A Logic For Decidable Reasoning About Actiohs

Yilan Gu Mikhail SoutchanskKi
Department of Computer Science, Department of Computer Science,
University of Toronto, Ryerson University,
10 King’s College Road, 245 Church Street, ENG281,
Toronto, ON, M5S 3G4, Canada Toronto, ON, M5B 2K3, Canada
yi l an@s. t oront o. edu Tel.: +1-416-9795000, ext 7954

Fax: +1-416- 979-5064
mes@cs. ryerson. ca

October 6, 2008

Abstract

We consider a modified version of the situation calculusthusiing a two-variable fragment of the
first-order logic extended with counting quantifiers. We tr@nseveral additional groups of axioms
that can be introduced to capture taxonomic reasoning. & #hat the regression operator in this
framework can be defined similarly to regression in Reitegision of the situation calculus. Using this
new regression operator, we show that the projection antligdgility problems (the important reason-
ing tasks in the situation calculus) are decidable in theifisatversion even if an initial knowledge
base is incomplete. We also discuss the complexity of splthe projection problem in this modified
language in general. Furthermore, we define descriptido lmsed sub-languages of our modified sit-
uation calculus. They are based on the description lagdit® (U) (or ALCQO(U), respectively). We
show that in these sub-languages solving the projectioblgmo has better computational complexity
than in the general modified situation calculus. We mentiossible applications to formalization
of Semantic Web services and some connections with reagafiaout actions based on description
logics.

*This research has been partially supported by the Natuiah&es and Engineering Research Council of Canada (NSERC)
and by the Ryerson University.

A corresponding author.

Contents

Introduction
The Situation Calculus

Description Logics and Two-Variable First-order Logics

3.1 DescriptionLogics
3.2 (? and Its Relationship to Description Logics

Modeling Dynamical Systems in a Modified Situation Calculg

Reasoning about Actions using Regression

5.1 Modified Regression with Lazy Unfolding
5.2 Some Computational Complexity Results
5.3 A Description-Logic Based Situation Calculus

An Example of Regression inCS’
Discussion and Future Work
Semantics of Description Logics

Proofs of Lemmas and Theorems

B.1 ALQIO(U, M, —,|,id) andC? are Equally Expressive
B.2 The Correctness of the Modified Regression Operator
B.3 AXLO(U)andFOp; are Equally Expressive.
B.4 Restricting Syntax of BATs to Gain Computational Adaggs

10

12
12
17
19

23

26

“All'is change; all yields its place and goés Euripides (c. 485-406 BCE)
“Nothing is permanent but chanfje Heraclitus (c. 540 -c. 480 BCE)

1 Introduction

The situation calculus (SC) is a well known and popular labficeory for reasoning about changes caused
by events and actions. There are several different formongiof SC. According to John McCarthy the
history is the following: “[50] proposed mathematical logas a tool for representing facts about the
consequences of actions and using logical reasoning togglgunences of actions that would achieve
goals. Situation calculus as a formalism was proposed ihgbd elaborated in [55]. The nhame situation
calculus was first used in [55] but wasn’t defined there. [58ppsed to solve the frame and qualification
problems by circumscription, but the proposed solutiom#ftame problem was incorrect. [76] and [70]
describe several situation calculus formalisms and gifexeaces” (see the footnote 4 in [54]).

In this paper we would like to consider the SC from [70] thateexis the original SC with time,
concurrency, stochastic actions, etc. It serves as a folamdar the Process Specification Language (PSL)
that axiomatizes a set of primitives adequate for desaitie fundamental concepts of manufacturing
processes (PSL has been accepted as an internationalrsigBda30]. It is used to provide a well-defined
semantics for Web services and a foundation for a high-feegramming language Golog [41, 56, 61, 7].
However, because the situation calculus is formulated iereecal predicate logic, reasoning about effects
of sequences of actions is undecidable (unless some tests@re imposed on the theory that axiomatizes
the initial state of the world).

The first motivation for our paper intends to overcome thiadilty. We propose to use a two-variable
fragmentFO? of the first-order logic (FOL) as a foundation for an initiakbry in a modified situation
calculus. Because the satisfiability problem in this fragtmeknown to be decidable (itis in N TIME)

[28, 64], we demonstrate that by reducing reasoning ab&edtsfof actions to reasoning in this fragment,

one can always guarantee decidability no matter what isythiastic form of the theory representing the

initial state of the world. Note an important caveat. We aregoing to design a decidable logic for rea-

soning about actions (see work in this direction revieweSention 7) by imposing strong restrictions on

the language such as allowing only action constants antlaiisag more complex action terms. Instead,

we consider a fragment of the SC where only particular reaggoroblems become decidable, but these
problems are exactly those that can be important in apmitst Consequently, it should not be a surprise
for the readers to see that even if an initial theory i§'@1 theory, that is formulated using object variables
x andy, we include additional variableg,(for actions, and, for situations), action terms and situation

terms common in the SC. As we show in this paper, the reas@notgems that we care about can still be

reduced to the theorem proving taskiif)? (or in fragments 0f0?).

The second motivation for our paper comes from descriptigick. Description Logics (DLs) [4] are
a well-known family of knowledge representation formalssiwhich play an important role in providing
the formal foundations of several widely used Web ontol@ngliages including the Web Ontology Lan-
guage (OWL) [36] in the area of the Semantic Web. Many expre$3Ls can be translated #0? (or to
C? that isFO? extended with counting quantifiers [65, 68]) and offer cdesable expressive power going
far beyond propositional logic, while ensuring that reasgrs decidable [9]. DLs have been mostly used
to describe static knowledge bases. However, severalrasgeoups consider formalization of actions
using DLs or extensions of DLs. Following the key observatioat reasoning about complex actions

3

can be carried out in a fragment of the propositional situmtialculus, in [25], an epistemic extension
of DLs was given to provide a framework for the representatdb dynamical systems. However, the
representation and reasoning about actions in this framkeave strictly propositional, which reduces the
representation power of this framework. In [2], anothempmsal was proposed for integrating description
logics and action formalisms. They take the well-known desion logic ACCOIO (and its sub-languages)
as foundation and show that the complexity of executahsdlitg projection problems (two basic reason-
ing problems for possibly sequentially composed actiong)ades with the complexity of standard DL
reasoning. However, actions (services) are representibeinpaper meta-theoretically, not as first-order
(FO) terms. This can potentially lead to some complicatishen specifications of other reasoning tasks
are considered because it is not possible to quantify ouerecin their framework. Other related work
is reviewed in Section 7. In our paper, we take a differenta@gh and represent actions as FO terms, but
achieve integration of taxonomic reasoning and reasonogitaactions by restricting the syntax of the
situation calculus and by introducing additional axiomsepresent a taxonomy. The main contribution
of our paper to the area of service composition and discowgettye following. We show that by using
services that are composed from atomic services with no thare two parameters and by using only
those properties of the world which have no more than tworpaters (to express a goal condition), one
can guarantee that the executability and projection probl®r these services can always be solved even
if information about the current state of the world is incdete.

Our paper is structured as follows. In Section 2, we brieflyew Reiter’'s situation calculus. In
Section 3 we review description logics and the extensioR@t with counting quantifiers. In Section 4,
we discuss details of our proposal: the Ianguﬁ@é of our modified SC . In Section 5.1, we consider
an extension of regression (the main reasoning mechanisheisituation calculus) and investigate the
computational complexity in Section 5.2. In Section 5.3,ceasider a fragment &fO? that corresponds
to a DL with better complexity properties th&®?>. Then we define a new SC based on this fragment,
which can be considered as a sub-languagéﬁf In Section 6, we consider an example that illustrates
potential applications to Semantic Web Services. Finallysection 7, we discuss briefly other related
approaches to reasoning about actions.

2 The Situation Calculus

The situation calculus (SQjJ.,. is a predicate language for axiomatizing dynamical systektiglialects

of the SCL,. include three disjoint sortsaction situationandobject Actions are FO terms consisting
of an action function symbol and its arguments. Actions dgeatihe world. Situations are FO terms
which denote world histories. A distinguished constéptis used to denote thimitial situation, and
functiondo(a, s) denotes the situation that results from performing actigmsituations. Every situation
corresponds uniquely to a sequence of actions. Moreovitions’ < s means that either situation

is a subsequence of situatieror s = s’.! Objects are FO terms other than actions and situations that
depend on the domain of application. We assume that distidatidual names denote distinct objects,
i.e., we have the unique name axioms for object constalRlgents are relations or functions whose
values may vary from one situation to the next. Normally, arilus denoted by a predicate or function
symbol whose last argument has the sitation For exampleF'(Z, do([a, - - -, o), So)) represents a

Reiter [70] uses the notatiori C s, but we uses’ < s to avoid confusion with the inclusion relatien that is commonly
used in description logic literature. In this paper, we os® denote the inclusion relation between concepts or roles.

relational fluent in the situatiodo(c,,, do(- - - , do(ay, Sp) - - -)) resulting from execution of ground action
termsaq, - - - , ay, IN .Sp. We do not consider functional fluents in this paper.

The SC includes the distinguished predic&igss(a, s) to characterize actionsthat are possible to
execute ins. For any SC formuldV and a terms of sortsituation we sayW is a formulauniformin s
iff it does not mention the predicaté%ss, it does not quantify over variables of ssituation it does not
mention equality on situations, and whenever it mentiorsra Df sortsituationin the situation argument
position of a fluent, then that term is(see [70]). We also introduce a notatiofs| to represent the SC
formula obtained by restoring situatierback to all the fluents and/dross predicates (if any) im. Itis
obvious thatp[s| is uniform ins.

A basic action theoryBAT) D in the SC is a set of axioms written if,. with the following five classes
of axioms to model actions and their effects [70]: actiorcpralition axiomsD,,,, successor state axioms
(SSAS)Dq,, initial theory Dg,, unique name axioms for actiof,,,,, domain independent foundational
axioms for situation&.

Action precondition axiomsD,,,: For each action functioA(z), there is an axiom of the forRoss(A(7), s) =
IT4(Z, s), wherell4(Z, s) is a formula uniform ins with free variables among ands at most, character-
izing the preconditions of actioA.

Successor state axiom®,,: For each relational fluent (7, s), there is an axiom of the form
F('fu dO(CL, S)) = q)F(f7a7 8)7 (1)

where® (7, a, s) is a formula uniform ins with free variables among, « ands at most. It completely
characterizes the value &fin the next situatioro(a, s) in terms of what holds in the current situatien
In fact, the general syntactic form &= (%, a, s) is

Or(Z,a,s) =i (%, a,8)VF(Z s) N\~ (T, a,s),

wherev/ (7, a, s) (v (%, a, s), respectively) is a formula uniform inwith free variables among, « and

s at most that completely describes the positive (negatespectively) effects of actions on flueht
Here and subsequently, we say that an actidmas a positive effect on fluet, if /' becomes true in
the situation resulting from executing this action. Simjlac has a negative effect, i becomes false.
By using (Va) in Eq. (1), Reiter solves the frame problem succinctly beeaail action functions not
explicitly mentioned ind® (7, a, s) have neither positive, nor negative effectsionFor all of them, the
value of ' in do(a, s) remains the same as it wasdn Recall that actions in Eq. (1) that cause positive
or negative effects can be arbitrary FO terms, not just actanstants. In [70], Section 3.2.4 and Section
3.2.5, Reiter provides a systematic way of automaticalhyegating SSAs from effect axioms based on the
causal completeness assumption and unique name axiomdiforsa There, Reiter shows a precise way
of constructing the normal form of!. (7, a, s) (v (7, a, s), respectively). Thatisy} (Z, a, s) (vz(Z, a, s),
respectively) can be represented\,é{‘; 1 \Ifﬁé) for some finite indext > 0, where eachlfgi) is a formula of
the syntactic form

F9l(a = A(F)AY(Z, 7, 5)) (2)

for some action termi (¢) and some FOL formula(Z, i, s). Note thati are those new variables which
do not occur inF'(z, do(a, s)), if there are any. If/ is empty, then there is no quantifigly] at front. Here,
¢ is a vector of object terms with free variables (at most) agndmand the quantified new variabl@gsf
there are anyp(Z, 7/, s) is uniform ins and its free variables are (at most) amahandy, if there are any.

In other words, the SSA of fluerit (Eq. (1)) has the following syntactic form (integers , m_ > 0):
m4
F(Z,do(a,s)) = \/[34il(a = PosAct;(t;) A} (T, §i, 5))V

i=1
m_

F(Z,5)A~(\/[3Z](a = NegAct,(i;) Ao} (Z. 2. 5))), 3)

J=1

where fori = 1..m. (j = 1..m_, respectively), each (t7j, respectively) is a vector of terms with free
variables (at most) amongand the quantified new variablgs(Z;, respectively) if there are any, eaoctn-
text conditionp;” (Z, 77;, s) (¢; (%, Z;, s), respectively) is an SC formula uniform érthat has free variables
(at most) among’ andy; (Z;, respectively) if there are any, and eahs Act(t;) (N egAct(ﬁj), respec-
tively) is an action term that makes(Z, do(a, s)) true (false, respectively) if the conditiaf) (Z, 7;, s)
(¢; (%, 7, s), respectively) is satisfied.

Initial theory Dg,: A set of FO formulas whose only situation termSs. It specifies the values of all
fluents in the initial state. It also describes all the falstg fire not changeable by any actions in the domain
(static sentences). In particular, it includes unique nariems for object constants.

Unique name axioms for actionsD,,,,,. Includes axioms specifying that two actions are differétheir
names are different, and identical actions have identicalraents’

Foundational axioms for situationsy:: The axioms for situations which characterize the basic grop
ties of situations. These axioms are domain independermy &te included in the axiomatization of any
dynamical system in the SC (see [70] for details).

Suppose thaD = D,,,, U Dg, U D,, UD,s UX isaBAT, oy, - - -, oy, IS @ sequence of ground action
terms, and~(s) is a uniform formula with one free variable One of the most important reasoning tasks
in the SC is the projection problem, that is, to determinetivaeD = G(do([ay, - - - , an], Sp)). Another
basic reasoning task is the executability problem.ewetutable(do([a, - - - , o], So)) be an abbreviation
of the formulaPoss(aq, So) AN, Poss(ay, do([ay, -+, ai—1], So)). Then, the executability problem is
to determine whethed = executable(do([ay, - - - , an], Sp)). Planning and high-level program execution
are two important settings where the executability andgmtapn problems arise naturalliRegressioris
a central computational mechanism that forms the basisutumaated solution to the executability and
projection tasks in the SC ([70]). A recursive definition bétregression operat® on anyregressable
formula W is given in [70]. A formulalV of L,. is regressableff (1) every term of sort situation in
W is starting fromS, and has the syntactic forav([ay, - - - , a,), So), Where eachy; is of sort action;
(2) for every atom of the formPoss(a, o) in W, « has the syntactic form (¢4, - - - ,¢,) for somen-ary
function symbolA of £,.; and (3)I does not quantify over situations, and does not mentiondlagion
symbols <" or “=" between terms of situation sort. For a regressabteiigal’’, we use notatioR [IV]
to denote the regressed formula that results from elirmgatioss atoms in favor of their definitions as
given by action precondition axioms, and replacing flueotrst aboutio(«, s) by logically equivalent ex-
pressions aboutas given by SSAs repeatedly, until no more such replacenaertbe made. The formula
G(do([az, - -+, an), So)) is a particularly simple example of a regressable formutzabse it is uniform
indo([aq, -+, an),So)), but generally, regressable formulas can mention sevigfaleht situation terms.
Roughly speaking, the regression of a regressable forfiuthrough an actiom is a formulal?”’ that

2For the second type of axioms, we use the fottwy,--- ,x,) = A(y1, - ,yn) =21 = Y1 A+ AZp = Yn.

holds prior toa being performed ifi’’ holds aftera. Both precondition axioms and SSAs support regres-
sion in a natural way and are no longer needed when regre&siomates. This is because each step of
regression either eliminatesfzoss atom by replacing it with an equivalent formula, or replaadtient
with a compound situation term by a logically equivalennfiota with a situation term that has one less
occurrence of an action term.

The regression theorem proved in [66] shows that one canceethe evaluation of a regressable
sentencdl’ to an FOL theorem proving task in the initial theory togethath unigue names axioms
for actions:

D = W iff Dg, U Dupa = R[W].

This fact is the key result for our paper: it demonstrates déimeexecutability or a projection task can be
reduced to an FOL theorem proving task. However, bec@jses an arbitrary FO theory, this type of
reasoning is undecidable. Two of the most common ways tacowee this difficulty are to introduce the
closed world assumption or introduce the domain closureragion (i.e., assume the domain is finite).
In many practical application domains these assumptiansmarealistic. Therefore, we propose a version
of the SC withDg, based orC?, or on a weaker fragment #fO*. Fragments of*O? that are syntactic
versions of DLs are particularly interesting because fenttthe satisfiability problem is more tractable
than for a generafO?. For this reason, in the next section, we review definitians @sults relevant to
DLs, FO* andC?.

3 Description Logics and Two-Variable First-order Logics

In this section we review a few popular expressive descnidtgics [4] and related fragments of FOL [9].

3.1 Description Logics

We start with the language of logid(COTO. Let No = {AC, ACs, ...} be a non-empty set aftomic
conceptand Ny = { Ry, R», ...} be a non-empty set @tomic roles In ACCQIO, nominalsare allowed.
Nominals are singleton concepts obtained by picking on@@bbject names. ARCOIO role is either
someR € Ng or aninverse roleR~ for R € Ng. In addition,(R~)~ is R itself. The set ofACQOIO
concepts is the minimal set built inductively froM- and ACCOZO roles using the following rules: all
AC € N¢ are concepts, nominals are concepts, and, if’;, andC, are ALCOIO conceptsR is a role
andn € N, then-C, ¢, 1 Cy, and> nR.C are alsoALCOIO concepts. Concepts that are not atomic
are calledcomplex A literal concept is a possibly negated concept name. The abbrenxgdtio complex
concepts such as; LU Cy, C; C Cy, <nR.C, 3 R.C,V R.C (and other complex concepts) can be easily
defined. For example,

CLUC, ™ (=i =Cy) <nRC ™ ~(>(n+1)R.0)
def def

Cl E CQ = _'Cl L CQ =" R. C = (énRC’) M (2 nRC’)
JrRCc Y >1R.C T% AC U -AC for some AC € Nc
VR.C ™ -3Rr~C 1% A -AC for some AC € Nc

The semantics of description terms is given denotationa#iing the notion of an interpretatidh=
(AT, (-)%), whereAT is a domain (non-empty universe) of objects, dnd maps from atomic concept
names to subsets of the domain (.G C A for all AC € N¢), and atomic role names to sets of

pairs over the domain (i.eRZ C A? x AT for all R € Ng). Moreover, the interpretation function
()% is extended recursively to composite descriptions in Taklgee Appendix A). We assume that the
interpretation of nominals has to respect the unique nasungstion.

A TBox 7 is a finite set okqualityaxiomsC; = 5.2 An equality with an atomic concept on the left-
hand side (LHS) is a concepefinition In the sequel, we always consider TBox axiomsBdhat is a
terminology a finite set of concept definition formulas with unique leénd sides, i.e., no atomic concept
occurs more than once as a left-hand side. We say thetiaedconcept namé’; directly usesa concept
nameC, wrt 7 if C is defined by a concept definition axiomnwith C, occurring on the right-hand
side (RHS) of the axiom. Laisesbe the transitive closure of directly uses, and a TBox axieat§ is
acyclicif no concept name uses itself wft. An ABox A is a finite set of assertions of the forra§b)
andR(b, by), whereb andb; are some object names,is a concept, an® is a role. An RBoxH, called
arole hierarchy is a finite set of role inclusion axioms of the forRy C R,, whereR; (R,, respectively)
is either an atomic role or its inverse. A DL knowledge b&SB in DL is a tuple(7,.A) (or, a triple
(Hg,7,.A)ifrole inclusion axioms are allowed). The semantics of faeotogical and assertional axioms
are provided in Table 3 (see Appendix A).

The logic ALCQL is obtained by disallowing nominals iAZCOIO. The logic ALCAO is obtained by
disallowing inverse roles ilCQIO. The logicALCQAO(U) is obtained by adding the universal rdleto
ACQO. The semantics of/ is given in Table 2 (see Appendix A). The logCOIO (U, M, —, |, id) is
obtained fromALCAIO by introducing concept identityl(C') (relating each individual i’ with itself),
and allowing complex role expressionsHf, R, are ACCOIO (LI, M, —, |, id) roles and”' is a concept, then
RiURy, RiMRy, =Ry, Ry andR,|¢ are ALCQIO (L, M, -, |, id) roles too. These complex roles can be used
in constructing complex concepts. The semantics of complies are given in Table 2 (see Appendix A).
Subsequently, we call a rolg primitive if it is either R € Ny or it is aninverse roleR~ for R € Ng.
The logic ACCHOIO (L, 11, —, |, id) allows RBox axioms based on the languaged6fQ7O (L, 1, —, |, id).
Moreover, notice that the universal role can be implicitypstructed inACCOIO (L, M, —, |, id): U can be
replaced using? LI =R forany R € Np.

There are different reasoning tasks in DLs, such asdineept satisfiability problesind theABox consistency
problem etc. The concept satisfiability problem is to decide givelBax 7 and a concept’, whether
there exists a moddl of 7 such thatC? is nonempty. Given any DL KB7, A), the ABox consistency
problem is to check whether there is a interpretation thatmsodel for both/” and.4. The complexity of
solving the concept satisfiability problem or the ABox cateincy problem has been studied for different
versions of DLs [85]. For example, it has been shown that timepdexity of solving these two problems
is PSPACE-complete inALC, in ALCO and in ALCQO [75, 81, 3], but is KPTIME-complete inALCQOIO
[80, 81]. However, it is also known that the complexity foese two problems isX@TIME-complete in
ALC(U) (i.e., AL plus the universal rule) [78, 34, 48] and §HOQ [35]. Because one can implicitly
represent the universal role #HOQ, it is also known that the complexity of solving these twolgems
is still EXPTIME-complete inACO(U) or in ALCAO (U).

3.2 (? and Its Relationship to Description Logics

Thetwo-variable FOLFO? is a well-known fragment of ordinary FOL, whose formulas barbuilt with
the help of predicate symbols (including equality) and tamissymbols (but without general function
symbols) using no more than two variable symholand y (free or bound). Note that each variable

3Sometimesgeneral inclusion axiomsf the formC; C C, are also allowed, wher@, , C; are complex concepts.

can be reused arbitrarily often. Tiwo-variable FOL with counting>? extendsFO? by allowing FO
counting quantifierd>" and3=™ for all m > 1 [28, 64, 65, 38, 68]. Because the semanticBof (C?,
respectively) are the same as the semantics of FOL, thdslatai omitted here. It is well-known that
modal logic is a “big brother” of DLs. In particular, it is pred that the DLALC is a notational variant
of a basic multi-modal logid&C [72]. For this reason, it is important to note that 8tandard translation
from a basic modal logic to FOL is proposed in [5]. Later, itswraalized that a basic modal logic can
be translated t&"O? [20, 6]. The standard translation and other results in mtmit are extensively
discussed in [8] and in [63].

Now we consider some relationships betwé&rand DLs. In [9], an expressive description logids
defined, and it is shown that'? and the languagB areequally expressiyehat is,C? is as expressive a8
and vice versa. Generally speaking, a langudges as expressive danguage’,, if there is a translation
functiontransl from £, to £, such that for every sentenéén £, transi(l) expresses the meaning of
[[9]. Moreover, in [9], the translation in both directionstiveenC? and B leads to no more than a
linear increase in the size of the translated formula. Hiedlation is similar to the standard translation
earlier proposed for modal logics. Using the same approsiai[8], we prove the following theorem (the
detailed proof is provided in Appendix B.1).

Theorem 1 The description logicACCOIO (LI, M, -, |, id) and C? are equally expressive (i.e., each sen-
tence in languagedlCOIO (U, 11, -, |, id) can be translated to a sentencedf, and vice versa). In ad-
dition, translation in both directions leads to no more thafinear increase in the size of the translated
formula.

Notice thatACCHOIO (U, M, -, |, id) includes RBox in the knowledge bases, in contrastd@07 (L1, 1, —, id)
that has no RBox . However, it is obvious that every axiom iroRBtill can be translated into a sentence
in C2. Hence, the language ofCCHOIO (LI, M, —, |,id) andC? are also equally expressive. In [49], an-
other DL is consideredand alternative translation between that DL &t is proposed. It is proved
that translation frontO?-formulae into concepts in the considered DL involves aroeemtial blow-up
in formula size.

This statement has an important consequence. Gradel ef29land Pacholski et. al. [64] show
that the satisfiability problem fof? is decidable and recently in [68] it is proved that this pesblis
in NEXPTIME even when counting quantifiers are coded succinctly. Haheesatisfiability and/or sub-
sumption problems of concepts w.r.t. an acyclic or emptyXBalescription logicALCAIO (L, M, =, |, id)
(ALCHQIO (U, 11, -, |, id), respectively) is also decidable with the same computatioomplexity® See
additional background on DLs and discussion of connectiet&een DLs withC? in [4, 9].

4In [9], the languages is denoted aDL — {trans, composé, in which trans represents the role constructeflexive-
transitive closureand composerepresents the role constructmrmposition We change it to notatiof8 in order to avoid
confusion. Besides, the syntax and semantics of reflexansitive closure and composition can be found in Table 2, Ap
pendix A.

SALC extended with full Boolean operators on roles, the invepator on roles and an identity role.

8In [4], it is shown that the satisfiability problem and the sulmption problem can be reduced to each other; moreover, if a
TBox 7 is acyclic, the reasoning problems w.ft.can always be reduced to problems w.r.t. the empty TBox.

4 Modeling Dynamical Systems in a Modified Situation Calculs

In this section, we consider dynamical systems formulatea modification of the language of the SC
so that it can be considered as an extensiafitgwith an additional situation argumerit)The key idea
is to consider a syntactic modification of the SC such thaettexutability and projection problems are
guaranteed to be decidable as a consequence of the deitjdabthe satisfiability problem irC2. We
will denote this languagg?’.

Firstly, the three sorts iﬁff (i.e., actions, situations and objects) are the same as thas,., except
that they obey the following restrictions: (1) all terms oftobjectare variables«f andy) or constants, i.e.,
object functional symbols aneot allowed; (2) all action functions include no more than twguanents.
Each argument of any term of s@ttionis either a constant or asbjectvariable (or y); (3) variables
of sortsituationand/or variable: of sortactionare the only additional variables allowedZnin addition
to variablesr, y.

Secondly, any fluent im:ff is a predicate with either two or three arguments (includiregone of sort
situation). We call fluents with two argumentynamic conceptsand call fluents with three arguments
dynamic roles Intuitively, each dynamic concept iﬁff, sayF'(x, s) with variablesz ands only, can be
considered as a changeable condémph a dynamical system specified ﬂff; the truth value ofF'(z, s)
could vary from one situation to another. Similarly, eachaiyic role incff, sayF'(z,y, s) with variables
x,y ands, can be considered as a changeable Rilea dynamical system specifiedzﬁfj; the truth value
of F'(x,y, s) could vary from one situation to another. zﬂff, (static) conceptsi.e., monadic predicates
with no situation argument) an(@tatic) roles(i.e., dyadic predicates with no situation argument), if,an
are considered as unchangeable taxonomic properties ahdngeable classes of an application domain.
Moreover, each concept (static or dynamic) can be ejheritive or defined

For each primitive dynamic concept, an SSA must be providatie basic action theory for a given
domain. Because defined dynamic concepts are expressethmdéprimitive concepts by axioms in an
acyclic TBox, SSAs for them are not provided. In additionAS@re provided for dynamic roles.

Thirdly, apart from the standard FO logical symbels Vv and 3, with the usual definition of a full
set of connectives and quantifielsS” also includes counting quantifiees™ and3<™ for all m > 1.
Equality= is allowed in£S. too.

The dynamical systems we are dealing with here satisfgples world assumptiof©WA): what is not
stated explicitly in an initial theor s, is unknown rather than false. In this paper, the dynamicstesys
we are interested in can be formalized dsaaic action theoryBAT) D using the following seven groups
of axioms inﬁff: D =X UD,,UDs UDpUDgrUD,y,, UDs,. Five ofthem E, D,,,, Dss, Duyna, DPs,)
are similar to those groups in a BAT i),., and the other twoT,, Dg) are introduced to axiomatize
description logic related facts and properties (see belbiowever, becausﬁfc2 allows only one or two
object variables, all axioms must conform to the followimiglgional requirements.

Action precondition axiomsD,,,: For each actioni in LS, there is one axiom of the forfRoss(A, s) =
IT4[s] (or Poss(A(x),s) = a(x)[s], or Poss(A(z,y),s) = [La(z,y)[s], respectively), ifA is an action
constant (or unary, or binary action term, respectivel\jereIl, (or I14(z), or Il4(x,y), respectively)

is aC? formula with no free variables (or with at mast or with at mostz, y as the only free variables,

"The reason that we call it a “modified” SC rather than a “resgd” SC is that we extend the SC with other features, such
as adding acyclic TBox axioms to BATS.

8Subsequently, we write axioms with action and situatioriaides, and use action and situation terms. However, we will
see that they can be eliminated when we solve the projectiirigm.

10

respectively). This set of axioms characterizes the prditions of all actions.

Successor state axiom®,,: Let variable vector be z, or y, or (x,y). An SSA is specified for each
primitive dynamic concept that is not defined in TBox (se@b@land each dynamic rolE(z, do(a, s)).
According to the detailed syntactic form of the SSAs Eq. {@}hout loss of generality, we can assume
that the axiom has the form

my

F(#,dola,s)) = \/BalBy)(a=PosActi(F) A7 (F)s) v

F(#, 5)A=(\/ Be]Byl(a= NegAct; (£;,-) Ay () [s]))- (4)

j=1

Here, each vectal; ., i = 1..my, (), j = 1..m_, respectively) represents a vector of object terms
appearing in the corresponding action term, which can beegmpty,0, (O, 0,), z, (x,z), (O, x),
(z,0), 9, (y,y), (O,y), (y,0) (x,y) or (y, z) for free variables:, y and some object constaris O,
O,. Each variable vector|; . (or 7(;), respectively); = 1..m,, j = 1..m_, represents a vector of free
variables appearing in the corresponding context conditichich can be either empty, v, (x,y) or
(y,z). Moreover,3z] or [3y] represents that the quantifier included Jnis optional; and eacti;" (Z;),

i =1.my, 7 (Z-)), 7 = 1..m_, respectively), is & formula with variables (both free and bound)
amongx andy at most. Note that whem_ (or m_, respectively) is equal t0, the corresponding
disjunctive sub-formula is equivalent false.

Acyclic TBox axioms Dy: Similar to the TBox axioms in DL, we may define new conceptagsi
TBox axioms. Any group of TBox axiom®; may include two sub-classes: static TBDx ;; and dy-
namic TBoxDr 4,,. Every formula in static TBox is aoncept definitiofiormula of the form

G(z) = oéalx), (5)

wheredG is a monadic predicate symbol ang(x) is aC? formula with a free variable, and there is no
fluent in it. Every formula in dynamic TBox is@ncept definitiofiormula of the form

G(x,s) = ¢a(z)]s],
where ¢¢(x) is a C? formula with free variabler, and there is at least one fluent in it. All the con-
cepts appeared on the LHS of TBox axioms are callefinedconcepts. We also require that the set of
TBox axioms must be acyclic (acyclicity iR is defined exactly as it is defined for TBox). Note that the
defined dynamic concepts are not provided with SSAs. Theare iseed to provide an SSA for a defined
concept because regression can expand TBox definitioresaohsif an SSA.
RBox axiomsDpg: Similar to the idea of RBox in DL, we may also specify a groupagfoms, called
RBox axioms below, to support a role taxonomy. Each roleusioin axiom is represented as

Ry(z,y)[s] D Ra(z,y)[s],
whereR; andR; are primitive roles (either static or dynamic). If thesecems are included in the BAD,
then it is assumed tha& is specified correctly in the sense that the meaning of anyxR&mm included
in the theory is correctly compiled into SSAs. This means #maxiomatizer is responsible for writing
D,, such that axioms from RBox become logical consequences.ig itesshould be provable by induction
that(D — Dg) = Vs.Ri(z,y)[s] D Ra(z,y)[s]. This is the common approach to state constraints, e.g., it
was taken in [70]. In some special (but realistic) cases,»RBooms can be automatically compiled into
D,,. Let us sayRy(z, y, s) directly depends o, (z, vy, s), if Ri(z,y,s) D Ra(z,y, s) belongs to RBoX,
and sayRs(x,y, s) depends omRy(z,y, s), if R3(z,y, s) directly depends oy (x, y, s), and Re(z,y, s)

11

depends ok, (x,y, s). Then, we can say that RBox is acyclic, if there is no dynamiie R(zx, y, s) that
depends on itself. In [57], it is proved that acyclic statesteaints can be automatically compiled into
SSAs. Because acyclic RBox is just a special case of stattraimts considered in Mcllraith’s paper, her
approach is applicable to acyclic TBox as well. Additionatalls related to state constraints in the SC
can be found in [43, 42]. Although RBox axioms are not usedhayregression operator, they are used
for taxonomic reasoning in the initial theory.
Initial theory Dg,: It is a finite or countably infinite set af? sentences (assuming that we suppress the
only situation termS; in all fluents). It specifies the incomplete information abthe initial problem
state and also describes all the facts that are not charegead time in the domain of an application. In
particular, it includes static TBox axioni3; ;; as well as RBox axioms in the initial situatici (if any).
In addition, Dy, also includes all unique name axioms for object constantste lthat this definition of
Dg, includes ABox as a special case. In the sedDgl,is assumed to be finite, unless stated otherwise.
The remaining two classes (foundational axioms for situes}> and unique name axioms for actions
D.ne) are the same as those in the BATs of the usual SC. Note thsdt theoms (as well eB,, andD;;)
use more than two variables (e.®,, use action and situation variables in addition to objecialdes),
but we will see in the next section, that these axioms will limiaated in the process of regressing a
regressable sentence to a sentence that will use no moreatbarject variables and no other variables.

5 Reasoning about Actions using Regression

After giving the definition of what is a BAT irﬁscf, we turn our attention to the reasoning tasks. We

want to identify reasoning problems that are decidablégff}. To achieve such goal, for certain type of
formulas in£E”, we expect the regressed formulas @feformulas.

sc !

5.1 Modified Regression with Lazy Unfolding

Given a formuldV of 58002 in the domairD, the definition ofil” being regressable (callefcff regressable
below) is slightly different from the definition d” being regressable id,. (see [70]).

Definition 1 A formulalV of £, is £ regressabléf
(1) Each term of sort situation ifl” is ground.

(2) Other than the action terms occurred in the predic&iess, there are no function terms . More-
over, variablesc andy (free or bound) are the only variables usedin, if any.

(3) For every atom of the fornoss(«, o) in W, o has the syntactic forml(¢,,- - -, ¢,,) for somen-ary
function symboM of £6?, wheren < 2. Moreover, each; is either variabler, variabley or some

sc?

constantO if there is any.

(4) Each term of sort situation ifil” is starting fromS, and has the syntactic forav([a4, - - - , a,), So),
where eachy; is of sort action.

(5) W does not quantify over situations.

(6) W does not mention the relation symbolg™or "=" between terms of sort situation.

12

The requirements in conditions (2) and (3) are obvious, ieE@ur language is restrictedztﬁf. The
intuition for adding condition (1) is as follows. Consideetfollowing counter example.
Example 1 AssumeD is a BAT of ££, which includes an SSA

sc !

F(z,do(a,s)) = a=Ax)\N3y.G(z,y,s)) V F(x,s) (6)

for some fluent§'(z, s), G(z, y, s) and action functiom(z). Consider a formula
Va.3y. F(xz,do(A(O), do(A1(y), So))) (denoted asl;, below)

of Cff. To perform a correct regression o, in the sense that the formula resulting from regression
should be logically equivalent td/, w.r.t. D, we have to rename the quantified variaple Eq. (6) so
that it is different from any variables appearinglify. That is, the one step regressionBrusing Eq. (6)
should be

Vo.3y. R[A(O) = A(x)A\32.G(x, z,do(A1(y), So))V F (x,do(A1(y), So))].

Then, the regressed formula is no longer a formula of Iangw@;j Otherwise, if we do not rename the
guantified variable in Eq. (6) to assure the regressed formula is still of IangL@z, then the one step
regression orf’ using Eq. (6) without renaming will result in the followingrimula:

Va.Jy. R[A(O) = A(x)A\Ty.G(z,y,do(A1(y), So))V F(x,do(A1(y), So))]-

It is obvious that the above regressed formula is not loyieguivalent toll;, because the variablethat
occurs in the situation term; (y) should not be quantified byy at the front ofG.

Hence, to avoid the problem described in Example 1, we adib @f. 1. Below, with a carefully de-
fined regression operator, we are able to show that for GS@eregressable formula, there is an equivalent
regressed’? formula uniform inS,.

In the language oiff, we have to be more careful with the definition of the regssperatofR for
two main reasons. First, to deal with TBox we have to extegdession. For arzESCf regressable formula
W, weextendhe regression operator defined in [70] with they unfolding techniquésee [4]) to expand
defined dynamic concepts. Secom:ff uses only two object variables and we have to make sure that
after regressing a fluent atom we still get/aff formula, i.e., that we never need to introduce new (free
or bound) object variables. To deal with the two-variabkgnietion, we modify our regression operator
in comparison to the conventional operator defined in [708 still denote this operator 8. The key
idea is toreusevariables when doing replacement. For example, when reygldeoss atoms or fluent
atoms aboutlo(«, o), the definition of the conventional regression operator7i] has the assumption
that the quantified variables on the RHS of the corresponaiimgms should be renamed to new variables
different from the free variables in the atoms to be replac&tdis assumption of usingew variables
for renaming assures logical equivalence of the originahfda and the formula after regression. But in
C? new variables cannot be used. To avoid introducing new bisa(as required by Reiter’s regression
operator) and to assure defined dynamic concepts beingdthngé modify the regression operator for
eachﬁfc2 regressable formula. The possibility of reusing variaidegiaranteed by the general format of
the SSAs given in the previous section and the additionaditions (1-3) in Def. 1.

The complete formal definition of otR is as follows? wheres denotes the term of sosituation
anda denotes the term of soaction Note that below, ifb () represents a formukk with free variables
among a variable vectatr at most, then for any vector of termsuch thatt| = ||, ®(¢) represents the

. 2
%It is also calledc, regressiorsometimes below to avoid confusion.

13

resulting formula obtained by substituting eaghin vector with ¢; in vectort if z; occurs in®d. For
example, in particular, i (%) in fact has no free variables, then no substitution happed®#&) is the
same a® (7).

e If W is not atomic, i.e.}JV is of the formWW; v Wy, Wi AW,, =W, or Qu.W’ where() represents a
guantifier (including counting quantifiers) andepresents a variable symbol, then

RIWIVW,] = RIWJVRIW,], R[-W'] = =R[W],

RIWIAW,] = RIWIAR[W:,], R[Qu.W'| = Qu.R[W.

e OtherwiseV is an atom. There are several cases.

a. If W is a regressabl®oss atom, then it has the fornPoss(A(t), o), for terms of sortaction and
situation respectively, incff. Then there must be an action precondition axiomAaf the form
Poss(A(Z),s) = I14(Z,s), where the argument of sort objectcan either be empty (i.e4 is
an action constant), a single variable or two-variable vectorz, y). Because of the syntactic
restrictions ofﬁscf and according to the condition (2,3) in Def. 1, each term an only be a
variablez, y or some constant if any. Then,

R[(By.x=yAla(z,y,0))] ift=(z,2),

R[Qx'g:x/\HA<xvyva>>] if t:: <y7y>7
RW] = § R[a(t,0)] if i € {y,(y,0),(0,x), {y,)},
R[I4(t,0)] otherwise, i.e., it is empty or

;6 {O,[L‘, <[L’,y>, <1’,O>, <O>y>v <0701>}7

whereO andO; are constants anfﬂ denotes alual formulafor formula ¢ obtained by replacing
every variable symbat (free or bound) with variable symbgland replacing every variable symbol
y (free or bound) with variable symbelin ¢, i.e.,¢ = ¢[z/y,y/z|. In this definition, in order to
avoid introducing new variables but still ensure the cdrress of regression in the sense that the
regressed formula is logically equivalentifo w.r.t. D, we consider all the possible syntactic forms
of the argumentsin action terms and treat them carefully in each of the fosesaBecause of the
restriction of the language (ﬁscf and the additional conditions (1)—(3) ﬁff regressable formula,
we are able to reuse the variableandy by switching their occurrences wheis eithery, (i, O),
(O,x)or(y,x).

b. If W is a defined dynamic concept, it has the fa#tt, o) for some object termmand ground situation
term o, and there must be a TBox axiom fér of the formG(x, s) = ¢s(x,s). Because of the
restrictions of the langua ff, termt can only be a variable, y or a constant. Then, we use the

lazy unfolding technique as follows:

_ [Rlga(t,0)] ifte{0,x},
RIW) = { R[oc(y,0)] otherwise, i.e., it = y.

c. If W is a primitive dynamic concept (a dynamic role, respecyivef the form F'(¢;, do(«, o)) (or
F(t1,ts,do(c, 0)), respectively) for some ternts (andt,) of sortobject ground termx of sortac-
tionand ground termr of sortsituation there must be an SSA for fluehtof the formF' (%, do(a, s)) =
&r(Z, a, s), whose detailed syntax is Eq. (4). Because of the restnafahe Ianguagesff, the

termst; andt, can only be a variable, y or some constar@®. Then, wheri is a primitive dynamic
concept, i.e.]V is of the formF'(t;, do(«, 7)),

14

[R[@r(ta,0)] ift € {0},
Rl = { R[®r(y,o,0)] otherwise, i.e., it; = y;

and, when¥V is a dynamic role, i.e}V is of the formF (¢, t5, do(«a, o)),
(Jy.x=yAPp(z,y,a,0))] if (t;,t2)=(x,z);

R
R[(Fzy=azACp(z,y,a,0))] If (t1,12) =(y, y);
RIW] =4 R[®r(y,t2, ,0)] if (t1,t2) €{(y, 2), (y,0),(0,2)};
R[(I)F(tl,tg,a,a')] otherwise, i.e, if(tl,t2>€

{<$,y>, <CL‘,O>, <O>y>7 <0701>}

d. If W is of the formA, (£) = A,(#) for some action function symbol, andA,, then by using axioms
iN D,q,'° we define the regression bf as

fCLlS@ if Al §£ AQ,

true if Ay = A, andA,, A, are constant action functions
RIW] =

/\ti=t; otherwise

Otherwise, iflV is any other situation independent atom (including equalitween object terms)
or W is a concept or role uniform iffy, then

RIW] = W. ©)

Our intention here is to get@? formula (with situation terms suppressed) that has no iméty
between action terms after regression. We therefore céeanad (in)equalities between action terms
untouched in the regressed formula unlike Reiter’s definitf the regression operator that simply
used Eq. (7) when dealing with (in)equalities between terBg using unique name axioms for
actions during regression, we can avoid functional ternteerresulting formula.

Note that in this definition (case] and cased.)), whent'is (z,z) (or (y,y), respectively), we define
regression by using quantified varialléor x, respectively); otherwise, we cannot ensure the correstne
of regression in the sense that the regressed formula isdibgiequivalent tolW” w.r.t. D, i.e., D
W = R[W]. In particular, for anyCC’ regressable formuldd” and1V’ such that= W = W”, a correct
definition of regression should resultTh = R[W] = R[W']. For example, in case), notice that

E F(r,z,do(a,0)) = (Fy.x =yAF(x,y,do(a, o)),
and it is easy to see that our definition/®fensures that

= R[F(z,z,do(a,0))] = R[(Fy.x = yNF(x,y,do(a, 0))].

Consider the following counterexample if we perform regres by directly substitutingz, y) by (x, =)
(or (y,y)) on the RHS of SSAs or precondition axioms.

Example 2 Assume thaD is a BAT of £C, which includes an SSA
F(z,y,do(a,s)) = a= A(x)\(Jz.Fi(x,y,s))VF(x,y,s). (8)

ONotice that the action functions with different number aaments always use different function symbols (i.e., diffe
names).

15

Consider ancS’ regressable formuld’ = F(z,z,do(A(C), Sy)). Then if we perform regression by
directly substitutingz, y) with (z, z) on the RHS of Eq. (8), we get(C) = A(x)A(Jz.Fi(x,z,S))V
F(z,x,5)), which obviously will not be logically equivalent td” w.r.t. D. Indeed, in Eq. (8), the
variabley in F} is free, but once substituted ydirectly, it becomes quantified byc. at the front ofF},
which should not happen.

Based on the above definition, we are able to prove the fatigwheorems.

Theorem 2 SupposéV is an Eff regressable formula, then the regressiBfil’] defined above termi-
nates in a finite number of steps.

Proof of Theorem 2. This immediately follows from Def. 1, acyclicity of the TBaxioms, and from
the assumption thak Box axioms are compiled into the SSAs and consequently do nétcipate in
regression. Note also that each time, the applicatioR either goes from a formula to a sub-formula, or
expands a’oss or a fluent atom using a corresponding precondition axiormo83A, but only finitely
many expansions are possible becadsenentions only finitely many ground situation terms. OJ

According to the definition of the modified regression opatahe following statement can be proved
by induction over the structure ®F. The detailed proof is provided in Appendix B.2.

Theorem 3 SupposédV is an Eff regressable sentence with the background BAin Ianguageﬁscf.
Then,R[W]is an LS sentence uniform s, and it is aC? sentence when the situation argumépiis
suppressed. Moreovel = W = R[WV].

Consequently, we have the following theorem.

Theorem 4 SupposéV is an 55002 regressable sentence with the background BAin Ianguageﬁff.
ThenD =W iff Dg, = R[W].

Proof of Theorem 4. Part of our proof is almost word-by-word repetition of thbdaious proof of the
regression theorem given in [66]. Therefore, we will onlieBy explain the idea of what has been done
in [66] and provide details for what is different.

In [66], Pirri and Reiter first proved that “a BAD is satisfiable iffDg, U D,,,, is satisfiable”. It is
trivial that if a BAT D is satisfiable the®s, U D, is satisfiable. For the other direction, Pirri and Reiter
proved it by constructing a model step by stepZothat interprets axioms i®® — (Dg, U D.,,,,) properly,
starting from any model abg, U D,,,,,. Similarly, we can also prove that “a BAD in £§f is satisfiable
iff Dg, UD,,, is satisfiable”. We use the same idea with the following modifon. For any modeVl of
Ds, U Duna, We also add interpretations for the defined concepts, $athitie interpretations fa¥ (z)|s]
are true iff those obq(x)[s| are.

Subsequently, in [66], Pirri and Reiter proved the follogviemma that “supposB’ is a regressable
sentence with the background BATthat is uniform inSy, thenD = W iff Dg,UD,.. = W by using
the above result. This lemma is also valid fcﬁf. That is, “supposéV is anﬁfc2 regressable sentence
with the background BAD in 55002’ if Wis uniforminSy, thenD =W iff Dg, U Dy, = W

Now we prove the following statement: “suppdgéis an Lff regressable sentence with the back-
ground BAT D in £§f, if 1 is uniform in S, and W is a C? formula whenS, is suppressed, then
Ds, UDuna = W iff Dg, = W ltis trivial to see that ifDg, = W, thenDg, U Dypy = W.
For the other direction, it is the same as provin®@if UD,,,, U{—-W} is inconsistent, so i®s, U {-W}.

We can prove it by contradiction. That is, assume gt U {—W} is consistent, then there is a model

16

M, such thaiV, = Dg, U {-=W}. We can then construct a moddl, such thatVl has the same domain
on objectsort. For any action functiond(7,), B(#,), we construcM so that(A(Z,))™ # (B(Z,))™ for
any variable vectors, andz, if symbol A is different fromB; and for any object terms = (trg--tin)
andfy = (t,,---t,,,) and anyn-ary action functiond, (A(t,))™ = (A(tx))™ iff (t,,)™ = (to,)™ for all
i = 1..n. Moreover,S3! =] (i.e., the empty sequence). Sinbg, U {~1} has no action terms in ity
is well defined and is a model @, U D,,,, U {-W}, which is a contradiction.

Hence, all in all, we have:
SupposéV is anLSCc2 regressable sentence with the background BAR Eff, if W is uniform inS, and
W is aC? formula whenSj, is suppressed, theR = W iff Dg, = W.

Then, by Theorem 3 and the above proved statement, welhaveél’ iff D = R[W]iff Dg, = R[W].
O

We can also obtain the following theorem about decidabdityhe projection problem foﬁff re-
gressable sentend¢€. (In particular, wheriV is of the formezecutable(S) for some ground situatiofi,
it becomes the executability problem.)

Theorem 5 SupposéV is an Eff regressable sentence with the background BAin Ianguageﬁff.
Then, determining wheth& = 17 is decidable.

Proof of Theorem 5. According to Theorem 4D |= W iff Dg, = R[W], whereR[WW] and the axioms
in Dg, areC? formulas. Therefore, determining whetl®r= W is equivalent to determining whether
Dg,AR[W] (Ds, can be considered as a conjunction of all axioms in the Infteory) is unsatisfiable or
not, which is a decidable problem, according to the fact thatsatisfiability problem ilC? is decidable.
0]

This theorem is important because it guarantees that thegbiem and executability problems lfff
are decidable even if the initial KBg, is incomplete. In Section 6, we give a detailed example that
illustrates the basic reasoning tasks described aboveealdtion techniques for dealing with properties
that need more than two variables, and show that usﬁg one can model realistic dynamic domains
such as school enrolment services.

5.2 Some Computational Complexity Results

We now consider the computational complexity of solvingphgection problems imiff. We introduce
a few new notations for later convenience.
For any£C” regressable formuld/, let functionsize(1W) bethe size of formuldl’, which is defined

recursively:
1. If W is atomic (including equality), thesize(W) = 1.

2. If Wisofthe form_'W1, dz . Wy, Vo . W7, E'an’.Wl, E'Snl’.Wl, E'y.Wl, Vy.Wl, E'Zny.Wl, OfElS"y.Wl,
thensize(W) = size(W7) + 1.

3. If W is of the formW; AW, or Wy VI, thensize(W) = size(W;) + size(Ws) + 1.
4. If W is of the formWV; D W5, thensize(W) = size(=W;VIW,).

5. If W is of the formWW; = W5, then
size(W) = size(W; DWs) + size(Wy DWy) + 1.

17

For any situation terma = do([a, - - - , au], So), let functionsit Length(o) = k represent the number
of action terms mentioned in. In particular,sit Length(Sy)=0. For any formuld¥’, let function
height(W) = max{sitLength(o) | o appears iV }.

Given any BATD, for any fluentF” whose SSA is of the form Eq. (4), let functiemm F'luent(F') be the
number of fluents (including repeated ones) appearingsrithe RHS of the SSA of fluent’), and let
numFluentSSA(D) = m}gx{numFluent(F) | any F' that has an SSA i®}.

Besides, let

sizeSSA(D) = mlgx{size((bfz) | any SSAF(Z, do(a, s)) = ®p in D}.
Note thatnum FluentSSA(D) andsizeSSA(D) are different: the former one is the maximal number of
fluents appearing in the formulas that are on the RHS of thes3$A given BATD, and the latter one
is the maximal size of the formulas (including non-fluentnascand logical connectives) that are on the
RHS of the SSAs of a given BAD. Moreover, notice that oncP is given,numFluentSSA(D) and
sizeSSA(D) are fixed. In general, we have the following result.

Theorem 6 Consider anyLSCC2 regressable formuld” with a given BATD in £§f. Then, answering the
query whetheD = W is in the complement dlEEXPTIME.

Proof of Theorem 6. According to the discussion in the proof of Theorem 5, deteimy whether
D = W is equivalent to determining wheth®&x, A—R[IV] is unsatisfiable or not, i.e., the complement
problem of whetheDg, A—R[W] is satisfiable or not.

Note thatDgs, A—R[W] is aC? formula (when the situation argumefi§ is suppressed). Moreover,
according to [68], the satisfiability problem in languagéis in NEXPTIME, that is, NTIME?2!) if the
input size of the formula i& Since for any givem, the size ofDg, is fixed, the size of:(Dg,A—-R[W]) is
in ©(ny), wheren, = size(R[W]). Hence, answering the query whetfeii= W is in co-NTIME (2™),

i.e., the complement of NEPTIME w.r.t. the size ofR[IV].

However, in the worst case, computifitjlV] takes XPTIME w.r.t. n, wheren = height(W), and
causes exponential blow-up in the size of formulaw.r.t. n. In detail, without loss of generality, we
assume that there is no defined concepitlin Otherwise, each defined concept will be replaced by its
definitions from the TBox axioms with fixed steps;i’)fc2 regression. This can cause no more than a con-
stant increase to the size of the original formula, becalsecTs fixed (onceD is given), TBox is acyclic,
there are only finitely many TBox axioms and the size of thenida on the RHS of each TBox axiom is
limited from above by a constant. Let= numFluentSSA(D) andh = max(2, sizeSSA(D)). Bothk
andh are constants for the given BAD, andh > k. Moreover, since all action functions £f. have no
more than two arguments, the regression on equalities ataetion terms (se in the above definition
of theﬁfc2 regression operator) no more than triples the size of thessgd atomic formulas (including at
most1 conjunction operator and at masequality atoms), and such regression applies only oncecto ea
equality between action terms. The worst case scenariognaggpeach SSA mentions &llfluents and
the size of the RHS of the SSA s In this case, each step of regression on a fluent atom cratatesst)
new branches in a regression tréeo(t of these branches have one atomic fluent as its node). The next
application of the regression operator replaces fluentisaad: nodes by the RHS of the corresponding
SSAs, and so on. If the length of the longest situation teri¥ibefore regression is, then the height
of the resulting regression tree is no more than 1 (includingn levels of regressions on fluents and at
most1 level of regression on the equalities between actionshllyirwe are looking for a total number of

18

leaves in this tree (this number is the size of the regressmuijiaR[W]), which is

size(RIW]) < 3m(1+ (h—1) Zk { k}@))mn+3m :IZii

Clearly, 3h(mk™) is no more tharBh(m2"°e2*+1) - Formally, it is straightforward to prove by induc-
tion according to the recursive definition of the regressiperator thatsize(R[W]) € O(mn) when

k = 1, and size(R[W]) € O(mk") (which is the same asize(R[W]) € O(m2"'°s(-+1))) when
k > 2. Overall, in the worst case scenario, answering the quemthvenD = W is in the comple-
ment of NTIME(23"m2" *2**) according to the above discussion, wherandk are constants. That is,
answering the query wheth@r = W is in the complement of NETIME (non-deterministic doubly-
exponential time). O
We further consider some special cases of BATs that haverlmetinputational complexity results, but
less expressive power.
We say that the SSA for a fluehtis context-freaf the SSA of F' has the syntactic form

F(Z,do(a,s)) = v£(Z,a)VF(Z, s)\~p(Z,a),

that is, both thepositive conditiony (7, a) and thenegative conditiony,. (%, a) are situation indepen-
dent (see Chapter 4 in [70]). According to this definitiorisieasy to see that all the context conditions
(Wi (Zi4))[s] forall 1 < i < my andy; (Z(;,-))[s] forall 1 < i < m_) in Eq. (4) are situation inde-
pendent (i.e., there is noin any of the context conditions). Note that there is a speeise if a positive
(or negative, respectively) effect only depends on someratérm (i.e., there is no context condition, or,
the corresponding context condition is always equivalentte). Then, we have the following theorem
about the computational complexity for reasoning aboujgetmn problems.

Theorem 7 Given a BATD in LSCC , suppose that the SSA for a fluénis context-free. Then, the com-
putational complexity of answering the queries of the fd?(IX o) is in co-NEXPTIME, whereX is a

vector of object constants amdis a ground situation term.

Proof of Theorem 7. The result follows from the analysis of the computationahptexity of the pro-
jection problem in [70] (Chapter 4), which shows that the ptarity is at most linear to the complexity of
evaluating a sentence in the initial situation under sushmagtions. In fact, from the proof of Theorem 6,
when a fluent?’ is context-freepumFluent(F) = 1. Let size(®r) = ho, then the number of leaves
in the regression tree df(X,), i.e., the size of the regressed formula, equils, — 1) + 1, which is

in O(n). Again, using the same reasoning as in the proof of Theoretine6problem of answering the
queries of the formF(X, o) is the complement of the problem whettg, A—F(X, o) is satisfiable or
not. Hence, its computational complexity isaNTIME (2°(™), i.e, it is in co-NEXPTIME. O

Using the same reasoning as in Theorem 7, in general, we haveltowing corollary.

Corollary 1 Given a BATD in ESC , suppose that every SSA7Ihis context-free. Then, for an&}scc2
regressable formul&/’, answering the query wheth@r = W is in co-NEXPTIME.

5.3 A Description-Logic Based Situation Calculus

We see from Theorem 6 that the computational complexity bfirsg the projection problems itziff
(using the regression mechanism) is quite high. On the dtéwed, with context-free SSAs, although we
can gain better complexity (see Theorem 7), the expresswmepof context-free SSAs is quite limited.

19

Motivated by the observation that some DL languages haverbaimputational complexity for concept
satisfiability problems and/or ABox consistency probletmantC? (see Section 3.2) and the idea of re-
stricting the context conditions in the SSAs similar to exttfree SSAs, we now consider another type
of restriction on BATs in the language aﬁff. We would like to get better complexity results than that
of Theorem 6 when solving the projection problem in genefstl.the same time, we consider a frag-
ment that is more expressive than context-free SSAs. Mereaxe will see that this language has natural
connections with DLs.

We first consider a sub-languagelad?, denoted” O . The language of'Op ;. includes constants,
monadic and dyadic predicates. Moreover, it is a union ofsule-languagest’'Op,, = FO7,, U FOY,,,
where the detailed definition dfO%,, is provided below and”OY,; is obtained by renaming eveny
with y and everyy with = for every formula inf'O%,,. The setF'O7,; is a minimal set of formulas built
inductively as follows:

e true andfalse are iInFOY, .

e If AC'is a monadic predicate name, thét'(z) is in FO7;.
e If bis a constant, them = bis in FO%;.

o If pisin FO},, then—¢isin FOj,.

o If ¢ andy are inF' O, thenp Ay andgVy are iInFO7, .

e If ¢(z)isin FO%,, and¢(z) has at most one free variableandR is a dyadic predicate name(y)
is the dual formula of(z), obtained by renaming gveity(both free and bgund) withh and everyy

(both free and bound) with in ¢, then3y.R(z, y) A¢(y) andVy.R(z,y) D ¢(y) are inFO%,; .

o If ¢ isin FO7,;, ¢ is the dual formula ofy, obtained by renaming eveny (both free and bound)
with y and everyy (both free and bound) with in ¢, then[3y.]¢(y) and [Vy.]é(y) are in FO%,,
where[Jy.] ([Vy.], respectively) means thatdfhas a free variablg, then it is quantified byy (vy,
respectively); otherwise, there is no need to add the dfimmti

The semantics of' O, are the same as the usual semanticB©f. Notice that for anyy € FO},

(p € FOY,, respectively),gZ is in FOY,, (FOY,,, respectively). Moreover, it is easy to see that any
sentence (i.e., closed formula) MOy, is in both FO%,, and FOY,;. We then are able to prove the
following lemma (the detailed proof is provided in Appen&3).

Lemma 1 There are syntactic translations betweE®,,; and the DL languagedCO(U), i.e., they are
equally expressive. Moreover, such translations lead toneoe than a linear increase in the size of the
translated formula.

Recall from the review of DLs in Section 3.1 that the satishigbproblem of a concept and/or the
consistency problem of an ABox in the DL languad&’O(U) can be solved in EPTIME. This is an
improvement ovet? andFO? (see Section 3.2). For this reason we would like to invetgiganew SC
based o' Opy.

Definition 2 We say that the SSA for a fluefitis ACCO (U)-restrictedif the SSA off" has the form of
Eqg. (4), where each context conditigrf (or v;, respectively) is a formula i'Op;, when all situation

20

variables are suppressed. Moreover, we say that the setAd BS in a BATD is ALCO(U)-restrictedif
every axiom of a primitive dynamic conceptln, is ALCO(U)-restricted and every axiom of a dynamic
role in Dy, is both ALCO(U)-restricted and context-free.

We say that a concept definition of the form Eq. (5) for any ddficoncept= (including static or
dynamic) isALCO (U)-restrictedif the formulagg(z) on the RHS of Eq. (5) is if'Opr. Moreover, we
say that the acyclic TBoR, of a BATD is ALCO(U)-restrictedif every axiom in the set igllCO(U)-
restricted.

We can then prove the following lemma (its proof is providedppendix B.4).

Lemma 2 Consider a BATD in £ whoseD,, and D are ACO(U)-restricted. LetiV be an£&’
regressable formula that is uniform in a ground situati§rand has no appearance éfoss. Letn =
sitLength(S) andm = size(W). Then, ifiV with the situation termt suppressed is i#'Op, there
is a®y in FOpy such thatR[W] is equivalent toby, [Sy]. It takes no more than - n - size(®y) steps
of deduction fromR[IV] (with Sy suppressed) to find suahy,,, wherec is a positive integer. Moreover,
size(Dy) is in O(2n+3h°7*) for some positive integek. That is, the size oby, is no more than
exponential in the size oF'.

Then we have the following complexity result.

Theorem 8 Consider a BATD in £S” whoseD,, and D, are ACO(U)-restricted. LetDg,, with the
situation termS, suppressed, be iIROp. LetW be anyLSCf regressable sentence 10 that is uniform
in a ground situationS and has no appearance &foss. If W, with the situation terny’ suppressed, is in
FOp_, then answering the query whethBr= 1 can be solved ilEEXPTIME.

Proof of Theorem 8. First, D = W iff Dg, = R[W] by Theorem 4. Also, by Lemma 2, we can find a
formula® in FOp/, in no more than exponential time wrt the sizelf such that= ¢S] = R[W], and
the size of® is no more than exponential in the sizelot Hence,Dg, = R[W] iff Dg, = ®[S]. Itis the
same as answering whettg, A\—~P[Sy] is unsatisfiable or not, which is a complement problem of waet
Ds,\—P[Sy] is satisfiable or not. Le¥ be the formulaDs,A—P[S,] with situation termS, suppressed, and
itis easy to see thal is in F'Op, becaus@yg, is in FOp;, when the situation terrf, is suppressed and
¢ isin FOp.. ¥ has the same size @&, A—~®[S,], and it is unsatisfiable ifbs, A—®[Sy] unsatisfiable.
Using the syntactic translation functiandefined in the proof of Lemma 1 (see Appendix BB)\V) is
a concept in DL languagd/CO(U). To decide whether a conceptWV) is satisfiable inAZCO(U) is in
EXPTIME with respect to the size aof (®), which is linear in the size ob. Hence, deciding whether
Ds, = R[W]isin co-EXPTIME wrt the size ofDg, A—®[S,]. However, wherD is given the size 0Dy,
is fixed, hence, deciding wheth®xy, = R[W] is in fact inco-EXPTIME wrt the size of®[S,] (which is
the same as the size ®). Again, because the size &fis exponential in the size d¥/, deciding whether
Ds, = R[W]is in the complement of EEPTIME (wrt the size ofiV), which is the same as E®TIME.
U

Recall from the review of DLs in Section 3.1 that the satishigbproblem of a concept and/or the
consistency problem of an ABox in the DL languadé’QO (U) can also be solved inpTIME. For this
reason, similar to the development above, we can extéig, to a sub-language af?, say FOp; .,
by adding counting quantifiers t8Op;. Formally, FOp. = FO},;, U FOY,, ., whereFO%,,, is a

minimal set of formulas built inductively below, adD},,, = {¢ | ¢ € FOp; , }.
e true andfalse are inFO% ..

21

e If AC is a monadic predicate name, thén'(z) is in FO% , .
e If bis a constant, then = bisin FO%, .

o If ¢isin FO}; ., then—¢isin FOP, .

o If p andy are inF O3, , thenp Ay andg Ve are inFO%, ..

o If ¢(x)isin FO%, ., andé(x) has at most one free variablg and R is a dyadic predicate name,
5(3;) is the dual formula ofs(z), obtained by renaming eveny (both free and bound) with and
everyy (both free and bound) within ¢, thenJy.R(z, y)Ad(y), Vy.R(z, y) D d(y), ="y R(z, y)A
¢(y) and3<"y.R(z,y) Ad(y) for anyn € N are inFO%, . .

o If ¢ isin FO}, ., gi dual formula of¢, obtained by renaming every (both free and bound)

with y and everyy (both free and bound) with in ¢, then[Jy.]o(y), [Vy.]o(y), [HE”y.]gTS(y) and
[3="y.]é(y) for anyn € N are in FO%, ,, where[3y.] ([Vy.], [32"y.], or [32"y.], respectively)
means that if¢~5 has a free variablg, then it is quantified byly (vy, 32"y, or 3="y, respectively);
otherwise, there is no need to add such quantifier.

The semantics of'Op ;.. is the same as the usual semantic€'of
Similar to Lemma 1, we are able to prove the following lemrha.

Lemma 3 There are syntactic translations betwew ;. and the DL languagedCQO (U), i.e., they
are equally expressive. Moreover, such translations leada more than a linear increase in the size of
the translated formula.

Similarly, we say that the SSA for a flueht is ACQO (U)-restrictedif the SSA of F' has the form of
Eqg. (4), where each context conditigii (or ¢, , respectively) is a formula if'Op; . when all situation
variables are suppressed. Moreover, we say that the setAaf BS in a BAT is ALCQO (U)-restrictedif
every axiom of a primitive dynamic conceptid is ALCQO (U)-restricted and every axiom of a dynamic
role in Dy, is both ALCQO (U)-restricted and context-free. We say that a concept definitf the form
Eq. (5) for any defined concept (including static or dynamic) isAlCQO (U)-restrictedif the formula
¢c(x) on the RHS of Eq. (5) is iF"Opr.. Moreover, we say that the acyclic TB@- of a BAT D is
ALCQO(U)-restricted.

Similar to Lemma 2, we can also prove a lemma #COO (U)-restricted regressable formulas as
follows.

Lemma 4 Consider a BATD in £S” whoseD,, and D, are ACQO(U)-restricted. LetiV be an£S”
regressable formula that is uniform in a ground situati§rand has no appearance éfoss. Letn =
sitLength(S) andm = size(W). Then, ifi¥ with the situation ternt suppressed is i#'Op, there
isa®y in FOpr, such thatR[W] is equivalent toby, [So]. It takes no more than- n - size(Py,) steps
of deduction fromR[IV] (with Sy suppressed) to find suahy,,, wherec is a positive integer. Moreover,
size(®y/) is in O(2+30°7*) for some positive integek. That is, the size oby, is no more than
exponential in the size oF'.

The proof of Lemma 3 is exactly the same as the proof of Lemmxépe that we only need to add translation for counting
quantifiers, which is straightforward. Hence, the proof efima 3 is omitted.

22

Proof of Lemma 4. The proof is exactly the same as the proof of Lemma 2 (see Afipéh4), where
FOpy, (FO%,, or FOY,,, respectively) is replaced b§¥Op ., (FO%, ., or FOY,, ., respectively), and
we need to consider sub-cases constructed using the cguntantifiersi=" and3=<" in the proof. But
the proof for cases that are constructed usifgand3=<" are the same as the proof for the case using the
J-quantifier (see casel) of the inductive step of the nested induction on the stmectd the regressable
formula ¥ in the proof of Lemma 2, Appendix B.4). Hence, the detaileabpiof Lemma 4 is omitted
here. O

As a consequence, similar to the proof of Theorem 8, we alge tie following result.

Theorem 9 Consider a BATD in £&” whoseD,, and Dy are ALCQO(U)-restricted. LetDg,, with the
situation termS, suppressed, be iIROp; . LetV be anyﬁfc2 regressable sentence Ththat is uniform
in a ground situationS and has no appearance &foss. If W, with the situation terny’ suppressed, is in
FOppy, then answering the query whett®r= 1 can be solved ifEEXPTIME.

6 An Example of Regression inc¢”

In this section, we give an example of a BATin Eff to illustrate the ideas described above.
Example 1 Consider some university that provides student administrand management services on
the Web: admitting students, paying tuition fees, enrgltin dropping courses and entering grades.
Although the number of object arguments in the predicatesbeaat most two, sometimes, we are
still able to handle those features of the systems that requore than two arguments. For example, the
gradez of a student: in a coursey may be represented as a predicatede(x, y, z) in the general FOL
(i.e., with three object arguments). Because the numbeistihdt grades is finite and they can be easily
enumerated as “A”, “B”, “C” or “D”, we can handlgrade(z,y, z) by replacing it with a finite number
of extra predicates, sayradeA(x,y), gradeB(z,y), gradeC(x,y) andgradeD(x,y) such that they all
have two variables only. However, the restriction on the benof variables limits the expressive power
of the language if more than two arguments vary over infinti@dins (such as energy, weight, time, etc).
Despite this limitation, we conjecture that many web sawistill can be represented with at most two
variables either by introducing extra predicates (just ike did for the predicaterade) or by grounding
some of the arguments if their domains are finite and religtsmall. Intuitively, it seems that most of the
practical dynamical systems can be specified by using piepemnd actions with small arities, hence the
techniques for arity reductions mentioned above and beémuire no more than polynomial increase in
the number of axioms. The high-level features of our exarapespecified as the following concepts and
roles.

e Primitive static concepts:

person(x) (x is a person)yourse(x) (x is a course provided by the university).
e Primitive dynamic conceptsncoming(zx, s) (z is an incoming student in the situatienit is true when
x was admitted).
e Defined dynamic conceptsiig F'ull(z, s) (z is eligible to be a full-time student by paying more than
5000 dollars tuition fee)¢lig Part(x, s) (x is eligible to be a part-time student by paying no more than
5000 dollars tuition)yual Full(z, s) (x is a qualified full-time student if he or she pays full timetiom
fee and takes at least 4 courses);l Part(x, s) (x is a part-time student if he or she pays part-time tuition
and takes 2 or 3 courses).
e Static role:preReq(z, y) (courser is a prerequisite for coursg.

23

e Dynamic roles:hasGrade(z,y, s) (x has a grade for coursein the situations), tuitPaid(zx,y, s)

(= paid tuition feey in the situations), enrolled(x,y, s) (x is enrolled in course in the situations),
completed(x,y, s) (x completes coursgin the situatiors), gradeA(z, y, s), gradeB(z, y, s), gradeC(x,y, s),
gradeD(z,y,s).

Web services are specified as actiomsset (at the beginning of each academic year, the system
is being reset so that students need to pay tuition fee agdiadome eligible)admit(z) (the university
admits student), payTuit(x, y) (x pays tuition fee with the amount 9j, enroll(z,y) (x enrols in course
y), drop(z,y) (x drops course), enter A(x, y) (enter grade "A” for student in coursey), enter B(z, y),
enterC(x,y), enterD(x,y).

The BAT is as follows (most of the axioms are self-explangtor

Precondition Axioms;
Poss(reset, s) = true,

Poss

Poss(admit(x), s) = person(x) A—incoming(z, s),

Poss(payTuit(x,y),s) = incoming(x, s) A—tuit Paid(x,y, s),

Poss(drop(x,y), s) = enrolled(x,y, s) \—completed(x,y, s),
(

enterA(x,y), s) = enrolled(x,y, s) \—completed(x, y, s),

and the precondition axiom famterB(z,y) (enterC(x,y) andenter D(x,y), respectively) is similar
to the axiom forenter A(x,y). Moreover, in the traditional SC, the precondition for anténroll(x, y)
would be equivalent to

(Vz)(preReq(z, y) Acompleted(z, z, s) N—gradeD(x, z, s)).
However, in the modified SC, we only allow at most two objectatkales (including free or bound). Fortu-
nately, the number of the courses offered in a universiigigéd (finite and relatively small) and relatively
stable over years (if we manage the students in a college+rargye or department-wise range, the number
of courses may be even smaller). Therefore, we can sped@fprigcondition for the actioenroll(x,y)
for each instance @f. That is, assume that the set of coursegis;, - - - ,CS, }, the precondition axiom
foreachCS; (i = 1..n) is

Poss(enroll(x,CS;),s) =
(Vy)(preReq(y, C'S;) D completed(z,y, s)\—gradeD(z,y,s)).

On the other hand, when we do this transformation, we canthmgtatementsurse(x) for each course
available at the university in the initial theory.

Successor State AxiomsThe SSAs for the fluentgrade B(x, y, s), gradeC(x, y, s) andgradeD(x, y, s)

are very similar to the one for flueptadeA(z,y, s). Therefore they are not repeated here. They ensure
that for each student and each course there is no more thagrade assigned. The SSA for the fluent
hasGrade(z,y, s) is also similar and for this reason it is omitted.

incoming(x,do(a, s)) = a=admit(x)Vincoming(x, s),

tuit Paid(x,y, do(a, s)) = a=payTuit(x,y)Vituit Paid(x,y, s) Na # reset,
enrolled(x,y,do(a, s)) = a=enroll(x,y)V
enrolled(z,y, s)\—(a=drop(x,y)Va=enter A(x,y)V
a=enter B(x,y)Va=enterC(z,y)Va=enterD(x,y)),

24

completed(x,y,do(a, s)) = a=enterA(x,y)Va=enter B(x,y)
Va=enterC(x,y)Va=enterD(z,y)V
completed(x,y, s)Na # enroll(x,y),

gradeA(x,y,do(a, s)) = a=enterA(z,y)VgradeA(x,y, s\
—(a=enterB(z,y)Va=enterC(x,y)Va=enterD(z,y)),

and the SSA for fluenjradeB(z, y, s) (for gradeC(x,y, s) and forgradeD(z, y, s), respectively) is sim-
ilar to the one for fluenyradeA(x, y,).

Acyclic TBox Axioms: (no static TBox axioms in this example)

eligFull(z, s) = (Jy)(tuit Paid(x,y, s) Ay > 5000),

eligPart(x, s) = (3y)(tuit Paid(x, y, s) Ay < 5000),

qual Full(z, s) = eligFull(z, s) A (F=Yy)enrolled(z, y, s),

qual Part(x, s) = eligPart(z, s) A (F=2y)enrolled(z, y, s)

NI=3y)enrolled(z, y, s).

An example of the initial theor{s, could be the conjunctions of the following sentend®s:, y) —paidT uit(x, y, S),
(Vx)incoming(x, So) D x = P,Va = P, preReq(CSy,CSy)VpreReq(CSs, CSy), (Vo) # CSy D
—(Jy).prePeq(y,), person(Py), - -, person(P,,).

One can also imagine that some RBox axioms, for example

gradeA(z,y, s) DhasGrade(x,y, s),

may be used for taxonomic reasoning in this domain.
Finally, we give an example of regression ofzf";lﬁ2 regressable formula:

R[(3x).qual Full(z, do([admit(Py), payTuit(Py, 6000)], Sp))]
= R[(Fz).eligFull(z, do([admit(Py), payTuit(Py, 6000)],Sy) A
(F=4y)enrolled(x,y, do([admit(Py), payTwit(Py, 6000)], So))]

= (3z).(32*y)enrolled(x,y, So) A((Fy)R[y > 50007
tuit Paid(x, y, do([admit(Py), payTuit(Py, 6000)], Sp))])

= (3z).(F=%)enrolled(z,y, So) AN((Jy).tuit Paid(x,y, So)A
y > 5000V (x = P Ay = 6000Ay > 5000)),

which is false given the above initial theory.

Suppose we denote the above BATIasGiven goalG, for exampledz.qual Full(x), and a composite
web service starting from the initial situation, for exampl
do([admit(Py), payTuit(Py, 6000)], Sp) (we denote the corresponding resulting situatios,gs We can
check if the goal is satisfied after the execution of this cosite web service by solving the projection
problem whetheD = G[S,]. In our example, this corresponds to solving whetes Jz.qual Full(z, S,).
We may also check if a given (ground) composite web semdiced,; - - - ; A,, is possible to execute start-
ing from the initial state by solving the executability pteim whetheD |= executable(do([A1, As, - - - , Ay, So))-
For example, we can check if the composite web sewiteit(P,); payTuit(P, 6000) is possible to be
executed from the starting state by solving wheter executable(.S,). Note that both entailment prob-
lems can be decided (not only for the query that we consideialso for any query) because they can be
reduced to the satisfiability problem @¥.

25

7 Discussion and Future Work

The major consequence of the results proved above for tgonmf service composition is the following.

If both atomic services and properties of the world that caratbected by these services have no more
than two parameters (other than the situation argumergj te are guaranteed that even in the state
of incomplete information about the world, one can alway®ieine whether a sequentially composed
service is executable and whether this composite servitteaghieve a desired effect. The previously
proposed approaches made different assumptions: [S5@j&ssiinat the complete information is available
about the world when effects of a composite service are comapand [25, 18] consider the propositional
fragment of the SC.

In [56, 61], it was proposed to use Golog for composition ain@etic Web services. Because our
primitive actions correspond to elementary services, @dsirable to define Golog in our modified SC
too. It is surprisingly straightforward to define almost@tlog operators starting from odr*-based SC.
The only restriction in comparison with the original Golatl[70] is that we cannot define the operator
(w2)d(z), non-deterministic choice of an action argument, becdliSeregressable formulas cannot have
occurrences of non-ground action terms in situation tetmghe original Golog this is allowed, because
the regression operator is defined for a larger class ofseglde formulas. However, everything else from
the original Golog specifications remain in force, no modifiens are required. In addition to providing
a well-defined semantics for Web services, our approachalacantees that the evaluation of tests in
Golog programs is decidable (w.r.t. an arbitrary initi®ahy Dg,), which is missing in other approaches
(unless one can make the closed world assumption or impaskerestriction to regain decidability).

In [2], an integration of the description logiCQIO (and its sub-languages) with an action formalism
for reasoning about Web services is proposed. Their papes stith a description logic and then defines
services (actions) meta-theoretically: an atomic sengcefined as the triple of sets of description logic
formulas. To solve the executability and projection praidehe paper introduces an approach similar to
regression, and reduces this problem to description l@gisoning. The main aim is to show how the ex-
ecutability of sequences of actions and a solution to thgeption problem can be computed, and how the
complexity of solving these problems depends on the chosserightion logic. Despite that our paper and
[2] have common goals, our developments start differemnily proceed in different directions. We start
from the syntactically restricted FO language (that is icgmtly more expressive thadCOIO), use it
to construct the modified SC (where actions are terms), d&#ies in this language and show that by
augmenting (appropriately modified) regression with lagfolding one can reduce the executability and
projection problems to the satisfiability problemdi, which is decidable. Furthermor€? formulas can
be translated toACOIO (LI, 1, —, |, id), if desired. Because our regression operator unfolds #utemt
demand” and uses only relevant part of the (potentially hiidg@ox , we avoid potential computational
problems that could occur if the TBox axiom were eliminateddvance. The advantage of [2] is that all
reasoning is reduced to reasoning in description logicd, (@nsequently, can be efficiently implemented
especially for less expressive fragments4t’O70). Our advantages are two-fold: the convenience of
representing actions as terms, and the expressive povx@aﬁfofBecauseC2 and ACCOIO (LU, 1, =, |, id)
are equally expressive, there are some (situation sugaheksmulas in our SC that cannot be expressed
in ACCOIO (that does not allow complex roles). In particular, [79]wdhat ACCQL has the same com-
plexity asC?, but ACCOT is strictly less expressive thdi¥: reflexive binary relations cannot be expressed
in ACLCQL. The more recent papers of the same research group conbiexplore the research direction
initiated in [2]: [59, 58] investigate complexity of plamg in a description logic based action formalism,
[45] attempts to solve the ramification problem when a TBaxsists of general concept inclusion axioms

26

(GCls), and itis no longer an acyclic TBox as in [2].

Propositional dynamic logidADL) was derived from dynamic logic and has several nice pragsert
PDL has the finite model property and is decidable [33]. Its Bahgity problem is EXPTIME-complete
[19, 67]. It turned out to be popular not only for reasoninguairegular programs, but also as a logic
of action [24, 69]. It is well known that dynamic logic extenchodal logic by associating to every
actiona, basic or complex, the modal operat@isand (a), thereby making it a multimodal logic. But,
in PDL quantification over actions is not allowed. More recently2,[16, 15] adapPDL to reasoning
about actions by quantifying over actions and allowing fguality between actions. They use regression
and formulate the successor state axioms to solve the fraaiep similar to [70]. However, in their
framework, action terms can be constants or variables dhl domain closure axiom for actions or
another similar assumption is required) and all fluents ao@gsitional only. In our paper, actions in
BATs can be first-order terms, and the arity of each actiowtfon is no greater than two. Moreover, in
our language, fluents can be dynamic concepts or dynamig, node just propositional statements. Also,
as we mentioned above, it is possible to define complex Galograms in our language.

In [84], the combined dynamic description langud® LC has been proposed as an attempt to reason
about dynamics in description logics. From the perspeafuaodal logic, [84] combines polymod&l
with PDL and proves the decidability of the resulting hybrid logieDLC is somewhat related to the
products of modal logics (see [21, 22, 23] for the definitiod aurvey of results). The issues related to
combining modal logics in a more general context are review§40]. The proposed dynamic description
logic is intended to define and classify concepts refermngctions and to describe dynamically changing
domains by means of varying extensions of concepts. A daesfamination of the syntax cPDLC
shows that actions can only be terms built from atomic asti@re., action variables) using standard
dynamic logic constructors (composition, alternatioaration) and from formulas using tests. Another
restriction is that only concepts can change after exegwtimaction:[a]C is a concept, where is an
action term and”' is a concept, but there is no similar constructor for roleaweler, for any atomic
formula ¢ which is either an ABox statementi (C, or aRb, wherea, b are object names) or a boolean
combination of ABox statements, and for any action texni]¢ is also a formula. The main contribution
of [84] is the proof of the theorem that the satisfiability iplem for PDLC-formulas is decidable, but the
complexity of the decision problem and the design of efficaerision algorithms are not explored. Our
modified situation calculus can use action functions wittyaro greater than two, and our dynamic roles
can change after executing a sequence of actions too. Howesalo not prove the decidability of the
satisfiability problem for arbitrary formulas in our langyga Moreover, we conjecture that this problem
is undecidable in our language. From the positive side, weatstrate that the executability and the
projection problem are decidable for a wide class of quearas$ because these problems are the most
essential in applications, the ability to solve these ot is sufficient for practical purposes. In [14, 13],
the authors propose a logic that is similar to [3, 2, 84]. la pnoposed logic, one not only can reason
about complex actions similar to [84], but also can charaseactions by preconditions and conditional
effects as in [2]. Also, a tableau algorithm for decidingsfatbility proposed in [14, 13] is based on an
elaborated combination of previously known tableau athars.

In our paper [32], we investigated not only regression, k&d progression as an alternative approach
to solving the projection problem. We considered a modifiedjpession that is weaker than the classical
progression [44] for an incomplete KB givdocal-effectSSAs defined in [47], . We proved that the
modified progression is sound wrt the classical progressiot we also provided an algorithm to compute
our progression for the case when the initial theory is a @dfed KB (a set of disjunctions of equality-
based formulas). Recently, [82] considers a notiostaing progressiona slight variant of the classical

27

progression. In [82], it is shown that the strong progresgdirst-order definable for a BAD with local-
effect SSAs and the algorithm for computing progressionpvaposed for a special case of a BAIwith

the so-calledstrong local-effec6SAs. Whether or not a similar result applies to our modifi€d iS.,
whether or not the strong progressiortisdefinablefor a BAT D in Eff with local-effect SSAs, requires
further study. It is easy to check that in all special casesff44, 77, 47] when the progression is FOL
definable, similar results can also be formulated forzoﬁrsimply because we restrict the language to two
object variables only. There is research on updating in €seription logic community that is somewhat
related to computing progression in the SC. [46] considpdate of an ABox in a DL with an acyclic
TBox following [83] and also mentions that update can be iggpio a boolean ABox formulated ifi?,

but their update is defined in terms of a conjunction of piwveifluent literals, i.e., it is different from
classical progression (the exact relations remain uneggjo [26] uses a less expressive DL language
D L-Lite, but defines update for the case when TBox consists of GClenparison to acyclic TBox that
is required in [46]. It is shown that the result of an updatalvgays expressible by B L-Lite ABox and

a polynomial-time algorithm is provided that computes tpdate over & L-Lite KB. The more recent
paper [11] from the same research group proposes to use -Gkdggrograms to efficiently reason about
actions over ontologies based on a functional view of omgfplaith cyclic TBox in the case when the
ontology is expressed iP L- Lite.

There are several other proposals to capture the dynamike @forld in the framework of description
logics and/or its slight extensions. Similar to our pape&2][Prescher and Thielscher [17] explored
reasoning about actions based on a description logic, layt ¢doncentrate on thi#guent calculug71]
instead of the situation calculus. Instead of dealing withoms and the changes caused by actions,
some of the approaches turned to extensions of descripigingl with temporal logics to capture the
changes of the world over time [1, 4], and some others condbji@nning techniques with description
logics to reason about tasks, plans and goals and explatiptsns of actions, plans, and goals during
plan generation, plan recognition, or plan evaluation [B&th [1] and [27] review several other related
papers. Researchers also proposed to describe actiorfseartthinges in terminological knowledge bases,
closely related to description logics. For example, C. Kerf89] describes action concepts by a set of
parameters or object variables which refer to conceptsambject taxonomy, and precondition formulas
as well as effect formulas describing how the world changesugh actions (similar to STRIPS planning
systems). In [7], all the actions efservices are specified as constants, all the fluents of tsieray
have only situation arguments, and BATSs are translatednswdd assumptions into the description logic
framework. It has a limited expressive power without usirguanents of objects for actions and/or fluents:
this may cause a blow-up of the knowledge base.

In the future, we plan to extend this work along several dioes. It would be interesting to see how
our modified situation calculus can be used in real appboatalong the lines of SNAP, an e-commerce
ontology developed at IBM for an automated system for recemuing products and services in the
domains of banking, insurance and telephony [60].

The most important direction for future research is an efficimplementation of practical scenarios
of reasoning incfc2 and in its fragments: an efficient implementation of a decigirocedure for solving
the executability and projection problems. This procedin@uld handle the modifieﬂff regression and
perform efficient reasoning iRg,. It should be straightforward to modify existing implematmns of the
regression operator for our purposes, but it is less obwidnish reasoner will work efficiently on practical
problems. There are several different directions that eaexplored. First, according to [9] and Theorem
1, there exists an efficient algorithm for translatiti§formulas toACCOIO (U, 1, -, |, id) formulas. Also,
if we consider fragments atscf introduced in Section 5.3 that guarantee a better comglexisolving

28

the projection problem (see Theorem 8), more specificalgA& D whoseD,, andD; are ALCO(U)-
restricted, then a reasoning procedure working Wit should be able to handle the description logic
ACO(U). Consequently, one can try to adapt tableaux-based degisicedures, such as those proposed
in [73, 74], for (un)satisfiability checking il COIO (U, M, —, |, id) and inALCO(U). Second, one can try
to avoid any translation fror6 to ALCQIO (L, 11, -, |, id) and adapt resolution based automated theorem
provers for the purposes of reasoninglg, [37, 62]. Although in general, the worst-case computationa
complexity for the reasoning problemsﬂff or in its fragments is high, some practical scenarios may
facilitate empirically efficient solutions to the projemti and executability problems.

Finally, we would like to explore how our version of the SC @atommodate events considered by
John McCarthy in [54].

Acknowledgments
Thanks to the Natural Sciences and Engineering ResearamcCotiCanada (NSERC) and to the Depart-

ment of Computer Science of the University of Toronto foryidang partial financial support.

Appendix
A Semantics of Description Logics

In this appendix, we list the semantics of description Iagintax appearing in this paper. More details
can be found in [4].

Name Syntax | Interpretation

Top T AT

Bottom 1 0

Nominal {b} vt e AT

Negation -C AT\C*

Intersection CincCy | CENCE

Union CiuC, | CtuCkt

Qualified >nR.C | {6 € AT |

at-least restriction {61 € AT | (6,61) € REAS, € CT}| > n}
Qualified <nR.C | {6 € AT |

at-most restriction {01 € AT | (6,61) € RTAS; € CT}| < n}
Existential JR.C | {6 € AT|36,.(0,6,) € RTINS, € CF}
guantification

Value restriction | VR.C' | {6 € AT |V6,.(6,6,) € RTD 4§, € CF}

Figure 1. The semantics of some common description logicepinconstructors.

29

Name Syntax | Interpretation
Universal role U AT x AT
Inverse R~ {(61,0) € AT x AT | (4,0,) € R}
Complement -R AT x AT\ R?
Intersection RiNRy | RENR:
Union RIURy | RENR:
Role restriction R|c RTNn AT x C*
|dentity id(C) {(6,0) € AT x AT | § € C7F}
Reflexive-transitive closure R* U, >0 (RH)™
Composition RioRy | {(01,8,) € AT x AT |
36 € AT.(61,6) € REN(0,05) € RE}
Figure 2. The semantics of some common description logegohstructors.
Name Syntax | Interpretation
Concept inclusion) C, C C, | C¥ C CF
Role inclusion RIC Ry, | RT CRZ
Concept equality | C; = C, | C = CF
Role equality Ri=Ry, | RT=RZ
Concept assertion C'(b) vt e O
Role assertion | R(by,be) | (b%,b%) € RT

Figure 3: The semantics of terminological and assertioxiahas.

B Proofs of Lemmas and Theorems

B.1 AXLQIO(LI, M, —,]|,id) and C* are Equally Expressive

In this subsection, we will provide detailed proof for Thewr 1. First, we prove the following two
lemmas.

Lemma5 C? is as expressive as the languageAdCOTO (LI, M, -, |,4id). In addition, the translation
leads to no more than a linear increase in the size of the teded formula.

Proof of Lemmab5. Similar to the proofin [9], we present the translation fuoctfrom ACQIO (LI, 1, -, |
,id) to C* in several variants that behave as follows$y{) makesz be the free variable of the monadic
predicate, which is produced for its argument concept,avtti{) makes the free variable e So, for an
atomic conceptdC' € Cy, 7*(C) = C(x), while 7¥(C) = C(y). For an atomic role? € Cy, 7™Y(R)
produces a dyadic predicaiz, y), while 7¥*(R) produces a dyadic predicai&y, z). The translation
functionst(), 7¢(), andr™¥() are presented in the following two tables (Table 4 and Taples"() is
obtained fromr®¥() by simultaneously exchanging all occurrences ahdy (whether free or bound).

30

TermC T(C) Y(C)

AC, AC € N¢ | AC(x) AC(y)

T r=x y=1

L ~(z ==z) ~(y=y)

{o} T = y=

-C —77(C") —-7Y(C')

Cl |_|Cg Tx<Cl>/\Tx<Cg> Ty<Cl>/\7'y<Cg>

Cl L CQ Tx<Cl>\/Tx<Cg> Ty<Cl>\/7'y<Cg>

>nR.C F2ny. TY(RYATY(C) | 2. 79 (R)ATT(C)

<nR.C Jsny. 75Y(RY A TY(C) | 3= 2. 7Y(R) A 7%(C)

VR.C Yy. 7"Y(R) D1Y(C') Va. 79"(R) D7*(C)

JR.C Jy. 7Y(RYATY(C') Jz. 7V (R) AT(C)
Figure 4: A translation fromdZCQIO (LI, M, =, |, id) to C? for concept constructors.

TermR T%Y(R)

R,R € Ng R(z,y)

U (universalrole)| x = zAy =y

id(C) x=yAT"(C)

R —TY(R)

R|c T*Y(RYANTY(C)

R~ TV (R)

R1 I Rg Tx’y<R1> N Tx’y<R2>

Rl L R2 Tx’y<R1> V Tx’y<R2>

Figure 5: A translation frordZCQIO (L, 11, -, |, id) to C? for role constructors.

The translation functiorr() can now be defined simply as(C) wf

7(R) “ r29(R) for any roleR.
Then, the translation of terminological and assertionaras can be defined as:
T{(C(b)) = © 3pr *(C) A x = b for any concept assertiari(b);
(R(b,b)) = 333y Y(R)Ax = bAy = V' for any role assertio®(b, b');
<C def
(
(

#(C) for any conceptC,

-
Cy) = Va.7(Cp) D7%(Cy) for any concept inclusion’; C (s if any;

Ch 02> =l V:U T*(CY) = 7%(Cs) for any concept equalitg; = C, if any;

(R C R2> I . Vy.7%Y(R1) D T7%¥(Ry) for any role inclusionk, C R, if any.

For any DL interpretatiorf, and the conventional FO interpretatid@n such thatA”* = A? and
ACT = AC?T (R™ = RZ, respectively) for each atomic concepf' (atomic roleR, respectively), it is
straightforward to prove by induction that)? = (7(¢))** for any formulag in ACCOIO(LI, M, -, |, id).

In addition, it is obvious that the translation frad(COZO (LI, M, -, |, id) to C? can be done in linear
time and causes no more than a linear increase in the sizeedfahslated formula according to the
translation function- defined above. O

\]
Il ITI

\]

Lemma 6 The language ofACCOIO (LI, 11, -, |,id) is as expressive a&?. In addition, the translation

31

leads to no more than a linear increase in the size of the tedad formula.

Proof of Lemma 6. We proceed by structural induction on the syntax of formirias? with up to two

free variables: andy. Table 6 lists all possible kinds of formul&$z) that have a single free variabie

and shows how each kind is translated into a con€gptLet N = {AC | AC(x) or AC(y) is a monadic
predicate in languag€?}, andNr = {R | R(z,y) or R(y, z) is a dyadic predicate in languagg}.

AC(z), AC € N¢ | AC U(O)AD(x) CyMCs
R(z,b), R € N | 3R.{b} U(x)AP(z) | Cy NCy
R(b,z), Re Np | 3R .{b} Jy.U(z,y) dRy. T
R(z,z),R€ Ngp | I(RNd(T)).T | 3="y.¥(z,y) | 2nRy.T
x = {b} Iy U(x,y) | <nRy.T
r=x T Jy.U(x) Cy

Figure 6: A translation fron€? to ACCOIO (LI, M, -, |, id) for formulas with a single free variable

The translation of formulas with a single free variapis identical, except for the case whE(y) is of the

form 3z. ¥ (z,y), (3="2.¥(x,y), and3I="z.¥(z, y), respectively), when we need to invert the relationship

represented by. So, itis translated a$(Ry)~. T (=n(Ry)". T, and<n(Ry)~.T, respectively).
Formulae of the fornh'(z, y) with two free variables are translated to rolgsrelatingx to y according

to Table 7.

P(Ilf,y) Rr

R(z,y), Re Ng | R
R(y,z), R€ Nr | R~

r=y id(T)

-V (z,y) - Ry
\If(l')/\q)(y) Cq; X C@

W (z,y)AP() Ry M Ry
U(z,y)ANP(x) Ry (Ce xT)
U(z,y)AR(y) | Re (T x Co)
\I/(.I‘,y)/\q)(.]},y) R\I/|_|R<I>

Figure 7: A translation fron®? to ACCQIO (LI, M, =, |, id) for formulas with two free variables.

In Table 7, notice that the role construct@y x C, for any two concept§’; and(C; is introduced in [9],
whose semantics is defined@$ x C7 given any interpretatiof. It is easy to see that can be replaced
using the standard role constructors46CO7ZO (U, M, —, |, id), that is,

32

C x Cy ™ ((RU-R)|c,)” M (RU-R)|g,

for any atomic roleR € Ng.

When a formuld’() without free variables occurs as a conjunct, then the nurobkeee variables |
or 2) in its context determines its translation: a concept or@. reor the case when a concept is desired,
we need a translated conceft, with the property that for any convention@f interpretatioriZ; and a
DL interpretationZ such thatA”?t = A? and ACT* = ACT (R®* = RZ, respectively) for each atomic
conceptAC (atomic roleR, respectively)Z, = I'() = trueiff (Cr)? = AZ, andZ, = I'() = false iff
(Cr)* = (. Table 8 provides such translations.

') Crg 0 Crg
true T Jz. 0 () Cy
false 1 Jy. V() Cy
C(b) V(Tx{b}).C 322U (z) | 2nU.Cy
R(b,b) V(Tx{b}).(3R.{b}) | F="y.¥(y) | =nU.Cy
R(U,b) | V(Tx{V'}).(3RAb}) || 3= 2. W() | Cyg
b=1» T 3270 () Cy

b =>0 1 Isnp U(z) | <nU.Cy
-U() —Cy(Hgny.\lf(y) <nU.Cy
VOAD() | Ru M Ray F=ra0() | Cug
Jx.U(z) | U.Cy F=ry U() | Cyy
Jy.U(y) | U.Cy

Figure 8: A translation fron®? to ALCQIO (LI, M, =, |, id) for formulas without free variables.

In contexts where we require roles, the translation isftigt = Cr(x Cry).

For any formulap in C?, the translation functiotr-ansl can now be defined agransi(¢) = Cy if ¢
has no free variables, or has only one free variabte y; andtransl(¢) = R, if ¢ has exactly two free
variables.

We can prove by induction that for any conventioG#l interpretationZ; and a DL interpretation
7 such thatAr = AT and ACT* = AC? (R* = RZ, respectively) for each atomic concept”
(atomic roleR, respectively), we havé, = ¢ = true iff (transi(¢))? = AT andZ, | ¢ = false iff
(transl(¢))* = 0 for any (closed) sentenee

It is obvious that the translation frof? to ACQIO(L, 11, -, |,id) can be done in linear time and
causes no more than a linear increase in the size of theataddlormula according to the translation
functiont defined above. O

Theorem 1 (Section 3.2)The description logicACQIO (LI, M, —, |, id) and C? are equally expres-
sive. In addition, translation in both directions leads to more than a linear increase in the size of the
translated formula.

Proof of Theorem 1. Itis a direct consequence of combining Lemma 5 and Lemma 6. O

33

B.2 The Correctness of the Modified Regression Operator

In this subsection we provide a detailed proof for Theorem Section 5.1.

Theorem 3 (Section 5.1)SupposéV is an ngf regressable sentence with the background BATh
language£S.. Then,R[W]is anLS sentence uniform s, and it is aC? sentence when the situation
arguments, is suppressed. Moreovép, = W = R[IV].

Proof of Theorem 3. This theorem can be proved by induction on the number of ssgre steps.
Base casdt takes one step to terminate the regression.

If W is of the formA, (') = A,(#) for some action function symbolé, and A,, then there are three
sub-cases:
(1) If Ay # Ay, R[W] = false (by definition), which is uniform inS, and is aC? sentence. Note that
D = W = false by the unique name axioms for actionsIim Hence D = R[] = V.
(2) If Ay = Ay andA;, A, are constant action function®[IWV] = true (by definition), which is uniform
in Sy and is aC? sentence. Note th@ = W = true by the uniqgue name axioms for actions/lm Hence,
DERW]|=W.
(3) Otherwise, i.e.A; = A, and A,, A, are not constant action functions, tHRflV] = /\Lﬂ:1 t; =t (by
definition), which is uniform inS, and is aC? sentence. Note thd® = W = /\Ltl1 t; = t. by the unique
name axioms for actions iR. Hence,D = R[W] = W.

Otherwise ¥V is any other situation independent atom (including equaktween object terms) oV
is a concept or role uniform iy, SOR[W] = W (by definition), and it is obvious th&® [W/] is uniform
in Sy and is aC? formula whenS, is suppressed. Moreovep, = R[W| = W.
Inductive stepAssume that our theorem is true for any regression that takesore tham steps (¢ > 1),
now we prove it is true for any regression that takes 1 steps. There are several cases as follows.

a. W is of the formPoss(A(f'), o), for terms of soractionandsituation respectively, inCS’. Assume
that the precondition axiom for action functioh(¥) is of the form Poss(A(Z),s) = I14(7, s),
whereZ is either emptyyg, or (z, y). There are four sub-cases:

(a.1) Ift = (x,2), then

D = RIW| R[Fy.x=yAPoss(A(z,y),0)]
Jy.x=yAR[ls(z,y,0)] (by the definition ofR)
Jy.x=yAla(x,y,0) (by the induction hypothesis

Jy.x=yAPoss(A(z,y), o) (by D,,) Moreover,

Poss(A(z,), 0)

W

by the induction hypothesis th&{Jy.x = yAll4(z, y,)] is uniform in Sy and is aC? formula (when
Sy is suppressed), and soTgW].

(a.2) Similarly to case (a.1) above, we can prove that theréime is true ift = (y,).

(@.3) Ift € {y,(y,0),(0,z), (y,x)}, we need to ensure the result of substitutirigto the pre-
condition axiom is still logically equivalent to the origihone. It can be proved case by case.
We will just show one case as an example, and the rest of thes aan be proved similarly.
For example, when'is (y, O) Z can only be(z, y) in the precondition axiom. It is obvious that
Poss(A(y, x),s) = ﬁ;,(y,x, s) is logically equivalent taPoss(A(z,y),s) = Ila(z,y,s) by re-
naming allz with y and ally with z (free or bound). Hence, we are able to substituitgto the
precondition ofPoss(A(y, x), s) without introducing new variables. Then,

34

D E R[W] R[[(y,0,0)] (by the definition ofR)

= ff;(y,O,a) (by the induction hypothesis
= Poss(A(y,0),0) (bythe renamed precondition axiom
= W

Moreover, by the induction hypothesis th'a{ﬁ;(y, O, 0)] is uniform in S, and is aC? formula
(whensj is suppressed) and so/gW].

(a.4) Otherwise, i.e., if either is empty ot € {O, z, (z,y), (z,0), (O, y), (O, 0,)}, it is obvious
that we can substitutedirectly into the precondition axiom without causing anglgem. That is,

D | RW] = R[a(t,0)] (by the definition ofR)
= TI4(t,0) (by the induction hypothesis
= Poss(A(l),0) (byD,,)
= W

Again, by using the induction hypothes®[I14(¢, o)] is uniform in.S, and is aC? formula (when
So is suppressed), and sofgW].

b. W is a defined dynamic concept of the fof#(t, o) for some object termand ground situation term,
and there must be a TBox axiom fGrof the formG(x, s) = ¢¢(z, s). Because of the restrictions
of the Ianguage.‘:Sc , termt can only be a variable, y or a constant. There are two sub-cases.
(b.1) Whent € {O, z}, itis obvious see that

D = R[W] Rlpc(t,o)] (by the definition ofR)

oa(t,o) (by the induction hypothesis

G(t, o) (by the TBox axiom

W

Again, by using the induction hypothesi&|¢¢ (¢, o)] is uniform in .Sy and is aC? formula (when

Sy is suppressed), and soTgW].

(b.2) Whent is variabley, then we can rename afl(y, respectively) in the TBox axiom with (z,

respectively), and still get an equivalent TBox axio&(y, s) = ¢¢(y, s). Then,
D RW] R[oc(y,)] (by the definition ofR)

g/b\;;(y, o) (by the induction hypothesis

G(y,o) (by the renamed TBox axiom

W

Again, by using the induction hypothes?@[q%(y,)] is uniform in Sy and is aC? formula (when
Sy is suppressed), and soTgW].

c. W is a primitive dynamic concept (a dynamic role, respecyiveif the form F'(¢,, do(«, o)) (or
F(t1,ts,do(c, 0)), respectively) for some terms (andt,) of sortobject ground terma of sort
action and ground ternmv of sort situation There must be an SSA for fluert of the form
F(Z,do(a, s)) = ®p(Z,a,s), whose detailed syntax is Eq. (4). Because of the restiaiiathe
Ianguagecsc , the termg; andt, can only be a variable, y or some constar®. In fact, the dis-
cussion of sub-cases for a primitive dynamic condéfit, do(«a, o)) is very similar to the proof for
defined concepts except that instead of using a TBox axiomyiwase the SSA ofF’. The discus-
sion of sub-cases for a dynamic radi&t,, to, do(«, o)) is very similar to the proof for an atom of
the form Poss(A(ty, t2), o) except that instead of using precondition axioms, we us&8# of F.
Since it is straightforward, details are omitted here.

35

d. W is not atomic, i.e.JV is of the formW; v Wy, Wy AW,, =W, or Qu.W' where(represents a
guantifier (including counting quantifiers) amdepresents a variable symbol. This is the last case
we need to consider for the inductive step. Therefore, itgaus that there are four sub-cases
depending on the different forms o . Because the discussions for all sub-cases are very similar
except that they use different logical constructors, wé pvitvide details for one of the sub-cases,
and omit the rest. As an example, we consider the sub-casBtlmof the formii; vVIV,. Then,

D = R[W] = R[Wi|VR[W,] (by the definition ofR)
= WiVvW, (by the induction hypothesis
= W

Again, by using the induction hypothesi®[IW] and R[] are uniform inS, and are bothC?
formulas (whenS, is suppressed), hen@1¥] is still uniform in .S, and is aC? formula (whensS,
is suppressed).

Overall, we proved that for an;lff regressable senten¢E with the background BATD in language
£, R[W]is anLE’ sentence uniform %, and it is aC? sentence when the situation argumépts

sc !

suppressed. Moreovel, = W = R[W]. O

B.3 ALO(U) and FOpy, are Equally Expressive

In this subsection, we prove Lemma 1 presented in SectianNio8ce that in the proof of this Lemma,
we provide purely syntactic translation functions betwge6O (U) and FOp.

Lemma 1 (Section 5.3)There are syntactic translations betweE®w,; and the DL languagelCO(U),
i.e., they are equally expressive. Moreover, such traisiatlead to no more than a linear increase in the
size of the translated formula.

Proof of Lemma 1. We first prove that there is a syntactic translation funcfiem ACO(U) to
FODL.

A syntactic translatiom from ALCO(U) to FOp, for any concep€ is defined as followst (C') et (C)
for any conceptC. 7%() makesz be the free variable of the monadic predicate, which is preddor its
argument concept (see Table 9). During translation we aged a variant of —7¥() makesy be the free
variable of the monadic predicate (see Table 9).

Then, the translation of terminological and assertionaas can be defined as:

7(C(b)) =l 7(3U.(C N {b})) for any concept assertiari(b);
(b, 1)) déf T(HU ((3R.{V'}) N {b})) for any role assertioRk (b, V');

T(R
7(Cy C CQ) = T(_\HU (C1A—Cy)) for any concept inclusion axiofi; T C, if there is any;
(C, =

Cs) =l T(VU.((=C1 U C2) N (=Cy U Cy))) for any concept equality axio; = C if there is any.

In addition, according to the definition ofin Table 9 and the fact that there are no nested appearances
of C and= in DL KBs, it is obvious that the translation frotdAlCO(U) to F'Op,, can be done in linear
time and causes no more than a linear increase in the size ththslated formula.

Now, we prove that there is a syntactic translation functiom FOp;, to ALCO(U).

A syntactic translatiom from FOp;, to ALCO(U) for any formula® € FOp is defined in Table 10.

T

36

TermC () TY(C)

AC, AC € N¢ | AC(x) AC(y)

T true true

L false false

{b} r="0 y==>

_|Cl ﬁTx(Cl) _\Ty(cl)

Cl M Cg Tx(Cl)/\Tx(Cg) Ty(Cl)/\Ty(Cg)
CyuCy T(C)VTE(Cy) TY(C)VTY(Cy)
JR.Cy, R € Ng | Jy. R(x,y)ATY(CY) | 3x. R(z,y) AT"(CY)
VR.Ci, R € Ng | Vy. R(z,y) D7Y(Cy) | V. R(z,y) D7 (Ch)
U.¢4 Jy.7Y(Ch) Jz.77(CY)

vU.C, Vy.mY(Ch) V. (Ch)

Figure 9: A syntactic translation frodCO(U) to FOpy.

In addition, it is obvious that the translation fraftO ,;, to ACCO(U) can be done in linear time and causes
no more than a linear increase in the size of the translatedul@ according to the translation functioen
defined above. O

B.4 Restricting Syntax of BATs to Gain Computational Advantages

In this subsection, we will prove Lemma 2 in Section 5.3. Brgtfiwe define an operateron anyﬁg{f
regressable formuld/, such that it will replace all atomic formula of the form (£) = A, (¢') for some
action termsA; (¢) andAg(t’) usmg the unigue name axioms for actiondlp,, for any given BATD.

For any given BATD and anCC regressable formuld@’ in it, we definec recursively as follows:
o If Wis of the formA,(t) = Ag(t/) for some action terms; (') and A,(#') (i.e., equality between

action term$, then

false if A; # A,

true if A, = Ay, andA,, A, are constant action functions
W] = q 1

/\ t; =1, otherwise

Otherwise, ifi¥ is any other situation independent atom, then
W] =Ww.

e Otherwise, ifi¥ is not atomic, i.e.]V is of the formW,; v Wy, Wi AWy, =W, or Qu.W’ where(
represents a quantifier (including counting quantifiers)@represents a variable symbol, then

WiV, = e[Wh]VeWs], €[-W'] = —e[W'],
EWINW,] = (Wi Ae[Ws], e[Qu.V'] = Qu.e[W].

Note thate can be considered as performing one steﬁgiff regression on equalities between action terms

in the givencS’ regressable formule/, and itis easy to see thatlif’ is uniform in situationS, thene[IV]
is still uniform in situationS. Moreover, we can prove the following property tor

37

o (D)

AC(zx), AC(z) is atomic AC

AC(y), AC(y) is atomic AC

true T

false il

x = b, bis a constant {b}

y = b, bis a constant {b}

-, - (W)

\Ifl\/\lfg 71'(\1]1) L W(‘I’g)
\Ifl/\\lfg 71'(\1]1) [l W(‘I’g)
Fy. R(z,y) ANV (y), R € Ng AR (V(y))
dz. R(y,z)A\¥(z), R € Ng R (V(x))
Vy. R(z,y) D¥(y), R € Ng VR.m(¥(y))
Vo. R(y,z) DV(z), R € Ng VR.m(W(x))
Jy.U(y), U(y) has only one free variable | 3U.7(V(y))
dx.¥(z), U(x) has only one free variable | 3U.7(V(x))
Vy.¥(y), U(y) has only one free variable | YU.7(V(y))
Va.U(x), ¥(z) has only one free variable | YU.7(¥(x))

Figure 10: A syntactic translation frofOp, to ACCO(U).

Property 1 For any given BATD and anﬁff regressable formuld in D, we have that[IW] is still Eff
regressable an® = W = ¢[W].

Proof of Property 1. It is easy to prove by induction on the structurd/bf

Base casdf IV is atomic, there are two sub-cases.

(1) W is of the form A, (i) = A,(#') for some action termsl; (i’) and A, (¢). If A; # A,, we have

D =W = false by axioms inD,,,, Which isD = W = ¢[W], sincec[W] = false by the definition of

¢; else, ifA; = A, and A, A, are constant action functions, then by axiom®ip,,, D = W = true,
thereforeD = W = ¢[IW] according to the definition aof, otherwise,D = W = /\Lﬂ:1 t; = t; by axioms

iN Dypa, Which isD = W = €[W], sincee[W]| = /\Ltl1 t; = t; by the definition ofe. Moreover, it is
obvious thak[1V] is still LS regressable.

(2) Otherwise ¥V is atomic and not of the above form. By the definitionepive have:[IW] = W, hence
D = W = ¢[IW]. Moreover, it is obvious thaf1V] is still LS regressable.

Inductive steplV is not atomic andV is of the formIW/ \ViV,y, WiAW,, =W/, or Qu.W' where(represents

a quantifier (including counting quantifiers) andepresents a variable symbol. Then for each sub-case,
it is easy to prove thaD = W = ¢[IW] by the induction hypothesis. For instancellif is of the form
WiV W, then

D W WiV W,
e[W1]ve[Ws] (by the induction hypothesis)
(W1 vV, (by the definition of)

= e[W].

Moreover, it is obvious thaf1V] is still LS regressable by the induction hypothesis #if;] ande[IV,]
are bothZS” regressable.

38

Itis easy to see that for other sub-cases, sudh@sl,, W', andQuv.W’ where(Q represents a quantifier
(including counting quantifiers), the proof is very simitarthe sub-case d#/; VI, and therefore details
are omitted here.

Overall,D = W = ¢[W] for any £LE regressable formult” in D ande[IW] is still £LE regressable. [

We prove the following lemma that will be useful when provicgmma 2 in Section 5.3. Notice that
the lemma says that the regressiortiofis the same aénot just equivalent to) the regressionegifi/|.

Lemma 7 Consider any given BAD, theﬁff regression operatoR defined in Section 5.1, and alc‘qfc2
regressable formuld® in D. Then,R[W] = R[e[W]].

Proof of Lemma 7. It is easy to prove by induction on the structuré/bf

Base casdf W is atomic, there are two sub-cases.

(1) W is of the form A, (i) = A,(#') for some action termsl; (i’) and A,(¢/). If A; # A,, we have
RI[W| = false by the definition ofR in Section 5.1, an®R [¢[W]] = R|[false] = false by the definitions
of e andR, thereforeR[W] = Re[W]];

else, ifA; = A, and A, A, are constant action functions, by the definitione@ndR, it is easy to see
thatR[W] = R[e|[W]] = true;

otherwise, we hav& [IW] = R[/\L’il t; = t;] by the definition ofR,

and sinceR[e[W]] = 7%[1%[/\?11 t; = ti]] by the definition ofe and R, it is easy to see thaR[IV]| =
Rle[W]].

(2) Otherwise]V is atomic and not of the above form, by the definitior:pfve havecs[IV| = W, hence
R[W] = Rle[W]].

Inductive steplV is not atomic andV is of the formWW VIVy, WiAW,, =W/, or Qu. W' where(represents
a quantifier (including counting quantifiers) andepresents a variable symbol. Then for each sub-case,
it is easy to prove thaR[IW]| = R[e[W]] by the induction hypothesis. For instanceliifis of the form
WiV Wa, then

RW] = R[WL|VR[W,] (by the definition ofR)
= R[e[W1]]VR[e[Ws]] (by the induction hypothesis)
= Rle[W:i]Ve[Wsq]] (by the definition oR)
= Rle[W1 VW] (by the definition of)
= RleW]].

It is easy to see that for other sub-cases, sudh@si’,, =1W’, andQv.W’ where() represents a quantifier

(including counting quantifiers), the proof is very simitarthe sub-case d#/; VW, and therefore details

are omitted here.

Overall, R[W] = R[e[W]] for any LS. regressable formuld/ in D. O
Moreover, according to the definition ef it is straightforward to prove the following property af

Because the proof is rather obvious, it is omitted here.

Property 2 Given anyﬁscc2 regressable formuld&)” whose size i, i.e.,m = size(WV), it takes no more
thanm steps to obtair[I//], and the size of[I1/] is no more thargm.

We also recursively define @ne-stepregression operatgr for any Escf regressable formul&’, which
has no appearances Bbss, such that it performs one step ﬁff regression on each fluent ifr. This
operatorp will also be useful in the proof of Lemma 2. The formal defimitiof p is as follows, wherer
denotes the term of sasttuation anda denotes the term of saattion

39

e If TV is not atomic, i.e.JV is of the formW; v W,, Wi AW, =W/, or Qu.W’ where(represents a
guantifier (including counting quantifiers) andepresents a variable symbol, then

pWIVIWV,] = p[Wh|Vp[Wa], p[-W'] = —p[W'],
pIWIAWL] = p[WA]Ap[We], plQuIV'] = Qu.p[W'].

e OtherwiseJV is an atom. There are several cases.
a. If Wisasituation independent atom,ldtis a concept or role uniform ifiy, then pIW] =
w.

b. If W is a defined dynamic concept, so it has the f@rf, o) for some object termmand situa-
tion termo, then there must be a TBox axiom fGrof the formG(x, s) = ¢¢(z, s). Because of the
restrictions of the langua scf, termt can only be a variable, y or a constant. Then, we use the

lazy unfolding technique as follows:

W = ploc(t,o)] if tis not variabley,
[]_{ pléc(y, o)) otherwise

c. If Wisa primitive dynamic concept (a dynamic role, respecyiyéd has the forn¥ (¢, do(«a, o))
or F(ty,ts,do(a, o)) for some terms; (andt,) of sortobject terma of sortactionand termo of
sortsituation Then there must be an SSA Eq. (1) for fluéntwhose detailed syntax is Eq. (4).
Because of the restriction of the IangudggéQ, the termg; andt, can only be a variable, y or a
constantD anda can only be an action function with no more than two argumehtsort object
Then, whenV is a concept,

pW] = {

and, when¥ is a role,

dp(ty,a,0) if ¢, is not variabley,
Orp(y,a,0) otherwise, i.e., it; = y;

(W) (r=yAPp(z,y,a,0)) ifti=z,l,=ur,

p[W] =) (y=2ACp(2,y,0,0)) if ti=y, t2=y,
Qp(y,ta, v, 0) if ti=y,ty € {x,0}0rt;=0,t,=x,
Cr(ti 2, @, 0) otherwise.

Similar to the proof of Property 1, we can prove the followprgperty forp by using induction on the
structure of formulas.

Property 3 For any given BATD and anﬁff regressable formul®’ in D, we have thap[IV] is still Lscf
regressable an® = W = p[W].

In addition, also using induction on the structure of therfolas, it is straightforward to prove the follow-
ing property, which is useful in the proof of Lemma 2. Becatlseproof is rather obvious, it is omitted
here.

Property 4 Consider a BATD in the language of2’, if a givenﬁfc2 regressable formul®/ is uniform

sc !

in do(«, S) for some ground action and ground situatiory, and predicatePoss does not appear i/,
thenp[WW] is uniform inS and there is still no appearance 6fss.

Again, similar to the proof of Lemma 7, we can prove the follogvlemma.

40

Lemma 8 Consider any given BAD, theLsCf regression operatoR defined in Section 5.1, and aﬁfj
regressable formul®&/ in D. Then,R[W] = R[p[W]].

Moreover, according to the definition pf it is straightforward to prove the following property of

Property 5 Consider an)Cff regressable formul&l” with a background BAD. Assume that there is no
appearance ofPoss in W. Letm = size(W), h = max(2, sizeSSA(D)), andh; = maxg{size(Pq) |
G(z) = d¢(x) is a TBox axion if there are TBox axioms, ak; = 0. Notice thath and h, are fixed
whenD is given. Then, it takes no more thén + 1)m steps to obtaip[IV], whose size is no more than
h(hy + 1)m.

We also have the following corollary of Lemma 7 and Lemma 8.

Corollary 2 Consider any given BAD, theﬁff regression operatoR defined in Section 5.1, and any
LS regressable formuld@l in D. Then,R[W] = Rle[p[W]]].

Proof of Corollary 2. By Lemma 7,R[e[p[W]]] = R[p[W]], and by Lemma 8R[p[W]] = R[W].
Therefore R[W| = Rle[p[W]]]. O
Now, we provide a detailed proof of Lemma 2 in Section 5.3.

Lemma 2 (Section 5.3)Consider a BATD in ﬁscf whoseD,, and Dy are ALCO (U)-restricted. LetiV
be anyﬁfc2 regressable formula ifD that is uniform in a ground situatioly and has no appearance of
Poss. Letn = sitLength(S) andm = size(W). Thene ifi¥ with the situation termS suppressed
is in FOpy, there is a®y, in FOp;, such thatR[IV] is equivalent tody,[Sy]. It takes no more than
c-n - size(Py) steps of deduction frorR[IW] (with S, suppressed) to find suceby, for some constant
numberc. Moreover,size(®y,) is in O(2mm+34*1*) for some positive integér. That is, the size obyy is
no more than exponential in the sizelbt

Proof of Lemma 2. Without loss of generality, we assume that there is no defioedept inlV € FOp;.
Otherwise, each defined concept will be replaced by its defivs from the TBox axioms with fixed steps
of Lscf regression. This can cause no more than a constant incredise size of the original formula,
because TBox is fixed (on@ is given), TBox is acyclic, there are only finitely many TBoxi@ms and
the size of the formula on the RHS of each TBox axiom is limftedn above by a constant.

We will first prove such a formula always exists, and thermeste the size of the formula. We define
a notation for later convenience.llf is a formula uniform in any situatios, we denote the formula with
all situation terms suppressed (if any)lin simply asi?!=*! . Moreover, to simplify the presentation of
the proof, below we writél; = W, whenevel= W, = W, for any formulagl’; andWs.

We will first prove the following more specific stateme8tgtement (1) below wrt the giverD:
“Consider any ground situatiosi and acff regressable formuld” with the background BATD, where
W is uniform in S and has no occurrences Bbss. If W(=Slisin FO%,, (FOY,, respectively), there is a
formulay in FO%,, (FOY,;, respectively) such tha&[IV] is equivalent tap[Sp)].”

The structure of our proof will consist of two nested prooysibduction, where the internal proof
by induction will include an analysis of many sub-cases. frtan proof will proceed by induction on
the length ofS, i.e., the number of actions involved . Inside the inductive step of this proof, we
will prove the statement by induction on the structure a[fscé regressable formuld’. In the latter, the
most time consuming parts will be two cases: whEris a primitive dynamic concept (a fluent with one
object argument and one situation argument); or, whérs of the form3y.R(x,y, S) AW;(y)[S] for

41

some dynamic rolé? (a fluent with two object arguments and one situation argujreerd formulalV;.
These two cases are laborious and require an analysis ofrausgub-cases depending on the structure
of logical formulas in SSAs.

Base case of the induction on the lengtitof

If S =Sy, then letp = WI=%! and it is trivial to see that Statement (1) is true.

Inductive step of the induction on the lengthSof

Now, without loss of generality, we assume tl¥at= do(«, S;) and Statement (1) is true for ar;fygz2
regressable formuld/’ that is uniform inS; and has no appearance@bss. We prove Statement (1) for
anyﬁff regressable formuld@l’ that is uniform inS and has no appearance®bss by induction on the
structure ofi¥/ (=],

Since every formula irF’O%,; is a dual formula to a formula i'O7%,,, the proof for Statement (1)
whereW =5l is in FOY,, is “duar’ to the proof for Statement (1) whei#&’=*l is in FO?%,,, in the sense
that we only need to replace every appearancevaith y andy with x. Hence, below we will only provide
detailed proof for Statement (1) whev8l=° ¢ FO%,, and omit details for the proof of Statement (1)
whereW!=5l € FOY,, .

In order to prove Statement (1) for ground situatiyrwe will prove Statement (1) and the following
statement$tatement (2) for S together using the induction proof on the structurélaf
“For anyﬁfc2 regressable formuld’ that is uniform inS (whereS = do(«, S;)) and has no appearance of
Poss, if WI=lisin FO%, (FOY,,, respectively), then there is a formylan FO%, (FOY,, , respectively)
which can be found in no more thansize(y) steps for some constant positive integeloreover,p[.S;]
is equivalent ta:[p[IV]], andy[S;] is LS. regressable with no appearancefufss.”

Base case of the induction on the structuréidf>!:

First, we consider whel/ =5l is in FO%,, and is atomic. There are in total three cases) below.

a. W5l is eithertrue or false. Then,e[p[W]]l=1 is still true or false, which is in FO%,; and,
(R[W])I=%0 is still true or false, which is in FO%,. Hence, it is trivial to see that Statement (1)
and Statement (2) hold.

b. WI=5l is of the formz = b for some constarit Then,e[p[IW]]=51 is still x = b, which is in FO%, ;
and,(R[W])=%l is still z = b, which is inFO%,. Again, it is trivial to see that Statement (1) and
Statement (2) hold.

c. W% is a monadic predicate. Then, there are two sub-cases:
If W is situation-independent, thefp[IW]]=%1 = W = W= which is in FO%, ; and,
(RIW])I=%) = W = WI=5I which is in FO%,,. Again, it is trivial to see that Statement (1) and
Statement (2) hold.
Otherwise,W = F(z,S) for some fluent”. Assume that fluenf'(z, s) has an SSA of the form
Eq. (4), whose context conditions (with situation termspepsed) are all i'Op . Depending on
whether the context conditions areitO7,, (e.g., cases (1-12) in Table 11) orii0%,, (e.g., cases
(2-12’) in Table 11), what variables appear in action fuoes and/or in the conditions (none,
only, y only, z andy), and whether or not the variables are quantified, the SSA isf

my m_

F(z,do(a,s)) = \/gb;r(x,a,s)\/F(x,s)/\ﬂ(\/gbj_(x,a,s)), 9)

i=1 j=1

42

where eacly; (z, a, s) (¢; (2, a, s), respectively) is a formula that has the syntactic form @ oh
the following cases listed in Table 11 and the cases we destin Note 1. Recall that we prove
this lemma for those SSAs which havi&CO(U)-restricted context formulas only. Notice that in
Table 11,(x) (¢ (y), respectively) is a formula id'O7,, (FOY,,, respectively) withat mostone
free variabler (y, respectively). In cases (1) and (13,represents some constant action function.
In cases (2-6) and (2'-6")4 represents some unary action function name. And, in cas&g8)(@nd
(7°-12"), A represents some binary action function name. MoreoverabieT11,[3y.] represents
that 3y. only appears wher(y) has a free variablg. To show that we have exhausted all the
possibilities, the cases we listed include some duplioati&or example, case (6) in fact is the same
as case (4) by renaming; case (1) is in fact the same as cpdeethuseédy.|v (y) is a formula in
F%, (according to the definition of,).

OO NOOOUTDAWDNPRE

a= ANp(z)[s] 1 | a=AN[Fy]d(y)[s]

a = A(z)\p(z)[s] 2" | a=A(@)\[FyJ¥(y)[s]

Jdz.a = A(x)Ap(x)]s] 3 | Jza=A(x)A[By.Jv(y)ls]

Jr(a = A(x))AY()[s] 4" | Jz(a= Az))A[FyJv(y)[s]

Jy.a = A(y) Ap(x)|s] 5 | 3y.a=A(y)A\Y(y)s]

Jy(a = A(y))AY(z)[s] 6" | Jy(a= Ay)ABy.Jv(y)s]

Jy.a = Az, y)Ap(z)[s] 7| Jy.a = Az, y) Ap(y)|s]

Jy(a = A(z,y)) A(z)][s] 8 | Jyla = A(x,y))A[By.Jv(y)ls]
Jz.Jy.a = Az, y) Ap(x)[s] 9 | Jz.Jy.a = A(z,y) AY(y)[s]
Ju.3y(a = Az, y))AY(x)[s] || 10" | 3z.3y(a = A(z,y))A[By.J¢(y)[s]
Jy.3w(a = Az, y))Ap(x)[s] | 11| Fy.3z(a = Az, y)) Ad(y)[s]
Jy(Fz(a = A(z,y)))A(x)[s] || 12" | Fy(Fz(a = A(z,v)))A[Fy.Jv(y)[s]

Figure 11: Some possible syntactic forms #g1(z, a, s) or ¢; (v, a,s)in Eq. (9)

Note 1 Let O, O; andO, be some constant objects. There are also cases forA(O) (or a =
A(Oy,0,), respectively) inp;” and/or¢; in the SSA of ', which can be proved similarly to the
cases in Table 11 where= A; there are also cases for= A(O,) (or a = (z, Oy), respectively)

in ¢; and/or¢; in the SSA of ', which can be proved similarly to the cases in Table 11 where
a = A(xz); there are also cases for= A(Oy,y) (or a = (y, 01), respectively) inp;” and/org; in
the SSA ofF’, which can be proved similarly to the cases in Table 11 whereA(y); there are also
cases fon = A(y,z) in ¢; and/org; in the SSA ofF’, which can be proved similarly to the cases
in Table 11 wherex = A(z,y). Notice that using the unique name axioms for object comstan
we can replace all (in)equalities between object constaitkseithertrue or false in the resulting
formula that is equivalent te[p[17]] for any £C. regressable formule/. Moreover, such deduction
takes at most a constant number of steps wrt the size of thiingsformula.

We first prove case by case for all possible syntactic forms/dfr, o, S) (¢; (v, a, Sy), respec-
tively), that there exists some" (or v, respectively) inf'O%,; for any: (j, respectively) such
that;"[S1] (v; [S1], respectively) is logically equivalent td¢; (, a, S1)] (€¢; (, a, S1)], respec-
tively). Moreover, finding the equivalent formula takes athnumber of steps of deduction w.r.t.

to the size ok[¢; (z, a, S1)] (e[¢; (, , S1)], respectively).

43

Here is one trivial sub-case: if the function namenas not A, then in each of the aforementioned
cases (1-12), (1'-12') and Note dof each formulad;” or ¢;) equalsfalse, whichis stillin FOp .
Hence, below we only discuss the condition thahas the same function name (with the same
number of arguments) as the given action function name ih ease, and we le&d, O; andO, be
some constants. Notice that in case (1), since the contagittan) (x) is in FO%,,, ¥ (x)[S;] does
not contain any equality between action terms, hefwér)[S,]| = ¢ (z)[S1]. The same reasoning
will be used in other cases, and detailed explanations areahto avoid repetition.

(1) a = Any(x)[s]
Assume thaty = A, then ela = AAY(x)[S1]]
= ela = AJAe[Y(x)[51]]]
= trueNy(z)[S1] = ¥(z)[5].
Clearly,y(z) is in FO7,;, which takes at most one step of logical deduction to find thevalent
formula.

(1) a = AA[ByJo(y)[s]

Becausédy.|y(y) is in fact in FO7,,, the proof for (1) is the same as for (1).

(2) a = A(z) Ay (x)[s]

Assume thaty = A(O), then ela = A(x)Ap(x)[51]]
= €[A(O) = A(z)] Ay (x)[51]
= (v =0)AY(x)[5]
= (z=O0N(x))[51].

Clearly, given that)(z) is in FOY,,, we have that = O Ay (x) is in FO7,,, and this takes no

steps of logical deduction.
(2) a = A(z)A[By Jv(y)ls]
Becausédy.|v(y) is in fact in FO7,, , the proof for (2°) is the same as for (2).
(3) Jz.a = A(z) Ap(x)[s]
Assume thaty = A(O), then e[Fr.a = A(x) A (2)[S1]]
= Jdz.e[A(O) = A(x)A(x)[51]]
= (Jr.z = ONY(x))[S1].

Clearly, the closed formuledz.x = OAY(x)) is in FOp,,. Becauser = OAy(z) isin FOp,,
then by definition(3y.y = OAY(y)) (denoted ag) is in FO%,,. Again by the definition o#'O7,, ,
[Fy.]p (i.e., (Fx.x = OAY(x))) isin FOF,, . It takes no steps of logical deduction.

(3) 3z.a = A(2)AByJo(y)[s
Note that3y.|¢'(y) has no free variable, hencer is in fact only quantified ovet = A(x), hence
case (3’) is equivalent to case (4’) below.
(4) Jz(a = A(z)) Aip(x)[s]
Assume thaty = A(O), then e[Fr(a = A(z)) A(2)[S1]]
= €[F2(A(0) = A(x)) Aip(x)[54]]
= (Fz(z = 0)AY(2))[S1]-

Becausedz(z = O) andy(x) are inFO%,,, 3x(z = O)AY(z) is in FO,, . It takes no steps of
logical deduction.

(4) Jz(a = A(z))A[By.Jv(y)ls]

Becausédy.|v(y) isin fact in FO7,, , case (4’) is a special case of case (2).

(5) Jy.a = A(y) Ap(x)[s]

44

Assume thaty = A(O), then e[Fy.a = A(y) Ap(x)[S1]]
e[Fy(A(O) = A(y)) Aip(x)[S1]]
Fy(y = O) A ()[S)]
(Fy(y = O)AY(2))[S1].
Clearly, the closed formuldy(y = O)AY(z) is in FO7,, . It takes one step of logical deduction
to minimize the quantification scope 6§.
(5) Fy.a = A(y) A(y)[s]
Assume thatv = A(O), then €[Fy.a = A(y) Ap(y)[S1]]
= €[Fy.A(0) = A(y) A (y)[S1]]
= Jy.e[A(0) = A(y) Ab(y)[51]]
= Jy.y=O0AY(y)[Si]
= (yy=0AY(y))[S1].
Y(y)isin FOY,,, hencey = OAy(y) isin FOY,, and3y.y = OAY(y) is in FO7,;. It takes no
steps of logical deduction.
(6) Jy(a = A(y)) A(z)[s]
Case (6) is equivalent to case (5), because in case (5) tmifigation range ofy is in fact only
overa = A(y). Hence, the statement is true for case (6) by the definitiari@j,, .
(6") Jy(a = A(y))A[Fy.]v(y)[s] Becausedy.|v(y) isin FOF,, , case (6") is a special case of (6).
(7) Jy.a = Az, y) Ay (2)[s]
Assume thaty = A(O4, O,), then e[Fy.a = Az, y) ANp(z)[S4]]
€[Fy.A(O1, 02) = A(z, y) Ab(z) [51]]
(Hyl‘ = 01/\y = 02/\1/)(1'))[51]
(z = O1ATFy(y = O2) Ap())[S1]-
Clearly, given that)(z) is in FO7,,, we have that = O;A3y(y = Oz) A\Y(z) isin FOY,, by the
definition of FO7,; . It takes one step of deduction to minimize the quantificasicope o8y.
(7) Fy.a = Az, y) A\ (y)]
Assume thaty = A(Oy, O,), then €[Fy.a = Az, y) ANp(y)[Si]]
= €[y A(O1, O2) = A(z,y) Ap(y)[S1]]
(Fy.x = O1Ay = O2/Y(y))[S1]
(z = O1A(Fy.y = O2/Y(y)))[S1].
Clearly, given that)(y) is in FOY,,, we have that = O;A(Jy.y = O2AY(y)) isin FO%, by the
definition of FO7,; . It takes one step of deduction to minimize the quantificasicope oHy.
(8) Jy(a = A(z,y)) A (z)][s]
Case (8) is equivalent to case (7), because in case (7) tmdifipation range of; is in fact only
overa = A(z,y).
(8) Jy(a = Az, y)) APy J¢(y)][s]
Becausédy.|v(y) isin FO7,,, case (8) is a special case of case (8).
(9) Fz.3y.a = Az, y) Ay (2)[s]
Case (9) is equivalent to case (10), because in case (9) #mtification range of is in fact only
overa = A(z,y).
(9) Fz.3y.a = Az, y) AU (y)]s]
Case (9) is equivalent to case (11’), because in case (8'jthantification range af is in fact
only overa = A(x,y).

45

(10)3z.Jy(a = A(z,y)) Ab(z)[s]
Assume thaty = A(Oy, O,), then e[Fr.Fy(a = A(z,y)) A(x)[S1]]
e[z Jy(a = Az, y)) Ap(x)[51]]
(B 3y(A(01, 05) = Alz, 1) A()[S1]
(Be.3y(x = O1AY = Oa) A(x))][S1]
(FJz.x = O1ATy(y = O2) A(z))[S1].
It is easy to see thatr.x = O, AJy(y = O2) AY(z) is in FO7,,, and it takes one step of logical
deduction.
(10°) Fz.Jy(a = A(z,y))A[By.] (y)[s]
Becausédy.|y(y) isin FO7,,, case (10’) is a special case of case (10).
(11)3y.3z(a = A(z,y)) A(z)[s]
Case (11) is equivalent to case (12), because in case (1fjutrgification range of is in fact
only overa = A(x,y).
(11) y.3x(a = A(z, y)) Aib(y)]s]
Assume thaty = A(Oy, O,), then €[Fy.Fx(a = A(z, y)) A(y)[Si]]
€[3y.3x(A(O1, 02) = Alz, y)) A (y)[51]]
Jy.3z(r = 01Ny = Oz)Aw(y)[1]
(Fy-Fz(x = O1) Ay = O2AY(y))[S1].
It is easy to see thaty.Jx(z = O1) Ay = OxAY(y) is in FOY,,, and it takes one step of logical
deduction to minimize the scope 6f.
(12) 3y(3z(a = A(z, y))) Aip(x)[s]
Assume thaty = A(Oq, O,), then e[Fy(Fx(a = A(z,y))) A(x)[S1]]
= €[Fy(Bx(A(O1, 0s) = A(z, y)) Ab(2)[S1]]
= Fy(Fz(z = 01y = 02))A(2)[51]
= (Fy(Fz(z = O1) Ay = 02)A(2))[51].
It is easy to see thaty(3z(z = O1) Ay = Ox) AY(z) isin FO?%,,, and it takes one step of logical
deduction to minimize the scope 8f.
(12') Fy(Fz(a = Az, y))) A [Fy J(y)[s]
Becausédy.|v(y) isin FO7,,, case (12’) is a special case of case (12).

Whena is substituted by a ground actienands is substituted by a ground situatiéh, by the definition

46

of regressione andp,

elplF (z, 5)]]

elp[F(x, do(a, S1))]]

= € v o7 (x, a, S1)VF (x, Sl)/\—|(</ 67 (z,a,51))
a (by the definition Ofp)?:1

= v6[¢;-*(x,aaSl)]vF(x,Sl)Aﬁ(?/ e[o; (z, 0, 51))]

. (by the definition ofej],ZI

\/ v (z)[S1]VF(z, S’l)Aﬁ(\/ v (z)[54]
Jj=1
(according to the proof of cases (1-12,1’-12’)

my m—

(\ vt @) VE@)A=(\/ vy (@))81], (10)

i=1 j=1

where each" (z) (v; (z), respectively) is a formula ii'O7,;, that has at most one free variablgand
it is logically equivalent toe[¢; (, a, 51)]75Y (e[¢; (z, v, S1)]1751, respectively). Clearly, the formula
on the RHS of Eq. (10) is regressable, uniformSin and in FO7,; (with .S; suppressed) according to
the definition of the set’'O7%,;. Moreover, it takes only a constant number of steps wrt the sf the
resulting formula to find the equivalent formula. Then, gsihe induction hypothesis for situatiaf
and Corollary 2 (i.e.R[F(z,S)] = Rle[p[F(x,5)]]]), we have(R[F (x,do(a, 5))])! will still be
equivalent to some formula iRO7); .

Similarly, we can prove Statements (1) and (2) ! that is in FOY,, and is atomic.
Inductive step of the induction on the structuréiof5!:
Now, we complete our remaining cases wh&n(hence,W=°!) is not atomic. There are in total four
casesd-d) as follows.

a. Wl=51is of the form—W;, whereW; € FO};.
Then, it is obvious thatV = =W, [S], ande[p[W]] = —e[p[W1[S]]]. Moreover, by the induction
hypothesis on the structure @f, there is a formula, € FO7,, such thak[p[W:[S]]] = ¢1[51],
which is regressable, uniform is, has no appearance #oss and can be found - size(¢;) for
some integer. Hence,c[p[WV]] = —¢1[5:], and Statement (2) is true fé¥. Then, according
to Corollary 2, R[W| = Rle[p[W]]] = R[-¢1[S1]]. Next, by the induction hypothesis af,
R[W]I=%lis equivalent to some formula iRO%, , and it is easy to see that Statement (1) is true for
W that is uniform in situatiord'.

b. WI=5lis of the formWW, AW, or of the formW, v W5, whereW,, W, € FO%,,.

Then, if WI=51 is of the formW; AWy, it is obvious thatV = (W, AW,)[S], soe[p[W]] =
e[p[W1[S]]] A e[p[W2[S]]]. By the induction hypothesis on the structurel@f there are formulas
o1, P2 € FO7F,, such thate[p[W;[S]]] = ¢1[S1] ande[p[W>[S]]] = ¢2[S:1], which are regressable,
uniform in Sy, has no appearance Bbss and can be found in- (size(¢;) + size(¢py) + 1) steps for
some integer. Hence[p[W]] = (é1 A ¢2)[S1], and Statement (2) is true fd¥. Then, according

to Corollary 2,R[W] = R[e[p|[W]]] = R[(d1 A¢2)[S1]]. Next, by the induction hypothesis h,
R[W]=%l is equivalent to some formula iRO%, , and it is easy to see that Statement (1) is true for

a7

W that is uniform in§.
It is very similar to prove that Statements (1) and (2) are tuneniV =] is of the formW, v s,
and details are omitted here.

c. Wi=5lis of the form[EIy [Wi(y) or [Vy.]Wi(y), whereW;(y) isin FOY,,.
Then, if W[=5T is of the form[3y.]W, (y), e[p[W]] = [By.]Je[p[W1(y)[S]]]. By the induction hypoth-
esis on the structure 6%, there is a formula, (y) € FOY,; such thak[p[W:(y)[S]]] = ¢1(y)[S1],
which is regressable, uniform it , has no appearance Bbss and can be found in- size(¢(y))
steps for some integer. Hence,c[p[W]] = ([Jy.]¢1(y))[S1], and Statement (2) is true foi.
Then, according to Corollary R[W]| = R[e[p[W]]] = R[([Fy.]¢1(y))[S1]]. Next, by the induction
hypothesis orf;, R[W][=%] is equivalent to some formula ifO%,, , and it is easy to see that State-
ment (1) is true folV that is uniform in situatiord.
Itis very similar to prove that Statements (1) and (2) are weniV’ = is of the form[vy.]W, (y),
and details are omitted here.

d. WI=5is of the form3y.R(z, y) AW, (y) or Vy.R(x,y) D Wi (y), whereR(z, y) is a dynamic predicate
andW(y) isin FOY,,.
We first consider the case whin(—*! is of the form3y. R(x, y)AW, (y). Then,W = 3y.R(xz, y)[SIA
Wi(y)[S], and there are two sub-cases.
(d.1) If R is a situation-independent predicate, theiiV]] = [Jy.]R(x,y) Ae[p[Wi(y)[S]]]. By
the induction hypothesis on the structure 18f, there is a formulap,(y) € FO?Y, such that
elpW1(y)[S]]] = ¢1(y)[S1], which is regressable, uniform ifi;, has no appearance @foss
and can be found in - size(¢1(y)) steps for some integet Hence,c[p|W]| = ([Fy.]R(z,y) A
¢1(y))[51], and Statement (2) is true fo¥". Then, according to Corollary B[] = R[e[p[W]]] =
R[([Fy.]R(x,y) A1 (y))[S1]]- Next, by the induction hypothesis ¢h, R[W]—%! is equivalent to
some formula inf'O7,;, and it is easy to see that Statement (1) is truelfothat is uniform in
situations.
(d.2) Otherwise, ifR is a fluent, then theep[W]] = [Jy.]e[p[R(x, y, s)]] e[p[Wi (y)[S]]]. Moreover,
we need to consider different sub-cases for the SSR. dfiotice that according to the definition of a
D, that isALCO(U)-restricted, all dynamic roles are batfCO (U)-restricted and context-free. So,
depending on whether the context conditions are@,, (e.g., cases (1-16) in Table 12) BO?Y,,
(e.g., cases (1’-16’) in Table 12), what variables appeaiction functions and/or in the conditions
(none,z only, y only, x andy), and whether or not the variables are guantified, the SSAisf

R(:):,y,do(a S \/¢+ r,y,a)\/R(ZL‘ Y,s /_' \/¢ T, Yy,a)) (11)

=1 7j=1

where eacl; (z, y, a) (¢ (z,y,a), respectively) is a situation-independent formula whosea-

tic form is one of the following cases listed in Table 12 anelthses we described in Note 2. Recall
that we prove the lemma for those SSAs which haM&O(U)-restricted context formulas only.
Notice that in Table 12)(x) (¥ (y), respectively) is a formula id'O%,, (FOY,;, respectively) with

at mostone free variable (y, respectively). In cases (1) and (13 ,represents some constant action
function. In cases (2-7) and (2’-7")A represents some unary action function name. And, in cases
(8-16) and (8'-16"),A represents some binary action function name. Again, to shatwve have
exhausted all the possibilities, the cases we listed ineTaBIstill include some other duplications.
For example, case (6) in fact is the same as case (3) by regamin

48

coO~NOOT A WN P

a=ANY(z) U | a=ANY(y)

a = A@@)Ab(a) 2 | = A@)Ab(y)

Jz(a = A(z)) Ay (x) 3 | Jx(a = A(z))A\Y(y)

dr.a = A(x)Ap(x 4 | Jz.a = A(z) \Y(y)

a= A(y)A\y(z) 5 | a=A(y) y(y)

Fy(a = Ay)) A (x) 6" | Jyla=A(y))Ad(y)

Jy.a = A(y) A(x) 7| Jy.a=Aly)Ad(y)

a= Az, y)\(x) 8 | a= Az, y) ()
Ju(a= Az y)Av@) | 9 | Fa(a = Az y)Av)
Jz.a = Az, y) A(x) 10’ | Jz.a = A(z,y) AY(y)
Jy(a = Az, y)) A\p(x) 11" | Jy(a = Az, y)) A p(y)
Jy.a = A(z,y)A\p(x) 12’ | Jy.a = Az, y)A\Y(y)
y(Fz(a = Az, y))) () || 13" | Fy(Fz(a = A(z,y))) Ab(y)
Jy.Jz(a = Az, y))A(x) 14’ | Jy.z(a = Az, y)) A (y)
Jz.Fy(a = A(z,y))A(x) 15" | Jz.Jy(a = Az, y))Ap(y)
Jz.Jy.a = Az, y) \(x) 16’ | Jx.Ty.a = A(z,y) A\ (y)

Figure 12: Some possible syntactic forms &g1(z, y, a) or ¢; (z,y,a)in Eq. (11)

Note 2 For any formula), () (¢1(y), respectively) inf'O7,, (FOY,,, respectively), there are also
cases where the context conditions are either of the fakm«; (x) or of the form [Jy.]v1 (y).
However,[3z.]¢1 (x) (or [Jy.Ju1 (y), respectively) is a formula in bothO%,, and FOY,; , which can
be considered as a special case of the fgim) € FO7,, ory(y) € FOY,. Hence the proof of
such cases where the context conditions are either of the[for.|y, (x) or [Jy.|¢ (y) are the same
as as the cases where the context conditions are of thegin(or ¢(y), either one is fine) in
Table 12. Moreover, leD, O, andO, be some constants. There are also cases forA(O) (or

a = A(Oy,0,), respectively) inp; and/org; in the SSA ofRR, which can be proved similarly to the
cases in Table 12 where= A; there are also cases for= A(O,, z) (ora = (z, O,), respectively)
in ¢ and/org; in the SSA of R, which can be proved similarly to the cases in Table 12 where
a = A(z); there are also cases for= A(Oy,y) (or a = (y, O,), respectively) iny; and/org; in
the SSA ofR, which can be proved similarly to the cases in Table 12 whereA(y); there are also
cases fou = A(y,z) in ¢ and/org; in the SSA ofR, which can be proved similarly to the cases
in Table 12 where. = A(x, y). Notice that using unique name axioms for object constaves;an
replace all (in)equalities between object constants witleetrue or false in the resulting formula
that is equivalent te[p[1V]] for any LS. regressable formuld’. Moreover, such deduction takes at
most linear number of steps in the size of the resulting féamu

We first show that for any case in Table ¥2) (x, y, a)] (e[¢; (z, y,)], respectively) results in a
formula that is equivalent to some formula of the fofpiz) An(y)) for somev(z) € FO%,, and
n(y)) € FOY,;. In particular, we will see in the proof below for all casesTable 12, the resulting
formulas are in one of the four specific forms:gfc) An(y): v(zx) (let eta(y) betrue), n(y) (let
nu(x)) betrue), v(z) Ay = O for some constan®, orz = O An(y) for some constar®.

From now on, without particular emphasis, all the cases weudis below are the cases in Table 12.

49

Moreover, for similar proofs, some detailed steps are sdpp

Here is one trivial sub-case: if the function namexak not A, then in each of the aforementioned
cases (1-16), (1'-16) and in Note 2,0f each formula ¢ or ¢;) equalsfalse, which is still in
FO7,;. Hence, below we only discuss the condition thétas the same function name (with the
same number of arguments) as the given action function nareadh case, and we léet O; and
O, be some constants.

(1) a = Any(z)
Assume thaty = A, then ela = ANY(x)]
= trueNY(z).
Clearly,true A (x) is of the formu(z) An(y) (letv(x) be(y) and lety(y) betrue).

(1) a=Any(y)

Assume thaty = A, then ela = ANY(y)]
= trueANY(y).
Clearly,trueAiy(y) is of the forml/(x)/\n?(Jy) (letv(x) betrue and letn(y) bey(y)).
(2) a = A(z) Aip(x)
Assume thaty = A(O), then ela = A(z) A ()]
e[A(0) = A(x)] A ()
(x = O)A\Y(z).
Clearly,z = OAy(x) isin FO7,; and is of the formv(xz)An(y) (letv(x) bex = OAyY(z) and let
n(y) betrue).
(2) a = A(x)Ad(y)
Assume thaty = A(O), then ela = A(x)A\Y(y)]
= €[A(0) = A(2)]A\Y(y)
= (x=0)Ad(y).
Clearly,z = OAY(y) is of the formv(z) An(y) (letv(x) bex = O and lety(y) bey(y)).
(3) 3z(a = A(x)) Ap(x)
Assume thaty = A(O), then e[Fr(a = A(z)) AY(2)]
= €[Bx(A(0) = A(x))|Ae[tp(x)]
= dz(z = O)AY(x).
Clearly,3z(z = O)AY(z) is of the formv(x)An(y) (letv(x) bey (z) and lety(y) be3Jz(x = O)).
(3) 3u(a = A(z)) Ad(y)
Assume thaty = A(O), then e[Fr(a = A(z)) A (y)]
= c[3(A(0) = Al@) Acl(y)]
= Jz(z = O0)AY(y).
Clearly, 3z(z = O) Ay (y) is of the formv(z) An(y) (let v(x) betrue and letn(y) beJx(z =
O)AP(y)).
(4) Jz.a = A(z) Ap(x)
Assume thatv = A(O), then e[Fr.a = A(z)AY(x)]
= Jr.elA(0) = A(x)]Ne[ip(x)]
= Jdr.x = OAY(x).
Clearly,dxz.z = O Avy(x) is of the formv(x) An(y) (let v(x) betrue and letn(y) be Jz.x =
ONY(x)).

50

(4) Fz.a = A(x)AY(y)
Case (4’) is equivalent to case (3’), because in case (4Qtlaatification range of is in fact only
overa = A(z).
(5) a = A(y) A (x) (The proof is similar to that of case (2’) above.)
Assume thatv = A(O), then ela = A(y) Ap(x)]
= y=O0AY().
Clearly,y = OAy(x) is of the formv(z) An(y) (letv(x) bey(z) and letn(y) bey = O).
(5) a = A(y) A (y) (The proof is similar to that of case (2) above.)
Assume thatv = A(O), then ela = A(y) ANp(y)]
= y=0AY(y).
Clearly,y = OAY(y) isin FOY,; and is of the formv(z) An(y) (letn(y) bey = OAY(y) and let
v(x) betrue).
(6) Jy(a = A(y)) Ay (z) (The proof is similar to that of case (3’) above.)
Assume thaty = A(O), then e[Fy(la = A(y))A(x)]
= Jy(y = 0)Ay(a).
Clearly, Jy(y = O) Ay(x) is of the formv(z) An(y) (let n(y) be true and letv(z) be Jy(y =
O)NY(z)).
(6) Jy(a = A(y)) Ay (y) (The proof is similar to that of case (3) above.)
Assume thaty = A(O), then e[Fy(a = A(y))Ap(y)]
= Jyly = 0)AY(y).
Clearly,3y(y = O)A¢(y) is of the formv(z)An(y) (letn(y) bey(y) and letv(z) beJy(y = O)).
(7) Jy.a = A(y) AY(z) (The proof is similar to that of case (3) above.)
Case (7) is equivalent to case (6), because in case (7) tmgifigetion range ofy is in fact only
overa = A(y).
(7") Jy.a = A(y) A (y) (The proof is similar to that of case (4) above.)
Assume thatv = A(O), then €[Fy.a = A(y) A(y)]
= Jyy=ON(y).
Clearly,3y.y = On(y) is of the formw(x)/(y) (letn(y) betrue and letv(x) bedy.y = ON(y)).
(8)a = Az, y) Np(x)
Assume thaty = A(O4, O,), then ela = Az, y) Ap(z)]
= €[A(O1,0s) = Az, y) Nip()]
= Y= 02/\1’ = 01/\¢(l’)
Clearly,y = Os Az = O1AY(x) is of the formv(z) An(y) (letn(y) bey = O, and letv(x) be
x = 01N\ (x)).
(8) a = Az, y) Ai(y)
Assume thaty = A(Oy, O,), then ela = Az, y) AY(y)]
= €[A(O1,09) = A(z,y) A(y)]
= =01 Ay = 0:AP(y).
Clearly,z = O1 Ay = OaA\Y(y) is of the formu(z) An(y) (letn(y) bey = OxAY(y) and letv(z)
ber = Ol)

(9) 3z(a = A(z,y)) Ap(x)

51

Assume thaty = A(Oy, O,), then e[Fr(a = Az, y)) Ap(x)]
= €[32(A(O1,02) = A(z,y)) Ap(z)]
= dx(x = O1Ay = O2) \Y(x)
= y=O0xyA3z(x = O1)AY(x).
Clearly,y = O;AJx(z = O1)AY(x) is of the formv(z) An(y) (letn(y) bey = O, and letv(x)
bedx(z = O1) AY(x)).
(9) Jz(a = Az, y)) A (y)
Assume thaty = A(O4, O,), then e[Fx(a = A(z,y)) AY(y)]
(Fz(z = O1/ Ay = 02) AY(y))
Jz(z = O1) Ay = O2AY(y).
Clearly,3x(z = O1) Ay = O2 A (y) is of the formv(x) An(y) (letn(y) bey = O,AY(y) and let
v(z) bedz(x = Oy)).
(10)3x.a = A(x,y) AY(z)
Assume thaty = A(Oy, O,), then e[Fr.a = A(z, y) Ap(x)]
(ELTJJ = 01/\y = Og/\lp(x))
y = Ox\Jx.x = O1AY(x).
Clearly,y = OxyA3zx.x = Oy A¢(x) is of the formuy(z) An(y) (let v(x) betrue and letn(y) be
y = OxA\Tz.x = O1 A Y(x)).
(10") Jz.a = A(z, y) A (y)
Case (10) is equivalent to case (9'), because in case (h@jtantification range of is in fact
only overa = A(z,y).
(11) Jy(a = A(z,y)) Aip(x)
Assume thaty = A(O;, Os), then e[Fy(a = Az, y)) Ap(z)]
(Fy(z = O1Ay = Oz) A(x))
Fy(y = Oz2) Az = O1A\Y(x).
Clearly, 3y(y = Oy) Az = O1AY(x) is of the formv(z) An(y) (letn(y) betrue and letv(z) be
Jy(y = O2) Ax = O1 A)(x)).
(11) Jy(a = A(z,y)) Ap(y)
Assume thaty = A(O4, O,), then e[Fy(a = Az, y)) AP (y)]
(Fy(z = O1Ay = O2)A\Y(y))
Jy(y = O2) Az = O1AY(y).
Clearly,Jy(y = Ox) Az = O1AY(y) is of the formv(z) An(y) (letn(y) be(y) and letv(z) be
Jy(y = Oz) Az = Oy).
(12)3y.a = A(z,y) Agp(x)
Case (12) is equivalent to case (11), because in case (1@u#reification range of is in fact
only overa = A(z,y).
(12) dy.a = A(z,y) Ap(y)
Assume thaty = A(O4, O,), then e[Fy.a = Az, y) Ap(y)]
= (Fy.o= 01Ny =02/ (y))
= x=01ATy.y = O2AY(y).
Clearly,x = O1AJy.y = O3/ (y) is of the formv(z) An(y) (letv(z) bex = O, and letn(y) be
Fy.y = 02\ (y)).
(13)3y(Iz(a = A(z, y))) A (x)

52

Assume thaty = A(Oy, O,), then €[Fy(Fe(a = Az, y))) A(z)]
Fy(Fu(z = O1Ay = Os)) Ap(x)
Jy(F(z = O1Ay = Os)) Ap(x)

At

Jz(x = O1)A\Jy(y = O, x).
Clearly,3x(z = O1)A\Jy(y = O2)A\p(x) is of the formv(z)An(y) (letv(z) bedy(y = O2)AY(z)
and letn(y) bedz(x = Oy)).
(13) Jy(Fz(a = A(z, y))) A(y)
Assume thaty = A(O4, O,), then e[Fy(Fzx(a = A(z,y))) AY(y)]
= Fy(Fa(z = O1Ay = 02))A(y)
= Fy(Fa(z = 01y = 02))Ad(y).
Clearly,3y(3z(x = O1 Ay = O2)) A(y) is of the formuv(z) An(y) (let v(z) betrue and letn(y)
beJy(Fz(x = O1 Ay = O2)) AY(y)).
(14)3y.3z(a = A(z,y)) Ap()
Case (14) is equivalent to case (13), because in case (14utmification range of is in fact
only overa = A(z,y).
(14') Jy.3z(a = Az, y)) AU (y)
Assume thaty = A(O4, O,), then €[Fy.3x(a = Az, y)) A (y)]
Jy.Fx(z = O1 Ay = O2) ANY(y)
Jz(x = O1)AJy.y = O AYD(y).
Clearly,3z(z = O1)AJy.y = O3A(y) is of the formu(z) An(y) (letv(z) bedy.y = OsAY(y)
and letn(y) be3xz(z = Oy)).
(15)3x.Fy(a = A(z,y)) Ap(x)
Assume thaty = A(Oy, O,), then €[Fr.Iy(a = Az, y)) A(z)]
= Jz.Jy(x = O1Ay = O2) ANY(2)
= Jy(y = Ox)AJx.x = O1NY(x).
Clearly,3y(y = O2)AJx.x = O1AY(z) is of the formv(x)An(y) (letv(z) be3dy(y = Oy) and let
n(y) be3dx.z = O1AY(x)).
(15)) Jz.3y(a = A(z,y))AY(y)
Case (15) is equivalent to case (13), because in case fibuantification range af is in fact
only overa = A(z,y).
(16) Jz.Jy.a = A(x,y) A\(x)
Case (16) is equivalent to case (14’), because in case (&@)uantification range af is in fact
only overa = A(z,y).
(16") 3z.3y.a = A(z,y) A\(y)
Case (16’) is equivalent to case (13), because in case fiduantification range af is in fact
only overa = A(z,y).

Notice that for each of the cases above, it takes no more tharstep of deduction to find the
equivalent formula of the fornv(x) An(y) such thatv(xz) € FO%,, andn(y) € FOY,, which is

53

constant to the size of the resulting formula. Now, we prinag Statement (2) is true for caskZ).
W] = elp[By.Rz,y, S) AW (y)[S]]
= Jy.e[p[R(z,y, S)]]\e[p[W1(y)[S]]
= Jy.elp[R(z,y, HAW](y)[S1]
(by the induction hypothesis di; (y)[S1], lete[p[Wi(y)[S]]] = W1 (y)[S1]
be a formula uniform ir; andWj (y) is in FOY,, ; moreoverV; (y)
can be found in no more than sz’ze(Wl’())) steps

= 3y \/¢ z,y,a)VR(z,y, S1) A \/¢ 2y, Q)| AW (y)[$1]
=1

my m—

= 3y-(_\/ el (z,y,)] VR(z,y, Sl)Aﬁ(_\/ eld; (2., 0)) AW ()[S1]

my

3y-(\/ (v (@) A (9))V R(x,y, S1) A/\ 7 (@) An; () AW (y)[S1]

i=1 j=1

(according the proof above, for eathlet (o] (z,y,)] = (v () An; ()
be a formula uniform irf; for somev;" (z) € FO7,, andn; (y) € FOY, ;
for eachy, lete[¢; (z,y,a)] = (v; (z)An; (y)) be a formula uniform

in S, for somev; (x) € FO%,, andn; (y) € FO%L)

my

= Hy-(V(Vf(w)An?(y)AW{(y))VR(z,y) A\ W1 (y /\) An; ()))[51]

= {\/) A 3y(n" (y) AW () V 3. /i(ﬂVj(x)Vﬂn](y))AR(I,y)AW{(y)}[Sl]

= {\/ 2) A3y (" (y) AW (y)))V 3y. /i(ﬂV{(x)Vﬂn](y))AR(I,y)AW{(y)}[Sl]

= {\/ 2) A3y (0 (y) AW (y))V
\/ N\ vy @) A3y(R,y) \ Wi (y) N\ -0 (9))}S1] (12)
k=1 jEN} 1eEN,

= W/[Sl]a

where eachV, (1 < k < 2™-) enumerates a subset{df, 2,--- ,m_},andN, = {1,2,--- ,m_}—

Ny, i.e., N, is the complement set d¥,.. It is clear the formula on the RHS of Eg. (12) (denoted as
W'[S,] above) is equivalent tap[IW]], is LS. regressable, and is iRO%, whensS is suppressed,
and has no appearance®éss. It is easy to see that to find it, it takes no more thagize(W’) for
some integer. Hence, Statement (2) is true fdr. Moreover, according to Corollary 2, we have
thatR[W] = Rle[p[W]]] = R[W’[S,]]. Then, by the induction hypothesis on formulas uniform in
S1, we haveR [W]I=%! will be equivalent to some formula iRO%; .

It is very similar to prove that Statements (1) and (2) are whenl (=51 is of the formVvy. R(z, y) D
Wi(y), and details are omitted here.

Similarly, we can show that Statements (1) and (2) are truend¥i(=°! is in FOY,, and is not atomic.

54

And overall, we proved for Statement (1).

Now, consider an;Cff regressabléV’ that is uniform in a ground situatio. When W=l is in
FO3,, assume that we have found sog that is in FO7,,, such thatR[W] = oy [S;]. Below we
estimate the upper bound on the sizebgf. Letn = sitLength(S) (n € N andn > 0), i.e., the number
of action terms involved it¥. Letm = size(W) (m € Nandm > 1). Let functionf(m, n) be the size of
®y, which is a non-decreasing function.

Firstly, it is straightforward thaf(1,0) = 1.

Secondly, whemn = 1, W is atomic, which is eithetrue, or false, or x = b for some constarit, or a
situation-independent predicate, or a primitive dynanoicoept. We now consider > 1. Assume that

S = do(ay,, S1), andsit Length(S;) = n — 1. According to the discussion above of “the base case of the
induction on the structure o¥’=%)" (i.e., casesd-c)), for anyn € Nandn > 1, f(1,n) < f(3h,n — 1),
whereh = max(2, sizeSSA(D)) (h is a constant number for the givép). By Corollary 2, we have
RIW| = Rle[p[W]]], wheree[p[W]] is uniform in S} (no matter whether it is situation-independent or
not), and is equivalent to somdg € F'O7,,, whose size is no more thaa (including all cases wher’

is atomic). Moreover, the equivalent formuley [Sy] that we are looking for can be obtained by looking
for the equivalent formula oR[®,[5,]], whose size is no more thgit3h, n — 1).

Thirdly, we consider anyn > 2 andn € N. In fact, whenm > 2, W is not atomic. According to the
definition of FOY,, , there are three sub-cases.
1. Wi=5Tis of the form—W, or 3y. W (y), or Vy. W, (y) whereW, is in FO%,, or Wy (y) is in FOY,, .
It is easy to see that(m,n) = f(m—1,n)+ 1 according to the definition of the regression operator
R and the wayF'O7,; constructed. For exampl&[-W,[S]] = =R[W:[S]], if we find a formula
®, in FO%, that is equivalent t&R [I/,[S]]=%!, thendy, = —®, is the formula that we are looking
for.

2. WI=Slis of the formW, v W,, or W, AW, whereWW, andW, are in FO% . It is easy to see that
f(m,n) = f(size(Wy),n)+ f(size(W5),n)+1, which is no more thadf(m—1,n)+1, according
to the definition of the regression operafdand the wayF'O7,,; constructed.

3. Wi=5lis of the form3y. R(z, y)A\W (y), orVy.R(x, y) D Wi (y), whereW, (y) isin FO%,, andR is a
dynamic predicate name. According to the definitioriat in Section 5.2, we haveze(W;(y)) =
m — 3. For instance, we consider the case whiglT*! is of the form3y. R(x, y) AW (y), and it is
similar for the case wheW[=*! is of the formVy.R(z,y) D W, (y). According to the definition of
R, we have

RW] = R[3y.R(z,y)[SIAW1(y)[5]]
= JyR[R(z,y)[SIAR[W1(y)[5]]
_ { Jy.R[R(z,y, S)IAR[W1(y)[S]] if Risafluent

[
Jy.R(z, y)/\R[Wl(S]] otherwise. (13)

Assume thaR [W, (y)[S]]=° is equivalent to some, (y) € FOY,. WhenR is situation-independent,
Jy.R(z,y) APy (y) is the formula that we are looking for, whose sizg{sn — 3,n) + 3. WhenR
is a dynamic role, we assume that its SSA is of the form Eq.&btl)S = do([a1, az, - - - , an], So).

55

LetS; = do([a, - -+, an—i], So) foranyl < i <mn — 1, then

RW] = ﬂyR[R(:v,yas)]/\R[Wl(y)[S]]

3y'{\/ R[67 (2, y, on)[VR[R(2,y, S1)] A= \/ R95 (2,y, an)])} A®1(y)[So]

Fy. {\/R o (2, y,) IVRIR (2, y, S1)] A=\ Rlelplg; (@, y, cn)]l])}
A‘I’l()[So]

3y{\/ vt @) At () VR[R(2, y, S1)IA

m_—

(\ (v @)V =5, (1))} AD1 (1) [So]

Jj=1

3y{\/ Vi (@) A, (y)V(V RI6] (2, y, 0n-1)]VRIR(z,y, S2)] A
ﬁ(\/ R[%—‘(%y,an—l)]))/\(/{(ﬁ%n()V, (1) AP (y)[So]
)V(v(V;fnfl(w)/\nfnfl(y))VR[R(%y752)]/\

m_ m_—

(/\(Wm(W5 OIDACN (2 (@) V=057, ()} AP (y) [So]

Jj=1 Jj=1

1l
LLJ
<
—~—
3

>
S
3

my
= .. (foreachl <1 <n, lety," = \/ (i, (x) Anif, (1))
=1
and lety; = A (-v;,(x)v-n;, (1))

j=1

Yy AtV V-V VR, Y, So) AT) A) A1) A b
A®1(y)[So]

By (vt Ay Ve vt A N\ A VR) A N\) AP () }S0)
=2 i=1
= eees (use distributive law to obtain a sort of DNF format

{(Fy.(\/ ®s.i(2,y))A®1(y)}[So] for some index:
=1
(each®g ;(z,y) is a conjuction of some of the sub-formulas in the set

{R(z,y)} U {w @),y (@), v (9)omy () [§ = Lo, j = Lm0 = L.n})

{\/ 3y ®s.i(z, y) A D1 (1)) }[So]

=1

= {,\/ Vs,i(x) }So]

(14)

(15)

(16)

(17)

(18)

(19)

where eachv;’,(z) A 0/ (y) (v;,(x) A n;,(y), respectively) is equivalent 1R [e[p[o; (2, y, ax)]]]

56

(Rlelpl¢; (x,y, o)]]], respectively). Here, eadly;(z) (v;,(x), respectively) is inf'OF,;, with at
most one free variable, and eachyj,l(y) (n;,(y), respectively) is inf'O7,, with at most one free
variabley, according to the proof for cases (1-16,1’-16’) in Table Wdtice that in order to obtain
an equivalent formula aR[W]=%! in FO%, , we need to perform the following steps of deductions.
First, we transformR[R(z, y, S)] in Step (14) into a sort of disjunctive normal form (DNF) (fmo
Step (14) to Step (17)) based on the assumption thatigaow;’, (v), v;, (), m;,(y), respectively) is
"atomic”, i.e., when each of these sub-formulas is congidas an atom, after using the distributive
law, the resulting sub-formul§/}_, ®s,(x,y) in Step 17 is a DNF formula. Since the resulting
formula is too long, we omit the details and only provide oxarmeple of a sub-formula in Step (16)

. For instance, we perform the distributive law oy€r , A+, , and obtain

\ Vi @) At A N\ v @A N s),
i=1..mq,k=1..2"~ JEN leNy
where N, C {1,2,---,m_} (1 < k < 2™) enumerates all sub-sets ¢f,2,--- /m_}, and
N, =1{1,2,--- ,m_} — N,, i.e., is the complement set of,. Next, we distributeb, (y)[S,] into
the resulting DNF formula (from Step (17) to Step (18)). Hyawve pushdy inside into each
conjunctive clause and minimize the scope of each quantifigfrom Step(17) to Step (19)). In
Step (17), after using the commutative law of conjunctieesh®g;(z,y) is either of the form
vs.i(x)A\ns,i(y) or of the formug ;(z)AR(x, y)Ans;(y) for somevs,;(x) € FO7,, and someys;(y) €
FOY,, . From Step (18) to Step (19), there are two cases for eack indfed ,;(z, y) is of the form
vsi(2)Ansi(y), thenWg,(z) is vs,(x) A(Fy.ns:(y) AN®1(y)); if @g;(x,y) is of the formug;(z) A
R(x,y)A\ns.i(y), thenVg,;(z) is vs,;(z)A(By.R(z, y) A\ns.i(y)AP1(y)). Hence, the resulting formula
in Step (19), withS, suppressed, is i'0O7,;, and we denote the formula (withy, suppressed) as
Dy
Now we estimate the size df;;y when R is a fluent according to the way it is constructed above.

First, for anyn > 0 and any situatiory wheresit Length(S) = n, we denote the size of the DNF
formula that is equivalent t& [R(z,y, S)], constructed specifically according to the above steps
(14-17), asg(n). Note that foreach < : < my,1 < j < m_ andl <[< n, sz’ze(uij(x)),
(size(n;y(y)), size(v;, () size(n;,(y)), respectively) is no more than+ 2 according to the above
for cases (1-16,1’-16) in Table 12. Moreover, accordinghe definition of functionsize() in
Section 5.2, the logical constructors should also be caumso, for anym_ andm, for any role

R, we always haven_ < h andm, < h (recall that constant numbér= max(2, sizeSSA(D))).
According to Step 19f(m, n) < (f(m—3,n)+3)g(n), wheref(m—3,n) = size(®,(y)). Below,

we show thay(n) < ¢;2"", wherec; = (2(h + 3) + (h + 4)h* + 2)2%". Moreover, we can perform

57

a similar estimation for the case when—*! is of the formVvy.R(z,y) D Wi (y).
gn) < 2(h+3)my+ (2")mi(2(h+3)+m_(h+4)) +
2™)my (2(h +3)+2m_(h+4)) + ... + 2™)" 'my(2(h +3) +
(n=1m_(h+4)+ 2™)"(2+nm_(h+4))

n—1 n
= 2h+3)my Y (2") + (h+4m_ Y i(2m) +22m)"
1=0 1=1
n—1 n
= 2(h+3)my Y _(2™) + (h+Hmym_ Y i(2™)" +2(2")"
=0 i=1
n—1] .
2(h+3)h Y (2" + (h+ 4)h? Z i(2M)" 4 2(2m)n
1=0 =1
2(h 4 3)h(2M)™ + (h + 4)R*n(2M)" T 4 2(2M)"
2(h + 3)h(2")™ + (h + 4)h2(2M)"+2 4 2(2M)"
(2(h +3) + (h + 4)h? + 2)(2")"+2
12" (let constant numben, = (2(h + 3) + (h + 4)h? + 2)22M).

A

VAN VAN VAN VAN

We can perform a similar estimation for the case wken! is in FOY,,. Overall, under any case, we
have

f(m,n)

IN

max(f(m—1,n)+1,2f(m—1,n)+ 1,
fim—=3,n)+3,c12""(f(m —3,n) +3))

12" (f(m —1,n) + 3)

12" (12" (f(m — 2,n) + 3) + 3)

VAN VAN VAN VAN

2P (e 2 (- 2P (F(1,n) 4+ 3)) + - +3) 4+ 3)
m—2

(Cl2hn)m71f(1, n) +3 (Cl2hn)i
i=0

(2™ (f(1,n) + 3)

entohn(m=1(f(3h n —1) 4 3)

C;n712hn m— 1)(3h— 12hn(3h—1)(f(1, n—1)+3)+3)

cvlyz—l2hn m— 1)(3h— l2hn(3h 1)(f(3h, n — 2) + 3) + 3)

IA A A A CIA

IN

C’i‘n—l 2hn(m—1) ((C?h_l2hn(3h_1))nf(1, O) + 3 Z(C?h_l2hn(3h_l))i)
=0
Cvln—l 2hn(m71) ((C?h—l2hn(3h71))n + 3(C?h—l2hn(3h71))n+1)

IA A

4C;n712hn(m—1) (C?h712hn(3h—l))n+l

4C§n+1)(3h71)+(m*1)2hn(m—1)+h(3h—l)n(n+l)

_ 202((n+1)(3h—1)+(m—1))+hn(m—1)+h(3h—1)n(n+1)+2
where constant numbets = logoc; ande; = (2(h + 3) + (h + 4)h? + 2)22". Hence, we finally have
F(m,n) € O(2M+3°7*) “where constant = max(2, sizeSSA(D)).

That is, the size of the equivalent formula®fiV’] that we are looking for is no more than exponential in
the size of the given formuli/. OJ

58

References

[1] Artale A, Franconi E (2001) A survey of temporal extemsmf description logics. Annals of Math-
ematics and Artificial Intelligence 30(1-4)

[2] Baader F, Lutz C, Mili€ic M, Sattler U, Wolter F (2005htiegrating description logics and action
formalisms: First results. In: Proceedings of the TwehtNational Conference on Artificial Intelli-
gence (AAAI-05), Pittsburgh, PA, USA, pp 572-577, extendexion is available as LTCS-Report-
05-02 at http://lat.inf.tu-dresden.de/research/replotin|

[3] Baader F, Milicic M, Lutz C, Sattler U, Wolter F (2005) kdrating description logics and action for-
malisms for reasoning about web services. LTCS-Report L0882, Chair for Automata Theory,
Institute for Theoretical Computer Science, Dresden Usiteof Technology, Germany

[4] Baader F, Calvanese D, McGuinness D, Nardi D, Patel-8cen PF (eds) (2007) The Description
Logic Handbook: Theory, Implementation, and Applicatiddscond edition, Cambridge University
Press

[5] van Benthem J (1976) Modal Correspondence Theory, PeBishMathematisch Instituéit Instituut
voor Grondslagenonderzoek, University of Amsterdam

[6] van Benthem J (1983) Modal logic and and classical loBibliopolis

[7] Berardi D, Calvanese D, Giacomo GD, Lenzerini M, Mec@lg2003) e-service composition by
description logics based reasoning. In: Calvanese D, GadéD, Franconi E (eds) Proceedings of
the 2003 International Workshop in Description Logics (P003), Rome, Italy

[8] Blackburn P, van Benthem J (2007) Modal logic: a semamispective. In: Blackburn P, van Ben-
them J, Wolter F (eds) Handbook of Modal Logic, Elsevier 8cee pp 1-84

[9] Borgida A (1996) On the relative expressiveness of dpon logics and predicate logics. Artificial
Intelligence 82(1-2):353-367

[10] Calvanese D, Franconi E, Haarslev V, (2007) Proceedifithe 2007 International Workshop on De-
scription Logics (DL2007), Brixen-Bressanone, near BeBeizano, Italy, 8-10 June, 2007, CEUR
Workshop Proceedings, vol 250, CEUR-WS.org

[11] Calvanese D, Giacomo GD, Lenzerini M, Rosati R (2007)idws and programs over description
logic ontologies. In: [10]

[12] Castilho MA, Herzig A, Varzinczak 1J (2002) It dependsthe context! a decidable logic of actions
and plans based on a ternary dependence relation. In: Benf8r Giunchiglia E (eds) NMR, pp
343-348

[13] Chang L, Lin F, Shi Z (2007) A dynamic description logmr frepresentation and reasoning about
actions. In: Zhang Z, Siekmann JH (eds) KSEM, Springer, wecNotes in Computer Science, vol
4798, pp 115-127

[14] Chang L, Shi Z, Qiu L, Lin F (2007) Dynamic descriptiorglo: Embracing actions into description
logic. In: [10]

59

[15] Demolombe R (2003) Belief change: from situation chlsuo modal logic. Journal of Applied
Non-Classical Logics 13(2):187-198

[16] Demolombe R, Herzig A, Varzinczak 1J (2003) Regressiomodal logic. Journal of Applied Non-
Classical Logics 13(2):165-185

[17] Drescher C, Thielscher M (2007) Integrating actiorcaéland description logics. In: Hertzberg J,
Beetz M, Englert R (eds) KI-2007, Springer, Lecture NoteSamputer Science, vol 4667, pp 68-83

[18] Finzi A, Pirri F, Reiter R (2000) Open world planning inet situation calculus. In: AAAI/IAAI,
AAAI Press / The MIT Press, pp 754-760

[19] Fischer MJ, Ladner RE (1979) Propositional dynamiddad regular programs. Journal of Computer
and System Sciences 18(2):194-211

[20] Gabbay D (1981) Expressive functional completenedemse logic. In: Monnich U (ed) Aspects
of Philosophical Logic: Some Logical Forays into Centraltidos of Linguistics and Philosophy,
“Synthese Library”, Vol. 147, Reidel, pp 91-117

[21] Gabbay DM, Shehtman VB (1998) Products of modal logpmat 1. Logic Journal of the IGPL
6(1):73-146

[22] Gabbay DM, Shehtman VB (2000) Products of modal logeest 2: Relativised quantifiers in clas-
sical logic. Logic Journal of the IGPL 8(2)

[23] Gabbay DM, Shehtman VB (2002) Products of modal logiest 3: Products of modal and temporal
logics. Studia Logica 72(2):157-183

[24] Giacomo GD, Lenzerini M (1995) PDL-based framework feasoning about actions. In: Gori M,
Soda G (eds) Al*IA, Springer, Lecture Notes in Computer 8cee vol 992, pp 103-114

[25] Giacomo GD, locchi L, Nardi D, Rosati R (1999) A theorydamplementation of cognitive mobile
robots. Journal of Logic and Computation 9(5):759-785

[26] Giacomo GD, Lenzerini M, Poggi A, Posati R (2006) On tipelate of description logic ontologies at
the instance level. In: Proceedings of the 21st Nationalf€ence on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intellenpce Conference (AAAI-06), AAAI Press,
Buston, US, pp 1271-1276

[27] Gil Y (2005) Description logics and planning. Al Magaei26(2):73—-84

[28] Gradel E, Kolaitis PG, Vardi MY (1997) On the decisioroplem for two-variable first-order logic.
Bulletin of Symbolic Logic 3:53-69

[29] Gradel E, Otto M, Rosen E (1997) Two-variable logicméounting is decidable. In: Proceedings of
the 12th Annual IEEE Symposium on Logic in Computer Sciend€%'97), Warsaw, Poland, pp
306-317

[30] Griuninger M (2004) Ontology of the process specifmatianguage. In: Staab S, Studer R (eds)
Handbook on Ontologies, Springer, pp 575-592

60

[31] Gruninger M, Menzel C (2003) The process specificatamguage (PSL): Theory and applications.
Al Magazine 24(3):63—-74

[32] Gu Y, Soutchanski M (2007) Decidable reasoning in a riedisituation calculus. In: Proceedings
of the Twentieth International Joint Conference on Artéidintelligence (IJCAI-07), Hyderabad,
India, pp 1891-1897, http://www.cs.ryerson.ca/ mesfpabbns/DecidableSitcaligcaiO7.pdf

[33] Harel D, Kozen D, Tiuryn J (2000) Dynamic Logic. THe MITd3s

[34] Hemaspaandra E (1996) The price of universality. ND@ene Journal of Formal Logic 37(2):174—
203

[35] Horrocks I, Sattler U (2001) Ontology reasoning in theCB(D) description logic. In: In Proc. of
the 17th Int. Joint Conf. on Atrtificial Intelligence (IJCADR1, Morgan Kaufmann, pp 199-204

[36] Horrocks I, Patel-Schneider P, van Harmelen F (2008F8HIQ and RDF to OWL: The making
of a web ontology language. Journal of Web Semantics 1(257—

[37] Hustadt U, de Nivelle H, Schmidt RA (2000) Resolutiomskd methods for modal logics. Logic
Journal of the IGPL 8(3)

[38] Hustadt U, Schmidt RA, Georgieva L (2004) A survey of idable first-order fragments and de-
scription logics. Journal on Relational Methods in Comp&eence 1:251-276

[39] Kemke C (2003) A formal theory for describing action cepts in terminological knowledge bases.
In: Xiang Y, Chaib-draa B (eds) Advances in Atrtificial Inigknce: 16th Conference of the Canadian
Society for Computational Studies of Intelligence, Speind-ecture Notes in Computer Science,
Volume 2671, June 11-13, Halifax, Canada, pp 458-465

[40] Kurucz A (2007) Combining modal logics. In: Blackburnv@&n Benthem J, Wolter F (eds) Handbook
of Modal Logic, Elsevier Science, pp 869-924

[41] Levesque H, Reiter R, Lespérance Y, Lin F, Scherl R d¥ROLOG: A logic programming language
for dynamic domains. Journal of Logic Programming 31:59-84

[42] Lin F (2004) Discovering state invariants. In: Dubois\Delty CA, Williams MA (eds) KR, AAAI
Press, pp 536-544

[43] Lin F, Reiter R (1994) State constraints revisited. § IGomput 4(5):655-678
[44] Lin F, Reiter R (1997) How to progress a database. Aidfimtelligence 92:131-167

[45] Liu H, Lutz C, Milicic M, Wolter F (2006) Reasoning aboattions using description logics with
general tboxes. In: Fisher M, van der Hoek W, Konev B, LisAsg@ds) JELIA, Springer, Lecture
Notes in Computer Science, vol 4160, pp 266—-279

[46] Liu H, Lutz C, Milicic M, Wolter F (2006) Updating desgiion logic ABoxes. In: Doherty P, My-
lopoulos J, Welty C (eds) Proceedings of the 10th Internati€onference on Principles of Knowl-
edge Representation and Reasoning (KR-06), AAAI Press6pp@!

61

[47] LiuY, Levesque HJ (2005) Tractable reasoning with imgbete first-order knowledge in dynamic
systems with context-dependent actions. In: Proceedihtfged\ineteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-05), EdinburgB¢otland, pp 522-527

[48] Lutz C, Sattler U (2000) The complexity of reasoning twiioolean modal logics. In: Wolter F,
Wansing H, de Rijke M, Zakharyaschev M (eds) Advances in Madaic, World Scientific, pp
329-348

[49] Lutz C, Sattler U, Wolter F (2001) Description logicsdathe two-variable fragment. In: McGuiness
D, Pater-Schneider P, Goble C, Moller R (eds) Proceedifigisen2001 International Workshop in
Description Logics (DL-2001), Stanford, California, US#p 66—75

[50] McCarthy J (1959) Programs with common sense. In: Meidadion of Thought Processes, Pro-
ceedings of the Symposium of the National Physics Laboyatder Majesty’s Stationery Office.
Reprinted in [53], London, U.K., pp 77-84

[51] McCarthy J (1963) Situations, actions and causal |awsh. rep., Stanford University

[52] McCarthy J (1986) Applications of circumscription tarializing common sense knowledge. Artif-
ficial Intelligence 28:89-116

[53] McCarthy J (1990) Formalization of common sense: paipgrdJohn McCarthy edited by V. Lifschitz.
Ablex, Norwood, N.J.

[54] McCarthy J (2002) Actions and other events in situatiatculus. In: Eighth International Con-
ference on Principles of Knowledge Representation and dd@ag (KR2002), Toulouse, France,
available at http://www-formal.stanford.edu/jmc/slechtml

[55] McCarthy J, Hayes P (1969) Some philosophical problénms the standpoint of artificial intel-
ligence. In: Meltzer B, Michie D (eds) Machine Intelligenasl 4, Edinburgh University Press,
Reprinted in [53], pp 463-502

[56] Mcllraith S, Son T (2002) Adapting Golog for compositiof semantic web services. In: Fensel
D, Giunchiglia F, McGuinness D, Williams MA (eds) Proceeagirof the Eighth International Con-
ference on Knowledge Representation and Reasoning (KR2Mizgan Kaufmann, April 22-25,
Toulouse, France, pp 482-493

[57] Mcllraith SA (2000) Integrating actions and state doaisits: A closed-form solution to the ramifi-
cation problem (sometimes). Artif Intell 116(1-2):87-121

[58] Milicic M (2007) Complexity of planning in action fornliams based on description logics. In: Der-
showitz N, Voronkov A (eds) LPAR, Springer, Lecture NotesGamputer Science, vol 4790, pp
408-422

[59] Milicic M (2007) Planning in action formalisms based Dhs: First results. In: [10]

[60] Morgenstern L, Riecken D (2005) SNAP: An action-basatblngy for e-commerce reasoning. In:
Formal Ontologies Mett Industry, Proceedings of the 1srimtional Workshop FOMI 2005, June
9-10, Verona, Italy

62

[61] Narayanan S, Mcllraith S (2003) Analysis and simulataf web services. Computer Networks
42:675-693

[62] de Nivelle H, Pratt-Hartmann | (2001) A resolution-bdsdecision procedure for the two-variable
fragment with equality. In: R Goré AL, Nipkow T (eds) IJCAR: Proceedings of the First Interna-
tional Joint Conference on Automated Reasoning, Sprivgdag, LNAI, V. 2083, London, UK, pp
211-225

[63] Ohlbach HJ, Nonnengart A, de Rijke M, Gabbay DM (2001x@&ating two-valued nonclassical
logics in classical logic pp 1403-1486

[64] Pacholski L, Szwast W, Tendera L (1997) Complexity obtwariable logic with counting. In: Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Corap8tience (LICS-97), A journal
version: SIAM Journal on Computing, v 29(4), 1999, p. 1088, Warsaw, Poland, pp 318-327

[65] Pacholski L, Szwast W, Tendera L (2000) Complexity tessior first-order two-variable logic with
counting. SIAM Journal on Computing 29(4):1083-1117

[66] Pirri F, Reiter R (1999) Some contributions to the mie¢airy of the situation calculus. Journal of the
ACM 46(3):325-364

[67] Pratt VR (1978) A practical decision method for propimsial dynamic logic: Preliminary report.
In: STOC, ACM, pp 326-337

[68] Pratt-Hartmann | (2005) Complexity of the two-varialitagment with counting quantifiers. Journal
of Logic, Lang and Inf 14(3):369-395, DOI http://dx.dogét0.1007/s10849-005-5791-1

[69] Prendinger H, Schurz G (1996) Reasoning about actiehcdwange: A dynamic logic approach.
Journal of Logic, Language and Information 5(2):209-245

[70] Reiter R (2001) Knowledge in Action: Logical Foundatsofor Describing and Implementing Dy-
namical Systems. The MIT Press

[71] Schiffel S, Thielscher M (2006) Reconciling situaticaculus and fluent calculus. In: AAAI, AAAI
Press

[72] Schild K (1991) A correspondence theory for terminatadlogics: Preliminary report. In: In Proc.
of IJCAI-91, pp 466-471

[73] Schmidt RA, Tishkovsky D (2007) Deciding albo with tabl. In: [10]

[74] Schmidt RA, Tishkovsky D (2008) A general tableau metiar deciding description logics, modal
logics and related first-order fragments. In: Armando A, mgartner P, Dowek G (eds) IJCAR,
Springer, Lecture Notes in Computer Science, vol 5195, pp-209

[75] Schmidt-Schaub3M, Smolka G (1991) Attributive cortaggscriptions with complements. Artif In-
tell 48(1):1-26, DOI http://dx.doi.org/10.1016/000462(91)90078-X

[76] Shanahan M (1997) Solving the Frame Problem: A Matherakinvestigation of the Common
Sense Law of Inertia. The MIT Press

63

[77] Shirazi A, Amir E (2005) First-order logical filteringn: Proceedings of the Nineteenth International
Joint Conference on Atrtificial Intelligence (IJCAI-05), pB9-595

[78] Spaan E (1993) Complexity of modal logics. PhD thesisp&tment of Mathematics and Computer
Science, University of Amsterdam

[79] Tobies S (1999) A nexptime-complete description logtdctly contained in @. In: Flum J,
Rodriguez-Artalejo M (eds) CSL, Springer, Lecture Note€omputer Science, vol 1683, pp 292—
306

[80] Tobies S (2000) The complexity of reasoning with caadiily restrictions and nominals in expressive
description logics. J of Artificial Intelligence Researci12000

[81] Tobies S (2001) Complexity results and practical altpons for logics in knowledge representation.
PhD Thesis, LUFG Theoretical Computer Science, RWTH-AacBermany

[82] Vassos S, Lakemeyer G, Levesque HJ (2008) First-orleng progression for local-effect basic
action theories. In: Proceedings of 11th Internationalf€amce on Principles of Knowledge Rep-
resentation and Reasoning (KR-08), Sydney, Australia

[83] Winslett MS (1990) Updating logical databases. Thederaic Press

[84] Wolter F, Zakharyaschev M (2000) Dynamic descriptiogits. In: Advances in Modal Logic, 2nd
workshop held in Uppsala, Sweden, 1998, CSLI Publicatippgi31-446

[85] Zolin E (2007) Description logic complexity navigator Available at
HTTP:http://www.cs.man.ac.uk/ ezolin/dl/

64

