
A Logic For Decidable Reasoning About Actions∗

Yilan Gu
Department of Computer Science,

University of Toronto,
10 King’s College Road,

Toronto, ON, M5S 3G4, Canada
yilan@cs.toronto.edu

Mikhail Soutchanski†

Department of Computer Science,
Ryerson University,

245 Church Street, ENG281,
Toronto, ON, M5B 2K3, Canada
Tel.: +1-416-9795000, ext 7954

Fax: +1-416- 979-5064
mes@scs.ryerson.ca

October 6, 2008

Abstract

We consider a modified version of the situation calculus built using a two-variable fragment of the
first-order logic extended with counting quantifiers. We mention several additional groups of axioms
that can be introduced to capture taxonomic reasoning. We show that the regression operator in this
framework can be defined similarly to regression in Reiter’sversion of the situation calculus. Using this
new regression operator, we show that the projection and executability problems (the important reason-
ing tasks in the situation calculus) are decidable in the modified version even if an initial knowledge
base is incomplete. We also discuss the complexity of solving the projection problem in this modified
language in general. Furthermore, we define description logic based sub-languages of our modified sit-
uation calculus. They are based on the description logicsALCO(U) (or ALCQO(U), respectively). We
show that in these sub-languages solving the projection problem has better computational complexity
than in the general modified situation calculus. We mention possible applications to formalization
of Semantic Web services and some connections with reasoning about actions based on description
logics.

∗This research has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
and by the Ryerson University.

†A corresponding author.

1

Contents

1 Introduction 3

2 The Situation Calculus 4

3 Description Logics and Two-Variable First-order Logics 7
3.1 Description Logics 7
3.2 C2 and Its Relationship to Description Logics 8

4 Modeling Dynamical Systems in a Modified Situation Calculus 10

5 Reasoning about Actions using Regression 12
5.1 Modified Regression with Lazy Unfolding 12
5.2 Some Computational Complexity Results 17
5.3 A Description-Logic Based Situation Calculus 19

6 An Example of Regression inLC2

sc 23

7 Discussion and Future Work 26

A Semantics of Description Logics 29

B Proofs of Lemmas and Theorems 30
B.1 ALCQIO(⊔,⊓,¬, |, id) andC2 are Equally Expressive . 30
B.2 The Correctness of the Modified Regression Operator 34
B.3 ALCO(U) andFODL are Equally Expressive . 36
B.4 Restricting Syntax of BATs to Gain Computational Advantages 37

2

“All is change; all yields its place and goes.” - Euripides (c. 485-406 BCE)
“Nothing is permanent but change.” - Heraclitus (c. 540 -c. 480 BCE)

1 Introduction

The situation calculus (SC) is a well known and popular logical theory for reasoning about changes caused
by events and actions. There are several different formulations of SC. According to John McCarthy the
history is the following: “[50] proposed mathematical logic as a tool for representing facts about the
consequences of actions and using logical reasoning to plansequences of actions that would achieve
goals. Situation calculus as a formalism was proposed in [51] and elaborated in [55]. The name situation
calculus was first used in [55] but wasn’t defined there. [52] proposed to solve the frame and qualification
problems by circumscription, but the proposed solution to the frame problem was incorrect. [76] and [70]
describe several situation calculus formalisms and give references” (see the footnote 4 in [54]).

In this paper we would like to consider the SC from [70] that extends the original SC with time,
concurrency, stochastic actions, etc. It serves as a foundation for the Process Specification Language (PSL)
that axiomatizes a set of primitives adequate for describing the fundamental concepts of manufacturing
processes (PSL has been accepted as an international standard) [31, 30]. It is used to provide a well-defined
semantics for Web services and a foundation for a high-levelprogramming language Golog [41, 56, 61, 7].
However, because the situation calculus is formulated in a general predicate logic, reasoning about effects
of sequences of actions is undecidable (unless some restrictions are imposed on the theory that axiomatizes
the initial state of the world).

The first motivation for our paper intends to overcome this difficulty. We propose to use a two-variable
fragmentFO2 of the first-order logic (FOL) as a foundation for an initial theory in a modified situation
calculus. Because the satisfiability problem in this fragment is known to be decidable (it is in NEXPTIME)
[28, 64], we demonstrate that by reducing reasoning about effects of actions to reasoning in this fragment,
one can always guarantee decidability no matter what is the syntactic form of the theory representing the
initial state of the world. Note an important caveat. We are not going to design a decidable logic for rea-
soning about actions (see work in this direction reviewed inSection 7) by imposing strong restrictions on
the language such as allowing only action constants and disallowing more complex action terms. Instead,
we consider a fragment of the SC where only particular reasoning problems become decidable, but these
problems are exactly those that can be important in applications. Consequently, it should not be a surprise
for the readers to see that even if an initial theory is anFO2 theory, that is formulated using object variables
x andy, we include additional variables (a, for actions, ands, for situations), action terms and situation
terms common in the SC. As we show in this paper, the reasoningproblems that we care about can still be
reduced to the theorem proving task inFO2 (or in fragments ofFO2).

The second motivation for our paper comes from description logics. Description Logics (DLs) [4] are
a well-known family of knowledge representation formalisms, which play an important role in providing
the formal foundations of several widely used Web ontology languages including the Web Ontology Lan-
guage (OWL) [36] in the area of the Semantic Web. Many expressive DLs can be translated toFO2 (or to
C2 that isFO2 extended with counting quantifiers [65, 68]) and offer considerable expressive power going
far beyond propositional logic, while ensuring that reasoning is decidable [9]. DLs have been mostly used
to describe static knowledge bases. However, several research groups consider formalization of actions
using DLs or extensions of DLs. Following the key observation that reasoning about complex actions

3

can be carried out in a fragment of the propositional situation calculus, in [25], an epistemic extension
of DLs was given to provide a framework for the representation of dynamical systems. However, the
representation and reasoning about actions in this framework are strictly propositional, which reduces the
representation power of this framework. In [2], another proposal was proposed for integrating description
logics and action formalisms. They take the well-known description logicALCQIO (and its sub-languages)
as foundation and show that the complexity of executabilityand projection problems (two basic reason-
ing problems for possibly sequentially composed actions) coincides with the complexity of standard DL
reasoning. However, actions (services) are represented intheir paper meta-theoretically, not as first-order
(FO) terms. This can potentially lead to some complicationswhen specifications of other reasoning tasks
are considered because it is not possible to quantify over actions in their framework. Other related work
is reviewed in Section 7. In our paper, we take a different approach and represent actions as FO terms, but
achieve integration of taxonomic reasoning and reasoning about actions by restricting the syntax of the
situation calculus and by introducing additional axioms torepresent a taxonomy. The main contribution
of our paper to the area of service composition and discoveryis the following. We show that by using
services that are composed from atomic services with no morethan two parameters and by using only
those properties of the world which have no more than two parameters (to express a goal condition), one
can guarantee that the executability and projection problems for these services can always be solved even
if information about the current state of the world is incomplete.

Our paper is structured as follows. In Section 2, we briefly review Reiter’s situation calculus. In
Section 3 we review description logics and the extension ofFO2 with counting quantifiers. In Section 4,
we discuss details of our proposal: the languageLC2

sc of our modified SC . In Section 5.1, we consider
an extension of regression (the main reasoning mechanism inthe situation calculus) and investigate the
computational complexity in Section 5.2. In Section 5.3, weconsider a fragment ofFO2 that corresponds
to a DL with better complexity properties thanFO2. Then we define a new SC based on this fragment,
which can be considered as a sub-language ofLC2

sc . In Section 6, we consider an example that illustrates
potential applications to Semantic Web Services. Finally,in Section 7, we discuss briefly other related
approaches to reasoning about actions.

2 The Situation Calculus

The situation calculus (SC)Lsc is a predicate language for axiomatizing dynamical systems. All dialects
of the SCLsc include three disjoint sorts:action, situationandobject. Actions are FO terms consisting
of an action function symbol and its arguments. Actions change the world. Situations are FO terms
which denote world histories. A distinguished constantS0 is used to denote theinitial situation, and
functiondo(a, s) denotes the situation that results from performing actiona in situations. Every situation
corresponds uniquely to a sequence of actions. Moreover, notations′ � s means that either situations′

is a subsequence of situations or s = s′.1 Objects are FO terms other than actions and situations that
depend on the domain of application. We assume that distinctindividual names denote distinct objects,
i.e., we have the unique name axioms for object constants.Fluents are relations or functions whose
values may vary from one situation to the next. Normally, a fluent is denoted by a predicate or function
symbol whose last argument has the sortsituation. For example,F (~x, do([α1, · · · , αn], S0)) represents a

1Reiter [70] uses the notations′ ⊑ s, but we uses′ � s to avoid confusion with the inclusion relation< that is commonly
used in description logic literature. In this paper, we use< to denote the inclusion relation between concepts or roles.

4

relational fluent in the situationdo(αn, do(· · · , do(α1, S0) · · ·)) resulting from execution of ground action
termsα1, · · · , αn in S0. We do not consider functional fluents in this paper.

The SC includes the distinguished predicatePoss(a, s) to characterize actionsa that are possible to
execute ins. For any SC formulaW and a terms of sortsituation, we sayW is a formulauniform in s
iff it does not mention the predicatesPoss, it does not quantify over variables of sortsituation, it does not
mention equality on situations, and whenever it mentions a term of sortsituationin the situation argument
position of a fluent, then that term iss (see [70]). We also introduce a notationφ[s] to represent the SC
formula obtained by restoring situations back to all the fluents and/orPoss predicates (if any) inφ. It is
obvious thatφ[s] is uniform ins.

A basic action theory(BAT) D in the SC is a set of axioms written inLsc with the following five classes
of axioms to model actions and their effects [70]: action precondition axiomsDap, successor state axioms
(SSAs)Dss, initial theoryDS0 , unique name axioms for actionsDuna, domain independent foundational
axioms for situationsΣ.

Action precondition axiomsDap: For each action functionA(~x), there is an axiom of the formPoss(A(~x), s) ≡
ΠA(~x, s), whereΠA(~x, s) is a formula uniform ins with free variables among~x ands at most, character-
izing the preconditions of actionA.

Successor state axiomsDss: For each relational fluentF (~x, s), there is an axiom of the form

F (~x, do(a, s)) ≡ ΦF (~x, a, s), (1)

whereΦF (~x, a, s) is a formula uniform ins with free variables among~x, a ands at most. It completely
characterizes the value ofF in the next situationdo(a, s) in terms of what holds in the current situations.
In fact, the general syntactic form ofΦF (~x, a, s) is

ΦF (~x, a, s) = γ+
F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s),

whereγ+
F (~x, a, s) (γ−F (~x, a, s), respectively) is a formula uniform ins with free variables among~x, a and

s at most that completely describes the positive (negative, respectively) effects of actions on fluentF .
Here and subsequently, we say that an actionα has a positive effect on fluentF , if F becomes true in
the situation resulting from executing this action. Similarly, α has a negative effect, ifF becomes false.
By using (∀a) in Eq. (1), Reiter solves the frame problem succinctly because all action functions not
explicitly mentioned inΦF (~x, a, s) have neither positive, nor negative effects onF . For all of them, the
value ofF in do(a, s) remains the same as it was ins. Recall that actions in Eq. (1) that cause positive
or negative effects can be arbitrary FO terms, not just action constants. In [70], Section 3.2.4 and Section
3.2.5, Reiter provides a systematic way of automatically generating SSAs from effect axioms based on the
causal completeness assumption and unique name axioms for actions. There, Reiter shows a precise way
of constructing the normal form ofγ+

F (~x, a, s) (γ−F (~x, a, s), respectively). That is,γ+
F (~x, a, s) (γ−F (~x, a, s),

respectively) can be represented as
∨h

i=1 Ψ
(i)
F for some finite indexh ≥ 0, where eachΨ(i)

F is a formula of
the syntactic form

[∃~y](a = A(~t)∧ψ(~x, ~y, s)) (2)

for some action termA(~t) and some FOL formulaψ(~x, ~y, s). Note that~y are those new variables which
do not occur inF (~x, do(a, s)), if there are any. If~y is empty, then there is no quantifier[∃~y] at front. Here,
~t is a vector of object terms with free variables (at most) among ~x and the quantified new variables~y if
there are any,φ(~x, ~y, s) is uniform ins and its free variables are (at most) among~x and~y, if there are any.

5

In other words, the SSA of fluentF (Eq. (1)) has the following syntactic form (integersm+, m− ≥ 0):

F (~x, do(a, s)) ≡

m+∨

i=1

[∃~yi](a = PosActi(~ti)∧φ
+
i (~x, ~yi, s))∨

F (~x, s)∧¬(

m
−∨

j=1

[∃~zj](a = NegActj(~t′j)∧φ
−
j (~x, ~zj , s))), (3)

where fori = 1..m+ (j = 1..m−, respectively), each~ti (~t′j, respectively) is a vector of terms with free
variables (at most) among~x and the quantified new variables~yi (~zj , respectively) if there are any, eachcon-
text conditionφ+

i (~x, ~yi, s) (φ−
j (~x, ~zj, s), respectively) is an SC formula uniform ins that has free variables

(at most) among~x and~yi (~zj , respectively) if there are any, and eachPosAct(~ti) (NegAct(~t′j), respec-
tively) is an action term that makesF (~x, do(a, s)) true (false, respectively) if the conditionφ+

i (~x, ~yi, s)
(φ−

j (~x, ~zj , s), respectively) is satisfied.

Initial theory DS0 : A set of FO formulas whose only situation term isS0. It specifies the values of all
fluents in the initial state. It also describes all the facts that are not changeable by any actions in the domain
(static sentences). In particular, it includes unique nameaxioms for object constants.

Unique name axioms for actionsDuna: Includes axioms specifying that two actions are different if their
names are different, and identical actions have identical arguments.2

Foundational axioms for situationsΣ: The axioms for situations which characterize the basic proper-
ties of situations. These axioms are domain independent. They are included in the axiomatization of any
dynamical system in the SC (see [70] for details).

Suppose thatD = Duna ∪ DS0 ∪ Dap ∪ Dss ∪ Σ is a BAT,α1, · · · , αn is a sequence of ground action
terms, andG(s) is a uniform formula with one free variables. One of the most important reasoning tasks
in the SC is the projection problem, that is, to determine whetherD |= G(do([α1, · · · , αn], S0)). Another
basic reasoning task is the executability problem. Letexecutable(do([α1, · · · , αn], S0)) be an abbreviation
of the formulaPoss(α1, S0)∧

∧n

i=2 Poss(αi, do([α1, · · · , αi−1], S0)). Then, the executability problem is
to determine whetherD |= executable(do([α1, · · · , αn], S0)). Planning and high-level program execution
are two important settings where the executability and projection problems arise naturally.Regressionis
a central computational mechanism that forms the basis for automated solution to the executability and
projection tasks in the SC ([70]). A recursive definition of the regression operatorR on anyregressable
formulaW is given in [70]. A formulaW of Lsc is regressableiff (1) every term of sort situation in
W is starting fromS0 and has the syntactic formdo([α1, · · · , αn], S0), where eachαi is of sort action;
(2) for every atom of the formPoss(α, σ) in W , α has the syntactic formA(t1, · · · , tn) for somen-ary
function symbolA of Lsc; and (3)W does not quantify over situations, and does not mention the relation
symbols “≺” or “=” between terms of situation sort. For a regressable formulaW , we use notationR[W]
to denote the regressed formula that results from eliminatingPoss atoms in favor of their definitions as
given by action precondition axioms, and replacing fluent atoms aboutdo(α, s) by logically equivalent ex-
pressions abouts as given by SSAs repeatedly, until no more such replacement can be made. The formula
G(do([α1, · · · , αn], S0)) is a particularly simple example of a regressable formula because it is uniform
in do([α1, · · · , αn], S0)), but generally, regressable formulas can mention several different situation terms.
Roughly speaking, the regression of a regressable formulaW through an actiona is a formulaW ′ that

2For the second type of axioms, we use the formA(x1, · · · , xn) = A(y1, · · · , yn) ≡ x1 = y1∧· · ·∧xn = yn.

6

holds prior toa being performed iffW holds aftera. Both precondition axioms and SSAs support regres-
sion in a natural way and are no longer needed when regressionterminates. This is because each step of
regression either eliminates aPoss atom by replacing it with an equivalent formula, or replacesa fluent
with a compound situation term by a logically equivalent formula with a situation term that has one less
occurrence of an action term.

The regression theorem proved in [66] shows that one can reduce the evaluation of a regressable
sentenceW to an FOL theorem proving task in the initial theory togetherwith unique names axioms
for actions:

D |= W iff DS0 ∪ Duna |= R[W].

This fact is the key result for our paper: it demonstrates that an executability or a projection task can be
reduced to an FOL theorem proving task. However, becauseDS0 is an arbitrary FO theory, this type of
reasoning is undecidable. Two of the most common ways to overcome this difficulty are to introduce the
closed world assumption or introduce the domain closure assumption (i.e., assume the domain is finite).
In many practical application domains these assumptions are unrealistic. Therefore, we propose a version
of the SC withDS0 based onC2, or on a weaker fragment ofFO2. Fragments ofFO2 that are syntactic
versions of DLs are particularly interesting because for them the satisfiability problem is more tractable
than for a generalFO2. For this reason, in the next section, we review definitions and results relevant to
DLs, FO2 andC2.

3 Description Logics and Two-Variable First-order Logics

In this section we review a few popular expressive description logics [4] and related fragments of FOL [9].

3.1 Description Logics

We start with the language of logicALCQIO. LetNC = {AC1, AC2, . . .} be a non-empty set ofatomic
conceptsandNR = {R1, R2, . . .} be a non-empty set ofatomic roles. In ALCQIO, nominalsare allowed.
Nominals are singleton concepts obtained by picking one of the object names. AnALCQIO role is either
someR ∈ NR or an inverse roleR− for R ∈ NR. In addition,(R−)− is R itself. The set ofALCQIO
concepts is the minimal set built inductively fromNC andALCQIO roles using the following rules: all
AC ∈ NC are concepts, nominals are concepts, and, ifC, C1, andC2 areALCQIO concepts,R is a role
andn ∈ N, then¬C, C1 ⊓ C2, and> nR.C are alsoALCQIO concepts. Concepts that are not atomic
are calledcomplex. A literal concept is a possibly negated concept name. The abbreviations for complex
concepts such asC1 ⊔ C2, C1 ⊑ C2, 6nR.C, ∃R.C, ∀R.C (and other complex concepts) can be easily
defined. For example,

C1 ⊔ C2
def
= ¬(¬C1 ⊓ ¬C2) 6nR.C

def
= ¬(>(n + 1)R.C)

C1 ⊑ C2
def
= ¬C1 ⊔ C2 ∃=nR.C

def
= (6nR.C) ⊓ (>nR.C)

∃R.C
def
= >1R.C ⊤

def
= AC ⊔ ¬AC for someAC ∈ NC

∀R.C
def
= ¬∃R.¬C ⊥

def
= AC ⊓ ¬AC for someAC ∈ NC

The semantics of description terms is given denotationally, using the notion of an interpretationI =
〈∆I , (·)I〉, where∆I is a domain (non-empty universe) of objects, and(·)I maps from atomic concept
names to subsets of the domain (i.e.,ACI ⊆ ∆I for all AC ∈ NC), and atomic role names to sets of

7

pairs over the domain (i.e.,RI ⊆ ∆I × ∆I for all R ∈ NR). Moreover, the interpretation function
(·)I is extended recursively to composite descriptions in Table1 (see Appendix A). We assume that the
interpretation of nominals has to respect the unique name assumption.

A TBox T is a finite set ofequalityaxiomsC1 ≡ C2.3 An equality with an atomic concept on the left-
hand side (LHS) is a conceptdefinition. In the sequel, we always consider TBox axioms setT that is a
terminology: a finite set of concept definition formulas with unique left-hand sides, i.e., no atomic concept
occurs more than once as a left-hand side. We say that adefinedconcept nameC1 directly usesa concept
nameC2 wrt T if C1 is defined by a concept definition axiom inT with C2 occurring on the right-hand
side (RHS) of the axiom. Letusesbe the transitive closure of directly uses, and a TBox axiomssetT is
acyclic if no concept name uses itself wrtT . An ABox A is a finite set of assertions of the formsC(b)
andR(b, b1), whereb andb1 are some object names,C is a concept, andR is a role. An RBoxHR, called
a role hierarchy, is a finite set of role inclusion axioms of the formR1 ⊑ R2, whereR1 (R2, respectively)
is either an atomic role or its inverse. A DL knowledge baseKB in DL is a tuple(T ,A) (or, a triple
(HR, T ,A) if role inclusion axioms are allowed). The semantics of terminological and assertional axioms
are provided in Table 3 (see Appendix A).

The logicALCQI is obtained by disallowing nominals inALCQIO. The logicALCQO is obtained by
disallowing inverse roles inALCQIO. The logicALCQO(U) is obtained by adding the universal roleU to
ALCQO. The semantics ofU is given in Table 2 (see Appendix A). The logicALCQIO(⊔,⊓,¬, |, id) is
obtained fromALCQIO by introducing concept identityid(C) (relating each individual inC with itself),
and allowing complex role expressions: ifR1, R2 areALCQIO(⊔,⊓,¬, |, id) roles andC is a concept, then
R1⊔R2,R1⊓R2,¬R1,R

−
1 andR1|C areALCQIO(⊔,⊓,¬, |, id) roles too. These complex roles can be used

in constructing complex concepts. The semantics of complexroles are given in Table 2 (see Appendix A).
Subsequently, we call a roleR primitive if it is eitherR ∈ NR or it is an inverse roleR− for R ∈ NR.
The logicALCHQIO(⊔,⊓,¬, |, id) allows RBox axioms based on the language ofALCQIO(⊔,⊓,¬, |, id).
Moreover, notice that the universal role can be implicitly constructed inALCQIO(⊔,⊓,¬, |, id): U can be
replaced usingR ⊔ ¬R for anyR ∈ NR.

There are different reasoning tasks in DLs, such as theconcept satisfiability problemand theABox consistency
problem, etc. The concept satisfiability problem is to decide given aTBox T and a conceptC, whether
there exists a modelI of T such thatCI is nonempty. Given any DL KB(T ,A), the ABox consistency
problem is to check whether there is a interpretation that isa model for bothT andA. The complexity of
solving the concept satisfiability problem or the ABox consistency problem has been studied for different
versions of DLs [85]. For example, it has been shown that the complexity of solving these two problems
is PSPACE-complete inALC, in ALCO and inALCQO [75, 81, 3], but is EXPTIME-complete inALCQIO
[80, 81]. However, it is also known that the complexity for these two problems is EXPTIME-complete in
ALC(U) (i.e., ALC plus the universal rule) [78, 34, 48] and inSHOQ [35]. Because one can implicitly
represent the universal role inSHOQ, it is also known that the complexity of solving these two problems
is still EXPTIME-complete inALCO(U) or inALCQO(U).

3.2 C2 and Its Relationship to Description Logics

Thetwo-variable FOLFO2 is a well-known fragment of ordinary FOL, whose formulas canbe built with
the help of predicate symbols (including equality) and constant symbols (but without general function
symbols) using no more than two variable symbolsx and y (free or bound). Note that each variable

3Sometimes,general inclusion axiomsof the formC1 ⊑ C2 are also allowed, whereC1, C2 are complex concepts.

8

can be reused arbitrarily often. Thetwo-variable FOL with countingC2 extendsFO2 by allowing FO
counting quantifiers∃≥m and∃≤m for all m ≥ 1 [28, 64, 65, 38, 68]. Because the semantics ofFO2 (C2,
respectively) are the same as the semantics of FOL, the details are omitted here. It is well-known that
modal logic is a “big brother” of DLs. In particular, it is proved that the DLALC is a notational variant
of a basic multi-modal logicK [72]. For this reason, it is important to note that thestandard translation
from a basic modal logic to FOL is proposed in [5]. Later, it was realized that a basic modal logic can
be translated toFO2 [20, 6]. The standard translation and other results in modallogic are extensively
discussed in [8] and in [63].

Now we consider some relationships betweenC2 and DLs. In [9], an expressive description logicB is
defined4, and it is shown thatC2 and the languageB areequally expressive, that is,C2 is as expressive asB
and vice versa. Generally speaking, a languageL2 is as expressive aslanguageL1, if there is a translation
function transl from L1 to L2 such that for every sentencel in L1, transl(l) expresses the meaning of
l [9]. Moreover, in [9], the translation in both directions betweenC2 andB leads to no more than a
linear increase in the size of the translated formula. His translation is similar to the standard translation
earlier proposed for modal logics. Using the same approach as in [9], we prove the following theorem (the
detailed proof is provided in Appendix B.1).

Theorem 1 The description logicALCQIO(⊔,⊓,¬, |, id) andC2 are equally expressive (i.e., each sen-
tence in languageALCQIO(⊔,⊓,¬, |, id) can be translated to a sentence inC2, and vice versa). In ad-
dition, translation in both directions leads to no more thana linear increase in the size of the translated
formula.

Notice thatALCHQIO(⊔,⊓,¬, |, id) includes RBox in the knowledge bases, in contrast toALCQI(⊔,⊓,¬, id)
that has no RBox . However, it is obvious that every axiom in RBox still can be translated into a sentence
in C2. Hence, the language ofALCHQIO(⊔,⊓,¬, |, id) andC2 are also equally expressive. In [49], an-
other DL is considered5 and alternative translation between that DL andFO2 is proposed. It is proved
that translation fromFO2-formulae into concepts in the considered DL involves an exponential blow-up
in formula size.

This statement has an important consequence. Gradel et. al.[29] and Pacholski et. al. [64] show
that the satisfiability problem forC2 is decidable and recently in [68] it is proved that this problem is
in NEXPTIME even when counting quantifiers are coded succinctly. Hence,the satisfiability and/or sub-
sumption problems of concepts w.r.t. an acyclic or empty TBox in description logicALCQIO(⊔,⊓,¬, |, id)
(ALCHQIO(⊔,⊓,¬, |, id), respectively) is also decidable with the same computational complexity.6 See
additional background on DLs and discussion of connectionsbetween DLs withC2 in [4, 9].

4In [9], the languageB is denoted asDL − {trans, compose}, in which trans represents the role constructorreflexive-
transitive closureand composerepresents the role constructorcomposition. We change it to notationB in order to avoid
confusion. Besides, the syntax and semantics of reflexive-transitive closure and composition can be found in Table 2, Ap-
pendix A.

5ALC extended with full Boolean operators on roles, the inverse operator on roles and an identity role.
6In [4], it is shown that the satisfiability problem and the subsumption problem can be reduced to each other; moreover, if a

TBox T is acyclic, the reasoning problems w.r.t.T can always be reduced to problems w.r.t. the empty TBox.

9

4 Modeling Dynamical Systems in a Modified Situation Calculus

In this section, we consider dynamical systems formulated in a modification of the language of the SC
so that it can be considered as an extension toC2 (with an additional situation argument).7 The key idea
is to consider a syntactic modification of the SC such that theexecutability and projection problems are
guaranteed to be decidable as a consequence of the decidability of the satisfiability problem inC2. We
will denote this languageLC2

sc .
Firstly, the three sorts inLC2

sc (i.e., actions, situations and objects) are the same as those inLsc, except
that they obey the following restrictions: (1) all terms of sortobjectare variables (x andy) or constants, i.e.,
object functional symbols arenot allowed; (2) all action functions include no more than two arguments.
Each argument of any term of sortaction is either a constant or anobjectvariable (x or y); (3) variables
of sortsituationand/or variablea of sortactionare the only additional variables allowed inD in addition
to variablesx, y.

Secondly, any fluent inLC2

sc is a predicate with either two or three arguments (includingthe one of sort
situation). We call fluents with two argumentsdynamic concepts, and call fluents with three arguments
dynamic roles. Intuitively, each dynamic concept inLC2

sc , sayF (x, s) with variablesx ands only, can be
considered as a changeable conceptF in a dynamical system specified inLC2

sc ; the truth value ofF (x, s)
could vary from one situation to another. Similarly, each dynamic role inLC2

sc , sayF (x, y, s) with variables
x, y ands, can be considered as a changeable roleR in a dynamical system specified inLC2

sc ; the truth value
of F (x, y, s) could vary from one situation to another. InLC2

sc , (static) concepts(i.e., monadic predicates
with no situation argument) and(static) roles(i.e., dyadic predicates with no situation argument), if any,
are considered as unchangeable taxonomic properties and unchangeable classes of an application domain.
Moreover, each concept (static or dynamic) can be eitherprimitiveor defined.

For each primitive dynamic concept, an SSA must be provided in the basic action theory for a given
domain. Because defined dynamic concepts are expressed in terms of primitive concepts by axioms in an
acyclic TBox, SSAs for them are not provided. In addition, SSAs are provided for dynamic roles.

Thirdly, apart from the standard FO logical symbols∧ ,∨ and∃, with the usual definition of a full
set of connectives and quantifiers,LC2

sc also includes counting quantifiers∃≥m and∃≤m for all m ≥ 1.
Equality= is allowed inLC2

sc too.
The dynamical systems we are dealing with here satisfy theopen world assumption(OWA): what is not

stated explicitly in an initial theoryDS0 is unknown rather than false. In this paper, the dynamical systems
we are interested in can be formalized as abasic action theory(BAT) D using the following seven groups
of axioms inLC2

sc : D = Σ ∪ Dap ∪ Dss ∪ DT ∪ DR ∪ Duna ∪ DS0. Five of them (Σ,Dap,Dss,Duna,DS0)
are similar to those groups in a BAT inLsc, and the other two (DT ,DR) are introduced to axiomatize
description logic related facts and properties (see below). However, becauseLC2

sc allows only one or two
object variables, all axioms must conform to the following additional requirements.8

Action precondition axiomsDap: For each actionA in LC2

sc , there is one axiom of the formPoss(A, s) ≡
ΠA[s] (or Poss(A(x), s) ≡ ΠA(x)[s], or Poss(A(x, y), s) ≡ ΠA(x, y)[s], respectively), ifA is an action
constant (or unary, or binary action term, respectively), whereΠA (or ΠA(x), or ΠA(x, y), respectively)
is aC2 formula with no free variables (or with at mostx, or with at mostx, y as the only free variables,

7The reason that we call it a “modified” SC rather than a “restricted” SC is that we extend the SC with other features, such
as adding acyclic TBox axioms to BATs.

8Subsequently, we write axioms with action and situation variables, and use action and situation terms. However, we will
see that they can be eliminated when we solve the projection problem.

10

respectively). This set of axioms characterizes the preconditions of all actions.

Successor state axiomsDss: Let variable vector~x bex, or y, or 〈x, y〉. An SSA is specified for each
primitive dynamic concept that is not defined in TBox (see below) and each dynamic roleF (~x, do(a, s)).
According to the detailed syntactic form of the SSAs Eq. (3),without loss of generality, we can assume
that the axiom has the form

F (~x, do(a, s)) ≡

m+∨

i=1

[∃x][∃y](a=PosActi(~t(i,+))∧ψ
+
i (~x(i,+))[s]) ∨

F (~x, s)∧¬(

m
−∨

j=1

[∃x][∃y](a=NegActj(~t(j,−))∧ψ
−
j (~x(j,−))[s])). (4)

Here, each vector~t(i,+), i = 1..m+, (~t(j,−), j = 1..m−, respectively) represents a vector of object terms
appearing in the corresponding action term, which can be either empty,O, 〈O1, O2〉, x, 〈x, x〉, 〈O, x〉,
〈x,O〉, y, 〈y, y〉, 〈O, y〉, 〈y, O〉 〈x, y〉 or 〈y, x〉 for free variablesx, y and some object constantsO, O1,
O2. Each variable vector~x(i,+) (or ~x(j,−), respectively),i= 1..m+, j = 1..m−, represents a vector of free
variables appearing in the corresponding context condition, which can be either empty,x, y, 〈x, y〉 or
〈y, x〉. Moreover,[∃x] or [∃y] represents that the quantifier included in[] is optional; and eachψ+

i (~x(i,+)),
i = 1..m+, (ψ−

i (~x(j,−)), j = 1..m−, respectively), is aC2 formula with variables (both free and bound)
amongx andy at most. Note that whenm+ (or m−, respectively) is equal to0, the corresponding
disjunctive sub-formula is equivalent tofalse.
Acyclic TBox axioms DT : Similar to the TBox axioms in DL, we may define new concepts using
TBox axioms. Any group of TBox axiomsDT may include two sub-classes: static TBoxDT,st and dy-
namic TBoxDT,dyn. Every formula in static TBox is aconcept definitionformula of the form

G(x) ≡ φG(x), (5)

whereG is a monadic predicate symbol andφG(x) is aC2 formula with a free variablex, and there is no
fluent in it. Every formula in dynamic TBox is aconcept definitionformula of the form

G(x, s) ≡ φG(x)[s],

whereφG(x) is aC2 formula with free variablex, and there is at least one fluent in it. All the con-
cepts appeared on the LHS of TBox axioms are calleddefinedconcepts. We also require that the set of
TBox axioms must be acyclic (acyclicity inDT is defined exactly as it is defined for TBox). Note that the
defined dynamic concepts are not provided with SSAs. There isno need to provide an SSA for a defined
concept because regression can expand TBox definitions instead of an SSA.
RBox axiomsDR: Similar to the idea of RBox in DL, we may also specify a group ofaxioms, called
RBox axioms below, to support a role taxonomy. Each role inclusion axiom is represented as

R1(x, y)[s] ⊃ R2(x, y)[s],

whereR1 andR2 are primitive roles (either static or dynamic). If these axioms are included in the BATD,
then it is assumed thatD is specified correctly in the sense that the meaning of any RBox axiom included
in the theory is correctly compiled into SSAs. This means that an axiomatizer is responsible for writing
Dss such that axioms from RBox become logical consequences. That is, it should be provable by induction
that(D − DR) |= ∀s.R1(x, y)[s]⊃R2(x, y)[s]. This is the common approach to state constraints, e.g., it
was taken in [70]. In some special (but realistic) cases, RBox axioms can be automatically compiled into
Dss. Let us sayR2(x, y, s) directly depends onR1(x, y, s), if R1(x, y, s)⊃R2(x, y, s) belongs to RBox,
and sayR3(x, y, s) depends onR1(x, y, s), if R3(x, y, s) directly depends onR2(x, y, s), andR2(x, y, s)

11

depends onR1(x, y, s). Then, we can say that RBox is acyclic, if there is no dynamic roleR(x, y, s) that
depends on itself. In [57], it is proved that acyclic state constraints can be automatically compiled into
SSAs. Because acyclic RBox is just a special case of state constraints considered in McIlraith’s paper, her
approach is applicable to acyclic TBox as well. Additional details related to state constraints in the SC
can be found in [43, 42]. Although RBox axioms are not used by the regression operator, they are used
for taxonomic reasoning in the initial theory.
Initial theory DS0: It is a finite or countably infinite set ofC2 sentences (assuming that we suppress the
only situation termS0 in all fluents). It specifies the incomplete information about the initial problem
state and also describes all the facts that are not changeable over time in the domain of an application. In
particular, it includes static TBox axiomsDT,st as well as RBox axioms in the initial situationS0 (if any).
In addition,DS0 also includes all unique name axioms for object constants. Note that this definition of
DS0 includes ABox as a special case. In the sequel,DS0 is assumed to be finite, unless stated otherwise.

The remaining two classes (foundational axioms for situationsΣ and unique name axioms for actions
Duna) are the same as those in the BATs of the usual SC. Note that these axioms (as well asDap andDss)
use more than two variables (e.g.,Dss use action and situation variables in addition to object variables),
but we will see in the next section, that these axioms will be eliminated in the process of regressing a
regressable sentence to a sentence that will use no more thantwo object variables and no other variables.

5 Reasoning about Actions using Regression

After giving the definition of what is a BAT inLC2

sc , we turn our attention to the reasoning tasks. We
want to identify reasoning problems that are decidable inLC2

sc . To achieve such goal, for certain type of
formulas inLC2

sc , we expect the regressed formulas areC2 formulas.

5.1 Modified Regression with Lazy Unfolding

Given a formulaW of LC2

sc in the domainD, the definition ofW being regressable (calledLC2

sc regressable
below) is slightly different from the definition ofW being regressable inLsc (see [70]).

Definition 1 A formulaW ofLC2

sc isLC2

sc regressableiff
(1) Each term of sort situation inW is ground.

(2) Other than the action terms occurred in the predicatePoss, there are no function terms inW . More-
over, variablesx andy (free or bound) are the only variables used inW , if any.

(3) For every atom of the formPoss(α, σ) in W , α has the syntactic formA(t1,· · ·, tn) for somen-ary
function symbolA of LC2

sc , wheren ≤ 2. Moreover, eachti is either variablex, variabley or some
constantO if there is any.

(4) Each term of sort situation inW is starting fromS0 and has the syntactic formdo([α1, · · · , αn], S0),
where eachαi is of sort action.

(5) W does not quantify over situations.

(6) W does not mention the relation symbols ”≺” or ”=” between terms of sort situation.

12

The requirements in conditions (2) and (3) are obvious, because our language is restricted toLC2

sc . The
intuition for adding condition (1) is as follows. Consider the following counter example.

Example 1 AssumeD is a BAT ofLC2

sc , which includes an SSA
F (x, do(a, s)) ≡ a=A(x)∧(∃y.G(x, y, s)) ∨ F (x, s) (6)

for some fluentsF (x, s),G(x, y, s) and action functionA(x). Consider a formula

∀x.∃y.F (x, do(A(O), do(A1(y), S0))) (denoted asW0 below)

of LC2

sc . To perform a correct regression onW0 in the sense that the formula resulting from regression
should be logically equivalent toW0 w.r.t. D, we have to rename the quantified variabley in Eq. (6) so
that it is different from any variables appearing inW0. That is, the one step regression onF using Eq. (6)
should be

∀x.∃y.R[A(O) = A(x)∧∃z.G(x, z, do(A1(y), S0))∨F (x, do(A1(y), S0))].

Then, the regressed formula is no longer a formula of languageLC2

sc . Otherwise, if we do not rename the
quantified variabley in Eq. (6) to assure the regressed formula is still of languageLC2

sc , then the one step
regression onF using Eq. (6) without renaming will result in the following formula:

∀x.∃y.R[A(O) = A(x)∧∃y.G(x, y, do(A1(y), S0))∨F (x, do(A1(y), S0))].

It is obvious that the above regressed formula is not logically equivalent toW0, because the variabley that
occurs in the situation termA1(y) should not be quantified by∃y at the front ofG.

Hence, to avoid the problem described in Example 1, we add (1)to Def. 1. Below, with a carefully de-
fined regression operator, we are able to show that for everyLC2

sc regressable formula, there is an equivalent
regressedC2 formula uniform inS0.

In the language ofLC2

sc , we have to be more careful with the definition of the regression operatorR for
two main reasons. First, to deal with TBox we have to extend regression. For anLC2

sc regressable formula
W , weextendthe regression operator defined in [70] with thelazy unfolding technique(see [4]) to expand
defined dynamic concepts. Second,LC2

sc uses only two object variables and we have to make sure that
after regressing a fluent atom we still get anLC2

sc formula, i.e., that we never need to introduce new (free
or bound) object variables. To deal with the two-variable restriction, we modify our regression operator
in comparison to the conventional operator defined in [70], and still denote this operator asR. The key
idea is toreusevariables when doing replacement. For example, when replacing Poss atoms or fluent
atoms aboutdo(α, σ), the definition of the conventional regression operator in [70] has the assumption
that the quantified variables on the RHS of the correspondingaxioms should be renamed to new variables
different from the free variables in the atoms to be replaced. This assumption of usingnew variables
for renaming assures logical equivalence of the original formula and the formula after regression. But in
C2 new variables cannot be used. To avoid introducing new variables (as required by Reiter’s regression
operator) and to assure defined dynamic concepts being handled, we modify the regression operator for
eachLC2

sc regressable formula. The possibility of reusing variablesis guaranteed by the general format of
the SSAs given in the previous section and the additional conditions (1-3) in Def. 1.

The complete formal definition of ourR is as follows,9 whereσ denotes the term of sortsituation,
andα denotes the term of sortaction. Note that below, ifΦ(~x) represents a formulaΦ with free variables
among a variable vector~x at most, then for any vector of terms~t such that|~t| = |~x|, Φ(~t) represents the

9It is also calledLC2

sc regressionsometimes below to avoid confusion.

13

resulting formula obtained by substituting eachxi in vector~x with ti in vector~t if xi occurs inΦ. For
example, in particular, ifΦ(~x) in fact has no free variables, then no substitution happens and Φ(~t) is the
same asΦ(~x).

• If W is not atomic, i.e.,W is of the formW1∨W2, W1∧W2, ¬W ′, orQv.W ′ whereQ represents a
quantifier (including counting quantifiers) andv represents a variable symbol, then

R[W1∨W2] = R[W1]∨R[W2], R[¬W ′] = ¬R[W ′],
R[W1∧W2] = R[W1]∧R[W2], R[Qv.W ′] = Qv.R[W ′].

• Otherwise,W is an atom. There are several cases.

a. If W is a regressablePoss atom, then it has the formPoss(A(~t), σ), for terms of sortaction and
situation, respectively, inLC2

sc . Then there must be an action precondition axiom forA of the form
Poss(A(~z), s) ≡ ΠA(~z, s), where the argument~z of sort object can either be empty (i.e.,A is
an action constant), a single variablex, or two-variable vector〈x, y〉. Because of the syntactic
restrictions ofLC2

sc and according to the condition (2,3) in Def. 1, each term in~t can only be a
variablex, y or some constant if any. Then,

R[W] =

R[(∃y.x=y∧ΠA(x, y, σ))] if ~t = 〈x, x〉,
R[(∃x.y=x∧ΠA(x, y, σ))] if ~t = 〈y, y〉,

R[Π̃A(~t, σ)] if ~t ∈ {y, 〈y, O〉, 〈O, x〉, 〈y, x〉},
R[ΠA(~t, σ)] otherwise, i.e., if~t is empty or

~t∈{O, x, 〈x, y〉, 〈x,O〉, 〈O, y〉, 〈O,O1〉},

whereO andO1 are constants and̃φ denotes adual formulafor formulaφ obtained by replacing
every variable symbolx (free or bound) with variable symboly and replacing every variable symbol
y (free or bound) with variable symbolx in φ, i.e., φ̃ = φ[x/y, y/x]. In this definition, in order to
avoid introducing new variables but still ensure the correctness of regression in the sense that the
regressed formula is logically equivalent toW w.r.t. D, we consider all the possible syntactic forms
of the arguments~t in action terms and treat them carefully in each of the four cases. Because of the
restriction of the language ofLC2

sc and the additional conditions (1)–(3) ofLC2

sc regressable formula,
we are able to reuse the variablesx andy by switching their occurrences when~t is eithery, 〈y, O〉,
〈O, x〉 or 〈y, x〉.

b. If W is a defined dynamic concept, it has the formG(t, σ) for some object termt and ground situation
term σ, and there must be a TBox axiom forG of the formG(x, s) ≡ φG(x, s). Because of the
restrictions of the languageLC2

sc , termt can only be a variablex, y or a constant. Then, we use the
lazy unfolding technique as follows:

R[W] =

{
R[φG(t, σ)] if t ∈ {O, x},

R[φ̃G(y, σ)] otherwise, i.e., ift = y.

c. If W is a primitive dynamic concept (a dynamic role, respectively) of the formF (t1, do(α, σ)) (or
F (t1, t2, do(α, σ)), respectively) for some termst1 (andt2) of sortobject, ground termα of sortac-
tionand ground termσ of sortsituation, there must be an SSA for fluentF of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whose detailed syntax is Eq. (4). Because of the restriction of the languageLC2

sc , the
termst1 andt2 can only be a variablex, y or some constantO. Then, whenW is a primitive dynamic
concept, i.e.,W is of the formF (t1, do(α, σ)),

14

R[W] =

{
R[ΦF (t1, α, σ)] if t1 ∈ {O, x},

R[Φ̃F (y, α, σ)] otherwise, i.e., ift1 = y;

and, whenW is a dynamic role, i.e.,W is of the formF (t1, t2, do(α, σ)),

R[W] =

R[(∃y.x=y∧ΦF (x, y, α, σ))] if 〈t1, t2〉=〈x, x〉;
R[(∃x.y=x∧ΦF (x, y, α, σ))] if 〈t1, t2〉=〈y, y〉;

R[Φ̃F (y, t2, α, σ)] if 〈t1, t2〉∈{〈y, x〉, 〈y, O〉, 〈O, x〉};
R[ΦF (t1, t2, α, σ)] otherwise, i.e, if〈t1, t2〉∈

{〈x, y〉, 〈x,O〉, 〈O, y〉, 〈O,O1〉}.

d. If W is of the formA1(~t) = A2(~t
′) for some action function symbolsA1 andA2, then by using axioms

in Duna,10 we define the regression ofW as

R[W] =

false if A1 6= A2,
true if A1 = A2 andA1, A2 are constant action functions,
|~t|∧

i=1

ti = t′i otherwise.

Otherwise, ifW is any other situation independent atom (including equality between object terms)
orW is a concept or role uniform inS0, then

R[W] = W. (7)

Our intention here is to get aC2 formula (with situation terms suppressed) that has no (in)equality
between action terms after regression. We therefore cannotleave (in)equalities between action terms
untouched in the regressed formula unlike Reiter’s definition of the regression operator that simply
used Eq. (7) when dealing with (in)equalities between terms. By using unique name axioms for
actions during regression, we can avoid functional terms inthe resulting formula.

Note that in this definition (case (c.) and case (d.)), when~t is 〈x, x〉 (or 〈y, y〉, respectively), we define
regression by using quantified variabley (or x, respectively); otherwise, we cannot ensure the correctness
of regression in the sense that the regressed formula is logically equivalent toW w.r.t. D, i.e., D |=
W ≡ R[W]. In particular, for anyLC2

sc regressable formulasW andW ′ such that|= W ≡ W ′, a correct
definition of regression should result inD |= R[W] ≡ R[W ′]. For example, in case (c), notice that

|= F (x, x, do(α, σ)) ≡ (∃y.x = y∧F (x, y, do(α, σ)),

and it is easy to see that our definition ofR ensures that

|= R[F (x, x, do(α, σ))] ≡ R[(∃y.x = y∧F (x, y, do(α, σ))].

Consider the following counterexample if we perform regression by directly substituting〈x, y〉 by 〈x, x〉
(or 〈y, y〉) on the RHS of SSAs or precondition axioms.

Example 2 Assume thatD is a BAT ofLC2

sc , which includes an SSA
F (x, y, do(a, s)) ≡ a = A(x)∧(∃x.F1(x, y, s))∨F (x, y, s). (8)

10Notice that the action functions with different number of arguments always use different function symbols (i.e., different
names).

15

Consider anLC2

sc regressable formulaW = F (x, x, do(A(C), S0)). Then if we perform regression by
directly substituting〈x, y〉 with 〈x, x〉 on the RHS of Eq. (8), we getA(C) = A(x)∧(∃x.F1(x, x, S0))∨
F (x, x, S0)), which obviously will not be logically equivalent toW w.r.t. D. Indeed, in Eq. (8), the
variabley in F1 is free, but once substituted byx directly, it becomes quantified by∃x. at the front ofF1,
which should not happen.

Based on the above definition, we are able to prove the following theorems.

Theorem 2 SupposeW is anLC2

sc regressable formula, then the regressionR[W] defined above termi-
nates in a finite number of steps.

Proof of Theorem 2. This immediately follows from Def. 1, acyclicity of the TBoxaxioms, and from
the assumption thatRBox axioms are compiled into the SSAs and consequently do not participate in
regression. Note also that each time, the application ofR either goes from a formula to a sub-formula, or
expands aPoss or a fluent atom using a corresponding precondition axiom or an SSA, but only finitely
many expansions are possible becauseW mentions only finitely many ground situation terms. �

According to the definition of the modified regression operator, the following statement can be proved
by induction over the structure ofW . The detailed proof is provided in Appendix B.2.

Theorem 3 SupposeW is anLC2

sc regressable sentence with the background BATD in languageLC2

sc .
Then,R[W] is anLC2

sc sentence uniform inS0 and it is aC2 sentence when the situation argumentS0 is
suppressed. Moreover,D |= W ≡ R[W].

Consequently, we have the following theorem.

Theorem 4 SupposeW is anLC2

sc regressable sentence with the background BATD in languageLC2

sc .
Then,D |= W iff DS0 |= R[W].

Proof of Theorem 4. Part of our proof is almost word-by-word repetition of the laborious proof of the
regression theorem given in [66]. Therefore, we will only briefly explain the idea of what has been done
in [66] and provide details for what is different.

In [66], Pirri and Reiter first proved that “a BATD is satisfiable iffDS0 ∪ Duna is satisfiable”. It is
trivial that if a BATD is satisfiable thenDS0 ∪Duna is satisfiable. For the other direction, Pirri and Reiter
proved it by constructing a model step by step forD that interprets axioms inD− (DS0 ∪Duna) properly,
starting from any model ofDS0 ∪ Duna. Similarly, we can also prove that “a BATD in LC2

sc is satisfiable
iff DS0 ∪Duna is satisfiable”. We use the same idea with the following modification. For any modelM of
DS0 ∪ Duna, we also add interpretations for the defined concepts, such that the interpretations forG(x)[s]
are true iff those ofφG(x)[s] are.

Subsequently, in [66], Pirri and Reiter proved the following lemma that “supposeW is a regressable
sentence with the background BATD that is uniform inS0, thenD |= W iff DS0∪Duna |= W ” by using
the above result. This lemma is also valid forLC2

sc . That is, “supposeW is anLC2

sc regressable sentence
with the background BATD in LC2

sc , if W is uniform inS0, thenD |= W iff DS0 ∪ Duna |= W ”.
Now we prove the following statement: “supposeW is anLC2

sc regressable sentence with the back-
ground BATD in LC2

sc , if W is uniform in S0 andW is a C2 formula whenS0 is suppressed, then
DS0 ∪ Duna |= W iff DS0 |= W ”. It is trivial to see that ifDS0 |= W , thenDS0 ∪ Duna |= W .
For the other direction, it is the same as proving ifDS0 ∪Duna ∪{¬W} is inconsistent, so isDS0 ∪{¬W}.
We can prove it by contradiction. That is, assume thatDS0 ∪ {¬W} is consistent, then there is a model

16

M0, such thatM0 |= DS0 ∪ {¬W}. We can then construct a modelM0 such thatM has the same domain
on objectsort. For any action functionsA(~x1), B(~x2), we constructM so that(A(~x1))

M 6= (B(~x2))
M for

any variable vectors~x1 and~x2 if symbolA is different fromB; and for any object terms~t1 = 〈t1,1 · · · t1,n〉
and~t2 = 〈t1,1 · · · t1,n〉 and anyn-ary action functionA, (A(~t1))

M = (A(~t2))
M iff (t1,i)

M = (t2,i)
M for all

i = 1..n. Moreover,SM

0 = [] (i.e., the empty sequence). SinceDS0 ∪ {¬W} has no action terms in it,M
is well defined and is a model ofDS0 ∪ Duna ∪ {¬W}, which is a contradiction.

Hence, all in all, we have:
SupposeW is anLC2

sc regressable sentence with the background BATD in LC2

sc , if W is uniform inS0 and
W is aC2 formula whenS0 is suppressed, thenD |= W iff DS0 |= W .

Then, by Theorem 3 and the above proved statement, we haveD |= W iff D |= R[W] iff DS0 |= R[W].
�

We can also obtain the following theorem about decidabilityof the projection problem forLC2

sc re-
gressable sentenceW . (In particular, whenW is of the formexecutable(S) for some ground situationS,
it becomes the executability problem.)

Theorem 5 SupposeW is anLC2

sc regressable sentence with the background BATD in languageLC2

sc .
Then, determining whetherD |= W is decidable.

Proof of Theorem 5. According to Theorem 4,D |= W iff DS0 |= R[W], whereR[W] and the axioms
in DS0 areC2 formulas. Therefore, determining whetherD |= W is equivalent to determining whether
DS0∧¬R[W] (DS0 can be considered as a conjunction of all axioms in the initial theory) is unsatisfiable or
not, which is a decidable problem, according to the fact thatthe satisfiability problem inC2 is decidable.
�

This theorem is important because it guarantees that the projection and executability problems inLC2

sc

are decidable even if the initial KBDS0 is incomplete. In Section 6, we give a detailed example that
illustrates the basic reasoning tasks described above and reduction techniques for dealing with properties
that need more than two variables, and show that usingLC2

sc , one can model realistic dynamic domains
such as school enrolment services.

5.2 Some Computational Complexity Results

We now consider the computational complexity of solving theprojection problems inLC2

sc . We introduce
a few new notations for later convenience.

For anyLC2

sc regressable formulaW , let functionsize(W) be the size of formulaW , which is defined
recursively:

1. If W is atomic (including equality), thensize(W) = 1.

2. IfW is of the form¬W1, ∃x.W1, ∀x.W1, ∃≥nx.W1, ∃≤nx.W1, ∃y.W1, ∀y.W1, ∃≥ny.W1, or∃≤ny.W1,
thensize(W) = size(W1) + 1.

3. If W is of the formW1∧W2 orW1∨W2, thensize(W) = size(W1) + size(W2) + 1.

4. If W is of the formW1⊃W2, thensize(W) = size(¬W1∨W2).

5. If W is of the formW1 ≡W2, then
size(W) = size(W1⊃W2) + size(W2⊃W1) + 1.

17

For any situation termσ = do([α1, · · · , αk], S0), let functionsitLength(σ)=k represent the number
of action terms mentioned inσ. In particular,sitLength(S0)=0. For any formulaW , let function

height(W) = max
σ

{sitLength(σ) | σ appears inW}.

Given any BATD, for any fluentF whose SSA is of the form Eq. (4), let functionnumFluent(F) be the
number of fluents (including repeated ones) appearing inΦF (the RHS of the SSA of fluentF), and let

numFluentSSA(D) = max
F

{numFluent(F) | anyF that has an SSA inD}.

Besides, let
sizeSSA(D) = max

F
{size(ΦF) | any SSAF (~x, do(a, s)) ≡ ΦF in D}.

Note thatnumFluentSSA(D) andsizeSSA(D) are different: the former one is the maximal number of
fluents appearing in the formulas that are on the RHS of the SSAs of a given BATD, and the latter one
is the maximal size of the formulas (including non-fluent atoms and logical connectives) that are on the
RHS of the SSAs of a given BATD. Moreover, notice that onceD is given,numFluentSSA(D) and
sizeSSA(D) are fixed. In general, we have the following result.

Theorem 6 Consider anyLC2

sc regressable formulaW with a given BATD in LC2

sc . Then, answering the
query whetherD |= W is in the complement ofNEEXPTIME.

Proof of Theorem 6. According to the discussion in the proof of Theorem 5, determining whether
D |= W is equivalent to determining whetherDS0∧¬R[W] is unsatisfiable or not, i.e., the complement
problem of whetherDS0∧¬R[W] is satisfiable or not.

Note thatDS0 ∧¬R[W] is aC2 formula (when the situation argumentS0 is suppressed). Moreover,
according to [68], the satisfiability problem in languageC2 is in NEXPTIME, that is, NTIME(2l) if the
input size of the formula isl. Since for any givenD, the size ofDS0 is fixed, the size of¬(DS0∧¬R[W]) is
in Θ(n1), wheren1 = size(R[W]). Hence, answering the query whetherD |= W is in co-NTIME(2n1),
i.e., the complement of NEXPTIME w.r.t. the size ofR[W].

However, in the worst case, computingR[W] takes EXPTIME w.r.t. n, wheren = height(W), and
causes exponential blow-up in the size of formulaW w.r.t. n. In detail, without loss of generality, we
assume that there is no defined concept inW . Otherwise, each defined concept will be replaced by its
definitions from the TBox axioms with fixed steps ofLC2

sc regression. This can cause no more than a con-
stant increase to the size of the original formula, because TBox is fixed (onceD is given), TBox is acyclic,
there are only finitely many TBox axioms and the size of the formula on the RHS of each TBox axiom is
limited from above by a constant. Letk = numFluentSSA(D) andh = max(2, sizeSSA(D)). Bothk
andh are constants for the given BATD, andh > k. Moreover, since all action functions inLC2

sc have no
more than two arguments, the regression on equalities between action terms (seea. in the above definition
of theLC2

sc regression operator) no more than triples the size of the regressed atomic formulas (including at
most1 conjunction operator and at most2 equality atoms), and such regression applies only once to each
equality between action terms. The worst case scenario happens if each SSA mentions allk fluents and
the size of the RHS of the SSA ish. In this case, each step of regression on a fluent atom createsat mosth
new branches in a regression tree (k out of theseh branches have one atomic fluent as its node). The next
application of the regression operator replaces fluents in thesek nodes by the RHS of the corresponding
SSAs, and so on. If the length of the longest situation term inW before regression isn, then the height
of the resulting regression tree is no more thann + 1 (includingn levels of regressions on fluents and at
most1 level of regression on the equalities between actions). Finally, we are looking for a total number of

18

leaves in this tree (this number is the size of the regressed formulaR[W]), which is

size(R[W]) ≤ 3m(1 + (h− 1)

n−1∑

i=0

ki) ≤

{
3(h− 1)mn + 3m if k = 1
3h(mkn) if k > 1.

Clearly,3h(mkn) is no more than3h(m2n log2(k+1)). Formally, it is straightforward to prove by induc-
tion according to the recursive definition of the regressionoperator thatsize(R[W]) ∈ O(mn) when
k = 1, and size(R[W]) ∈ O(mkn) (which is the same assize(R[W]) ∈ O(m2n log2(k+1))) when
k ≥ 2. Overall, in the worst case scenario, answering the query whetherD |= W is in the comple-
ment of NTIME(23hm2n log2(k+1)

) according to the above discussion, whereh andk are constants. That is,
answering the query whetherD |= W is in the complement of NEEXPTIME (non-deterministic doubly-
exponential time). �

We further consider some special cases of BATs that have better computational complexity results, but
less expressive power.

We say that the SSA for a fluentF is context-freeif the SSA ofF has the syntactic form

F (~x, do(a, s)) ≡ γ+
F (~x, a)∨F (~x, s)∧¬γ−F (~x, a),

that is, both thepositive conditionγ+
F (~x, a) and thenegative conditionγ−F (~x, a) are situation indepen-

dent (see Chapter 4 in [70]). According to this definition, itis easy to see that all the context conditions
(ψ+

i (~x(i,+))[s] for all 1 ≤ i ≤ m+ andψ−
j (~x(j,−))[s] for all 1 ≤ i ≤ m−) in Eq. (4) are situation inde-

pendent (i.e., there is nos in any of the context conditions). Note that there is a special case if a positive
(or negative, respectively) effect only depends on some action term (i.e., there is no context condition, or,
the corresponding context condition is always equivalent to true). Then, we have the following theorem
about the computational complexity for reasoning about projection problems.

Theorem 7 Given a BATD in LC2

sc , suppose that the SSA for a fluentF is context-free. Then, the com-
putational complexity of answering the queries of the formF (~X, σ) is in co-NEXPTIME, where ~X is a
vector of object constants andσ is a ground situation term.

Proof of Theorem 7. The result follows from the analysis of the computational complexity of the pro-
jection problem in [70] (Chapter 4), which shows that the complexity is at most linear to the complexity of
evaluating a sentence in the initial situation under such assumptions. In fact, from the proof of Theorem 6,
when a fluentF is context-free,numFluent(F) = 1. Let size(ΦF) = h0, then the number of leaves
in the regression tree ofF (~X, σ), i.e., the size of the regressed formula, equalsn(h0 − 1) + 1, which is
in O(n). Again, using the same reasoning as in the proof of Theorem 6,the problem of answering the
queries of the formF (~X, σ) is the complement of the problem whetherDS0∧¬F (~X, σ) is satisfiable or
not. Hence, its computational complexity is inco-NTIME(2O(n)), i.e, it is inco-NEXPTIME. �

Using the same reasoning as in Theorem 7, in general, we have the following corollary.

Corollary 1 Given a BATD in LC2

sc , suppose that every SSA inD is context-free. Then, for anyLC2

sc

regressable formulaW , answering the query whetherD |= W is in co-NEXPTIME.

5.3 A Description-Logic Based Situation Calculus

We see from Theorem 6 that the computational complexity of solving the projection problems inLC2

sc

(using the regression mechanism) is quite high. On the otherhand, with context-free SSAs, although we
can gain better complexity (see Theorem 7), the expressive power of context-free SSAs is quite limited.

19

Motivated by the observation that some DL languages have better computational complexity for concept
satisfiability problems and/or ABox consistency problems thanC2 (see Section 3.2) and the idea of re-
stricting the context conditions in the SSAs similar to context-free SSAs, we now consider another type
of restriction on BATs in the language ofLC2

sc . We would like to get better complexity results than that
of Theorem 6 when solving the projection problem in general.At the same time, we consider a frag-
ment that is more expressive than context-free SSAs. Moreover, we will see that this language has natural
connections with DLs.

We first consider a sub-language ofFO2, denotedFODL. The language ofFODL includes constants,
monadic and dyadic predicates. Moreover, it is a union of twosub-languages:FODL = FOx

DL ∪ FOy
DL,

where the detailed definition ofFOx
DL is provided below andFOy

DL is obtained by renaming everyx
with y and everyy with x for every formula inFOx

DL. The setFOx
DL is a minimal set of formulas built

inductively as follows:

• true andfalse are inFOx
DL.

• If AC is a monadic predicate name, thenAC(x) is in FOx
DL.

• If b is a constant, thenx = b is inFOx
DL.

• If φ is inFOx
DL, then¬φ is in FOx

DL.

• If φ andψ are inFOx
DL, thenφ∧ψ andφ∨ψ are inFOx

DL.

• If φ(x) is inFOx
DL, andφ(x) has at most one free variablex, andR is a dyadic predicate name,φ̃(y)

is the dual formula ofφ(x), obtained by renaming everyx (both free and bound) withy and everyy
(both free and bound) withx in φ, then∃y.R(x, y)∧φ̃(y) and∀y.R(x, y)⊃ φ̃(y) are inFOx

DL.

• If φ is in FOx
DL, φ̃ is the dual formula ofφ, obtained by renaming everyx (both free and bound)

with y and everyy (both free and bound) withx in φ, then[∃y.]φ̃(y) and [∀y.]φ̃(y) are inFOx
DL,

where[∃y.] ([∀y.], respectively) means that if̃φ has a free variabley, then it is quantified by∃y (∀y,
respectively); otherwise, there is no need to add the quantifier.

The semantics ofFODL are the same as the usual semantics ofFO2. Notice that for anyφ ∈ FOx
DL

(φ ∈ FOy
DL, respectively),φ̃ is in FOy

DL (FOx
DL, respectively). Moreover, it is easy to see that any

sentence (i.e., closed formula) inFODL is in bothFOx
DL andFOy

DL. We then are able to prove the
following lemma (the detailed proof is provided in AppendixB.3).

Lemma 1 There are syntactic translations betweenFODL and the DL languageALCO(U), i.e., they are
equally expressive. Moreover, such translations lead to nomore than a linear increase in the size of the
translated formula.

Recall from the review of DLs in Section 3.1 that the satisfiability problem of a concept and/or the
consistency problem of an ABox in the DL languageALCO(U) can be solved in EXPTIME. This is an
improvement overC2 andFO2 (see Section 3.2). For this reason we would like to investigate a new SC
based onFODL.

Definition 2 We say that the SSA for a fluentF is ALCO(U)-restrictedif the SSA ofF has the form of
Eq. (4), where each context conditionψ+

i (or ψ−
i , respectively) is a formula inFODL when all situation

20

variables are suppressed. Moreover, we say that the set of SSAsDss in a BATD is ALCO(U)-restrictedif
every axiom of a primitive dynamic concept inDss is ALCO(U)-restricted and every axiom of a dynamic
role inDss is bothALCO(U)-restricted and context-free.

We say that a concept definition of the form Eq. (5) for any defined conceptG (including static or
dynamic) isALCO(U)-restrictedif the formulaφG(x) on the RHS of Eq. (5) is inFODL. Moreover, we
say that the acyclic TBoxDT of a BATD is ALCO(U)-restrictedif every axiom in the set isALCO(U)-
restricted.

We can then prove the following lemma (its proof is provided in Appendix B.4).

Lemma 2 Consider a BATD in LC2

sc whoseDss and DT are ALCO(U)-restricted. LetW be anLC2

sc

regressable formula that is uniform in a ground situationS and has no appearance ofPoss. Let n =
sitLength(S) andm = size(W). Then, ifW with the situation termS suppressed is inFODL, there
is a ΦW in FODL such thatR[W] is equivalent toΦW [S0]. It takes no more thanc · n · size(ΦW) steps
of deduction fromR[W] (with S0 suppressed) to find suchΦW , wherec is a positive integer. Moreover,
size(ΦW) is in O(2hmn+3h2n2

) for some positive integerh. That is, the size ofΦW is no more than
exponential in the size ofW .

Then we have the following complexity result.

Theorem 8 Consider a BATD in LC2

sc whoseDss andDT are ALCO(U)-restricted. LetDS0 , with the
situation termS0 suppressed, be inFODL. LetW be anyLC2

sc regressable sentence inD that is uniform
in a ground situationS and has no appearance ofPoss. If W , with the situation termS suppressed, is in
FODL, then answering the query whetherD |= W can be solved inEEXPTIME.

Proof of Theorem 8. First,D |= W iff DS0 |= R[W] by Theorem 4. Also, by Lemma 2, we can find a
formulaΦ in FODL in no more than exponential time wrt the size ofW , such that|= Φ[S0] ≡ R[W], and
the size ofΦ is no more than exponential in the size ofW . Hence,DS0 |= R[W] iff DS0 |= Φ[S0]. It is the
same as answering whetherDS0∧¬Φ[S0] is unsatisfiable or not, which is a complement problem of whether
DS0∧¬Φ[S0] is satisfiable or not. LetΨ be the formulaDS0∧¬Φ[S0] with situation termS0 suppressed, and
it is easy to see thatΨ is in FODL, becauseDS0 is inFODL when the situation termS0 is suppressed and
Φ is in FODL. Ψ has the same size asDS0∧¬Φ[S0], and it is unsatisfiable iffDS0∧¬Φ[S0] unsatisfiable.
Using the syntactic translation functionπ defined in the proof of Lemma 1 (see Appendix B.3),π(Ψ) is
a concept in DL languageALCO(U). To decide whether a conceptπ(Ψ) is satisfiable inALCO(U) is in
EXPTIME with respect to the size ofπ(Φ), which is linear in the size ofΦ. Hence, deciding whether
DS0 |= R[W] is in co-EXPTIME wrt the size ofDS0∧¬Φ[S0]. However, whenD is given the size ofDS0

is fixed, hence, deciding whetherDS0 |= R[W] is in fact inco-EXPTIME wrt the size ofΦ[S0] (which is
the same as the size ofΦ). Again, because the size ofΦ is exponential in the size ofW , deciding whether
DS0 |= R[W] is in the complement of EEXPTIME (wrt the size ofW), which is the same as EEXPTIME.
�

Recall from the review of DLs in Section 3.1 that the satisfiability problem of a concept and/or the
consistency problem of an ABox in the DL languageALCQO(U) can also be solved in EXPTIME. For this
reason, similar to the development above, we can extendFODL to a sub-language ofC2, sayFODL+,
by adding counting quantifiers toFODL. Formally,FODL+ = FOx

DL+ ∪ FOy
DL+, whereFOx

DL+ is a

minimal set of formulas built inductively below, andFOy
DL+ = {φ̃ | φ ∈ FOx

DL+}.

• true andfalse are inFOx
DL+.

21

• If AC is a monadic predicate name, thenAC(x) is in FOx
DL+.

• If b is a constant, thenx = b is inFOx
DL+.

• If φ is inFOx
DL+, then¬φ is in FOx

DL+.

• If φ andψ are inFOx
DL+, thenφ∧ψ andφ∨ψ are inFOx

DL+.

• If φ(x) is in FOx
DL+, andφ(x) has at most one free variablex, andR is a dyadic predicate name,

φ̃(y) is the dual formula ofφ(x), obtained by renaming everyx (both free and bound) withy and
everyy (both free and bound) withx in φ, then∃y.R(x, y)∧φ̃(y), ∀y.R(x, y)⊃ φ̃(y), ∃≥ny.R(x, y)∧

φ̃(y) and∃≤ny.R(x, y)∧φ̃(y) for anyn ∈ N are inFOx
DL+.

• If φ is in FOx
DL+, φ̃ i dual formula ofφ, obtained by renaming everyx (both free and bound)

with y and everyy (both free and bound) withx in φ, then[∃y.]φ̃(y), [∀y.]φ̃(y), [∃≥ny.]φ̃(y) and
[∃≤ny.]φ̃(y) for any n ∈ N are inFOx

DL+, where[∃y.] ([∀y.], [∃≥ny.], or [∃≥ny.], respectively)
means that if̃φ has a free variabley, then it is quantified by∃y (∀y, ∃≥ny, or ∃≥ny, respectively);
otherwise, there is no need to add such quantifier.

The semantics ofFODL+ is the same as the usual semantics ofC2.
Similar to Lemma 1, we are able to prove the following lemma.11

Lemma 3 There are syntactic translations betweenFODL+ and the DL languageALCQO(U), i.e., they
are equally expressive. Moreover, such translations lead to no more than a linear increase in the size of
the translated formula.

Similarly, we say that the SSA for a fluentF is ALCQO(U)-restrictedif the SSA ofF has the form of
Eq. (4), where each context conditionψ+

i (or ψ−
i , respectively) is a formula inFODL+ when all situation

variables are suppressed. Moreover, we say that the set of SSAs Dss in a BAT isALCQO(U)-restrictedif
every axiom of a primitive dynamic concept inDss isALCQO(U)-restricted and every axiom of a dynamic
role in Dss is bothALCQO(U)-restricted and context-free. We say that a concept definition of the form
Eq. (5) for any defined conceptG (including static or dynamic) isALCQO(U)-restrictedif the formula
φG(x) on the RHS of Eq. (5) is inFODL+. Moreover, we say that the acyclic TBoxDT of a BAT D is
ALCQO(U)-restricted.

Similar to Lemma 2, we can also prove a lemma forALCQO(U)-restricted regressable formulas as
follows.

Lemma 4 Consider a BATD in LC2

sc whoseDss andDT are ALCQO(U)-restricted. LetW be anLC2

sc

regressable formula that is uniform in a ground situationS and has no appearance ofPoss. Let n =
sitLength(S) andm = size(W). Then, ifW with the situation termS suppressed is inFODL+, there
is a ΦW in FODL+ such thatR[W] is equivalent toΦW [S0]. It takes no more thanc · n · size(ΦW) steps
of deduction fromR[W] (with S0 suppressed) to find suchΦW , wherec is a positive integer. Moreover,
size(ΦW) is in O(2hmn+3h2n2

) for some positive integerh. That is, the size ofΦW is no more than
exponential in the size ofW .

11The proof of Lemma 3 is exactly the same as the proof of Lemma 1 except that we only need to add translation for counting
quantifiers, which is straightforward. Hence, the proof of Lemma 3 is omitted.

22

Proof of Lemma 4. The proof is exactly the same as the proof of Lemma 2 (see Appendix B.4), where
FODL (FOx

DL, or FOy
DL, respectively) is replaced byFODL+ (FOx

DL+, or FOy
DL+, respectively), and

we need to consider sub-cases constructed using the counting quantifiers∃≥n and∃≤n in the proof. But
the proof for cases that are constructed using∃≥n and∃≤n are the same as the proof for the case using the
∃-quantifier (see case (d) of the inductive step of the nested induction on the structure of the regressable
formulaW in the proof of Lemma 2, Appendix B.4). Hence, the detailed proof of Lemma 4 is omitted
here. �

As a consequence, similar to the proof of Theorem 8, we also have the following result.

Theorem 9 Consider a BATD in LC2

sc whoseDss andDT are ALCQO(U)-restricted. LetDS0, with the
situation termS0 suppressed, be inFODL+. LetW be anyLC2

sc regressable sentence inD that is uniform
in a ground situationS and has no appearance ofPoss. If W , with the situation termS suppressed, is in
FODL+, then answering the query whetherD |= W can be solved inEEXPTIME.

6 An Example of Regression inLC2

sc

In this section, we give an example of a BATD in LC2

sc to illustrate the ideas described above.
Example 1 Consider some university that provides student administration and management services on
the Web: admitting students, paying tuition fees, enrolling or dropping courses and entering grades.

Although the number of object arguments in the predicates can be at most two, sometimes, we are
still able to handle those features of the systems that require more than two arguments. For example, the
gradez of a studentx in a coursey may be represented as a predicategrade(x, y, z) in the general FOL
(i.e., with three object arguments). Because the number of distinct grades is finite and they can be easily
enumerated as “A”, “B”, “C” or “D”, we can handlegrade(x, y, z) by replacing it with a finite number
of extra predicates, saygradeA(x, y), gradeB(x, y), gradeC(x, y) andgradeD(x, y) such that they all
have two variables only. However, the restriction on the number of variables limits the expressive power
of the language if more than two arguments vary over infinite domains (such as energy, weight, time, etc).
Despite this limitation, we conjecture that many web services still can be represented with at most two
variables either by introducing extra predicates (just like we did for the predicategrade) or by grounding
some of the arguments if their domains are finite and relatively small. Intuitively, it seems that most of the
practical dynamical systems can be specified by using properties and actions with small arities, hence the
techniques for arity reductions mentioned above and below require no more than polynomial increase in
the number of axioms. The high-level features of our exampleare specified as the following concepts and
roles.

• Primitive static concepts:
person(x) (x is a person);course(x) (x is a course provided by the university).

• Primitive dynamic concepts:incoming(x, s) (x is an incoming student in the situations, it is true when
x was admitted).
• Defined dynamic concepts:eligFull(x, s) (x is eligible to be a full-time student by paying more than
5000 dollars tuition fee);eligPart(x, s) (x is eligible to be a part-time student by paying no more than
5000 dollars tuition);qualFull(x, s) (x is a qualified full-time student if he or she pays full time tuition
fee and takes at least 4 courses);qualPart(x, s) (x is a part-time student if he or she pays part-time tuition
and takes 2 or 3 courses).
• Static role:preReq(x, y) (coursex is a prerequisite for coursey).

23

• Dynamic roles:hasGrade(x, y, s) (x has a grade for coursey in the situations), tuitPaid(x, y, s)
(x paid tuition feey in the situations), enrolled(x, y, s) (x is enrolled in coursey in the situations),
completed(x, y, s) (x completes coursey in the situations), gradeA(x, y, s), gradeB(x, y, s), gradeC(x, y, s),
gradeD(x, y, s).

Web services are specified as actions:reset (at the beginning of each academic year, the system
is being reset so that students need to pay tuition fee again to become eligible),admit(x) (the university
admits studentx), payTuit(x, y) (x pays tuition fee with the amount ofy), enroll(x, y) (x enrols in course
y), drop(x, y) (x drops coursey), enterA(x, y) (enter grade ”A” for studentx in coursey), enterB(x, y),
enterC(x, y), enterD(x, y).

The BAT is as follows (most of the axioms are self-explanatory).

Precondition Axioms:
Poss(reset, s) ≡ true,
Poss(admit(x), s) ≡ person(x)∧¬incoming(x, s),
P oss(payTuit(x, y), s) ≡ incoming(x, s)∧¬tuitPaid(x, y, s),
P oss(drop(x, y), s) ≡ enrolled(x, y, s)∧¬completed(x, y, s),
P oss(enterA(x, y), s) ≡ enrolled(x, y, s)∧¬completed(x, y, s),

and the precondition axiom forenterB(x, y) (enterC(x, y) and enterD(x, y), respectively) is similar
to the axiom forenterA(x, y). Moreover, in the traditional SC, the precondition for action enroll(x, y)
would be equivalent to

(∀z)(preReq(z, y)∧completed(x, z, s)∧¬gradeD(x, z, s)).

However, in the modified SC, we only allow at most two object variables (including free or bound). Fortu-
nately, the number of the courses offered in a university is limited (finite and relatively small) and relatively
stable over years (if we manage the students in a college-wise range or department-wise range, the number
of courses may be even smaller). Therefore, we can specify the precondition for the actionenroll(x, y)
for each instance ofy. That is, assume that the set of courses is{CS1, · · · , CSn}, the precondition axiom
for eachCSi (i = 1..n) is

Poss(enroll(x, CSi), s) ≡
(∀y)(preReq(y, CSi) ⊃ completed(x, y, s)∧¬gradeD(x, y, s)).

On the other hand, when we do this transformation, we can omitthe statementscourse(x) for each course
available at the university in the initial theory.

Successor State Axioms: The SSAs for the fluentsgradeB(x, y, s), gradeC(x, y, s) andgradeD(x, y, s)
are very similar to the one for fluentgradeA(x, y, s). Therefore they are not repeated here. They ensure
that for each student and each course there is no more than onegrade assigned. The SSA for the fluent
hasGrade(x, y, s) is also similar and for this reason it is omitted.

incoming(x, do(a, s)) ≡ a=admit(x)∨incoming(x, s),

tuitPaid(x, y, do(a, s)) ≡ a=payTuit(x, y)∨tuitPaid(x, y, s)∧a 6= reset,
enrolled(x, y, do(a, s)) ≡ a=enroll(x, y)∨

enrolled(x, y, s)∧¬(a=drop(x, y)∨a=enterA(x, y)∨
a=enterB(x, y)∨a=enterC(x, y)∨a=enterD(x, y)),

24

completed(x, y, do(a, s)) ≡ a=enterA(x, y)∨a=enterB(x, y)
∨a=enterC(x, y)∨a=enterD(x, y)∨
completed(x, y, s)∧a 6= enroll(x, y),

gradeA(x, y, do(a, s)) ≡ a=enterA(x, y)∨gradeA(x, y, s)∧
¬(a=enterB(x, y)∨a=enterC(x, y)∨a=enterD(x, y)),

and the SSA for fluentgradeB(x, y, s) (for gradeC(x, y, s) and forgradeD(x, y, s), respectively) is sim-
ilar to the one for fluentgradeA(x, y, s).

Acyclic TBox Axioms: (no static TBox axioms in this example)
eligFull(x, s) ≡ (∃y)(tuitPaid(x, y, s)∧y > 5000),
eligPart(x, s) ≡ (∃y)(tuitPaid(x, y, s)∧y ≤ 5000),
qualFull(x, s) ≡ eligFull(x, s)∧(∃≥4y)enrolled(x, y, s),
qualPart(x, s) ≡ eligPart(x, s)∧(∃≥2y)enrolled(x, y, s)

∧(∃≤3y)enrolled(x, y, s).
An example of the initial theoryDS0 could be the conjunctions of the following sentences:(∀x, y)¬paidTuit(x, y, S0),
(∀x)incoming(x, S0) ⊃ x = P2∨x = P3, preReq(CS1, CS4)∨preReq(CS3, CS4), (∀x)x 6= CS4 ⊃
¬(∃y).prePeq(y, x), person(P1),· · · , person(Pm).

One can also imagine that some RBox axioms, for example

gradeA(x, y, s)⊃hasGrade(x, y, s),

may be used for taxonomic reasoning in this domain.
Finally, we give an example of regression of anLC2

sc regressable formula:

R[(∃x).qualFull(x, do([admit(P1), payTuit(P1, 6000)], S0))]
= R[(∃x).eligFull(x, do([admit(P1), payTuit(P1, 6000)], S0))∧

(∃≥4y)enrolled(x, y, do([admit(P1), payTuit(P1, 6000)], S0))]
= · · ·
= (∃x).(∃≥4y)enrolled(x, y, S0)∧((∃y)R[y > 5000∧

tuitPaid(x, y, do([admit(P1), payTuit(P1, 6000)], S0))])
= · · ·
= (∃x).(∃≥4y)enrolled(x, y, S0)∧((∃y).tuitPaid(x, y, S0)∧

y > 5000∨(x = P1∧y = 6000∧y > 5000)),

which is false given the above initial theory.
Suppose we denote the above BAT asD. Given goalG, for example∃x.qualFull(x), and a composite

web service starting from the initial situation, for example,
do([admit(P1), payTuit(P1, 6000)], S0) (we denote the corresponding resulting situation asSr). We can
check if the goal is satisfied after the execution of this composite web service by solving the projection
problem whetherD |= G[Sr]. In our example, this corresponds to solving whetherD |= ∃x.qualFull(x, Sr).
We may also check if a given (ground) composite web serviceA1;A2; · · · ;An is possible to execute start-
ing from the initial state by solving the executability problem whetherD |= executable(do([A1, A2, · · · , An], S0)).
For example, we can check if the composite web serviceadmit(P1); payTuit(P1, 6000) is possible to be
executed from the starting state by solving whetherD |= executable(Sr). Note that both entailment prob-
lems can be decided (not only for the query that we consider, but also for any query) because they can be
reduced to the satisfiability problem inC2.

25

7 Discussion and Future Work

The major consequence of the results proved above for the problem of service composition is the following.
If both atomic services and properties of the world that can be affected by these services have no more
than two parameters (other than the situation argument), then we are guaranteed that even in the state
of incomplete information about the world, one can always determine whether a sequentially composed
service is executable and whether this composite service will achieve a desired effect. The previously
proposed approaches made different assumptions: [56] assumes that the complete information is available
about the world when effects of a composite service are computed, and [25, 18] consider the propositional
fragment of the SC.

In [56, 61], it was proposed to use Golog for composition of Semantic Web services. Because our
primitive actions correspond to elementary services, it isdesirable to define Golog in our modified SC
too. It is surprisingly straightforward to define almost allGolog operators starting from ourC2-based SC.
The only restriction in comparison with the original Golog [41, 70] is that we cannot define the operator
(πx)δ(x), non-deterministic choice of an action argument, becauseLC2

sc regressable formulas cannot have
occurrences of non-ground action terms in situation terms.In the original Golog this is allowed, because
the regression operator is defined for a larger class of regressable formulas. However, everything else from
the original Golog specifications remain in force, no modifications are required. In addition to providing
a well-defined semantics for Web services, our approach alsoguarantees that the evaluation of tests in
Golog programs is decidable (w.r.t. an arbitrary initial theoryDS0), which is missing in other approaches
(unless one can make the closed world assumption or impose another restriction to regain decidability).

In [2], an integration of the description logicALCQIO (and its sub-languages) with an action formalism
for reasoning about Web services is proposed. Their paper starts with a description logic and then defines
services (actions) meta-theoretically: an atomic serviceis defined as the triple of sets of description logic
formulas. To solve the executability and projection problems the paper introduces an approach similar to
regression, and reduces this problem to description logic reasoning. The main aim is to show how the ex-
ecutability of sequences of actions and a solution to the projection problem can be computed, and how the
complexity of solving these problems depends on the chosen description logic. Despite that our paper and
[2] have common goals, our developments start differently and proceed in different directions. We start
from the syntactically restricted FO language (that is significantly more expressive thanALCQIO), use it
to construct the modified SC (where actions are terms), defineBATs in this language and show that by
augmenting (appropriately modified) regression with lazy unfolding one can reduce the executability and
projection problems to the satisfiability problem inC2, which is decidable. Furthermore,C2 formulas can
be translated toALCQIO(⊔,⊓,¬, |, id), if desired. Because our regression operator unfolds fluents “on
demand” and uses only relevant part of the (potentially huge) TBox , we avoid potential computational
problems that could occur if the TBox axiom were eliminated in advance. The advantage of [2] is that all
reasoning is reduced to reasoning in description logics (and, consequently, can be efficiently implemented
especially for less expressive fragments ofALCQIO). Our advantages are two-fold: the convenience of
representing actions as terms, and the expressive power ofLC2

sc . BecauseC2 andALCQIO(⊔,⊓,¬, |, id)
are equally expressive, there are some (situation suppressed) formulas in our SC that cannot be expressed
in ALCQIO (that does not allow complex roles). In particular, [79] shows thatALCQI has the same com-
plexity asC2, butALCQI is strictly less expressive thanC2: reflexive binary relations cannot be expressed
in ALCQI . The more recent papers of the same research group continue to explore the research direction
initiated in [2]: [59, 58] investigate complexity of planning in a description logic based action formalism,
[45] attempts to solve the ramification problem when a TBox consists of general concept inclusion axioms

26

(GCIs), and it is no longer an acyclic TBox as in [2].
Propositional dynamic logic (PDL) was derived from dynamic logic and has several nice properties:

PDL has the finite model property and is decidable [33]. Its satisfiability problem is EXPTIME-complete
[19, 67]. It turned out to be popular not only for reasoning about regular programs, but also as a logic
of action [24, 69]. It is well known that dynamic logic extends modal logic by associating to every
actiona, basic or complex, the modal operators[a] and〈a〉, thereby making it a multimodal logic. But,
in PDL quantification over actions is not allowed. More recently, [12, 16, 15] adaptPDL to reasoning
about actions by quantifying over actions and allowing for equality between actions. They use regression
and formulate the successor state axioms to solve the frame problem similar to [70]. However, in their
framework, action terms can be constants or variables only (the domain closure axiom for actions or
another similar assumption is required) and all fluents are propositional only. In our paper, actions in
BATs can be first-order terms, and the arity of each action function is no greater than two. Moreover, in
our language, fluents can be dynamic concepts or dynamic roles, not just propositional statements. Also,
as we mentioned above, it is possible to define complex Golog programs in our language.

In [84], the combined dynamic description languagePDLC has been proposed as an attempt to reason
about dynamics in description logics. From the perspectiveof modal logic, [84] combines polymodalK
with PDL and proves the decidability of the resulting hybrid logic.PDLC is somewhat related to the
products of modal logics (see [21, 22, 23] for the definition and survey of results). The issues related to
combining modal logics in a more general context are reviewed in [40]. The proposed dynamic description
logic is intended to define and classify concepts referring to actions and to describe dynamically changing
domains by means of varying extensions of concepts. A careful examination of the syntax ofPDLC
shows that actions can only be terms built from atomic actions (i.e., action variables) using standard
dynamic logic constructors (composition, alternation, iteration) and from formulas using tests. Another
restriction is that only concepts can change after executing an action:[α]C is a concept, whereα is an
action term andC is a concept, but there is no similar constructor for roles. However, for any atomic
formulaφ which is either an ABox statement (a : C, or aRb, wherea, b are object names) or a boolean
combination of ABox statements, and for any action termα, [α]φ is also a formula. The main contribution
of [84] is the proof of the theorem that the satisfiability problem forPDLC-formulas is decidable, but the
complexity of the decision problem and the design of efficient decision algorithms are not explored. Our
modified situation calculus can use action functions with arity no greater than two, and our dynamic roles
can change after executing a sequence of actions too. However, we do not prove the decidability of the
satisfiability problem for arbitrary formulas in our language. Moreover, we conjecture that this problem
is undecidable in our language. From the positive side, we demonstrate that the executability and the
projection problem are decidable for a wide class of queriesand because these problems are the most
essential in applications, the ability to solve these problems is sufficient for practical purposes. In [14, 13],
the authors propose a logic that is similar to [3, 2, 84]. In the proposed logic, one not only can reason
about complex actions similar to [84], but also can characterize actions by preconditions and conditional
effects as in [2]. Also, a tableau algorithm for deciding satisfiability proposed in [14, 13] is based on an
elaborated combination of previously known tableau algorithms.

In our paper [32], we investigated not only regression, but also progression as an alternative approach
to solving the projection problem. We considered a modified progression that is weaker than the classical
progression [44] for an incomplete KB givenlocal-effectSSAs defined in [47], . We proved that the
modified progression is sound wrt the classical progression, and we also provided an algorithm to compute
our progression for the case when the initial theory is a CNF-based KB (a set of disjunctions of equality-
based formulas). Recently, [82] considers a notion ofstrong progression, a slight variant of the classical

27

progression. In [82], it is shown that the strong progression is first-order definable for a BATD with local-
effect SSAs and the algorithm for computing progression wasproposed for a special case of a BATD with
the so-calledstrong local-effectSSAs. Whether or not a similar result applies to our modified SC, i.e.,
whether or not the strong progression isC2 definablefor a BATD in LC2

sc with local-effect SSAs, requires
further study. It is easy to check that in all special cases from [44, 77, 47] when the progression is FOL
definable, similar results can also be formulated for ourLC2

sc simply because we restrict the language to two
object variables only. There is research on updating in the description logic community that is somewhat
related to computing progression in the SC. [46] considers update of an ABox in a DL with an acyclic
TBox following [83] and also mentions that update can be applied to a boolean ABox formulated inC2,
but their update is defined in terms of a conjunction of primitive fluent literals, i.e., it is different from
classical progression (the exact relations remain unexplored). [26] uses a less expressive DL language
DL-Lite, but defines update for the case when TBox consists of GCIs in comparison to acyclic TBox that
is required in [46]. It is shown that the result of an update isalways expressible by aDL-Lite ABox and
a polynomial-time algorithm is provided that computes the update over aDL-Lite KB. The more recent
paper [11] from the same research group proposes to use Golog-like programs to efficiently reason about
actions over ontologies based on a functional view of ontology with cyclic TBox in the case when the
ontology is expressed inDL-Lite.

There are several other proposals to capture the dynamics ofthe world in the framework of description
logics and/or its slight extensions. Similar to our paper [32], Drescher and Thielscher [17] explored
reasoning about actions based on a description logic, but they concentrate on thefluent calculus[71]
instead of the situation calculus. Instead of dealing with actions and the changes caused by actions,
some of the approaches turned to extensions of description logics with temporal logics to capture the
changes of the world over time [1, 4], and some others combined planning techniques with description
logics to reason about tasks, plans and goals and exploit descriptions of actions, plans, and goals during
plan generation, plan recognition, or plan evaluation [27]. Both [1] and [27] review several other related
papers. Researchers also proposed to describe actions and the changes in terminological knowledge bases,
closely related to description logics. For example, C. Kemke [39] describes action concepts by a set of
parameters or object variables which refer to concepts in the object taxonomy, and precondition formulas
as well as effect formulas describing how the world changes through actions (similar to STRIPS planning
systems). In [7], all the actions ofe-services are specified as constants, all the fluents of the system
have only situation arguments, and BATs are translated under such assumptions into the description logic
framework. It has a limited expressive power without using arguments of objects for actions and/or fluents:
this may cause a blow-up of the knowledge base.

In the future, we plan to extend this work along several directions. It would be interesting to see how
our modified situation calculus can be used in real applications along the lines of SNAP, an e-commerce
ontology developed at IBM for an automated system for recommending products and services in the
domains of banking, insurance and telephony [60].

The most important direction for future research is an efficient implementation of practical scenarios
of reasoning inLC2

sc and in its fragments: an efficient implementation of a decision procedure for solving
the executability and projection problems. This procedureshould handle the modifiedLC2

sc regression and
perform efficient reasoning inDS0 . It should be straightforward to modify existing implementations of the
regression operator for our purposes, but it is less obviouswhich reasoner will work efficiently on practical
problems. There are several different directions that can be explored. First, according to [9] and Theorem
1, there exists an efficient algorithm for translatingC2 formulas toALCQIO(⊔,⊓,¬, |, id) formulas. Also,
if we consider fragments ofLC2

sc introduced in Section 5.3 that guarantee a better complexity of solving

28

the projection problem (see Theorem 8), more specifically, aBAT D whoseDss andDT areALCO(U)-
restricted, then a reasoning procedure working withDS0 should be able to handle the description logic
ALCO(U). Consequently, one can try to adapt tableaux-based decision procedures, such as those proposed
in [73, 74], for (un)satisfiability checking inALCQIO(⊔,⊓,¬, |, id) and inALCO(U). Second, one can try
to avoid any translation fromC2 toALCQIO(⊔,⊓,¬, |, id) and adapt resolution based automated theorem
provers for the purposes of reasoning inDS0 [37, 62]. Although in general, the worst-case computational
complexity for the reasoning problems inLC2

sc or in its fragments is high, some practical scenarios may
facilitate empirically efficient solutions to the projection and executability problems.

Finally, we would like to explore how our version of the SC canaccommodate events considered by
John McCarthy in [54].

Acknowledgments

Thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) and to the Depart-
ment of Computer Science of the University of Toronto for providing partial financial support.

Appendix
A Semantics of Description Logics

In this appendix, we list the semantics of description logicsyntax appearing in this paper. More details
can be found in [4].

Name Syntax Interpretation
Top ⊤ ∆I

Bottom ⊥ ∅
Nominal {b} bI ∈ ∆I

Negation ¬C ∆I\CI

Intersection C1 ⊓ C2 CI
1 ∩ CI

2

Union C1 ⊔ C2 CI
1 ∪ CI

2

Qualified >nR.C {δ ∈ ∆I |
at-least restriction |{δ1 ∈ ∆I | (δ, δ1) ∈ RI∧δ1 ∈ CI}| ≥ n}
Qualified 6nR.C {δ ∈ ∆I |
at-most restriction |{δ1 ∈ ∆I | (δ, δ1) ∈ RI∧δ1 ∈ CI}| ≤ n}
Existential ∃R.C {δ ∈ ∆I | ∃δ1.(δ, δ1) ∈ RI∧δ1 ∈ CI}
quantification
Value restriction ∀R.C {δ ∈ ∆I | ∀δ1.(δ, δ1) ∈ RI⊃δ1 ∈ CI}

Figure 1: The semantics of some common description logic concept constructors.

29

Name Syntax Interpretation
Universal role U ∆I × ∆I

Inverse R− {(δ1, δ) ∈ ∆I × ∆I | (δ, δ1) ∈ RI}
Complement ¬R ∆I × ∆I\RI

Intersection R1 ⊓ R2 RI
1 ∩RI

2

Union R1 ⊔ R2 RI
1 ∩RI

2

Role restriction R|C RI ∩ ∆I × CI

Identity id(C) {(δ, δ) ∈ ∆I × ∆I | δ ∈ CI}
Reflexive-transitive closureR∗

⋃
n≥0(R

I)n

Composition R1 ◦R2 {(δ1, δ2) ∈ ∆I × ∆I |
∃δ ∈ ∆I .(δ1, δ) ∈ RI

1 ∧(δ, δ2) ∈ RI
2}

Figure 2: The semantics of some common description logic role constructors.

Name Syntax Interpretation
Concept inclusion C1 ⊑ C2 CI

1 ⊆ CI
2

Role inclusion R1 ⊑ R2 RI
1 ⊆ RI

2

Concept equality C1 ≡ C2 CI
1 = CI

2

Role equality R1 ≡ R2 RI
1 = RI

2

Concept assertion C(b) bI ∈ CI

Role assertion R(b1, b2) (bI1 , b
I
2) ∈ RI

Figure 3: The semantics of terminological and assertional axioms.

B Proofs of Lemmas and Theorems

B.1 ALCQIO(⊔,⊓,¬, |, id) andC2 are Equally Expressive

In this subsection, we will provide detailed proof for Theorem 1. First, we prove the following two
lemmas.

Lemma 5 C2 is as expressive as the language ofALCQIO(⊔,⊓,¬, |, id). In addition, the translation
leads to no more than a linear increase in the size of the translated formula.

Proof of Lemma 5. Similar to the proof in [9], we present the translation function fromALCQIO(⊔,⊓,¬, |
, id) to C2 in several variants that behave as follows:τx〈〉 makesx be the free variable of the monadic
predicate, which is produced for its argument concept, while τ y〈〉 makes the free variable bey. So, for an
atomic conceptAC ∈ CN , τx〈C〉 = C(x), while τ y〈C〉 = C(y). For an atomic roleR ∈ CN , τx,y〈R〉
produces a dyadic predicateR(x, y), while τ y,x〈R〉 produces a dyadic predicateR(y, x). The translation
functionsτx〈〉, τ y〈〉, andτx,y〈〉 are presented in the following two tables (Table 4 and Table 5). τ y,x〈〉 is
obtained fromτx,y〈〉 by simultaneously exchanging all occurrences ofx andy (whether free or bound).

30

TermC τx〈C〉 τ y〈C〉
AC,AC ∈ NC AC(x) AC(y)
⊤ x = x y = y
⊥ ¬(x = x) ¬(y = y)
{b} x = b y = b
¬C ¬τx〈C〉 ¬τ y〈C〉
C1 ⊓ C2 τx〈C1〉∧τ

x〈C2〉 τ y〈C1〉∧τ
y〈C2〉

C1 ⊔ C2 τx〈C1〉∨τ
x〈C2〉 τ y〈C1〉∨τ

y〈C2〉
>nR.C ∃≥ny. τx,y〈R〉∧τ y〈C〉 ∃≥nx. τ y,x〈R〉∧τx〈C〉
6nR.C ∃≤ny. τx,y〈R〉 ∧ τ y〈C〉 ∃≤nx. τ y,x〈R〉 ∧ τx〈C〉
∀R.C ∀y. τx,y〈R〉⊃τ y〈C〉 ∀x. τ y,x〈R〉⊃τx〈C〉
∃R.C ∃y. τx,y〈R〉∧τ y〈C〉 ∃x. τ y,x〈R〉∧τx〈C〉

Figure 4: A translation fromALCQIO(⊔,⊓,¬, |, id) toC2 for concept constructors.

TermR τx,y〈R〉
R,R ∈ NR R(x, y)
U (universal role) x = x∧y = y
id(C) x = y∧τx〈C〉
¬R ¬τx,y〈R〉
R|C τx,y〈R〉∧τ y〈C〉
R− τ y,x〈R〉
R1 ⊓ R2 τx,y〈R1〉 ∧ τ

x,y〈R2〉
R1 ⊔ R2 τx,y〈R1〉 ∨ τ

x,y〈R2〉

Figure 5: A translation fromALCQIO(⊔,⊓,¬, |, id) toC2 for role constructors.

The translation functionτ〈〉 can now be defined simply asτ〈C〉
def
= τx〈C〉 for any conceptC,

τ〈R〉
def
= τx,y〈R〉 for any roleR.

Then, the translation of terminological and assertional axioms can be defined as:

τ〈C(b)〉
def
= ∃x.τx〈C〉∧x = b for any concept assertionC(b);

τ〈R(b, b′)〉
def
= ∃x.∃y.τx,y〈R〉∧x = b∧y = b′ for any role assertionR(b, b′);

τ〈C1 ⊑ C2〉
def
= ∀x.τx(C1)⊃τ

x(C2) for any concept inclusionC1 ⊑ C2 if any;

τ〈C1 ≡ C2〉
def
= ∀x.τx(C1) ≡ τx(C2) for any concept equalityC1 ≡ C2 if any;

τ〈R1 ⊑ R2〉
def
= ∀x.∀y.τx,y(R1)⊃τ

x,y(R2) for any role inclusionR1 ⊑ R2 if any.
For any DL interpretationI, and the conventional FO interpretationI1 such that∆I1 = ∆I and

ACI1 = ACI (RI1 = RI , respectively) for each atomic conceptAC (atomic roleR, respectively), it is
straightforward to prove by induction that(φ)I = (τ(φ))I1 for any formulaφ in ALCQIO(⊔,⊓,¬, |, id).

In addition, it is obvious that the translation fromALCQIO(⊔,⊓,¬, |, id) to C2 can be done in linear
time and causes no more than a linear increase in the size of the translated formula according to the
translation functionτ defined above. �

Lemma 6 The language ofALCQIO(⊔,⊓,¬, |, id) is as expressive asC2. In addition, the translation

31

leads to no more than a linear increase in the size of the translated formula.

Proof of Lemma 6. We proceed by structural induction on the syntax of formulasin C2 with up to two
free variablesx andy. Table 6 lists all possible kinds of formulasΓ(x) that have a single free variablex,
and shows how each kind is translated into a conceptCΓ. LetNC = {AC | AC(x) orAC(y) is a monadic
predicate in languageC2}, andNR = {R | R(x, y) orR(y, x) is a dyadic predicate in languageC2}.

Γ(x) CΓ Γ(x) CΓ

AC(x), AC ∈ NC AC Ψ()∧Φ(x) CΨ() ⊓ CΦ

R(x, b), R ∈ NR ∃R.{b} Ψ(x)∧Φ(x) CΨ ⊓ CΦ

R(b, x), R ∈ NR ∃R−.{b} ∃y.Ψ(x, y) ∃RΨ.⊤
R(x, x), R ∈ NR ∃ (R ⊓ id(⊤)).⊤ ∃≥ny.Ψ(x, y) >nRΨ.⊤
x = b {b} ∃≤ny.Ψ(x, y) 6nRΨ.⊤
x = x ⊤ ∃y.Ψ(x) CΨ

¬Ψ(x) ¬CΨ ∃≥ny.Ψ(x) CΨ

∃≤ny.Ψ(x) CΨ

Figure 6: A translation fromC2 toALCQIO(⊔,⊓,¬, |, id) for formulas with a single free variablex.

The translation of formulas with a single free variabley is identical, except for the case whenΓ(y) is of the
form ∃x.Ψ(x, y), (∃≥nx.Ψ(x, y), and∃≤nx.Ψ(x, y), respectively), when we need to invert the relationship
represented byΨ. So, it is translated as∃(RΨ)−.⊤ (>n(RΨ)−.⊤, and6n(RΨ)−.⊤, respectively).

Formulae of the formΓ(x, y) with two free variables are translated to rolesRΓ relatingx toy according
to Table 7.

Γ(x, y) RΓ

R(x, y),R ∈ NR R
R(y, x),R ∈ NR R−

x = y id(⊤)
¬Ψ(x, y) ¬RΨ

Ψ(x)∧Φ(y) CΨ × CΦ

Ψ(x, y)∧Φ() RΨ ⊓ RΦ()

Ψ(x, y)∧Φ(x) RΨ ⊓ (CΦ ×⊤)
Ψ(x, y)∧Φ(y) RΨ ⊓ (⊤× CΦ)
Ψ(x, y)∧Φ(x, y) RΨ ⊓ RΦ

Figure 7: A translation fromC2 to ALCQIO(⊔,⊓,¬, |, id) for formulas with two free variables.

In Table 7, notice that the role constructorC1 × C2 for any two conceptsC1 andC2 is introduced in [9],
whose semantics is defined asCI

1 ×CI
2 given any interpretationI. It is easy to see that× can be replaced

using the standard role constructors inALCQIO(⊔,⊓,¬, |, id), that is,

32

C1 × C2
def
= ((R ⊔ ¬R)|C1)

− ⊓ (R ⊔ ¬R)|C2

for any atomic roleR ∈ NR.
When a formulaΓ() without free variables occurs as a conjunct, then the numberof free variables (1

or 2) in its context determines its translation: a concept or a role. For the case when a concept is desired,
we need a translated conceptCΓ() with the property that for any conventionalC2 interpretationI1 and a
DL interpretationI such that∆I1 = ∆I andACI1 = ACI (RI1 = RI, respectively) for each atomic
conceptAC (atomic roleR, respectively),I1 |= Γ() ≡ true iff (CΓ)I = ∆I, andI1 |= Γ() ≡ false iff
(CΓ)I = ∅. Table 8 provides such translations.

Γ() CΓ() Γ() CΓ()

true ⊤ ∃x.Ψ() CΨ()

false ⊥ ∃y.Ψ() CΨ()

C(b) ∀(⊤×{b}).C ∃≥nx.Ψ(x) >nU.CΨ

R(b, b) ∀(⊤×{b}).(∃R.{b}) ∃≥ny.Ψ(y) >nU.CΨ

R(b′, b) ∀(⊤×{b′}).(∃R.{b}) ∃≥nx.Ψ() CΨ()

b = b ⊤ ∃≥ny.Ψ() CΨ()

b′ = b ⊥ ∃≤nx.Ψ(x) 6nU.CΨ

¬Ψ() ¬CΨ() ∃≤ny.Ψ(y) 6nU.CΨ

Ψ()∧Φ() RΨ() ⊓ RΦ() ∃≤nx.Ψ() CΨ()

∃x.Ψ(x) ∃U.CΨ ∃≤ny.Ψ() CΨ()

∃y.Ψ(y) ∃U.CΨ

Figure 8: A translation fromC2 to ALCQIO(⊔,⊓,¬, |, id) for formulas without free variables.

In contexts where we require roles, the translation is justRΓ() = CΓ() × CΓ().
For any formulaφ in C2, the translation functiontransl can now be defined as:transl(φ) = Cφ if φ

has no free variables, or has only one free variablex or y; andtransl(φ) = Rφ if φ has exactly two free
variables.

We can prove by induction that for any conventionalC2 interpretationI1 and a DL interpretation
I such that∆I1 = ∆I andACI1 = ACI (RI1 = RI , respectively) for each atomic conceptAC
(atomic roleR, respectively), we haveI1 |= φ ≡ true iff (transl(φ))I = ∆I andI1 |= φ ≡ false iff
(transl(φ))I = ∅ for any (closed) sentenceφ.

It is obvious that the translation fromC2 to ALCQIO(⊔,⊓,¬, |, id) can be done in linear time and
causes no more than a linear increase in the size of the translated formula according to the translation
functionτ defined above. �

Theorem 1 (Section 3.2)The description logicALCQIO(⊔,⊓,¬, |, id) andC2 are equally expres-
sive. In addition, translation in both directions leads to no more than a linear increase in the size of the
translated formula.

Proof of Theorem 1. It is a direct consequence of combining Lemma 5 and Lemma 6. �

33

B.2 The Correctness of the Modified Regression Operator

In this subsection we provide a detailed proof for Theorem 3 in Section 5.1.

Theorem 3 (Section 5.1)SupposeW is an LC2

sc regressable sentence with the background BATD in
languageLC2

sc . Then,R[W] is anLC2

sc sentence uniform inS0 and it is aC2 sentence when the situation
argumentS0 is suppressed. Moreover,D |= W ≡ R[W].

Proof of Theorem 3.This theorem can be proved by induction on the number of regression steps.
Base case:It takes one step to terminate the regression.

If W is of the formA1(~t) = A2(~t
′) for some action function symbolsA1 andA2, then there are three

sub-cases:
(1) If A1 6= A2, R[W] = false (by definition), which is uniform inS0 and is aC2 sentence. Note that
D |= W ≡ false by the unique name axioms for actions inD. Hence,D |= R[W] ≡W .
(2) If A1 = A2 andA1, A2 are constant action functions,R[W] = true (by definition), which is uniform
in S0 and is aC2 sentence. Note thatD |= W ≡ true by the unique name axioms for actions inD. Hence,
D |= R[W] ≡W .

(3) Otherwise, i.e.,A1 = A2 andA1, A2 are not constant action functions, thenR[W] =
∧|~t|

i=1 ti = t′i (by

definition), which is uniform inS0 and is aC2 sentence. Note thatD |= W ≡
∧|~t|

i=1 ti = t′i by the unique
name axioms for actions inD. Hence,D |= R[W] ≡ W .

Otherwise,W is any other situation independent atom (including equality between object terms) orW
is a concept or role uniform inS0, soR[W] = W (by definition), and it is obvious thatR[W] is uniform
in S0 and is aC2 formula whenS0 is suppressed. Moreover,D |= R[W] ≡W .
Inductive step:Assume that our theorem is true for any regression that takesno more thann steps (n ≥ 1),
now we prove it is true for any regression that takesn + 1 steps. There are several cases as follows.

a. W is of the formPoss(A(~t), σ), for terms of sortactionandsituation, respectively, inLC2

sc . Assume
that the precondition axiom for action functionA(~x) is of the formPoss(A(~x), s) ≡ ΠA(~x, s),
where~x is either empty,x, or 〈x, y〉. There are four sub-cases:
(a.1) If~t = 〈x, x〉, then

D |= R[W] ≡ R[∃y.x=y∧Poss(A(x, y), σ)]
= ∃y.x=y∧R[ΠA(x, y, σ)] (by the definition ofR)
≡ ∃y.x=y∧ΠA(x, y, σ) (by the induction hypothesis)
≡ ∃y.x=y∧Poss(A(x, y), σ) (byDap)
≡ Poss(A(x, x), σ)
= W

Moreover,

by the induction hypothesis thatR[∃y.x=y∧ΠA(x, y, σ)] is uniform inS0 and is aC2 formula (when
S0 is suppressed), and so isR[W].
(a.2) Similarly to case (a.1) above, we can prove that the theorem is true if~t = 〈y, y〉.
(a.3) If ~t ∈ {y, 〈y, O〉, 〈O, x〉, 〈y, x〉}, we need to ensure the result of substituting~t into the pre-
condition axiom is still logically equivalent to the original one. It can be proved case by case.
We will just show one case as an example, and the rest of the cases can be proved similarly.
For example, when~t is 〈y, O〉 ~x can only be〈x, y〉 in the precondition axiom. It is obvious that
Poss(A(y, x), s) ≡ Π̃A(y, x, s) is logically equivalent toPoss(A(x, y), s) ≡ ΠA(x, y, s) by re-
naming allx with y and ally with x (free or bound). Hence, we are able to substitute~t into the
precondition ofPoss(A(y, x), s) without introducing new variables. Then,

34

D |= R[W] = R[Π̃A(y, O, σ)] (by the definition ofR)

≡ Π̃A(y, O, σ) (by the induction hypothesis)
≡ Poss(A(y, O), σ) (by the renamed precondition axiom)
= W

Moreover, by the induction hypothesis thatR[Π̃A(y, O, σ)] is uniform inS0 and is aC2 formula
(whenS0 is suppressed), and so isR[W].
(a.4) Otherwise, i.e., if~t either is empty or~t ∈ {O, x, 〈x, y〉, 〈x,O〉, 〈O, y〉, 〈O,O1〉}, it is obvious
that we can substitute~t directly into the precondition axiom without causing any problem. That is,

D |= R[W] = R[ΠA(~t, σ)] (by the definition ofR)

≡ ΠA(~t, σ) (by the induction hypothesis)
≡ Poss(A(~t), σ) (by Dap)
= W

Again, by using the induction hypothesis,R[ΠA(~t, σ)] is uniform inS0 and is aC2 formula (when
S0 is suppressed), and so isR[W].

b. W is a defined dynamic concept of the formG(t, σ) for some object termt and ground situation termσ,
and there must be a TBox axiom forG of the formG(x, s) ≡ φG(x, s). Because of the restrictions
of the languageLC2

sc , termt can only be a variablex, y or a constant. There are two sub-cases.
(b.1) Whent ∈ {O, x}, it is obvious see that

D |= R[W] = R[φG(t, σ)] (by the definition ofR)
≡ φG(t, σ) (by the induction hypothesis)
≡ G(t, σ) (by the TBox axiom)
= W

Again, by using the induction hypothesis,R[φG(t, σ)] is uniform inS0 and is aC2 formula (when
S0 is suppressed), and so isR[W].
(b.2) Whent is variabley, then we can rename allx (y, respectively) in the TBox axiom withy (x,
respectively), and still get an equivalent TBox axiom:G(y, s) ≡ φ̃G(y, s). Then,

D |= R[W] = R[φ̃G(y, σ)] (by the definition ofR)

≡ φ̃G(y, σ) (by the induction hypothesis)
≡ G(y, σ) (by the renamed TBox axiom)
= W

Again, by using the induction hypothesis,R[φ̃G(y, σ)] is uniform inS0 and is aC2 formula (when
S0 is suppressed), and so isR[W].

c. W is a primitive dynamic concept (a dynamic role, respectively) of the form F (t1, do(α, σ)) (or
F (t1, t2, do(α, σ)), respectively) for some termst1 (and t2) of sort object, ground termα of sort
action and ground termσ of sort situation. There must be an SSA for fluentF of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), whose detailed syntax is Eq. (4). Because of the restriction of the
languageLC2

sc , the termst1 andt2 can only be a variablex, y or some constantO. In fact, the dis-
cussion of sub-cases for a primitive dynamic conceptF (t1, do(α, σ)) is very similar to the proof for
defined concepts except that instead of using a TBox axiom, wewill use the SSA ofF . The discus-
sion of sub-cases for a dynamic roleF (t1, t2, do(α, σ)) is very similar to the proof for an atom of
the formPoss(A(t1, t2), σ) except that instead of using precondition axioms, we use theSSA ofF .
Since it is straightforward, details are omitted here.

35

d. W is not atomic, i.e.,W is of the formW1∨W2, W1∧W2, ¬W ′, or Qv.W ′ whereQ represents a
quantifier (including counting quantifiers) andv represents a variable symbol. This is the last case
we need to consider for the inductive step. Therefore, it is obvious that there are four sub-cases
depending on the different forms ofW . Because the discussions for all sub-cases are very similar
except that they use different logical constructors, we will provide details for one of the sub-cases,
and omit the rest. As an example, we consider the sub-case that W is of the formW1∨W2. Then,

D |= R[W] = R[W1]∨R[W2] (by the definition ofR)
≡ W1∨W2 (by the induction hypothesis)
= W

Again, by using the induction hypothesis,R[W1] andR[W2] are uniform inS0 and are bothC2

formulas (whenS0 is suppressed), henceR[W] is still uniform inS0 and is aC2 formula (whenS0

is suppressed).

Overall, we proved that for anyLC2

sc regressable sentenceW with the background BATD in language
LC2

sc , R[W] is anLC2

sc sentence uniform inS0 and it is aC2 sentence when the situation argumentS0 is
suppressed. Moreover,D |= W ≡ R[W]. �

B.3 ALCO(U) and FODL are Equally Expressive

In this subsection, we prove Lemma 1 presented in Section 5.3. Notice that in the proof of this Lemma,
we provide purely syntactic translation functions betweenALCO(U) andFODL.

Lemma 1 (Section 5.3)There are syntactic translations betweenFODL and the DL languageALCO(U),
i.e., they are equally expressive. Moreover, such translations lead to no more than a linear increase in the
size of the translated formula.

Proof of Lemma 1. We first prove that there is a syntactic translation functionfrom ALCO(U) to
FODL.

A syntactic translationτ fromALCO(U) toFODL for any conceptC is defined as follows:τ(C)
def
= τx(C)

for any conceptC. τx() makesx be the free variable of the monadic predicate, which is produced for its
argument concept (see Table 9). During translation we also need a variant ofτ – τ y() makesy be the free
variable of the monadic predicate (see Table 9).

Then, the translation of terminological and assertional axioms can be defined as:

τ(C(b))
def
= τ(∃U.(C ∩ {b})) for any concept assertionC(b);

τ(R(b, b′))
def
= τ(∃U.((∃R.{b′}) ∩ {b})) for any role assertionR(b, b′);

τ(C1 ⊑ C2)
def
= τ(¬∃U.(C1∧¬C2)) for any concept inclusion axiomC1 ⊑ C2 if there is any;

τ(C1 ≡ C2)
def
= τ(∀U.((¬C1 ∪ C2) ∩ (¬C1 ∪ C1))) for any concept equality axiomC1 ≡ C2 if there is any.

In addition, according to the definition ofτ in Table 9 and the fact that there are no nested appearances
of ⊑ and≡ in DL KBs, it is obvious that the translation fromALCO(U) to FODL can be done in linear
time and causes no more than a linear increase in the size of the translated formula.

Now, we prove that there is a syntactic translation functionfromFODL toALCO(U).
A syntactic translationπ from FODL toALCO(U) for any formulaΦ ∈ FODL is defined in Table 10.

36

TermC τx(C) τ y(C)
AC,AC ∈ NC AC(x) AC(y)
⊤ true true
⊥ false false
{b} x = b y = b
¬C1 ¬τx(C1) ¬τ y(C1)
C1 ⊓ C2 τx(C1)∧τ

x(C2) τ y(C1)∧τ
y(C2)

C1 ⊔ C2 τx(C1)∨τ
x(C2) τ y(C1)∨τ

y(C2)
∃R.C1, R ∈ NR ∃y. R(x, y)∧τ y(C1) ∃x.R(x, y)∧τx(C1)
∀R.C1, R ∈ NR ∀y. R(x, y)⊃τ y(C1) ∀x.R(x, y)⊃τx(C1)
∃U.C1 ∃y.τ y(C1) ∃x.τx(C1)
∀U.C1 ∀y.τ y(C1) ∀x.τx(C1)

Figure 9: A syntactic translation fromALCO(U) to FODL.

In addition, it is obvious that the translation fromFODL toALCO(U) can be done in linear time and causes
no more than a linear increase in the size of the translated formula according to the translation functionπ
defined above. �

B.4 Restricting Syntax of BATs to Gain Computational Advantages

In this subsection, we will prove Lemma 2 in Section 5.3. But first, we define an operatorǫ on anyLC2

sc

regressable formulaW , such that it will replace all atomic formula of the formA1(~t) = A2(~t′) for some
action termsA1(~t) andA2(~t′) using the unique name axioms for actions inDuna for any given BATD.

For any given BATD and anLC2

sc regressable formulaW in it, we defineǫ recursively as follows:
• If W is of the formA1(~t) = A2(~t′) for some action termsA1(~t) andA2(~t′) (i.e.,equality between

action terms), then

ǫ[W] =

false if A1 6= A2,
true if A1 = A2 andA1, A2 are constant action functions,
|~t|∧

i=1

ti = t′i otherwise.

Otherwise, ifW is any other situation independent atom, then
ǫ[W] = W .

• Otherwise, ifW is not atomic, i.e.,W is of the formW1∨W2, W1∧W2, ¬W ′, orQv.W ′ whereQ
represents a quantifier (including counting quantifiers) and v represents a variable symbol, then

ǫ[W1∨W2] = ǫ[W1]∨ǫ[W2], ǫ[¬W ′] = ¬ǫ[W ′],
ǫ[W1∧W2] = ǫ[W1]∧ǫ[W2], ǫ[Qv.W ′] = Qv.ǫ[W ′].

Note thatǫ can be considered as performing one step ofLC2

sc regression on equalities between action terms
in the givenLC2

sc regressable formulaW , and it is easy to see that ifW is uniform in situationS, thenǫ[W]
is still uniform in situationS. Moreover, we can prove the following property forǫ.

37

Φ π(Φ)
AC(x), AC(x) is atomic AC
AC(y),AC(y) is atomic AC
true ⊤
false ⊥
x = b, b is a constant {b}
y = b, b is a constant {b}
¬Ψ, ¬π(Ψ)
Ψ1∨Ψ2 π(Ψ1) ⊔ π(Ψ2)
Ψ1∧Ψ2 π(Ψ1) ⊓ π(Ψ2)
∃y. R(x, y)∧Ψ(y),R ∈ NR ∃R.π(Ψ(y))
∃x.R(y, x)∧Ψ(x),R ∈ NR ∃R.π(Ψ(x))
∀y. R(x, y)⊃Ψ(y),R ∈ NR ∀R.π(Ψ(y))
∀x.R(y, x)⊃Ψ(x), R ∈ NR ∀R.π(Ψ(x))
∃y.Ψ(y), Ψ(y) has only one free variabley ∃U.π(Ψ(y))
∃x.Ψ(x), Ψ(x) has only one free variablex ∃U.π(Ψ(x))
∀y.Ψ(y), Ψ(y) has only one free variabley ∀U.π(Ψ(y))
∀x.Ψ(x), Ψ(x) has only one free variablex ∀U.π(Ψ(x))

Figure 10: A syntactic translation fromFODL to ALCO(U).

Property 1 For any given BATD and anLC2

sc regressable formulaW in D, we have thatǫ[W] is still LC2

sc

regressable andD |= W ≡ ǫ[W].

Proof of Property 1. It is easy to prove by induction on the structure ofW .
Base case:If W is atomic, there are two sub-cases.
(1) W is of the formA1(~t) = A2(~t′) for some action termsA1(~t) andA2(~t′). If A1 6= A2, we have
D |= W ≡ false by axioms inDuna, which isD |= W ≡ ǫ[W], sinceǫ[W] = false by the definition of
ǫ; else, ifA1 = A2 andA1, A2 are constant action functions, then by axioms inDuna, D |= W ≡ true,

thereforeD |= W ≡ ǫ[W] according to the definition ofǫ; otherwise,D |= W ≡
∧|~t|

i=1 ti = t′i by axioms

in Duna, which isD |= W ≡ ǫ[W], sinceǫ[W] =
∧|~t|

i=1 ti = t′i by the definition ofǫ. Moreover, it is
obvious thatǫ[W] is still LC2

sc regressable.
(2) Otherwise,W is atomic and not of the above form. By the definition ofǫ, we haveǫ[W] = W , hence
D |= W ≡ ǫ[W]. Moreover, it is obvious thatǫ[W] is still LC2

sc regressable.
Inductive step:W is not atomic andW is of the formW1∨W2,W1∧W2,¬W ′, orQv.W ′ whereQ represents
a quantifier (including counting quantifiers) andv represents a variable symbol. Then for each sub-case,
it is easy to prove thatD |= W ≡ ǫ[W] by the induction hypothesis. For instance, ifW is of the form
W1∨W2, then
D |= W = W1∨W2

≡ ǫ[W1]∨ǫ[W2] (by the induction hypothesis)
= ǫ[W1∨W2] (by the definition ofǫ)
= ǫ[W].

Moreover, it is obvious thatǫ[W] is still LC2

sc regressable by the induction hypothesis thatǫ[W1] andǫ[W2]
are bothLC2

sc regressable.

38

It is easy to see that for other sub-cases, such asW1∧W2,¬W ′, andQv.W ′ whereQ represents a quantifier
(including counting quantifiers), the proof is very similarto the sub-case ofW1∨W2 and therefore details
are omitted here.
Overall,D |= W ≡ ǫ[W] for anyLC2

sc regressable formulaW in D andǫ[W] is still LC2

sc regressable. �

We prove the following lemma that will be useful when provingLemma 2 in Section 5.3. Notice that
the lemma says that the regression ofW is the same as(not just equivalent to) the regression ofǫ[W].

Lemma 7 Consider any given BATD, theLC2

sc regression operatorR defined in Section 5.1, and anyLC2

sc

regressable formulaW in D. Then,R[W] = R[ǫ[W]].

Proof of Lemma 7. It is easy to prove by induction on the structure ofW .
Base case:If W is atomic, there are two sub-cases.
(1) W is of the formA1(~t) = A2(~t′) for some action termsA1(~t) andA2(~t′). If A1 6= A2, we have
R[W] = false by the definition ofR in Section 5.1, andR[ǫ[W]] = R[false] = false by the definitions
of ǫ andR, therefore,R[W] = R[ǫ[W]];
else, ifA1 = A2 andA1, A2 are constant action functions, by the definition ofǫ andR, it is easy to see
thatR[W] = R[ǫ[W]] = true;

otherwise, we haveR[W] = R[
∧|~t|

i=1 ti = t′i] by the definition ofR,

and sinceR[ǫ[W]] = R[ǫ[
∧|~t|

i=1 ti = t′i]] by the definition ofǫ andR, it is easy to see thatR[W] =
R[ǫ[W]].
(2) Otherwise,W is atomic and not of the above form, by the definition ofǫ, we haveǫ[W] = W , hence
R[W] = R[ǫ[W]].
Inductive step:W is not atomic andW is of the formW1∨W2,W1∧W2,¬W ′, orQv.W ′ whereQ represents
a quantifier (including counting quantifiers) andv represents a variable symbol. Then for each sub-case,
it is easy to prove thatR[W] = R[ǫ[W]] by the induction hypothesis. For instance, ifW is of the form
W1∨W2, then

R[W] = R[W1]∨R[W2] (by the definition ofR)
= R[ǫ[W1]]∨R[ǫ[W2]] (by the induction hypothesis)
= R[ǫ[W1]∨ǫ[W2]] (by the definition ofR)
= R[ǫ[W1∨W2]] (by the definition ofǫ)
= R[ǫ[W]].

It is easy to see that for other sub-cases, such asW1∧W2,¬W ′, andQv.W ′ whereQ represents a quantifier
(including counting quantifiers), the proof is very similarto the sub-case ofW1∨W2 and therefore details
are omitted here.
Overall,R[W] = R[ǫ[W]] for anyLC2

sc regressable formulaW in D. �

Moreover, according to the definition ofǫ, it is straightforward to prove the following property ofǫ.
Because the proof is rather obvious, it is omitted here.

Property 2 Given anyLC2

sc regressable formulaW whose size ism, i.e.,m = size(W), it takes no more
thanm steps to obtainǫ[W], and the size ofǫ[W] is no more than3m.

We also recursively define aone-stepregression operatorρ for anyLC2

sc regressable formulaW , which
has no appearances ofPoss, such that it performs one step ofLC2

sc regression on each fluent inW . This
operatorρ will also be useful in the proof of Lemma 2. The formal definition of ρ is as follows, whereσ
denotes the term of sortsituation, andα denotes the term of sortaction.

39

• If W is not atomic, i.e.,W is of the formW1∨W2,W1∧W2, ¬W ′, orQv.W ′ whereQ represents a
quantifier (including counting quantifiers) andv represents a variable symbol, then

ρ[W1∨W2] = ρ[W1]∨ρ[W2], ρ[¬W ′] = ¬ρ[W ′],
ρ[W1∧W2] = ρ[W1]∧ρ[W2], ρ[Qv.W ′] = Qv.ρ[W ′].

• Otherwise,W is an atom. There are several cases.
a. If W is a situation independent atom, orW is a concept or role uniform inS0, then ρ[W] =
W .

b. If W is a defined dynamic concept, so it has the formG(t, σ) for some object termt and situa-
tion termσ, then there must be a TBox axiom forG of the formG(x, s) ≡ φG(x, s). Because of the
restrictions of the languageLC2

sc , termt can only be a variablex, y or a constant. Then, we use the
lazy unfolding technique as follows:

ρ[W] =

{
ρ[φG(t, σ)] if t is not variabley,
ρ[φ̃G(y, σ)] otherwise.

c. If W is a primitive dynamic concept (a dynamic role, respectively), it has the formF (t1, do(α, σ))
or F (t1, t2, do(α, σ)) for some termst1 (andt2) of sortobject, termα of sortactionand termσ of
sort situation. Then there must be an SSA Eq. (1) for fluentF , whose detailed syntax is Eq. (4).
Because of the restriction of the languageLC2

sc , the termst1 andt2 can only be a variablex, y or a
constantO andα can only be an action function with no more than two argumentsof sortobject.
Then, whenW is a concept,

ρ[W] =

{
ΦF (t1, α, σ) if t1 is not variabley,
Φ̃F (y, α, σ) otherwise, i.e., ift1 = y;

and, whenW is a role,

ρ[W] =

(∃y)(x=y∧ΦF (x, y, α, σ)) if t1 =x, t2 =x,
(∃x)(y=x∧ΦF (x, y, α, σ)) if t1 =y, t2 =y,

Φ̃F (y, t2, α, σ) if t1 =y, t2 ∈ {x,O} or t1 =O, t2 =x,
ΦF (t1, t2, α, σ) otherwise.

Similar to the proof of Property 1, we can prove the followingproperty forρ by using induction on the
structure of formulas.

Property 3 For any given BATD and anLC2

sc regressable formulaW in D, we have thatρ[W] is still LC2

sc

regressable andD |= W ≡ ρ[W].

In addition, also using induction on the structure of the formulas, it is straightforward to prove the follow-
ing property, which is useful in the proof of Lemma 2. Becausethe proof is rather obvious, it is omitted
here.

Property 4 Consider a BATD in the language ofLC2

sc , if a givenLC2

sc regressable formulaW is uniform
in do(α, S) for some ground actionα and ground situationS, and predicatePoss does not appear inW ,
thenρ[W] is uniform inS and there is still no appearance ofPoss.

Again, similar to the proof of Lemma 7, we can prove the following lemma.

40

Lemma 8 Consider any given BATD, theLC2

sc regression operatorR defined in Section 5.1, and anyLC2

sc

regressable formulaW in D. Then,R[W] = R[ρ[W]].

Moreover, according to the definition ofρ, it is straightforward to prove the following property ofρ.

Property 5 Consider anyLC2

sc regressable formulaW with a background BATD. Assume that there is no
appearance ofPoss in W . Letm = size(W), h = max(2, sizeSSA(D)), andh1 = maxG{size(ΦG) |
G(x) ≡ ΦG(x) is a TBox axiom} if there are TBox axioms, orh1 = 0. Notice thath andh1 are fixed
whenD is given. Then, it takes no more than(h1 + 1)m steps to obtainρ[W], whose size is no more than
h(h1 + 1)m.

We also have the following corollary of Lemma 7 and Lemma 8.

Corollary 2 Consider any given BATD, theLC2

sc regression operatorR defined in Section 5.1, and any
LC2

sc regressable formulaW in D. Then,R[W] = R[ǫ[ρ[W]]].

Proof of Corollary 2. By Lemma 7,R[ǫ[ρ[W]]] = R[ρ[W]], and by Lemma 8,R[ρ[W]] = R[W].
Therefore,R[W] = R[ǫ[ρ[W]]]. �

Now, we provide a detailed proof of Lemma 2 in Section 5.3.

Lemma 2 (Section 5.3)Consider a BATD in LC2

sc whoseDss andDT are ALCO(U)-restricted. LetW
be anyLC2

sc regressable formula inD that is uniform in a ground situationS and has no appearance of
Poss. Let n = sitLength(S) andm = size(W). Thene ifW with the situation termS suppressed
is in FODL, there is aΦW in FODL such thatR[W] is equivalent toΦW [S0]. It takes no more than
c · n · size(ΦW) steps of deduction fromR[W] (with S0 suppressed) to find suchΦW for some constant
numberc. Moreover,size(ΦW) is inO(2hmn+3h2n2

) for some positive integerh. That is, the size ofΦW is
no more than exponential in the size ofW .

Proof of Lemma 2. Without loss of generality, we assume that there is no definedconcept inW ∈ FODL.
Otherwise, each defined concept will be replaced by its definitions from the TBox axioms with fixed steps
of LC2

sc regression. This can cause no more than a constant increase in the size of the original formula,
because TBox is fixed (onceD is given), TBox is acyclic, there are only finitely many TBox axioms and
the size of the formula on the RHS of each TBox axiom is limitedfrom above by a constant.

We will first prove such a formula always exists, and then estimate the size of the formula. We define
a notation for later convenience. IfW is a formula uniform in any situations, we denote the formula with
all situation terms suppressed (if any) inW simply asW [−s] . Moreover, to simplify the presentation of
the proof, below we writeW1 ≡W2 whenever|= W1 ≡ W2 for any formulasW1 andW2.

We will first prove the following more specific statement (Statement (1)) below wrt the givenD:
“Consider any ground situationS and aLC2

sc regressable formulaW with the background BATD, where
W is uniform inS and has no occurrences ofPoss. If W [−S] is inFOx

DL (FOy
DL, respectively), there is a

formulaϕ in FOx
DL (FOy

DL, respectively) such thatR[W] is equivalent toϕ[S0].”
The structure of our proof will consist of two nested proofs by induction, where the internal proof

by induction will include an analysis of many sub-cases. Themain proof will proceed by induction on
the length ofS, i.e., the number of actions involved inS. Inside the inductive step of this proof, we
will prove the statement by induction on the structure of aLC2

sc regressable formulaW . In the latter, the
most time consuming parts will be two cases: whenW is a primitive dynamic concept (a fluent with one
object argument and one situation argument); or, whenW is of the form∃y.R(x, y, S)∧W1(y)[S] for

41

some dynamic roleR (a fluent with two object arguments and one situation argument) and formulaW1.
These two cases are laborious and require an analysis of numerous sub-cases depending on the structure
of logical formulas in SSAs.
Base case of the induction on the length ofS:
If S = S0, then letϕ = W [−S0], and it is trivial to see that Statement (1) is true.
Inductive step of the induction on the length ofS:

Now, without loss of generality, we assume thatS = do(α, S1) and Statement (1) is true for anyLC2

sc

regressable formulaW ′ that is uniform inS1 and has no appearance ofPoss. We prove Statement (1) for
anyLC2

sc regressable formulaW that is uniform inS and has no appearance ofPoss by induction on the
structure ofW [−S].

Since every formula inFOy
DL is a dual formula to a formula inFOx

DL, the proof for Statement (1)
whereW [−S] is in FOy

DL is “dual” to the proof for Statement (1) whereW [−S] is in FOx
DL, in the sense

that we only need to replace every appearance ofxwith y andy with x. Hence, below we will only provide
detailed proof for Statement (1) whereW [−S] ∈ FOx

DL, and omit details for the proof of Statement (1)
whereW [−S] ∈ FOy

DL.
In order to prove Statement (1) for ground situationS, we will prove Statement (1) and the following

statement (Statement (2)) for S together using the induction proof on the structure ofW :
“For anyLC2

sc regressable formulaW that is uniform inS (whereS = do(α, S1)) and has no appearance of
Poss, if W [−S] is inFOx

DL (FOy
DL, respectively), then there is a formulaϕ in FOx

DL (FOy
DL, respectively)

which can be found in no more thanc ·size(ϕ) steps for some constant positive integerc. Moreover,ϕ[S1]
is equivalent toǫ[ρ[W]], andϕ[S1] is LC2

sc regressable with no appearance ofPoss.”
Base case of the induction on the structure ofW [−S]:
First, we consider whenW [−S] is in FOx

DL and is atomic. There are in total three cases (a-c) below.

a. W [−S] is eithertrue or false. Then, ǫ[ρ[W]][−S1] is still true or false, which is in FOx
DL; and,

(R[W])[−S0] is still true or false, which is inFOx
DL. Hence, it is trivial to see that Statement (1)

and Statement (2) hold.

b. W [−S] is of the formx = b for some constantb. Then,ǫ[ρ[W]][−S1] is still x = b, which is inFOx
DL;

and,(R[W])[−S0] is still x = b, which is inFOx
DL. Again, it is trivial to see that Statement (1) and

Statement (2) hold.

c. W [−S] is a monadic predicate. Then, there are two sub-cases:
If W is situation-independent, thenǫ[ρ[W]][−S1] = W = W [−S], which is inFOx

DL; and,
(R[W])[−S0] = W = W [−S], which is inFOx

DL. Again, it is trivial to see that Statement (1) and
Statement (2) hold.
Otherwise,W = F (x, S) for some fluentF . Assume that fluentF (x, s) has an SSA of the form
Eq. (4), whose context conditions (with situation terms suppressed) are all inFODL. Depending on
whether the context conditions are inFOx

DL (e.g., cases (1-12) in Table 11) or inFOy
DL (e.g., cases

(1’-12’) in Table 11), what variables appear in action functions and/or in the conditions (none,x
only, y only,x andy), and whether or not the variables are quantified, the SSA ofF is

F (x, do(a, s)) ≡

m+∨

i=1

φ+
i (x, a, s)∨F (x, s)∧¬(

m
−∨

j=1

φ−
j (x, a, s)), (9)

42

where eachφ+
i (x, a, s) (φ−

j (x, a, s), respectively) is a formula that has the syntactic form of one of
the following cases listed in Table 11 and the cases we described in Note 1. Recall that we prove
this lemma for those SSAs which haveALCO(U)-restricted context formulas only. Notice that in
Table 11,ψ(x) (ψ(y), respectively) is a formula inFOx

DL (FOy
DL, respectively) withat mostone

free variablex (y, respectively). In cases (1) and (1’),A represents some constant action function.
In cases (2-6) and (2’-6’),A represents some unary action function name. And, in cases (7-12) and
(7’-12’), A represents some binary action function name. Moreover, in Table 11,[∃y.] represents
that ∃y. only appears whenψ(y) has a free variabley. To show that we have exhausted all the
possibilities, the cases we listed include some duplications. For example, case (6) in fact is the same
as case (4) by renaming; case (1’) is in fact the same as case (1), because[∃y.]ψ(y) is a formula in
F x

DL (according to the definition ofF x
DL).

1 a = A∧ψ(x)[s] 1’ a = A∧[∃y.]ψ(y)[s]
2 a = A(x)∧ψ(x)[s] 2’ a = A(x)∧[∃y.]ψ(y)[s]
3 ∃x.a = A(x)∧ψ(x)[s] 3’ ∃x.a = A(x)∧[∃y.]ψ(y)[s]
4 ∃x(a = A(x))∧ψ(x)[s] 4’ ∃x(a = A(x))∧[∃y.]ψ(y)[s]
5 ∃y.a = A(y)∧ψ(x)[s] 5’ ∃y.a = A(y)∧ψ(y)[s]
6 ∃y(a = A(y))∧ψ(x)[s] 6’ ∃y(a = A(y))∧[∃y.]ψ(y)[s]
7 ∃y.a = A(x, y)∧ψ(x)[s] 7’ ∃y.a = A(x, y)∧ψ(y)[s]
8 ∃y(a = A(x, y))∧ψ(x)[s] 8’ ∃y(a = A(x, y))∧[∃y.]ψ(y)[s]
9 ∃x.∃y.a = A(x, y)∧ψ(x)[s] 9’ ∃x.∃y.a = A(x, y)∧ψ(y)[s]
10 ∃x.∃y(a = A(x, y))∧ψ(x)[s] 10’ ∃x.∃y(a = A(x, y))∧[∃y.]ψ(y)[s]
11 ∃y.∃x(a = A(x, y))∧ψ(x)[s] 11’ ∃y.∃x(a = A(x, y))∧ψ(y)[s]
12 ∃y(∃x(a = A(x, y)))∧ψ(x)[s] 12’ ∃y(∃x(a = A(x, y)))∧[∃y.]ψ(y)[s]

Figure 11: Some possible syntactic forms forφ+
i (x, a, s) or φ−

j (x, a, s) in Eq. (9)

Note 1 Let O, O1 andO2 be some constant objects. There are also cases fora = A(O) (or a =
A(O1, O2), respectively) inφ+

i and/orφ−
j in the SSA ofF , which can be proved similarly to the

cases in Table 11 wherea = A; there are also cases fora = A(O1, x) (or a = (x,O1), respectively)
in φ+

i and/orφ−
j in the SSA ofF , which can be proved similarly to the cases in Table 11 where

a = A(x); there are also cases fora = A(O1, y) (or a = (y, O1), respectively) inφ+
i and/orφ−

j in
the SSA ofF , which can be proved similarly to the cases in Table 11 wherea = A(y); there are also
cases fora = A(y, x) in φ+

i and/orφ−
j in the SSA ofF , which can be proved similarly to the cases

in Table 11 wherea = A(x, y). Notice that using the unique name axioms for object constants,
we can replace all (in)equalities between object constantswith eithertrue or false in the resulting
formula that is equivalent toǫ[ρ[W]] for anyLC2

sc regressable formulaW . Moreover, such deduction
takes at most a constant number of steps wrt the size of the resulting formula.

We first prove case by case for all possible syntactic forms ofφ+
i (x, α, S1) (φ−

j (x, α, S1), respec-
tively), that there exists someν+

i (or ν−j , respectively) inFOx
DL for any i (j, respectively) such

thatν+
i [S1] (ν−j [S1], respectively) is logically equivalent toǫ[φ+

i (x, α, S1)] (ǫ[φ−
j (x, α, S1)], respec-

tively). Moreover, finding the equivalent formula takes a fixed number of steps of deduction w.r.t.
to the size ofǫ[φ+

i (x, α, S1)] (ǫ[φ−
j (x, α, S1)], respectively).

43

Here is one trivial sub-case: if the function name ofα is notA, then in each of the aforementioned
cases (1-12), (1’-12’) and Note 1,ǫ of each formula (φ+

i orφ−
j) equalsfalse, which is still inFOx

DL.
Hence, below we only discuss the condition thatα has the same function name (with the same
number of arguments) as the given action function name in each case, and we letO, O1 andO2 be
some constants. Notice that in case (1), since the context conditionψ(x) is inFOx

DL, ψ(x)[S1] does
not contain any equality between action terms, henceǫ[ψ(x)[S1]] = ψ(x)[S1]. The same reasoning
will be used in other cases, and detailed explanations are omitted to avoid repetition.

(1) a = A∧ψ(x)[s]
Assume thatα = A, then ǫ[α = A∧ψ(x)[S1]]

= ǫ[α = A]∧ǫ[ψ(x)[S1]]]
= true∧ψ(x)[S1] ≡ ψ(x)[S1].

Clearly,ψ(x) is inFOx
DL, which takes at most one step of logical deduction to find the equivalent

formula.

(1’) a = A∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in fact inFOx

DL, the proof for (1’) is the same as for (1).

(2) a = A(x)∧ψ(x)[s]
Assume thatα = A(O), then ǫ[α = A(x)∧ψ(x)[S1]]

= ǫ[A(O) = A(x)]∧ψ(x)[S1]
= (x = O)∧ψ(x)[S1]
= (x = O∧ψ(x))[S1].

Clearly, given thatψ(x) is in FOy
DL, we have thatx = O∧ψ(x) is in FOx

DL, and this takes no
steps of logical deduction.

(2’) a = A(x)∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in fact inFOx

DL, the proof for (2’) is the same as for (2).

(3) ∃x.a = A(x)∧ψ(x)[s]
Assume thatα = A(O), then ǫ[∃x.α = A(x)∧ψ(x)[S1]]

= ∃x.ǫ[A(O) = A(x)∧ψ(x)[S1]]
= (∃x.x = O∧ψ(x))[S1].

Clearly, the closed formula(∃x.x = O∧ψ(x)) is in FOx
DL. Becausex = O∧ψ(x) is in FOx

DL,
then by definition,(∃y.y = O∧ψ̃(y)) (denoted asϕ) is inFOx

DL. Again by the definition ofFOx
DL,

[∃y.]ϕ̃ (i.e.,(∃x.x = O∧ψ(x))) is inFOx
DL. It takes no steps of logical deduction.

(3’) ∃x.a = A(x)∧[∃y.]ψ(y)[s]
Note that[∃y.]ψ(y) has no free variablex, hencex is in fact only quantified overa = A(x), hence

case (3’) is equivalent to case (4’) below.

(4) ∃x(a = A(x))∧ψ(x)[s]
Assume thatα = A(O), then ǫ[∃x(α = A(x))∧ψ(x)[S1]]

= ǫ[∃x(A(O) = A(x))∧ψ(x)[S1]]
= (∃x(x = O)∧ψ(x))[S1].

Because∃x(x = O) andψ(x) are inFOx
DL, ∃x(x = O)∧ψ(x) is in FOx

DL. It takes no steps of
logical deduction.

(4’) ∃x(a = A(x))∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in fact inFOx

DL, case (4’) is a special case of case (2).

(5) ∃y.a = A(y)∧ψ(x)[s]

44

Assume thatα = A(O), then ǫ[∃y.α = A(y)∧ψ(x)[S1]]
≡ ǫ[∃y(A(O) = A(y))∧ψ(x)[S1]]
= ∃y(y = O)∧ψ(x)[S1]
= (∃y(y = O)∧ψ(x))[S1].

Clearly, the closed formula∃y(y = O)∧ψ(x) is in FOx
DL. It takes one step of logical deduction

to minimize the quantification scope of∃y.

(5’) ∃y.a = A(y)∧ψ(y)[s]
Assume thatα = A(O), then ǫ[∃y.α = A(y)∧ψ(y)[S1]]

= ǫ[∃y.A(O) = A(y)∧ψ(y)[S1]]
= ∃y.ǫ[A(O) = A(y)∧ψ(y)[S1]]
= ∃y.y = O∧ψ(y)[S1]
= (∃y.y = O∧ψ(y))[S1].

ψ(y) is in FOy
DL, hencey = O∧ψ(y) is in FOy

DL and∃y.y = O∧ψ(y) is in FOx
DL. It takes no

steps of logical deduction.

(6) ∃y(a = A(y))∧ψ(x)[s]
Case (6) is equivalent to case (5), because in case (5) the quantification range ofy is in fact only

overa = A(y). Hence, the statement is true for case (6) by the definition ofFOx
DL.

(6’) ∃y(a = A(y))∧[∃y.]ψ(y)[s] Because[∃y.]ψ(y) is inFOx
DL, case (6’) is a special case of (6).

(7) ∃y.a = A(x, y)∧ψ(x)[s]
Assume thatα = A(O1, O2), then ǫ[∃y.α = A(x, y)∧ψ(x)[S1]]

= ǫ[∃y.A(O1, O2) = A(x, y)∧ψ(x)[S1]]
= (∃y.x = O1∧y = O2∧ψ(x))[S1]
≡ (x = O1∧∃y(y = O2)∧ψ(x))[S1].

Clearly, given thatψ(x) is inFOx
DL, we have thatx = O1∧∃y(y = O2)∧ψ(x) is inFOx

DL by the
definition ofFOx

DL. It takes one step of deduction to minimize the quantification scope of∃y.

(7’) ∃y.a = A(x, y)∧ψ(y)[s]
Assume thatα = A(O1, O2), then ǫ[∃y.α = A(x, y)∧ψ(y)[S1]]

= ǫ[∃y.A(O1, O2) = A(x, y)∧ψ(y)[S1]]
= (∃y.x = O1∧y = O2∧ψ(y))[S1]
≡ (x = O1∧(∃y.y = O2∧ψ(y)))[S1].

Clearly, given thatψ(y) is inFOy
DL, we have thatx = O1∧(∃y.y = O2∧ψ(y)) is inFOx

DL by the
definition ofFOx

DL. It takes one step of deduction to minimize the quantification scope of∃y.

(8) ∃y(a = A(x, y))∧ψ(x)[s]
Case (8) is equivalent to case (7), because in case (7) the quantification range ofy is in fact only

overa = A(x, y).

(8’) ∃y(a = A(x, y))∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in FOx

DL, case (8’) is a special case of case (8).

(9) ∃x.∃y.a = A(x, y)∧ψ(x)[s]
Case (9) is equivalent to case (10), because in case (9) the quantification range ofy is in fact only

overa = A(x, y).

(9’) ∃x.∃y.a = A(x, y)∧ψ(y)[s]
Case (9’) is equivalent to case (11’), because in case (9’) the quantification range ofx is in fact

only overa = A(x, y).

45

(10)∃x.∃y(a = A(x, y))∧ψ(x)[s]
Assume thatα = A(O1, O2), then ǫ[∃x.∃y(α = A(x, y))∧ψ(x)[S1]]

= ǫ[∃x.∃y(α = A(x, y))∧ψ(x)[S1]]
= ǫ[∃x.∃y(A(O1, O2) = A(x, y))∧ψ(x)[S1]]
= (∃x.∃y(x = O1∧y = O2)∧ψ(x))[S1]
≡ (∃x.x = O1∧∃y(y = O2)∧ψ(x))[S1].

It is easy to see that∃x.x = O1∧∃y(y = O2)∧ψ(x) is in FOx
DL, and it takes one step of logical

deduction.

(10’) ∃x.∃y(a = A(x, y))∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in FOx

DL, case (10’) is a special case of case (10).

(11)∃y.∃x(a = A(x, y))∧ψ(x)[s]
Case (11) is equivalent to case (12), because in case (11) thequantification range ofy is in fact

only overa = A(x, y).

(11’) ∃y.∃x(a = A(x, y))∧ψ(y)[s]
Assume thatα = A(O1, O2), then ǫ[∃y.∃x(α = A(x, y))∧ψ(y)[S1]]

= ǫ[∃y.∃x(A(O1, O2) = A(x, y))∧ψ(y)[S1]]
= ∃y.∃x(x = O1∧y = O2)∧ψ(y)[S1]
≡ (∃y.∃x(x = O1)∧y = O2∧ψ(y))[S1].

It is easy to see that∃y.∃x(x = O1)∧y = O2∧ψ(y) is in FOx
DL, and it takes one step of logical

deduction to minimize the scope of∃x.

(12)∃y(∃x(a = A(x, y)))∧ψ(x)[s]
Assume thatα = A(O1, O2), then ǫ[∃y(∃x(α = A(x, y)))∧ψ(x)[S1]]

= ǫ[∃y(∃x(A(O1, O2) = A(x, y))∧ψ(x)[S1]]
= ∃y(∃x(x = O1∧y = O2))∧ψ(x)[S1]
≡ (∃y(∃x(x = O1)∧y = O2)∧ψ(x))[S1].

It is easy to see that∃y(∃x(x = O1)∧y = O2)∧ψ(x) is in FOx
DL, and it takes one step of logical

deduction to minimize the scope of∃x.

(12’) ∃y(∃x(a = A(x, y)))∧[∃y.]ψ(y)[s]
Because[∃y.]ψ(y) is in FOx

DL, case (12’) is a special case of case (12).

Whena is substituted by a ground actionα ands is substituted by a ground situationS1, by the definition

46

of regression,ǫ andρ,

ǫ[ρ[F (x, S)]] = ǫ[ρ[F (x, do(α, S1))]]

= ǫ

m+∨

i=1

φ+
i (x, α, S1)∨F (x, S1)∧¬(

m
−∨

j=1

φ−j (x, α, S1))

(by the definition ofρ),

=

m+∨

i=1

ǫ[φ+
i (x, α, S1)]∨F (x, S1)∧¬(

m
−∨

j=1

ǫ[φ−j (x, α, S1))]

(by the definition ofǫ),

≡

m+∨

i=1

ν+
i (x)[S1]∨F (x, S1)∧¬(

m
−∨

j=1

ν−j (x)[S1]

(according to the proof of cases (1-12,1’-12’)),

≡ (

m+∨

i=1

ν+
i (x)∨F (x)∧¬(

m
−∨

j=1

ν−j (x))[S1], (10)

where eachν+
i (x) (ν−j (x), respectively) is a formula inFOx

DL that has at most one free variablex, and
it is logically equivalent toǫ[φ+

i (x, α, S1)]
[−S1] (ǫ[φ−

j (x, α, S1)]
[−S1], respectively). Clearly, the formula

on the RHS of Eq. (10) is regressable, uniform inS1, and inFOx
DL (with S1 suppressed) according to

the definition of the setFOx
DL. Moreover, it takes only a constant number of steps wrt the size of the

resulting formula to find the equivalent formula. Then, using the induction hypothesis for situationS1

and Corollary 2 (i.e.,R[F (x, S)] = R[ǫ[ρ[F (x, S)]]]), we have(R[F (x, do(α, S1))])
[−S0] will still be

equivalent to some formula inFOx
DL.

Similarly, we can prove Statements (1) and (2) forW [−S] that is inFOy
DL and is atomic.

Inductive step of the induction on the structure ofW [−S]:
Now, we complete our remaining cases whenW (hence,W [−S]) is not atomic. There are in total four
cases (a-d) as follows.

a. W [−S] is of the form¬W1, whereW1 ∈ FOx
DL.

Then, it is obvious thatW = ¬W1[S], andǫ[ρ[W]] = ¬ǫ[ρ[W1[S]]]. Moreover, by the induction
hypothesis on the structure ofW , there is a formulaφ1 ∈ FOx

DL such thatǫ[ρ[W1[S]]] ≡ φ1[S1],
which is regressable, uniform inS1, has no appearance ofPoss and can be foundc · size(φ1) for
some integerc. Hence,ǫ[ρ[W]] ≡ ¬φ1[S1], and Statement (2) is true forW . Then, according
to Corollary 2,R[W] = R[ǫ[ρ[W]]] ≡ R[¬φ1[S1]]. Next, by the induction hypothesis onS1,
R[W][−S0] is equivalent to some formula inFOx

DL, and it is easy to see that Statement (1) is true for
W that is uniform in situationS.

b. W [−S] is of the formW1∧W2 or of the formW1∨W2, whereW1,W2 ∈ FOx
DL.

Then, if W [−S] is of the formW1 ∧W2, it is obvious thatW = (W1 ∧W2)[S], so ǫ[ρ[W]] =
ǫ[ρ[W1[S]]]∧ ǫ[ρ[W2[S]]]. By the induction hypothesis on the structure ofW , there are formulas
φ1, φ2 ∈ FOx

DL such thatǫ[ρ[W1[S]]] ≡ φ1[S1] andǫ[ρ[W2[S]]] ≡ φ2[S1], which are regressable,
uniform inS1, has no appearance ofPoss and can be found inc · (size(φ1)+size(φ2)+1) steps for
some integerc. Hence,ǫ[ρ[W]] ≡ (φ1∧φ2)[S1], and Statement (2) is true forW . Then, according
to Corollary 2,R[W] = R[ǫ[ρ[W]]] ≡ R[(φ1∧φ2)[S1]]. Next, by the induction hypothesis onS1,
R[W][−S0] is equivalent to some formula inFOx

DL, and it is easy to see that Statement (1) is true for

47

W that is uniform inS.
It is very similar to prove that Statements (1) and (2) are true whenW [−S] is of the formW1∨W2,
and details are omitted here.

c. W [−S] is of the form[∃y.]W1(y) or [∀y.]W1(y), whereW1(y) is inFOy
DL.

Then, ifW [−S] is of the form[∃y.]W1(y), ǫ[ρ[W]] = [∃y.]ǫ[ρ[W1(y)[S]]]. By the induction hypoth-
esis on the structure ofW , there is a formulaφ1(y) ∈ FOy

DL such thatǫ[ρ[W1(y)[S]]] ≡ φ1(y)[S1],
which is regressable, uniform inS1, has no appearance ofPoss and can be found inc · size(φ1(y))
steps for some integerc. Hence,ǫ[ρ[W]] ≡ ([∃y.]φ1(y))[S1], and Statement (2) is true forW .
Then, according to Corollary 2,R[W] = R[ǫ[ρ[W]]] ≡ R[([∃y.]φ1(y))[S1]]. Next, by the induction
hypothesis onS1, R[W][−S0] is equivalent to some formula inFOx

DL, and it is easy to see that State-
ment (1) is true forW that is uniform in situationS.
It is very similar to prove that Statements (1) and (2) are true whenW [−S] is of the form[∀y.]W1(y),
and details are omitted here.

d. W [−S] is of the form∃y.R(x, y)∧W1(y) or ∀y.R(x, y)⊃W1(y), whereR(x, y) is a dynamic predicate
andW1(y) is in FOy

DL.
We first consider the case whenW [−S] is of the form∃y.R(x, y)∧W1(y). Then,W = ∃y.R(x, y)[S]∧
W1(y)[S], and there are two sub-cases.
(d.1) If R is a situation-independent predicate, thenǫ[ρ[W]] = [∃y.]R(x, y)∧ǫ[ρ[W1(y)[S]]]. By
the induction hypothesis on the structure ofW , there is a formulaφ1(y) ∈ FOy

DL such that
ǫ[ρ[W1(y)[S]]] ≡ φ1(y)[S1], which is regressable, uniform inS1, has no appearance ofPoss
and can be found inc · size(φ1(y)) steps for some integerc. Hence,ǫ[ρ[W]] ≡ ([∃y.]R(x, y)∧
φ1(y))[S1], and Statement (2) is true forW . Then, according to Corollary 2,R[W] = R[ǫ[ρ[W]]] ≡
R[([∃y.]R(x, y)∧φ1(y))[S1]]. Next, by the induction hypothesis onS1, R[W][−S0] is equivalent to
some formula inFOx

DL, and it is easy to see that Statement (1) is true forW that is uniform in
situationS.
(d.2) Otherwise, ifR is a fluent, then thenǫ[ρ[W]] = [∃y.]ǫ[ρ[R(x, y, s)]]∧ǫ[ρ[W1(y)[S]]]. Moreover,
we need to consider different sub-cases for the SSA ofR. Notice that according to the definition of a
Dss that isALCO(U)-restricted, all dynamic roles are bothALCO(U)-restricted and context-free. So,
depending on whether the context conditions are inFOx

DL (e.g., cases (1-16) in Table 12) orFOy
DL

(e.g., cases (1’-16’) in Table 12), what variables appear inaction functions and/or in the conditions
(none,x only, y only,x andy), and whether or not the variables are quantified, the SSA ofR is

R(x, y, do(a, s)) ≡

m+∨

i=1

φ+
i (x, y, a)∨R(x, y, s)∧¬(

m
−∨

j=1

φ−
j (x, y, a)), (11)

where eachφ+
i (x, y, a) (φ−

j (x, y, a), respectively) is a situation-independent formula whose syntac-
tic form is one of the following cases listed in Table 12 and the cases we described in Note 2. Recall
that we prove the lemma for those SSAs which haveALCO(U)-restricted context formulas only.
Notice that in Table 12,ψ(x) (ψ(y), respectively) is a formula inFOx

DL (FOy
DL, respectively) with

at mostone free variablex (y, respectively). In cases (1) and (1’),A represents some constant action
function. In cases (2-7) and (2’-7’) ,A represents some unary action function name. And, in cases
(8-16) and (8’-16’),A represents some binary action function name. Again, to showthat we have
exhausted all the possibilities, the cases we listed in Table 12 still include some other duplications.
For example, case (6) in fact is the same as case (3) by renaming.

48

1 a = A∧ψ(x) 1’ a = A∧ψ(y)
2 a = A(x)∧ψ(x) 2’ a = A(x)∧ψ(y)
3 ∃x(a = A(x))∧ψ(x) 3’ ∃x(a = A(x))∧ψ(y)
4 ∃x.a = A(x)∧ψ(x) 4’ ∃x.a = A(x)∧ψ(y)
5 a = A(y)∧ψ(x) 5’ a = A(y)∧ψ(y)
6 ∃y(a = A(y))∧ψ(x) 6’ ∃y(a = A(y))∧ψ(y)
7 ∃y.a = A(y)∧ψ(x) 7’ ∃y.a = A(y)∧ψ(y)
8 a = A(x, y)∧ψ(x) 8’ a = A(x, y)∧ψ(y)
9 ∃x(a = A(x, y))∧ψ(x) 9’ ∃x(a = A(x, y))∧ψ(y)
10 ∃x.a = A(x, y)∧ψ(x) 10’ ∃x.a = A(x, y)∧ψ(y)
11 ∃y(a = A(x, y))∧ψ(x) 11’ ∃y(a = A(x, y))∧ψ(y)
12 ∃y.a = A(x, y)∧ψ(x) 12’ ∃y.a = A(x, y)∧ψ(y)
13 ∃y(∃x(a = A(x, y)))∧ψ(x) 13’ ∃y(∃x(a = A(x, y)))∧ψ(y)
14 ∃y.∃x(a = A(x, y))∧ψ(x) 14’ ∃y.∃x(a = A(x, y))∧ψ(y)
15 ∃x.∃y(a = A(x, y))∧ψ(x) 15’ ∃x.∃y(a = A(x, y))∧ψ(y)
16 ∃x.∃y.a = A(x, y)∧ψ(x) 16’ ∃x.∃y.a = A(x, y)∧ψ(y)

Figure 12: Some possible syntactic forms forφ+
i (x, y, a) or φ−

j (x, y, a) in Eq. (11)

Note 2 For any formulaψ1(x) (ψ1(y), respectively) inFOx
DL (FOy

DL, respectively), there are also
cases where the context conditions are either of the form[∃x.]ψ1(x) or of the form [∃y.]ψ1(y).
However,[∃x.]ψ1(x) (or [∃y.]ψ1(y), respectively) is a formula in bothFOx

DL andFOy
DL, which can

be considered as a special case of the formψ(x) ∈ FOx
DL or ψ(y) ∈ FOy

DL. Hence the proof of
such cases where the context conditions are either of the form [∃x.]ψ1(x) or [∃y.]ψ1(y) are the same
as as the cases where the context conditions are of the formψ(x) (or ψ(y), either one is fine) in
Table 12. Moreover, letO, O1 andO2 be some constants. There are also cases fora = A(O) (or
a = A(O1, O2), respectively) inφ+

i and/orφ−
j in the SSA ofR, which can be proved similarly to the

cases in Table 12 wherea = A; there are also cases fora = A(O1, x) (or a = (x,O1), respectively)
in φ+

i and/orφ−
j in the SSA ofR, which can be proved similarly to the cases in Table 12 where

a = A(x); there are also cases fora = A(O1, y) (or a = (y, O1), respectively) inφ+
i and/orφ−

j in
the SSA ofR, which can be proved similarly to the cases in Table 12 wherea = A(y); there are also
cases fora = A(y, x) in φ+

i and/orφ−
j in the SSA ofR, which can be proved similarly to the cases

in Table 12 wherea = A(x, y). Notice that using unique name axioms for object constants,we can
replace all (in)equalities between object constants with either true or false in the resulting formula
that is equivalent toǫ[ρ[W]] for anyLC2

sc regressable formulaW . Moreover, such deduction takes at
most linear number of steps in the size of the resulting formula.

We first show that for any case in Table 12,ǫ[φ+
i (x, y, α)] (ǫ[φ−

j (x, y, α)], respectively) results in a
formula that is equivalent to some formula of the form(ν(x)∧η(y)) for someν(x) ∈ FOx

DL and
η(y)) ∈ FOy

DL. In particular, we will see in the proof below for all cases inTable 12, the resulting
formulas are in one of the four specific forms ofν(x)∧η(y): ν(x) (let eta(y) be true), η(y) (let
nu(x)) betrue), ν(x)∧y = O for some constantO, orx = O∧η(y) for some constantO.

From now on, without particular emphasis, all the cases we discuss below are the cases in Table 12.

49

Moreover, for similar proofs, some detailed steps are skipped.

Here is one trivial sub-case: if the function name ofα is notA, then in each of the aforementioned
cases (1-16), (1’-16’) and in Note 2,ǫ of each formula (φ+

i or φ−
j) equalsfalse, which is still in

FOx
DL. Hence, below we only discuss the condition thatα has the same function name (with the

same number of arguments) as the given action function name in each case, and we letO, O1 and
O2 be some constants.

(1) a = A∧ψ(x)
Assume thatα = A, then ǫ[α = A∧ψ(x)]

= true∧ψ(x).
Clearly,true∧ψ(x) is of the formν(x)∧η(y) (let ν(x) beψ(y) and letη(y) betrue).

(1’) a = A∧ψ(y)

Assume thatα = A, then ǫ[α = A∧ψ(y)]
= true∧ψ(y).

Clearly,true∧ψ(y) is of the formν(x)∧η(y) (let ν(x) betrue and letη(y) beψ(y)).

(2) a = A(x)∧ψ(x)
Assume thatα = A(O), then ǫ[α = A(x)∧ψ(x)]

= ǫ[A(O) = A(x)]∧ψ(x)
= (x = O)∧ψ(x).

Clearly,x = O∧ψ(x) is inFOx
DL and is of the formν(x)∧η(y) (let ν(x) bex = O∧ψ(x) and let

η(y) betrue).

(2’) a = A(x)∧ψ(y)
Assume thatα = A(O), then ǫ[α = A(x)∧ψ(y)]

= ǫ[A(O) = A(x)]∧ψ(y)
= (x = O)∧ψ(y).

Clearly,x = O∧ψ(y) is of the formν(x)∧η(y) (let ν(x) bex = O and letη(y) beψ(y)).

(3) ∃x(a = A(x))∧ψ(x)
Assume thatα = A(O), then ǫ[∃x(α = A(x))∧ψ(x)]

= ǫ[∃x(A(O) = A(x))]∧ǫ[ψ(x)]
= ∃x(x = O)∧ψ(x).

Clearly,∃x(x = O)∧ψ(x) is of the formν(x)∧η(y) (let ν(x) beψ(x) and letη(y) be∃x(x = O)).

(3’) ∃x(a = A(x))∧ψ(y)
Assume thatα = A(O), then ǫ[∃x(α = A(x))∧ψ(y)]

= ǫ[∃x(A(O) = A(x))]∧ǫ[ψ(y)]
= ∃x(x = O)∧ψ(y).

Clearly,∃x(x = O)∧ψ(y) is of the formν(x)∧η(y) (let ν(x) be true and letη(y) be∃x(x =
O)∧ψ(y)).

(4) ∃x.a = A(x)∧ψ(x)
Assume thatα = A(O), then ǫ[∃x.α = A(x)∧ψ(x)]

= ∃x.ǫ[A(O) = A(x)]∧ǫ[ψ(x)]
= ∃x.x = O∧ψ(x).

Clearly,∃x.x = O∧ψ(x) is of the formν(x)∧η(y) (let ν(x) be true and letη(y) be∃x.x =
O∧ψ(x)).

50

(4’) ∃x.a = A(x)∧ψ(y)
Case (4’) is equivalent to case (3’), because in case (4’) thequantification range ofx is in fact only

overa = A(x).

(5) a = A(y)∧ψ(x) (The proof is similar to that of case (2’) above.)
Assume thatα = A(O), then ǫ[α = A(y)∧ψ(x)]

= y = O∧ψ(x).
Clearly,y = O∧ψ(x) is of the formν(x)∧η(y) (let ν(x) beψ(x) and letη(y) bey = O).

(5’) a = A(y)∧ψ(y) (The proof is similar to that of case (2) above.)
Assume thatα = A(O), then ǫ[α = A(y)∧ψ(y)]

= y = O∧ψ(y).
Clearly,y = O∧ψ(y) is in FOy

DL and is of the formν(x)∧η(y) (let η(y) bey = O∧ψ(y) and let
ν(x) betrue).

(6) ∃y(a = A(y))∧ψ(x) (The proof is similar to that of case (3’) above.)
Assume thatα = A(O), then ǫ[∃y(α = A(y))∧ψ(x)]

= ∃y(y = O)∧ψ(x).
Clearly,∃y(y = O)∧ψ(x) is of the formν(x)∧η(y) (let η(y) be true and letν(x) be∃y(y =

O)∧ψ(x)).

(6’) ∃y(a = A(y))∧ψ(y) (The proof is similar to that of case (3) above.)
Assume thatα = A(O), then ǫ[∃y(α = A(y))∧ψ(y)]

= ∃y(y = O)∧ψ(y).
Clearly,∃y(y = O)∧ψ(y) is of the formν(x)∧η(y) (let η(y) beψ(y) and letν(x) be∃y(y = O)).

(7) ∃y.a = A(y)∧ψ(x) (The proof is similar to that of case (3) above.)
Case (7) is equivalent to case (6), because in case (7) the quantification range ofy is in fact only

overa = A(y).

(7’) ∃y.a = A(y)∧ψ(y) (The proof is similar to that of case (4) above.)
Assume thatα = A(O), then ǫ[∃y.α = A(y)∧ψ(y)]

= ∃y.y = O∧ψ(y).
Clearly,∃y.y = O∧ψ(y) is of the formν(x)∧η(y) (letη(y) betrue and letν(x) be∃y.y = O∧ψ(y)).

(8) a = A(x, y)∧ψ(x)
Assume thatα = A(O1, O2), then ǫ[α = A(x, y)∧ψ(x)]

= ǫ[A(O1, O2) = A(x, y)∧ψ(x)]
= y = O2∧x = O1∧ψ(x).

Clearly,y = O2∧x = O1∧ψ(x) is of the formν(x)∧η(y) (let η(y) bey = O2 and letν(x) be
x = O1∧ψ(x)).

(8’) a = A(x, y)∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[α = A(x, y)∧ψ(y)]

= ǫ[A(O1, O2) = A(x, y)∧ψ(y)]
= x = O1∧y = O2∧ψ(y).

Clearly,x = O1∧y = O2∧ψ(y) is of the formν(x)∧η(y) (let η(y) bey = O2∧ψ(y) and letν(x)
bex = O1).

(9) ∃x(a = A(x, y))∧ψ(x)

51

Assume thatα = A(O1, O2), then ǫ[∃x(α = A(x, y))∧ψ(x)]
= ǫ[∃x(A(O1, O2) = A(x, y))∧ψ(x)]
= ∃x(x = O1∧y = O2)∧ψ(x)
≡ y = O2∧∃x(x = O1)∧ψ(x).

Clearly,y = O2∧∃x(x = O1)∧ψ(x) is of the formν(x)∧η(y) (let η(y) bey = O2 and letν(x)
be∃x(x = O1)∧ψ(x)).

(9’) ∃x(a = A(x, y))∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[∃x(α = A(x, y))∧ψ(y)]

= (∃x(x = O1∧y = O2)∧ψ(y))
≡ ∃x(x = O1)∧y = O2∧ψ(y).

Clearly,∃x(x = O1)∧y = O2∧ψ(y) is of the formν(x)∧η(y) (let η(y) bey = O2∧ψ(y) and let
ν(x) be∃x(x = O1)).

(10)∃x.a = A(x, y)∧ψ(x)
Assume thatα = A(O1, O2), then ǫ[∃x.α = A(x, y)∧ψ(x)]

= (∃x.x = O1∧y = O2∧ψ(x))
≡ y = O2∧∃x.x = O1∧ψ(x).

Clearly,y = O2∧∃x.x = O1∧ψ(x) is of the formν(x)∧η(y) (let ν(x) be true and letη(y) be
y = O2∧∃x.x = O1∧ψ(x)).

(10’) ∃x.a = A(x, y)∧ψ(y)
Case (10’) is equivalent to case (9’), because in case (10’) the quantification range ofx is in fact

only overa = A(x, y).

(11) ∃y(a = A(x, y))∧ψ(x)
Assume thatα = A(O1, O2), then ǫ[∃y(α = A(x, y))∧ψ(x)]

= (∃y(x = O1∧y = O2)∧ψ(x))
≡ ∃y(y = O2)∧x = O1∧ψ(x).

Clearly,∃y(y = O2)∧x = O1∧ψ(x) is of the formν(x)∧η(y) (let η(y) be true and letν(x) be
∃y(y = O2)∧x = O1∧ψ(x)).

(11’) ∃y(a = A(x, y))∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[∃y(α = A(x, y))∧ψ(y)]

= (∃y(x = O1∧y = O2)∧ψ(y))
≡ ∃y(y = O2)∧x = O1∧ψ(y).

Clearly,∃y(y = O2)∧x = O1∧ψ(y) is of the formν(x)∧η(y) (let η(y) beψ(y) and letν(x) be
∃y(y = O2)∧x = O1).

(12)∃y.a = A(x, y)∧ψ(x)
Case (12) is equivalent to case (11), because in case (12) thequantification range ofy is in fact

only overa = A(x, y).

(12’) ∃y.a = A(x, y)∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[∃y.α = A(x, y)∧ψ(y)]

= (∃y.x = O1∧y = O2∧ψ(y))
≡ x = O1∧∃y.y = O2∧ψ(y).

Clearly,x = O1∧∃y.y = O2∧ψ(y) is of the formν(x)∧η(y) (let ν(x) bex = O1 and letη(y) be
∃y.y = O2∧∧ψ(y)).

(13)∃y(∃x(a = A(x, y)))∧ψ(x)

52

Assume thatα = A(O1, O2), then ǫ[∃y(∃x(α = A(x, y)))∧ψ(x)]
= ∃y(∃x(x = O1∧y = O2))∧ψ(x)
= ∃y(∃x(x = O1∧y = O2))∧ψ(x)
≡ ∃x(x = O1)∧∃y(y = O2)∧ψ(x).

Clearly,∃x(x = O1)∧∃y(y = O2)∧ψ(x) is of the formν(x)∧η(y) (let ν(x) be∃y(y = O2)∧ψ(x)
and letη(y) be∃x(x = O1)).

(13’) ∃y(∃x(a = A(x, y)))∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[∃y(∃x(α = A(x, y)))∧ψ(y)]

= ∃y(∃x(x = O1∧y = O2))∧ψ(y)
= ∃y(∃x(x = O1∧y = O2))∧ψ(y).

Clearly,∃y(∃x(x = O1∧y = O2))∧ψ(y) is of the formν(x)∧η(y) (let ν(x) betrue and letη(y)
be∃y(∃x(x = O1∧y = O2))∧ψ(y)).

(14)∃y.∃x(a = A(x, y))∧ψ(x)
Case (14) is equivalent to case (13), because in case (14) thequantification range ofy is in fact

only overa = A(x, y).

(14’) ∃y.∃x(a = A(x, y))∧ψ(y)
Assume thatα = A(O1, O2), then ǫ[∃y.∃x(α = A(x, y))∧ψ(y)]

= ∃y.∃x(x = O1∧y = O2)∧ψ(y)
≡ ∃x(x = O1)∧∃y.y = O2∧ψ(y).

Clearly,∃x(x = O1)∧∃y.y = O2∧ψ(y) is of the formν(x)∧η(y) (let ν(x) be∃y.y = O2∧ψ(y)
and letη(y) be∃x(x = O1)).

(15)∃x.∃y(a = A(x, y))∧ψ(x)
Assume thatα = A(O1, O2), then ǫ[∃x.∃y(α = A(x, y))∧ψ(x)]

= ∃x.∃y(x = O1∧y = O2)∧ψ(x)
≡ ∃y(y = O2)∧∃x.x = O1∧ψ(x).

Clearly,∃y(y = O2)∧∃x.x = O1∧ψ(x) is of the formν(x)∧η(y) (let ν(x) be∃y(y = O2) and let
η(y) be∃x.x = O1∧ψ(x)).

(15’) ∃x.∃y(a = A(x, y))∧ψ(y)
Case (15’) is equivalent to case (13), because in case (15’) the quantification range ofx is in fact

only overa = A(x, y).

(16)∃x.∃y.a = A(x, y)∧ψ(x)
Case (16) is equivalent to case (14’), because in case (16) the quantification range ofy is in fact

only overa = A(x, y).

(16’) ∃x.∃y.a = A(x, y)∧ψ(y)
Case (16’) is equivalent to case (13), because in case (16’) the quantification range ofx is in fact

only overa = A(x, y).

Notice that for each of the cases above, it takes no more than one step of deduction to find the
equivalent formula of the formν(x)∧η(y) such thatν(x) ∈ FOx

DL andη(y) ∈ FOy
DL, which is

53

constant to the size of the resulting formula. Now, we prove that Statement (2) is true for case (d.2).

ǫ[ρ[W]] = ǫ[ρ[∃y.R(x, y, S)∧W1(y)[S]]]

= ∃y.ǫ[ρ[R(x, y, S)]]∧ǫ[ρ[W1(y)[S]]]

= ∃y.ǫ[ρ[R(x, y, S)]]∧W ′
1(y)[S1]

(by the induction hypothesis onW1(y)[S1], let ǫ[ρ[W1(y)[S]]] ≡W ′
1(y)[S1]

be a formula uniform inS1 andW ′
1(y) is in FOy

DL; moreover,W ′
1(y)

can be found in no more thanc · size(W ′
1(y))) steps

= ∃y.ǫ[(

m+∨

i=1

φ+
i (x, y, α)∨R(x, y, S1)∧¬(

m
−∨

j=1

φ−j (x, y, α))]∧W ′
1(y)[S1]

= ∃y.(

m+∨

i=1

ǫ[φ+
i (x, y, α)]∨R(x, y, S1)∧¬(

m
−∨

j=1

ǫ[φ−j (x, y, α)])∧W ′
1(y)[S1]

≡ ∃y.(

m+∨

i=1

(ν+
i (x)∧η+

i (y))∨R(x, y, S1)∧

m
−∧

j=1

¬(ν−j (x)∧η−j (y)))∧W ′
1(y)[S1]

(according the proof above, for eachi, let ǫ[φ+
i (x, y, α)] ≡ (ν+

i (x)∧η+
i (y))

be a formula uniform inS1 for someν+
i (x) ∈ FOx

DL andη+
i (y) ∈ FO

y
DL;

for eachj, let ǫ[φ−j (x, y, α)] ≡ (ν−j (x)∧η−j (y)) be a formula uniform

in S1 for someν−j (x) ∈ FOx
DL andη−j (y) ∈ FO

y
DL)

≡ ∃y.(

m+∨

i=1

(ν+
i (x)∧η+

i (y)∧W ′
1(y))∨R(x, y)∧W ′

1(y)∧

m
−∧

j=1

¬(ν−j (x)∧η−j (y)))[S1]

≡ {

m+∨

i=1

ν+
i (x)∧∃y(η+

i (y)∧W ′
1(y)))∨∃y.

m
−∧

j=1

(¬ν−j (x)∨¬η−j (y))∧R(x, y)∧W ′
1(y)}[S1]

≡ {

m+∨

i=1

ν+
i (x)∧∃y(η+

i (y)∧W ′
1(y)))∨∃y.

m
−∧

j=1

(¬ν−j (x)∨¬η−j (y))∧R(x, y)∧W ′
1(y)}[S1]

≡ {

m+∨

i=1

ν+
i (x)∧∃y(η+

i (y)∧W ′
1(y))∨

2m
−∨

k=1

∧

j∈Nk

¬ν−j (x)∧∃y(R(x, y)∧W ′
1(y)

∧

l∈Nk

¬η−l (y))}[S1] (12)

= W ′[S1],

where eachNk (1 ≤ k ≤ 2m
−) enumerates a subset of{1, 2, · · · , m−}, andNk = {1, 2, · · · , m−}−

Nk, i.e.,Nk is the complement set ofNk. It is clear the formula on the RHS of Eq. (12) (denoted as
W ′[S1] above) is equivalent toǫ[ρ[W]], isLC2

sc regressable, and is inFOx
DL whenS1 is suppressed,

and has no appearance ofPoss. It is easy to see that to find it, it takes no more thanc · size(W ′) for
some integerc. Hence, Statement (2) is true forW . Moreover, according to Corollary 2, we have
thatR[W] = R[ǫ[ρ[W]]] ≡ R[W ′[S1]]. Then, by the induction hypothesis on formulas uniform in
S1, we haveR[W][−S0] will be equivalent to some formula inFOx

DL.

It is very similar to prove that Statements (1) and (2) are true whenW [−S] is of the form∀y.R(x, y)⊃
W1(y), and details are omitted here.

Similarly, we can show that Statements (1) and (2) are true whenW [−S] is in FOy
DL and is not atomic.

54

And overall, we proved for Statement (1).
Now, consider anyLC2

sc regressableW that is uniform in a ground situationS. WhenW [−S] is in
FOx

DL, assume that we have found someΦW that is inFOx
DL, such thatR[W] ≡ ΦW [S0]. Below we

estimate the upper bound on the size ofΦW . Let n = sitLength(S) (n ∈ N andn ≥ 0), i.e., the number
of action terms involved inS. Letm = size(W) (m ∈ N andm ≥ 1). Let functionf(m,n) be the size of
ΦW , which is a non-decreasing function.

Firstly, it is straightforward thatf(1, 0) = 1.

Secondly, whenm = 1, W is atomic, which is eithertrue, or false, or x = b for some constantb, or a
situation-independent predicate, or a primitive dynamic concept. We now considern ≥ 1. Assume that
S = do(αn, S1), andsitLength(S1) = n− 1. According to the discussion above of “the base case of the
induction on the structure ofW [−S]” (i.e., cases (a-c)), for anyn ∈ N andn ≥ 1, f(1, n) ≤ f(3h, n− 1),
whereh = max(2, sizeSSA(D)) (h is a constant number for the givenD). By Corollary 2, we have
R[W] = R[ǫ[ρ[W]]], whereǫ[ρ[W]] is uniform inS1 (no matter whether it is situation-independent or
not), and is equivalent to someΦ1 ∈ FOx

DL, whose size is no more than3h (including all cases whenW
is atomic). Moreover, the equivalent formulaΦW [S0] that we are looking for can be obtained by looking
for the equivalent formula ofR[Φ1[S1]], whose size is no more thanf(3h, n− 1).

Thirdly, we consider anym ≥ 2 andn ∈ N. In fact, whenm ≥ 2, W is not atomic. According to the
definition ofFOx

DL, there are three sub-cases.
1. W [−S] is of the form¬W1, or∃y.W1(y), or∀y.W1(y) whereW1 is inFOx

DL, orW1(y) is inFOy
DL.

It is easy to see thatf(m,n) = f(m−1, n)+1 according to the definition of the regression operator
R and the wayFOx

DL constructed. For example,R[¬W1[S]] = ¬R[W1[S]], if we find a formula
Φ1 in FOx

DL that is equivalent toR[W1[S]][−S0], thenΦW = ¬Φ1 is the formula that we are looking
for.

2. W [−S] is of the formW1∨W2, orW1∧W2 whereW1 andW2 are inFOx
DL. It is easy to see that

f(m,n) = f(size(W1), n)+f(size(W2), n)+1, which is no more than2f(m−1, n)+1, according
to the definition of the regression operatorR and the wayFOx

DL constructed.

3. W [−S] is of the form∃y.R(x, y)∧W1(y), or∀y.R(x, y)⊃W1(y), whereW1(y) is inFOx
DL andR is a

dynamic predicate name. According to the definition ofsize in Section 5.2, we havesize(W1(y)) =
m − 3. For instance, we consider the case whenW [−S] is of the form∃y.R(x, y)∧W1(y), and it is
similar for the case whenW [−S] is of the form∀y.R(x, y)⊃W1(y). According to the definition of
R, we have

R[W] = R[∃y.R(x, y)[S]∧W1(y)[S]]

= ∃y.R[R(x, y)[S]]∧R[W1(y)[S]]

=

{
∃y.R[R(x, y, S)]∧R[W1(y)[S]] if R is a fluent,
∃y.R(x, y)∧R[W1(y)[S]] otherwise.

(13)

Assume thatR[W1(y)[S]][−S0] is equivalent to someΦ1(y) ∈ FOy
DL. WhenR is situation-independent,

∃y.R(x, y)∧Φ1(y) is the formula that we are looking for, whose size isf(m− 3, n) + 3. WhenR
is a dynamic role, we assume that its SSA is of the form Eq. (11)andS = do([α1, α2, · · · , αn], S0).

55

Let Si = do([α1, · · · , αn−i], S0) for any1 ≤ i ≤ n− 1, then

R[W] = ∃y.R[R(x, y, S)]∧R[W1(y)[S]] (14)

≡ ∃y.R[R(x, y, S)]∧Φ1(y)[S0]

≡ ∃y.{

m+∨

i=1

R[φ+
i (x, y, αn)]∨R[R(x, y, S1)]∧¬(

m
−∨

j=1

R[φ−j (x, y, αn)])}∧Φ1(y)[S0]

≡ ∃y.{

m+∨

i=1

R[ǫ[ρ[φ+
i (x, y, αn)]]]∨R[R(x, y, S1)]∧¬(

m
−∨

j=1

R[ǫ[ρ[φ−j (x, y, αn)]]])}

∧Φ1(y)[S0]

≡ ∃y.{

m+∨

i=1

(ν+
i,n(x)∧η+

i,n(y))∨R[R(x, y, S1)]∧

(

m
−∧

j=1

(¬ν−j,n(x)∨¬η−j,n(y)))}∧Φ1(y)[S0]

≡ ∃y.{

m+∨

i=1

(ν+
i,n(x)∧η+

i,n(y))∨(

m+∨

i=1

R[φ+
i (x, y, αn−1)]∨R[R(x, y, S2)]∧

¬(

m
−∨

j=1

R[φ−j (x, y, αn−1)]))∧(

m
−∧

j=1

(¬ν−j,n(x)∨¬η−j,n(y)))}∧Φ1(y)[S0]

≡ ∃y.{

m+∨

i=1

(ν+
i,n(x)∧η+

i,n(y))∨(

m+∨

i=1

(ν+
i,n−1(x)∧η

+
i,n−1(y))∨R[R(x, y, S2)]∧

(

m
−∧

j=1

(¬ν−j,n(x)∨¬η−j,n(y))))∧(

m
−∧

j=1

(¬ν−j,n(x)∨¬η−j,n(y)))}∧Φ1(y)[S0]

≡ · · · · · · (for each1 ≤ l ≤ n, let γ+
l =

m+∨

i=1

(ν+
i,l(x)∧η

+
i,l(y))

and letγ−l =

m
−∧

j=1

(¬ν−j,l(x)∨¬η
−
j,l(y)))

≡ ∃y.{γ+
n ∨(γ+

n−1∨(· · ·∨(γ+
1 ∨R(x, y, S0)∧γ

−
1)∧· · ·)∧γ−n−1)∧γ

−
n }

∧Φ1(y)[S0] (15)

≡ {∃y.(γ+
n ∨γ+

n−1∧γ
−
n ∨· · ·∨γ+

1 ∧
n∧

i=2

γ−i ∨R(x, y)∧
n∧

i=1

γ−i)∧Φ1(y)}[S0] (16)

≡ · · · · · · (use distributive law to obtain a sort of DNF format)

≡ {∃y.(
u∨

i=1

ΦS,i(x, y))∧Φ1(y)}[S0] for some indexu (17)

(eachΦS,i(x, y) is a conjuction of some of the sub-formulas in the set

{R(x, y)} ∪ {ν+
i,l(x), η

+
i,l(x), ν

−
j,l(y), η

−
j,l(u) | i = 1..m+, j = 1..m−, l = 1..n})

≡ {
u∨

i=1

(∃y.ΦS,i(x, y)∧Φ1(y))}[S0] (18)

≡ {
u∨

i=1

ΨS,i(x)}[S0] (19)

where eachν+
i,l(x) ∧ η+

i,l(y) (ν−j,l(x) ∧ η−j,l(y), respectively) is equivalent toR[ǫ[ρ[φ+
i (x, y, αk)]]]

56

(R[ǫ[ρ[φ−
j (x, y, αk)]]], respectively). Here, eachν+

i,l(x) (ν−j,l(x), respectively) is inFOx
DL with at

most one free variablex, and eachη+
i,l(y) (η−j,l(y), respectively) is inFOy

DL with at most one free
variabley, according to the proof for cases (1-16,1’-16’) in Table 12.Notice that in order to obtain
an equivalent formula ofR[W][−S0] in FOx

DL, we need to perform the following steps of deductions.
First, we transformR[R(x, y, S)] in Step (14) into a sort of disjunctive normal form (DNF) (from
Step (14) to Step (17)) based on the assumption that eachν+

i,l, (η+
i,l(y), ν

−
j,l(x), η

−
j,l(y), respectively) is

”atomic”, i.e., when each of these sub-formulas is considered as an atom, after using the distributive
law, the resulting sub-formula

∨u

i=1 ΦS,i(x, y) in Step 17 is a DNF formula. Since the resulting
formula is too long, we omit the details and only provide one example of a sub-formula in Step (16)
. For instance, we perform the distributive law overγ+

n−1∧γ
−
n , and obtain∨

i=1..m+,k=1..2m
−

ν+
i,n−1(x) ∧ η

+
i,n−1(y)∧

∧

j∈Nk

¬ν−j,n(x)∧
∧

l∈Nk

¬η−l,n(y),

whereNk ⊆ {1, 2, · · · , m−} (1 ≤ k ≤ 2m
−) enumerates all sub-sets of{1, 2, · · · , m−}, and

Nk = {1, 2, · · · , m−} − Nk, i.e., is the complement set ofNk. Next, we distributeΦ1(y)[S0] into
the resulting DNF formula (from Step (17) to Step (18)). Finally, we push∃y inside into each
conjunctive clause and minimize the scope of each quantifier∃y (from Step(17) to Step (19)). In
Step (17), after using the commutative law of conjunctions,eachΦS,i(x, y) is either of the form
νS,i(x)∧ηS,i(y) or of the formνS,i(x)∧R(x, y)∧ηS,i(y) for someνS,i(x) ∈ FOx

DL and someηS,i(y) ∈
FOy

DL . From Step (18) to Step (19), there are two cases for each index i: if ΦS,i(x, y) is of the form
νS,i(x)∧ηS,i(y), thenΨS,i(x) is νS,i(x)∧(∃y.ηS,i(y)∧Φ1(y)); if ΦS,i(x, y) is of the formνS,i(x)∧
R(x, y)∧ηS,i(y), thenΨS,i(x) is νS,i(x)∧(∃y.R(x, y)∧ηS,i(y)∧Φ1(y)). Hence, the resulting formula
in Step (19), withS0 suppressed, is inFOx

DL, and we denote the formula (withS0 suppressed) as
ΦW .

Now we estimate the size ofΦW whenR is a fluent according to the way it is constructed above.
First, for anyn ≥ 0 and any situationS wheresitLength(S) = n, we denote the size of the DNF
formula that is equivalent toR[R(x, y, S)], constructed specifically according to the above steps
(14-17), asg(n). Note that for each1 ≤ i ≤ m+, 1 ≤ j ≤ m− and1 ≤ l ≤ n, size(ν+

i,l(x)),
(size(η+

i,l(y)), size(ν
−
j,l(x)) size(η

−
j,l(y)), respectively) is no more thanh+ 2 according to the above

for cases (1-16,1’-16’) in Table 12. Moreover, according tothe definition of functionsize() in
Section 5.2, the logical constructors should also be counted. Also, for anym− andm+ for any role
R, we always havem− < h andm+ < h (recall that constant numberh = max(2, sizeSSA(D))).
According to Step 19,f(m,n) ≤ (f(m−3, n)+3)g(n), wheref(m−3, n) = size(Φ1(y)). Below,
we show thatg(n) ≤ c12

nh, wherec1 = (2(h+ 3) + (h+ 4)h2 + 2)22h. Moreover, we can perform

57

a similar estimation for the case whenW [−S] is of the form∀y.R(x, y)⊃W1(y).

g(n) ≤ 2(h+ 3)m+ + (2m
−)m+(2(h+ 3) +m−(h+ 4)) +

(2m
−)2m+(2(h+ 3) + 2m−(h+ 4)) + ...+ (2m

−)n−1m+(2(h+ 3) +

(n− 1)m−(h+ 4)) + (2m
−)n(2 + nm−(h+ 4))

= 2(h+ 3)m+

n−1∑

i=0

(2m
−)i + (h+ 4)m−

n∑

i=1

i(2m
−)i + 2(2m

−)n

= 2(h+ 3)m+

n−1∑

i=0

(2m
−)i + (h+ 4)m+m−

n∑

i=1

i(2m
−)i + 2(2m

−)n

< 2(h+ 3)h

n−1∑

i=0

(2h)i + (h+ 4)h2
n∑

i=1

i(2h)i + 2(2h)n

≤ 2(h+ 3)h(2h)n + (h+ 4)h2n(2h)n+1 + 2(2h)n

≤ 2(h+ 3)h(2h)n + (h+ 4)h2(2h)n+2 + 2(2h)n

≤ (2(h+ 3) + (h+ 4)h2 + 2)(2h)n+2

≤ c12
nh (let constant numberc1 = (2(h+ 3) + (h+ 4)h2 + 2)22h).

We can perform a similar estimation for the case whenW [−S] is in FOy
DL. Overall, under any case, we

have

f(m,n) ≤ max(f(m− 1, n) + 1, 2f(m− 1, n) + 1,

f(m− 3, n) + 3, c1(2
h)n(f(m− 3, n) + 3))

≤ c12
hn(f(m− 1, n) + 3)

≤ c12
hn(c12

hn(f(m− 2, n) + 3) + 3)

≤ · · ·

≤ c12
hn(c12

hn(· · · (2hn(f(1, n) + 3)) + · · · + 3) + 3)

= (c12
hn)m−1f(1, n) + 3

m−2∑

i=0

(c12
hn)i

≤ (c12
hn)m−1(f(1, n) + 3)

≤ cm−1
1 2hn(m−1)(f(3h, n− 1) + 3)

≤ cm−1
1 2hn(m−1)(c3h−1

1 2hn(3h−1)(f(1, n− 1) + 3) + 3)

≤ cm−1
1 2hn(m−1)(c3h−1

1 2hn(3h−1)(f(3h, n− 2) + 3) + 3)

≤ · · ·

≤ cm−1
1 2hn(m−1)((c3h−1

1 2hn(3h−1))nf(1, 0) + 3

n∑

i=0

(c3h−1
1 2hn(3h−1))i)

≤ cm−1
1 2hn(m−1)((c3h−1

1 2hn(3h−1))n + 3(c3h−1
1 2hn(3h−1))n+1)

≤ 4cm−1
1 2hn(m−1)(c3h−1

1 2hn(3h−1))n+1

= 4c
(n+1)(3h−1)+(m−1)
1 2hn(m−1)+h(3h−1)n(n+1)

= 2c2((n+1)(3h−1)+(m−1))+hn(m−1)+h(3h−1)n(n+1)+2

where constant numbersc2 = log2c1 andc1 = (2(h+ 3) + (h + 4)h2 + 2)22h. Hence, we finally have

f(m,n) ∈ O(2hmn+3h2n2

), where constanth = max(2, sizeSSA(D)).

That is, the size of the equivalent formula ofR[W] that we are looking for is no more than exponential in
the size of the given formulaW . �

58

References

[1] Artale A, Franconi E (2001) A survey of temporal extensions of description logics. Annals of Math-
ematics and Artificial Intelligence 30(1-4)

[2] Baader F, Lutz C, Miliĉić M, Sattler U, Wolter F (2005) Integrating description logics and action
formalisms: First results. In: Proceedings of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05), Pittsburgh, PA, USA, pp 572–577, extendedversion is available as LTCS-Report-
05-02 at http://lat.inf.tu-dresden.de/research/reports.html

[3] Baader F, Milicic M, Lutz C, Sattler U, Wolter F (2005) Integrating description logics and action for-
malisms for reasoning about web services. LTCS-Report LTCS-05-02, Chair for Automata Theory,
Institute for Theoretical Computer Science, Dresden University of Technology, Germany

[4] Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2007) The Description
Logic Handbook: Theory, Implementation, and Applications. Second edition, Cambridge University
Press

[5] van Benthem J (1976) Modal Correspondence Theory, PhD thesis. Mathematisch Instituut& Instituut
voor Grondslagenonderzoek, University of Amsterdam

[6] van Benthem J (1983) Modal logic and and classical logic.Bibliopolis

[7] Berardi D, Calvanese D, Giacomo GD, Lenzerini M, MecellaM (2003) e-service composition by
description logics based reasoning. In: Calvanese D, Giacomo GD, Franconi E (eds) Proceedings of
the 2003 International Workshop in Description Logics (DL-2003), Rome, Italy

[8] Blackburn P, van Benthem J (2007) Modal logic: a semanticperspective. In: Blackburn P, van Ben-
them J, Wolter F (eds) Handbook of Modal Logic, Elsevier Science, pp 1–84

[9] Borgida A (1996) On the relative expressiveness of description logics and predicate logics. Artificial
Intelligence 82(1-2):353–367

[10] Calvanese D, Franconi E, Haarslev V, (2007) Proceedings of the 2007 International Workshop on De-
scription Logics (DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007, CEUR
Workshop Proceedings, vol 250, CEUR-WS.org

[11] Calvanese D, Giacomo GD, Lenzerini M, Rosati R (2007) Actions and programs over description
logic ontologies. In: [10]

[12] Castilho MA, Herzig A, Varzinczak IJ (2002) It depends on the context! a decidable logic of actions
and plans based on a ternary dependence relation. In: Benferhat S, Giunchiglia E (eds) NMR, pp
343–348

[13] Chang L, Lin F, Shi Z (2007) A dynamic description logic for representation and reasoning about
actions. In: Zhang Z, Siekmann JH (eds) KSEM, Springer, Lecture Notes in Computer Science, vol
4798, pp 115–127

[14] Chang L, Shi Z, Qiu L, Lin F (2007) Dynamic description logic: Embracing actions into description
logic. In: [10]

59

[15] Demolombe R (2003) Belief change: from situation calculus to modal logic. Journal of Applied
Non-Classical Logics 13(2):187–198

[16] Demolombe R, Herzig A, Varzinczak IJ (2003) Regressionin modal logic. Journal of Applied Non-
Classical Logics 13(2):165–185

[17] Drescher C, Thielscher M (2007) Integrating action calculi and description logics. In: Hertzberg J,
Beetz M, Englert R (eds) KI-2007, Springer, Lecture Notes inComputer Science, vol 4667, pp 68–83

[18] Finzi A, Pirri F, Reiter R (2000) Open world planning in the situation calculus. In: AAAI/IAAI,
AAAI Press / The MIT Press, pp 754–760

[19] Fischer MJ, Ladner RE (1979) Propositional dynamic logic of regular programs. Journal of Computer
and System Sciences 18(2):194–211

[20] Gabbay D (1981) Expressive functional completeness intense logic. In: Mönnich U (ed) Aspects
of Philosophical Logic: Some Logical Forays into Central Notions of Linguistics and Philosophy,
“Synthese Library”, Vol. 147, Reidel, pp 91–117

[21] Gabbay DM, Shehtman VB (1998) Products of modal logics,part 1. Logic Journal of the IGPL
6(1):73–146

[22] Gabbay DM, Shehtman VB (2000) Products of modal logics.part 2: Relativised quantifiers in clas-
sical logic. Logic Journal of the IGPL 8(2)

[23] Gabbay DM, Shehtman VB (2002) Products of modal logics.part 3: Products of modal and temporal
logics. Studia Logica 72(2):157–183

[24] Giacomo GD, Lenzerini M (1995) PDL-based framework forreasoning about actions. In: Gori M,
Soda G (eds) AI*IA, Springer, Lecture Notes in Computer Science, vol 992, pp 103–114

[25] Giacomo GD, Iocchi L, Nardi D, Rosati R (1999) A theory and implementation of cognitive mobile
robots. Journal of Logic and Computation 9(5):759–785

[26] Giacomo GD, Lenzerini M, Poggi A, Posati R (2006) On the update of description logic ontologies at
the instance level. In: Proceedings of the 21st National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI-06), AAAI Press,
Buston, US, pp 1271–1276

[27] Gil Y (2005) Description logics and planning. AI Magazine 26(2):73–84

[28] Grädel E, Kolaitis PG, Vardi MY (1997) On the decision problem for two-variable first-order logic.
Bulletin of Symbolic Logic 3:53–69

[29] Grädel E, Otto M, Rosen E (1997) Two-variable logic with counting is decidable. In: Proceedings of
the 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), Warsaw, Poland, pp
306–317

[30] Grüninger M (2004) Ontology of the process specification language. In: Staab S, Studer R (eds)
Handbook on Ontologies, Springer, pp 575–592

60

[31] Grüninger M, Menzel C (2003) The process specificationlanguage (PSL): Theory and applications.
AI Magazine 24(3):63–74

[32] Gu Y, Soutchanski M (2007) Decidable reasoning in a modified situation calculus. In: Proceedings
of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,
India, pp 1891–1897, http://www.cs.ryerson.ca/ mes/publications/DecidableSitcalcijcai07.pdf

[33] Harel D, Kozen D, Tiuryn J (2000) Dynamic Logic. THe MIT Press

[34] Hemaspaandra E (1996) The price of universality. NotreDame Journal of Formal Logic 37(2):174–
203

[35] Horrocks I, Sattler U (2001) Ontology reasoning in the SHOQ(D) description logic. In: In Proc. of
the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001, Morgan Kaufmann, pp 199–204

[36] Horrocks I, Patel-Schneider P, van Harmelen F (2003) From SHIQ and RDF to OWL: The making
of a web ontology language. Journal of Web Semantics 1(1):7–26

[37] Hustadt U, de Nivelle H, Schmidt RA (2000) Resolution-based methods for modal logics. Logic
Journal of the IGPL 8(3)

[38] Hustadt U, Schmidt RA, Georgieva L (2004) A survey of decidable first-order fragments and de-
scription logics. Journal on Relational Methods in Computer Science 1:251–276

[39] Kemke C (2003) A formal theory for describing action concepts in terminological knowledge bases.
In: Xiang Y, Chaib-draa B (eds) Advances in Artificial Intelligence: 16th Conference of the Canadian
Society for Computational Studies of Intelligence, Springer, Lecture Notes in Computer Science,
Volume 2671, June 11-13, Halifax, Canada, pp 458–465

[40] Kurucz A (2007) Combining modal logics. In: Blackburn P, van Benthem J, Wolter F (eds) Handbook
of Modal Logic, Elsevier Science, pp 869–924

[41] Levesque H, Reiter R, Lespérance Y, Lin F, Scherl R (1997) GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming 31:59–84

[42] Lin F (2004) Discovering state invariants. In: Dubois D, Welty CA, Williams MA (eds) KR, AAAI
Press, pp 536–544

[43] Lin F, Reiter R (1994) State constraints revisited. J Log Comput 4(5):655–678

[44] Lin F, Reiter R (1997) How to progress a database. Artificial Intelligence 92:131–167

[45] Liu H, Lutz C, Milicic M, Wolter F (2006) Reasoning aboutactions using description logics with
general tboxes. In: Fisher M, van der Hoek W, Konev B, LisitsaA (eds) JELIA, Springer, Lecture
Notes in Computer Science, vol 4160, pp 266–279

[46] Liu H, Lutz C, Milicic M, Wolter F (2006) Updating description logic ABoxes. In: Doherty P, My-
lopoulos J, Welty C (eds) Proceedings of the 10th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR-06), AAAI Press, pp 46–56

61

[47] Liu Y, Levesque HJ (2005) Tractable reasoning with incomplete first-order knowledge in dynamic
systems with context-dependent actions. In: Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-05), Edinburgh,Scotland, pp 522–527

[48] Lutz C, Sattler U (2000) The complexity of reasoning with boolean modal logics. In: Wolter F,
Wansing H, de Rijke M, Zakharyaschev M (eds) Advances in Modal Logic, World Scientific, pp
329–348

[49] Lutz C, Sattler U, Wolter F (2001) Description logics and the two-variable fragment. In: McGuiness
D, Pater-Schneider P, Goble C, Möller R (eds) Proceedings of the 2001 International Workshop in
Description Logics (DL-2001), Stanford, California, USA,pp 66–75

[50] McCarthy J (1959) Programs with common sense. In: Mechanisation of Thought Processes, Pro-
ceedings of the Symposium of the National Physics Laboratory, Her Majesty’s Stationery Office.
Reprinted in [53], London, U.K., pp 77–84

[51] McCarthy J (1963) Situations, actions and causal laws.Tech. rep., Stanford University

[52] McCarthy J (1986) Applications of circumscription to formalizing common sense knowledge. Artif-
ficial Intelligence 28:89–116

[53] McCarthy J (1990) Formalization of common sense: papers by John McCarthy edited by V. Lifschitz.
Ablex, Norwood, N.J.

[54] McCarthy J (2002) Actions and other events in situationcalculus. In: Eighth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR2002), Toulouse, France,
available at http://www-formal.stanford.edu/jmc/sitcalc.html

[55] McCarthy J, Hayes P (1969) Some philosophical problemsfrom the standpoint of artificial intel-
ligence. In: Meltzer B, Michie D (eds) Machine Intelligence, vol 4, Edinburgh University Press,
Reprinted in [53], pp 463–502

[56] McIlraith S, Son T (2002) Adapting Golog for composition of semantic web services. In: Fensel
D, Giunchiglia F, McGuinness D, Williams MA (eds) Proceedings of the Eighth International Con-
ference on Knowledge Representation and Reasoning (KR2002), Morgan Kaufmann, April 22-25,
Toulouse, France, pp 482–493

[57] McIlraith SA (2000) Integrating actions and state constraints: A closed-form solution to the ramifi-
cation problem (sometimes). Artif Intell 116(1-2):87–121

[58] Milicic M (2007) Complexity of planning in action formalisms based on description logics. In: Der-
showitz N, Voronkov A (eds) LPAR, Springer, Lecture Notes inComputer Science, vol 4790, pp
408–422

[59] Milicic M (2007) Planning in action formalisms based onDLs: First results. In: [10]

[60] Morgenstern L, Riecken D (2005) SNAP: An action-based ontology for e-commerce reasoning. In:
Formal Ontologies Mett Industry, Proceedings of the 1st International Workshop FOMI 2005, June
9-10, Verona, Italy

62

[61] Narayanan S, McIlraith S (2003) Analysis and simulation of web services. Computer Networks
42:675–693

[62] de Nivelle H, Pratt-Hartmann I (2001) A resolution-based decision procedure for the two-variable
fragment with equality. In: R Goré AL, Nipkow T (eds) IJCAR’01: Proceedings of the First Interna-
tional Joint Conference on Automated Reasoning, Springer-Verlag, LNAI, V. 2083, London, UK, pp
211–225

[63] Ohlbach HJ, Nonnengart A, de Rijke M, Gabbay DM (2001) Encoding two-valued nonclassical
logics in classical logic pp 1403–1486

[64] Pacholski L, Szwast W, Tendera L (1997) Complexity of two-variable logic with counting. In: Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS-97), A journal
version: SIAM Journal on Computing, v 29(4), 1999, p. 1083–1117, Warsaw, Poland, pp 318–327

[65] Pacholski L, Szwast W, Tendera L (2000) Complexity results for first-order two-variable logic with
counting. SIAM Journal on Computing 29(4):1083–1117

[66] Pirri F, Reiter R (1999) Some contributions to the metatheory of the situation calculus. Journal of the
ACM 46(3):325–364

[67] Pratt VR (1978) A practical decision method for propositional dynamic logic: Preliminary report.
In: STOC, ACM, pp 326–337

[68] Pratt-Hartmann I (2005) Complexity of the two-variable fragment with counting quantifiers. Journal
of Logic, Lang and Inf 14(3):369–395, DOI http://dx.doi.org/10.1007/s10849-005-5791-1

[69] Prendinger H, Schurz G (1996) Reasoning about action and change: A dynamic logic approach.
Journal of Logic, Language and Information 5(2):209–245

[70] Reiter R (2001) Knowledge in Action: Logical Foundations for Describing and Implementing Dy-
namical Systems. The MIT Press

[71] Schiffel S, Thielscher M (2006) Reconciling situationcalculus and fluent calculus. In: AAAI, AAAI
Press

[72] Schild K (1991) A correspondence theory for terminological logics: Preliminary report. In: In Proc.
of IJCAI-91, pp 466–471

[73] Schmidt RA, Tishkovsky D (2007) Deciding albo with tableau. In: [10]

[74] Schmidt RA, Tishkovsky D (2008) A general tableau method for deciding description logics, modal
logics and related first-order fragments. In: Armando A, Baumgartner P, Dowek G (eds) IJCAR,
Springer, Lecture Notes in Computer Science, vol 5195, pp 194–209

[75] Schmidt-SchaubßM, Smolka G (1991) Attributive concept descriptions with complements. Artif In-
tell 48(1):1–26, DOI http://dx.doi.org/10.1016/0004-3702(91)90078-X

[76] Shanahan M (1997) Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. The MIT Press

63

[77] Shirazi A, Amir E (2005) First-order logical filtering.In: Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI-05), pp589–595

[78] Spaan E (1993) Complexity of modal logics. PhD thesis, Department of Mathematics and Computer
Science, University of Amsterdam

[79] Tobies S (1999) A nexptime-complete description logicstrictly contained in C2. In: Flum J,
Rodrı́guez-Artalejo M (eds) CSL, Springer, Lecture Notes in Computer Science, vol 1683, pp 292–
306

[80] Tobies S (2000) The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics. J of Artificial Intelligence Research 12:2000

[81] Tobies S (2001) Complexity results and practical algorithms for logics in knowledge representation.
PhD Thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany

[82] Vassos S, Lakemeyer G, Levesque HJ (2008) First-order strong progression for local-effect basic
action theories. In: Proceedings of 11th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-08), Sydney, Australia

[83] Winslett MS (1990) Updating logical databases. The Academic Press

[84] Wolter F, Zakharyaschev M (2000) Dynamic description logics. In: Advances in Modal Logic, 2nd
workshop held in Uppsala, Sweden, 1998, CSLI Publications,pp 431–446

[85] Zolin E (2007) Description logic complexity navigator. Available at
HTTP:http://www.cs.man.ac.uk/ ezolin/dl/

64

