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Abstract

Several mechanisms have been proposed to account for the marked increase in severity of human infections with avian
compared to human influenza strains, including increased cytokine expression, poor immune response, and differences in
target cell receptor affinity. Here, the potential effect of target cell tropism on disease severity is studied using a
mathematical model for in-host influenza viral infection in a cell population consisting of two different cell types. The two
cell types differ only in their susceptibility to infection and rate of virus production. We show the existence of a parameter
regime which is characterized by high viral loads sustained long after the onset of infection. This finding suggests that
differences in cell tropism between influenza strains could be sufficient to cause significant differences in viral titer profiles,
similar to those observed in infections with certain strains of influenza A virus. The two target cell mathematical model
offers good agreement with experimental data from severe influenza infections, as does the usual, single target cell model
albeit with biologically unrealistic parameters. Both models predict that while neuraminidase inhibitors and adamantanes
are only effective when administered early to treat an uncomplicated seasonal infection, they can be effective against more
severe influenza infections even when administered late.
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Introduction

The potential spread of a severe pandemic influenza is a

worldwide cause for concern. In recent years, attention has focused

on the avian-derived influenza A (H5N1) virus strain, which has the

potential to evolve into a pandemic influenza strain [1]. The swine-

origin influenza A (H1N1) strain which is responsible for the recent

influenza pandemic has been a cause for concern given the strain’s

ability to cause severe illness and the added stress it puts on the

health care system [2–6]. The reasons for the increased severity

observed with some influenza strains are poorly understood and

possible explanations include an excessive cytokine response [7–11],

a poor immune response due to the strain’s novelty [12,13], and

differences in target cell receptor affinity (cell tropism) between

human-adapted, seasonal strains and animal-origin pandemic

strains [14–17]. Recent work has focused on the binding affinity

of different strains of influenza virus for specific cell receptors within

the respiratory tract [18–21] and it is believed that this difference in

affinity between human and avian strains may in part be responsible

for the difference in severity between the two strains, though the

reasons for this are currently not well understood.

Two specific cell types are believed to play important roles in

influenza virus infection: ciliated epithelial cells, and nonciliated,

mucus-producing cells. In epithelial cell cultures, nonciliated,

mucus producing cells predominantly express sialic acid a-2,6

galactose terminated saccharides (SAa2,6 Gal) on their surface,

while ciliated cells express sialic acid a-2,3 galactose terminated

saccharides (SAa2,3 Gal) receptors, as well as SAa2,6 Gal

receptors, on their surface [20,22,23]. In vitro experiments have

shown that human-adapted influenza A viruses (H1N1, H3N2)

seem to preferentially bind to SAa2,6 Gal receptors, while avian-

adapted influenza A (H5N1) viruses appear to preferentially bind

to SAa2,3 Gal cell receptors [16]. Due to concerns over the effect

of cell tropism on infection dynamics, most influenza infection

assays are now conducted in Madin-Darby canine kidney

(MDCK) cells which have been transfected to express more

SAa2,6 Gal receptors (called SIATI cells), rather than in regular

MDCKs which predominantly express SAa2,3 Gal receptors [24].

A similar trend has developed for in vivo influenza infection assays

which are now preferably performed in ferrets rather than mice

because the former has lung cells which predominantly express

(human lung-like) SAa2,6 Gal receptors, while the latter mostly
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has lung cells expressing SAa2,3 Gal receptors [25–27]. The

adoption of ferret models for in vivo assays has been slower than

the adoption of SIAT1 for in vitro assays simply because of the

large cost associated with ferret models. A better understanding of

the infection parameter differences between the mouse and ferret

models could ease the translation of results obtained in mice into

predictions for the course and outcome of infection in ferrets and

humans.

Recently, efforts have been made to model in-host influenza

infection dynamics with a target cell limited model, using

experimental data to validate the results [28–30], but the models

have been limited to a single target cell population. Population

heterogeneity has been accounted for in epidemiological models

[31–34], where individuals become infected through primary

contact with an infected individual, and heterogeneity is

introduced by varying the contact rates between subpopulations.

Due to the absence of an intermediate infection agent (i.e., virions)

in these models, their results are of limited applicability to in-host

infections, where the infection progresses from infected cells to

healthy cells via the production and dispersal of infectious virions.

Target cell heterogeneity has also been considered for within-host

models of HIV [35,36], hepatitis B [37,38] and hepatitis C [39]

and has provided an explanation for multiple phases of infection

[35,39] or different courses of disease progression [36–38].

However, these models are fairly complex, containing multiple

compartments [36,39] or assuming that target cell populations

differ in most or all parameters [35,37,38], making analysis and

interpretation difficult.

In this paper, we propose a mathematical model consisting of

two distinct cell populations which differ only in their susceptibility

to infection by a given viral strain and their rate of virus

production. This choice is motivated by the assumption that

differences in the cells’ surface receptors will most directly affect

the rate at which virus can bind cells to successfully infect them, as

well as the rate at which newly produced virions will be able to

break free from these cells after binding to their receptors upon

budding. This simple model allows us to study the possible effects

of cell tropism on the in-host progression and severity of influenza

infections. By constraining one cell population to the specific

parameter values defined in [28] for in-host human infection with

influenza A (H1N1), we explore the dynamics of the model in the

parameter space of the secondary cell population.

Unfortunately, to date, no publication has attempted to isolate a

specific cell population’s infection characteristics (e.g., viral

production rate, cell infection rates) so it is not possible to use

external data to set the value of the parameters relating to cell

tropism in our model. Therefore, the work presented herein is an

investigation of the effect cell tropism could have on infection

dynamics and treatment strategies, rather than the effect it will

have. We also do not attempt to differentiate between all possible

causes for change in disease severity among different influenza

strains. To our knowledge, there is not enough data available

anywhere, and no data of the right nature (e.g., time course of IFN

levels, Abs levels) to permit such a study.

The aim of this paper is two-fold: (1) to theoretically explore the

parameter space of an infection model consisting in two target cell

populations to understand what role, if any, cell tropism could play

in modulating an influenza infection’s dynamics; and (2) to

consider what implications such an effect would have on treatment

with antivirals. We find that the parameter space of the two target

cell model contains a region of increased disease severity

characterized by a larger viral titer peak and a long-lasting

infection with high, sustained viral titer. We show that the long-

lasting, sustained viral titer seen with more severe infections offers

a longer window for effective treatment with neuraminidase

inhibitors (NAIs) and adamantanes (or M2 blockers).

Methods

Mathematical model
The proposed two target cell model, which consists of two cell

populations both susceptible to influenza virus infection, is an

extension of the differential equation model consisting of a single

susceptible cell population and delayed viral production proposed

in [28], and fitted therein to match the dynamics of a primary

influenza A/HK/123/77 (H1N1) infection in human volunteers.

The two target cell model consists of a population of default

(subscript d ) and secondary (subscript s) cells, namely

Target cells :
dTd

dt
~{bTd V

dTs

dt
~{rbbTsV

Eclipse cells :
dEd

dt
~bTd V{kEd

dEs

dt
~rbbTsV{kEs

Infected cells :
dId

dt
~kEd{dId

dIs

dt
~kEs{dIs

Virus :
dV

dt
~pIdzrppIs{cV :

ð1Þ

Infection proceeds as target cells T are infected by virus V at a rate b (or

rbb). The newly infected cells E first enter a latent infection stage, called

the eclipse phase, and turn into productively infected cells I at a rate k.

Productively infected cells produce virus at a rate p (or rpp) which is

cleared at a rate c by the immune system or through loss of

infectivity. The remaining virions go on to infect new target cells,

and the infection progresses.

Differences between the two cell populations are controlled by

three key parameters: rb, rp, and rT . These parameters represent

the fold difference in susceptibility to infection, rb, and viral

production rate, rp, of the secondary cell type compared to that of

the default cell type, and the fraction of cells of the secondary type

in the initial target cell population, rT . For example, setting

(rT ,rb,rp)~(0:2,10{3,102) corresponds to a cell population where

20% of cells are of the secondary type and are 1,000-fold less

susceptible to infection compared to cells of the default type, but

once infected these secondary cells will produce 100-fold more

virus than cells of the default type.

While rb and rp are scaling factors for parameters b and p in the

secondary cells, respectively, rT does not appear explicitly in the

model as it is set through the initial conditions for target cells such

that

Initial target cells : Td,0~(1{rT )T0 Ts,0~rT T0 ,

where 0ƒrTƒ1.

The total number of initial target cells is set to T0~4|108 cells,

which is in line with anatomical estimates for the human upper

respiratory tract [28], and infection is initiated by a virus inoculum

V0. Default parameter values and initial conditions for (1) are

listed in Table 1. These parameter values were obtained by

repeating the individual fits to viral titers from six different

volunteers infected with influenza A/Hong Kong/123/77 (H1N1)

presented in [28]. We obtained different best-fit parameters which

resulted in better SSRs than those presented in [28] which is why

the geometric averaged best-fit parameters listed in Table 1 differ

from those reported in [28] (parameters of the individual fits are

available upon request). Numerical solutions of model (1) were

obtained using the lsode function in Octave 3.0.1 [40], which uses

ð1Þ
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an implementation of a backward differentiation formula (Gear’s

method) if the equations are stiff; otherwise, Adam’s (predictor-

corrector) method is used [41].

Fits of the model to experimental data
To assess the validity and relevance of the two target cell model,

we compared its performance to that of the single target cell model

in capturing the dynamics of influenza infection of mice and

humans. For fitting purposes, we define the default and secondary

cell types as cells expressing either the SAa2,6 Gal or SAa2,3 Gal

receptors as described below.

In an effort to reduce the number of free parameters, we fix the

number of total target cells based on measurements of the surface

area of the human upper respiratory tract, 4|108 [28], or of the

mouse lung, 7|109 [42]. Note that the value used for the initial

number of target cells will affect the values obtained for the best-fit

viral production rates, but will not affect the ratio of virus

produced by one cell population to the other. For the mouse

model, we fix the proportion of cells predominantly expressing

SAa2,6 Gal receptors on their surface, r2,6, at 10%. This is an

approximate value based solely on qualitative reports indicating

that mice lung cells predominantly express SAa2,3 Gal receptors

[25–27]. For the human model, we fix the proportion of cells

predominantly expressing SAa2,6 Gal receptors on their surface,

r2,6, at 70%. This is based on studies of human lung physiology

indicating that the epithelium of the upper airway (up to the fifth

generation) comprises 50–85% nonciliated cells [43], and reports

indicating that nonciliated cells predominantly express SAa2,6 Gal

receptors on their surface [20,22,23].

Setting an exact value for the fraction of cells predominantly

expressing SAa2,6 Gal receptors on their surface, r2,6, is not

essential since a change in r2,6 can be corrected by appropriate re-

scaling of p2,6 and p2,3. That is, if r2,6?r
0

2,6 then we have

Target cells : T
0
2,6~

r
0
2,6

r2,6
T2,6 T

0
2,3~

(1{r
0
2,6)

(1{r2,6)
T2,3

Viral production rate : p
0
2,6~

r2,6

r
0
2,6

p2,6 p
0
2,3~

(1{r2,6)

(1{r
0
2,6)

p2,3:

ð2Þ

All other parameters were determined by fitting log10 of the viral titer

predicted by the model to that of the experimental data. The fits

were performed using either the Octave 3.0.1 [40] leasqr function,

which is an implementation of the Levenberg-Marquardt

nonlinear regression method [44], or the nelder_mead_min

function, which uses the Nelder-Mead method for finding the

minimum of a function. The fits presented here are the best fits

found using either one of these methods. For comparison, we also

fit the data using the single target cell eclipse model [28].

To quantify the quality of each fit, we computed the sum of

squared residuals (SSR) between the experimental viral titer and

the models’ results. In order to compare models with different

numbers of parameters, we also computed small-sample size

(second order) Akaike’s ‘‘an information criterion’’ (AICC). The

model with the lowest AICC is considered to be best supported by

the experimental data available.

Results

Mapping the parameter space
Since differences in cell receptor specificity between influenza A

strains of human and avian origin, and changes in viral production

for different cell types have not been quantified [16,45,46], we

consider a wide range of parameter values for the secondary cell

population. The susceptibility to infection of target cells of the

secondary type, rb, and their rate of virus production once

infected, rp, are independently varied from 1,000-fold less (10{3)

to 1,000-fold more (103) than that of the default cell type.

Figure 1 illustrates how the time post-infection at which viral

titer peaks depends on the fold difference in susceptibility to

infection (rb) and viral production rate (rp) of the secondary cell

type compared to that of the default cell type. Here we present

only the case where default and secondary target cells are present

in equal numbers (rT~0:5). Varying the fraction of target cells of

the secondary type results in similar behaviour, except in the case

of a nearly homogeneous cell population composed mainly of cells

of the secondary type (rTw0:918).

When rb~rp~100~1, the two target cell model reduces to the

single target cell model and the viral titer curve reaches a peak

value around 3 days post-infection (dpi), as with the single target

cell model [28]. Not surprisingly, increasing the secondary cells’

susceptibility to infection (rb) or their rate of virus production (rp)

relative to that of the default cell type causes the infection to peak

earlier. This is because with a large rb, cells of the secondary type

are infected more easily and therefore consumed more rapidly by

the infection leading to a shorter-lasting infection. Analogously,

with a large rp, secondary cells release larger amounts of virus once

infected, which in turn leads to a more rapid consumption of all

cell types by the infection. This translates to a shorter-lasting

infection as one moves upwards or rightwards on the graph in

Table 1. Default initial conditions and parameter values of model (1).

Symbol Parameter Value

T0 number of initially available target cells 4|108 cells

E0 , I0 number of initially infected cells 0

V0 initial viral inoculum 7.6|10{2 [V]a

1=k length of eclipse phase 4.2 h

1=d lifespan of productively infected cells 2.9 h

1=c virus clearance rate 2.9 h

b infection rate of cells by virus 1.0|10{5 [V]21?d21

p virus production rate 0.20 [V]?d21

R0 basic reproductive number 12

aViral titer measured in units of ½V �~TCID50=mL of nasal wash.
doi:10.1371/journal.pone.0013811.t001

ð2Þ
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Figure 1, with the shortest-lasting infections found in the top right

corner of the graph.

In general, over the parameter space explored, the viral titer

peaks between 1 dpi and 4 dpi, with the exception of an

unexpected pocket in the parameter space at the bottom-right of

our graph in the region where cells of the secondary type produce

more virus than cells of the default type (rpw1), but are harder to

infect (rbv1). In the vicinity of this pocket, the time of viral peak

varies rapidly from 2 dpi to more than 8 dpi, becoming

increasingly sensitive to the secondary cells’ susceptibility to

infection and their viral production rate. Within this parameter

region, secondary cells are not easily infected, due to their low

susceptibility to infection (small rb), and as such these cells are

consumed very slowly by the infection. On the other hand, their

high rate of virus production (large rp) means that once infected,

even in very small numbers, these cells produce large quantities of

virus. As a result, the viral titer is sustained at high levels long after

the onset of infection, and peaks substantially later than in other

regions of the parameter space.

This is well illustrated in the three examples presented in

Figure 1(a)–(c) where the kinetics of the infection are shown for

three different viral production rates of the secondary cell

population for the case where these cells are 500-fold harder to

infect than cells of the default type. When secondary cells produce

only 10-fold more virus than cells of the default type, the infection

is mostly limited to the default cell population as the amount of

virus produced is not sufficient for the infection to spread to the

secondary cell population. Increasing the production rate to 100-

fold more than cells of the default type results in a sufficient

amount of virus being produced to sustain a slow growing infection

within the secondary cell population, leading to long-lasting, high-

levels of viral titer. Finally, increasing the viral production rate to

1,000-fold more than the default cell type allows the infection to

successfully consume both cell populations rapidly.

It is important to note that while the secondary cells must be

harder to infect than the default cells, the secondary cells do not

require a higher viral production rate to achieve this sustained

viral titer. The same kinetics can be achieved with secondary cells

Figure 1. Time of viral titer peak for different properties of the secondary cell type. The effect of varying the secondary cells’ susceptibility
to infection (rb) and their rate of virus production (rp) relative to that of the default cell type is illustrated (top) for a population of cells with an equal
abundance of default and secondary cells (rT~0:50). Time of viral titer peak is given in days post-infection (see legend to the right of graph). The
three stars indicate the specific parameter values used in the three graphs (bottom) from left to right (a to c). The graphs depict the viral titer (black),
and the relative abundance of target cells of the default (blue, dashed) and secondary (blue, solid) type over the course of an in-host influenza
infection when the secondary target cells’ susceptibility to infection is 500-fold less, and their virus production rate is (a) 10-, (b) 100-, and (c) 1,000-
fold higher than that for cells of the default type. All other parameter values are given in Table 1.
doi:10.1371/journal.pone.0013811.g001
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having a similar or even a lower viral production rate than default

cells if the ratio of default to secondary cells is adjusted according

to equations (2). The specific conditions for parameters that lead to

sustained viral titer are discussed further below.

Conditions for infection
Figure 1 suggests that the two target cell model leads to high,

sustained, viral titers over a certain region of the parameter space.

In order to better understand the relationship that needs to exist

between the secondary cell population’s susceptibility to infection

and viral production rate to give rise to a severe, long-lasting

infection, it is useful to consider a linear stability analysis of the

two target cell model. For all parameter values, the equations have

a line of fixed points, corresponding to a stable, uninfected

cell population persisting in the absence of infection, namely

(T�,E�,I�,V�)~(Teq,0,0,0), where Teq~Teq,dzTeq,s. Within

each the default and secondary cell types, this equilibrium value

is less than or equal to the initial cell population, i.e.,

Teq,dƒ(1{rT )T0 and Teq,sƒrT T0. Therefore, the stability of a

fixed point is guaranteed by the condition RszRdv1, where

Rd~
bp(1{rT )T0

dc
Rs~

(rbb)(rpp)(rT T0)

dc
:

Thus, when RszRdv1, an initial quantity of virus does not lead

to a substantial infection of the cell population, and growth of the

virus is suppressed. For a single target cell population, i.e., rT~0
or rT~1, the stability conditions are Rdv1 or Rsv1,

respectively.

The three quantities, Rs, Rd and their sum, are analogous to the

basic reproductive number R0, a frequently used quantity in

epidemiology and in-host infection dynamics, which is defined as

the average number of second-generation infections produced by a

single infected cell within a homogeneous population of completely

susceptible cells [47,48]. Although this description of Rd and

Rs may be valid in the case of a homogeneous cell population,

the interpretation for a heterogeneous population is less

straightforward.

For the parameter values presented in Table 1, the quantity Rd

is always greater than one when rTv0:918, resulting in growth of

the viral titer. This results from the choice of default parameter

values, which were taken from an infection where R0w1. When

rTw0:918, regions arise within the parameter space where

RszRdv1; that is, the initial viral titer fails to lead to an

infection. We also see a region where the individual quantities Rd

and Rs are both less than one, but the sum of these quantities is

greater than one. This implies that the infection grows slowly, and

although not explicitly accounted for in our model, the host

immune response would likely intervene before the viral titer

reached symptomatic levels. These cases are illustrated in Figure 2.

In order to narrow our focus to biologically relevant regions of

the parameter space, we will restrict our analysis to the case where

rTv0:918. The quantity Rs~1 will be seen to form a boundary in

the parameter space which establishes a region leading to high

viral loads which are sustained for long periods of time.

Implications for disease severity
Beyond simply mapping the infection kinetics through the

parameter space, it is important to understand the implication of a

given viral titer curve on the severity of infection for a patient. To

this end, we introduce three approximate measures of viral

infection severity: time of viral load peak, approximate duration of

symptomatic infection, and total amount of virus. Each measure

has its advantages and limitations, but together they provide a

Figure 2. Time of viral load peak when the cell population is mostly composed of secondary cells. Different graphs represent different
proportion of secondary target cells, rT , for values ranging from 0:91–0:94. Each graph explores the effect of varying the secondary cells’
susceptibility to infection (rb) and their rate of virus production (rp) relative to that of the default cell type. All other parameters are held fixed at the
values presented in Table 1. The stability condition Rs~1 (black line) is indicated. Grey regions indicate regions where the infection fails to spread to
either cell population (RszRdƒ1). Time of viral titer peak is given in days post-infection (see legend on right side of graphs).
doi:10.1371/journal.pone.0013811.g002
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better understanding of the infection dynamics in terms of how it

may be experienced by a patient. Other possible measures of

disease severity which may be more difficult to estimate clinically

are presented in Appendix S1.

In order to focus on the specific parameter region which results

in severe, long-lasting infections characterized by high-level,

sustained viral loads, we restrict our analysis to the region of the

parameter space bounded by rb, the relative susceptibility of

secondary cells to infection, from 10{6 to 100, and rp, the relative

viral production rate by secondary cells, from 100 to 106.

Time of viral titer peak. A useful measure of disease

severity is the time at which the viral load reaches its maximum

value. This is an important measure because, as seen in [28], when

treatment with a neuraminidase inhibitor such as oseltamivir is

applied after viral titer peak, it has little effect on disease severity

and duration. Thus, the time of viral titer peak provides an

estimate of the time window available for effective treatment. In

general, an early viral titer peak means that both external

treatment or host immunity has little opportunity to act to reduce

disease morbidity. The dependence of the time of viral titer peak

on the secondary cells’ infection characteristics are shown in

Figure 3(a).

As the secondary cells’ susceptibility to infection (rb) and their

viral productivity (rp) decrease, the viral titer peaks progressively

later, going from 1 dpi to as late as 16 dpi. In the region where

Rs*1, the late peak of viral titer is due to the slow consumption of

the secondary cells. This late viral titer peak means that even

relatively late treatment with antivirals could have a noticeable,

beneficial effect in reducing disease morbidity and perhaps

avoiding mortality in such infections. We will return to this below

when we simulate treatment of these infections with neuramini-

dase inhibitors and adamantanes.

Symptomatic infection duration. Though our model

predicts that viral titer can peak significantly later for certain

parameter regimes, this does not necessarily imply a sustained,

severe infection. For example, it is important to distinguish

between a small, slow growing infection, and one which grows

rapidly and is maintained over a long period of time, with a late

viral titer peak. While the former would likely be cleared effectively

by an immune response before it has the chance to fully develop,

the latter might already be too severe by the time the immune

response gets underway, resulting in a severe infection rendered

more morbid by the extensive immune response triggered by the

high and long-lasting viral titer. Thus, we establish another

measure of infection severity, which we define as the duration of

the symptomatic infection. The dynamical markers for disease

severity are not well known, but based on patient symptom scores,

the onset of symptoms in a human-derived influenza infection

appears to take place sometime between 1–2 dpi, and to dissipate

around 5–6 dpi [49,50]. On the viral titer curves for human-

derived strain infection, these two time points correspond

approximately to places where the viral titer curve crosses 104

TCID50/mL (see Figure 1(a)). Thus, we set this viral titer as the

threshold level corresponding approximately to that required for a

symptomatic infection. Following this convention, we define the

duration of the symptomatic infection to be the length of time for

which the viral titer remains above the symptomatic threshold.

This is shown in Figure 3(b).

We find that the region corresponding to a late peak of the viral

load in Figure 3(a) also corresponds to a viral load sustained above

the symptomatic threshold long after the onset of infection. The

viral titer surpasses the symptomatic threshold at approximately 2

dpi, as we can see in Figure 1(b). We can therefore exclude the

possibility that the late peak of the viral titer results from the slow

and steady growth of the viral titer. Rather, the late peak is the

result of sustained viral titer at high levels. This behaviour can be

explained by considering the infection of the two populations

separately. After the default cell population is completely

consumed by the infection, approximately 3 dpi, an essentially

homogeneous population of secondary cells remains. The quantity

Rs is then analogous to the basic reproductive number for the

secondary cell population. Thus, when Rs is slightly greater than

one, growth of viral titer occurs slowly, and the viral titer is

sustained at the high levels produced during infection of the

default cell population, as illustrated in Figure 1(b). This also has

implications for treatment strategies. While a long lasting

treatment regimen usually makes little sense for treating seasonal

influenza infections, it would be beneficial if not necessary for

controlling a longer-lasting infection characterized by sustained

viral production.

Total virus produced. In assessing infection severity, it is

also helpful to consider the total amount of virus produced over

the course of the infection. Severe influenza viral infections are

characterized by high viral loads [51], which does not necessarily

follow from a delayed peak of the viral titer or a long symptomatic

infection. The total amount of virus produced during the course of

infection was determined using

Vtotal~

ð?
0

(pIdzrppIs) dt:

The results within the parameter space are shown in Figure 3(c).

When Rsv1, the total amount of virus produced is independent of

rb and rp as the viral titer does not grow to sufficient levels to

establish an infection within the secondary cell population. When

Rsw1, there are sufficiently large rates of virus production and

target cell infectivity for the infection to spread within the

secondary cell population. Figure 3(c) illustrates that when Rsw1,

the amount of virus produced is predominantly dependent on the

scaling factor for the rate of virus production, rp. When rp is large,

a significant amount of viral titer is produced and a large number

of cells from both populations are consumed, regardless of the

secondary cells’ susceptibility to infection. However, as rp

decreases, the quantity Rs approaches one, and the presence of

long-lasting infection becomes increasingly sensitive to variations

of either rp or rb.

This feature is particularly interesting when framed within the

context of anti-influenza drug treatment. For infection character-

ized by Rsw1, depending on the value of rp and rb, i.e. where you

are in the parameter space, it is sometimes preferable to treat with

an antiviral targeting the secondary cells’ susceptibility to infection,

rb, such as an adamantane so as to move downwards in the

parameter space to most easily reach Rsv1. In other cases, it is

more beneficial for an equivalent drug efficacy to treat with an

antiviral targeting the secondary cells’ viral production rate, rp,

such as a neuraminidase inhibitor so as to move leftwards in the

parameter space to most easily reach Rsv1.

Note that the plot for total virus produced as a function of rb

and rp is identical in feature to that of another important measure:

the total amount of free virus which is defined as the area under

the curve (AUC) of free virus (V ) over time (t). The total amount of

free virus is important as it is related to the epidemiological (host-

to-host) transmission fitness of a particular strain [30].

Fits of the model to experimental data
We have seen that the two target cell model is capable of

producing high, sustained, viral titers. To determine whether these
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Figure 3. Measures of disease severity for varying properties of the secondary cell population. The effect of varying the secondary cell’s
susceptibility to infection (rb) and their rate of virus production (rp) compared to that for cells of the default type on different measures of disease
severity: (a) time of viral titer peak, (b) duration of symptomatic infection and (c) total amount of virus produced. We have adjusted the axes to
examine the region of sustained viral titer. Note that the value of the disease severity measures in the top left corner of each graph (rb,rp = 1,1)
corresponds to the single target cell model. All other parameters are set as specified in Table 1, with rT~0:5. The stability condition Rs~1 is also
indicated (black line).
doi:10.1371/journal.pone.0013811.g003
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sustained viral titers are representative of the dynamics observed

for severe influenza infections in vivo, and to compare our two

target cell model’s performance to that of the single target cell

model, we fitted both models to measurements of influenza

infections in mice [52] and humans [7].

From here on, we will refer to the two target cell populations as

those predominantly expressing SAa2,6 Gal or SAa2,3 Gal surface

receptors rather than as ‘‘default’’ and ‘‘secondary’’ cells.

Accordingly, we replace parameters b, p, rbb, and rpp, with

parameters b2,6 and p2,6, the infection and production rates

associated with cells predominantly expressing SAa2,6 Gal

receptors on their surface, and b2,3 and p2,3, the infection and

production rates associated with cells predominantly expressing

SAa2,3 Gal receptors on their surface, which are easier to

interpret in terms of what they represent biologically.

Influenza infection in mice. In the first data set, BALB/c

mice were infected intranasally with 102 pfu of A/Texas/36/91

(H1N1), A/1918 (H1N1), A/Thailand/SP/83/2004 (H5N1), or

A/Thailand/16/2004 (H5N1) influenza virus. Lungs from 3 mice

were harvested and homogenized at 1, 3, 4, 5, and 7 dpi. Virus

titers were determined by plaque assay in MDCK cells. Although

two of the strains are avian-derived and the other two are human-

derived, all four strains produced infections with high, sustained,

viral titers. This is surprising given that mice lung cells

predominantly express SAa2,3 Gal receptors on their surface

[25–27] and as such one would expect that strains which prefer

SAa2,3 Gal receptors (e.g., H5N1) would replicate more effectively

in mice than those which prefer SAa2,6 Gal receptors (e.g.,

H1N1).

Figure 4 shows our model fits to influenza infections in mice,

with the solid line indicating the best fit for the single target cell

model and the dashed line indicating the best fit for the two target

cell model. Parameters for the best fits are given in Table 2.

Visually, it appears that both models can adequately capture the

dynamics of both human- and avian-strain influenza infections in

mice. While the SSR are always smaller for the two target cell

models because it has two additional free parameters, the AICC

are comparable between the two models suggesting that the two

target cell model is equally well supported by the experimental

data despite its additional parameters.

It is, however, also important to consider whether the parameter

values of the best fits are biologically realistic. The basic

reproductive numbers, R0, obtained with the single target cell

model are rather large (w810) compared to those obtained for

with the two target cell model (R2,6zR2,3*3–23) which are more

in line with values obtained typically (R0*3–75) for infections

with human strains [28,29]. In addition, while the values obtained

for the eclipse delay (1=k) and infected cell lifespan (1=d) are

unrealistically large for the fits of the single target cell model, these

values are typically reasonable for the two target cell model fits.

Figure 4. Model parameter fits to experimental influenza infection in mice. Results of parameter fits of the single target cell (solid line) and
two target cell (dashed line) eclipse model to human-strain (A/Texas/36/1991 and A/1918) and avian-strain (A/Thai/SP/83/2004 and A/Thai/16/2004)
influenza infections in mice. The percentage of cells expressing the SAa2,6 Gal receptor, r2,6, is fixed to 10%, and the best fit parameters are presented
in Table 2. For the single target cell model, the SSRs are (from left to right and top to bottom) 0.45, 2.8|10{4 , 7.8|10{3 , and 3.3|10{4 while the
AICC are 235, 272, 256, and 271. For the two target cell model, the SSRs are 0.29, 2.1|10{19, 2.3|10{3 , and 7.4|10{5 while the AICC are 232,
2240, 256, and 274. Data is taken from [52].
doi:10.1371/journal.pone.0013811.g004
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We have also tried fixing the unrealistic parameters (k,d,c) to the

base values from Table 1 and found that under this constraint, the

single target cell model does poorly (SSR *7|10{422)

compared to the two target cell model (SSR *4|10{1820.3,

results not shown).

Unfortunately, interpretation of the cell tropism of these four

strains from their parameter values for the two target cell model

fits is awkward. All four strains display a preference for cells

expressing SAa2,3 Gal over those expressing SAa2,6 Gal

(R2,3wR2,6), with human strains exhibiting a stronger preference

for cells expressing SAa2,3 Gal than avian strains. This is not

consistent with expectations that the two human-adapted H1N1

strains should prefer cells expressing SAa2,6 Gal while the avian-

derived H5N1 strains should prefer cells expressing SAa2,3 Gal.

This could be a consequence of the overparametrization (8

parameters for 5 data points). The set of best fit parameters

presented here is part of a larger family of best fit parameters sets

which capture this data equally well (see for example the rescaling

of r2,6, p2,6 discussed in the Methods section), and which likely

contains more reasonable cell tropism parameters which would fit

the data equally well. If some of the parameters of the two target

cell model could be resolved through experiments, it would restrict

the set of possible parameter values which could help validate or

invalidate the two target cell model.

Therefore, while the single- and two-target cell models each

provide good fits which are well supported by the data, the two

target cell model does so under more realistic parameter values,

suggesting that it offers a better description of the dynamics.

However, this likely says more about the limitations of the single

target cell model than about the appropriateness of the two target

cell model. Indeed, one can imagine that other extensions of the

single target cell model (e.g., by including an immune response)

would do equally well if not better than the two target cell model.

Influenza infection in humans. The second data set

consists of pharyngeal and nasal swabs collected from 18

patients infected with avian (H5N1) influenza, and 6 patients

infected with human influenza (either H1N1 or H3N2) upon

admission to hospital. This data set shows a clear dynamical

difference between human- and avian-adapted influenza strains,

with avian-strain infections peaking later and lasting longer than

infections with human-adapted influenza strains.

Figure 5 shows several fits of the single- and two-target cell

models to data from natural human- and avian-strain influenza

infections in humans with the resulting parameters given in

Table 3. The solid line uses the single target cell model and the

remaining lines use the two target cell model. While the SSR is

comparable for the fits of the single- and two-target cell models,

the lower AICC for the fit of the single target cell model to the

avian strain infections suggests that it may be better supported

than the two target cell model by the limited data available.

Fits of the single target cell model yielded mostly reasonable

parameter values with the increased severity of avian-derived

strains compared to human strains reflected in the larger R0 value

(5.3 vs 3.2). The parameter fits of the single target cell model

suggest that compared to human-derived strains, the avian strains

infect cells less effectively (smaller b), but once infected, cells

produce more virus (larger p). In addition, the longer infected cell

lifespan (1=d) and smaller viral clearance rate (c) for avian strains

could be the result of a less effective immune response to the novel,

avian-derived strains. However, the data is too limited to lend any

weight to these interpretations.

For fits of the two target cell model, the best fit parameters,

especially those characterizing cell tropism, depend on the value

used as the guess for the initial viral inoculum, V0, when

initializing the fitting programme. When initialized with a high

value for V0 (dotted line in Figure 5), the solver converges to fits

which reduce the two target cell model to a single target cell model

(R2,6v1 or R2,3v1) for both human- and avian-strain infections.

When initialized with a low value for V0 (dashed line in Figure 5),

the solver converges to fits in which both cell populations

participate in the infection for both human- and avian-strain

infections.

Table 2. Model parameter fits for experimental influenza infection in mice.

V0 ([V]) 1=k (h) 1=d (h) 1=c (h)

b2,6=b2,3

(½V�{1:d{1) p2,6=p2,3 (½V�:d{1) R2,6=R2,3 SSR AICC

Single target cell model

LH 5.9|10{3 4.4|105 7.3 1.2 1.1|10{3/2 7.7/2 8.8|105/2 0.45 235

LA 8.2 240 130 0.41 6.9|10{5/2 0.019/2 810/2 2.8|10{4 272

HH 65 33 32 34 9.8|10{5/2 0.0012/2 1600/2 7.8|10{3 256

HA 1.5|105 16 ? 7.1 5.9|10{7/2 0.0027/2 ?/2 3.3|10{4 271

Two target cell model (r2,6~0:1)

LH 4.1|10{3 24 0.74 0.80 2.4|10{8/

8.2|10{4

77/0.0030 1.3/16 0.29 232

LA 1.4 9.2 1.1 1.3 2.7|10{7/

3.3|10{5

2.9/0.0039 1.3/2.0 2.1|10{19 2240

HH 19 4.9 5.0 5.0 5.2|10{8/

2.4|10{5

0.90/0.0033 1.4/22 2.3|10{3 256

HA 4.8|103 2.9 3.5 3.8 4.1|10{8/

9.4|10{5

2.4/2.2|10{4 1.6/3.0 7.4|10{5 274

LH: Low-pathogenic human A/Texas/36/91 (H1N1).
HH: High-pathogenic human A/1918 (H1N1).
LA: Low-pathogenic avian A/Thai/SP/83/2004 (H5N1).
HA: High-pathogenic avian A/Thai/16/2004 (H5N1).
doi:10.1371/journal.pone.0013811.t002
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Unlike the fits to the mice data, fits to the human data give

reasonable parameter values for both models. The key difference

between the fits of the single and two target cell models is that the

former appears to require larger initial viral inoculum to fit the

infections with avian strains. This is because the sustained viral

titer suggested by the data can only be captured by the single

target cell model when infection proceeds slowly through the only

cell population available, allowing the infection to be sustained. In

turn, the slow infection growth requires that viral titer be high

from the start to match the high levels seen in the data. It is

possible that the single target cell model is correct and that

influenza infections with avian-derived strains are actually initiated

with larger initial inoculum compared to seasonal infections with

human-adapted strains. For example, this could be a consequence

of the former being contracted directly through contact with

infected animals which could result in larger initial inoculum

compared to seasonal infections which are most likely contracted

though airborne particulates.

However, it is possible that the difference in inoculum between

infections with human- vs avian-derived strains is merely a

consequence of the dynamical limitations of the single target cell

model, and that in fact both natural infections are initiated with

similar inoculum. To explore this possibility, we also present the

result of fits of the two target cell model where the initial inoculum

is fixed to an intermediate value (V0~1 cDNA=mL, dash-dot line

in Figure 5) for both infections with human and avian strains. The

resulting best fit is essentially a single target cell model for human-

strain influenza and a two target cell model for the avian-strain

infections.

Regardless of the initial inoculum, fits with the two target cell

model suggest that human strains infect cells expressing the

SAa2,6 Gal receptor on their surface more easily than those

expressing the SAa2,3 Gal receptor (b2,6wb2,3). In contrast, avian

strains infect cells expressing the SAa2,3 Gal receptor more easily

(b2,6vb2,3). This is in line with what we know of these strains’

preferences, with human strains preferring cells expressing SAa2,6

Gal receptors and avian strains preferring those expressing SAa2,3

Gal receptors. More quantitative information such as measure-

ments of the infection rates of each strain in each cell population

would be required to properly calibrate the model and assess the

Table 3. Model parameter fits for influenza infection in humans.

V0([V]) 1=k(h) 1=d(h) 1=c(h) b2,6=b2,3 (½V�{1:d{1) p2,6=p2,3 (½V �:d) R2,6=R2,3 SSR AICC

Single target cell model

H 180 7.3 1.2 1.4 1.2|10{5/2 0.25/2 3.2/2 1.6 ?

A 1300 16 4.5 3.4 2.4|10{7/2 2.0/2 5.3/2 22 29

Two target cell model (r2,6~0:7)

HH 8.4 2.3 2.3 0.94 1.6|10{5/1.8|10{9 0.14/600 2.4/0.5 1.6 285

AH 590 11 1.6 2.2 1.2|10{11/1.4|10{7 3100/31 0.061/3.1 21 44

HL 9.1|10{5 6.2 1.1 9.3 5.2|10{5/1.6|10{4 0.036/0.061 13/69 1.6 285

AL 5.0|10{8 11 1.4 1.1 1.2|10{7/4.5|10{3 34/0.015 3.0/20 21 44

HF (1.0) 3.3 4.4 3.6 3.8|10{5/2.5|10{6 0.22/43 7.3/0.48 1.6 2141

AF (1.0) 1.9 0.78 9.0 9.6|10{8/2.0|10{3 7.6/0.0018 2.5/5.0 22 35

H,A: Fits to the human and avian data sets, respectively.
H,L,F: Indicates whether the initial guess for the viral titer was high, low, or fixed, respectively.
doi:10.1371/journal.pone.0013811.t003

Figure 5. Model parameter fits of human and avian influenza infections in humans. Results of parameter fits of natural human infections with
either a human (left) or avian (right) influenza strain. The data was fit using either the single target cell (solid) or the two target cell model where the fits
were initialized with a guess for the virus inoculum which was either high (dotted), low (dashed), or fixed at 1 cDNA (dash-dot). The percentage of cells
expressing the SAa2,6 Gal receptor, r2,6, is fixed to 70%, and the best fit parameters are presented in Table 3. Data is taken from [7].
doi:10.1371/journal.pone.0013811.g005
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validity of its predictions regarding, for example, the variations in

the production rates of virus between cell types and viral strains.

In the end, as indicated by the AICC and SSR, the single target

cell model is statistically the better explanation for both human-

and avian-strain influenza as there is simply not enough data to

support the extra parameters of the two target cell model. Thus,

while the experimental data does not reject the possibility of cell

tropism playing a role in driving the dynamical difference between

infections with human versus avian influenza strains, it cannot

confirm it either.

Drug treatment in the two target cell model
Having extracted parameter values which can capture the

dynamics of infections with human or avian influenza strains in

humans enables us to explore how the predictions of the two

models differ with respect to the efficacy of treatment with

antivirals. Specifically, we compare the effect of treatment with

neuraminidase inhibitors (NAIs), which block the release of viral

particles, and adamantanes, which prevent uncoating of the virus,

on human- and avian-strain influenza infections modelled with

either a single target cell model (solid line of Figure 5) or a two

target cell model (dashed line of Figure 5). The effect of NAIs is

modelled as a reduction in the virus production rates, p2,6 and p2,3,

by multiplying them by (1{e), where 0ƒev1 is the efficacy of

the drug. Adamantanes are modelled in a similar fashion except

that the effect of the drug is to reduce b2,6 and b2,3 when they

appear in the equation for E2,6 or E2,3, a formulation suggested by

Beauchemin et al. [29]. We set e~0:98 [28,30] and examine the

effects of prophylactic treatment, as well as treatment initiated at 2,

3, and 6 dpi.

Figure 6 shows the effect of NAI treatment on viral titers over

the course of human infections with either a human (left column)

or an avian (right column) influenza strain modelled using either

the single target cell model (top row) or the two target cell model

(bottom row). For infections with human influenza strains, the

predictions made by the single target cell model suggest that

antivirals will be more effective than predicted by the two target

cell model. This is because for the particular parameters used here

for the single and two target cell models for infections with human-

derived strains, infection in the two target cell model grows and

peaks more rapidly, making delayed treatment interventions less

effective. For infections with avian influenza strains, the predic-

tions made by the single and two target cell models are similar,

although the two target cell model predicts that treatment will be

slightly more effective than predicted by the single target cell

model. That is because in this case, it is the infection in the single

target cell model which grows and peaks more rapidly, making

delayed treatment less effective. Figure 7 shows the effect of

adamantane treatment on the same human and avian infections.

The results are similar to what is seen for NAIs although

adamantanes do not reduce the duration of the infection as much

as NAIs. The administration of NAIs initially causes a rapid drop

Figure 6. NAI treatment of human infections with either human or avian influenza strains. Viral titer over the course of infections with
either a human or avian influenza strain modelled with either a two target cell model (low V0 , dashed line of Figure 5) or a single target cell model
(solid line of Figure 5) in the presence of drug treatment is shown. NAIs are applied either prophylactically (dashed line), at 2 dpi (dotted line), at 3 dpi
(dash-dot line), or at 6 dpi (dash-dot-dot line) with an efficacy of 0.98. Prophylactic treatment lines cannot be seen in the case of the two target cell
model since the initial viral inoculum is below the range of the graph and prophylactic treatment suppresses the infection.
doi:10.1371/journal.pone.0013811.g006
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in viral titer which leads to a quicker resolution of the infection, an

effect that is not seen when adamantanes are administered.

Ultimately, these four simulations show that what determines

the effectiveness of delayed treatment with antivirals is simply the

growth rate of the infection and the time of viral titer peak.

Infections which proceed slower and peak later provide an

increased window of opportunity in which to administer antiviral

treatment. In contrast, a fast infection which peaks early is not a

good candidate for antiviral treatment because when administered

on or after viral titer peak antivirals have little or no effect on

reducing the severity and duration of the infection. Both the single

and two target cell models predict that in contrast with seasonal

infections which respond best to antiviral treatment when it is

administered within 2 dpi, delayed antiviral treatment of infections

with more severe influenza strains can be effective in reducing the

viral load and shortening the duration of the infection even when

administered late.

Discussion

It has been suggested that differences in disease severity between

human- and avian-derived influenza virus infections may in part

be due to differences in target cell tropism between the two viral

subtypes [16,22]. In order to determine how cell tropism affects

the dynamics of an influenza virus infection, we developed a

mathematical model consisting of two different target cell

populations: a default and a secondary population. The secondary

cell population differs from the default population only in its

susceptibility to infection and rate of virus production. The two

target cell model is a simple extension of the single target cell

model with delayed viral production introduced by Baccam et al.

[28].

We found that within a certain area of the parameter space, the

viral load in the two target cell infection model quickly rises to high

levels and high viral production is maintained over extended

periods of time. The two target cell model displays this behaviour

when the secondary population is such that Rs is slightly greater

than 1. The infection proceeds when the default cell population

falls prey to the infection and is consumed rapidly (*2). This in

turn increases the viral load to levels sufficient to initiate infection

of the more refractory secondary cell population. Once infection is

established within the secondary population, it is consumed slowly

by the virus resulting in a long and severe infection.

In order to determine whether these sustained viral titers are

representative of the dynamics observed for severe influenza

infections in vivo, and to see whether those dynamics can be

captured with reasonable parameter values, we compared our two

target cell model’s performance to that of the single target cell

model by fitting both models to measurements of influenza

infections in mice [52] and humans [7]. Fits to data from infections

in mice with one of four different strains (two human strains and

two avian strains) indicated that the two target cell model was

Figure 7. Adamantane treatment of human infections with either human or avian influenza strains. Viral titer over the course of
infections with either a human or avian influenza strain modelled with either a two target cell model (low V0 , dashed line of Figure 5) or a single
target cell model (solid line of Figure 5) in the presence of drug treatment is shown. Adamantanes are applied either prophylactically (dashed line), at
2 dpi (dotted line), at 3 dpi (dash-dot line), or at 6 dpi (dash-dot-dot line) with an efficacy of 0.98. Prophylactic treatment lines cannot be seen in the
case of the two target cell model since the initial viral inoculum is below the range of the graph and prophylactic treatment suppresses the infection.
doi:10.1371/journal.pone.0013811.g007
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better able to capture the dynamics of the four infections

compared to the single target cell model. And while fits of the

single target cell model to the experimental data resulted in

reasonable fits, these fits were made possible through unrealistic

parameter values. When parameters were fixed to more

biologically reasonable values, the two target cell model remained

in good agreement with the data, but the single target cell model

performed poorly. This indicates that the single target cell model is

not adequate to capture the dynamics of these infections, and that

the two target cell model is more appropriate. However, other

extensions of the single target cell model with additional parameter

values could likely do as well as the two target cell model. Fits to

data of human infections with either human- or avian-derived

influenza strains indicated that both the single and two target cell

models could fit the data equally well with reasonable parameter

values, and the single target cell model was best supported (smaller

AICC) by the limited amount of data available. Overall, the fits

suggested that while the two target cell model is more appropriate

than the single target cell model to capture a wider range of

infection dynamics within reasonable parameter ranges — which

is not surprising given its two additional parameters —

experimental data was insufficient to reject or confirm the cell

tropism hypothesis offered by the two target cell model.

We also used the models parametrized through the fits of the

human infection data to explore how the single and two target cell

models differed in their predictions of the effectiveness of antiviral

treatment of influenza infections with human or avian strains. The

predictions from both the single and two target cell models were

similar and indicated that while treatment of seasonal influenza

infections (human-derived strains) with antivirals is of limited

effectiveness when treatment is administered more than 2 dpi,

treatment of more severe influenza infections (e.g. avian-derived

strains) can be effective even when administered late.

In order to give rise to high viral titers, sustained over several

days, the cell tropism hypothesis suggests that, for the parameter

values chosen in this paper, the secondary cell population is more

difficult to infect than the default one. It further suggests that once

infected, these secondary cells produce more virus than cells of the

default type. While it is readily acceptable that default and

secondary cells have differing infection rates on the basis that

differences in cell receptor expressions on different cell populations

undoubtedly affect cell-virus binding rates making some cells

harder to infect for certain virus strains, the latter requirement is

less obvious. It is helpful to recall that through the re-scaling of the

parameters (2), it possible to achieve the same kinetics with

secondary cells producing as much or even less virus than cells of

the default type. In the absence of further information regarding

possible differences in viral production rates between the two cell

types, it is still interesting to consider what factors could be

responsible for such differences. It could be that the genotype

which changes the virus’ ability to infect a cell population which

produces more virus also leaves the virus with an impairment in its

ability to be transmitted to another host, say specifically because of

its receptor preference. For example, the SAa2,3 Gal receptors are

predominantly found on the surface of ciliated cells but also in

mucin. So while a virus which adapts to target SAa2,3 Gal

receptors could have access to supposedly higher viral producing

cells (if such cells exist), this would come at the price that many of

these virions would be much less readily transmitted to another

host due to an increase in their rate of mucus binding at the

expense of target cell binding. It is also likely that viral infectivity is

not independent of the rate of production of free virions. In the

two target cell model the virus production rate, p, stands for both

virus production and release. If many virions are produced but are

not readily released, p will effectively be smaller. If a cell is harder

to infect, this is likely due to weaker cell-virus receptor binding

(weak HA activity) making the virus ‘‘less sticky’’ which would

likely results in higher viral release rates even for equivalent viral

production rates, and hence an increase in p.

While it has been established that cell tropism plays a role in

shaping influenza dynamics [53,54], there is insufficient data at

this point to establish whether this role is significant or not when

contrasted against the role of other likely factors such as reduced

immunity or a virus-induced upregulation of cytokines, in shaping

the severity of the infection. If more experimental data, both in

terms of quantity (e.g., more viral titer over a longer time period)

and diversity (e.g., levels of interferon, antibodies, cell viability)

were to become available, one could construct different models

incorporating the most likely factors and it may be possible to

eliminate some of these factors. In order to evaluate the validity of

the predictions made by the two target cell model, it would be

useful to have more viral titer measurements during the early

phase of the infection. Our model produces viral titer with a kink

or bend when the infection in the default cell population reaches a

peak which should be visible in experimental data collected

sufficiently frequently during this early time. In addition, single-

cycle viral yield experiments in the presence of differing ratios of

the two cell types would indicate whether, and by how much, viral

production rates differ between different cell types for different

strains [55].

Regardless of whether or not cell tropism plays a significant role

in shaping infection dynamics, we believe that the two target cell

model is valuable because it can capture dynamics that the simpler

single target cell model cannot with the addition of only two more

parameters: the rate of infection of the secondary cells by the virus,

and the rate of virus production in these cells. In addition, the

nature of these two extra parameters allows them to act as generic

stand-ins for a multitude of other effects including a reduced

immune response. For example, the secondary cell population

could correspond to cells which would not normally get infected

(e.g., slightly deeper in the lung) because the immune response

would clear the infection before it gets to these cells. In this

context, a seasonal influenza infection could be characterized as

having an infection rate for the secondary cells which would be

negligible compared to that for a more severe influenza infection

where infection of these secondary cells would become possible

and would be reflected by a larger secondary cells’ infection rate,

albeit one that is much smaller than that of the default target cell

population. The increased viral production rate could simply result

from the fact that later in the infection, the immune response

begins to contract (e.g., interferon seems to disappear even in the

continued presence of infection, see [42]) and as such production

of virus late in the infection, i.e., when the secondary cells get

infected, would be higher at that time (or in these cells, since at

that time only these cells are left) than at earlier times when the

immune response was still strong. Thus, we see the two target cell

model as a versatile stand-in for a range of phenomena which, in

our opinion, can be captured in a generic way by these two

parameters.

The two target cell model does not explicitly include an immune

response or cell regeneration. This may appear to be a critical

oversight given that some of the infections captured by the two

target cell model can last up to 16 dpi. Since our analysis focuses

solely on viral titers, and not cell numbers, over time, proper

consideration of cell regeneration is relevant only if these

regenerated cells can participate in the infection and are infectible

to the same extent as the original target cell population. This is not

necessarily the case. For example in rodents, the epithelium is
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reformed within 36–48 h, is differentiated on the fourth day, with

ciliated cells appearing in 10–14 days, and complete regeneration

in 6 weeks [43]. These regeneration times would likely be longer in

human lungs such that cell regeneration may not have a significant

effect on infection dynamics even when considering long-lasting

infections. Another mathematical model which includes cell

regeneration to capture influenza infections in mice over the

course of 10 days found regeneration times upwards of 67 d

suggesting that either cell regeneration did not play a significant

role in these infections, or that the effect of cell regeneration could

be accounted for implicitly through the other parameters of the

model [42]. While we did not present our results here, we did

study the effect of incorporating cell regeneration into our two

target cell model at a rate of 0.25 d21 [42] and found that it did

not significantly affect the dynamics of the model over the course

of the main infection (* the first 16 days). However, as is often the

case when models incorporate cell regeneration, the dynamics on

longer time scales was characterized by large, unrealistic,

oscillations. This, in our opinion, supports the hypothesis that

newly regenerated cells do not participate in the infection in a

significant manner or at least have significantly reduced infect-

ibility. The immune response, however, is certainly not negligible

and likely plays an important role, especially in later times.

Unfortunately, while several publications have attempted to

extend the mathematical model for influenza in humans to

include an immune response [56–58], all were theoretical

explorations with insufficient experimental data to support the

extensions and parametrize the response. Models incorporating a

simple immune response have been used to fit experimental data

from animals [42,59,60] and can, under some parameter regimes,

produce long-lasting viral titers. Thus we feel this is an area to be

explored. Unfortunately, in the absence of sufficient experimental

data characterizing the immune response in humans, it is not

possible to incorporate it into our model in a convincing way.

Hopefully, as discussed above, some of the components of the

immune response have been incorporated into our model’s

parameter values in a implicit way.

Finally, given that the two target cell model proposed here

explicitly takes into consideration cell tropism, its biggest

contribution may be its application to translating results obtained

in one host or cell culture system (e.g., mouse, MDCK) into

predictions for the course and outcome of infections in another

host or cell culture system (e.g., human, ferret, differentiated

human epithelium cells). As such, we feel that it will be a very

useful tool as more quantitative data about cell infection rates and

viral production rates of cells for infections with different influenza

strains become available. In addition, since our model is a simple

extension of the classic viral dynamics model used to capture in-

host infection with a variety of other viruses such as HIV [35,61],

and Hepatitis viruses [37,38,62,63], our conclusions also apply to

these other diseases where different cell types can be affected by

the virus.

Supporting Information

Appendix S1 Exploring cell tropism as a possible contributor to

influenza infection severity.

Found at: doi:10.1371/journal.pone.0013811.s001 (0.45 MB

PDF)
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