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The floating and sinking of objects on fluid-fluid interfaces occurs in nature, and has

many important implications in technology. Here, we study the stability of floating

self-assembled spheres on an oil-water interface, and how the sphere deposition ge-

ometry affects the size limits of the assemblies before they collapse and sink through

the interface. Specifically, we compare the critical size of particle rafts to particle

stacks. We show that, on liquid-liquid interfaces, monolayer rafts and stacked spheres

exhibit different scaling of the critical number of spheres to the Bond number—the

dimensionless ratio of buoyancy to interfacial tension effects. Our results indicate

that particle stacks will sink with a lower threshold number of particles than parti-

cle rafts. This finding may have important implications to engineering applications

where interfacial assemblies are not monolayers.
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I. INTRODUCTION

The floating and sinking of objects on fluid-fluid interfaces is of practical importance in

many applications.1 In nature, water striders and other insects depend on the support of

surface tension and buoyancy to stand above the free interface of water.2,3 Fire ants link

their bodies together to improve their collective water repellency, so that they can stay

afloat and avoid drowning.4,5 In technology, water-walking robots exploit the dependency

of the force from surface tension on the robot’s surface area, to increase their load carry-

ing capacity.6–8 Gravity-induced destabilization of granular rafts and colloid monolayers on

fluid-fluid interfaces may be used to encapsulate oils9 and create Pickering emulsions,10,11

respectively.

In this paper, we consider the self-assembly and destabilization of monodisperse particles

at a liquid-liquid interface, and attempt to address the question of how large such assemblies

can get before they sink. While related problems have been studied previously in two12–14

and three9,15 dimensions, those systems only consider monolayer particle rafts. Here, we ask

the additional question of what happens when the particle deposition geometry changes;

namely, how results change if particles are loaded on top of each other on the liquid-liquid

interface (as opposed to particles placed adjacent to each other in forming monolayer rafts).

We first report our experimental findings, then we compare our results to previous calcu-

lations of the threshold particle density ratio that identifies collapsible and arbitrarily large

rafts and stacks. Finally, for collapsible systems, we develop simple scaling models based on

the dimensionless Bond number, for the critical number of spheres that trigger interfacial

sinking. We find distinctively different power-laws for particle rafts and stacks, which agree

with our experimental observations. Our work also reveals that particle stacks collapse with

a lower threshold number of spheres, when compared to particle rafts.

II. EXPERIMENTAL METHODS

In experiments, we fill a glass container that has equal side-lengths, 15 × 15 × 15 cm,

with 2 L of deionized (DI) water and 1 L of olive oil (Marque Gallo Brand, Portugal). The

DI water and olive oil have densities ρw = 1,000 and ρo = 911 kg/m3, respectively, and

viscosities ηw = 1 and ηo = 84 mPa s, respectively. Before we deposit spheres on the oil-
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FIG. 1. (Color online) (a) Nylon spheres are deposited, one-at-a-time, from above the glass con-

tainer. Each sphere descends through the oil phase and settles at the oil-water interface. The

spheres attract via a combination of interfacial capillary and buoyancy effects, to form a cluster.

The cluster is allowed to completely settle at the liquid-liquid interface before additional spheres

are added. (b) A monolayer raft is formed by placing new spheres away from the spheres that are

already on the oil-water interface. (c) When spheres are stacked on top of each other, they form

an assembly that has an approximate spheroidal shape.

water interface, the oil-water system is allowed to settle for ∼2 hours so that the interface

becomes completely stable.

Nylon spheres (Precision Plastic Ball Co., Franklin Park, IL, USA), with density ρs =

1,150 kg/m3, and radii a = 1.2 to 3.2 mm, are deposited from above the oil phase in the

container one-at-a-time. The spheres descend through the oil phase and settle on the liquid-

liquid interface (Fig. 1 (a)). We wait until the self-assembled spheres have reached a stable

state before adding more spheres to the assembly. Prior to each experiment the spheres are

washed in an isopropyl-based cleaning agent, and air dried.

We modify the interfacial tension of the oil-water interface by adding the surfactant

sodium dodecyl sulfate (SDS, Sigma-Aldrich, St. Louis, MO, USA) to the DI water, and

measure the interfacial tension using the pendant drop method. We find the oil-water

interfacial tensions, γ = 11.7 (4 mM SDS), 14.5 (2 mM SDS), 18.5 (1 mM SDS), and 24.9

(0 mM SDS) mN/m.

We use a digital SLR camera (Nikon D90, Tokyo, Japan) with a marco lens (Nikkor

85 mm f/3.5G, Tokyo, Japan) to image the spheres’ interfacial self-assembly and eventual

sinking. The camera is set on a tripod and focused at the center of the oil-water interface

(see Fig. 1 (a)). We apply LED back-lighting (Edmund Optics, Barrington, NJ, USA) to

improve the image contrast.
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 (d)                                      (e)                                      (f)
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FIG. 2. Spheres of radius a = 2.8 mm, assemble on an oil-water interface with interfacial tension

γ = 24.9 mN/m. In making interfacial rafts, (a) a sedimenting sphere descends to the liquid-liquid

interface away from other spheres, (b) the sphere gets pulled to the particle raft by a combination

of interfacial deformation and gravity, and (c) the sphere self-assembles with the other spheres

of the existing raft. When we stack the spheres on the liquid-liquid interface, (d) a sphere will

descend on top of the spheres that are already at the interface, (e) often resulting in an instability

and subsequent cluster rotation, and (f) finally settle into a quasi-equilibrium state at the interface.

Large clusters of 10 spheres, each with radius a = 2.2 mm, assemble in equilibrium by the (g) raft

and (h) stack methods on the oil-water interface. Here, the shape of the equilibrated liquid-liquid

interface is much more deformed in supporting a particle stack than a raft of the same number of

spheres. The stacked cluster collapses at critical sphere number N = 11, and (i) the sphere raft

supports up to 23 spheres (before collapsing at N = 24 spheres). Scale bar indicates 5 mm.

III. RESULTS AND DISCUSSIONS

A. Assembling interfacial particle rafts and particle stacks

The two different methods that we use to deposit the spheres result in the formation of

sphere rafts (Fig. 1 (b)) and sphere stacks (Fig. 1 (c)). In forming rafts, we place new

spheres away from spheres that are already at the interface (Fig. 2 (a)). Depositing new

spheres on the oil-water interface causes the spheres to self-assemble by a combination of

interfacial deformation and gravity, to form a monolayer on the liquid-liquid interface (Figs.

2 (b) and (c)). This type of interfacial particle self-assembly has been studied previously,16,17
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and it is termed the Cheerios effect in reference to how cereals tend to cluster on the free

interface of a bowl of milk.18

In Fig. 2, we differentiate the stacking configuration by the deposition of new spheres

on top of existing spheres at the interface (Fig. 2 (d)). Maintaining a new sphere vertically

on top of an existing interfacial cluster often results in an instability, where the entire stack

will rearrange and rotate until it arrives at a more energetically favorable state (see example

Figs. 2 (e) and (f)).

Figs. 2 (g) and (h) show stack and raft clusters, respectively; each cluster has 10 spheres

in equilibrium on the liquid-liquid interface. Here the sphere radius a = 2.2 mm, and the

liquid-liquid interfacial tension γ = 24.9 mN/m. The equilibrated liquid-liquid interface

is much more deformed in supporting a particle stack than a raft of the same number of

spheres. For stacked sphere clusters, the interface consistently maintains an approximately

spheroidal assembly (Fig. 2 (g)); whereas liquid-liquid interfaces that support monolayer

particle rafts take on a shape that is more similar to a curved elastic sheet (Fig. 2 (h)). In

this particular case, the stack sinks with a critical size N = 11, while the raft continues to

support up to 23 spheres (Fig. 2 (i)). When the final sphere (N = 24) is added to the raft,

the raft collapses and passes through the interface.

B. Collapse and sinking at above a critical number of spheres

Previous calculations13 had showed that, in a two-dimensional geometry, where the aspect

ratio t = a/`c accounts for the finite radius a of the particles and the capillary length

`c = (γ/(ρw − ρo)g)1/2, the ratio D = (ρs − ρo)t/(ρw − ρo) determines whether a floating

raft can grow arbitrarily large without ever sinking (when D < Dmax), or eventually sink at

above a critical particle number (when D > Dmax). Here, g = 9.81 m/s2 is the acceleration

due to gravity, and Dmax is the threshold density ratio. The ratio D compares the depth of

the interfacial deformation caused by the presence of the particles, to the capillary length

`c.

As described in more detail in a review by Vella,1 D < Dmax corresponds to the condition

where the relative density of the particles is so low that the addition of more particles

would simply lower the entire assembly, and the increase in hydrostatic pressure would

accommodate the additional particles. When D > Dmax, the relative density of the particles
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is sufficiently large that, at a critical number of particles, the aggregate weight from all of

the particles lowers the assembly by an amount that is greater than the capillary length `c,

which causes the assembly to sink.

The inset in Fig. 3 (a) shows a plot of our three-dimensional system’s threshold density

ratio Dmax versus the interfacial tension γ. × and + indicates values obtained from exper-

iments of raft and stack configurations, respectively. For each value of interfacial tension

γ, we systematically vary the sphere radius a as we assemble interfacial rafts and stacks.

We find that the threshold value Dmax ≈ 1 in all of our three-dimensional raft and stack

experiments.

We obtain this result by assuming that we attain an infinite raft or stack when we deplete

our supply of (more than 100) spheres, or when the cluster extends to the boundaries of the

glass tank, without triggering an instability and sinking. Notably, we observe similar values

of the threshold density ratio Dmax in both sphere raft and sphere stack experiments. Our

experimental value Dmax ≈ 1 is similar to the previous calculation Dmax =
√

2, which was

made for a two-dimensional geometry,13 and our result agrees with Abkarian et al.,9 who

found that axisymmetric monolayer particle rafts do not sink when D << 1.

In the regime where D > Dmax, instability is initiated once the floating raft or stack

reaches a critical sphere number, N . Fig. 3 (a) shows a plot of the critical sphere number,

N , versus individual sphere radius, a. Solid symbols show data from raft experiments,

and empty symbols reflect results from stacking spheres on the oil-water interface. For

each configuration, we also vary the liquid-liquid interfacial tension, γ, to observe how the

interfacial restoring energy affects the critical sphere number N . Each data point on the

plot is averaged from ten experiments, and error bars represent one standard deviation.

We observe that the critical number of spheres N decreases monotonically with increasing

sphere radius a, and grows monotonically as the oil-water interfacial tension γ is increased.

With sphere radius a and interfacial tension γ fixed, clusters in the raft configuration tend to

grow to a larger sphere number than stacked clusters, before collapsing and sinking through

the liquid-liquid interface.

Figs. 3 (b) and (c) show representative image sequences of collapsing rafts and stacks,

respectively, immediately after the onset of instability. Here the interfacial tension γ = 24.9

mN/m, and the sphere radius a = 2.8 mm. The collapse initiates at the location of the

critical sphere, and propagates to pull in the surrounding spheres. As the cluster descends
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FIG. 3. Sphere rafts and stacks of different sizes are formed on an oil-water interface. The rafts

and stacks eventually collapse and sink through the interface when the cluster size reaches a critical

sphere number, N . (a) The critical sphere number N varies with changes in the sphere radius a, the

oil-water interfacial tension γ, and the deposition configuration (either raft or stack). We find that

the cluster size N grows monotonically with decreasing sphere size a, and with increasing interfacial

tension γ. We also find that spheres deposited into a monolayer raft configuration sinks through

the interface as a larger cluster than spheres stacked into a spheroidal stack. Error bars represent

one standard deviation. The inset shows the threshold ratio Dmax versus interfacial tension γ. ×

and + indicates values obtained from experiments of raft and stack configurations, respectively.

Image sequences of spheres with radius a = 2.8 mm, assembling into (b) rafts and (c) stacks on

a liquid-liquid interface, with interfacial tension γ = 24.9 mN/m. At above the threshold density

ratio Dmax, both particle rafts and stacks eventually collapse and sink through the liquid-liquid

interface. At low sphere numbers, (N < 10) both (d) rafts and (e) stacks form similar spheroidal

packing arrangements. At larger sphere numbers the packing geometry can differ more significantly

between (f) rafts and (g) stacks, although both retain an approximate spheroidal shape. Scale bars

represent 5 mm.
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through the lower water phase, an interfacial neck forms, becomes thinner, and eventually

ruptures, while the cluster entrains a thin coating film of the upper oil phase. We anticipate

that the coating film thickness will scale with the cluster passage speed, since more rapid

passage results in reduced time for the liquid to drain between the cluster and the liquid-

liquid interface. Additionally, both collapsed rafts (Fig. 3 (d)) and stacks (Fig. 3 (e))

feature the same approximate spheroidal geometry.

Several recent studies have investigated the packing geometry of small hard sphere clusters

resulting from energy minimization,19,20 such as clusters encapsulated in shrinking droplets.20

We observe that in our experiments collapsed sphere clusters often organize into predicted

geometries (for example Figs. 3 (d) and (e) form a pentagonal diamond20), however in some

cases the clusters form packing arrangements that are not energetically optimal (for example

in Fig. 3 (c) the collapsed cluster with N = 4 spheres forms a tetrahedron, but in Fig. 3 (b)

it does not). We attribute this variation in the cluster geometry to the asymmetrical con-

finement of the clusters by the liquid-liquid interface during our experiments. For collapsed

clusters with N > 10 spheres, the packing geometry of the spheres can vary considerably,

although collapsed clusters still maintain an approximate spheroidal shape (e.g. Figs. 3 (f)

and (g)).

C. Different scaling laws for the critical size of particle rafts and stacks

To understand at what critical size a particle raft begins to sink, we adapt the generalized

equations of Archimedes’ principle by Keller,21 and mathematical arguments made by Vella

et al.12 to our multi-sphere raft geometry (Fig. 1 (b)), such that,

4

3
πNga3(ρs − ρo) = 2π`rγ sinψ sinφ+

πNga3(ρw − ρo)
(
− h
`r

sin2 ψ +
2

3
− cosψ +

1

3
cos3 ψ

)
. (1)

Here, the particle raft characteristic length `r, the height of the interfacial inflection line

above the undeformed interface h, the angle of inclination of the interface at the inflection

line φ, and the angular position of the inflection line relative to the center of the particle

raft ψ (see Fig. 1).
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The left side of (1) balances gravity acting on the entire raft to the restoring forces on

the right: force from interfacial tension (first term) and buoyancy force (second term). We

note that the force from interfacial tension scales with the circumference of the particle raft,

and the buoyancy and gravity terms are both based on the raft volume. We have added the

critical sphere number N to the gravity and buoyancy terms to account for multiple spheres

at the liquid-liquid interface, and we use `r to calculate the circumference of the raft. We

also assume that the spheres only wet the oil phase, so that a three-phase contact line is not

present. This assumption is supported by our observations that, upon destabilization and

sinking, the nylon spheres become completely coated with a thin film of oil.

We approximate the raft characteristic length `r using the raft coverage area such that

`2r ≈ Na2. As a result, the raft characteristic length `r ≈ aN1/2 (Fig. 1 (b)). Then we define

the Bond number Bo = (ρs − ρo)ga2/γ, the aspect ratio H = h/`r, and reorganize (1) to

obtain,

N = αBo−2 + βBo−1, (2)

where the O(1) pre-factors,

α =
36 sin2 ψ sin2 φ

(2− 4D/t− 3 cosψ + cos3 ψ)2
and β =

9H2 sin4 ψ

(2− 4D/t− 3 cosψ + cosψ3)2
. (3)

These simplifications result in the scaling relationships, N ∝ Bo−2 when Bond number Bo

is small (i.e. restoring force dominated by interfacial tension), and N ∝ Bo−1 when Bond

number Bo is large (i.e. buoyancy effects important).

Fig. 4 (a) shows a log-log plot of the critical sphere number N versus the Bond number

Bo in our experiments based on a raft geometry (see inset schematic). By fitting once with

α ≈ 3.5 and β ≈ 0.5 in (2), we find an excellent agreement between the experiments and our

model. We note that, over the range of Bond numbers Bo in our experiments, interfacial

tension plays a much more significant restoration role than buoyancy effects: the model

resembles N ∝ Bo−2 more closely than N ∝ Bo−1 in the scope of our observations. The

scaling N ∝ Bo−2 also appears in other related studies of interfacial raft formation where
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(a) (b)

FIG. 4. (Color online) Log-log plots of critical sphere number N versus Bond number Bo, giving

two different power laws for sphere raft and stack configurations. (a) The solid line shows that

clusters assembled in a raft configuration sink through the oil-water interface at a critical sphere

number N = αBo−2 + βBo−1. (b) The dashed line shows that, when we stack spheres on the

oil-water interface, the resulting critical sphere number N = κBo−3/2.

buoyancy effects is neglected,10,15 but our more generalized model (2) will be applicable in

higher ranges of the Bond number Bo, where buoyancy plays a more significant role than

interfacial tension.

In the sphere stacking configuration, we use the stack volume `3s ≈ Na3 to extract the

stack characteristic length `s ≈ aN1/3 (see Fig. 1 (c)). Replacing `r in (1) with `s, and

re-arranging as in (2), we obtain the quadratic expression,

(N−1/3Bo−1/2)2 − 1

2

sinψ

sinφ
H(N−1/3Bo−1/2) +

1

sinψ sinφ

(
1

6
cos3 ψ − 1

2
cosψ − 2

3

D

t
+

1

3

)
= 0.

(4)

The solution to (4) is in the form N−1/3Bo−1/2 = κ−1/3, where the O(1) pre-factor,

κ−1/3 =
1

24

1

sinψ sinφ
{3H − 3H cos 2ψ+

2
[
−6 (8− 16D/t− 9 cosψ + cos 3ψ) sinψ sinφ+ 9H2 sin4 ψ

]1/2}
. (5)
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Thus, the expression for the stacking geometry’s critical sphere number,

N = κBo−3/2. (6)

Notably, we find that in the stacking geometry, the critical sphere number, N ∝ Bo−3/2,

for all values of the Bond number Bo, regardless of whether interfacial tension or buoyancy

dominates the restorative force.

In Fig. 4 (b), we calculate κ ≈ 3.1 by ensuring that the stacking geometry’s model,

N = κBo−3/2, converges to the raft geometry’s expression, N = αBo−2 + βBo−1, when the

critical sphere number N = 1 (since the two modes of sphere deposition must be identical

when there is just one sphere). The data from our experiments show a good agreement with

the with the stack scaling N = κBo−3/2.

We note that the stack data is biased towards the raft model at lower values of sphere

numberN , and the deviation is more pronounced in experiments where the interfacial tension

is higher; for example, when γ = 24.9 and 18.5 mN/m, as indicated by empty circles and

triangles, respectively, in Fig. 4 (b). We attribute this deviation to the tendency of stacks,

at low sphere number (N < 4), to reorient into a raft configuration (see for example the

third frame of Fig. 3 (c)).

We interpret this observation by the following hypothesis. When a new sphere is stacked

on top of a forming sphere cluster, it may cause the cluster to rotate to a new equilibrium

position, which occurs over time teq. When the critical sphere is added, the cluster accelerates

and passes through the oil-water interface over time tγ. If the ratio of stabilization time teq to

interface passage time tγ is greater than unity, teq / tγ > 1 (i.e. passage occurs quickly) then

the cluster will remain in the stack orientation as it passes through the interface. However

if teq / tγ < 1 (i.e. reorientation happens more rapidly than passage), then the spheres will

reorient into a raft, `s → `r, where `r > `s, consequently increasing the interfacial tension

contribution supporting the cluster, and preventing the cluster from sinking through the

interface.

This effect diminishes at higher sphere numbers, because there is a greater difference

in the critical sphere number between rafts and stacks. At higher sphere numbers, our
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experimental data clearly shows that there is a distinctively different scaling of the critical

sphere number N , for particle stacks compared to rafts.

IV. CONCLUSIONS

These experimental results and scaling analyses show that, at above the threshold density

ratio Dmax, floating self-assembled interfacial rafts and stacks will eventually collapse and

sink when they reach a critical size. The scaling dependence of the critical sphere number

N on the Bond number Bo is distinct between rafts and stacks: particle rafts collapse when

the sphere number N = αBo−2 + βBo−1; particle stacks follow the scaling for the sphere

number, N = κBo−3/2.

This different scaling law for particle stacks may have important engineering implications

in situations where the floating assemblies on liquid-liquid interfaces are not monolayers.

For example, our recent work shows the clustering and coating of self-assembled magnetic

microparticles in microfluidics.22 Flow-focused microparticles assemble into clusters on the

co-flowing interface between water and oil in a multi-layered fashion. Thus, the size control

of these microfluidic coated particle clusters may be determined by a power law similar to

the one we show for particle stacks—albeit with a magnetic Bond number to account for

magnetic forces in the microfluidic system.
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