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Abstract

We introduce a canonical representation of call options, and propose a solution to two open prob-
lems in option pricing theory. The first problem was posed by (Kassouf, 1969, pg. 694) seeking
“theoretical substantiation” for his robust option pricing power law which eschewed assumptions
about risk attitudes, rejected risk neutrality, and made no assumptions about stock price distribu-
tion. The second problem was posed by (Scott, 1987, pp. 423-424) who could not find a unique
solution to the call option price in his option pricing model with stochastic volatility–without ap-
pealing to an equilibrium asset pricing model by Hull and White (1987), and concluded: “[w]e
cannot determine the price of a call option without knowing the price of another call on the same
stock”. First, we show that under certain conditions derivative assets are superstructures of the
underlying. Hence any option pricing or derivative pricing model in a given number field, based
on an anticipating variable in an extended field, with coefficients in a subfield containing the un-
derlying, is admissible for market timing. For the anticipating variable is an algebraic number that
generates the subfield in which it is the root of an equation. Accordingly, any polynomial which
satisfies those criteria is admissible for price discovery and or market timing. Therefore, at least
for empirical purposes, elaborate models of mathematical physics or otherwise are unnecessary for
pricing derivatives because much simpler adaptive polynomials in suitable algebraic numbers are
functionally equivalent. Second, we prove, analytically, that Kassouf (1969) power law specifica-
tion for option pricing is functionally equivalent to Black and Scholes (1973); Merton (1973) in
an algebraic number field containing the underlying. In fact, we introduce a canonical polynomial
representation theory of call option pricing convex in time to maturity, and algebraic number of the
underlying–with coefficients based on observables in a subfield. Thus, paving the way for Wold
decomposition of option prices, and subsequently laying a theoretical foundation for a GARCH
option pricing model. Third, our canonical representation theory has an inherent regenerative mul-
tifactor decomposition of call option price that (1) induces a duality theorem for call option prices,
and (2) permits estimation of risk factor exposure for Greeks by standard [polynomial] regression
procedures. Thereby providing a theoretical (a) basis for option pricing of Greeks, and (b) solving
Scott’s dual call option problem a fortiori with our duality theory in tandem with Riesz represen-
tation theory. Fourth, when the Wold decomposition procedure is applied we are able to construct
an empirical pricing kernel for call option based on residuals from a model of risk exposure to
persistent and transient risk factors.

Keywords: number theory; price discovery; derivatives pricing; asset pricing; canonical repre-
sentation; Wold decomposition; empirical pricing kernel; option Greeks; dual option pricing

JEL Classification Codes: C02, D81, D84, G11-G13, G17
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1 Introduction

We propose a solution to an open problem posed in (Kassouf, 1969, pg. 694)
seeking “theoretical substantiation” for his robust option pricing power law which
eschewed assumptions about risk attitudes, rejected risk neutrality, and made no
assumptions about stock price distribution1. Additionally, we propose a solution
to a problem posed in (Scott, 1987, pg. 423) who proposed an option pricing model
with stochastic volatility where he appealed to an equilibrium asset pricing model
in order to explain away a nonuniqueness result he obtained for a call option2.
Our proposed solution(s), in the realm of algebraic number theory, are robust to
assumptions about preferences, stochastic volatility, probability distributions, ar-
bitrage arguments, or equilibrium asset pricing. According to (Clark, 1971, pg. 66)
“[f]ield theory is the theoretical background for the theory of equations,” There-
fore, to the extent that asset pricing models are predicated on equations in the
field of real numbers or otherwise is the extent to which they are amenable to
analysis under rubric “field theory”–a branch of modern algebra and subfield of
algebraic number theory. In particular, this paper provides theoretical justification
for market timing with price discovery by and through derivatives3. Evidently,
price discovery is based on construction of equations to reflect the superstructure
of [derivative] assets on which they are based4. Accordingly, we provide math-
ematical justification for price discovery with a superstructure of assets because,
according to Clark, the algebraic structure of a field is such that under certain con-
ditions it supports a superstructure. In particular, we introduce a canonical poly-
nomial representation of a call option as the reduced form of stochastic differential
equation approaches popularized in the literature.

1(Kassouf, 1969, pg. 694) concluded his paper by stating

No pretense is made that the foregoing model “explains” the warrant-common price relationship–but it
is hoped that it is a good description that may eventually lead to theoretical substantiation.

For the purpose of this paper we treat a warrant as an option on the “common”.
2(Scott, 1987, pg. 420) explained the problem thus:

Arbitrage is not satisfactory for the determination of a unique option pricing function in this random
variance model. An alternative view of the problem is that the duplicating portfolio for an option in
this model contains the stock, the riskless bond, and another call option. We cannot determine the price
of a call option without knowing the price of another call on the same stock, but that is precisely the
function we are trying to determine.

3This paper does not deal with the intricacies of price discovery. However, empirical support for the use of deriva-
tive assets as conduit for price discovery was presented in Easley et al. (1998); Pan and Poteshman (2006); Flemming
et al. (1996).

4See Grossman and Stiglitz (1980)
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Our polynomial approach is distinguished from (Hull and White, 1987,
pp. 286-287) who used a Taylor series expansion of a call option priced with a
Black-Scholes model–conditioned on stochastic volatility which they integrated
out to get the call option price. We make no appeal to arbitrage arguments, equi-
librium asset pricing arguments or appeal to probability density [or distribution]
functions. Similarly, (Hull, 2006, pp. 297-298) proffered a polynomial expansion
of Black and Scholes (1973); Merton (1973) formula but did not establish func-
tional equivalence with Kassouf (1969) or show how it could be used to solve
Scott (1987) open problem. Nor did Hull (2006) establish a duality theorem for
call option based on his polynomial representation.

For application we extend the canonical polynomial representation analy-
sis to a Wold decomposition of call option prices. There, we show how a GARCH(1,1)
model can be used to construct an empirical pricing kernel for call option by a
signal extraction procedure for unobservable pricing kernel. To the best of our
knowledge that procedure is new. However, (Chernov, 2003, pp. 332-333) also
assumed an unobservable pricing kernel but used a two stage estimation proce-
dure that involves first stage estimation of parameters from a continuous time as-
set pricing model. At the second stage, he used an equivalent martingale measure,
that includes parameters from the first stage asset pricing model, together with the
asset(s) payoff to construct the pricing kernel. He then used a derivative pricing
relation that includes parameters of the underlying asset pricing model ion order to
derive “independent” equations. Whereupon, “simultaneous equations” are solved
to infer the pricing kernel in second stage estimation. Our “two stage” procedure
is distinguished because we calibrate second stage residuals from a discrete risk
pricing model for the underlying asset under consideration, after a first stage Wold
decomposition of a call option on the asset.

The rest of this paper proceeds as follows. In section 2 we introduce alge-
braic equations that support Kassouf’s power laws for option prices, and establish
their functional equivalence with Black-Scholes-Merton formula. Additionally,
we introduce a duality theorem for call option pricing and show how it can be
extended to the familiar Snell envelope representation. The main results of the
paper are Theorems 2.6, 2.9 and 2.10. Motivated by the power law representa-
tion theory, for application we introduce a Wold decomposition for option prices
in section 3, as trend or difference stationary (as the case may be) around a convex
time trend. Section 4 presents an endogenous pricing kernel for option based on
diagnostics from the Wold decomposition. The main result there is Theorem 4.5.
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Finally, we conclude with perspectives in section 5.

2 A polynomial representation theory of call option

2.1 Prerequisites

The definitions and theorems that follow were excerpted from myriad sources, and
are presented here according as they pertain to terminology used in the sequel.

Definition 2.1 (Field). (Clark, 1971, pg. 66). A field is an algebraic structure in
which the four rational operations[:] addition, subtraction, multiplication, and di-
vision, can be performed and in which these operations satisfy most of the familiar
rules of operations with numbers.

Definition 2.2 (Extension field). A field E is called an extension of a field F if F
is a subfield of E.

Definition 2.3 (Tower of fields). A sequence of extension fields F0⊂ F1⊂ . . .⊂ Fn
is called a tower of fields, and F0 is called the ground field.

Remark 2.1. The nomenclature reflects the fact that F0 “supports” a superstructure,
i.e., a tower, as it were, of fields. (Jacobson, 1951, pg. 103) described this as the
prime field obtained from intersection of all fields.

Definition 2.4 (Polynomial). A polynomial over a field F is an expression of the
form f (x) = c0 + c1x+ c2x2 + . . .+ cnxn where c0,c1,c2, . . . ,cn are elements of F
called coefficients of thee polynomial.

Definition 2.5 (Collection of all polynomials). F [x] is the collection of all polyno-
mials.

Definition 2.6 (Algebraic). Let E be an extension field of the field F . An element
α of E is algebraic over F if α is a root of some polynomial with coefficients
in F . (Clark, 1971, pg. 88). Alternatively, Let F ⊂ E be an extension field. An
element α ∈ E is algebraic over F when f (α) = 0 for some nonzero polynomial
f (X) ∈ F [X ]. Otherwise α is transcendental. (Grillet, 2007, pg. 162).

Remark 2.2. Transcendental numbers like e and π are not algebraic, i.e. in and of
themselves they are not roots of a finite equation. However, even if π is not alge-
braic the expression cos(kπ) is algebraic for rational values of k because cos(kπ)
is the root of an equation. See e.g., (Jacobson, 1951, pp. 94-95). (Hilbert, 1998,
pg. 3) provides elegant elementary exposition of these concepts.
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Most important for this paper is the following

Proposition 2.1 (Interpolation of fields). (Clark, 1971, pg. 89) If E is an extension
field over F and α ∈ E is algebraic over F, then F(α) is a finite extension of
F of degree n where n is the degree of the minimal polynomial for α over F.
Furthermore, the set {1,α,α2,α3, . . . ,αn−1} is a basis for F(α) over F. That is,
F ⊂ F(α)⊂ E.

Proof. See Equation A.

According to that proposition, the interpolated field F(α) is generated by poly-
nomial powers of an algebraic number. In other words, Kassouf (1969) power law
is an admissible option pricing model if it is based on an algebraic number. For
instance, assuming deterministic volatility, an option should be priced as a power
of standard deviation and the “other” variables would be “coefficients” in the sup-
porting field. This would explain Kassouf (1968) finding of a lag structure for
option prices. Additionally, Black and Scholes (1973) and Merton (1973) formula
is based on the standard deviation σ ∈ E and rational products of transcendental
variables with coefficients based in F . So that the latter variables are algebraic
transformations of transcendentals5. Other useful results from algebraic number
theory include:

Definition 2.7 (Monic polynomial). (Pollard and Diamond, 1975, pg. 30) A poly-
nomial is monic if its leading coefficient cn is 1.

Theorem 2.2 (Unique factorization of polynomials). Any polynomial f (x)= cnxn+

. . .+ co over F not zero or a constant can be factored into a product f (x) =
cn ∏

r
j=1 f j(x)where the f j(x) are irreducible monic polynomials over F, deter-

mined uniquely except for order.

Proof. See (Pollard and Diamond, 1975, pg. 30).

Definition 2.8 (Class of factored polynomials). P is the class of all polynomials
p(x) which can be factored as in 2.2.

Theorem 2.3 (Uniqueness of minimal polynomial). If σ is algebraic over F it has
a unique minimal polynomial.

Proof. See (Pollard and Diamond, 1975, pg. 44).
5Haug and Taleb (2008) provide a review of the history of option pricing formulae, and make the case that the

Black-Scholes-Merton option pricing formula was “known” to traders long before those authors papers were pub-
lished.
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2.2 Option pricing function space

Take any asset S ∈ F , let σ be a constant standard deviation algebraic in
E ⊃ F . According to Proposition 2.1 there exist a finite extension F(σ)⊃ F with
basis {1,σ ,σ2, . . . ,σn−1} so that if α ∈ F(σ), there exist coefficients c0,c1, . . . ,cn
in F such that for

f (σ) = co + c1σ + c2σ
2 + . . .+ cnσ

n−1 (2.1)

α is a root of the equation. In other words

co + c1α + c2α
2 + . . .+ cnα

n−1 = 0 (2.2)

The object of price discovery is to find those coefficients ci, i = 0,1, . . . ,n− 1
for which the equation has real roots. In practice we are interested in solutions to
the equation

(co− f (α))+ c1σ + c2σ
2 + . . .+ cnσ

n−1 = 0 (2.3)

where f (α) is a given value. In particular f (α) may be a value derived from a
no-arbitrage relationship which portends a market equilibrium, and we need to
find values of σ that satisfy the equation. If ci’s are known, for arbitrary α̃ ∈ E,
then for any factorization f (α̃) = g(α)q(α)+ r(α̃) in which r(α̃) 6= 0 there will
be arbitrage opportunities. In particular, there is α̃ ∈ E for which there is no
polynomial f ∈ F(α) for which it is a root. However, the quotient relationship
g(α)q(α) suggests that f (α̃) = f (α)+ r(α̃) where f (α̃) = g(α)q(α) and r(α̃)

is an error term. For instance, the relation holds if q(α) is a minimal polynomial.
See (Pollard and Diamond, 1975, pg. 44).

2.2.1 Black-Scholes-Merton model

The ubiquitous Black-Scholes-Merton option pricing formula6 for an Euro-
pean style option–which can only be exercised on terminal date–is typically writ-
ten as follows

C(σ |S,K,T,r, t) = S(t)Φ(d1)−Ke−r(T−t)
Φ(d2) (2.4)

6See e.g., (Huang and Litzenberger, 1988, pg. 166) for derivation of formula using lognormal, and preference
based assumptions; and (Hull, 2006, Ch. 13) for a taxonomy or no-arbitrage assumptions and applications in different
settings.
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where

t = valuation date (2.5)
S(t) = current price o f the stock on valuation date (2.6)

K = strike price in option contract (2.7)
r = risk f ree discount rate (2.8)

T = terminal date o f contract (2.9)
σ = constant standard deviation o f stock price (2.10)
Φ = cumulative standard normal distribution (2.11)

d1 =
1

σ
√

T − t

(
logS(t)− logK + r(T − t)

)
(2.12)

d2 =
1

σ
√

T − t

(
logS(t)− logK− r(T − t)

)
(2.13)

The only “unknown” variable in Equation 2.4 is the “volatility” σ which is forward
looking. In the context of field theory this implies that σ is an algebraic number,
and the coefficients of Black-Scholes-Merton formula are in a subfield. That is,
{S, t,r,T} ∈ F , σ ∈ E, and BSM formula is a polynomial over F with root(s) in
E. The transcendental functions e and Φ are each products of rational numbers
S and K so the product are admissible coefficients, and d1 and d2 are algebraic,
i.e. roots in E for a polynomial over F , to the extent that they depend on T ∈
E. According to Proposition 2.1 the polynomial C(·) over F is algebraic in the
extension field E. Since T is known at the time the contract is executed, for all
intents and purposes the “algebraic number” generating the polynomial is σ7. For
instance, if we normalize Equation 2.4 by dividing by K and use the transformation

C̆(σ) =
C(σ | ·)

K
−1 (2.14)

Then we must solve

C̆(σ | ·) = 0 (2.15)

and the σ “roots” can be found by solving a nonlinear equation in a polynomial
with coefficients in F . The root(s) portend the “implied volatility” used to gauge

7See e.g., (Hilbert, 1998, pg. 3) for generating polynomials.
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investor sentiment8.

2.2.2 Polynomial expansion of Black-Scholes-Merton formula

We start with (Heston, 1993, pg. 330) representation of a generic call option
for τ = T − t, and (Apostol, 1967, Thm 6.3, pg. 239)9

C(σ ,τ,S,r,K) = SP1−Ke−rτP2 (2.16)

where P1, P2 ∈ P are probability measures. According to Theorem 2.2 we can
write

Pi(x) = cn

q

∏
j=1

f j(x)
r

∏
j=q+1

f j(x) (2.17)

Assume that

f j(x) =

{
(1− x2

2r) r > 0 j > q

(1+a jx) a j ∈R, j ≤ q
(2.18)

and that

lim
n→∞

cn =
1√
2π

(2.19)

8See (Whaley, 2000, pg. 13) (“[I]mplied volatility is the market‘s “best” assessment of the expected volatility of
the underlying stock index over the remaining life of the option”) for history of this measure.

9Thm 6.3 in Apostol is functionally equivalent to

N(x) = 1√
2π

∫ x

−∞

e−
u2

2 du

= 1√
2π

∫ x

−∞

V (u)exp(Q(u))du

for some polynomial V (u) and Q(u). Additionally, (Ambramowitz and Stegun, 1972, pp. 932-933) provide a taxonomy
of polynomial representations for N(x).
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Hence

lim
n,r→∞

Pi(x) = Pi(x) = lim
n,r→∞

cn

q

∏
j=1

f j(x)
r

∏
j=q+1

f j(x) (2.20)

=
1√
2π

q

∏
j=1

(1+a jx)e−
x2
2 (2.21)

This polynomial expression is functionally equivalent to(Apostol, 1967, Thm. 6.3),
and (Hull, 2006, pp. 297-298) who proffered a polynomial approximation to Black-
Scholes-Merton option pricing formula for an European call option with stock
price S, strike price K, and risk free rate r as follows.

C(·) = SN(d1)−Ke−rτN(d2) (2.22)

N(x) =

{
1−N′(x){a1k+a2k2 +a3k3 +a4k4 +a5k5}
1−N(−x)

(2.23)

where

k =
1

1+ γx
(2.24)

N(x) =
1√
2π

e−
x2
2 (2.25)

γ is a constant, and d1 and d2 are determined as in Equation 2.12 and Equa-
tion 2.13. Specifically, in our model

Pi(x) = N(x) (2.26)

So by plugging in our P1 and P2 in (Heston, 1993, pg. 330) we get a polynomial
representation for Black-Scholes-Merton formula. This leads to the following

Lemma 2.4 (Polynomial expansion of Black-Scholes-Merton formula). Let P be
the class of factored polynomials and Pj ∈P, i = 1,2 where

Pi(x) = cn

q

∏
j=1

f j(x)
r

∏
j=q+1

f j(x)

f j(x) =

{
(1− x2

2r) r > 0 j > q

(1+a jx) a j ∈R, j ≤ q

9



Assume that limn→∞ cn =
1√
2π

. Let C(·) = SP1−Ke−r(T−t)P2 be the price of a call
option C(·) and N(x) be the cumulative normal distribution evaluated at x. Let

N(x)≈ 1−Pi(x)

x =
ln S

K

σ
√

T − t

w =
r(T − t)
σ
√

T − t

Then the price of a Black-Scholes-Merton call option is given by

C(σ ;S,r,T, t)≈ S(1− cn

q

∏
j=1

f j(x+w)
r

∏
j=q+1

f j(x+w)

−Ke−r(T−t)
q

∏
j=1

f j(x−w)
r

∏
j=q+1

f j(x−w)

= ψ0 +ψ1σ +ψ2σ
2 + . . .+ψnσ

n

where ψk = ψk(S,r,T,K, t), k = 1,2, . . . ,n

2.2.3 Kassouf’s power law model

Kassouf (1969) introduced the following option pricing power law. Let Y be the
price of an option, X be the underlying stock price, and K be the strike of the
option. Further, let y = Y

K and x = X
K so that

y(z) = (xz +1)
1
z −1 (2.27)

10



is a power law for the underlying option price. The objective is to find a polyno-
mial y(z) with coefficients in F and root in E. That is, the root of y(z) is in E.
Kassouf (1969) posited the following

τ = time until expiration (2.28)
R = dividend yield (2.29)

DRatio =
# outstanding option
# outstanding stocks

(2.30)

b = slope o f OLS model f itted to monthly mean price (2.31)
σb = standard deviation o f b (2.32)

z = β0 +β1
1
τ
+β2R+β3DRatio+β4b+β5σb +β6x+β7K + ε (2.33)

In that setup if the expiry date is T , then τ = T − t and z is a “root” of y. We
want to find z ∈ E such that there exist coefficients c0,c1, . . . ,cn in F for which
Kassouf‘s power law in Equation 2.27 holds. We begin with an expansion of y(z)
by exploiting the fact that geometric mean≤ arithmetic mean

1.(xz +1)
1
z ≤ 1

1
z

(xz +1) (2.34)

= z(xz +1)≤ z(
x
z
+1) = (x+ z) (2.35)

Hence for some differentiable function h we have

(xz +1)
1
z = (x+ z)−h(z) (2.36)

So that a Taylor expansion of h around z = 0 yields

y(z) = (xz +1)
1
z −1 (2.37)

= (x+ z)−h(z)−1 (2.38)

= (x+ z)− [h(0)+
d
dz

h(z)|z=0 z+
d2

dz2 h(z)|z=0 z2+ (2.39)

. . .+
dn

dzn h(z)|z=0 zn]−1 (2.40)

11



is a polynomial in x and z. In particular, in Equation 2.33 z = z(σb,T − t,K,x,r).
Recall that (Kassouf, 1969, pg. 87) parametrized z=α+ β

t , so assuming arguendo
that z is separable in σb and the other variables we can rewrite Equation 2.40 as

y(z) = a0 +a1τ
−λ +a2σ

1
b + . . .+anσ

n−1
b (2.41)

where λ is a constant. (Kassouf, 1969, pg. 691) highlighted the predictive abil-
ity of a forward looking σb on option prices in his model when he opined “[i]f
past volatility is a guide to future volatility, this seems reasonable behavior”. In
which case, σb ∈ E. The other variables in Kassouf’s model reside in F10. Thus,
Kassouf’s model satisfies Proposition 2.1. We summarize the foregoing in a

Lemma 2.5 (Kassouf power law expansion). Let x be a stock price, z = z(σb,T −
t,K,x,r) and y(z) be a call option on the stock, priced by the equation y(z) =

(xz +1)
1
z −1. Let z be separable in σb and the other variables indicated. Then

y(z) = a0 +a1τ
−λ +a2σ

1
b + . . .+anσ

n−1

2.3 Anatomy of option Greeks

(Kassouf, 1969, pg. 694) concluded his paper by indicating

A. Assumptions about risk attitudes have been purposely avoided.

B. Risk neutrality was rejected by his model.

C. No assumptions were made about stock price distributions.

In fact, he plainly stated

No pretense is made that the foregoing model “explains” the warrant-
common price relationship–but it is hoped that it is a good description
that may eventually lead to theoretical substantiation.

Our field theory approach provides a solution to Kassouf’s erstwhile open problem
by suggesting that z could be fitted as a “naive” polynomial in σb and τ as follows

z = a0 +a1
1
τ
+a2σb +a3σ

2
b + . . .+anσ

n−1
b (2.42)

10Arguably, dividend yield R is forward looking. However, we assume that agents incorporate that in their assess-
ment of forward looking σb through a (Gordon, 1959, pg. 104) type fundamental valuation of stock price or Fama
and Babiak (1968) stable dividend result. So the “only” uncertainty in the model is volatility. In any event, an option
pricing formula can be derived by assuming no dividends but the same is not true for volatility. See (Hull, 2006,
Ch. 13).
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Suppose F(z) ⊂ E, F ⊂ F(z) ⊂ E and z̃ ∈ E. Assuming that z̃ is not algebraic
in E, we can write

y(z̃) = g(z)q(z)+ r(z̃) (2.43)

In the context of Kassouf‘s model z̃ would be a noisy signal for z, and r(z̃) would
be the error term ε . This is an application of the Grossman and Stiglitz (1980)
result for partially revealing information in price discovery in a seemingly efficient
market. By the same token, in Equation 2.15 we can write the Black-Scholes-
Merton formula as a power law

C̆(σ | ·) = c0 + c1
1√

T − t
+ c2σ + . . .+ cnσ

n−1 (2.44)

where the ci‘s are coefficients in F possibly comprised of a linear combination of
S, r, K, T−t. In the context of Kassouf (1969); Black and Scholes (1973); Merton
(1973) we have, for τ = T − t

ci = ci(S,r,τ,K,R) (2.45)

In that way, the solution for σ is time dependent, and it depends on the price of
the call option C and the ci‘s. So we have the implied volatility

σ = σ(C,ci(S,r,τ,K,R)), i = 1,2, . . . ,n−1 (2.46)

A cursory inspection of Equation 2.27 and Equation 2.44 shows that each power
law is admissible, and they are functionally equivalent. Furthermore, each option
price fluctuates around a convex trend 1√

T−t
Therefore, we have just proven the

following

Theorem 2.6 (Functional equivalence of Kassouf (1969), Black and Scholes (1973);
Merton (1973)). Let σ be the implied volatility of a stock price, C be the price of
an option on the underlying, and T be the terminal date of a European call op-
tion. Then the Black-Scholes-Merton and Kassouf option pricing formula are each
functionally equivalent to a polynomial in implied volatility

C(σ | ·) = c0 + c1τ
−λ + c2σ + . . .+ cnσ

n−1 (2.47)

where τ = (T − t), the coefficients ci, i = 1,2, . . . ,n are observables at time t,
and λ is a shape parameter.
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Proof. Equate coefficients in Lemma 2.4 and Lemma 2.5.

Remark 2.3. To the extent that σ is a measure of risk, it is evident that the call
option price is a nonlinear function of risk, and ci is a measure of price exposure
to the given risk. For instance, c2 is classic risk exposure, while c1 could be
interpreted as “shape risk” exposure.

This functional equivalence result between Kassouf (1969) and Black and Sc-
holes (1973); Merton (1973) has been bourn out empirically. See e.g., French
(1983). Recall that the ci‘s include variables in the analysts information set F ⊂ E.
So that ∂ci

∂S exists.

2.3.1 Identifying Greek risk factors exposures

To obtain estimates for option Greeks11 we have for vega (V ), theta, delta,
gamma and rho

V =
∂C
∂τ

(2.48)

=
∂c0

∂τ
−λτ

−λ−1 ∂c1

∂τ
+

∂c2

∂τ
σ + . . .+

∂cn

∂τ
σ

n−1 (2.49)

θ =
∂C
∂σ

(2.50)

= c2 +2c3σ +3c4σ
2 + . . .+(n−1)cnσ

n−2 (2.51)

For delta we derive the polynomial

∆ =
∂C
∂S

(2.52)

=
∂c0

∂S
+

∂c1

∂S
τ
−λ +

∂c2

∂S
σ + . . .+

∂cn

∂S
σ

n−1 (2.53)

11For a thorough review of this concept see (Hull, 2006, Ch. 15), and Passarelli (2008).
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Similarly for option gamma we have

γ =
∂ 2C
∂S2 (2.54)

=
∂ 2c0

∂S2 +
∂ 2c1

∂S2 τ
−λ +

∂ 2c2

∂S2 σ + . . .+
∂ 2cn

∂S2 σ
n−1 (2.55)

ρ =
∂C
∂ r

(2.56)

=
∂c0

∂ r
+

∂c1

∂ r
τ
−λ +

∂c2

∂ r
σ + . . .+

∂cn

∂ r
σ

n−1 (2.57)

In practice, σ is unobservable and changes with time. Therefore, it can be es-
timated with the class of ARCH-type models introduced by Engle (1982) and
Bollerslev (1986)12.

Perhaps most important is the inherent decomposition of option Greeks
with a multifactor representation. In particular, under our approach regression
results provide estimates of the following factor exposures, i.e.

c∆
i =

∂ci

∂S
(2.58)

cγ

i =
∂ 2ci

∂S2 (2.59)

cτ
i =

∂ci

∂τ
(2.60)

cσ
i =

∂ci

∂σ
(2.61)

cρ

i =
∂ci

∂ r
(2.62)

Thus we have the following

Theorem 2.7 (option Greeks Decomposition). Let C(σ | S,r,T, t) be the price of a
call option, and σ be the volatility of the underlying. Let ci(S,r,T, t) be the i-th risk
exposure factor for the option. Then we have the following factor decomposition

12See Engle (2001, 2004) for review of these models.
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for a call option and its associated Greeks

C(σ | ·) = c0 + c1τ
−λ + c2σ + . . .+ cnσ

n−1 (2.63)

V =
∂C
∂τ

=
∂c0

∂τ
−λτ

−λ−1 ∂c1

∂τ
+

∂c2

∂τ
σ + . . .+

∂cn

∂τ
(2.64)

θ =
∂C
∂σ

= c2 +2c3σ +3c4σ
2 + . . .+(n−1)cnσ

n−2 (2.65)

∆ =
∂C
∂S

=
∂c0

∂S
+

∂c1

∂S
τ
−λ +

∂c2

∂S
σ + . . .+

∂cn

∂S
σ

n−1 (2.66)

γ =
∂ 2C
∂ 2S

=
∂ 2c0

∂S2 +
∂ 2c1

∂S2 τ
−λ +

∂ 2c2

∂S2 σ + . . .+
∂ 2cn

∂S2 σ
n−1 (2.67)

ρ =
∂C
∂ r

=
∂c0

∂ r
+

∂c1

∂ r
τ
−λ +

∂c2

∂ r
σ + . . .+

∂cn

∂ r
σ

n−1 (2.68)

Remark 2.4. These models can be estimated by a 2SLS polynomial regression on
the nonlinear risk factors σ k, k = 1,2, . . . ,n as follows. First, run a regression on
the τ variable. Second, run a regression of the residuals of the first stage on the
nonlinear σ k‘s to get least squares estimates of the various risk exposures. Further-
more, to address any potential multicollinearity problems, a principal component
analysis would produce orthogonal linear combinations of factors that enhance
the multifactor representation, and facilitate statistical inference. In order not to
overload the paper we did not present those theories here. However, the interested
reader is referred to (McCullagh and Nelder, 1989, pg. 69) and (Weisberg, 2005,
Ch. VI) for theoretical ramifications of polynomial regressions, and (Rao, 1973,
pg. 590, §8g.2) for a succinct and rigorous presentation on principal components
analysis.

2.3.2 A dual option price theory

The polynomial representation for option prices induce shadow option price
representation for the Greeks. For instance, Equation 2.53 and Equation 2.55 gen-
erate shadow call option13, and Equation 2.51 generates a call option of its own.

13Our call option on the γ-process is distinguished from the “Variance-Gamma” process introduced by Madan and
Seneta (1990); Madan and Milne (1991) for subordinate Brownian motion. The latter has to do with jump processes
used to price option in a Black-Scholes-Merton setting.

16



To see that let

c̃i =
∂ci

∂S
(2.69)

˜̃ci =
∂ c̃i

∂S
(2.70)

There exist C̃∆(σ) and ˜̃Cγ(σ) such that

∂C
∂S

= C̃∆(σ) = c̃0 + c̃1τ
−λ + c̃2σ + . . .+ c̃nσ

n−1 (2.71)

∂ 2C
∂S2 = ˜̃Cγ(σ) = ˜̃c0 + ˜̃c1τ

−λ + ˜̃c2σ + . . .+ ˜̃cnσ
n−1 (2.72)

The general coefficient on the right hand side of Equation 2.51 is ( j− 1)c j, j =
2,3, . . . ,n. Multiplication by σ gives

σθ = c2σ +2c3σ
2 + . . .+(n−1)cnσ

n−1 (2.73)

So that if c̆ j = ( j−1)c j we have

∂C
∂σ

= C̆(σ | θ) = c0 + c1τ
−λ + c̆2σ + . . .+ c̆nσ

n−1 (2.74)

= c0 + c1τ
−λ +θσ (2.75)

By the same token we have

∂C
∂τ

=C(σ | V ) =
∂c0

∂τ
+

(
∂c1

∂τ
− λc1

τ

)
τ
−λ +

λc2

∂τ
σ + . . .+

∂cn

∂τ
σ

n−1 (2.76)

= c̄0 + c̄1τ
−λ + c̄2σ + . . .+ c̄nσ

n−1 (2.77)

The canonical polynomial representation for option is regenerative in that option
Greek have a call option representation feature14. In other words, in our model
an analyst could price and trade option on the Greeks15. Perhaps most important

14Arguably, this is a derivative free result. Cf. Benth et al. (2010).
15For instance, (Passarelli, 2008, pg. xvi) states:

Option traders must consider the time period in question, the volatility expected during the period,
interest rate, and dividends. Along with the stock price, these factors makeup the dynamic component
of an option‘s value. These individual factors can be isolated, measured, and exploited. Incremental
changes in any of these elements provide opportunity for option traders. Option greeks is the term
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is the representation in Equation 2.75 which plainly shows that the coefficient for
σ is the θ value for another call option, which we will call a conjugate or option
dual. In particular, given the reduced form it suggests that the θ value for a call
option in Equation 2.47 is c2. Thus, we have just proven the following

Theorem 2.8 (Well defined call option representation). Let

C(σ | ·) = c0 + c1τ
−λ + c2σ + . . .+ cnσ

n−1 (2.78)

be the canonical polynomial representation of a call option. Then C(σ | ·) is well
defined if

2c3σ
2 + . . .+(n−1)cnσ

n−1 = 0 (2.79)

Whereupon

γ =−Σ
n
j=4( j−1)c jσ

j−3 (2.80)

Proof. In order for ∂C
∂σ

= c2 Equation 2.79 must hold. Whence for σ 6= 0 Equa-
tion 2.80 follows from definition of γ = ∂ 2C

∂ 2 = 2c3.

Remark 2.5. Naive partial differentiation of Equation 2.47 with respect to σ gives
c2 = ∂C

∂σ
which does not yield the result in Equation 2.79. So that result is a

hypothesis to be tested. If anything, the result suggests that the canonical option
pricing model depends on σ and possibly σ2 because 2c3 =

∂C
∂σ2 is the option γ . In

any case, (Hull, 2006, pg. 359) plainly states that “when [θ ] is large and positive,
[γ] of a portfolio tends to be large and negative”. That empirical regularity is
clearly reflected in Equation 2.80.

The well defined prerequisites suggest the following

Theorem 2.9 (Call option duality). Let

C(σ | ·) = c0 + c1τ
−λ + c2σ + c3σ

2 . . .+ cnσ
n−1 (2.81)

used for the way the incremental changes in factors affecting an option price are measured. Because of
these other influences, direction is not the only tradeable element of a forecast. Time, volatility, interest
rates–these can all be traded using option.
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be the canonical polynommial representation of a call option. Then there exist a
dual call option

C∗(σ | θ ,γ) = c∗0 + c∗1τ
−λ +θσ +

1
2

γσ
2 + c∗4σ

3 + . . .+ c∗nσ
n−1 (2.82)

where θ , and γ are the Greeks for C(σ | ·).

Theorem 2.10 (Call option representation for Greeks). Let G = {∆,θ ,γ,V ,ρ} be
the set of Greeks for a call option C∗ with algebraic volatility number σ ∈ E. Let
{c0,c1, . . . ,cn} ∈ F and F(σ) be the subfield generated by polynomials in σ so
that F ⊂ F(σ)⊂ E. Assume that for

g1, g2 ∈ G cg1
i 6= cg2

i , g1 6= g2 (2.83)

C(σ) = c0 + c1τ
−λ + c2σ + c3σ

2 + . . .+ cnσ
n−1 (2.84)

Then for any g ∈ G there exist a call option Cg(σ) such that

C(g,σ) = cg
0 + cg

1τ
−λ + cg

2σ + cg
3σ

2 + . . .+ cg
nσ

n−1 (2.85)

cg
2 = θ =

∂C∗

∂τ
cg

3 =
1
2

γ =
1
2

∂C∗

∂σ
(2.86)

where the coefficients cg
i correspond to g ∈ G.

2.4 A function space solution to Scott (1987) call option dual problem

(Scott, 1987, pg. 423) introduced an option pricing model with stochastic
volatility which produced a nonunique result he could not solve without appealing
to an equilibrium asset pricing argument setforth in Hull and White (1987). How-
ever, Theorem 2.9 suggests that there is an operation which when performed on
a call option C(σ) results in another call option, i.e. a dual, C∗(σ). Accordingly,
we setup the following topology16. Let C be the space of call option in F(σ) so
that

C = {C(σ)|C(σ) = c0 + c1τ
−λ + c2σ +Σ

n−1
j=3c jσ

j−1 ∈ F} (2.87)

16See (Brown and Ross, 1988, pg. 5) for operator theory and functional analysis of option pricing.
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Let C ∗ be the dual space to C , and T be an operator defined on F(σ). By definition
C ∗ is the space of linear operators defined on C . So that

T : C → C ∗ (2.88)

and T ∗ is an operator defined on C ∗. Define a norm on F(σ) so that

‖C(σ)‖2
F(σ) =<C(σ),C(σ)> (2.89)

Thus the Banach space

H= (C ,‖‖) (2.90)

is a Hilbert space whose norm is an inner product. We state the following

Theorem 2.11 (Riesz representation). Assume that T ∗ is a continuous linear op-
erator defined on the dual spaceH∗ = (C ∗,‖‖). Then there is a unique C(σ) ∈ H

such that T ∗(C∗) =<C∗,C > for all C∗ ∈ H∗. Furthermore, ‖C‖= ‖T ∗‖.
Proof. See (Reed and Simon, 1980, pg. 43).

Thus, our call option duality Theorem 2.9, in tandem with Riesz representa-
tion theorem, solves the Scott‘s nonunique call option problem without resort to
equilibrium asset pricing models.

2.4.1 Snell envelope representation of dual call option

However, we go further and establish functional equivalence with the duality ap-
proach taken by Snell‘s envelope method. Instead of a “tower of fields” we use a
filtration F(σ) = {Ft ; t ≥ 0} where Fs ⊆Ft ; s≤ t, and E =F∞. We begin with
the following

Lemma 2.12 (Martingale decomposition of call option on Greeks). Let F ⊂F(σ)⊂
E and P be a probability measure on E for a finite horizon [0,T ]. Let Ω be a sam-
ple space for states of nature, and (Ω,E,Ft ,P) be a probability space. Assume
that

At = c0 + c1

(
1

T − t

)λ

(2.91)

Mt =
∂C
∂ t

σ +
1
2

∂C
∂σ

σ
2 (2.92)
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Then there exist an option C̃ such that

C̃t = At +Mt (2.93)

is a martingale decomposition.

Proof. By virtue of the regenerative property in Theorems 2.9 and 2.10 A− t and
Mt are call option. By the convexity property of call option, and the regenrative
property, the sum C̃t = At +Mt is also a call option. However, by construction At
is increasing in t, and if EP is an expectation operator with respect to P, then by
definition of the extension field E,

EP[Mt ∈ E| F(σ)] = Mt(σ). (2.94)

So that

EP[C̃t ∈ E| F(σ)] = EP[At ∈ E| F(σ)]+EP[Mt ∈ E| F(σ)] (2.95)
= At +Mt(σ) (2.96)

Because At is an increasing process, and Mt(σ) is a martingale under P, the rela-
tion Ct(σ) = At +Mt(σ) is a Doob-Meyer martingale decomposition.

The lemma allows us to pose the call option problem in the realm of the more
familiar primal-dual relationship using Snell‘s envelope17. We state the following
without proof

Proposition 2.13 (Primal-Dual Problem). Let Γ[0,T −t] be a set of stopping times
over the interval [0,T − t], and A be the class of increasing processes. Then the
primal-dual problem is defined thus.

Primal : C0 = supΓ[0,T−t] EP
0 [C(σ) ∈ E]

Dual : Ct = infA∈A {At +EP
t [maxu∈[t,T ][Cu−Au]| F(σ)]}

Proof. See Chow and Robbins (Chow and Robbins), and (Wang and Caflish, 2010,
pp. 4-5).

In other words, we have the following
17See Snell (1952).
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Lemma 2.14. Let C̃1
u(θ) and C̃2

u(γ) be the regenerative call option generated by
the Greeks θ and γ , respectively. Then for any call option Ct(σ) we have the
primal-dual representation

Ct(σ) = inf
A∈A

[c0 + c1(T − t)−λ +EP[ max
u∈Γ[0,T−t]

Cu(σ)−{c0 + c1(T −u)−λ}

(2.97)

= inf
A∈A

[c0 + c1(T − t)−λ +EP[ max
u∈Γ[0,T−t]

[σC̃1
u(θ)+

1
2

σ
2C̃2

u(γ)] (2.98)

Proof. See Proposition 2.13.

3 Wold decomposition of option prices

So far, out results have been deterministic. However, in practice we deal with
samples of option prices. So we need to modify our results accordingly18. We
start with a sample space for the laws of nature, depicted by Ω. A sample point
in Ω is depicted by ω , and an event A is a Borel measureable set comprised of
points, i.e., subsets in Ω. The set of possible realizations of a call option C(ω);
and a probability measure P on Ω. The fields F are replaced by time dependent
fields Fs ⊂ Ft , s < t, and the extended field E is replaced by F∞. Thus, for
fixed t the quantity Ct(ω) is a random variable. Whereas for fixed ω the quantity
{Ct(ω);Ft , t ≥ 0} is a stochastic process. Furthermore instead of the regular ad-
dition and subtraction in definition 2.1 we use set theoretic notation to account for
the “fields of information” flowing over Ω. In particular, a [finite] field is char-
acterized by a union [addition] and intersection [multiplication] of sets. Now this
concept is extended to the notion of a measure over countable unions and intersec-
tions of Borel measurable subsets of Ω19. We discretize the finitie horizon [0,T
containing time until expiry with a partition of dyadic points t(n)k , k= 1,2, . . . ,2n so

that F
t(n)k
⊆F

t(n)k+1
. In that way for any time t(n)k ≤ t < t(n)k+1 we have limn→ t(n)k = t.

Thus, the stochastic process Ct(ω) is right continuous with left hand limit (RCLL).
This entails extension of the field concept by replacing the “tower of fields” in def-
inition 2.3 with a filtration F of σ -field F . In standard texts like (Karatzas and
Shreve, 1991, pg. 10) the “ground field” in definition 2.1, and our F0 here, con-

18See (Gikhman and Skorokhod, 1969, Ch. III) for an excellent review of the ensuing concepts.
19See (Kolmogorov, 1956, pp. 16-18) for elementary discussions on these concepts.
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tains the “P-negligible sets”. Together with the RCLL property, these are known
as “the usual conditions” for a filtration of fields. In which case, our model is ex-
tended to the probability space (Ω,Ft ,F,P). We begin by stating, without proof,
the well known

Theorem 3.1 (Wold Decomposition Theorem). Let ξ (t,ω) be a stationary se-
quence for t = 0,±1,±2, . . . , and let Hξ be the closed linear hull in the space of
squared integrable Lebesgue functions, L2(Ω,F ,F, P), generated by ξ . Further-
more, let Hξ (t) be the closed linear hull generated by ξ for n ≤ t. Let HS

ξ
(t) =

∩tHξ (t)⊂ F. Then an arbitrary sequence ξ (t,ω) ∈ L2(Ω,F ,F, P) has a unique
decomposition of the form

ξ (t,ω) = ξS(t)+η(t,ω) (3.1)

where ξ and η are uncorrelated sequences that are subordinate to ξ (t,ω), ξS(t)
is deterministic, and η(t,ω) is a MA(∞) process.

Proof. See (Brockwell and Davis, 1987, pg. 180) and (Gikhman and Skorokhod,
1969, pg. 243).

Under that set up, Equation 2.44 and Equation 2.27 provide a basis for Wold
decomposition of call option prices. Specifically, after the [convex] determinis-
tic trend component is removed by a first difference we are left with a moving
average of volatility, which, by definition, is an ARCH-type process. Formally,
let C̃t(σ ,ω) be fluctuations of option prices around trend at time t. Then we can
rewrite the expression in Theorem 2.6 as

C̆t(σ ,ω) = trendt +C̃t(σ ,ω) (3.2)

Let ∆ be a difference operator and L be a lag operator. So that

∆C̆t(σ ,ω) = C̆t(σ ,ω)−C̆t−1(σ ,ω) = C̆t(σ ,ω)−LC̆t(σ ,ω) (3.3)
= (1−L)C̆t(σ ,ω) = trendt− trendt−1 +∆C̆t(σ ,ω) (3.4)

Because C̃t(σ ,ω) is stationary around trend we have a Wold decomposition

∆C̃t(σ ,ω) = ∆C̃t(σ)S +ηt(ω) (3.5)

23



in which η has a MA(·) representation. For example, we write

ηt(ω) = Σ
∞
j=1atψt (3.6)

where E[ψt ] = 0 and E[ψ2
t ]< ∞

(3.7)

If the trend is linear then C̃ is stationary. If it is quadratic, then the difference
stationary process ∆C̃t(σ ,ω) is analyzed20. For more complicated trends, more
sophisticated “differencing” or filtering schemes may be required before the MA
term can be analyzed. (Kassouf, 1976, pg. 305) presented empirical evidence of
a lag structure in option prices which lends credence to our Wold decomposition
hypothesis.

4 An endogenous pricing kernel for option

It is axiomatic that fluctuations in detrended option prices are linked intertempo-
rally by a stochastic discount factor or pricing kernel that reflects, inter alia the
time value of money. Let mt be a pricing kernel. No arbitrage arguments21 imply
that

E[C̃t+1|Ft ] = E[mt+1C̃t |Ft ] (4.1)

which can be rewritten as

C̃t+1 = mt+1C̃t +ϑt+1 (4.2)

for some error term ϑ . Additionally

E[mt+1|Ft ] = E[
C̃t+1

C̃t
|Ft ] (4.3)

20∆C̃t is differenced to get at its stationary part ∆2C̃t
21See (Campbell et al., 1997, pg. 295) for definition and derivation of pricing kernel.
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However

Var(
Ct+1

Ct
|Ft) = E[{Ct+1−E[Ct+1]

Ct
}2|Ft ] =

σ2
t

Ct
(4.4)

which can be rewritten as

Var{C̃t+1|Ft}= C̃tσ
2
t (4.5)

By definition, this is functionally equivalent to Engle’s (1982) ARCH specifica-
tion, for fluctuations C̃t around a trend, as follows. Let ξt be the unobservable
innovation in detrended claims, such that Var{ξt} = σ2

t , and write the seperable
process

C̃t+1 =
√
|C̃t |ξt +ϑt+1 (4.6)

So that unconditionally

E[C̃t+1] = E[
√
|C̃t |]E[ξt ] = 0 (4.7)

By hypothesis E[C̃t+1] = 0, so that

E[ξt ] = 0 (4.8)

Undeniably, the detrended conditional option price process is stochastic by virtue
of being a function of ξ -innovations. That is

E[C̃t+1|Ft ] =
√
|C̃t |ξt (4.9)

Because limt→∞ mt = 1 we can write mt = 1+ut where P-limt ut = 0. Therefore,
mt has a Wold decomposition. See section subsubsection 4.1.1, infra. That is, it
can be represented as a MA(∞) process. Specifically, since mt is unobservable, let
it be measured with error given by ηt . So we observe

m̃t = mt +ηt (4.10)
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and the unconditional next period option price is now

C̃t+1 = mt+1C̃t +ηt+1C̃t (4.11)

This has the same functional form as Equation 4.2 with

(4.12)
ϑt+1 = ηt+1C̃t (4.13)

To see that, since E[ηt+1|Ft ] the conditional variance is

Var{C̃t+1|Ft}= E[{C̃t+1−E[C̃t+1|Ft ]}2] (4.14)

= C̃tVar(ϑt+1) = C̃2
t σ

2
ηt+1

(4.15)

Let

εt+1 =
√
|C̃t |ηt+1 (4.16)

So that

Var(εt+1) = |C̃t |σ2
ηt+1

(4.17)

This implies that we can write

C̃t+1 =
√
|C̃t |εt+1 +ϑt+1 (4.18)

= C̃tηt+1 +ϑt+1 (4.19)

which has the same form as Equation 4.6. It is precisely at this point that (En-
gle, 1982, pg. 988) realized that that autoregressive specification could lead to a
variance of zero or infinity, and he suggested the autoregressive conditional het-
eroskedasticity (ARCH) correction

C̃t+1 = ηt+1

√
σ2

C̃t
(4.20)

σ
2
C̃t
= θ0 +θ1C̃2

t−1 (4.21)

with the proviso that, unconditionally, E[ηt ] = 0 and Var(ηt) = 1. It should be
noted that the foregoing specification handles negative values for incremental op-
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tion price through the sign of ηt . Thus, we have just proven the following

Theorem 4.1 (ARCH in Detrended option Prices). . Let C̃t be the stationary part
of a Wold decomposition of a call option price at time t. Let Ft−1 be the infor-
mation set available at time t − 1, and mt be an unobservable price kernel that
links the option prices between times t and t +1 such that C̃t+1 = mt+1C̃t . Let the
conditional variance of option prices in period t be

Var(C̃t |Ft−1) = C̃t−1σ
2
t

Suppose that m̃t = mt +ηt is observed, but true mt and measurement error ηt are
unobservable. Let E[ηt ] = 0 and Var(ηt) = 1. Then trend stationary call option
prices follow an ARCH process

C̃t = ηt

√
σ2

C̃t−1

σ
2
C̃t
= θ0 +θ1C̃2

t−1

Remark 4.1. This Theorem was derived by using a fairly standard signal-noise
parametrization for the pricing kernel.

At Engle’s suggestion, Bollerslev proposed a more parsimonious model to mit-
igate the long lag structure encountered in ARCH models in practice. See (Boller-
slev, 1986, pp. 307, 308). Instead of the ARCH process, Bollerslev introduced a
Generalized ARCH process which, in the context of our detrended option price
process, implies the following

Corollary 4.2 (GARCH(1,1) Detrended Option Process). . Let ηt , the measure-
ment error in observed pricing kernel for call option prices at time t, be distributed
with mean zero and unconditional variance Var(C̃t) = σ2

C̃t
. Then a GARCH(1,1)

process is admissible for evolution of the dynamics of detrended call option prices.
In particular,

σ
2
C̃t
= α1ε

2
t−1 +β1σ

2
C̃t−1

(4.22)

Where

α1 +β1 < 1 (4.23)

Remark 4.2. By definition in Equation 4.16, εt is a convex function of C̃t . Fur-
thermore, the quantity ε2

t = |C̃t |η2
t reflects the impact of innovations for option
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prices at time t. The GARCH(1,1) process here follows from a Wold decomposi-
tion motivated by our canonical polynomial representation theory of call option.
By contrast, (Duan, 1995, pg. 13) used heuristics to construct an elaborate op-
tion pricing model with GARCH volatility in his “attempt to link this powerful
econometric model with the contingent pricing literature”.

Definition 4.1 (Risk factor exposure). Let εt(ω) be innovations in stochastic op-
tion prices, and σ2

C̃t
be a measure of stochastic risk. So that in Equation 4.22

stochastic risk at time t is a function of those two risk factors. Then

A. α1 is exposure to innovations in option prices; and

B. β1 is exposure to underlying risk.

In what follows we need the following theorem.

Theorem 4.3 (Convergence of Types). Let M connote MLE for a given parameter

and derived residual. So that
M
α1,

M
β 1 are MLE for α1 and β1 in the GARCH(1,1)

process

σ
2
C̃t+1

= α1ε
2
t +β1σ

2
C̃t

Furthermore, let

P− lim
t→∞

M
σ

2

C̃t+1
=

σ2
C̃t

1−α1−β1

Then for any continuous function g ∈C2(R) we have

P− lim g(
M
α1,

M
β 1) = g(α1,β1)

Proof. See (Bollerslev, 1986, Thm. 1 and 2 pp. 310-311) and “convergence of
types theorem” in (Durrett, 2005, pg. 156).

It is clear from Equation 4.22 that we can write innovations in stochastic option
prices as a function of the risk factor exposures defined in 4.1. In particular

M
ε t =

M
σ

2

t+1−
M
β 1

M
σ

2

t
M
α1

(4.24)
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On average, MLE estimates of α1 and β1 are consistent and efficient. However,

an empirical regularity of GARCH(1,1) models is that
M
β 1 �

M
α1. That is, call

option pricing with stochastic volatility risk exposure implies persistent price risk,
while exposure to innovations in option prices suggests that they are comparatively
transient. See e.g., (Davidson and MacKinnon, 2004, pg. 579); (Shephard, 1996,
pg. 13). Thus, we have the following

Proposition 4.4. Let εt be the innovation in call option prices at time t and de-
veloped in period t−1, and σt be the corresponding price risk. Suppose that the
dynamics for call option risk follows a GARCH(1,1) process so that

M
ε t =

M
σ

2

t+1−
M
β 1

M
σ

2

t
M
α1

Then the risk exposure α1 portends persistent call option risk, and β1–the exposure
to innovations, portends transient shocks to call option risk.

Proof. See Theorem 4.3.

Remark 4.3. The GARCH(1,1) specification is particularly useful for short term
volatility and or risk forecast in a seemingly efficient market22.

4.1 Empirical pricing kernel estimator for option pricing

The foregoing analysis shows that ARCH and GARCH are admissible models for
option price fluctuation around trend. However, these fluctuations must decay to
reflect long run convergence to the strike price. Specifically, we claim that C̃t is
well defined by proving that

C̃t+1 =
√
|C̃t |εt

22See (Koverlachuk and Vitayev, 2002, pg. xi) who states:

The efficient market theory states that it is practically impossible to predict financial markets long-
term. However, there is good evidence that short-term trends do exist and programs can be written to
find them. The data miners‘ challenge is to find the trends quickly while they are valid, as well as to
recognize the time when the trends are no longer effective.
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is an admissible decay model for call option price fluctuations. See e.g., (Engle,
2004, pg. 407). Let

C̃1 =
√
|C̃0|ε0 (4.25)

Then, by recursion, we get

C̃k = εk−1|εk−2|−2−1
. . . |ε0|−2−k+1

|C̃0|−2−k
(4.26)

In which case,

lim
k→∞

C̃k = lim
k→∞

εk−1|εk−2|−2−1
. . . |ε0|−2−k+1

|C̃0|−2−k
= 0 (4.27)

assuming that the ε-fluctuations are such that they dampen to zero. This is a
pseudo Kalman filter result because past error is used for forecasting. See (Box
et al., 1994, pg. 165). Because |ε| < 1, the quantities |ε0|−2−k+1| are stochastic
discount factors. So the derived fluctuations C̃k decay and

P− lim
k→∞

C̃k = 0 (4.28)

Thus we have just proved the following

Theorem 4.5 (Pricing Kernel Estimator). . Let C̃t be the detrended stochastic
option price at time t. Let mt be the unobservable pricing kernel for call option
prices at time t, and ηt be concommittant measurement error. So that m̃t = mt +ηt
is observed but true mt and ηt are not. Then the stochastic discount factor or
pricing kernel for call option pricing is given by

mt = ε
−1
t =

1√
|C̃t |ηt

Because εt and ηt are estimable from ARCH and or GARCH diagnostics we get

cross validation for mt by extrapolating
M
mt = m̃t−

M
η t by virtue of Theorem 4.3. It

is enough to claim that estimation of pricing kernel noise is given by

M
η t =

M
ε t

|C̃t |
(4.29)
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So that the signal to noise ratio for the pricing kernel is

SNRoption =

M
σ

2

m̃t

M
σ

2

ηt

(4.30)

If SNRoption > 1, then our model is picking up the “signal” from the true pricing
kernel.

4.1.1 Wold decomposition of pricing kernel

According to Wold Dcomposition Theorem 3.1 if SNR < 1, then mt has a
long MA representation for trend. If SNR > 1, then the deterministic component
dominates and the MA representation for trend in short. See (Mills and Markellos,
2008, pg. 118).

Consider the following argument. Let

mt = 1+ut (4.31)
ut = θut−1 + vt , |θ |< 1 (4.32)

Suppose that ηt is white noise, so that

ηt = ηt−1 + et (4.33)

Then

∆m̃t = ∆mt +∆ηt (4.34)

= (1−θL)−1(1−L)vt + et (4.35)

where ∆ is a difference operator, and L is a lag operator. Under Wold decomposi-
tion ∆m̃t is difference stationary. Thus we have the signal

zt = (1−θL)−1(1−L)vt (4.36)

and noise et . Undeniably, zt has a moving average (MA) representation. Thus, the
“new” SNR is

SNR =
σ2

z

σ2
e
= (1+

2θ 2

1−θ
)
σ2

v
σ2

e
(4.37)
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The behavior of θ determines the magnitude of SNR. As long as θ is in the unit
circle SNR will be inflated, i.e greater than 1. In particular, if 0 < θ < 1 then the
signal should be strong. In any case, the decay hypothesis is suppported by Wold
decomposition.

5 Conclusion

We propose a solution to an open problem posed in (Kassouf, 1969, pg. 694)
by introducing number theory concepts to show that option price formulae depend
on algebraic elements in extension fields. In particular, we show that option prices
are power laws or polynomials convex in time and volatility of the underlying. To
be sure, polynomial expansion of option pricing formulae is not new. What is new
is our formal extension to algebraic number theory, and formulation of a canon-
ical representation which produced a class of regenerative option prices, as well
as a duality theory for call option with particular applicability to option Greeks
estimation. So that, Black and Scholes (1973); Merton (1973) and Kassouf (1969)
are special cases of a family of functionally equivalent option pricing formulae
that satisfy this criteria. In particular, Kassouf (1969) power law specification is in
the class of regenerative polynomial representation for option. Our reduced form
polynomial representation of option prices, suggest that in practice synthesis with
classic approaches can be used to decompose option prices and provide consistent
estimates for risk factor exposure. Of independent interest, is our extension of the
analysis to include an empirical specification for the pricing kernel of a call option
from residuals in a two-factor risk exposure model. Further research in this are
is needed to produce reduced form models as an alternative to the increasingly
complex array of exotic option pricing formulae.
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6 Appendix

A Proofs

For the benefit of the reader, we reproduce (Clark, 1971, pg. 89)
Proof of Proposition 2.1
Before we begin we need the following

Lemma A.1. . See (Pollard and Diamond, 1975, Thm. 4.5) . The totality of num-
bers algebraic over a field F forms a field.

Proof. Let α, β be algebraic over F , α 6= 0 β 6= 0. We need to show that

α +β , α−β , αβ ,
α

β
(A.1)

are algebraic over F . Let f (x) and g(x) be minimal polynomials for α and beta
over F , respectively. Furthermore, define

h1(x) =
k

∏
i=1

n

∏
j=1

(x−αi−β j) (A.2)

h2(x) =
k

∏
i=1

n

∏
j=1

(x−αiβ j) (A.3)

Undeniably, h1 and h2 are polynomials over F . Hence α +β and αβ are algebraic
because there exists roots α1 + β1 and α1β1 for the respective equations. Addi-
tionally, the relations hold for h1(−x), h2(−x). Since−β satisfies h(−β ) = 0 it is
algebraic over F . So the sum α +(−β ) = α−β is algebraic. Let m be the degree
of h2. Then 1

β
satisfies xmh2(

1
x), so it is algebraic. Similarly, α

1
β

, is a product of
algebraic roots and is thus algebraic. Therefore, the prerequisite conditions for a
field are satisfied.

Proof. (Clark, 1971, pg. 89) Since F(α) is a field that contains α it miust contain
the elements 1,α,α2, . . . ,αn−1. Consequently, it is a vector space which contains
polynomials of the form

f (α) = c0 + c1α + c2α
2 + . . .+ cn−1α

n−1
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with coefficients ci ∈ F, i = 0,1, . . . ,n−1. Let

X = { f | f (α) = c0 + c1α + c2α
2 + . . .+ cn−1α

n−1, ci ∈ F, i = 0,1, . . . ,n−1}

Thus, X is a vector space over F spanned by

V = {1,α,α2, . . . ,αn−1} (A.4)

We claim that V is linearly independent over F . If there was a nontrivial linear
relation over F, depicted by

c0 + c1α + c2α
2 + . . .+ cn−1α

n−1 = 0 (A.5)

then α would be a root of the polynomial g over F given by

(A.6)

g(α) = c0 + c1α + c2α
2 + . . .+ cn−1α

n−1 (A.7)

However, the degree g is less than n, and by hypothesis n is the degree of a minimal
polynomial for α over F . This contradition implies that V is linearly independent
and hence it is a basis for X over F .

The rest of the proof requires us to show that X is a field. We use a result
by Pollard and Diamond (1975) to replace this part of the proof in Clark (1971).
Application of Lemma A.1 completes the proof as required.
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