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Abstract: This paper examines the performance of several precise point positioning (PPP) 

models, which combine dual-frequency GPS/Galileo observations in the un-differenced and 

between-satellite single-difference (BSSD) modes. These include the traditional un-differenced 

model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite 

single-difference model. We take advantage of the IGS-MGEX network products to correct for 

the satellite differential code biases and the orbital and satellite clock errors. Natural Resources 

Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. 

A total of six data sets of GPS and Galileo observations at six IGS stations are processed to 

examine the performance of the various PPP models. It is shown that the traditional  

un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the  

semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in 

comparison with the un-differenced GPS-only model. In addition, the semi-decoupled 

GPS/Galileo PPP model improves the solution precision by about 25% compared to the 

traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP 

model improves the solution convergence time by about 50%, in comparison with the  

un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, 

the BSSD model improves the precision of the estimated parameters by about 50% and 25% 

when the loose and the tight combinations are used, respectively, in comparison with the  

un-differenced GPS-only model. Comparable results are obtained through the tight 

combination when either a GPS or a Galileo satellite is selected as a reference. 
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1. Introduction 

GNSS precise point positioning (PPP) has proven to be capable of providing positioning accuracy at 

the sub-decimeter and decimeter levels in static and kinematic modes, respectively. PPP accuracy and 

convergence time are controlled by the ability to mitigate all potential error biases in the system. 

Several comprehensive studies have been published on the accuracy and convergence time of  

un-differenced GPS and GPS/Galileo PPP models (see for example, [1–6]. In the traditional  

un-differenced GPS PPP model, because of the presence of the un-calibrated hardware delays, the 

ambiguity parameters are typically obtained as real-value numbers [4,5,7,8]. This in turn affects the 

GPS PPP solution convergence and accuracy [9]. However, recent research has demonstrated that the 

correct integer values for the ambiguity parameters can be recovered if the satellite hardware delays 

can be calibrated. Figures 1 and 2 show the IGS average estimated values of the receiver and satellite 

differential code biases, respectively, for 2014 [10]. As can be seen in Figure 2, Galileo satellite 

differential code biases of E1/E5a signals are relatively smaller than the GPS L1/L2 counterpart. 

Figure 1. Average 2014 IGS receiver DCB for GPS and Galileo signals. 

 

Figure 2. Average IGS 2014 satellite DCB for both GPS/Galileo signals. 

For a single GNSS constellation, between-satellite single-difference (BSSD) linear combination 

cancels out all receiver-related errors, including the receiver hardware delays, which significantly 

improves the convergence time [3,4,11,12]. This, however, is not the case when the measurements of 
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two or more constellations are combined. When forming BSSD for GPS and Galileo measurements, 

three scenarios can be considered on the selection of the reference satellite. Either a GPS or a Galileo 

satellite is selected as a reference for both GPS and Galileo observables. Alternatively, two reference 

satellites are selected: a GPS reference satellite for the GPS observables and a Galileo satellite for the 

Galileo observables. The first approach is commonly referred to as tight combination, while the latter 

is commonly referred to as per-constellation or loose combination [6]. 

This paper examines the performance of several PPP models, which combine the dual-frequency 

GPS/Galileo observables in both un-differenced and BSSD mode. The IGS-MGEX network products 

used to correct for the satellite differential code biases, the orbital and satellite clock errors [13]. As the 

IGS-MGEX products are presently referenced to the GPS time and since we use mixed GNSS 

receivers that also use the GPS time as a reference, the GPS to Galileo time offset (GGTO) is cancelled 

out in our models. The inter-system bias is either cancelled out through differencing the observations 

or is treated as an additional unknown parameter. The Hopfield tropospheric correction model is used, 

along with the Vienna mapping function, to account for the hydrostatic component of the tropospheric 

delay [14,15]. The wet component is treated as an additional unknown parameter in the estimation 

model. Other corrections are also applied, including the effect of ocean loading [16,17], Earth tide [18], 

carrier-phase windup [19,20], Sagnac [21], relativity [22], and satellite and receiver antenna phase-center 

variations [23]. Natural Resources Canada’s GPSPace PPP software is modified to handle the various 

GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are 

processed to examine the performance of the various PPP models. It is shown that the traditional  

un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and semi-decoupled clock 

GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the  

un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves 

the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP 

model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by 

about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD 

combination used. As well, the BSSD model improves the precision of the estimated parameters by 

about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison 

with the un-differenced GPS-only model. Comparable results are obtained through the tight 

combination when either a GPS or a Galileo satellite is selected as a reference. 

2. Un-Differenced GPS/Galileo PPP Models 

2.1. Traditional GPS/Galileo PPP Model 

PPP has traditionally been carried out using dual-frequency ionosphere-free linear combinations of 

carrier-phase and pseudorange GPS measurements. Equations (1)–(4) show the ionosphere free linear 

combination of both GPS/Galileo observations [6]: 

[ ] [ ] [ ]
IF IF

s s
G G rG P1 P2 r P1 P2 G PGP =  + c dt  dt  +c d d +c d  d +T  +  ρ − α − β α − β ε

 (1)

5 5[ ] [ ] [ ]
IF IF

s s
E E rG E1 E a r E1 E a2 E EP =  + c dt GGTO  dt  +c d d +c d  d +T  +  ρ − − α −β α − β ε

 (2)

0 0[ ] [ ] [ ]
IF IF G G IFIF IF

s s s
G G rG L1 L2 r L1 L2 G G r G= +c dt dt +c +c +T + N ΦΦ ρ − αδ −βδ αδ − βδ + φ + φ + ε (3)
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5 5 0 0[ ] [ ] [ ]
IF IF E E IFIF IF

s s s
E E rG E1 E a r E1 E a E E r E= +c dt GGTO dt +c +c +T + N + ΦΦ ρ − − αδ −βδ αδ −βδ + φ + φ ε

 (4)

where the subscripts G and E refer to the GPS and Galileo satellite systems, respectively; 
IFGP  and 

IFEP  

are the ionosphere-free pseudoranges in meters for GPS and Galileo systems, respectively; 
IFGΦ  and 

IFEΦ  are the ionosphere-free carrier phase measurements in meters for GPS and Galileo systems, 

respectively; ρ is the true geometric range from receiver at reception time to satellite at transmission 

time in meter; dtr, dts are the clock errors in seconds for the receiver at signal reception time and the 
satellite at signal transmission time, respectively; 1P rd , 2P rd , 1E rd , 5E ard are frequency-dependent code 

hardware delays for the receiver at reception time in seconds; 1
S

Pd , 2
S

Pd , 1
S

Ed , 5
S

E ad  are  

frequency-dependent code hardware delays for the satellite at transmission time in seconds; 1Lδ , 2Lδ , 

1Eδ , 5E aδ  are frequency-dependent carrier-phase hardware delays for the receiver at reception time in 

seconds; 1
S

Lδ , 2
S

Lδ , 1
S

Eδ , 5
S

E aδ  are frequency-dependent carrier-phase hardware delays for the 

satellite at transmission time in seconds; T is the tropospheric delay in meter; 
IFGN , 

IFEN are the 

ionosphere-free linear combinations of the ambiguity parameters for both GPS and Galileo  
carrier-phase measurements in meters, respectively (Equations (5) and (6)); 0GIF

rφ , 0GIF

Sφ , 0EIF
rφ , 0EIF

Sφ  

are ionosphere-free linear combinations of frequency-dependent initial fractional phase biases in the 

receiver and satellite channels for both GPS and Galileo in meters, respectively; c is the speed of light 
in vacuum in meter per second; 

IFPε , 
IFEε , 

IFGΦε , 
IFEΦε  are the ionosphere-free linear combinations of 

the relevant noise and un-modeled errors in meter; Gα , Gβ , Eα , Eβ  are the ionosphere-free linear 

combination coefficients for both GPS and Galileo, which are given, respectively, by: 
2

1
2 2

1 2
G

f

f f
α =

−
,

2
2

2 2
1 2

G

f

f f
β =

−
, 

2
1

2 2
1 5

E
E

E E a

f

f f
α =

−
, 

2
5

2 2
1 5

E a
E

E E a

f

f f
β =

−
, where f1 and f2 are GPS L1 and L2 signals 

frequencies; fE1 and fE5a are Galileo E1 and E5a signals frequencies: 

1 1 2 2IFG G GN = N Nα λ −β λ  (5)

1 1 5 5IFE E E E E E a E aN = N Nα λ −β λ
 (6)

where λ1 and λ2 are wavelengths of the GPS L1 and L2 signals, respectively, in meters; λE1 and λE5a are 

the Galileo E1 and E5a signals wavelengths in meters; N1, N2 are the integer ambiguity parameters of 

GPS signals L1 and L2, respectively; NE1, NE5a are the integer ambiguity parameters of Galileo signals 

E1 and E5a, respectively. 

As indicated earlier, precise orbit and satellite clock corrections from the IGS-MGEX network are 

used to correct both of the GPS and Galileo measurements. It should be pointed out that such products 

are presently referenced to the GPS time frame [24]. As well, the IGS-MGEX precise GPS satellite 

clock corrections include the effect of the ionosphere-free linear combination of the satellite hardware 

delays of L1/L2 P(Y) code, while the Galileo counterpart include the effect of the ionosphere-free 

linear combination of the satellite hardware delays of the Galileo E1/E5a pilot code [24]. Applying the 

precise clock corrections to Equations (1)–(4), we obtain: 

[ ] [ ]
IF IF

s
G G rG prec P1 P2 r G PGP =  + c dt  dt  +c d d +T  +  ρ − α −β ε  (7)
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5[ ] [ ]
IF IF

s
E E rG prec E1 E a r E EP =  + c dt  dt  +c d d +T  +  ρ − α −β ε

 (8)

0 0[ [ ] ] [ ] [ ]
IF IF G G IFIF IF

s s s s
G G rG prec P1 P2 L1 L2 r L1 L2 G G r G= +cdt c dt d d +c c +T + N + ΦΦ ρ − + α − β αδ −βδ − αδ −βδ + φ + φ ε (9)

5 5 5 0 0[ [ ] ] [ ] [ ]
IF IF E E IFIF IF

s s s s
E E rG prec E1 E a E1 E a r E1 E a E E r E= +cdt c dt d d +c c +T + N + ΦΦ ρ − + α − β αδ − βδ − αδ − βδ + φ + φ ε  (10)

For simplicity, the receiver and satellite hardware delays will take the following forms:  

1 2[ ]
Pr P P rb =  c d d  α −β

1 2[ ]s s
P P Pb =  c d d  α − β  

1 5[ ]
Er E E a rb =  c d d  α −β  

1 5[ ]s s
E E E ab =  c d d  α − β  

1 2 0[ ]
GIF

r L L r rb =  c  
Φ

αδ −βδ + φ  
01 2[ ]
GIF

s s s
L Lb =  c Φ αδ − βδ + φ  

1 5 0[ ]
E EIF

r E E a r rb =  c  
Φ

αδ − βδ + φ  
01 5[ ]

EIF

s s s
E E E ab =  c  Φ αδ −βδ + φ  

In the traditional GPS/Galileo un-differenced PPP model, the GPS receiver clock error is lumped to 

the GPS receiver differential code biases. In order to maintain consistency in the estimation of a 

common receiver clock offset, this convention is used when combining the ionosphere-free linear 

combination of GPS L1/L2 and Galileo E1/E5a observations. This, however, introduces an additional 

bias in the Galileo ionosphere-free PPP mathematical model, which represents the difference in the 

receiver differential code biases of both systems. Such an additional bias is commonly known as the 

inter-system bias (ISB). With the above consideration, the GPS/Galileo ionosphere-free linear 

combinations of the pseudorange and carrier-phase observations can be written as:  

IF IF

s
G G rG prec G PGP =  + dt  dt  +T  +  ρ − ε  (11)

IF IF

s
E E rG prec E EP =  + dt dt ISB+T  +  ρ − + ε  (12)

IF IF IF

s
G G rG prec G G G= +dt dt +T + N + ΦΦ ρ − ε   (13)

IF IF IF

s
E E rG prec E E E= +dt dt +T + N ISB+ ΦΦ ρ − + ε   (14)

where rGdt  represents the sum of the receiver clock error and receiver hardware delay 

PrG rG rdt = cdt +b ; s
precdt  is the precise satellite clock correction; ISB is the inter-system bias, 

E Pr rISB = b b  − ; 
IFGN  and 

IFEN  are given by:  

IF IF P

s s
G G r r PN = N +b b b b

Φ Φ+ − −  (15)

IF IF E P

s s
E E r r E EN = N +b b b b

Φ Φ+ − −  (16)

When using the traditional un-differenced GPS/Galileo PPP model, the ambiguity parameters lose 

its integer nature as they are contaminated by the receiver and satellite hardware delays. 

2.2. Decoupled Clock GPS/Galileo PPP Model 

The decoupled clock model assigns two different receiver and satellite clocks for the pseudorange 

and carrier-phase measurements [25]. Applying the concept of the decoupled clock on the combined 

GPS and Galileo measurements and using Equations (1)–(4), we obtain: 
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[ ] [ ] [ ]
IF IF

S s
G G rG G P1 P2 r P1 P2 G PGP =  + c dt  dt  +c d  d +c d  d +T  +  ρ − α − β α − β ε  (17)

5 5[ ] [ ] [ ]
IF IF

S s
E E rE E E1 E a r E1 E a2 E EP =  + c dt GGTO  dt  +c d  d +c d d +T  +  ρ − − α − β α − β ε

 (18)

0 0[ ] [ ] [ ]
IF IF G G IFIF IF

S s s
G G rG G L1 L2 r L1 L2 G G r G= +c dt dt +c +c +T + NΦ Φ ΦΦ ρ − αδ −βδ αδ −βδ + φ + φ + ε  (19)

5 5 0 0[ ] [ ] [ ]
IF IF E E IFIF IF

S s s
E E rE E E1 E a r E1 E a E E r E= +c dt GGTO dt +c +c +T + N +Φ Φ ΦΦ ρ − − αδ − βδ αδ − βδ + φ + φ ε  (20)

To simplify Equations (17)–(20), the receiver and satellite clock errors can be written as: 

G G Pr r rdt = cdt b  + s s S
G G Pdt = cdt b+

 

ErE rE rdt = cdt b  +
 

s s S
E E Edt =  cdt b  +

 

rG rG rdt =  cdt bΦ Φ Φ+ s s S
G Gdt = cdt bΦ Φ Φ+

 

ErE rE rdt = cdt b
ΦΦ Φ + s s S

E Edt =  cdt bΦ Φ Φ+
 

where s
Gdt , s

Edt , s
Gdt Φ
 , and s

Edt Φ
  are the decoupled satellite clock errors for the pseudorange and 

carrier phase measurements of both GPS and Galileo systems, respectively. 
Gr

dt , 
Er

dt , rGdt Φ
 , and 

rEdt Φ
  are the receiver clock errors for the pseudorange and carrier phase measurements of both GPS 

and Galileo systems, respectively 

In the decoupled clock PPP model, the initial phase bias is lumped to the receiver hardware delays.  

As such, Equations (17)–(20) can be re-written as follows: 

IF IF

S
G G rG G G PGP =  + dt dt +T  +  ρ − ε   (21)

IF IF

S
E E rE E E EP =  + dt dt +T  +  ρ − ε 

 (22)

IF IF IF

S
G G rG G G G G= + dt dt +T + NΦ Φ ΦΦ ρ − + ε 

 (23)

IF IF IF

S
E E rE E E E E= +dt dt +T + N +Φ Φ ΦΦ ρ − ε 

 (24)

As shown in Equations (21)–(24), the assumption of having a separate receiver clock error for the 

pseudorange and the carrier phase observables is more complex in the case of GPS/Galileo PPP model. 

As all the observables are collected through a single receiver, which uses one time scale, it is 

uncommon to have a receiver clock error for each constellation and for each observable. As such, only 

the GPS receiver clock error for both of the pseudorange and carrier phase measurements is 

considered, assuming that the receiver uses the GPS time as a reference. Therefore, an inter-system 

bias term appears in the Galileo pseudorange and carrier phase equations to represent the difference 

between the GPS and Galileo receiver hardware delays. This leads to: 

IF IF

S
G G rG G G PGP =  + dt dt +T  +  ρ − ε   (25)

IF IF

S
E E rG E P E EP =  + dt dt + ISB T  +  ρ − + ε   (26)

IF IF IF

S
G G rG G G G G= + dt dt +T + NΦ Φ ΦΦ ρ − + ε   (27)

IF IF IF

S
E E rG E C E E E= +dt dt ISB +T + N +Φ Φ ΦΦ ρ − + ε   (28)
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where the ISBP and ISBC are the pseudorange and carrier-phase inter-system biases, respectively, 
which are given by: 

EP r rISB = b b
Φ Φ

−  and 
E PC r rISB = b b− . 

Equations (25)–(28) can be re-arranged by considering the satellite clock corrections and the dry 

tropospheric correction as follows: 

0
IF IFDC

G rG f w PG Gdt m zpd Pρ + + + ε − =  (29)

0
IF IFDC

E rG f w P E Edt m zpd ISB Pρ + + + + ε − =  (30)

0
IF IF IFDC

G rG f w G G Gdt m zpd NΦ Φρ + + + + ε − Φ =  (31)

0
IF IF IFDC

E rG f w E C E Edt m zpd N ISBΦ Φρ + + + + + ε + Φ =
 (32)

where, 
IFDC

GP , 
IFDC

EP ,
IFDC

GΦ  and 
IFDC

EΦ  are the ionosphere-free linear combinations of the pseudorange 

and carrier-phase observables after applying the above corrections; zpdw is the wet component of the 

tropospheric zenith path delay; mf troposphere mapping functions; The ambiguity parameters of the 

decoupled clock PPP model are given by: 

1 1 2 2[ ]
IF IFG GN = f N f Nλ −  (33)

1 1 5 2[ ]
IF IFE E E E aN = f N f Nλ −  (34)

Figures 3–5 show the decoupled precise satellite clock corrections for the pseudorange and carrier-phase 

observations for different days, namely 26–27 August 2012, and 5 April 2013. As indicated earlier, the 

difference between the decoupled satellite clock corrections is the satellite hardware delay for pseudorange 

and carrier phase observations as shown in Figures 3–5. Only the GPS decoupled clock products are 

presented in this paper because of the unavailability of the Galileo decoupled clock products at present. 

As shown in Figures 3 and 4, the difference between the IGS (pseudorange) and decoupled  

(carrier phase) clock corrections is essentially constant. However, in Figure 5, which the data used 

represent around 7 months after the data used for Figures 3 and 4, the difference between the IGS and 

decoupled clock corrections is different than the ones in Figures 3 and 4 as shown in Table 1. 

 

Figure 3. Cont. 
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Figure 3. IGS and decoupled clock corrections 26 August 2012. 

 

Figure 4. IGS and decoupled clock corrections 27 August 2012. 

 

 

Figure 5. IGS and decoupled clock corrections 5 April 2013. 
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As shown in Table 1, the difference between the IGS and decoupled precise clock correction can be 

assumed to be constant for the short period of time extent to days; however, for long term cases the 

difference will not be constant. As a result, it can be concluded that either satellite clock corrections or 

un-calibrated satellite hardware delays drift over time or even both change over time. 

Table 1. Satellite clock correction difference between decoupled and IGS products. 

Date 
Satellite Clock Correction Difference (Decoupled-IGS) (s) 

G04 G13 G17 

26 August 2012 −6.91E−09 −1.20E−08 −5.60E−09 

27 August 2012 −6.91E−09 −1.20E−08 −5.60E−09 

5 April 2013 8.19E−08 7.99E−08 7.83E−08 

2.3. Semi-Decoupled Clock GPS/Galileo PPP Model 

In this model, the IGS-MGEX network precise clock corrections and the daily DCB for both 

GPS/Galileo satellites are used [10,13]. Considering the carrier-phase DCB, Equations (29)–(31) can 

be rewritten as: 

0
IF IFG rG f w PG Gdt m zpd Pρ + + + ε − =  (35)

0
IF IFE rG f w P E Edt m zpd ISB Pρ + + + + ε − =  (36)

0
IF IF IFG rG f w G G Gdt m zpd NΦ Φρ + + + + ε − Φ =  (37)

0
IF IF IFE rG f w E C E Edt m zpd N ISBΦ Φρ + + + + + ε + Φ =  (38)

The carrier phase satellite hardware delays will be lumped to the ambiguity parameters as shown in 

Equations (39) and (40): 

1 1 2 2[ ]
IF IF

S
G GN = f N f N bΦλ − +  (39)

1 1 5 2[ ]
IF IF

S
E E E E a EN = f N f N b Φλ − + (40)

3. BSSD GPS/Galileo Models 

3.1. Traditional BSSD GPS/Galileo PPP Model 

As indicated earlier, two scenarios are considered when forming the BSSD linear combination, 

namely a tight and a loose combination. In the first scenario, either a GPS or a Galileo satellite is 

selected as a reference for both GPS and Galileo observables [6]. Taking a GPS satellite as a reference 

and using Equations (11)–(14), we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (41)

, 0
IF IF

ik ik ik ik
E G f w PE EG +m zpd ISB+  P  ρ + ε − =

 (42)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ =  (43)
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, 0
IF IF IF

ik ik ik ik ik
E G f w EG E EGm zpd ISB N εΦρ + + + + − Φ = 

 (44)

where, the superscript i refers to the GPS reference satellite; the superscripts j and k refer the GPS and 
Galileo satellites respectively; 

IF

ij
GN  and 

IF

ik
EGN  are given by: 

IF IF IF

ij i j ij ij
G G G G PN N N b bΦ= − + −  (45)

IF IF IF E

ik i k K i i K
EG G E r r E P EN N N b b b b b b

Φ Φ Φ Φ= − + − + − + −
 (46)

As shown in Equation (45), the GPS ambiguity parameters include only the GPS satellite hardware 

delays. However, for Galileo system, the ambiguity parameters include both of the receiver and satellite 

hardware delays. Similarly, when a Galileo satellite is selected as a reference, using Equations (11)–(14) 

leads to:  

, 0
IF IF

lj lj lj lj
G E f w PG GEm zpd ISB P = ρ + − + ε −   (47)

, 0
IF IF

lk lk lk lk
E E f w PE E +m zpd  P   ρ + ε − =

 (48)

, 0
IF IF IF

lj lj lj lj lj
G E f w GE G GEm zpd ISB N Φρ + − + + ε − Φ = 

 (49)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Em zpd N ε  Φρ + + + − Φ = 

 (50)

where, the superscript l refers to the Galileo reference satellite, 
IF

lj
GEN  and 

IF

lk
EN  are the BSSD  

non-integer ambiguity parameters lumped to the receiver and satellite hardware delays, which are 

given by: 

IF IF IF G E

lj l j j l l j
GE E G r r G E E PN = N N b b b b b b

Φ Φ Φ Φ− + − + − + −  (51)

IF IF IF

lk l k lk lk
E E E E EN = N N +b bΦ− −

 (52)

In the loose BSSD combination, two reference satellites are considered: a GPS reference satellite for  

the GPS observables and a Galileo satellite for the Galileo observables. Using Equations (11)–(14),  

we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (53)

, 0
IF IF

lk lk lk lk
E E f w PE E +m zpd  P   ρ + ε − =  (54)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ =   (55)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Em zpd N ε  Φρ + + + − Φ =   (56)

where, 
GIF

ijN  and 
EIF

lkN  are the BSSD non-integer ambiguity parameters lumped to the receiver and 

satellite hardware delays as shown in Equations (57) and (58): 

G G GIF IF IF

ij i j ij ij
G PN = N N +b bΦ− −  (57)

IF IF IF

lk l k lk lk
E E E E EN = N N +b bΦ− −  (58)
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In this case, all receiver hardware delays are canceled out for both systems. The major advantage of 

the above per-constellation system is that both of the receiver clock error and the inter-system bias are 

cancelled out. 

3.2. BSSD Decoupled Clock GPS/Galileo PPP Model 

The BSSD decoupled clock model can be formed by using a GPS satellite as a reference. Using 

Equations (29)–(32), we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (59)

, 0
IF IF

ik ik ik ik
E G f w P PE EG +m zpd ISB +  P  ρ + ε − =  (60)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ = 

 (61)

, 0
IF IF IF

ik ik ik ik ik
E G f w C EG E EGm zpd ISB N εΦρ + + + + − Φ =   (62)

where, 
IF

ij
GN  and 

IF

ij
EN  are given respectively by:  

IF IF IF

ij i j
G G GN = N N−  (63)

IF IF IF

ij i j
EG G EN = N N−  (64)

When a Galileo satellite is selected as a reference, the BSSD equations take the form: 

, 0
IF IF

lj lj lj lj
G E f w P PG GEm zpd ISB P = ρ + − + ε −   (65)

, 0
IF IF

lk lk lk lk
E E f w PE E +m zpd  P   ρ + ε − =  (66)

, 0
IF IF IF

lj lj lj lj lj
G E f w C GE G GEm zpd ISB N Φρ + − + + ε − Φ =   (67)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Em zpd N ε  Φρ + + + − Φ =   (68)

where, 
IF

lj
GEN  and 

IF

lk
EN  are

 
given by Equations (69) and (70), respectively: 

IF IF IF

lj l j
GE E GN = N N−  (69)

IF IF IF

ik l k
E E EN = N N−  (70)

In the per-constellation BSSD model, two reference satellites are selected are references, a GPS and 

a Galileo. Using Equations (29)‒(32), we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (71)

, 0
IF IF

lk lk lk lk
E E f w PE E + m zpd  P   ρ + ε − =  (72)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ =   (73)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Em zpd N ε  Φρ + + + − Φ =   (74)

As can be seen in Equations (75)‒(78), the ISB terms are cancelled. The differenced ambiguity 
parameters 

IF

ij
GN  and 

IF

lk
EN  can still be obtained from Equations (75) and (76), respectively. 
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IF IF IF

ij i j
G G GN = N N−  (75)

IF IF IF

ik l k
E E EN = N N−  (76)

3.3. BSSD Semi-Decoupled Clock GPS/Galileo PPP Model 

The BSSD semi-decoupled clock model can be formed by using a GPS satellite as a reference. 

Using Equations (35)–(38), we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (77)

, 0
IF IF

ik ik ik ik
E G f w P PE EG +m zpd ISB +  P  ρ + ε − =  (78)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ = 

 (79)

, 0
IF IF IF

ik ik ik ik ik
E G f w C EG E EGm zpd ISB N εΦρ + + + + − Φ =   (80)

where, 
IF

ij
GN  and 

IF

ik
EGN  are given respectively by:  

G IF IFIF

ij i j i j
G GN = N N b bΦ Φ− + −  (81)

IF IF IF

ij i j i j
EG E G EN = N N b bΦ Φ− + −  (82)

When a Galileo satellite is selected as a reference, the BSSD equations take the form: 

, 0
IF IF

lj lj lj lj
G E f w P PG GEm zpd ISB P = ρ + − + ε −   (83)

, 0
IF IF

lk lk lk lk
E E f w PE Eρ  + m zpd  P   + ε − =  (84)

, 0
IF IF IF

lj lj lj lj lj
G E f w C GE G GEm zpd ISB N Φρ + − + + ε − Φ =   (85)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Eρ m zpd N ε  Φ+ + + − Φ =   (86)

where, 
IF

lj
GEN  and 

IF

lk
EN  are given by Equations (87) and (88), respectively: 

IF IF IF

lj l j l j
GE E G EN = N N b bΦ Φ− + −  (87)

IF IF IF

lk l k l k
E E E E EN = N N b bΦ Φ− + −  (88)

In the per-constellation BSSD model, two reference satellites are selected are references, a GPS and 

a Galileo. Using Equations (35)–(38), we obtain: 

, 0
IF IF

ij ij ij ij
G G f w PG G  m zpd  +  P = ρ + ε −   (89)

, 0
IF IF

lk lk lk lk
E E f w PE E + m zpd  P   ρ + ε − =  (90)

, 0
IF IF IF

ij ij ij ij ij
G G f w G G G m zpd + N + Φρ + ε − Φ =   (91)

, 0
IF IF IF

lk lk lk lk lk
E E f w E E Em zpd N ε  Φρ + + + − Φ =   (92)

As can be seen in Equations (89)–(92), the ISB terms are cancelled out. The differenced ambiguity 
parameters 

IF

ij
GN  and 

IF

lk
EN  can still be obtained through Equations (93) and (94), respectively. 
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IF IF IF

ij i j i j
G G GN = N N b bΦ Φ− + −  (93)

IF IF IF

lk l k l k
E E E E EN = N N b bΦ Φ− + −  (94)

5. Least Squares Estimation Technique 

Under the assumption that the observations are uncorrelated and the errors are normally distributed 

with zero mean, the covariance matrix of the un-differenced observations takes the form of a diagonal 

matrix. The elements along the diagonal line represent the variances of the code and carrier phase 

measurements. Following the common practice, the ratio between the standard deviations of the code 

and the carrier-phase measurements is taken as 100. When forming BSSD, however, the differenced 

observations become mathematically correlated. This leads to a fully populated covariance matrix at a 

particular epoch. 

The general linearized form for the above observation equations around the initial (approximate) 

vector u0 and observables  can be written in a compact form as:  

( , ) 0Δ≈ − − ≈f u l A u w r  (95)

where u is the vector of unknown parameters; A is the design matrix, which includes the partial 

derivatives of the observation equations with respect to the unknown parameters u; Δu is the unknown 

vector of corrections to the approximate parameters u0, i.e., u = u0 + Δu; w is the misclosure vector 

and r is the vector of residuals. The sequential least-squares solution for the unknown parameters Δui 

at an epoch i can be obtained from [26]: 

( ) [ ]
i

1 T 1 T 1
i i 1 i 1 i l i i 1 i i i i 1= + +− − −

− − − −Δ Δ − Δu u M A C A M A w A u  (96)

( )
i

1 1 1 T 1 T 1 1
i i 1 i 1 i l i i 1 i i 1= +− − − − − −

− − − −−M M M A C A M A A M
 (97)

( )
i i

1 1 1 T 1 T 1 1
u i i 1 i 1 i l i i 1 i i 1= = +− − − − − −

Δ − − − −−C M M M A C A M A A M
 (98)

where Δui−1 is the least-squares solution for the estimated parameters at epoch i − 1; M is the matrix of 

the normal equations; Cl and CΔu are the covariance matrices of the observations and unknown 

parameters, respectively. It should be pointed out that the usual batch least-squares adjustment should 

be used in the first epoch, i.e., for i = 1. The batch solution for the estimated parameters and the 

inverse of the normal equation matrix are given, respectively, by [26]: 

1 1
[ ]0

1 T 1 1 T 1
1 1 l 1 1 l 1x

= +− − − −Δu C A C A A C w  (99)

11 [ ]0

1 1 T 1 1
1 l 1x

= +− − − −M C A C A
 (100)

where Cx
0 is the a priori covariance matrix for the approximate values of the unknown parameters. 

In case of the traditional GPS/Galileo PPP model, the design matrix A and the vector of corrections 

to the unknown parameters Δx take the following forms: 
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=

− − − 1 0 0 ⋯ 0 0 ⋯ 0− − − 1 0 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮− − − 1 0 0 ⋯ 0 0 ⋯ 0− − − 1 0 0 ⋯ 1 0 ⋯ 0− − − 1 1 0 ⋯ 0 0 ⋯ 0− − − 1 1 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮− − − 1 1 0 ⋯ 0 0 ⋯ 0− − − 1 1 0 ⋯ 0 0 ⋯ 1 × ( )

∆ =
∆∆∆	
⋮
⋮

 (101)

where nG refers to the number of visible GPS satellites; nE refers to the number of visible Galileo 

satellites; n = nG + nE is the total number of the observed satellites for both GPS/Galileo systems; x0, y0 

and z0 are the approximate receiver coordinates; , , , = 1, 2, … ,  are the known GPS 

satellite coordinates; , , , = 1, 2, … ,  are the known Galileo satellite coordinates;  is 

the approximate receiver-satellite range. The unknown parameters in the above system are the 

corrections to the receiver coordinates, Δx, Δy, and Δz, the wet component of the tropospheric zenith 

path delay zpdw, the inter-system bias ISB, and the non-integer ambiguity parameters . 

For the decoupled clock model, the design matrix A and the vector of corrections to the unknown 

parameters Δx take the following forms: 

=

− − − 1 0 0 0 0 ⋯ 0 0 ⋯ 0− − − 0 1 0 0 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮− − − 1 0 0 0 0 ⋯ 0 0 ⋯ 0− − − 0 1 0 0 0 ⋯ 1 0 ⋯ 0− − − 1 0 1 0 0 ⋯ 0 0 ⋯ 0− − − 0 1 0 1 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮− − − 1 0 1 0 0 0 0 0 ⋯ 0− − − 0 1 0 1 0 0 0 0 ⋯ 1 × ( )

∆ =

∆∆∆

⋮
⋮

 (102)

where  Grdt  and  Grdt Φ  are the pseudorange and carrier phase receiver clock errors, respectively; PISB  

and CISB  are the pseudorange and carrier phase inter-system bias, respectively. 

For the un-differenced semi-decoupled clock GPS/Galileo PPP model, the design matrix A and the 

vector of corrections to the unknown parameters Δx take the same form as the decoupled clock 

GPS/Galileo model given in Equation (102). When a GPS satellite is selected as a reference to form the 

BSSD for GPS/Galileo observations, the design matrix A and the vector of corrections Δu take the form: 
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=

− − − − − − − − − 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 ⋯ 1 0 ⋯ 0− − − − − − − − − 1 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 1 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 1 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 1 0 ⋯ 0 0 ⋯ 1 ( )	×	( )

∆ =
∆∆∆
121⋮11111⋮11 n+4

 (103)

where “1G” refers to the GPS reference satellite. 

By analogy, the use of a Galileo satellite as a reference to form the BSSD for both of the GPS and 

Galileo observations leads to: 

=

− − − − − − − − − 1 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 1 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 1 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 1 0 ⋯ 1 0 ⋯ 0− − − − − − − − − 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 ⋯ 0 0 ⋯ 1 ( )	×	( )

∆ =
∆∆∆
⋮
⋮

 (104)

where 1E refers to the Galileo reference satellite.  

When two reference satellites are selected to form the BSSD, i.e., per-constellation BSSD, the 

design matrix A and the vector of corrections Δu take the form: 

=

− − − − − − − − − 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 ⋯ 1 0 ⋯ 0− − − − − − − − − 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 ⋯ 0 0 ⋯ 1 ( ) ×	( )

∆ =
∆∆∆
121⋮11121⋮11 n+2

 (105)

The major advantage of the above per-constellation (or loose combination) system is that the modified 

receiver clock error and the inter-system bias are cancelled out. Similarly, the design matrix A and the 

vector of corrections Δu for the BSSD decoupled clock model, with a GPS satellite selected as a 

reference, take the form: 
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=

− − − − − − − − − 0 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 0 ⋯ 1 0 ⋯ 0− − − − − − − − − 1 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 1 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 1 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 1 0 ⋯ 0 0 ⋯ 1 ( )	×	( )

∆ =

∆∆∆
⋮
⋮

 (106)

where “1G” refers to the GPS reference satellite. 

If, however, a Galileo satellite is selected as a reference, the design matrix A and the vector of 

corrections Δu for the BSSD decoupled clock model take the form: 

=

− − − − − − − − − 1 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 1 1 ⋯ 0 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 1 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 1 0 ⋯ 1 0 ⋯ 0− − − − − − − − − 0 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 0 ⋯ 0 1 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− − − − − − − − − 0 0 0 ⋯ 0 0 ⋯ 0− − − − − − − − − 0 0 0 ⋯ 0 0 ⋯ 1 ( )	×	( )

∆ =

∆∆∆
⋮
⋮

 (107)

where 1E refers to the Galileo reference satellite. For the per-constellation BSSD decoupled clock 

model, the design matrix A and the vector of corrections Δu will take the same form as those of the 

traditional BSSD GPS/Galileo PPP model. For the BSSD semi-decoupled clock GPS/Galileo PPP 

model, the design matrix A and the vector of corrections to the unknown parameters Δx will be the 

same as those of the BSSD decoupled clock model. 

6. Results and Discussion 

To verify the introduced GPS/Galileo PPP models, GPS/Galileo measurements at six well-distributed 

stations (Figure 6) were selected from the IGS tracking network [23]. Those stations are occupied by 

GNSS receivers, which are capable of simultaneously tracking the GPS/Galileo constellations. The 

positioning results for station DLF1 are presented below. Similar results are obtained from the other 

stations. However, a summary of the convergence times and precision are presented below for all 

stations. Natural Resources Canada (NRCan) GPSPace PPP software was modified to enable a 

GPS/Galileo PPP solution as described above. A solution is considered to be converged when the  

three-dimensional positioning standard deviation reaches 10 cm. The sampling interval for all data sets is 

30 s of 5 April 2013, while the time span used in the analysis is one hour, which is selected to ensure that 

the four Galileo satellites are visible at each station. 
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Figure 6. Analysis stations. 

Figures 7 and 8 show the positioning results and the estimated ambiguity parameters of the 

traditional PPP model using GPS/Galileo observations. 

 

Figure 7. Postioining results of the traditional GPS/Galileo PPP model. 

 

Figure 8. Ambiguity parameters the traditional GPS/Galileo PPP model. 

As shown in Figure 6, the positioning results of the combined GPS/Galileo traditional PPP model 

have a convergence time of 15 min to reach decimeter-level precision. The ambiguity parameters 

results in Figure 8 shows that the un-calibrated hardware delayed that lumped to the ambiguity 

parameter affects the ambiguity parameters convergence. Figures 9–11 show the results of the GPS 

decoupled clock model. 
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Figure 9. Positioning results of the GPS decoupled clock model. 

Figure 9 shows the positioning results of the decoupled clock model. The results show a decimeter 

level of precision with about 15 min. Generally the precision of the decoupled clock model positioning 

results are about 25% more than the traditional PPP model. Figure 10 shows the receiver clock errors 

for both pseudorange (CLK_P) and carrier phase (CLK_C) observation.  

 

Figure 10. Receiver clock errors of the GPS decoupled clock model. 

Figure 11 shows the results of the ambiguity parameters of the GPS decoupled clock model. 

 

Figure 11. Ambiguity parameters of the GPS decoupled clock model. 

Figures 12–15 show the results of the semi-decoupled clock GPS/Galileo PPP model. The 

positioning results in Figure 16 show that the semi-decoupled clock GPS/Galileo PPP model has a 

decimeter level of precision with about 15 min. In addition, the positioning precision of the  
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semi-decoupled clock GPS/Galileo PPP model are improved by about 25% comparing to the 

traditional GPS/Galileo PPP model. 

 

Figure 12. Positioning results of the semi-decoupled clock PPP model. 

Figure 13 shows the receiver clock errors for both pseudorange (CLK_P) and carrier phase 

(CLK_C) observation. 

 

Figure 13. Receiver clock errors of the semi-decoupled clock GPS/Galileo PPP model. 

Figure 14 shows the ambiguity parameters results of the semi-decoupled clock GPS/Galileo PPP model.  

 

Figure 14. Ambiguity parameters of the semi-decoupled clock GPS/Galileo PPP model. 

As shown in Figure 14 the ambiguity parameters results show a similar convergence time to the 

positioning results. Figure 15 shows the results of the inter-system bias parameters for both 

pseudorange (ISB_P) and carrier phase (ISB_C) observations.  
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Figure 15. Inter-system bias of the semi-decoupled clock GPS/Galileo PPP model. 

Figures 16 and 17 show the BSSD PPP tight combination model positioning results and the estimated  

ambiguity parameters.  

(a) (b) 

Figure 16. Positioning results of the BSSD PPP tight combination model using (a) GPS 

reference satellite; and (b) Galileo reference satellite 

As shown in Figure 16, the positioning results of the BSSD tight combination model have 

convergence time of 10 min and decimeter level of precision. 

(a) (b) 

Figure 17. Ambiguity parameters the BSSD PPP tight combination model using (a) GPS 

reference satellite; and (b) Galileo reference satellite. 

As shown in Figure 17, the results convergence of the ambiguity parameters are affected by the 

lumped DCB. Figures 18 and 19 show the results of the BSSD PPP loose combination model for both 

positioning results and ambiguity parameters. 
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Figure 18. Positioning results of the BSSD PPP loose combination model.  

 

Figure 19. Ambiguity parameters the BSSD PPP loose combination model. 

As shown in Figure 18, the positioning results show decimeter-level precision with about 11 min 

convergence time. Figure 19 shows that the ambiguity parameters of the BSSD loose combination 

model are affected by the lumped DCB. Figures 20 and 21 show the positioning results and the 

estimated ambiguity parameters for the BSSD semi-decoupled GPS/Galileo PPP model, when a tight 

combination is used. As can be seen, the PPP solution convergences to a decimeter-level precision 

after about 10 min. 

(a) (b) 

Figure 20. Positioning results for BSSD semi-decoupled GPS/Galileo PPP model. (a) GPS 

reference satellite; and (b) Galileo reference satellite. 
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(a) (b) 

Figure 21. Ambiguity parameters the semi-decoupled GPS/Galileo PPP model (a) GPS 

reference satellite; and (b) Galileo reference satellite. 

Figures 22 and 23 show the results of the semi-decoupled per-constellation GPS/Galileo BSSD PPP 

model for both of the positioning and ambiguity parameters. As can be seen, the positioning results 

show decimeter-level precision with about 11 min convergence time.  

 

Figure 22. Positioning results of the semi-decoupled per-constellation GPS/Galileo BSSD 

PPP model. 

 

Figure 23. Ambiguity parameters the semi-decoupled per-constellation GPS/Galileo 

BSSD PPP model. 
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As shown in Figure 23, the ambiguity parameters results for both GPS and Galileo satellites are 

affected by the lumped DCB. Figure 24 summarizes the convergence times for all analysis cases, 

which confirm the PPP solution consistency at all stations. 

To further assess the performance of the various PPP models, the solution output is sampled every 

10 min and the standard deviation of the computed station coordinates is calculated for each sample. 

Figure 25 shows the position standard deviations in the East, North, and Up directions, respectively. 

Examining the standard deviations after 10 min, it can be seen that the semi-decoupled clock 

GPS/Galileo PPP model improves the precision of the estimated parameters by about 25% in 

comparison with the un-differenced GPS-only model. As the number of epochs, and consequently the 

number of measurements, increases the performance of the various models tends to be comparable. An 

exception, however, is the loose combination model, which is found superior to all other PPP models. 

 

Figure 24. Summary of convergence times of all stations and analysis cases.  

(1) Un-differenced GPS model; (2) Un-differenced GPS/Galileo model; (3) Decoupled clock 

model using GPS observations only; (4) semi-decoupled clock GPS/Galileo PPP model;  

(5) BSSD model with a GPS satellite as a reference; (6) BSSD model with a Galileo satellite as 

a reference; (7) BSSD model with both a GPS and a Galileo satellite as reference satellites;  

(8) BSSD semi-decoupled clock GPS/Galileo model with a GPS satellite as a reference;  

(9) BSSD semi-decoupled clock GPS/Galileo model with a Galileo satellite as a reference; 

(10) BSSD semi-decoupled clock GPS/Galileo model with both a GPS and a Galileo satellite 

as reference satellites. 

 

Figure 25. Cont. 
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Figure 25. Summary of positioning standard deviations in East, North, and Up directions of all 

stations and analysis cases. (1) Un-differenced GPS model; (2) Un-differenced GPS/Galileo 

model; (3) Decoupled clock model using GPS observations only; (4) semi-decoupled clock 

GPS/Galileo PPP model; (5) BSSD model with a GPS satellite as a reference; (6) BSSD model 

with a Galileo satellite as a reference; (7) BSSD model with both a GPS and a Galileo satellite 

as reference satellites; (8) BSSD semi-decoupled clock GPS/Galileo model with a GPS 

satellite as a reference; (9) BSSD semi-decoupled clock GPS/Galileo model with a Galileo 

satellite as a reference; (10) BSSD semi-decoupled clock GPS/Galileo model with both a GPS 

and a Galileo satellite as reference satellites. 

7. Conclusions 

This paper examined the performance of several PPP models, including the traditional  

un-differenced model, the decoupled clock model, the semi-decoupled clock model, and BSSD model. It 

has been shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock 

model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 

25% in comparison with the traditional un-differenced GPS-only model. In addition, the semi-decoupled 

GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional  

un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the 

solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, 

regardless of the type of BSSD combination used. As well, the BSSD GPS/Galileo model improves the 

precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations 

are used, respectively, in comparison with the traditional un-differenced GPS-only model. Comparable 

results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as  

a reference. 
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