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Abstract

This paper examines the asymptotic null distributions of the J and Cox non-nested
tests in the framework of two linear regression models with nearly orthogonal non-nested
regressors. The analysis is based on the concept of near population orthogonality (NPO),
according to which the non-nested regressors in the two models are nearly uncorrelated
in the population distribution from which they are drawn. New distributional results
emerge under NPO. The J and Cox tests tend to two di!erent random variables
asymptotically, each of which is expressible as a function of a nuisance parameter, c,
a N(0, 1) variate and a s2(q) variate, where q is the number of non-nested regressors in the
alternative model. The Monte Carlo method is used to show the relevance of the new
results in "nite samples and to compute alternative critical values for the two tests under
NPO by plugging consistent estimates of c into the relevant asymptotic expressions. An
empirical example illustrates the &plug in' procedure. ( 1999 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Most of the theoretical and empirical research on non-nested hypothesis
testing in econometrics has been carried out in the context of two possibly
nonlinear non-nested regression models and under the assumption of model
non-orthogonality; that is when the sample or population covariance matrix
among the non-nested regressors in the two models is a non-null matrix. This
restriction of model non-orthogonality introduces two related considerations
regarding non-nested tests. First, how valid are existing non-nested tests when
the non-nested regressors are suspected of being nearly orthogonal or uncor-
related? At the theoretical level this is as legitimate a question as it would be
when one suspects, for instance, heteroskedasticity or autocorrelation in the
data. Second, in applied work cases may arise when model non-orthogonality is
not a tenable assumption. For instance, in testing Keynsian versus New Classi-
cal theories of output or unemployment determination one has to use the OLS
residuals from government policy equations as generated regressors in the New
Classical empirical equations. Since Keynsian speci"cations have common
regressors with the policy equations this procedure gives rise to rival empirical
models with orthogonal regressors; see Pesaran (1982). Given these consider-
ations, it is important to investigate the asymptotic distribution of non-nested
tests under the assumption of model orthogonality.

The purpose of this paper is to derive, under a speci"c condition of model
orthogonality, the asymptotic null distributions of two well-known non-nested
hypothesis tests in econometrics: the Cox test (henceforth the C test) of Cox
(1961, 1962) and the J test of Davidson and MacKinnon (1981). The framework
of analysis involves two linear regression models with nearly orthogonal non-
overlapping or non-nested regressors. More speci"cally, the analysis is based on
the concept of near population orthogonality (NPO), according to which the
non-nested regressors in the two models are nearly uncorrelated in the popula-
tion distribution from which they are drawn.

New results emerge under NPO. The J and C tests tend to two di!erent
random variables asymptotically each of which is expressible as a function of
a nuisance parameter, denoted c, a N(0, 1) variate and a s2(q) variate, where q is
the number of non-nested regressors in the alternative model. Monte Carlo
simulations indicate that the theoretical results under NPO predict better than
standard results the "nite sample behavior of the J and C tests. Furthermore,
a new procedure is proposed for testing nearly orthogonal regression models.
This consists of plugging consistent estimates of c into the asymptotic expres-
sions to compute critical values for the two tests under NPO. Here, the Monte
Carlo evidence shows that the J test performs better than the C test.

The new theoretical results are useful in providing a correct understanding of
the behavior of non-nested tests under model orthogonality. First, reading the
early literature on this issue, one is left with the impression that non-nested tests
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are unde"ned when the non-nested models are orthogonal (e.g., see Pesaran,
1979; Klein, 1983). However, it should be clear from the results in this paper that
this is a false impression in general. Second, the J and C tests are no longer
asymptotically equivalent under NPO as they are in the standard case of non-
orthogonal models. Third, the new results provide additional theoretical in-
sights to the Monte Carlo evidence which shows that the J and C test tend to
over-reject more severely when the correlation among the non-nested regressors
is weakened (Godfrey and Pesaran, 1983).

The rest of the paper is organized as follows. Section 2 sets out the underlying
framework of analysis, which includes the models and the regularity conditions.
Section 3 reviews brie#y the standard case of non-orthogonal models. Section
4 discusses the asymptotic null distributions of the J and C tests under NPO.
Section 5 presents the results of a Monte Carlo experiment designed to investi-
gate the relevance of the new theoretical results in "nite samples and to compute
critical values for the two tests using the &plug in' procedure. Section 6 illustrates
the plug in procedure with an empirical example and the last section con-
cludes the paper. The appendix contains the proofs to the main results of the
paper.

2. The framework of analysis

Consider the following two non-nested linear regression models

H
0
: y"Xb#u, u&iid(0,p2I

n
), 0(p2(R, (2.1)

H
1
: y"Zc#v, v&iid(0,u2I

n
), 0(u2(R, (2.2)

where y is an n]1 vector of observations on the dependent variable, X and
Z are the n]p and n]q observation matrices of the explanatory variables of
models H

0
and H

1
respectively, b and c are p]1 and q]1 vectors of unknown

regression coe$cients and u and v are n]1 vectors representing the random
errors in the two models. We assume, for convenience, that the non-nested
models intersect only at the origin. If this assumption is not true to begin with,
then any common regressors can be removed in an obvious way, by projecting
the dependent variable and the non-overlapping regressors in each model into
the space orthogonal to the intersection subspace.

Whatever the joint distribution of columns of X and Z may be, we shall
assume that the following probability limits exist, are "nite and the matrices
R
xx

and R
zz

are non-singular:

(A1) plim
n?=

(n~1X@X)"R
xx

,
(A2) plim

n?=
(n~1Z@Z)"R

zz
.
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1 In fact, this is not a su$cient condition for the validity of standard asymptotic results. What is
required is R

xz
bO0 (see Godfrey and Pesaran, 1983, Appendix A).

In addition to (A1) and (A2) the following assumption has been made in the
literature for the standard case of non-orthogonal models.

(A3) plim
n?=

(n~1X@Z)"R
xz
O0.

The condition R
xz
O0 is to be understood as stating that not every element of

the p]q matrix R
xz

is zero.1 If that is not the case and the elements of R
xz

are
near but not necessarily equal to zero, then the distributional results that we
obtain are quite di!erent from those in the existing literature.

For the analysis of the non-nested tests under model orthogonality, we shall
replace (A3) by the following formalization of the notion of NPO:

(A4) plim
n?=

(n~1@2X@Z)"D,

where D is a p]q matrix of constants. Notice that condition (A4) implies that

plim
n?=

(n~1X@Z),R
xz
"0, (2.3)

where R
xz

is the covariance matrix of the random variables in X and Z and 0 is
a p]q matrix of zeros. It is obvious from (2.3) that the columns of X ad
Z become asymptotically uncorrelated or orthogonal as the sample size, n, tends
to in"nity. Since D is O(1) by assumption, asymptotic orthogonality is attained
at a rate proportional to n~1@2. Alternatively, as the sample size becomes large,
the sample matrices X and Z are drawn from a (p#q)-dimensional distribution
of which the p components are nearly uncorrelated with or orthogonal to the
remaining q components. For this reason, we call (A4) the near population
orthogonality condition.

It is illuminating to compare (A4) with the condition used by Staiger and
Stock (1997) in their recent work on instrumental variables with weakly corre-
lated instruments. For endogenous variables X and instruments Z, they let
X"Zn#w where w is a random error and n"Hn~1@2, so that the coe$cients
on the instruments Z in the "rst stage regression tend to zero at a rate
proportional to n~1@2. With standard conditions on (X, Z, w), this implies the
condition

(A4@) n~1@2X@ZPR
zz
H#m,

where m is multivariate normal with mean zero and covariance matrix p2
w
R

zz
.

Under (A4@), the key parameter c in the present paper can no longer be estimated
consistently and the problem of constructing alternative critical values for
the J and C tests will be magni"ed by the presence of additional nuisance
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parameters. On the other hand, (A4) allows consistent estimation of c and, as
will be seen below, does a fairly good job in delivering reasonable critical values
especially for the J test.

3. The standard case

In this section we brie#y consider the J and C tests and comment on their
asymptotic properties in the context of the two non-nested models in (2.1) and
(2.2) above and under the assumptions (A1)}(A3). We call this the standard case
in order to point out the fact that existing theory assumes that R

xz
O0.

The J tests is easily computed from an arti"cial regression as a t statistic for
a nesting parameter. Given the two linear models in (2.1) and (2.2), the J test
arti"cial regression may be written as

H
J
: y"Xb#aP

z
y#e, (3.1)

where P
z
"Z(Z@Z)~1Z@ and P

z
y"Zc( is the orthogonal projection on the span

of Z, representing the n]1 vector of "tted values from H
1
. Let a( be the ordinary

least squares (OLS) estimate of the nesting parameter a in (3.1). Then the J test is
simply the t-statistic for the hypothesis a"0, i.e.

J"
y@P

z
M

x
y

p(
J
(y@P

z
M

x
P
z
y)1@2

, (3.2)

where p(
J
is the OLS estimate of the standard deviation of the error in the J test

regression.
Turning to the C test, we adopt a criterion based on Cox's simpli"ed test

procedure discussed in Fisher (1983). As long as H
0

and H
1

have distributions
that belong to the Koopman}Darmois family this test is asymptotically equiva-
lent to the conventional Cox test and can also be interpreted either as a test
based on &parameters of interest' (Dastoor, 1983) or as a &variance encompassing
test' (Mizon and Richard, 1986). For a test of H

0
against H

1
this statistic may be

written as

C"

n(u( 2!u( 2H)
2p( (y@P

x
M

z
M

x
M

z
P
x
y)1@2

, (3.3)

where u( 2 is a consistent estimate of the error variance in the alternative model,
u( 2H is a consistent estimate of u2H, the pseudo-true value of u2 under H

0
, and p( is

a consistent estimate of the standard deviation of the error term in the null
model. In this paper, u( 2, u( 2H and p( will be taken to be the maximum likelihood
estimators of the corresponding population parameters. (e.g., see McAleer and
Pesaran, 1986).
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In the standard case, the asymptotic null distribution of each of the two tests
is standard normal. Furthermore, the J and minus the C tests tend to the same
random variable asymptotically and are thus asymptotically equivalent. Substi-

tuting for y"Xb#u in (3.2) and (3.3) and using the fact that, under H
0
, p(

J
1

P p,

and p( 1
P p, it can be easily seen that this random variable is

b@X@P
z
M

x
u

p(b@X@P
z
M

x
P

z
Xb)1@2

. (3.4)

4. Near population orthogonality

In this section we consider the asymptotic null distributions of the two tests
under near population orthogonality in the sense of the condition (A4) discussed
in Section 2. It should be clear from that discussion that NPO is much less
restrictive than ESO (exact sample orthogonality) according to which X and
Z are orthogonal in a given sample; i.e., X@Z"0. Further, our de"nition of
model orthogonality by the NPO condition (A4) is similar but not directly
comparable to the notion of asymptotic (local) orthogonality of Szroeter (1992,
p. 560); see also Kent, 1986. In fact, in the present context, it could be argued that
Szroeter's notion of orthogonality corresponds to R

xz
"0 as opposed to NPO

which means R
xz
"0 but DO0 exists.

4.1. The J test

Consider the J test for testing H
0
against H

1
given by (3.2). Under H

0
we have

y@P
z
M

x
y"b@X@P

z
M

x
u#u@P

z
M

x
u, (4.1)

y@P
z
M

x
P
z
y"b@X@P

z
M

x
P
z
Xb#2b@X@P

z
M

x
P

z
u#u@P

z
M

x
P

z
u (4.2)

and

p(
J

1
P p. (4.3)

Using the identity M
x
"I

n
!P

x
to expand the right-hand side of each of (4.1)

and (4.2) and using (A1), (A2) and (A4) to determine the terms of leading order of
magnitude, we obtain the asymptotic relations

y@P
z
M

x
y !
" b@X@P

z
u#u@P

z
u#O

1
(n~1@2) (4.4)

and

y@P
z
M

x
P
z
y !
" b@X@P

z
Xb#2b@X@P

z
u#u@P

z
u#O

1
(n~1@2), (4.5)
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2To see this explicitly, just substitute <
q
for <2

0
#<

q~1
in (4.7) after expanding the squared term

in the denominator.

where b@X@P
z
u, b@X@P

z
Xb, and u@P

z
u are all O

1
(1). In view of (4.3), (4.4) and (4.5)

it is clear that under H
0

the J statistic (3.2) converges asymptotically to the
random variable

b@X@P
z
u#u@P

z
u

p(b@X@P
z
Xb#2b@X@P

z
u#u@P

z
u)1@2

. (4.6)

In view of this result, we might expect the asymptotic null distribution of the
J test to be di!erent from its own distribution in the standard case and under
ESO. However, since it is possible that di!erent random variables may have the
same asymptotic distribution, it is necessary to obtain the asymptotic distribu-
tion of (4.6) and hence that of the J test. The following theorem provides this and
shows the exact form that this distribution takes.

Theorem 4.1. Under NPO the asymptotic null distribution of the J statistic (3.2) is
given by the random variable

J
npo

"

c<
0
#<2

0
#<

q~1
((<

0
#c)2#<

q~1
)1@2

, (4.7)

where c,D1@2/p in which D"b@DR~1
zz

D@b, <
0

is a N(0, 1) variate and <
q~1

is
a s2(q!1) variate which is independent of <

0
.

Proof. See the Appendix.

Theorem 4.1 makes it clear that the asymptotic null distribution of the J test is
a complicated function of a N(0, 1) variate and a s2(q) variate.2 Nonetheless, the
fact that these two variates appear in (4.7) is appealing because the former is
relevant in the standard case whereas the latter results under ESO (Michelis,
1996). Furthermore, the asymptotic expression (4.7) includes ESO and standard
results as special cases when c"0 and cPR respectively. Evidently, NPO
irons out the discontinuity in the distribution of the J test which arises under
ESO relative to the standard case.

The di!erent results for ESO and NPO may seem counterintuitive since one
might expect the same result under NPO as one gets under ESO. Nonetheless,
this "nding is signi"cant because it highlights the importance of the conceptual
distinction between ESO and NPO. In the context of this distinction the two
di!erent outcomes make perfect sense. The ESO result (i.e., J2&s2(q)) is
obtained under the restriction of zero sample correlations among the non-nested
regressors in H

0
and H

1
. On the other hand, NPO allows for non-zero sample
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correlations despite the fact that the columns of X and Z may arise from an
underlying parent joint distribution in which the corresponding population
correlations approach zero at a rate proportional to n~1@2.

Next, consider the special case when q"1. Evidently, in this case the J statis-
tic has the same asymptotic distribution under ESO as it does in the standard
case, namely N(0, 1). However, this is no longer true when q is greater than one.
Intuitively, in some sense, the problem with the distribution of the J test is to
determine its correct degrees of freedom (df ) when testing for the signi"cance of
the "tted values from the model H

1
. With standard asymptotics df"1 and with

ESO df"q. Clearly, the problem dissapears when q"1.

4.2. The C test

Consider, "rst, the numerator of (3.3). Using the de"nitions of u( 2 and u( 2H, and
upon further manipulation the numerator can be written as

n(u( 2!u( 2H)"y@P
x
P

z
P

x
y!y@P

z
y. (4.8)

Under H
0
, the right-hand side of (4.8) reduces to

2b@X@P
z
P
x
u#u@P

x
P

z
P

x
u!(2b@X@P

z
u#u@P

z
u). (4.9)

Therefore, using (A1), (A2) and (A4) to determine orders of magnitude and
retaining only the O

1
(1) terms, we have the following result asymptotically:

y@P
x
P

z
P

x
y!y@P

z
y !
" !(2b@X@P

z
u#u@P

z
u)#O

1
(n~1@2). (4.10)

Next consider the denominator of (3.3). Under H
0

the bracketed expression
becomes

y@P
x
M

z
M

x
M

z
P

x
y"b@X@M

z
M

x
M

z
Xb#2b@X@M

z
M

x
M

z
P
x
u

#u@P
x
M

z
M

x
M

z
P
x
u. (4.11)

Simplifying each term on the right-hand side of (4.11) by using the facts that
X@M

x
"0 and Z@M

z
"0, we can write

y@P
x
M

z
M

x
M

z
P

x
y !
" b@X@P

z
Xb#O

1
(n~1@2) (4.12)

in which b@X@P
z
Xb is O

1
(1) as before.

Putting together (4.10) and (4.12) and using the fact that under H
0

p( 1
P p, it is

easily seen that minus the C statistic (3.3) converges to the following random
variable asymptotically,

2b@X@P
z
u#u@P

z
u

2p(b@X@P
z
Xb)1@2

. (4.13)
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3Note that the mean of C
/10

is !q/2c which is negative, and the mean of J
/10

is positive with the
mean of its numerator being equal to q.

Given (4.13) we state and prove the following theorem regarding the asymptotic
null distribution of the C test.

Theorem 4.2. Under NPO with D non-null and D@bO0, the asymptotic null
distribution of the C statistic (3.3) is given by the random variable

C
/10

,!

2c<
0
#<

q
2c

, (4.14)

where c, <
0

and <
q

are the same quantities as those dexned in Theorem 4.1.

Proof. See the Appendix.

In Theorem 4.2 the condition D being non-null and D@bO0 is needed to rule
out the possibility of dividing the numerator of C

/10
by zero. It is clear from

(4.14) that the complete (standardized) Cox test is well de"ned under our notion
of model orthogonality in the sense of NPO. This result which is true under
NPO cannot be obtained under the existing notions of model orthogonality (i.e.,
ESO or R

xz
"0).

Yet, another important result emerges from the present analysis. In the
standard case the J and C tests are asymptotically equivalent not only in the
sense of having the same null distribution, but also because they tend to the
same random variable asymptotically. By contrast, under NPO this equivalence
is no longer true. To see this, notice "rst that a comparison of (4.6) and (4.13)
shows that the two tests are di!erent random variables asymptotically. Further-
more, Theorems 4.1 and 4.2 establish that the two tests have di!erent asymp-
totic null distributions as well. Consequently, studying these tests independently
is a useful and informative exercise in its own right.

Also, the results of the present paper may be viewed as providing theoretical
explanation of Monte Carlo evidence that indicates that the J and C tests tend
to over-reject the null more severely as the correlation among the non-nested
regressors decreases. Theorems 4.1 and 4.2 show that the J and C tests involve
not only a N(0, 1) variate but also a s2(q) variate. With c positive, the s2(q)
variate will shift the distribution of the J test to the right of N(0, 1) on average,
and the distribution the C test to the left of N(0, 1) because of the minus sign in
(4.14);3 see Figs. 1 and 2 below. Since non-nested hypothesis testing entails
two-sided tests and the simulation evidence is based on nominal values from
N(0, 1), each test will tend to over-reject the null more often under NPO. The
right shift of the J test will cause it to over-reject the null more often in the right
tail, and the left shift of the C test will cause it to over-reject the null more often
in the left tail.
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Fig. 1. Five edfs of the J test plotted against the cdf of N(0, 1) for q"2. The edfs are based on 20,000
replications with n"100.

Finally there is an useful interpretation of the parameter c in (4.7) and (4.14)
which distinguishes ESO, NPO and standard asymptotics. In particular, under
the null, c2 is the population analog of the chi-squared statistic for testing the
signi"cance of Z in the &"rst stage' regression used to obtain the "tted values
from H

1
. It is worth noting that c2 is not the actual chi-squared statistic testing

the signi"cance of Z in the model H
1
, but rather something which is equivalent

to it under the null hypothesis. Under NPO one should expect c2 to be small but
non-zero. Thus, the sample version of this statistic, c( 2"(bK X@P

z
XbK )2/p( 2, should

be quite useful in practice in detecting near orthogonality. In practice, of course,
any common regressors in empirical non-nested models must be removed
suitably before computing the c( 2 statistic. This can be accomplished by projec-
ting the regressand and the non-nested regressors in each model o! the intersec-
tion subspace in the two models.
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Fig. 2. Five edfs of the C test plotted against the cdf of N(0, 1) for q"2. The edfs are based on 20,000
replications with n"100.

In Staiger and Stock (1997) the Wald statistic plays a similar role in detecting
weak instruments. However, their speci"c asymptotics do not allow consistent
estimation of the Wald statistic. Here, in contrast, c( is a consistent estimator of
c and, in addition, the values of c( can be used in (4.7) and (4.14) to compute
alternative critical values for testing non-nested models with weakly correlated
non-nested regressors. We exploited this fact to obtain the Monte Carlo results
reported in Section 5.2.3 below.

5. Monte Carlo simulations

The purpose of the Monte Carlo simulations is to study the "nite sample
behavior of the J and C tests primarily under NPO. Three related questions of

L. Michelis / Journal of Econometrics 93 (1999) 369}401 379



4DRNNOF is a double precision subroutine that generates pseudo-random numbers from
N(0, 1) using the transformation method (e.g., see Davidson and MacKinnon (1993)).

practical signi"cance are analyzed. First, how do the J and C tests perform in
"nite samples and how important is NPO asymptotically? Second, do the
asymptotic formulae (4.7) and (4.14) yield good approximations to the "nite
sample distributions of the two tests when the non-nested regressors are weakly
correlated? Third, what is the size of each test under NPO, if one computes
critical values from (4.7) and (4.14) after substituting c( for c in the asymptotic
expressions? Three sets of Monte Carlo experiments were performed to investi-
gate these questions. The simulation results will be analyzed following the
description of the experimental design.

5.1. Design of the experiments

The design of the experiments is similar to that given in Godfrey and Pesaran
(1983). The &true' model that generated the n observations on the dependent
variable y was given by

H
0
: y

t
"b

0
#

p
+
i/1

b
i
x
ti
#u

t
, t"1,2, n, (5.1)

where b"(b
0
, b

1
,2, b

p
) is the vector of the true regression coe$cients. For

each replication the values of the explanatory variables x
ti

were generated
according to IIN(0, 1) using the pseudo-random number generating subroutine
DRNNOF from the IMSL library.4 The covariance matrix of the explanatory
variables was chosen to be the identity matrix, I

p
, so that E(x

ti
xlj

) is unity if t"l
and i"j and zero otherwise.

The values of the error term, u
t
, were also generated by the DRNNOF

subroutine according to IIN(0, p2) where p2 is the error variance in the model
given in H

0
. Furthermore, the values of u

t
were chosen independently of the

values of x
ti

so that E(x
ti
u
t
)"0 for all t and i.

The alternative &false' model was also linear and given by

H
1
: y

t
"c

0
#

q
+
i/1

c
i
z
ti
#w

t
, t"1,2, n, (5.2)

where c"(c
0
, c

1
,2, c

p
) is the vector of regression coe$cients and the error

term w
t
was generated, similarly to u

t
, according to N(0, u2) where u2 is the

error variance in the alternative model. All the values of c and u2 were "xed at
unity for all the experiments that were carried out.
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The DGP for each explanatory variable in H
1

was given by

z
ti
"t

i
x
ti
#v

ti
, i"1,2, min(p, q) (5.3)

and, if q'p,

z
ti
"v

ti
, i"p#1,2, q, (5.4)

with v
ti
&IIN(0, 1) for t"1,2, n. The values of the t

i
were set according to the

relation

t
i
"o

i
/(1!o2

i
)1@2, i"1,2, min(p, q), (5.5)

where o
i
is the simple population correlation coe$cient between x

ti
and z

ti
.

We carried out several experiments to cover various possibilities of interest in
the context of the issues raised earlier. The di!erent experiments that were
carried out involved the parameters (p, q, b, n, p, o

i
, c) which were used to

generate the data.
The parameters p and q represent the number of non-overlapping regressors

in H
0

and H
1
, respectively. The theoretical results in Section 4 depend explicitly

on q through the <
q
term in Theorems 4.1 and 4.2. Therefore, it was important

to consider di!erent values for q. Accordingly, we set p"2 and we investigated
the cases: q"2, q"4 and q"6. As mentioned earlier, it is important to set
q greater than one; otherwise the J2 statistic is numerically equal to the
F(1, n!p!q) statistic of which the distribution is known exactly and is
independent of the parameters o

i
. Also, the asymptotic null distributions of the

J and C tests depend explicitly on b, the regression coe$cient vector in H
0
,

through the c,D1@2/p term in the Theorems 4.1 and 4.2. Since what matters is
the value of c, we set b and p equal to unity throughout all the experiments and
changed the value of the key parameter c by changing the values of q and o

i
.

Of the remaining parameters, the sample size, n, was set at two values: some
experiments were performed with n"50 and some other with n"100. The
value n"50 is moderately small and is intended to capture the small sample
behavior of the J and C statistics in the various cases we investigated. If
asymptotic theory is ever going to be a poor guide in "nite samples it should be
in this case rather than when n"100. Alternatively, when n"100 we should
expect the experimental results to improve and be in closer agreement with
those provided by asymptotic theory.

The crucial parameters o
i
were set, via the t

i
in (5.5), at a range of high and

low values. Assuming that o
i
"o, typical values of o were

o"(0.70, 0.40, 0.20, 0.10, 0.01). We also carried out an extra set of experiments
where we allowed for di!erent o

i
. As long as all the o

i
are high (i.e., 0.40 or above)

or low (i.e., 0.30 or below), the experimental results were virtually the same as if
o
i
"o. For this reason we do not report the results in this case.
The computer programs used in the Monte Carlo experiments were written

in Fortran 77 and were executed on an IBM R/S 6000 workstation. Each
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experiment was started by calling the DRNNOF subroutine from the IMSL
library and then replicating either 5000 times for the numerical results or 20,000
times for the graphical results (see below).

5.2. Simulation results

The simulation results are displayed either in tabular form or in graphical
form. The former includes numerical tables with rejection frequencies, means
and variances of the two test statistics. The latter consists of plots of the
empirical distribution functions (EDF's) of the J and C statistics against either
the cumulative distribution function (CDF) of N(0, 1) or the EDFs of (4.7) and
(4.14) once with c known and another time with c estimated.

The plots were obtained as follows. To construct the EDFs we took the
experimental data for the relevant test statistics and sorted them in increasing
order of magnitude. From the sorted data we then computed cumulative relative
frequencies by choosing certain points over the range of the data. A total of 400
points were chosen. To construct the CDF of the standard normal distribution,
we generated 400 numbers from the interval !10.0 to #5.0 and then used the
IMSL subroutine DNORDF to compute the CDF of N(0, 1). Once the 400 data
points of sample cumulative relative frequencies and values of the standard
normal CDF were available, the EDFs and the CDF were plotted using the
motif graphing device of the software package S-PLUS (Statistical Sciences,
S-PLUS, 1993).

5.2.1. Comparison to standard results
The experiments in the "rst set were intended to assess the performance of the

J and C tests and the NPO results in relation to standard asymptotics. The
objectives in these comparisons were to examine how the J and C tests perform
with near orthogonality and to see how important is near orthogonality asymp-
totically. To accomplish these objectives we computed, for each of the 5000
replications, the J, C, J

/10
and C

/10
statistics given by (3.2), (3.3), (4.7) and (4.14)

respectively, and then we obtained estimates of Type I error (i.e., estimated size)
by calculating the proportion of times that each test rejected the null hypothesis
at the 10%, 5% and 1% nominal levels of signi"cance (i.e., nominal sizes). This
meant calculating the proportion of times that the test statistics were greater
than 1.645, 1.96 and 2.576 in absolute value (i.e., the 10%, 5% and 1% critical
values for the standard normal distribution). Besides calculating rejection fre-
quencies we also computed the sample means and variances for each test
statistic using the data from the total number of replications.

The numerical results for the J and C tests are contained in Tables 1 and
2 respectively. Several features emerge from these experiments. Consider "rst the
results in Table 1. It is clear that, in general, the estimated size and mean of
the J test increase, and its variance decreases as o and c take on smaller values.
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Table 1
Size, mean and variance of the J test

Estimated size

Z-reg.
in H

1

c-par. rho 10% 5% 1% Sample
mean

Sample
variance

q
c o

JM <(J)

7.06 0.70 0.1066 0.0550 0.0108 0.102 1.020
4.16 0.40 0.1151 0.0586 0.0168 0.301 1.001

2 2.41 0.20 0.1462 0.0800 0.0216 0.550 0.980
1.99 0.10 0.1536 0.0898 0.0260 0.680 0.904
1.50 0.01 0.1696 0.0996 0.0270 0.748 0.875

8.21 0.70 0.1570 0.0894 0.0270 0.495 1.106
5.66 0.40 0.1618 0.0934 0.0262 0.618 1.008

4 3.70 0.20 0.2282 0.1412 0.0444 0.916 0.960
2.97 0.10 0.2598 0.1738 0.0588 1.054 0.951
2.66 0.01 0.2774 0.1752 0.0606 1.111 0.902

8.28 0.70 0.2412 0.1548 0.0508 0.890 1.080
5.88 0.40 0.2442 0.1602 0.0556 0.942 1.069

6 4.17 0.20 0.3480 0.2380 0.0936 1.250 1.021
3.48 0.10 0.3838 0.2648 0.1096 1.371 0.978
3.33 0.01 0.4068 0.2828 0.1158 1.432 0.933

Note: Each experiment is based on 5000 replications and n"50.

5This result is not global and depends on the choice of the parameters in the experiments. For
instance, when the c parameter is made smaller by setting p"3, the size of the C test becomes
substantially larger than the size of the J test at every value of q. These results are available form the
author upon request.

The size distortions become excessively large as q increases successively from the
value of 2 to 4 to 6.

Turning to Table 2, it is seen that as o and c become smaller the size, mean (in
absolute value) and the variance of the C test all increase. When q"2, the
increase in size is much greater than is the case for the J test, and this is
especially true for values of o at 0.20 or below. Notice also the large increase in
the variance of the C test for low values of o and c. This stands in contrast to the
behavior of the J test, the variance of which falls under similar conditions.
Moreover, as q increases the size of the C test increases uniformly. However,
when q"4 and q"6 the size distortions are smaller for the C test than for the
J test.5

It is instructive to compare the behavior of the two tests for high and low
values of o and c. Notice that when o"0.70 and c"7.06, the two tests behave
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Table 2
Size, mean and variance of the C test

Estimated size

Z-reg.
in H

1

c-par. rho 10% 5% 1% Sample
mean

Sample
variance

q
c o

CM <(C)

7.06 0.70 0.1084 0.0536 0.0124 !0.091 1.030
4.16 0.40 0.1264 0.0770 0.0340 !0.281 1.262

2 2.41 0.20 0.1668 0.1202 0.0652 !0.560 1.990
1.99 0.10 0.1998 0.1558 0.0998 !0.780 3.304
1.50 0.01 0.2108 0.1678 0.1074 !0.881 3.803

8.21 0.70 0.1342 0.0780 0.0218 !0.340 1.116
5.66 0.40 0.1632 0.1092 0.0446 !0.513 1.243

4 3.70 0.20 0.1974 0.1460 0.0766 !0.745 1.470
2.97 0.10 0.2226 0.1674 0.0928 !0.844 1.631
2.66 0.01 0.2444 0.1830 0.1066 !0.920 1.832

8.28 0.70 0.1738 0.1048 0.0342 !0.540 1.150
5.88 0.40 0.1946 0.1304 0.0602 !0.722 1.219

6 4.17 0.20 0.2534 0.1844 0.0964 !0.920 1.481
3.48 0.10 0.2790 0.2062 0.1132 !1.031 1.518
3.33 0.01 0.2788 0.2062 0.1050 !1.032 1.533

Note: Each experiment is based on 5000 replications and n"50.

similarly and according to the standard theory. Both estimated sizes, mean and
variances are close to the nominal levels of the N(0, 1) distribution. But notice
that when o and c fall to 0.20 and 2.41 respectively the size of both tests is
excessively large.

A related issue is whether or not the observed di!erences in the simulation
results are due to experimental error. To investigate this, consider the case
(c, o)"(2.41, 0.20) where the estimated sizes of the J and C tests are 0.1462
and 0.1668 respectively. Let n( , n and N denote estimated size, nominal size and
number of replications respectively, and de"ne the z-score by z"(n(!n)/
(n(1!n)/N)1@2. Then under the null hypothesis that n"0.10, the z-scores are
10.89 and 15.74 respectively. Clearly, the null hypothesis is decisively rejected at
practically all signi"cance levels. As another example, when (c, o)"(7.06, 0.70)
and the nominal size is 5% the estimated sizes of the J and C tests are 0.0550 and
0.0536 respectively. Under the null that the size of each test is 5% the two
z-scores are 1.62 and 1.17 respectively. In this case the null hypothesis for either
test cannot be rejected at the 5% level of signi"cance.

In order to gain more insight on the dependence of the distributions of the
J and C tests on o (or equivalently c), we have plotted the CDF of N(0, 1) against
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the EDFs of the two tests for di!erent values of o. Figs. 1 and 2 contain the
relevant results for the J and C tests respectively. In both "gures the results were
obtained for the case with q"2 and n"100. Reading from the left (right), the
"rst curve is the CDF of N(0, 1) followed by the EDFs of the J (C) test for o set
at values 0.70, 0.40, 0.20, 0.10 and 0.01 respectively. The corresponding values of
the key parameter c are also reported on the graphs.

It is clear from Fig. 1 that the J test is not invariant with respect to o. As
o decreases gradually from 0.70 to 0.01 the EDFs of the J test drift further to the
right from the CDF of the standard normal distribution. Notice in particular
that even when o drops from 0.70 to the relatively high value of 0.40 the
distribution of the J test shifts; compare the two EDFs in Fig. 1 starting from the
left. Moreover, the shift to the right is greater when o drops from 0.40 to 0.10
than when it drops from 0.70 to 0.40. This "nding is explainable in terms of the
theory of Section 4 since at low values of o the J test does not follow the N(0, 1)
distribution.

A di!erent picture emerges from Fig. 2. As o falls toward zero, the EDFs of the
C test drift to the left rather than to the right as is the case for the J test under the
same conditions. This is understandable, since the C test has a negative mean
and the J test a positive mean. Notice also the shape di!erences in the distribtu-
tion functions of the J and C tests. The C test has a longer lower tail than the
J test and the tail becomes thicker as o decreases. Thus, given that rejection
frequencies are based on two-sided nominal critical values from N(0, 1), the
C test tends to over-reject more in the lower tail than in the upper tail compared
to the J test.

Tables 3 and 4 report the simulation results for the J
/10

and C
/10

statistics. In
what follows, when referring to nearly orthogonal samples it will be taken to be
samples arising from values of o"0.20 or less. Of course, in practice, near
orthogonality can be detected by means of a s2 test using the observed value of
c( 2.

Table 3 shows that the J
/10

statistic mimics closely the behavior of the J test
with nearly orthogonal samples. For every value of c, o and nominal size, the
size of J

/10
is less than the size of the J test in Table 1. This result is expected,

since the results in Table 1 measure the total size distortion of the J test whereas
the results in Table 3 can be viewed as measuring the proportion of the test's size
distortion accounted for by the near orthogonality. Viewed this way, it is evident
from comparing the Tables 1 and 3 that, for nearly orthogonal samples, NPO
explains over 95% of the actual size distortion of the J test. This is rather
compelling evidence for the relevance of the NPO results in explaining the
actual behavior of the J test in nearly orthogonal samples.

Table 4 documents the simulation results for the C
/10

statistic. Unlike J
/10

of
which the size is uniformly lower than that of the J test, the size of the
C

/10
statistic shows more variation in nearly orthogonal samples. For all values

of q, its size is uniformly above or below the size of the C test as the nominal size

L. Michelis / Journal of Econometrics 93 (1999) 369}401 385



Table 3
Size, mean and variance of the J

/10
statistic

Estimated size

Z-reg.
in H

1

c-par. rho 10% 5% 1% Sample
mean

Sample
variance

q
c o

J
/10
M <(J

/10
)

7.06 0.70 0.0988 0.0520 0.0092 0.162 0.970
4.16 0.40 0.1058 0.0550 0.0098 0.301 0.951

2 2.41 0.20 0.1332 0.0750 0.0192 0.530 0.920
1.99 0.10 0.1484 0.0846 0.0192 0.670 0.844
1.50 0.01 0.1610 0.0874 0.0210 0.728 0.825

8.21 0.70 0.1104 0.0524 0.0110 0.355 0.950
5.66 0.40 0.1360 0.0714 0.0160 0.568 0.888

4 3.70 0.20 0.2052 0.1226 0.0348 0.851 0.890
2.97 0.10 0.2472 0.1448 0.0420 1.034 0.832
2.66 0.01 0.2798 0.1734 0.0522 1.091 0.831

8.28 0.70 0.1562 0.0854 0.0246 0.620 0.930
5.88 0.40 0.1874 0.1074 0.0292 0.812 0.879

6 4.17 0.20 0.2944 0.1898 0.0616 1.140 0.861
3.48 0.10 0.3476 0.2428 0.0886 1.301 0.868
3.33 0.01 0.3702 0.2470 0.0870 1.352 0.803

Note: Each experiment is based on 5000 replications and n"50.

is 10% or 1% respectively. At the intermediate 5% level, the size of C
/10

is either
above or below the size of the C test reported in Table 2. This type of behavior of
the C

/10
statistic can be explained by its increasing variability, at every value of

q, as the samples become successively more orthogonal (see the last column
of Table 4).

Judging from the numerical and graphical results so far, it is clear that the
asymptotic equivalence of the two tests breaks down for nearly orthogonal
regression models. In this case, the distribution of the C test behaves di!erently,
and is more volatile than that of the J test. Overall, it seems that the J test tends
to behave better than the C test.

5.2.2. Comparison of EDF quantiles
This section reports the simulation results of the second set of experiments

designed to examine how well the asymptotic distributions under NPO approx-
imate the "nite sample distributions. This was done by comparing selected
quantile estimates from the EDFs of the J and J

/10
statistics and the EDFs of

the C and C
/10

statistics. Tables 5 and 6 report quantiles at the 50%, 75%, 90%,
95%, 97.5% and 99% levels for given values of q, c and o. To give the asymptotic
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Table 4
Size, mean and variance of the C

/10
statistic

Estimated size

Z-reg.
in H

1

c-par. rho 10% 5% 1% Sample
mean

Sample
variance

q
c o

C
/10
M <(C

/10
)

7.06 0.70 0.1056 0.0510 0.0088 !0.131 0.990
4.16 0.40 0.1238 0.0708 0.0212 !0.261 1.112

2 2.41 0.20 0.1814 0.1164 0.0518 !0.550 1.910
1.99 0.10 0.2290 0.1650 0.0878 !0.810 3.694
1.50 0.01 0.2400 0.1724 0.1002 !0.901 5.243

8.21 0.70 0.1182 0.0644 0.0146 !0.260 1.056
5.66 0.40 0.1560 0.0984 0.0354 !0.493 1.163

4 3.70 0.20 0.2116 0.1398 0.0596 !0.695 1.460
2.97 0.10 0.2504 0.1724 0.0784 !0.834 1.651
2.66 0.01 0.2562 0.1836 0.0896 !0.900 1.842

8.28 0.70 0.1354 0.0728 0.0218 !0.410 1.060
5.88 0.40 0.1978 0.1250 0.0412 !0.661 1.193

6 4.17 0.20 0.2480 0.1706 0.0718 !0.850 1.361
3.48 0.10 0.2802 0.2014 0.0892 !0.986 1.498
3.33 0.01 0.2978 0.2088 0.0960 !1.022 1.503

Note: Each experiment is based on 5000 replications and n"50.

theory a better chance of proving itself, we set n"100 and allowed for 20,000
replications in order to reduce the experimental error.

Table 5 shows the estimated quantiles from the EDFs of the J and
J
/10

statistics. As shown in the table, the J
/10

statistic delivers quantile estimates
which are near to those of the J test when the samples are nearly orthogonal.
This is especially true when q"2, with the di!erence between corresponding
quantiles becoming slightly greater as q increases. For instance, the 90% pairs of
quantiles of the J and J

/10
statistics when o"0.20 and q"[(2), (4), (6)] are

[(1.666, 1.652), (1.925, 1.881), (2.260, 2.181)] respectively. On the other hand,
when the samples are not orthogonal the quantile di!erences are greater.
Consider for example the 90% quantiles of J and J

/10
for the three values of

q when o"0.70. They are [(1.368, 1.264), (1.642, 1.540), (1.923, 1.691)] respec-
tively. Clearly the di!erences in the latter pairs of quantiles are greater than the
di!erences in the former pairs. These results are as expected, since the NPO
expression (4.7) should have more predictive power with nearly orthogonal
samples.

Table 6 gives the estimated quantiles for the C and C
/10

statistics. The results
here are, in some respects, di!erent from those in Table 5. For every value of q,
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Fig. 3. The edfs of the J, J
/10

and J
1*/

tests for o"0.10, c"1.99 and q"2. The edfs are based on
20,000 replications with n"100.

the 50% quantiles are now negative rather than positive. Also, with nearly
orthogonal samples the C and C

/10
quantiles are smaller than those of the J and

J
/10

statistics. Again, this re#ects the leftward shift in the distribution of the
C test that was documented above in Table 2 and Fig. 2. More importantly, the
predictive performance of C

/10
is not as good as that of the J

/10
statistic. With

nearly orthogonal samples the gap between the C and C
/10

quantiles is greater
that the gap between the J and J

/10
quantiles. For instance, with q"2 and

o"0.01 the absolute di!erence of the 90% quantiles in Table 6 is 0.234, about
ten times larger than the value of 0.024 observed under the same conditions in
Table 5. At q"4 or q"6, the quantile di!erences are reduced at every nominal
level but remain relatively larger compared to those in Table 5.

To extract more information about the behavior of the EDFs with
nearly orthogonal samples, we plotted them in Figs. 3}8. In some "gures, the
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Fig. 4. The edfs of the J, J
/10

and J
1*/

tests for o"0.10, c"2.97 and q"4. The edfs are based on
20,000 replications with n"100.

horizontal axis was set at di!erent ranges in order to highlight the distinction
among the tests. In the "gures, in addition to the EDFs of J, J

/10
, C and C

/10
, the

EDFs of J
1*/

and C
1*/

were also plotted. The latter two EDFs are useful in
practice and correspond to the asymptotic expressions (4.7) and (4.14) with
c estimated by c( from the simulated data rather than assumed known. Because
of the consistency of c( , the EDFs of J

1*/
and C

1*/
are almost exactly overlayed

onto the EDFs of J
/10

and C
/10

respectively, so that only two EDFs appear
visible in each graph. In all cases shown, the EDFs were constructed from 20,000
replications with n"100, o"0.10 and q"2, 4, 6 along with corresponding
values of c. As shown in the Figs. 3}5, the EDFs of J and J

/10
are much more

tied together than the EDFs of C and C
/10

in the Figs. 6}8. The EDFs of
J
/10

track very well the EDFs of the J statistic throughout the whole range of
their variation, but that is not the case with the EDFs of C and C

/10
which seem
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Fig. 5. The edfs of the J, J
/10

and J
1*/

tests for o"0.10, c"3.48 and q"6. The edfs are based on
20,000 replications with n"100.

to deviate more from each other in the tails of their distributions. Further, the
C and C

/10
statistics have a much longer left tail than do the J and J

/10
statistics.

Overall, it seems that J
/10

predicts better the behavior of the J test than does
C

/10
for the C test.

It is of considerable importance that the observable J
1*/

and C
1*/

statistics
track almost exactly the J

/10
and C

/10
statistics which are not observable in

practice. This means that the above arguments could be justi"ably re-casted in
terms of the J

1*/
and C

1*/
statistics instead of the J

/10
and C

/10
statistics. Further,

as an anonymous referee suggested, one may use the observed quantiles of the
J
1*/

and C
1*/

statistics, rather than those of N(0, 1), for the purpose of testing
nearly orthogonal regression models. We outline this testing procedure in the
next section.
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Fig. 6. The edfs of the C, C
/10

and C
1*/

tests for o"0.10, c"1.99 and q"2. The edfs are based on
20,000 replications with n"100.

6The term plug in was suggested by an anonymous associate editor.

5.2.3. The plug in test
In this section we exploit the fact that the c( is a consistent estimator of c and

use it to construct reasonably sized tests for testing nearly orthogonal non-
nested regression models. To construct a test, realized values of c( are plugged
into either (4.7) or (4.14) instead of known values of c. For this reason, we call
this the plug in test.6 Two issues should be clear in relation to this test. First,
signi"cance is the key concern with the plug in test; that is, the question is
whether the population value of c is small enough to invalidate using the
standard J and C tests. Second, this is a somewhat ad hoc procedure since the
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Fig. 7. The edfs of the C, C
/10

and C
1*/

tests for o"0.10, c"2.97 and q"4. The edfs are based on
20,000 replications with n"100.

actual distribution of each test conditional on the outcome of the pre-test with
respect to c is unknown.

To carry out this test, the following steps are required:

1. Use the data to estimate c by c("bK X@P
z
XbK /p( where bK and p( are the OLS or

maximum likelihood estimators of b and p respectively. If c( 2 is statistically
signi"cant, relative to an appropriate s2 distribution, conclude that the
models are not nearly orthogonal and use the conventional J or C test.
Otherwise proceed as in (b) and (c).

2. Plug in c( in (4.7) or (4.14) and compute the desired quantile of the J
1*/

or
C

1*/
statistic.

3. Compute the J or C test and compare its realized value to the critical value
(quantile) obtained from (b). Reject the model under the null if the test
statistic exceeds the critical value.
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Fig. 8. The edfs of the C, C
/10

and C
1*/

tests for o"0.10, c"3.48 and q"6. The edfs are based on
20,000 replications with n"100.

Is the plug in test properly sized? We investigated this question by the third
set of the Monte Carlo experiments. The simulations were carried out for nearly
orthogonal samples only and for n"100. Tables 7 and 8 contain the simulation
results for the estimated size of the plug in tests, denoted J

p
and C

p
respectively.

The critical values used for the two tests were obtained from the EDFs of the
J
1*/

and C
1*/

statistics respectively based on 20,000 replications with n"100.
For the sake of comparison, the sizes of the conventional J and C tests are also
given in the tables.

Table 7 shows the estimated size of the J
p
and J tests. It is clear from the table

that the size of J
p

is remarkably near its nominal level at every value of q. It
over-rejects the null only slightly at the 10% nominal level when q"4 or q"6
and o"0.01. On the other hand, under the same conditions the J test has very
large size distortion which increases dramatically with q even when n"100.
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Table 7
Estimated Size of the J

p
and J tests

Estimated size of

J
p

J

q c o 10% 5% 1% 10% 5% 1%

2.41 0.20 0.1018 0.0495 0.0140 0.1189 0.0650 0.0186
2 1.99 0.10 0.1094 0.0558 0.0114 0.1508 0.0846 0.0208

1.50 0.01 0.1050 0.0578 0.0136 0.1658 0.0944 0.0224

3.70 0.20 0.1084 0.0566 0.0116 0.1996 0.1214 0.0384
4 2.97 0.10 0.1098 0.0572 0.0146 0.2678 0.1674 0.0512

2.66 0.01 0.1114 0.0574 0.0130 0.2778 0.1774 0.0574

4.17 0.20 0.1058 0.0518 0.0138 0.3052 0.2012 0.0682
6 2.48 0.10 0.1090 0.0522 0.0118 0.3614 0.2508 0.0914

3.33 0.01 0.1108 0.0516 0.0148 0.3936 0.2684 0.1038

Note: Each experiment is based on 20,000 replications and n"100.

Table 8
Estimated Size of the C

p
and C tests

Estimated size of

C
p

C

q c o 10% 5% 1% 10% 5% 1%

2.41 0.20 0.0950 0.0480 0.0094 0.1412 0.0952 0.0458
2 1.99 0.10 0.0881 0.0413 0.0101 0.1770 0.1398 0.0818

1.50 0.01 0.0881 0.0398 0.0081 0.2080 0.1652 0.1034

3.70 0.20 0.0856 0.0163 0.0103 0.1742 0.1224 0.0554
4 2.97 0.10 0.0877 0.0430 0.0100 0.2000 0.1474 0.0858

2.66 0.01 0.0824 0.0404 0.0080 0.2436 0.1830 0.1054

4.17 0.20 0.0788 0.0385 0.0080 0.2146 0.1532 0.0714
6 3.48 0.10 0.0751 0.0342 0.0067 0.2566 0.1866 0.0918

3.33 0.01 0.0669 0.0288 0.0053 0.2854 0.2078 0.1044

Note: Each experiment is based on 20,000 replications and n"100.

Table 8 reports the results for the C
p

and C tests. As the results indicate, the
C

p
test tends to be undersized at every value of q. It seems that the under-

rejection problem becomes more severe when q increases and when the samples
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become more orthogonal. This under-rejection property of C
p
can be attributed

to the fact that the quantiles of C
1*/

are larger than the quantiles of C with nearly
orthogonal samples; see Table 6 and Figs. 6}8.

Comparing the simulation results in Tables 7 and 8 it is plainly clear that the
J
p

test outperforms the C
p

test in terms of size. The size of J
p

is much closer to
the nominal level at every value of q and is more stable across nearly orthogonal
samples. For those reasons, it may be preferable to use the J

p
test in practical

applications. An empirical example is given in the next section.

6. Empirical example

This section gives a brief empirical example to demonstrate the practical
signi"cance of weakly correlated regressors and, at the same time, demonstrate
the plug in testing procedure outlined in the previous section. Beyond these
objectives, no serious attempt was made to evaluate the models with the battery
of model speci"cation tests that exist in the literature. In this sense, the empirical
results should be viewed as illustrative.

In the example we consider two non-nested aggregate unemployment models:
one justi"ed by standard Keynesian arguments (the K-model) and the other
deriving from the Natural Rate/Rational Expectations hypothesis (the R-
model); see for example Neftci and Sargent (1978) and Pesaran (1982). From
a Keynesian perspective, the systematic components of "scal and monetary
policies can in#uence the real side of an economy, so that including lagged
values of such policy variables in an unemployment equation makes perfect
sense. On the other hand, according to the Natural Rate/Rational Expectations
hypothesis only the random components of government policies matter. The
real e!ects of the systematic components of policies are nulli"ed by the o!setting
behavior of rational and forward looking economic agents. The K and R models
were speci"ed as follows:

K: ;
t
"b

0
#b

1
;

t~1
#b

2
t#b

3
M

t~1
#b

4
G

t~1
#e

Kt
, (6.1)

R: ;
t
"c

0
#c

1
;

t~1
#c

2
RESG

t
#c

3
RESM

t
#e

Rt
. (6.2)

The variables are:;
t
"log[;R

t
/(1!;R

t
)], where;R

t
is the rate of unemploy-

ment, M
t
"log(M1

t
), where M1

t
is the narrow de"nition of the money supply,

G
t
"log(GE

t
) where GE

t
is real government expenditures measured in 1990

prices and RESG
t
and RESM

t
are proxies for the unobserved random compo-

nents of the "scal and monetary policies respectively. These proxies were
obtained as the OLS residuals from regressing G

t
and M

t
on a constant, ;

t~1
,

M
t~1

and G
t~1

respectively. As in Pesaran (1982), the Keynesian speci"cation
includes a time trend variable, t, to capture trend changes in labour participa-
tion and other slowly changing variables.
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The data used in the empirical example are annual time series US data for the
period 1948}1996 and, except for the rate of unemployment, were obtained from
the IFS data base of the IMF. The unemployment rate was not available in the
IFS and was obtained from the Cansim tape of Statistics Canada. Given these
data, the two models were estimated by the method of iterated maximum
likelihood which adjusts for "rst-order serial correlation. The "tted versions of
Eqs. (6.1) and (6.2) are

K: ;K
t
"!1.29 #0.225;

t~1
#0.026t !0.003G

t~1
!0.237M

t~1
,

(1.54) (0.151) (0.034) (0.001) (0.151)

R: ;K
t
"!2.22 #0.213;

t~1
!0.002RESG

t
#1.68RESM

t
.

(0.387) (0.0003) (0.133) (0.802)

The numbers in the parentheses are standard errors of the estimated coe$cients.
Also, we computed R2"0.60, and D="1.86 for the K-model and R2"0.66
and D="1.97 for the R-model.

In testing K versus R, the c( estimate turned out to be 1.989. The square of c( is
3.956 which is less than 5.99, the 5% critical value of the s2 distribution with
q"2 degrees of freedom. Consequently, we conclude that the two models are
nearly orthogonal and proceed with steps (b) and (c) of the plug in test. The
J
p

test will be employed since it has better size properties than the C
p

test.
Suppose the non-nested test is carried out at the 5% level. Using the corre-
sponding critical values from the N(0, 1) and s2(1) distributions along with
c("1.989 in the expression (4.7) yields the critical value J

1*/
"2.63. The realized

value of the J statistic was computed from the data to be 3.88. Since this exceeds
the number 2.63, the K model is rejected by the evidence provided by the
R model.

Similarly, in testing the R-model against the K-model the value of c( was 0.447.
This together with the 5% critical values of the N(0, 1) and s2(2) yielded the
value J

1*/
"3.119. In this case the J statistic was computed to be 2.75. This falls

in the non-rejection region of the test. Therefore, the R-model can not be
rejected by the evidence provided by the K-model. This turns out to be a rather
appealing result since the R-model is more parsimonious than the K model
(q"2 versus q"3). Also, notice that if the conventional procedure had been
applied both models would have been rejected since in both cases the J test is
greater than 1.96, the critical value of the N(0, 1).

7. Conclusion

This paper investigated the asymptotic null distributions of the J and Cox
non-nested tests under a speci"c assumption of model orthogonality. Having
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introduced the NPO condition, new distributional results have been obtained.
The two tests converge to two di!erent random variables asymptotically, each
of which is expressible as a function of a nuisance parameter, c, a N(0, 1) variate
and a s2 variate. As a result, they are no longer asymptotically equivalent as they
are in the standard case of non-orthogonal models.

The simulation results show that, with nearly orthogonal models, the J and
C tests have excessive size distortion that increases with the number of non-
nested regressors in the alternative model. The size distortion is accounted for, in
large measure, by the simulated NPO expressions derived in the paper. Our
formalization of NPO by the condition (A4) allows for consistent estimation of
the nuisance parameter, c, from the data. Based on this insight, a new plug in
testing procedure is proposed for testing nearly orthogonal non-nested regres-
sion models. The Monte Carlo evidence shows that the plug in test incorporat-
ing the J test has better size properties than the plug in test associated with the
C test. An empirical example involving two aggregate non-nested unemploy-
ment models was used to demonstrate the practical usefulness of the plug in
test.

This paper has focused on the null distributions of the J and Cox non-nested
tests under NPO. It would be informative to investigate and compare the
size/power properties of the plug in test with other testing procedures that may
have desirable properties under near orthogonality. One possibility is to con-
sider J-type or C-type bootstrap tests. Another possibility is to consider non-
nested pretest tests that combine the J or C test through pretesting for model
orthogonality with other tests, such as the J

A
test of Fisher and McAleer

(1981) or the encompassing F test. This is a topic under current research by the
author.
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Appendix

Proof of Theorem 4.1. Start from (4.6) and consider "rst the term b@X@P
z
u. It is

easily seen that<
0
,b@X@P

z
u/p(b@X@P

z
Xb)1@2 is a N(0, 1) variate asymptotically.

Also, under (A1)}(A3) b@X@P
z
Xb 1

P D,b@DR~1
zz

D@b. Therefore, we obtain
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b@X@P
z
u !
" pD1@2<

0
. Next, consider the term <

q
,u@P

z
u/p2. Obviously this is

distributed as s2(q) asymptotically. Further, notice that u@P
z
u can be written as

the sum of two independent components: <
q
"<2

0
#<

q~1
. In fact,

p2<
q
"u@P

z
u"u@P

1
u#u@(P

z
!P

1
)u, (A.1)

where P
1

is the orthogonal projection matrix on to S[P
z
Xb]. The decomposi-

tion in (A.1) can be understood by noting that P
z
Xb is one vector in the

q-dimensional span of P
z
, and so P

z
can be split into the sum of two mutually

orthogonal projections, one on to the direction of P
z
Xb and one on to its

orthogonal complement. Dividing both sides of (A.1) by p2 we obtain

<
q
"u@P

1
u/p2#u@(P

z
!P

1
)u/p2. (A.2)

The "rst term in (A.2) is just <2
0

and the second term, denoted <
q~1

, is
independent of it and distributed as s2(q!1). To complete the proof, substitute
pD1@2<

0
for b@X@P

z
u and p2<

q
for u@P

z
u in (4.6). Then using the decomposition

<
q
"<2

0
#<

q~1
, letting c"D1@2/p and manipulating the resulting expression

algebraically gives the desired result. h

Proof of Theorem 4.2. It su$ces to consider the distribution of each term in
(4.13). From the proof of Theorem 4.1) we know that b@X@P

z
u !
" pD1@2<

0
where

<
0
&N(0, 1), u@P

z
u !
" p2<

q
where <

q
&s2(q), and b@X@P

x
Xb 1

P D. Conse-

quently, de"ning c"D1@2/p as before and substituting each of these relations in
(4.13) gives the desired result (4.14). h
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