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Abstract
We present a technique for finding roots of a quar-
tic general polynomial equation of a single vari-
able by using radicals. The solution of quar-
tic polynomial equations requires knowledge of
lower degree polynomial equations; therefore, we
study solving polynomial equations of degree less
than four as well. We present self-reciprocal poly-
nomials as a specialization and additionally solve
a numerical example.

1 Introduction
Solving polynomial equations have been a central
topic not only for its usage in pure mathematics
but also in physical applications. Consequently,
solution of polynomial equations attracted inter-
est peaking at the nineteenth century from mathe-
maticians, which lead to development of modern
algebra.

As we are mostly familiar with, a polynomial in
a single variable is an expression involving pow-
ers of the variable multiplied by some coefficients.
Thus, we obtain a polynomial equation when we
equate a polynomial to zero. Solution of a polyno-
mial equation is essentially finding values of the
variable such that the evaluation of the polyno-
mial at that specific value of the variable gives us
zero. These specific values are called the zeros
of the polynomial [1], or roots of the polynomial
equation. We define a general [2] (or generic [1])
polynomial as the one whose coefficients are open
variables but not numerical values. A polynomial

is named a quartic polynomial when the degree
of the polynomial, that is, the highest power of
the polynomial is four. Similarly, a cubic polyno-
mial has the highest degree three while a quadratic
polynomial has the highest degree two.

Based on these elementary definitions, we state
that our study will be on solving a general sin-
gle variable quartic polynomial equation by rad-
icals. By radicals, we mean expressions which
are a combination of the sums, differences, quo-
tients, products as well as the roots greater than or
equal to two of the coefficients of the polynomial
[1]. Even though it is standard to learn solving
quadratic polynomial equations by using radicals
in the contemporary curriculum, we don’t observe
a common interest in learning how to solve cubic
and quartic equations by such a method. In engi-
neering and applied sciences literature, we meet
other techniques for solving quartic polynomial
equations; yet, we know that a general polyno-
mial of degree four (or less) can be solved by
radicals, which gives us an exact result with ease
of implementation, and also has the advantage
of evolving to maturity within the past centuries.
Therefore, an understanding of finding roots of a
general quartic polynomial equation by radicals
would lead us an adequate means to solve prob-
lems in which these equations occur.

Thus, in Section 2, we discuss some back-
ground material including a theorem which pro-
vides the number of zeros of a general polyno-
mial. In Section 3, we discuss solution of the
quartic polynomial, starting by Tschinhaus trans-
formation [1] and obtaining the resolvent poly-
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nomial equation, which is necessary in the solu-
tion procedure. The resolvent polynomial neces-
sary to solve a general quartic polynomial equa-
tion is cubic; thus, we discuss solving cubic poly-
nomial equations in Section 3.1. In Section 3.2,
we proceed solving the quartic polynomial and
give the formulas necessary for solving by rad-
icals. As a case study, we will discuss solving
self-reciprocal quartic polynomials by radicals in
Section 4. Self-reciprocal polynomials occur in
applications which require inversion in a circle.
Such an application is available in [3]. We give a
numerical example in Sections 4.1.

2 Number of Roots
Before formulating the solution procedure to
quartic polynomial equations, we discuss the
number of roots of a polynomial equation. As we
will see in Section 3, the transformations neces-
sary for finding the zeros of a polynomial can lead
us to the conclusion that a polynomial of degree n
can have more than n zeros. In this section, we
show that this kind of conclusion is incorrect for
a polynomial whose coefficients belong to a sub-
field (F ) of the complex number field (C).

Before dealing with number of roots, we intro-
duce and discuss the quartic equations. A general
quartic polynomial equation in a single variable is
written in the form:

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0 (1)

with ai ∈ F , i = 0, . . . , 4. Additionally, the field
F contains the field of rational numbers (Q). The
left side of the equation 1 can be represented as
a polynomial p(x), which belong to a polynomial
ring F [x]. Consequently, a polynomial ring con-
tains any polynomial of degree n with coefficients
in F . The rest of the discussion is developed in
the literature for any polynomial of degree n, thus
valid for an arbitrary polynomial in F [x].

We will let the zeros of a polynomial be an ele-
ment of C even though the polynomial itself is an
element of the polynomial ring F [x]. This lets us
to take advantage of the fundamental theorem of

algebra, which we present from [4] without proof.
The proof can be found in texts such as [4].

Theorem 1 (Fundamental Theorem of Algebra).
The field of complex numbers is algebraically
closed; that is, every polynomial in C[x] has a
zero in C.

Thus, for any zero xi ∈ C of a polynomial
p(x), we can factor as p(x) = (x − xi)q(x) with
q(x) ∈ C[x]. The consequence of the fundamen-
tal theorem of algebra on the number of roots of
a polynomial equation of degree n is presented in
the following theorem

Theorem 2. If p(x) ∈ F [x] be a polynomial of
degree n in the field F , which is a subfield of C,
then p(x) has exactly n zeros in C.

Proof. If we take a polynomial p(x) of degree
n, by the fundamental theorem of algebra, we
must have a linear factor x1 ∈ C so that p(x) =
(x − x1)q(x) with p(x1) = 0. But q(x), which
is of degree n − 1 must also have a linear fac-
tor by the fundamental theorem of algebra. Thus,
q(x) = (x − x2)r(x) with q(x2) = 0 and x2
not necessarily different from x1. The polynomial
p(x) can be written as p(x) = (x−x1)(x−x2)r(x)
where r(x) has degree n−2. Continuing this pro-
cedure recursively leads us to completely split the
polynomial into linear factors x1, x2, . . . , xn such
that

p(x) = (x− x1)(x− x2) · · · (x− xn)

Thus, we conclude that a polynomial of degree n
has n zeros in the algebraically closed field C.

Using Theorem 2, we can conclude that the
quartic polynomial in Eq. 1 has four zeros in C.
Obviously, if the zeros we seek are located in a
subset instead of C, the number of zeros that we
are interested in can be less than four.

3 General Quartic Polynomial
of a Single Variable

Obtaining the number of roots of the general quar-
tic polynomial equation in F [x], we can proceed
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with finding its roots. The procedure we offer
is based on a method outlined in [4], which is a
variation of Ferrari’s solution. This method re-
quires solving a resolvent cubic polynomial equa-
tion. Thus, in Section 3.1, we discuss finding the
zeros of a cubic polynomial before we obtain the
roots of the general quartic equation in Section
3.2.

We start by considering the Eq. 1 of Section
2. The polynomial equation being quartic makes
it necessary that a4 6= 0, otherwise we would end
up an equation of degree not equal to four. Using
this fact, we can manipulate Eq. 1 to make the
coefficient of the fourth power term one, that is,
we can transform into a monic quartic polynomial
equation. Thus, dividing both sides of the equa-
tion 1, we obtain:

x4 + b3x
3 + b2x

2 + b1x+ b0 = 0 (2)

with bi = ai/a4, i = 0, . . . , 3, so bi ∈ F . We use
Eq. 2 for the rest of the discussion without losing
generality.

We proceed by applying Tschirnhaus transfor-
mation; thus, we let y = x + b3/4 so that x =
y − b3/4. Substituting for x in Eq. 2, we obtain
the depressed [4] quartic polynomial equation as

y4 + qy2 + ry + s = 0 (3)

where

q = −3

8
b23 + b2 (4)

r =
1

8
b33 −

1

2
b3b2 + b1

s = − 3

256
b43 +

1

16
b23b2 −

1

4
b3b1 + b0

We now consider writing the polynomial equa-
tion in terms of sums of squares. To achieve this,
we first arrange the depressed quartic polynomial
equation as

y4 = −qy2 − ry − s (5)

We will consider the case that the right side of Eq.
5 is not a square in which case the solution would

reduce to solving quadratic polynomial equations
without further effort. Thus, we proceed by intro-
ducing a variable z and complete the left side to
square as(
y2 +

1

2
z
)2

= −qy2 − ry − s+ zy2 +
1

4
z2 (6)

We would like to complete the right side of Eq. 6
to a square, i.e. to a form (my + k)2, as well. For
this reason, we collect the terms of the right hand
side of Eq. 6 in the variable y to obtain

(z − q)y2 − ry +
(1
4
z2 − s

)
(7)

Thus, we let
m =

√
z − q (8)

Then, to complete Eq. 7 to a square in the form
(my + k)2, we must have 2mk = −r. Therefore,
we find

k = − r

2m
= − r

2
√
z − q

(9)

Thus, the equation 7 becomes

(my + k)2 − r2

4(z − q)
+
(1
4
z2 − s

)
(10)

When Eq. 10 is a complete square, we must
have

− r2

4(z − q)
+
(1
4
z2 − s

)
= 0 (11)

Obviously, if Eq. 11 holds, then we have the
square (my + k)2. Therefore, we need to solve
Eq. 11 to proceed finding the zeros of the quartic
polynomial. Since z is an open variable, we can
assume z 6= q. Then, we can multiply both sides
of Eq. 11 by 4(z − q) and expand the numerator
to obtain

z3 − qz2 − 4sz + (4qs− r2) = 0 (12)

Hence, solving Eq. 12 is a necessary step for ob-
taining the roots of the quartic polynomial equa-
tion by radicals. Consequently, we call the cubic
polynomial in Eq. 12 the resolvent of the general
quartic polynomial equation. We discuss solution
of the resolvent cubic polynomial in section 3.1.
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3.1 Solving the Resolvent Polynomial
In this section, we solve the resolvent cubic poly-
nomial, which is Eq. 12. We can make the
Tschinhaus transformation for the cubic polyno-
mial; thus, we let t = z− q/3 so that y = t+ q/3.
Substituting into Eq. 12, we obtain the depressed
resolvent cubic polynomial equation as

t3 + gt+ h = 0 (13)

where

g = −1

3
q2 − 4s (14)

h = − 2

27
q3 +

8

3
qs− r2

We make one more transformation [4] for t =
u − g/(3u) with u being another open variable,
then substitute into Eq. 13. Collecting the terms
of the resulting equation under a common denom-
inator and considering that the numerator of the
equation is zero, we obtain

u6 + hu3 − g3

27
= 0 (15)

Thus, we obtain a quadratic equation in u3. Com-
pleting Eq. 15 to a square and solving for u3, we
obtain

u31 = −
h

2
−
√
h2

4
+
g3

27
(16)

u32 = −
h

2
+

√
h2

4
+
g3

27

We will take an interlude and discuss finding
the roots of polynomial equations in the form
x3 − a0 = 0 in C[x]. We know that any complex
number a can be written in the form a = r(cos θ+
i sin θ). As a consequence of De Moivre’s theo-
rem [5], we can write

an = rn(cos (nθ) + i sin (nθ))

Thus, if we write a0 in the form [3] rcis(θ) =
r(cos θ + i sin θ), and let n = 1/3, we obtain the
three cube roots x as

x = 3
√
r cis

(θ + 2jπ

3

)
(17)

= 3
√
r cis

(2jπ
3

)
cis
(θ
3

)

with j = 0, 1, 2. If we let

ω = cis
2π

3
= −1

2
+ i

√
3

2
(18)

then

ω2 = cis
4π

3
= −1

2
− i

√
3

2
(19)

and ω3 = 1. Consequently, for the powers of ω
has a cyclic order of three. Based on this notation,
we tabulate the cube roots of x as

x1 = 3
√
r cisθ (20)

x2 = 3
√
r ω cisθ

x3 = 3
√
r ω2 cisθ

Thus, we found a way to compute cube roots of
a number a0 ∈ C by solving equations in the form
x3 − a0 = 0.

We proceed solving Eq. 15. Although we seem
to have six solutions for Eq. 15, in turn for the
resolvent cubic equation, we know this is not the
case by Theorem 2. Thus, we need to make clean-
ing for obtaining the correct roots. We begin by
presenting a condition on the roots of the resol-
vent cubic equation, which we will use to deter-
mine the correct roots.

Lemma 1. If u31 and u32 be two roots of Eq. 15,
then u1u2 = −g/3.

Proof. Suppose u31 and u32 are roots of Eq. 15.
Then, we can write (u− u31)(u− u32) = 0. Hence,
we expand to u6 − (u31 + u32)u

3 + u31u
3
2 = 0,

thus, comparing to Eq. 15, we must have u31u
3
2 =

−g3/27. Taking cube roots of both sides, we ob-
tain u1u2 = −g/3.

Taking the cube roots of u31 and u32 in Eq. 16,
we obtain three roots of u31 as u1, ωu1, and ω2u1.
Similarly, three cube roots of u32 are u2, ωu2, and
ω2u2. We need to select from each of the three
cube roots of u31 and u32 to obtain the roots of
the depressed cubic polynomial equation. For this
purpose, we present Theorem 3.

Theorem 3. Let u1, ωu1, ω2u1 and u2, ωu2, ω2u2
be roots of Eq. 15. We compute the zeros of the
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depressed resolvent cubic polynomial in Eq. 13 by
choosing one from each set of the roots according
to the following cases

1. If we choose roots sucht that u1u2 = −g/3,
then t1 = u1 + u2, t2 = ωu1 + ω2u2, and
t3 = ω2u1 + ωu2.

2. If we choose roots such that ωu1u2 = −g/3,
then t1 = u1 + ωu2, t2 = ωu1 + u2, and
t3 = ω2u1 + ω2u2.

3. If we choose roots such that ω2u1u2 = −g/3,
then t1 = u1 + ω2u2, t2 = ωu1 + ωu2, and
t3 = ω2u1 + u2.

Proof. We find the roots of the depressed resol-
vent cubic polynomial by transforming back from
u to t by means of the equation

t = u− g

3u

We can arbitrarily take the cube roots of u1 to
back substitute for u. We can verify that if we
choose cube roots of u2 instead, we would obtain
the same results.

As a consequence of Lemma 1, we need to
make sure compatible roots of Eq. 15 are chosen.
The possibilities are u1u2 = ω3u1u2 = −g/3,
ωu1u2 = ω4u1u2 = −g/3, and ω2u1u2 − −g/3.
Therefore, we consider the following cases

1. If u1u2 = −g/3, then the back transforma-
tion equation becomes

t = u+
u1u2
u

Thus, for u = u1, we obtain

t1 = u1 + u2

Similarly, u = ωu1 would imply

t2 = ωu1 +
u1u2
ωu1

= ωu1 + ω2u2

and u = ω2u1 leads to

t3 = ω2u1 +
u1u2
ω2u1

= ω2u1 + ωu2

Hence, we obtain the solution set in case 1 of
the theorem.

2. If ωu1u2 = −g/3, then the back transforma-
tion equation becomes

t = u+
ωu1u2
u

Thus, for u = u1, we obtain

t1 = u1 + ωu2

Similarly, z = ωu1 would give us

t2 = ωu1 + u2

and u = ω2u1 leads to

t3 = ω2u1 +
ωu1u2
ω2u1

= ω2u1 + ω2u2

Thus, t1, t2, t3 gives the solution set obtained
in case 2 of the theorem.

3. If ω2u1u2 = −g/3, then the back transfor-
mation equation becomes

t = u+
ω2u1u2
u

Thus, for u = u1, we obtain t1 = u1 + ω2u2.
Similarly, u = ωu1 and u = ω2u1 would give
us t2 = ωu1 + ωu2 and t3 = ω2u1 + u2, re-
spectively. Hence, we obtained the solution
set presented in case 3 of the theorem.

Thus, for arbitrary selection of two of the cube
roots from u1, ωu1, ω

2u1 and u2, ωu2, ω
2u2, we

can calculate the roots of Eq. 13.

Thus, once we obtain ti, i = 1, 2, 3 using the-
orem 3, We can back substitute for z = t + q/3
to obtain the three zeros zi of the resolvent cubic
polynomial in Eq. 12.

3.2 Solving the Quartic Polynomial
In this section, we present the formulation for
finding the zeros of the general quartic monic
polynomial in Eq. 2.

We already solved the resolvent cubic polyno-
mial equation to obtain the roots zi which would
complete the right hand side of Eq. 6 to a square
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in the form (my + k)2 with m and k expressed in
Eq. 8 and Eq. 9, respectively. Consequently, we
can write the general quartic polynomial equation
in the form

(y2 +
1

2
zi)

2 = (miy + ki)
2 (21)

with zi being a root of the resolvent cubic poly-
nomial equation and mi, ki being the values eval-
uated for the root zi. Since we have three roots
from the resolvent cubic polynomial, it would be
a natural question to choose which one for zi. We
discussed in Section 2 that a quartic polynomial
has exactly four zeros in C. Hence, we choose
one of the three roots of the resolvent polynomial
equation arbitrarily [2] while neglecting the oth-
ers.

Selecting zi, we can take the square roots of
both sides of Eq. 21. Thus, we obtain the fol-
lowing two quadratic equations

y2 −miy − ki +
1

2
zi = 0 (22)

y2 +miy + ki +
1

2
zi = 0

The zeros of the first quadratic polynomial give us
two of the roots of the depressed quartic polyno-
mial equation

y1 =
mi

2
−
√
m2

i

4
+ ki −

zi
2

(23)

and

y2 =
mi

2
+

√
m2

i

4
+ ki −

zi
2

(24)

while that of the second quadratic polynomial give
the other two roots of the depressed quartic poly-
nomial equation

y3 = −
mi

2
−
√
m2

i

4
− ki −

zi
2

(25)

y4 = −
mi

2
+

√
m2

i

4
− ki −

zi
2

(26)

Once we obtain the roots of the depressed quartic
equation, we can transform to obtain the roots of
Eq. 2 by using xi = yi− b3/4. This completes the
formulation to obtain the roots of a general quartic
polynomial equation.

4 Case Study: Self-Reciprocal
Quartic Polynomials

We formulated a solution algorithm to obtain
roots of the general quartic polynomial equation
in Section 3. The solution included solving a cu-
bic resolvent of the quartic polynomial. Although,
solving a cubic polynomial equation is necessary
for the general quartic case, the method would be
simpler if we consider specialization of the gen-
eral quartic polynomial. One such specialization
is a self-reciprocal quartic polynomial, which we
study in this section. Under a suitable transfor-
mation, solution of self-reciprocal quartic poly-
nomial equations reduce to solving two quadratic
polynomials.

Definition 1 (Self-Reciprocal Quartic Polyno-
mial). Let F be a subfield of the field of the real
numbers (R). A quartic polynomial f ∈ F [x]
given by the equation 1 is self-reciprocal under
the condition that f(x) = f †(1/x) with f † ∈ F [x]
defined as:

f †(x) = x4f(
1

x
) = c0x

4 + c1x
3 + c2x

2 + c3x+ c4

Thus, c0 = c4 and c1 = c3.

Thus, we can write a general quartic self-
reciprocal polynomial equation as:

c0x
4 + c1x

3 + c2x
2 + c1x+ c0 = 0 (27)

Without loss of generality, we can divide both
sides by c0 to obtain

x4 + d1x
3 + d2x

2 + d1x+ 1 = 0 (28)

with d1 = c1/c0 and d2 = c2/c0. The roots of the
self-reciprocal polynomial equation are a conse-
quence of inversion with respect to the unit circle
[3]; thus, the roots are never equal to zero. Using
this knowledge, we can divide both sides of Eq.
28 by 1/x2 to obtain

x2 + d1x+ d2 + d1
1

x
+

1

x2
= 0 (29)
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Let us define v = x+1/x, which is a transforma-
tion discussed in [6] . Then, collecting the terms
with the same coefficient in Eq. 29, we obtain

x2 + d1v + d2 +
1

x2
= 0 (30)

We can take squares of the transformation for v
and rearrange to obtain

x2 +
1

x2
= v2 − 2

Substituting above into Eq. 30, we write

v2 + d1v + d0 = 0 (31)

with d0 = d2−2. The roots of the quadratic equa-
tion are

v1 = −d1
2
−
√
d21
4
− d0 (32)

v2 = −d1
2

+

√
d21
4
− d0

We can transform back vi = x+1/x with i = 1, 2
to obtain the quadratic equation

x2 − vix+ 1 = 0 (33)

Solving this quadratic equation gives us the roots
of the quartic self-inversive polynomial as

x1 =
v1
2
−
√
v21
4
− 1 (34)

x2 =
v1
2

+

√
v21
4
− 1

x3 =
v2
2
−
√
v22
4
− 1

x4 =
v2
2

+

√
v22
4
− 1

Thus, we can obtain the roots of a self-reciprocal
quartic equation without having to solve a resol-
vent cubic polynomial equation.

4.1 Example
In this section, we solve a self-reciprocal quartic
polynomial which is available in [3]. The polyno-
mial is below

x4 − 213

50
x3 +

165857

25600
x2 − 213

50
+ 1 = 0 (35)

We will solve this equation by using the method
discussed in this section, then we will solve it by
considering it as a general quartic polynomial. We
will be writing the radical expressions in decimal
form to save space when necessary.

Solution 1

Comparing the example with Eq. 28, we find
d1 = −213/50 and d2 = 165857/25600. Trans-
forming this equation by the method discussed
in this section, we obtain d0 = 114657/25600.
Thus,

v2 − 213

50
v +

114657

25600
= 0

Hence, we obtain v1 = 2.37106 and v2 = 1.88894
by using Eq. 32. Then, we find the zeros of
the self-reciprocal polynomial from Eq. 34 as
x1 = 0.548755, x2 = 1.82231, x3 = 0.944469 −
i0.328601, and x4 = 0.944469 + i0.328601.

Solution 2

We use the formulation for the general quartic
polynomial in Section 3 to obtain the same solu-
tion.

We obtain the depressed quartic polynomial
equation by using the transformation x = y +
213/200. Using Eq. 4, we compute q =
−208999/640000, r = −7921683/64000000,
and s = −1226099903/25600000000. Thus, we
write

y4− 208999

640000
y2− 7921683

64000000
y− 1226099903

25600000000
= 0

We proceed with obtaining the resolvent cubic
polynomial by using Eq. 12 as

z3 +
208999

640000
z2 +

1226099903

6400000000
z

+
12093787004663

256000000000000
= 0

7



Making another transformation, which would
be z = t − 208999/1920000, we com-
pute g = 306768959/1966080000 and h =
6560810064991/226492416000000 by using Eq.
15. Thus, we obtain the depressed resolvent cubic
as

t3 +
306768959

1966080000
t+

6560810064991

226492416000000
= 0

Then, we use Eq. 16 to obtain

u31 = − 86779

1638400000

√
1873891

15

− 6560810064991

452984832000000
= −0.0332042

and

u32 =
86779

1638400000

√
1873891

15

− 6560810064991

452984832000000
= 0.00423715

We will present the rest of the solution in dec-
imal form to save space. We note that u31 =
0.0332042 cisπ and u32 = 0.00423715 cis0. Thus,
we can calculate the cubic roots of u31 and u32 by
using Eq. 20. If we pick u1 = 0.160707 +
0.278352i and u2 = 0.161817, then we obtain

ωu1u2 = −0.0520103− i3.72529× 10−9

which is equivalent to −g/3 = −0.0520103 if we
discard Sagemath numerical errors. Thus, we can
use the case 2 of Theorem 3 to obtain t1, t2, t3.
Substituting the values back by using

zi = ti −
208999

1920000
i = 1, 2, 3

Thus, we obtain the roots of the resolvent cubic
polynomial equation as

z1 = −0.0290555 + i0.418490

z2 = −0.268450− i2.98023× 10−8

z3 = −0.0290554− i0.418490

To continue solution of the quartic polynomial
equation, we arbitrarily pick z1 and calculatem =
0.636776 + i0.328601 and k = 0.0767513 −
i0.0396066 by using Eq. 8 and Eq. 9, respec-
tively. We then use Eq. 23 through Eq. 26 to find
the zeros of the depressed quartic polynomial, and
back substitute for xi

xi = yi +
213

200
i = 1, . . . , 4

to obtain

x1 = 0.944469 + i0.328601

x2 = 1.82231

x3 = 0.548755 + i1.49012× 10−8

x4 = 0.944469− i0.328601

Neglecting the small imaginary number in x3 as
a consequence of the Sagemath computational er-
rors, the results xi are in agreement with that the
solution method 1 and also with the result avail-
able in [3].

5 Conclusion

As we have studied, solving general quartic poly-
nomial equations by radicals is straightforward by
means of a few transformations, so the technique
does not require much computational effort. This
would allow us to do the computations with rel-
ative ease instead of trying a more sophisticated
algorithm.

As we studied in Section 4.1, the formulation
for solving the general quartic polynomial equa-
tions can be used for specialized polynomials such
as self-reciprocal polynomials. However, a self-
reciprocal quartic polynomial can be transformed
into a simpler form which does not require solu-
tion of a cubic polynomial equation, thus make
the solution even easier to implement. We illus-
trate the ease of solution of a self-reciprocal quar-
tic polynomial equation by means of a suitable
transformation x + 1/x in solution 1 of the ex-
ample in section 4.
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