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Mereotopology for product modelling
A new framework for product modeling based on logic
Filippo A. Salustri, Ph.D., P.Eng.

Ryerson University, Toronto, Canada
salustri@ryerson.ca

Abstract: Mereotopology is the branch of logic that treats the qualitative
formalisation of parthood and connection relations between entities.  Although it
has apparently not yet found use in spatial reasoning for designed product mod-
elling, the author proposes that it is well suited to the task.  This paper introduces
mereotopology and discusses some of the principles guiding the development of
design mereotopology (DMT), a logic being developed by the author for product
modelling.  Typical MT logics cannot be applied directly to engineering applica-
tions because they assume a “common sense” approach, whereas design
requires a more strict “engineering sense.”  DMT can provide a framework for
improved understanding of product modelling knowledge and will lead to better
computer-based aids to manipulate that knowledge.
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1. Introduction
Mereotopology (MT) is the branch of logic dealing with the qualitative formalisa-
tion of two fundamental relationships between entities: parthood (i.e. one entity
being part of another) and connection.  As such, MT seems to have obvious ap-
plication to the modelling of engineered products.  However, while the author has
found some evidence of work in formal spatial reasoning for design – such as
Clementini et al (1997) and Dym et al (1995), and the various papers of Borgo
and his colleagues, such as Borgo et al (1996) – the author has found nothing
about MT in the current design literature.

Systems of logic can provide new insights into the nature of design knowledge by
providing a framework in which to express facts about products in formal ways.
They can also reveal the fundamental principles underlying a discipline or field of
investigation.  The qualitative aspect of logic is also important.  Since logic does
not require quantitative values such as actual dimensions and masses, it is very
well suited to the early stages of design processes and product modelling, where
little if any quantitative product information is available.  The author has therefore
embarked on a research project to study MT and to develop it into a form that
could facilitate product representation and reasoning in the upstream stages of
design.
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MT approaches are substantively different from conventional topologies based
on set theory.  Most importantly, MT captures formally the actual perceived char-
acteristics of “real” entities in the world; this is something for which so-called
point-set topologies were never intended.  Thus, MT is grounded in a sense of
reality that is more pertinent to design and product modelling than the alterna-
tives.

Furthermore, MT theories such as RCC (Randell et al, 1992) can have tractable
subsets that are amenable to computerisation.  This opens the possibility of de-
veloping new computer-based tools to aid practising designers.

This paper provides a brief overview of general MT, specifically addressing its
potential use in product modeling.  The author’s current research in MT is also
presented the goal of which is the development of a specific MT theory for prod-
uct models and computer-based applications.  This theory, called design
mereotopology (DMT) will be a formal theory of reasoning that interprets the
principles of MT from the point of view of what the author calls engineering sense
(as distinct from common sense).  Some of the governing principles of DMT are
discussed, and the core of the theory itself is presented.  Since DMT is still under
development, no complete solution is available at this time.  Some possible ap-
plications of DMT are suggested to show that the theory would have implications
for design practice and computer-based applications.

Most of the work in MT is relatively recent, and has been driven by developments
in artificial intelligence, robotics, cognitive science, and geomatics and medical
imaging.  Current trends in AI emphasise systems that can reason with common
sense knowledge about the world (that is, knowledge typical of the general
population); this work has contributed to the development of autonomous vehi-
cles and robots, economic theories, etc.  In the area of knowledge-based
systems, MT is contributing to the resolution of inconsistencies arising from a
lack of distinction between properties and parts of objects.  In geomatics and
medical imaging, MT is helping to define systems of reasoning with the complex
and abundant data collected with modern imaging and sensing hardware, e.g.
Galton (1996).  Common sense knowledge is an important aspect of all these re-
search areas.

Common sense is, however, usually insufficient in engineering environments.  A
different perspective is needed – what the author calls engineering sense.  Engi-
neers require a perspective that is more structured, more based on scientifically
acceptable views of reality, and less tolerant of contradiction and inconsistency,
than does the “common” person.  They do not care about emotional states or be-
lief systems of a non-technical nature.

Still, this is not to say that we require the most strictly verifiable perspective, in
the sense of the natural sciences.  For the most part, product engineers do not
(yet) care about quarks, dark matter, physical space described by more than four
dimensions, or events that happened billions of years ago.  Nonetheless, engi-
neers require a far stricter perspective than does the average lay person.  They
seek a level of consistency consistent with the classical sciences, and scaled
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within a few orders of magnitude of the human body.  But within these limits, de-
sign engineers require a strict level of rigour.  Design engineers are also
interested in maintaining a physical sense that takes into account the macro-
scopic behaviour of materials and systems that may seem counter-intuitive or
bizarre to lay persons (e.g. non-newtonian fluids).  This engineering sense, then,
sits between the rather naïve common sense and the very strict sense of the
natural and applied scientists.

Engineering sense impacts on the requirements of logical systems for design en-
gineering.  Since most existing logics are based on a common sense
perspective, they are likely not completely consistent with engineering sense.
Therefore, to develop a proper MT for design, it is very likely that some reinte r-
pretation of “standard” logical notions will be required.

Development of logics for design engineering must not be seen as an attempt to
automate design.  It is certainly unclear that such a goal would be attainable, let
alone desirable.  The development of logics serve three purposes in design engi-
neering.  First, logic promotes structured thinking.  The real worth of logic, as
exemplified by the scientific method and by mathematics, is that they provide a
framework for thinking about complex problems.  These frameworks are particu-
larly important as problem complexity increases.  Design is creative, to be sure;
but an idea that cannot be pursued to its logical conclusion will not be imple-
mented.  Also, in today’s highly competitive economy, structured thinking can
shorten time-to-market, improve product quality, and lower product cost.

Second, logic helps prune the search space of possible designs by eliminating
designs that are logically inconsistent.  Logic helps organise knowledge and in-
formation about design, which in turn can make evident logical flaws that would
otherwise remain hidden in the vast amounts of data generated during a design
process.  Logic can temper creativity and direct it towards, reasonable, attainable
goals.

Third, logic can be used to construct improved computer-based tools.  The speed
and repeatability of computers combined with advanced reasoning capabilities
embodied in systems of logic can lead to new classes of knowledge-based sys-
tems.  The net gain is that humans now have more time to focus on aspects of
product development and design for which the human mind is best – perhaps
ideally – suited.

2. Background
The author has been working on product model formalisation for several years.
In that work, axiomatic set theory was used as the logical foundation of the
Axiomatic Information Model for Design, AIM-D (Salustri, 1996).  Although some
interesting results were uncovered, structural problems were found that arose di-
rectly from the nature of set theory itself and its interpretation for design
engineering.  While trying to address these problems, the author came across
mereotopology and therein found a new tool that the author believes is more
compatible with design engineering and engineering sense.
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A MT theory is any theory combining mereology (a logic of part-whole relations)
and topology (a logic of connections between parts).  Although mereology has
existed for almost a century (Lesniewski 1927-1930, 1982), it is only in the past
15 years that it has found popularity in combination with topology, especially in
the field of spatial reasoning.  The obvious pertinence of spatial reasoning and
product design makes it clear that MT can contribute to the advancement of
product modelling and computer-based tools.  Historically, mereological and MT
theories were overlooked in favour of set-theoretic ones, but recent work (Smith,
1996) indicates that MT has the potential to resolve several open issues in set
theory.

Perhaps most importantly for product modelling and computer-based tools, re-
gion-based theories of MT – such as Eschenbach (1994) and Randell et al
(1992) – suggest that MT can be used to represent entities that exist in other
spaces besides the usual physical one.  A region is a portion of a space, typically
the portion occupied by some entity, material (e.g. a physical part) or otherwise
(e.g. a hole).  The overarching goal of any MT theory is to describe the nature of
regions and the entities that occupy them, and the interrelations between re-
gions.  Regions themselves, however, need not be primitive entities within the
theories.  There are many MT theories that do not take regions as primitive enti-
ties – such as Casati and Varzi (1997) and Smith (1997) – but rather build them
up from more primitive entities.

The author, however, believes that regions in a MT for design should be primitive
because they are generally accepted primitive items in engineering sense.  De-
sign engineers think in terms of real objects that are made of a material and that
occupy space.  The spaces occupied by these objects are regions.  All other en-
tities – boundaries, surfaces, points, etc. – are conceptual entities that result from
our observations of the interactions between objects (and regions); for example,
a boundary is taken as the entity that separates two regions.  Eschenbach and
Heydrich (1995) show how theories for different domains can be constructed
simply by changing how a region is defined.  Indeed, although the MT theories
that have been reported in the literature have nearly always defined regions as
physical, spatial ones, the author believes MT can also be applied successfully to
non-physical domains that are relevant to product modelling (one example is a
“space” of product function).  Thus, one properly developed theory can be reused
many times in many design domains by swapping out one characterisation of re-
gion for another, just as is suggested in Eschenbach and Heydrich (1995).
Examples of this are given later in this paper.

3. A design mereotopology

In this section, the core of design mereotopology (DMT) is presented.  The de-
velopment proceeds by identifying the primitive relations that underlie DMT,
characterising them logically (the terminological component of the theory), and
imposing further ontological axioms to restrict the theory to represent only those
entities of interest to the product modelling domain.  It is assumed that full 1st-
order logic is available.  The development presented here is based upon the
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Closed Region Calculus (CRC) (Eschenbach, 1999) and the theory presented in
Smith (1996).

3.1. The Core of DMT

Parthood is represented by xPy and is read “x is part of y” and represents par-
thood in the most general sense.  That is, if there is any reasonable way to
consider one entity as part of another, the P must apply.  Examples of this in-
clude components of assemblies, moments in a timeline, items in a batch,
surfaces of a volume, sub-functions of functions, regions of space, and so on.  To
maintain generality, entities are considered parts of themselves. Other useful re-
lations can then be defined, including proper parthood (PP), overlap (O),
complement (’), binary mereological summation (+), and general mereological
summation (S).

xPPy := xPy ∧  ¬yPx (D1)
xOy := ∃z (zPx ∧  zPy) (D2)
x = y’ := ∀z (xOz ⇔ ¬zPy) (D3)
x = y+z := ∀v (xOv ⇔ yOv ∨  zOv) (D4)
x = Sy[ψ(y)] := ∀z (xOz ⇔ ∃y (ψ(y) ∧  yOz)) (D5)

In D5, ψ stands for a predicate that is used for choosing entities (e.g. “all entities
in a product made of steel”).  The theory remains a 1st-order logic because exis-
tential quantification (∃) and quantifiers embedded in any given ψ are not
needed.  Furthermore, summation bears a superficial resemblance to set-wise
union, but it is in fact very different.  The union of two sets includes only the con-
tents of the sets.  But the mereological summation of the entities includes their
parts, the parts of their parts, and so on.  This may not seem sensible, but is in
fact a truer depiction of reality.  When automobiles are put on a truck – for deli v-
ery, say – all the automobiles parts, parts of parts, etc. are on the truck as well.
This goes without saying in engineering sense, but must be spelled out within a
formal system.  The fact that MT theories can capture these “obvious facts” of
engineering sense while set theoretic approaches cannot indicates strongly the
relative potential of MT compared to set theory as a useful design research tool.

An important feature of P is that every entity is a part of itself.  This may seem
counter-intuitive with respect to engineering sense, but it serves two very impor-
tant purposes.  First, it generalises the sense of parthood to be as all-inclusive as
possible.  One would naturally expect fundamental relations to be universal (or
nearly so); so selecting fundamental relations in a logic to be as broadly applica-
ble as possible is considered “good style”.  Second, it greatly simplifies the
development of the theory in general.  A proper part relation that is convention-
ally thought of in engineering sense can be defined easily from P.  Any MT theory
can be rewritten assuming proper parthood as the primitive relation without loss
of soundness, but with some loss of simplicity.

Parthood in DMT is characterised by the following axioms.
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∀xyz [xPy ∧  yPz ⇒ xPz] (A1)
∀xy [xPy ∧  yPx ⇒ x=y] (A2)
∀x [xPx] (A3)
∃y [ψ(y)] ⇒ ∃x (x = Sy[ψ(y)]) (A4)
∀xy [xPy ⇔ ∀z (zOx ⇒ zOy)] (A5)

Axioms A1-A3 ensure that P is transitive, anti-symmetric, and reflexive.  Axiom
A4 ensures that the mereological sum of entities that satisfy ψ exists.  Axiom A5
asserts extensionality, a basic property of any logical theory. In this case, any
thing that is a part of another shares parts with the other too; put another way, in
combination with A2, A5 says that things that have identically the same parts are
in fact identical themselves.

Extensionality is a distinguishing feature of different approaches to MT.  Some
authors have based extension on purely mereological grounds (e.g. Eschenbach
1999), while others such as Vieu (1993) have added extensionality based solely
on topology, and still others theories, such as RCC (Randell et al., 1992) defined
extension with respect to both mereology and topology.

Mereological extension says that two entities are identical if the have exactly the
same parts.  Since MT theories are independent of time (i.e. can be thought of as
describing things at an instant only), then there is nothing wrong with mereologi-
cal extension in an engineering sense.  Topological extension says that two
entities are identical if they are connected to exactly the same things.  This is
problematic for two reasons.  First, topological extension leads to a prohibition of
atomic entities, which the author contends are essential for product modelling
logics (the importance of atoms will be discussed below).  Second, it is possible
to model many engineered products in ways that are useful to designers, yet
topologically indistinguishable, which can lead to false equivalencies of product
models.  Thus, in DMT we choose in favour of only mereological extensionality,
and prohibit topological extensionality.

The second fundamental relation in DMT is the topological one.  The connection
relation is written xCy, and is read “…x is connected to y….”  It is intransitive, re-
flexive, and symmetrical.  This primitive covers and form of geometric, physical,
or other form of connection or contact, permanent or temporary, independent of
the criterion by which a particular sort of connection is defined.  Again, various
distinctions (e.g. two welded parts versus two parts that are merely in contact)
must be made eventually, but the underlying universal sense of connection is de-
fined terminologically at the outset.

Many useful relations can be derived from C, including contact (EC), tangential
and non-tangential proper parts (TPP and NTPP), self-connection (SC), and en-
closure (E).  Self-connection is particularly important for product modelling in that
it distinguishes between single-region entities (e.g. physical parts and assem-
blies) and entities whose elements are not so connected (e.g. the Earth, Moon,
and Sun; the stator and the rotor of a motor; a television set and its remote con-
trol unit).
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xECy := xCy ∧  ¬xOy (D6)
xTPPy := xPPy ∧  ∃z [zECx ∧  zECy] (D7)
xNTPPy := xPPy ∧  ¬∃z [zECx ∧  zECy] (D8)
SC(x) := ¬∃yz [x = y+z ∧  ¬(yCz)] (D9)
xEy := ∀z [zCy ⇒ zCx] (D10)

Topological structure is defined by the following axioms.  Connection is reflexive
(A6) and implies a mereological sharing of parts (A7).  A8 propagates connec-
tivity from entities to their parts: connected entities must have some connected
parts.  Similarly, A9 propagates connectivity from parts to their wholes: some-
thing connected to a part of a thing is also connected to the thing itself.  Finally,
A10 ensures that an entity can be uniquely identified by its external connections
(this prevents entities from occupying the same space at the same time).

∀xy [xCy ⇒ yCx] (A6)
∀xy [xCy ⇒ xOy] (A7)
∀xy [xCy ⇒ ∃z [zPx ⇒ zCy]] (A8)
∀xyz [zCx ∨  zCy ⇒ zC(x+y)] (A9)
∀xy [x=y ⇔ ∀z [zECy ⇔ zECx]] (A10)

It is tempting to equate topological enclosure (D10) and mereological parthood;
the two concepts appear quite similar.  However, such an equivalence would
mean that (a) every region encloses its parts, and (b) every enclosed entity is
part of its enclosing entity.  While the first condition is perfectly reasonable in en-
gineering sense, the second one is not.  An entity may enclose other things
besides its parts: for spatial regions, an automobile may enclose its passengers,
but its passengers are not among its parts by any definition of parthood consis-
tent with spatial regions.  Therefore, only condition (a), above, holds in the form
of an implication.  Some existing MT theories assume only condition (a), others
assume only (b), and still others assume the complete equivalence of enclosure
and parthood.  Based on the simple argument presented here, however, the
author contends that all MT theories supporting either condition (b) in any way
must be discounted as foundations for DMT.

The preceding discussion has set the fundamental bounds on the primitive rela-
tions in DMT: P for parthood, and C for connection.  The interrelations between
the two primitives have also been established.

From these 10 axioms, a number of very reasonable theorems about spatial enti-
ties can be proved.  Theorem T1 shows that an entity that is not part of another
entity has a part that shares nothing with the other.  Also, things that share parts
are connected (T2), and connected things are parts of things that are connected
(T3).  These theorems have been proved in Eschenbach (1999).  It is important
that logical systems be able to prove such “obvious” statements.  By doing so,
the system proves its worth as a representation of knowledge, and clearly dem-
onstrates that many “obvious” properties of the world can be deduced logically
from simple primitive relations.
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∀xy [¬xPy ⇒ ∃z [zPx ∧  ¬yOz]] (T1)
∀xy [xOy ⇒ xCy] (T2)
∀yz [zCy ⇒ ∀x [yPx ⇒ zCx]] (T3)

3.2. Extending the Core System

The modelling functionality of the core system can be extended by defining other
mereotopological relations.  Two such examples are presented here to show the
potential for enhancement of the core system.  Other extensions are possible
and are being studied by the author.  For brevity, axiomatisations for these ex-
tensions are omitted; they will be included in a subsequent publication.

It is possible to develop axiomatic representations of two relations, everywhere in
(EI) and somewhere in (SI) that are valid with the DMT framework.  If it is true
that a predicate applies everywhere in an entity, then it must also apply some-
where within it; that is, EI and SI can be both true.  The limiting conditions of an
entity being homogeneous (HO) (i.e. a predicate applying either no where or eve-
rywhere within it), or heterogeneous (HE) (i.e. a predicate applying somewhere
but not everywhere within it) can be easily defined.  The underlying work on
these was originally presented in Eschenbach (1999).  For example, ψEIx is read
“…ψ holds everywhere within x….”  Some provable theorems include the follow-
ing.  T4 states that if ψ holds nowhere in an entity, then it holds nowhere in each
of its parts.  T5 states that if ψ is true everywhere in an entity, then ψ is true
somewhere in each entity that shares parts with it.

∀x ¬ψSIx ⇒ ∀y [yPx ⇒ ¬ψSIy] (T4)
∀x ψEIx ⇒ ∀y [xOy ⇒ ψSIy] (T5)

Theorems such as T4 and T5 are important in abstract (e.g. systems) models of
products, where it is difficult to identify clearly where one component starts and
another ends, especially at the early stages of design processes.  Knowing that
there exist formal systems that allow such intuitions to be derived suggest that
there do exist formal foundations for these intuitions. Hopefully, a detailed study
of these formal systems will lead to new insights about the processes that require
those intuitions in order to reach a successful conclusion.  Also, of course, new
computer-based designers’ aids may be developed that are able to compute
these otherwise intuitive insights, because of the formal systems from which they
can be derived.

Another extension is a relation MAX-C (for maximal component, a single self-
connected entity exhibiting certain characteristics, and being as large as possible
with respect to the underlying space.  For example, It is possible to derive the
intuition that anything connected to a maximal component cannot exhibit the
same characteristics as the maximal component.  This relation can be used to
explore the characteristics of other components implied by the known character-
istics of a given component.
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3.3. Open Issues

3.3.1. Atoms
As noted above, atoms are vital entities in product modelling.  In the language of
MT, an atom is an entity that has no parts but themselves; that is, they have no
mereological structure.  Given the fundamental split between mereology and to-
pology, even in combined MT theories, care must be taken to distinguish clearly
between mereological and topological notions of atomic entities.  Atoms are
mereological.  Their topological counterparts, points, can exist separately.  A
point is an entity with no topological structure.  Similarly, an atom has no
mereological structure, but may have a topological structure.  While this may
seem counter-intuitive, it is quite reasonable.  We commonly refer to entities as
atomic to indicate the most primitive entities of interest, even if those entities can
be extended in space (i.e. they are not points). Examples are a mechanical part
when viewed from the perspective of design for assembly, and an assembly that
is viewed as a single entity from a systems perspective.  To maintain this distinc-
tion, it seems that both atoms and points are required in DMT.  Eschenbach has
provided two examples of MT theories that allow atomic entities (Eschenbach,
1994; Eschenbach, 1999).   This is possible because, unlike other MT theories,
there is no restriction that every entity must have an interior part.  While this
seems like a perfectly reasonable assumption, the implications of this for product
modelling must be studied further.

In conventional topology, an atom can be any element in a set-theoretic sense.
This is similar to the mereological perspective: a topological atom can be any
mereological entity.  The differences between mereotopological theories and to-
pologies based on set theory arise from the differences between mereology and
set theory.  For example, the axiom of foundation in set theory induces a hierar-
chy of aggregates (sets that contain sets and so on); there is no such hierarchy
in mereology.  This has major implications for the mapping of structures in the
theory to entities in the theory’s domain of application.

3.3.2. Boundaries
Boundaries are entities of dubious status in MT.  Some researchers include them
in the types of entities to be treated, while others choose to exclude them com-
pletely, and still others have found ways of deriving boundaries from the
existence of other entities (with some restrictions).  Boundaries are difficult to
treat because logicians cannot agree on whether they are “real” entities or only
cognitive artefacts of human perception and reasoning.

Whatever the epistemological status of boundaries, there is little doubt that they
are of fundamental importance in engineering and so must be included in one
manner or another in DMT.  The intuitive sense of boundary that we want to
capture in DMT is of the limit of some property or properties at which point the
values of the property or properties change.  That is, a boundary is the divider
between two entities.  A boundary cannot exist around a thing without some
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other thing being on the other side of the boundary.  Boundaries are thus emer-
gent properties of connected entities, not intrinsic properties of single entities.  It
would make sense, then, to seek a formalism that defines a boundary as a sort of
entity shared by the connected and thus mutually bounding entities.  If the
boundary is shared, then the connected parts should overlap (refer to D2).  How-
ever, while the two connected things that share a boundary are full entities, the
boundary itself is in some way less.  In spatial reasoning, boundaries are gener-
ally of lower dimension than the entities they bound (i.e. volumes are bound by
surfaces, surfaces by curves, and curves by points); the only entities are the vol-
umes and the boundaries are not counted as entities.

Now consider the relation of contact (D6), which is defined on two entities that
are topologically connected but do not share any parts.  So if boundaries are
treated as parts then they cannot be shared by entities in contact; and if they are
treated as non-parts, then they may be shared by connected entities, but cannot
be covered by DMT in its current form.

There are three possible solutions to this conundrum.  First, some MT theories
derive boundaries by considering special relations between conventional entities
(e.g. volumes), such as that in Smith (1996).  Second, we can follow the ap-
proach of Eschenbach (1994), wherein boundaries are defined but where an
extra primitive to distinguish mereological entities (“regions”) from topological en-
tities (points, lines, etc.) is introduced.  Thirdly, we can ignore the boundaries
themselves in favour of identifying the other entities that bound a given one; this
solution is based on the use of the MAX-C relation (see below) and the fact that
boundaries only occur where entities connect.  It is unclear at this time which, if
any, of these solutions is best for DMT.  The author is currently studying them all.

3.3.3. Granularity

As designs are developed, different product models are generated at different
levels of detail.  Each level of detail requires a different granularity of the entities
described by the model.  As granularity increases, items that have no mereologi-
cal structure – atoms – may come to have parts; similarly, as granularity
decreases, entities with parts may become atoms.  In order to support such
changes of granularity, some restrictions must be placed on what can and cannot
change from atom to non-atom and vice versa.  Eschenbach (1994) has pro-
posed one way of embedding this into a MT theory, but her solution is based on
the existence of a predicate that can distinguish between mereological entities
and topological ones.  It is not evident to the current author at this time that such
a predicate is valid within DMT as defined here.  This matter must be studied
further.

This completes a brief introduction to DMT and some of its governing principles.
Further details will appear in another paper, currently in preparation.



DRAFT: 2002-10-02

11

4. Possible application areas

Obviously, DMT is not of direct use to practising designers.  However, given a
formal theory such as DMT, it is possible to envision a variety of tools based on
it.  The author’s goal here is not to explain in detail how DMT would be applied,
but rather to give an overview of the potential benefits DMT could provide in vari-
ous practical cases.

4.1. Computer-Based Design Tools
Perhaps the most important potential development is that of computer-based
reasoning and representation tools to aid designers in building product models.
Since formal systems are usually amenable to software implementation, the
author sees DMT as the basis of many different computer-based design tools.
The author believes that the best near-term application in this regard is in the de-
velopment of knowledge-based systems (KBSs) using description logics, such as
that in Brachman et al (1991).  One substantial problem with all such KBSs of
which the author is aware is that the distinction between properties of entities and
parts of entities is not well formalised.  Typically, parts will appear as values of
slots that are named has or has-parts (as distinct from other characteristics or
properties, usually named for the property itself – such as colour).  This superfi-
cial distinction between parts and properties leads to models that do not reflect
the intention of their creators and thus do not communicate design information
accurately.  (This problem is typically dealt with by placing extra constraints and
error checks in the reasoning engine, which makes the system more complex
and error-prone.)  It also leads to increased computational complexity in the
system itself (because the system cannot partition parts from properties).  If a
system such as DMT were to be embedded into a KBS, a formal distinction be-
tween parts and properties could be made, thus likely improving the robustness
and computational efficiency of the system.

4.2. Geometric and Configuration Modelling

All MT theories target the representation of complex physical objects; thus, DMT
could correspondingly be used for geometric and configuration modelling, espe-
cially in the upstream stages of design processes, when quantitative information
is rarely available.  This is a straightforward application of DMT, since all MT
theories take as their basis a domain of physical space and the objects within it.

More research is needed, however, to specify DMT to the domain of physical
space.  A physical part (of an assembly, for example) is a restricted kind of
mereological part.  The characteristics that distinguish physical parts (e.g. that it
was manufactured, that it is intended to serve a function, that it corresponds only
within certain tolerances to its own specification, etc.) are neither mereological or
topological.  A useful and specific theory for physical parts and assemblies will
therefore have DMT embedded within it.  Some other theories of this sort exist,
such as Borgo et al (1996).  They will be studied in detail as part of this aspect of
DMT’s development.
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4.3. Material Knowledge-Bases

One important special case is that of mass nouns that name a material without
naming an object (e.g. steel or lubricant).  Technically, mass nouns are strictly
conceptual structures that do not exist in reality (i.e. there is no steel per se, only
actual pieces of the stuff having dimension and volume).  They are, however,
also fundamental to engineering and designing, and so should be treated some-
how.  Lacking volume, mass nouns must therefore be treated separately from
physical objects.  This can be achieved by considering a different, non-physical
space.  To treat mass nouns, we consider an abstract space whose axes meas-
ure material properties (e.g. density, tensile strength, electrical resistance, and
chemical volatility) as well as other characteristics of significance in design set-
tings, such as cost and availability.

We can then envision a space populated by regions, each of which represents
one kind of material.  Specific materials would be represented by small volumes
(in order to account for statistical deviation from standard values for those char-
acteristics).  In turn, these would be parts of larger regions representing classes
of materials (e.g. steel).  Regions of overlap indicate regions where different
materials have similar properties, and regions that abut one another indicate
materials that together cover a wider range of characteristics.  A void in this
space indicates a combination of characteristics for which no materials exist –
and is suggestive of areas of research for materials scientists.  Indeed, such a
space can be looked upon as a “periodic table” of materials, where a material’s
location relates directly to its properties – and provides much the same kind of
visualisation capability as the periodic table of the elements.  The problem of
material selection now becomes equivalent to a geometric problem involving
searching a space, a process that can be reasoned about in a semi-automatic
way.

One can even imagine a computer-based tool that depicts the space graphically
by mapping characteristics to physical dimensions, and allowing designers to
navigate a materials space, guiding a semi-automated reasoning engine in order
to conduct materials selection tasks.

4.4. Function Modelling
Another area where DMT could be applied is in modelling product function rather
than structure.  Function modelling and analysis is acknowledged as an essential
aspect of the upstream stages of product development because early design de-
cisions have the strongest effect on product quality and cost.

Many approaches to function modelling are reported in the literature – such as
Yang and Salustri (1999) and Qian and Gero (1996); no clear advantage has
been identified for any of these approaches so far.  Generally, the goal of all
these formalisms is to establish a set of primitive and independent functions from
which all others are derived.  This approach is consistent with DMT: each inde-
pendent primitive function type would be represented as an axis in a space.   The
resulting abstract space would be described with DMT.  A product would now be
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represented as the region in the function-space that contains all the functions the
product provides.  Each physical part of the product would fill a sub-region corre-
sponding to the functions provided by the part.

Various inferences can be drawn from the relations that occur between parts and
products in the function-space.  Parts whose function-regions lie partly outside
that of the product contribute unnecessary functionality; such parts could be re-
designed to remove functionality without affecting the product itself.  Regions of
product function for which there are no overlapping part function regions suggest
functionality that is emergent from the combination of parts in a given way.  One
might then consider the notion of “functional efficiency” as the ratio of total prod-
uct “volume” in the function-space to the volume of all the product’s parts in that
space.  The larger the ratio, the more emergent functions are exhibited by the
product per part function.  Again, being able to reason in this abstract function-
space facilitates reasoning about products.

4.5. System Modelling
A system is defined as a set of interacting components that provides a definite
set of functions, and as being crisply distinct from its operating environment
(Karnopp et al, 1990).  Systems are abstractions of physical assemblies, the dif-
ferences being (1) system components need not interact through physical
contact alone, and (2) system components need not have any physical manifes-
tation at all.  Because of this similarity, it is reasonable to expect DMT to
represent systems as well as it can potentially represent physical objects.

Of particular note in this case is the broad applicability of systems theory (in-
cluding mechanical, electrical, software, biological, organisational, and other
areas).  Because of this, one may also propose that DMT – or at least some
variation of it – could form a foundational logic for all such disciplines.  It could
also be a mechanism to support knowledge transfer between disciplines by pro-
viding a common knowledge representation language.

5. Conclusion
Clearly, there remains a substantial amount of work to do on DMT.   Some open
issues that the author is currently pursuing are discussed briefly in Section 3.3:
atoms, boundaries, and granularity.  Furthermore, it would be useful to compare
DMT to other forms of MT, for the sake of identifying problems in DMT that have
not yet been detected as well as seeking features of other theories that could be
incorporated into DMT.

As has been indicated above, it can be the case that counter-intuitive notions
make engineering sense on closer examination, such as the existence of regions
that are closed (as opposed to regions that are bounded).  Engineering sense
suggests that closed entities are required to appropriately represent physical
product models, but the details of the best form of closure to use is not obvious.
For other kinds of models (e.g. function-space models) open regions may serve
important purposes.
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This paper has introduced the beginnings of a design mereotopology, a logical
theory suitable for application to product modelling and spatial reasoning of de-
signed products.  The theory is still in its infancy, but there are indications that
once mature, it will be able to set a qualitative logical foundation for product
modelling.  Future work by the author will treat various outstanding issues in the
logic as well as exploring further the mechanisms to develop practicable systems
that embed DMT in knowledge-based environments.  The author hopes that the
development of DMT will further our understanding of the design engineering en-
deavour and improve our collective ability to develop innovative, high-quality, and
low-cost products.
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