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Abstract: The United Nations estimates that the global population is going to be double in the
coming 40 years, which may cause a negative impact on the environment and human life. Such
an impact may instigate increased water demand, overuse of power, anthropogenic noise, etc.
Thus, modelling the Urban Environmental Quality (UEQ) becomes indispensable for a better city
planning and an efficient urban sprawl control. This study aims to investigate the ability of using
remote sensing and Geographic Information System (GIS) techniques to model the UEQ with a
case study in the city of Toronto via deriving different environmental, urban and socio-economic
parameters. Remote sensing, GIS and census data were first obtained to derive environmental,
urban and socio-economic parameters. Two techniques, GIS overlay and Principal Component
Analysis (PCA), were used to integrate all of these environmental, urban and socio-economic
parameters. Socio-economic parameters including family income, higher education and land value
were used as a reference to assess the outcomes derived from the two integration methods. The
outcomes were assessed through evaluating the relationship between the extracted UEQ results
and the reference layers. Preliminary findings showed that the GIS overlay represents a better
precision and accuracy (71% and 65%), respectively, comparing to the PCA technique. The outcomes
of the research can serve as a generic indicator to help the authority for better city planning with
consideration of all possible social, environmental and urban requirements or constraints.

Keywords: urban environmental quality; principal component analysis; GIS overlay; Pearson’s
correlation coefficient

1. Introduction

Urban Environmental Quality (UEQ) is defined as an indicator to generically describe the
urban, environmental and socio-economic condition of an urban area. UEQ can be regarded as
a multilayer concept that comprises physical, spatial, economic and social parameters at different
scales [1]. Weng and Quattrochi [1] addressed that UEQ has the capability to influence many governing
aspects, including urban planning, infrastructure management, economic influence, policy-making and
social studies. However, it is challenging to predict and model the inter-relationship and dependence
of all of the factors. Recently, satellite remote sensing techniques can help in modelling UEQ through
providing continuous Earth observation images of the urban environment at different spatial, spectral
and temporal resolutions [2–4]. A few preliminary attempts were found using multi-temporal and
multi-resolution data to model UEQ [5–8], since these data can provide a clear vision for visualizing
and understanding the land cover, water conditions and vegetation in urban areas [9,10]. As such,
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UEQ assessment not only provides more detailed information toward urban conditions, it also serves
as an efficient tool in sustainable development and urban planning. Subsequently, a number of
representative studies were found in the literature that demonstrated how to use multi-source data to
model and assess the UEQ.

Nichol and Wong [8] conducted a research study in the Kowloon Peninsula, Hong Kong. The main
goal of the study was to investigate different ways of combining six parameters (vegetation density,
heat island intensity, aerosol optical depth, building density, building height and noise) in different
units into a single integrated UEQ index and to establish a suitable mapping scale at which these
parameters operated and interacted. The study was conducted at two scale levels through using a
high resolution IKONOS satellite image and a fine resolution Landsat satellite image. Two approaches,
including Geographic Information System (GIS) overlay analysis and Principal Component Analysis
(PCA), were used to integrate these six parameters. To act as a reference of UEQ assessment, an email
questionnaire survey was conducted with 200 Kowloon Peninsula residents to weight the parameters.
The field-based questionnaire survey was administered at 70 locations during the summer season to
validate the results. The results showed that the combined parameters, including vegetation density,
building density and building height, are more representative to model the UEQ in Hong Kong.
Moreover, the overall result showed that the UEQ result derived by GIS overlay analysis is deemed to
be close to the residents’ opinion obtained from the questionnaire surveys.

Liang and Weng [11] introduced various environmental and socio-economic parameters to assess
UEQ changes in Indianapolis, USA, in the past 10 years. A total of 18 environmental parameters,
including cropland and pasture, water, forest, grass, barren lands, commercial and industrial areas,
high density residential areas, medium density residential areas, low density residential areas,
Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI) and Normalized Difference Built-up Index (NDBI) from transformed
bands, were extracted from two Landsat Thematic Mapper (TM) images taken in 1991 and 2000;
among which, 13 socio-economic parameters, including population density, median age population,
household, house unit, owner-occupied house unit, vacant house unit, median house income, median
family income, per capita income, house value, percentage of college graduate, percentage of
family under poverty line and unemployment rate, were derived from US census of 1990 and 2000.
The results demonstrated that four principal components being extracted can sufficiently represent
the 28 parameters. The variance of each component was used as a weight to compute the UEQ for
each year. The derived UEQ map showed that medium UEQ zone in 1990 was recognized as poor
zones in the 2000. High UEQ areas in 1990 were transformed to medium UEQ areas in 2000. The city
centre in 1990 was identified as a mixture of high, medium and poor UEQ. However, in 2000, the city
centre became a medium level UEQ zone. The UEQ was significantly improved in the south and the
southeast zones over the past ten years in Indianapolis, USA.

Another representative study covered the city of Delhi, India, conducted by Rahman et al. [12]. The
city has been suffering from a dramatic increase of population annually, which has led to environmental
and public services degradation. The east district of Delhi had the largest population with 98.75% of
the urban population in 2001. The main goal of this case study was to investigate the UEQ in the east
district of Delhi. The Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) image
of the year 2003 was obtained to generate the land use/land cover map. The guide map was used to
generate the land use/land cover map of year 1982. Supervised classification was conducted based on
the maximum likelihood method. Five land classes (named high density residential, medium density
residential, low density residential, roads and open green spaces) were extracted from the ASTER
image. Socio-economic and environmental parameters, such as built-up area, open spaces, household
density, occupancy ratio, population density, accessibility to roads, noise and smell affected area, were
used to assess the UEQ of Delhi. GIS overlay was conducted to integrate the urban environmental
parameters for the years 1982 and 2003. The result showed that in the year 1982, 89% of the east district
of Delhi was in good environmental conditions, while the remaining areas were in fair conditions or
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bad, alarming conditions. However, in the year 2003, 75% of the east district of Delhi was in good
environmental condition, while the areas with poor and bad alarming conditions had increased to 22%
and 3.5%, respectively. The reason is mainly due to the unplanned urban extension found within the
east district of Delhi. The study demonstrated that remote sensing and GIS data are viable techniques
for urban environmental management and decision making.

Rinner [13] investigated the combination of Geographic Visualization (GeoVis) and Multi-Criteria
Evaluation (MCE) methods to assess the UEQ within Toronto. MCE is a weighting method that
allows decision makers to modify attribute values of the variables. Numerous socio-economic and
demographic variables, including population change, population density, ownership of dwellings,
family size, average household income, expenditure on housing, employment status, immigration
status and degree of education were used to assess the UEQ. An analytic method, named the Analytic
Hierarchy Process (AHP), was investigated to estimate the composite measures of quality of life. The
AHP method can be used to visualize the spatial patterns and combine different models for UEQ.
Interviews with three senior geography students were conducted to validate the results. The result of
this case study is more toward supporting analysts to review their final decision-making strategies.

Despite the above successful attempts, the majority of the UEQ studies utilized PCA or GIS
analysis techniques to integrate various parameters [7,8,11,12]. Although PCA is an analytical
technique that compresses the main data into lower dimensions that retain most of the data
variance [14], the method still has several potential drawbacks: (1) it produces unweighted components,
which may not represent meaningful parameters; (2) PCA does not work properly in nonlinear
relationships; and finally, (3) the minimum number of components is indeterminable. Although some
researchers used the GIS overlay method to integrate different parameters [8,12], the GIS overlay
method does not consider the correlation among the parameters. Each parameter may rank from a
certain range, say 1–10, where 1 represents the best condition and 10 represents the worst condition.
The sum of the derived parameters corresponds to the UEQ ranking. The GIS overlay method
can be used effectively to store, analyse and represent layers from different types of map features [8].
Regarding the result validation, most of the UEQ studies [11,13,15–17] did not perform any field survey
or even result validation, except very few attempts found using e-mail questionnaire or field-based
questionnaires [8,12]. Collecting field data is always ideal, but it is also time consuming and budget
dependent. Moreover, these methods can be inaccurate to test the outcomes of UEQ if the data samples
being collected are not representative, which may lead to bias results.

In this research, the main objectives are: (1) to investigate GIS overlay and PCA techniques to
assess UEQ with a case study in the city of Toronto, Ontario, Canada; (2) to test a new approach to
normalize the data derived from remote sensing and GIS data; and (3) to assess a new approach to
validate the final outcomes derived from GIS overlay and PCA. Thus, various remote sensing and GIS
data were first explored in order to fully understand the concept of UEQ. The urban, environmental
and socio-economic parameters were normalized in this research in order to evaluate the significance of
each parameter. GIS overlay and PCA (pixel-based and object-based) were introduced to integrate the
urban, environmental and socio-economic parameters with a case study in Toronto. Socio-economic
parameters, including family income, degree of education and land value, were used as a reference to
validate the outcomes derived from the two integration methods.

2. Datasets

In this research, the city of Toronto, Ontario, Canada, was intentionally selected due to the data
availability and the drivers of the population growth within the city during the past decade. Figure 1
shows Toronto, which is the capital of the Province of Ontario and the largest city in Canada with a total
population of 2,615,060 [18]. The datasets being used in this study include three major categories: (1)
Landsat TM satellite images; (2) GIS data layers; and (3) socio-economic data. All of the data were
collected in the years 2010 and 2011, since GIS data and socio-economic are not consistently available
after the year 2011. A Landsat TM image was downloaded from the United States Geological Survey
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(USGS) Earth Explorer [19]. The spatial resolution of the Landsat images is 30 m for the multi-spectral
bands and 120 m for the thermal band. However, the thermal band was resampled to a 30-m resolution
from the source of the data predominantly to align it with the multi-spectral bands [20]. The image
was acquired during the summer season (July) in order to avoid the appearance of clouds and snow
cover. On the other hand, a total of 14 GIS data layers were acquired from the Scholars GeoPortal [21]
for Toronto during the same period of time. The GIS layer data including land use, population
density, building density, vegetation and parks, public transportation, historical areas, Central Business
District (CBD), sports areas, religious and cultural zonse, shopping centres, education institutions,
entertainment zones, crime rate and health condition. These layers were first imported into the ArcGIS
platform (ArcGIS; Esri; Redlands, CA, USA) for further analysis. Similar to the remote sensing data,
all of the data were projected to the Universal Transverse Mercator (UTM) 17 N coordinate system.
Those social-economic parameters were derived based on the use of Toronto census data that were
obtained from the City of Toronto census bureau at the census tract level. The City of Toronto census
bureau archives hundreds of information related to socio-economic conditions. In this research, the
socio-economic parameters included education (university certificate, diploma or degree), family
income and land values. Table 1 summarizes the data sources being used in this study.
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Figure 1. City of Toronto (the study area).

Table 1. The data sources used in this study.

City Landsat TM GIS Data Census Data

Path/Row = 18/30 ◦ Land Use Socio-economic data are
provided by the City of Toronto
census bureau. Socio-economic
data used in the research
include:

Sensor = Landsat TM ◦ Population Density
Date = 23 June 2011 ◦ Building Density

◦ Vegetation and Parks
Remote sensing data
used in this work:

◦ Public Transportation
◦ Historical Areas ◦ Education

◦ LST ◦ Central Business Districts (CBD) ◦ Family Income
Toronto ◦ NDVI ◦ Sports Areas ◦ Land Values

◦ NDWI ◦ Religious and Cultural Zones
◦ NDBI and Built-up Area ◦ Shopping Centres

◦ Education Institutions
◦ Entertainment Zones
◦ Crime Rate
◦ Health Condition
◦ Areas Close to Water Bodies

LST, Land Surface Temperature; NDVI, Normalized Difference Vegetation Index; NDWI, Normalized Difference
Water Index; NDBI, Normalized Difference Built-up Index.
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3. Methodology

Figure 2 shows the overall workflow implemented in this research. The Landsat image was
clipped to the study area to speed up the data processing. The Atmospheric Correction model
(ATCOR2) developed by Richter [22] was utilized to preform radiometric calibration and remove the
effects that change the spectral characteristics of the land features [23]. To implement the ATCOR2
model, weather information (e.g., air temperature, visibility, etc.) was obtained from historical records
at the nearest weather station at Lester B. Pearson International Airport.

The calibration parameters for Landsat TM sensor (biases and gains) were also incorporated
into the atmospheric correction. After conducting the atmospheric correction, those bio-physical
parameters, including NDVI, NDWI, built-up index and LST, were derived from the Landsat images.
Urban, environmental and socio-economic parameters were all extracted from the remote sensing, GIS
and census data to combine all of the parameters together in the subsequent process. GIS overlay and
PCA (pixel-based and object-based approach) were implemented, respectively, to integrate all of the
urban, environmental and socio-economic parameters. Socio-economic parameters obtained from the
City of Toronto census bureau, including family income, higher education level and land values, were
used as a reference to assess the outcomes from GIS overlay and PCA. The validation was based on
two criteria, including precision and accuracy (refer to Section 3.5.3). The final stage of the work is to
assign the optimal integrated method to determine the best UEQ location in Toronto.
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Figure 2. The overall workflow. UEQ, Urban Environmental Quality; PCA, Principal Component
Analysis; GIS, Geographic Information System.

3.1. Environmental Parameters

3.1.1. Land Surface Temperature (LST)

LST is an essential parameter in a variety of disciplines used to study the urban climate [24,25],
UEQ [8], urban heat island effect [26], urban expansion [27] and urban waste management [28]. LST is
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the result of a land-surface process that combines the analysis of all surface-atmosphere interactions
and energy fluxes between the atmosphere and the ground. Mapping the LST from thermal remote
sensing sensors can be useful for large-scale environmental and urban studies. Landsat TM and ETM+
data were substantially used in many urban environmental quality studies to derive the LST [2–4].
Landsat TM and ETM+ both have: (1) an archive of images that was released free to the public by the
USGS [19] in 2008 and (2) a short repeat cycle (16 days), which produces a voluminous data archive
for multi-temporal studies. Numerous researchers discussed the use of LST and the challenges to
retrieve the LST using known and unknown Land Surface Emissivity (LSE) [29,30]. In this research,
the authors utilized Geomatica (Geomatica, version 10.1; PCI Geomatics, Markham, ON, Canada, 2007).
to derive the LST from the Landsat images. The adopted method to derive the LST in this research
takes into consideration the atmospheric correction of the thermal band of the image. The computation
of LST mainly involves three steps. The first step is to convert the pixel value of the thermal band into
radiance using the following Equation (1):

Lsat =
[ Lmax − Lmin
(Qcal.max −Qcal.min)

]
(Qcal −Qcal.min) + Lmin (1)

where Lsat is the spectral radiance; Lmax is the spectral radiance that is scaled to Qcal.max; Lmin is
the spectral radiance to Qcal.min; Qcal is the quantized calibrated pixel value in a digital number;
and Qcal.max is the maximum quantized calibrated pixel value corresponding to Lmax. For Landsat TM
Band 6, the values for Lmax, Lmin and Qcal.max are 15.3032 Wm−2·sr−1·µm−1, 1.2378 Wm−2·sr−1·µm−1

and 255, respectively.
The second step is to compute the emissivity value. Many factors, including water content,

chemical composition, structure and roughness, are able to affect the emissivity of a surface [31].
Scholars emphasized that the surface temperature calculation mainly relies on an assumption of the
emissivity value [32]. Some researchers assumed the emissivity value as a constant value (0.95) [33].
In contrast, other researchers epitomized that a constant emissivity value can be considered as an option
and assigned three classes for the emissivity values, where the vegetation has ε = 0.97, soil ε = 0.96
and others ε = 0.98 as a rule of thumb [32]. However, if the emissivity value is unknown, the following
Equation (2) can be used to calculate the emissivity value [34]:

ε = a + b× ln(NDVI) (2)

where a and b are obtained by a regression analysis based on a large dataset [35]. NDVI is the
Normalized Difference Vegetation Index, which can be calculated from the values of the visible and
near-infrared bands of the multi-spectral bands, as shown in Section 3.1.2.

The third step is to conduct the atmospheric correction for the thermal band using the following
Equation (3). As mentioned in Section 3, weather information (e.g., air temperature, visibility, etc.)
and date and time, latitude and longitude are also needed to implement atmospheric correction.
The equation for the atmospheric correction can be written as [36]:

LC =
Lsat − Lup

ε× τ
− 1− ε

ε
× Ld (3)

where LC is the atmospherically-corrected radiance, Lsat is the spectral radiance (Wm−2·sr−1·µm−1),
Lup and Ld are the upwelling and downwelling radiances (Wm−2·sr−1·µm−1) and ε and τ are the
emissivity and transmittance, respectively.

The fourth step is to convert the calibrated radiance into the at-sensor brightness temperature
using the following Equation (4):

LBBT =
[ K2

ln( K1
LC

+ 1)

]
(4)
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where TBBT is the blackbody temperature in Kelvin (K), K1 is the calibration Constant 1 in
Wm−2·sr−1·µm−1 and K2 is the calibration Constant 2 in Kelvin (K). For Landsat TM, K1 and K2

are 607.76 Wm−2·sr−1·µm−1 and 1260.56 K, respectively [37].
The fifth step is to convert temperature from Kelvin into temperature in Celsius using the

following Equation (5):
◦C =

[
LBBT − 273.15

]
(5)

The computed (◦C) is regarded as the LST derived from the Landsat image.

3.1.2. Normalized Difference Vegetation Index (NDVI)

Prior to the existence of satellite remote sensing, urban vegetation was usually monitored
and mapped by combining colour infrared aerial images and fieldwork. This method seems to
be a unique option to measure the urban vegetation [38]. With the availability of multi-source
multi-spectral satellite images, Fung and Siu [10] used Landsat and SPOT (Satellite Pour l’Observation
de la Terre; Satellite for the Observation of Earth; Spot Image, Toulouse, France) images to quantify
urban vegetation as a parameter for UEQ studies. Many researchers used Landsat images to extract
NDVI [2,8,39]. NDVI is a ratio that presents the changes in the vegetation over time, and it has been
applied to various applications, such as vegetation cover, biomass and Leaf Area Index (LAI) [40,41].
Most of the urban environmental studies showed that NDVI is one of the most important parameters
that can be used to assess UEQ, where the higher values represent the positive impact on the city [2,8].
The NDVI (ranging from −1 to 1) refers to an index that is able to monitor the vegetation activity and
its annual changes, which can be calculated using Equation (6) [42]:

NDVI =
NIR− Red
NIR + Red

(6)

where NIR is the near infrared Band 4 in the Landsat TM image and Red is the red Band 3 in the
Landsat TM image.

3.1.3. Normalized Difference Vegetation Index (NDWI)

NDWI is another remote sensing-derived biophysical parameter that represents the surface
moisture in vegetation cover, as well as water bodies. Hardisky et al. [43] found that NDWI is able
to track changes in vegetation biomass and water stress more than NDVI. NDWI can also be used
to measure and assess the turbidity of water bodies from remote sensing data [44], and therefore,
Liang and Weng [11] used NDWI as a parameter to assess the UEQ where the higher NDWI represents
the higher urban quality (i.e., close to lake shore). The NDWI (ranging from −1 to 1) can be are
calculated using Equation (7) [14]:

NDWI =
Green− NIR
Green + NIR

(7)

where NIR is the near infrared Band 4 in the Landsat TM image and Green is the green Band 2 in the
Landsat TM image.

3.1.4. Normalized Difference Built-Up Index (NDBI) and Built-Up Index

NDBI is another ratio that represents the spatial distribution of the urban and suburban areas.
NDBI has been used in many urban planning applications. Zha et al. [42] used the combination of
NDBI and NDVI to identify and monitor the areas in the city of Nanjing. Chen et al. [45] shows
that land cover types can be represented by utilizing NDVI, NDWI and NDBI. Moreover, Faisal and
Shaker [46,47] show that the built-up index derived from NDBI and NDVI could represent industrial
areas within the city. Therefore, in UEQ studies, the higher NDBI/built-up values may be deemed to
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have a negative impact on the city. To derive the built-up area, first, the NDBI values (ranging from −1
to 1) are calculated using Equation (8) [42]:

NDBI =
MIR− NIR
MID + NIR

(8)

where MIR is the mid-infrared Band 5 of the Landsat TM image and NIR is the near infrared Band 4
of the Landsat TM image. The NDBI values refer to an index that represents the urban regions and
its annual changes. Finally, the built-up values (ranging from −1 to 1) are defined by subtracting the
NDBI layer from the NDVI layer using the following Equation (9) of Zha et al. [42]:

Built-up area = NDBI − NDVI (9)

3.2. Urban Planning Parameters

3.2.1. Land Use and Land Cover

The expansion of population can affect the urban environment and urban planning around the
world. Therefore, monitoring land use and land cover should be conducted to avoid potential problems
for sustainable urban and environmental planning. Monitoring land use and land cover helps planners
and decision makers to build better urban environmental cities in the near future and assess the quality
of the urban cities. Various studies recommended building urban green cities rather than a dense high
rise urban environment. Urban green cities increase the value of UEQ within the city [48–50]. Medium
to fine-scale land cover and land use maps can be derived from remote sensing satellite images [51]
or, recently, airborne LiDAR data [52]. However, the accuracy of land cover and land use can change
from one satellite to another due to the variation of the spatial resolutions of the satellites. In order to
assess the urban quality of living, physical environmental parameters should be obtained. Physical
environmental parameters, such as roads, cropland and pasture, water, commercial and industrial,
high density residential, medium density residential, low density residential, forest and grass, are
critical and essential parameters to assess the urban quality of life. The physical environmental
parameters can be used also to extract some of the socio-economic parameters, such as population
density and social conditions [11].

3.2.2. Urban Density

Around the world, residential areas can be affected by the increase of population and migration
movement. Building density is one of the most important parameters that contributes to the urban heat
island effect and urban quality assessment [53]. Building and population density can have a negative
influence on the UEQ and transportation system in the developing cities. That is mainly because
a dense high rise urban environment typically increases LST, noise pollution together with a high
demand of vehicle use [54]. However, most public services, public transportation and jobs are located
within walking distance from high density areas. Remote sensing technique can aid in determining
the density values by extracting the urban areas from the image [8,12]. The extracted urban areas can
be divided by the total areas, so as to calculate the building density, as shown in Equation (10). On the
other hand, the population density can be calculated by dividing the number of people over the urban
area as shown in Equation (11):

Building density =
Urban areas
Total areas

(10)

Population density =
Number of people

Urban areas
(11)
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3.2.3. Public Transportation

The acceleration of population growth may increase car ownership, which may increase the
amount of carbon dioxide emission and subsequently affect the accessibility to roads, especially in the
developing countries [55]. Transportation is the main sector that works in shaping and connecting
the cities. Public transportation provides a faster, safer and easier way to travel around the city.
Public transportation can help the city through connecting the sub-centres around the railway stations
and building a linear development along the route of the public transit line [55]. It was found that most
of the automobile-dependent cities lose the traditional community support processes [55]. Therefore,
public transportation is one of the major parameters for the UEQ.

3.2.4. Open Spaces and Entertainment Zones

Many studies in UEQ justified that open spaces and open green areas are significant factors
contributing to high environmental quality areas [8,12]. That is mainly because open spaces and parks
offer a healthy and comfortable environment by cooling down the LST and reducing the air pollution
especially in high density areas. Entertainment areas are mainly located in the public parks, plazas and
open space areas for some occasions, such as Christmas and New Year. Famous open spaces, such as
Times Square in the city of New York, Dundas square and Nathan Phillips Square in Toronto, are so
invigorating with a big amount of visitors all over the year, mainly because they are located within the
core of high density areas and thus provide a vibrant atmosphere. Such a phenomenon supports the
argument that high density areas are more preferable than low density areas.

3.2.5. Historical Areas and Central Business Districts (CBD)

The design of historical cities around the world is mainly based on walking distance.
Those historical cities are usually featured by high density, mixed land use and shaded streets in
central forms, such as Jerusalem, Damascus, Athens and Istanbul. The average walking distance
toward the historical cities is designed to be 5 km apart in order to be close to other facilitates in the city.
A few cities still currently retain the historical buildings and walking characteristics, such as Society
Hill in Philadelphia, the North End in Boston and the Rocks in Sydney [55]. That is mainly because
historical areas retrieve the worth of past energy and provide a visual and physical conservation
of cultural identity [56]. Currently, modern cities have more of a tendency to rebuild and preserve
historical areas, such as Arabella Park in Munich, to attract tourists and provide a vibrant atmosphere
for the city [55]. Historical neighbourhoods, which are always located in the city centre, have higher
positive influence on UEQ, where the historical neighbourhoods and CBD are the most attractive
regions in the city.

3.2.6. Crime Rate

Personal security is one of the most important factors for society regardless of where we live.
Crime can be the reason for physical pain, anxiety and the loss of lives and property [57]. Anand and
Santos [58] illustrated that the biggest influence of crime is the feeling of vulnerability in people’s
lives, and thus, the crime rate is negatively related to UEQ. It was reported that people move to live
in more suburban and low density areas for the desire for new and better public schools and a low
crime rate. However, in some cases, the low cost of housing may cause a demand for more housing
per person, which may form new clusters for new urban crime [59]. Increasing the physical distance
between the poor and the rich is not always the best way to reduce urban crime, particularly in the
city centre. Instead, it is preferable to increase the community services and the quality of life in those
areas to make them more vibrant and reduce the crime rate [54]. The crime rate can be calculated by
dividing the number of crimes over the total population, as shown in Equation (12):

Crime rate =
Number of crime
Total population

(12)
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3.3. Socio-Economic Parameters

3.3.1. Education and Income

Education and income are two related factors among relevant socio-economic parameters.
Research shows that wealthier urbanites tend to invest more in high quality properties and services.
That is mainly because they have higher income and receive higher education, which gives them the
tools to access and process more data about the high quality areas. In addition, people with high
income and high education have the ability to invest in higher quality areas, compared to people
with less education and less income [60]. Moreover, Kahn [54] pointed out that people with higher
education and income are more interested in supporting UEQ-related issues. Wealthier and educated
urbanites also tend to participate in politics and the community in order to enhance the quality of
living in their living areas. Based on the above argument, the areas that have more highly-educated
and wealthier urbanites are considered to have higher UEQ areas. Therefore, these areas are used as
the first category of reference for our study.

3.3.2. Land Values

Knowing the parameters that influence the UEQ is an important advantage to design and assess
the future urban development. UEQ is assessed by using various urban and environmental parameters.
Reginster and Goffette-Nagot [61] conducted a study in two Belgian cities to investigate the relationship
between the UEQ with respect to the residential location. It was revealed that UEQ may affect positively
the land rent location and income in the city. Other research discussed the relationship between the
real estate evaluation model and the environmental parameters in the city of Geneva, Switzerland [62].
It was found that urban and environmental parameters have an influence on the price within the city
of Geneva. Topcu and Kubat [63] also examined the relationship between urban and spatial factors
that might influence the urban land values in the city of Istanbul. It was found that the distance from
the sea, the distances from the central business district, universities and sanitary facilities, as well as
the the variable of the colour of building facades all have a predominant impact on the residential land
values. As a result, our experiment assigned the land values as the second category of reference for
this research.

3.4. Ranking the Parameters

Since the aforementioned parameters are extracted from different data sources, they may have
different scale levels and cannot be combined to a specific unit. Therefore, all of the obtained
data (parameters), including raster, census and GIS data, were first transformed into one scale
(sub-neighbour), as shown in Figure 3. Then, all of the parameters were ranked from 1 to 10 to
normalize the observation value for each parameter.

To normalize the parameters and represent the significant level of each polygon in the parameter,
the Z-score method was performed for all parameters. The Z-score model is a statistical measurement
that is able to standardize a wide range of data to represent the significant changes across the data [64].
Equation (13) shows the first step to normalize the parameters using the Z-score:

Zi =
[ xi − µ

σ

]
(13)

where x is the observation values (polygons) (refer to the GIS polygons of the parameters as shown in
Figure 4), i is the parameter, µ is the mean value of the parameter and σ is the standard deviation of
the parameter.
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Figure 3. (a) NDVI image derived from Landsat image (raster data); (b) NDVI map after transformation
(vector data); (c) population layer at the census tract level; (d) population layer after transformation to
sub-neighbour level.

 

Figure 4. The GIS polygons of the parameters.

The second step is to use linear interpolation to rank the parameters from 1 to 10 as shown
in Figure 5. The polygon within the parameter that has a high Z-score number will represent high
values, for example 10. The polygon that has a low Z-score will result in a value of 1. The following
Equation (14) shows how linear interpolation was calculated:

Rank =
[ (Obs−Obsmax)(Rankmin − Rankmax)

(Rankmin − Rankmax)

]
+ Rankmax (14)

where Obs is the current observation value, Obsmax is the maximum observation value, Obsmin is the
minimum observation value, Rankmax is the maximum ranking value, Rank is the determined ranking
value and Rankmin is the minimum ranking value.
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Figure 5. (a) The LST layer in degrees Celsius before ranking the parameter; (b) the ranking of LST
after the normalization.

3.5. Data Integration of Multiple Environmental and Urban Parameters

Integration techniques can be used to combine remote sensing and GIS data and have been
applied for urban modelling and analysis [65]. Previous studies demonstrated two integration
techniques, namely PCA and GIS overlay, which are able to combine any type of parameter. In
this research, three approaches were demonstrated to integrate the above-mentioned environmental
and urban parameters.

3.5.1. Geographic Information System (GIS) Overlay

GIS overlay is a multi-criteria application that uses data layers for specific environmental
thresholds. Remote sensing data are presented as digital data in raster format. However, census data
are presented in GIS vector format. Remote sensing data can thus be integrated with socio-economic
data by converting remote sensing data from raster to vector data [7]. In this research, the GIS overlay
integration method was used to combine the urban and environmental parameters in order to serve
for the UEQ assessment. All of the parameters were converted from raster to vector data in order
to be presented as attribute data, as shown in Figure 3 in Section 3.4. While each parameter has a
range of values ranked from 1 to 10, the sum of the data layers can thus present the result of UEQ
values. Ranking the parameters was mainly based on the observation values; where the highest value
is assigned 10 and the lowest value is assigned 1. However, some parameters, including crime rate,
industrial areas and LST, are inversely presented (e.g., the highest crime rate or LST value will be
assigned 1, and the lowest crime rate or LST value will be assigned 10), as shown in Figure 5. Then, all
of the ranks are summed up to compute the UEQ as shown in Figure 6.
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Figure 6. The summed up ranks for all of the parameters.

3.5.2. Principal Component Analysis (PCA)

PCA is an analysis technique that compresses the high dimension of data into a lower dimension
of data that has most of the variance of the data [14]. PCA is commonly used in many remote sensing
applications. The covariance matrix of standard PCA may not be the best option for data that have
different measurement units. The correlation matrix can be used instead of the covariance matrix
to standardize each parameter to the variance unit or zero mean. In this research, pixel-based and
object-based methods were used to assess the UEQ in Toronto. In pixel-based approach, all of the
parameters were converted to raster format to extract pixel values for each parameters. Then, the pixel
values were used in the PCA model to compute the components that have most of the variance of
the data. In object-based PCA, the covariance matrix or correlation matrix mainly is derived from the
observation values of the GIS polygons. Then, the covariance matrix or correlation matrix will be used
to compute the components in the PCA model to assess the UEQ.

3.5.3. Accuracy Assessment

Several researchers attempted to assess the accuracy of the UEQ results using different methods,
including e-mail questionnaires, field-based questionnaires and factor analyses. Regardless of the
considerable amount of e-mail questionnaires or field-based questionnaires, both methods require
overheads for data collection. In addition, factor analysis used in previous work was preformed using
the same parameters that have been incorporated to compute the UEQ, which make it unreliable and
biased. Several researchers illustrated that education level, including university certificate or diploma,
family income and land values, represents the UEQ in the economic and social aspects [54,60–62].
Since there is a lack of ground truth to validate the results, we propose to use these socio-economic
parameters for data validation and to assess the UEQ results. All of the observation data of the three
socio-economic parameters were normalized to be in the same scale from 1 to 10. Then, the sum of the
socio-economic parameters can thus present the result of reference, as shown in Table 2.

Table 2. The sum of the socio-economic parameters.

Polygon ID Income Education Land Value Reference Layer

1 8 5 7 20
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In addition, the evaluation of the binary classifiers approach was used to assess the UEQ based
on the following two performance measures through data interpretation: precision and accuracy.

Precision (P) is a measure that evaluates the probability that a positive outcome is correct
using Equation (15):

P =
[ | TP |
| TP | + | FP |

]
(15)

Accuracy (Acc) evaluates the effectiveness of the classifier by its percentage of correct predictions
using Equation (16):

Acc =
[ | TN | + | TP |
| FN | + | FP | + | TN | + | TP |

]
(16)

where TP refers to “True Positive”, which means the polygon from the proposed method is located
physically in the reference layer; TN refers to “True Negative”, which represents the polygons that are
not detected in the proposed method and reference layer; FP refers to “False Positive”, which means
that the polygon of the proposed method does not really exist in the reference layer; and FN refers to
“False Negative”, which means the reference polygons do not exist in the proposed method. With these
three indicators, we assessed the UEQ layer from the results of each proposed method including GIS
overlay, and PCA assessed the best method for our datasets.

4. Results and Analysis

4.1. GIS Overlay Analysis

Figure 7 shows the UEQ derived in Toronto using the GIS overlay. The distribution of UEQ in
Toronto shows that the highest UEQ zones were found in the zones A, B, C and D in green colour,
while the lowest UEQ zones are indicated as red colour in the city. The highest UEQ zones are the
consequences of the summation of all of the positive parameters including (high vegetation areas,
historical areas, areas supported by public transportation, etc.) that are located within Zones A to D.
However, negative values of the parameters, including crime, industrial areas and high LST, are
constantly located on the red zones within the city. In contrast, the highest values of UEQ areas were
found in the high and moderate density areas, while the lowest values were found in the industrial
and low density areas.
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Figure 7. The UEQ derived using the GIS overlay method.
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4.2. Principal Component Analysis

4.2.1. Pixel-Based PCA

In this section, an analysis was first conducted to investigate the relationship among all of the
parameters. In pixel-based PCA, all of the parameters were converted from vector to raster in order to
compute the spatial correlation among the parameters. Some parameters, including built-up areas,
LST layer, industrial areas and crime rate regions, were reversed in order to avoid any negative
values in the correlation matrix. Pearson’s correlation coefficient was computed to investigate the
dependence among all of the parameters, which is going to help in the subsequent PCA. Table 3
represents the correlation coefficient matrix among all of the parameters. The green vegetation
parameter shows a strong positive relationship with NDVI (0.85), NDWI (0.85), reverse built-up
areas (0.81) and reverse LST (0.90), as well as the areas close to water bodies (0.8). The green areas
parameter also has a moderate correlation with the reverse industrial areas (0.69) and the reverse crime
rate parameter (0.75). On the other hand, NDVI has a strong positive relationship with NDWI (0.98),
reverse built-up areas parameter (0.96), reverse LST (0.91), green vegetation (0.85), the areas close to
water bodies (0.80), reverse industrial areas (0.84) and the reverse crime rate parameter (0.80). The
reverse built-up areas parameter has a strong positive correlation with NDVI (0.96), NDWI (0.96),
reverse LST (0.87), green vegetation (0.81) and reverse industrial areas (0.83). The areas that are close to
water bodies (0.76) and the reverse crime rate parameter (0.80) both have a moderate correlation (0.76
and 0.77), respectively, with the reverse built-up areas parameter. The reverse crime rate parameter
has a strong positive relationship with NDVI (0.80), NDWI (0.82), reverse LST (0.79) and the areas
close to water bodies (0.82). On the other hand, the reverse crime rate also has a moderate correlation
with reverse industrial areas (0.77), reverse built-up areas (0.77), green vegetation (0.75) and the public
transportation parameter (0.70). Based on these observations, one can indicate that the high vegetation
areas are usually located at low crime rate and low industrial areas within the city. The parameter of
low crime rate is also influenced by the transportation within the city because of a high correlation
observed between these two parameters. The areas that are covered by public transportation are
usually crowded with people, which thus influences the crime rate within the city. These observations
also indicate that the reverse built-up areas have a high correlation with industrial areas, which could
help to derive the industrial areas using remote sensing data. The high correlation between the
parameters may cause redundancy and slow down the processing steps. Therefore, data reduction can
help to improve the data processing and cost.

Table 3. The correlation coefficient matrix among all of the parameters derived using the
pixel-based method.

PD BD PT Veg NDVI NDWI rBU rLST H rInd CBD Sc Ent He Rel SP Sea rCR SH

PD 1.00 0.68 0.57 0.33 0.39 0.40 0.42 0.32 0.67 0.52 0.56 0.33 0.46 0.40 0.22 0.33 0.44 0.43 0.42
BD 1.00 0.62 0.33 0.40 0.42 0.60 0.36 0.48 0.52 0.40 0.43 0.32 0.44 0.45 0.33 0.59 0.60 0.41
PT 1.00 0.48 0.52 0.54 0.47 0.50 0.31 0.60 0.27 0.41 0.22 0.41 0.41 0.29 0.70 0.70 0.34
Veg 1.00 0.85 0.85 0.81 0.90 0.25 0.69 0.25 0.51 0.28 0.35 0.44 0.49 0.80 0.75 0.35
NDVI 1.00 0.98 0.96 0.91 0.21 0.84 0.16 0.52 0.18 0.33 0.33 0.43 0.80 0.80 0.22
NDWI 1.00 0.96 0.91 0.21 0.86 0.17 0.51 0.16 0.32 0.32 0.42 0.81 0.82 0.20
rBU 1.00 0.87 0.26 0.83 0.20 0.49 0.17 0.34 0.27 0.42 0.76 0.77 0.22
rLST 1.00 0.22 0.75 0.24 0.52 0.25 0.35 0.44 0.46 0.83 0.79 0.31
H 1.00 0.26 0.82 0.39 0.64 0.43 0.31 0.41 0.26 0.21 0.55
rInd 1.00 0.22 0.38 0.17 0.30 0.19 0.26 0.76 0.77 0.20
CBD 1.00 0.30 0.53 0.35 0.23 0.32 0.28 0.17 0.48
Sc 1.00 0.35 0.46 0.62 0.68 0.43 0.51 0.44
Ent 1.00 0.37 0.48 0.40 0.24 0.19 0.74
He 1.00 0.37 0.39 0.41 0.35 0.48
Rel 1.00 0.58 0.42 0.46 0.57
SP 1.00 0.38 0.41 0.43
Sea 1.00 0.82 0.34
rCR 1.00 0.33
SH 1.00

PD, Population Density; BD, Building Density; PT, Public Transportation; Veg, Vegetation areas; rBU, reverse
Built-Up areas; rLST, reverse LST; H, Historical areas; rInd, reverse Industrial areas; Sc, School areas; Ent,
Entertainment areas; He, Health condition; Rel, Religion areas; SP, Sport areas; Sea, areas close to the Sea; rCR,
reverse Crime Rate areas; SH, Shopping areas.
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Four components were extracted from all of the parameters using the pixel-based PCA approach.
Figure 8 shows the UEQ derived using the pixel-based PCA method. PC1 represents the largest
percentage of the variance of the data, with 95% of the total variance. However, the combination
of Components 2, 3 and 4 contains only 5% of the total variance. Due to the higher variance of
Component 1, it represents most of the parameters, including crime rate, NDVI, NDWI, reverse LST,
areas close to water bodies, reverse industrial areas, reverse built-up areas, green vegetation and public
transportation parameter, as shown in Table 4. The low variance found in Components 2, 3 and 4
showed that the used pixel-based PCA relied only on the first components, as shown in Figure 9.

Table 4. The parameters vs. the components in the pixel-based PCA.

Component 1 Component 2 Component 3 Component 4

Population Density 0.63 0.59 −0.35 −0.03
Building Density 0.31 0.46 0.16 −0.59

Public Transportation 0.90 0.01 −0.11 0.20
Vegetation areas 0.35 0.53 0.19 −0.60

NDVI 0.46 0.43 0.18 −0.23
NDWI 0.87 −0.19 −0.25 −0.22

Reverse Built-up areas 0.91 −0.22 0.20 0.04
Reverse Industrial 0.90 −0.31 0.08 −0.14

Reverse LST 0.93 −0.29 0.08 −0.04
Historical 0.93 −0.29 0.04 −0.04

CBD 0.54 0.42 −0.19 −0.48
School 0.73 0.44 −0.44 0.15

Entertainment 0.49 0.51 0.47 0.40
Health Condition 0.60 0.31 0.42 0.07

Religion 0.91 0.01 −0.10 0.09
Sport 0.40 0.56 0.36 −0.16
Sea 0.51 0.30 0.53 0.03

Reverse Crime rate 0.31 0.50 0.39 −0.34
Shopping 0.87 −0.17 0.25 0.05

Variance 95.00 2.53 2.36 0.11
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Figure 8. The UEQ derived using the first component of the pixel-based PCA method.
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Figure 9. The UEQ parameters versus PCA Component 1.

4.2.2. Object-Based PCA

In the object-based approach, the polygons of each parameter were used in the PCA
model to assess the UEQ. Table 5 represents the correlation coefficient matrix among all of the
parameters. Population density has a moderate positive correlation coefficient with the historical
areas parameter (0.66), where building density has a moderate negative correlation with green
vegetation (−0.61), NDVI (−0.68), NDWI (−0.67) and a positive correlation with built-up areas (0.67)
and LST (0.78). NDVI has a strong positive relationship with NDWI (0.88) and a moderate negative
correlation with green vegetation (0.66). However, NDVI has a high negative correlation with the
built-up areas parameter (−0.90) and LST (-0.80) and also has a moderate negative correlation with
building density (−0.68). The built-up areas parameter has a strong positive correlation with building
density (0.67) and LST (0.79). In addition, the built-up areas parameter has a negative correlation
with NDVI (−0.90) and NDWI (−0.89). NDVI has a very high correlation with NDWI and a negative
correlation with the built-up areas parameter and LST, as well as having a moderate negative correlation
with building density, which indicates that high NDVI values represent low LST and low high building
density areas with more green areas. As mentioned in the previous section, data reduction can improve
the data processing and cost. Therefore, the object-based approach was used to reduce the size of
the data.

Table 5. The correlation coefficient matrix among all of the parameters for the object-based method.

PD BD PT Veg NDVI NDWI BU LST H Ind CBD Sc Ent He Rel SP Sea CR SH

PD 1.00 0.34 0.14 −0.14 −0.11 0.11 0.12 0.12 0.66 −0.04 0.08 −0.17 −0.02 0.03 −0.11 −0.04 −0.06 0.02 −0.04
BD 1.00 0.40 −0.61 −0.68 −0.67 0.67 0.78 0.44 0.07 0.39 −0.05 0.14 0.11 0.16 0.02 0.21 0.22 0.05
PT 1.00 −0.37 −0.37 −0.36 0.38 0.46 0.12 0.15 0.16 −0.09 −0.04 −0.01 0.05 −0.03 0.12 0.12 0.04
Veg 1.00 0.66 0.55 −0.56 −0.66 −0.11 −0.13 −0.09 −0.03 0.05 −0.03 −0.13 0.03 −0.30 −0.11 −0.02
NDVI 1.00 0.88 −0.90 −0.80 −0.30 −0.37 −0.37 0.02 −0.27 −0.10 −0.29 −0.09 −0.27 −0.35 −0.23
NDWI 1.00 −0.89 −0.77 −0.31 −0.39 0.37 −0.02 0.29 0.11 0.31 0.10 0.25 −0.35 0.26
BU 1.00 0.79 0.30 0.50 0.35 −0.01 0.27 0.10 0.31 0.09 0.27 0.35 0.24
LST 1.00 0.18 0.19 0.25 −0.02 0.05 0.05 0.14 0.00 0.31 0.19 0.06
H 1.00 −0.01 0.50 −0.05 0.43 0.24 0.09 0.16 −0.05 0.33 0.19
Ind 1.00 0.03 0.02 0.08 −0.01 0.31 0.05 0.06 0.12 0.14
CBD 1.00 −0.05 0.37 0.19 0.07 0.09 −0.07 0.38 0.16
Sc 1.00 0.04 0.12 0.25 0.05 0.21 0.00 0.03
Ent 1.00 0.30 0.26 0.39 0.00 0.38 0.49
He 1.00 0.30 0.49 -0.03 0.21 0.38
Rel 1.00 0.44 0.11 0.15 0.41
SP 1.00 0.02 0.18 0.62
Sea 1.00 0.01 0.03
CR 1.00 0.27
SH 1.00

PD, Population Density; BD, Building Density; PT, Public Transportation; Veg, Vegetation areas; BU, Built-Up
areas; LST, LST; H, Historical areas; Ind, Industrial areas; Sc, School areas; Ent, Entertainment areas; He,
Health condition; Rel, Religion areas; SP, Sport areas; Sea, areas close to the Sea; CR, Crime Rate areas; SH,
Shopping areas.
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In this study, five components were extracted in the object-based PCA approach, which have
eigenvalues larger than one, as shown in Figure 10. The total variance of the five components is 75% of
the overall variance of the data. Preliminary analysis revealed that Component 1 has 36% of the total
variance of the dataset. Component 1 shows strong positive loadings with NDVI (0.88), NDWI (0.86),
building density (0.80), LST and historical areas (0.86) and strong negative loadings with LST (−0.86)
and built-up areas (−0.86). In addition, Component 1 is the best to represent the green areas within
the city. Component 2 reveals about 16% of the dataset, which mainly represents industrial areas
with a positive correlation of 0.63 and CBD with a positive correlation of 0.76. Component 2 can be
used to represent more about the urban areas. Component 3 represents 9% of the dataset, which
mainly represents only sports areas with a positive correlation of (0.81). Component 4 reveals 7% of
the dataset, which mainly represents public transportation with a positive correlation of 0.70. Table 6
shows the overall map produced from Components 1 to 5, which represents 75% of the overall variance
in the data.
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Figure 10. The UEQ derived using four components of the object-based PCA method.
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Table 6. The parameters vs. the components in the object-based PCA.

Component 1 Component 2 Component 3 Component 4 Component 5

Population Density −0.41 0.04 −0.46 0.14 0.16
Building Density 0.80 −0.09 −0.08 0.10 0.13

Public Transportation 0.49 0.00 0.00 0.70 −0.24
Veg 0.69 0.42 0.17 −0.07 −0.11

NDVI 0.88 0.12 −0.06 0.26 −0.09
NDWI 0.86 −0.13 0.08 0.27 0.08

Reverse Built-up areas −0.86 0.18 −0.07 0.27 −0.09
Reverse Industrial −0.59 0.63 0.00 0.16 0.08

Reverse LST −0.86 0.34 0.05 0.03 −0.11
Historical 0.86 0.35 0.05 0.29 −0.13

CBD 0.56 0.76 −0.02 0.15 0.06
School 0.04 −0.11 0.54 0.02 −0.29

Entertainment −0.28 0.43 0.31 −0.07 −0.02
Health Condition −0.14 0.21 0.17 −0.08 −0.01

Religion −0.26 −0.07 0.48 −0.20 −0.01
Sport 0.02 0.04 0.81 0.22 0.40
Sea −0.36 −0.42 0.29 0.34 −0.54

Reverse Crime rate 0.44 −0.35 −0.04 0.48 0.53
Shopping −0.18 0.14 0.33 −0.11 0.07

Variance 35.83 15.97 8.97 7.24 6.83

4.3. UEQ Validation Results

As mentioned in the previous section, four socioeconomic parameters were derived from census
data. The combination of education level, family income and land values was used to validate the UEQ
results. The evaluation of binary classifiers approach was used to evaluate the UEQ, as mentioned
in Section 3.5.3. The results of GIS overlay and PCA (pixel-based and object-based) were validated
using socioeconomic parameters as a reference for this study. Since we are looking to highlight the
higher UEQ areas, the mean values were used as a threshold to derive the higher UEQ areas. Figure 11
shows the reference layer and the high value of the reference layer. The distribution of the reference
layer revealed that the highest values are found in the city centre, the west portions of the city, while
most of the low UEQ values are found in the east and down town of the city. Figure 12 shows the GIS
overlay analysis and the higher values of GIS overlay. There exist a few areas having high UEQ values
located in the north and east of the city. The precision and accuracy measured were found to be 71%
and 65%, respectively, for the GIS overlay method. That is mainly because the GIS overlay method
uses all of the parameters where some of the parameters may have a negative correlation with the
reference layer, which may influence the overall result. Figure 13 shows higher UEQ ranking derived
using the pixel-based PCA method. The highest values of pixel-based PCA are mainly located in the
centre, north, northwest and northeast portions of the city. Since the pixel-based PCA used 95% of
the data, the result of the pixel-based PCA shows lower precision and accuracy with respect to GIS
overlay. The precision and accuracy are reported to be 68% and 63%, respectively, for pixel-based PCA.
Apparently, the pixel-based PCA reveals a lower completeness level, precision and accuracy than GIS
overlay, mainly because the pixel-based PCA considered only nine parameters to generate 95% of the
data, and some of these parameters have low correlation with the reference layer. Figure 14 shows
the object-based PCA and the higher values of the object-based PCA. The result of the object-based
PCA represents high UEQ values in the centre, north, northwest and northeast portions of the city.
The overall result of object-based PCA reveals a slightly better precision and accuracy by 1% than the
pixel-based PCA method. The main reason why the object-based PCA results were slightly better than
the pixel-based PCA is mainly because the object-based PCA method considered five components
in the analysis, which have more variation of the parameters. However, only one component was
considered in the analysis in pixel-based PCA. One more reason could be because in pixel-based PCA,
all of the vector data were converted to raster data. That step may cause a certain loss of spatial
information, which may affect the overall results. The overall result of the object-based PCA method
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yielded a lower precision and accuracy by 1% than the GIS overlay method, as shown in Figure 15, and
that is mainly because of the same reason for pixel-based PCA, which is the object-based PCA method
used only 75% of the total variance. However, the GIS overlay method used all of the parameters.
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Figure 11. The reference layer and the results of the reference layer higher than the mean. (a) The
reference layer; (b) results of the reference layer higher than the mean.
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Figure 12. The UEQ derived using the GIS overlay method. (a) The derived UEQ; (b) UEQ zones
higher than the mean.
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Figure 13. The UEQ derived using the pixel-based method. (a) The derived UEQ; (b) UEQ zones
higher than the mean.
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Figure 14. The UEQ derived using the object-based method. (a) The derived UEQ; (b) UEQ zones
higher than the mean.
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Figure 15. The UEQ validation.

5. Conclusions

In summary, this study aimed to utilize remote sensing and GIS techniques to assess UEQ with
a case study in the city of Toronto, Ontario, Canada, through evaluating two methods: GIS overlay and
PCA. One of the issues for the UEQ integration method is that remote sensing, GIS and census data
are collected at different scales and in different formats, which may require data normalization before
further analysis. In this study, The Z-score model was performed as a first step to normalize all of the
parameters. Then, linear interpolation was implemented to rank all of the Z-score values from 1 to 10.

Integration techniques including GIS overlay and PCA (both pixel-based and object-based
methods) were used to integrate the environmental, urban and socio-economic parameters. GIS overlay
is one of the effective tools for integrating different datasets from different data sources. GIS overlay
offers an intelligent platform for creating a comprehensive database to evaluate the UEQ. Correlation
analysis investigates the dependence found among urban, environmental and socioeconomic
parameters. In our case study, it was found that green areas have a strong positive correlation
with NDVI and NDWI. There was a negative relationship with the built-up areas parameter, LST,
industrial areas, crime rate and building density. Alternatively, PCA provides an efficient method
to reduce the data dimension and redundancy. Four components that have eigenvalues over one
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were derived from the 19 parameters that represented the urban and environmental aspects in the
pixel-based PCA method. Five components that have eigenvalues over one were derived from the 19
parameters that represent the urban and environmental aspects in the object-based PCA method. The
two methods (pixel-based and object-based) were tested due to the data availability. Other studies
can only consider one method of PCA, since they do not have significant contrast in the results with
respect to UEQ parameters.

One of the key concerns in UEQ research is to validate the final results derived from different
socio-economic references. Despite that some of the existing UEQ studies utilized email or
questionnaire surveys to collect the public’s opinion for UEQ assessment, this study proposed to
use three socio-economic parameters (university certificate or diploma, family income and land values)
as a reference for result assessment. The results showed that the precision was 71% for the GIS
overlay method, and the accuracy was measured as 65%. The precision level of the pixel-based PCA
method yielded 68%, and the accuracy was reported to be 63%, respectively. The precision level of the
object-based PCA was 70%, where the accuracy was reported to be 64%. In this study, GIS overlay
represented better results than PCA (pixel-based and object-based) with respect to the UEQ results
parameters, which may suggest that GIS overlay can be a better method in terms of the integration of
multiple parameters.

Although the presented approach can be used by any federal authorities and municipalities in
developing and developed countries, where there is a need to improve and design the new areas
within the city, there are a few recommendations for similar future studies: (1) more up-to-date remote
sensing and GIS data are required to consolidate the findings; (2) census socioeconomic data usually
relate to administrative units and can be changed in a shorter period of time, which makes it difficult
to be available worldwide; (3) integration among remote sensing, GIS and socioeconomic data needs
conversion between data, such as from raster to vector or from vector to raster, a step that may cause
a certain loss of spatial information. To conclude, remote sensing and GIS techniques can provide
fruitful information to model UEQ. However, other urban and environmental parameters, as well as
empirical models (such as different geographically-weighted approaches) should be considered in
order to develop a more universal indicator to predict the UEQ. As a result, further research is under
way to study different approaches to narrow down the variety of parameters, as well as developing a
new technique to retrieve the UEQ in different cities located in Canada.
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