any period of time only 50% of possible tasks can work 
simultaneously. Obviously, each task could work only in 
one of possible modes at a time. Results of this 
comparison are presented in Table 2.  

Table 2.  Minimization of hardware resources 

M
N

2 4 8 16 

  4 2.8 4.4 7.6 14 
  8 5.6 8.8 15.2 28 
16 11.2 17.6 30.4 56 

     Digits in the cells of this table shows a minimization 
(in times) of hardware resources (number of logic gates) 
if RPSP architecture is used. It is compared with the usual 
approach when one multi-stream processing core is 
implemented in the same family of FPGA devices. This 
table illustrates that for the workload that consists of 
small number of tasks and task modes, minimization of 
hardware resources is not so high. When number of 
different tasks and modes increases in a workload, 
respectively it increases the effectiveness of proposed 
RPSP approach. This hardware resources minimization 
will also decrease cost, power consumption and power 
dissipation as well as mass and dimensions of the system. 
Not only that, but it will also increase the reliability and 

radiation tolerance, because the smaller area of logic 
gates has less probability for radiation effects.

7. Summary 

     The proposed concept of RPSP: Re-configurable 

Parallel Stream Processor can be a very effective solution 

to the multi-task and multi-mode data-stream processing 

workload for many real-time embedded computing 

platforms. It provides architectural adaptability and ASIC 

comparable system performance which keeps most of the 

hardware in “virtual” form in the non-volatile memory 

rather than in a form of acting hardware. As was 

investigated on the prototype of RPSP running video-

processing tasks, the proposed approach allows large 

reduction of hardware resources and power consumption. 

Switching from mode to mode can be done much faster 

than in regular FPGA-based systems without interruption 

of other tasks running in parallel on the RPSP. Lastly, the 

ability of self-restoration of stream-processing pipelines 

was also investigated and tested on the RPSP prototype.
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