

 library.ryerson.ca

Representing CK Theory with an
Action Logic

Filippo A. Salustri
Ryerson University

digital.library.ryerson.ca/object/44

Please Cite:
Salustri, F. A. (2014). Reformulating CK theory with an action logic. In J. S. Gero
(Ed.), Design Computing and Cognition, 12, 433-450.
doi:10.1007/978-94-017-9112-0_24

https://library.ryerson.ca/
https://digital.library.ryerson.ca/object/44
https://doi.org/10.1007/978-94-017-9112-0_24

Design Computing and Cognition DCC’12. J.S. Gero (ed),
pp. xx-yy. © Springer 2012

1

Reformulating CK theory with an action logic

Filippo A. Salustri
Ryerson University, Canada

CK theory is an interesting and unique theory of engineering design. This
paper introduces ALX3d, a formal descriptive version of CK based on the
action logic ALX3, which is able to represent aspects of the actions, pref-
erences, beliefs, and knowledge of collaborating, imperfect agents (such as
human designers). It is shown that all the basic notions of CK can be ren-
dered in the logic of ALX3d with only one relatively minor change in how
the CK terms concept and knowledge are defined and related. A case
study of CK is used to show how ALX3d can also be used to describe
some “real-world” situations. The advantages of ALX3d are that they re-
cast CK in a form more readily understood by those accustomed to expert,
knowledge-based, and formal systems; provide a “scientific” vehicle for
reasoning about the design activities it can describe; and define a possible
basis for the development of new, computer-based designers’ aids.

Introduction

CK theory [1,2] presents an interesting and unique theory of engineering
design, but the available literature does not cast CK in a sound logic.
Without soundness, there are severe limits to the reliability of results that
any “formal” theory can obtain. In this paper, the author will demonstrate
that a sound action logic can be just as expressive as CK using only con-
ventional notions of logic. That is, the spirit and benefits of CK can be
preserved using conventional logic. The author has presented previous re-
lated work elsewhere [3]. Having a formal descriptive (not prescriptive)
reformulation of CK yields new benefits that will be described.

CK is a high level description of designing based on the intuitive dis-
tinction between concepts and knowledge. Knowledge, in CK, consists of

 F.A. Salustri

2

statements that are true. Concepts, on the other hand, are statements the
logical statuses of which are unknown. They are groups of propositions
that together describe a possible design solution. Designing, in CK, pro-
ceeds from a base of knowledge, and from which concepts are developed.
These concepts are manipulated and eventually verified to become
knowledge. Thus, a proposed design is a CK concept, and once the design
has been appropriately verified, it becomes known as a suitable design so-
lution. CK partitions the domain of all propositions into two spaces; C-
space contains concepts and K-space contains knowledge. Operators are
used to represent the kinds of activities undertaken by designers that trans-
form propositions. These operators are broadly categorized by whether
their inputs and outputs are concepts or knowledge. This leads to four cat-
egories of operators.

C→C operators transform one concept into another.
C→K operators transform a concept into knowledge through some val-

idation action that establishes a logical status for the concept.
K→C operators generate concepts by transforming knowledge propo-

sitions. For example, given knowledge items x and y, but no further
knowledge about x and y, one might create a concept consisting of x ∧ y,
or x⇒y. These operators can be thought of as design concept generators.

K→K operators deduce new knowledge from existent knowledge; the-
se are the conventional acts of inference common in analysis.

There have been many papers written about CK, and case studies indi-
cate that CK can describe a variety of design activities. However, as they
are all based on a few fundamental ideas, this author uses only those key
papers that define CK. Further details about CK will be provided below.

Action logics are formal systems that address the activities undertaken
by reasoning agents. ALX3 [4] is especially well suited because it is the
only sound and complete action logic of which the author is aware that as-
sumes the agents (i.e. human designers) exhibit bounded rationality – they
are imperfect reasoners having imperfect/incomplete knowledge (per Si-
mon [5]). CK also assumes bounded rationality.

The rest of this paper is organized as follows. Section 2 introduces
ALX3. Section 3 then describes how ALX3 covers the scope of CK theo-
ry. The author does this by examining each key feature and notion of CK
from [1] informally, and then translating it into a formal representation in
ALX3, resolving any identified logical problems along the way. We refer
to the formal design model thus developed as ALX3d (ALX3 for design).
Section 4 then uses an example of the use of CK from the existent litera-
ture to demonstrate the use of ALX3d. Finally, Section 5 discusses some
of the benefits that a formalization like ALX3d can afford.

Reformulating CK theory with an action logic 3

Overview of ALX3

ALX3 is a sound and complete first-order action logic that incorporates
knowledge, belief, preference, and action operators to represent the activi-
ties of multiple agents working with bounded rationality (per Simon [5]).
ALX3 is completely documented in [4]. It assumes the usual apparatus of
first order logic: constants, variables, functions, and relations, conjunction
(∧), disjunction (∨), negation (¬), material implication (⇒), and universal
(∀) and existential (∃) quantification over variables. We also use the nota-
tion x: y to indicate that x is defined as y.

In action logics, an agent is an entity that takes actions to achieve cer-
tain states. An agent a can know (Kaψ) or not know (¬Kaψ) a proposition
ψ; the agent may also believe (Baψ) or not believe (¬Baψ) the proposition.
ALX3 defines knowledge typically for formal systems as true, justified be-
lief. Within the system, knowledge and belief are treated as two separate
operators related by a definition of the former with respect to the latter.
Other definitions of knowledge are possible without necessarily affecting
the soundness of the logic. In the language of ALX3, Kaψ: Baψ ∧ ψ. That
is, for a proposition ψ, knowledge is equivalent to true, justified belief.
Consider the statement “It is raining in Tokyo.” The statement is either
true or false, whether or not an agent knows it. The agent may believe the
statement is true, but will not know until the agent takes appropriate ac-
tions to verify the belief.

One might question our definition of knowledge with regards to de-
termining truth. Philosophically, a belief is true if it is true in an absolute
sense, which means that all we have are beliefs. We would have to have
access to some omniscient agent to guarantee that true things are in fact
true. However, as engineers and scientists, we are accustomed to assum-
ing truth by invoking other mechanisms. We accept the yield stress of
cold-rolled steel as given in standard handbooks, for example, even though
the actual yield stress of any specific steel part will not be exactly as the
handbook defines. Similarly, we carry out physical testing of products to
determine their performance knowing that some products will likely fail in
the future – yet we accept the product’s performance as true based on those
tests. This notion of truth, though philosophically unsatisfying, is sufficient
for us to have developed all the engineered products that have ever existed,
and with a very high degree of overall success.

Generally, we assume truth within and relative to some specific con-
text; so long as the context holds, we can expect a certain measure of truth
to be acceptable. This is a typical scientific approach: given evidence that

 F.A. Salustri

4

some statement is true, and until incontrovertible evidence is found to the
contrary, then accepting the truth of the statement is reasonable.

There is another important difference between knowledge and belief
within the convention of formal systems. Knowledge is not “lost” – once
you have it, you cannot lose it. Losing knowledge is not the same as just
“forgetting” it. Forgetfulness is a function of an imperfect reasoning agent
(i.e. an agent with bounded rationality) and not a function of the
knowledge that is forgotten. Beliefs, on the other hand, can be retracted
from a system of beliefs if some action proves that the belief cannot be
true. This kind of action is the same as that which, when successful, iden-
tifies truth and thus knowledge. In both the author’s work and in CK, the-
se kinds of actions are validation actions that engineers use to “prove”
their concepts – within a reasonable context. This makes beliefs similar to
assumptions – statements that we may take to be true for the sake of
achieving some goal unless and until they are demonstrated to be false.

ALX3 also uses a many-worlds interpretation based on action logic
semantics. This means that the current state (or “world”) is a collection of
propositions, and that alternative (or future, or past, or just other) states are
accessible from the current state through actions that cause propositions to
be added or withdrawn. Thus, actions allow one to represent how states of
knowledge and belief, and the propositions they include, change. Actions
are written in ALX3 as 〈a〉ψ, where a is the action and ψ is a proposi-
tion that is true in any state that can occur because of executing the action.
In other words, 〈a〉ψ means that executing action a will make ψ true.

It is important to note that the propositions that define a state need not
be written in ALX3. State-defining propositions must obey the rules of
first order logic in order to maintain the soundness of ALX3, but other-
wise, the language of the state propositions may differ. This is especially
important with regards to the primitives that are used in those propositions.
Any logic built on first order systems is acceptable. Since these proposi-
tions capture, among other things, the product being designed – a product
model – this means that any first order product modeling logic can be used
with ALX3 without affecting the soundness of ALX3 itself. This gives us
the flexibility to treat the product modeling logic and the design process
logic as essentially disjoint entities.

Associated with ALX3 actions is the notion of accessibility of states.
A state t is accessible from another state s if there exists an action or a se-
quence of actions that can be described by propositions that are true at t, s,
and all intermediate states. There are two accessibility relations in ALX3.
Direct accessibility (DA) is defined as DAiψ: ∃a 〈ai〉ψ; that is, agent i
can reach a state where ψ holds directly from the current state by executing

Reformulating CK theory with an action logic 5

action a. General accessibility (A) is defined as Aiψ: DAiψ ∨ (DAiφ ∧
(φ∴ψ)); that is, agent i can reach a state where ψ holds either directly
through one action or indirectly through a sequence of actions (the causa-
tion operator ∴ is explained next).

A key feature of ALX3 is a special implication operator for causal re-
lations. Here we write it φ∴ψ; that is, in all states (a) that are closest to
current state and (b) where φ holds, ψ also holds. A closest state is one
that (a) is accessible from current state (i.e. has an action allowing an agent
to move to it from the current state) and (b) has the smallest possible
changes from the current state. The semantics of ALX3 [4] provides a
complete formal description of this operator, but that is beyond the scope
of this paper. We note that the ALX3 causal operator is broader than the
usual “scientific” sense of “cause and effect.” In ALX3, cause can arise
from simple preference (see below – i.e. something is caused because an
agent prefers it to an alternative). It can also capture the relation between
dependent and independent variables – i.e. the values of a set of independ-
ent variables cause the values of a set of dependent variables. As such, a
causal relation in ALX3 can also be regarded as a kind of explanation.

Finally, agents may sometimes choose to prefer one state to another
without necessary explanation. ALX3 supports this with a binary prefer-
ence operator. We write this as ψPaφ; that is, agent a prefers closest states
where ψ is true to closest states where φ is true. This is useful because it
decouples what agents prefer from the rationale for that preference.

Applying ALX3 to design: ALX3d

In this section, we will explain how ALX3 can be used to represent CK
theory. We will consider key concepts in CK one at a time, and show the
corresponding element in ALX3d. No new operators are needed for this
beyond those already in ALX3. This means that ALX3d is as sound a log-
ic as ALX3.

Knowing versus believing

The fundamental departure in ALX3d from CK is the notion and applica-
tion of logical status. In CK, only knowledge has logical status; concepts
are not knowledge and have no logical status.

In ALX3d, on the other hand, we distinguish between the logical status
of a proposition and whether an agent knows that logical status. That is,
we use belief (a proposition that has a logical status not known to an agent
as described in the previous section) as the comparable notion. That is to

 F.A. Salustri

6

say, an agent can believe a proposition and work with it even if it is false.
While this definition of belief is not as subtle as its formal definition
ALX3, it is sufficient for our purposes here.

We therefore make the following equivalences. CK’s knowledge
space (K-space) contains all true propositions [1]; we interpret this as say-
ing that K-space contains all known propositions (Kaψ). Similarly, CK’s
concept space (C-space) contains all propositions “that have no logical sta-
tus” [1]; we interpret this as meaning that C-space contains propositions
the logical statuses of which are not known to an agent, but to which an
agent ascribes a logical status temporarily (until validation is possible) to
attain some goal. That is, we are saying that C-space contains only be-
lieved propositions (Baφ), and that ALX3 beliefs subsume CK concepts.

Initial and final conditions

In CK as in ALX3d, a design is complete when its description consists en-
tirely of knowledge (and no beliefs), KaD (where D is the design being de-
veloped). This is the final condition. We know the design is sufficient be-
cause we know it satisfies a conjunction of requirements R; that is, the
agent knows that the requirements R imply at least one design D,

 Ka(R⇒D). (1)

Initially, in ALX3d, the designers know some of the requirements,
KaRi, and may have some beliefs about the design, BaDi. Since beliefs
may be falsified, there is no reason to undertake a design. Thus at least
one requirement must be known (i.e. must be true). They would also be-
lieve that there are actions they can take that will lead to a state in which
some superset of the initial requirements Ri (i.e. R) some design D in that
state. We summarize this by saying that the goal of designing is to move
from a state of belief to one of knowledge. This is consistent with CK,
where design involves the transformation of concepts into knowledge. In
ALX3d, we write this as:

 KaRi ∧ BaDi ∧ BaAa(∃R ∃D ((R⇒Ri) ∧ (R⇒D))). (2)

Coarse description of design activity

In CK, K-space and C-space include propositions that capture design in-
formation. In ALX3d we impose a little more detail. The requirements, R,
of a design problem is a conjunction of individual requirement proposi-
tions, R: ∧iri. R can be a conjunction of different r’s at each different state.
Similarly, a design D is a conjunction of individual design propositions, D:
∧idi. D can be a conjunction of different d’s at each different state.

Reformulating CK theory with an action logic 7

We identify an appropriate design by going from Ba(R⇒D) to
Ka(R⇒D). This is done with a validation action by which D is evaluated
with respect to R. (Validation actions are described below.) These actions
are identical to C→K operators in CK. Once the designers know that
R⇒D, then Ka(R⇒D) ⇒ KaD (because the knowledge operator in ALX3
distributes over implication) and they know the design too. That is, we
know the design D is “right” because we have validated it against R.

We use causal implication in ALX3 to define the following:

 KaR ∧ BaD ∴ Ka(R⇒D) ∨ Ka(¬(R⇒D)) ∨ ¬Ka(R⇒D). (3)

This says that if the designers were to know the requirements and be-
lieve to have a valid design, then one of three conditions holds.

Ka(R⇒D) – The validation was successful and we now know that D
satisfies R. We have found a solution.

Ka(¬(R⇒D)) – The validation failed; D does not satisfy R. D and/or R
will have to be changed to proceed.

¬Ka(R⇒D) – The validation could not be performed or completed.
This would be the case if either R or D were lacking in sufficient detail.

We will examine these three conditions in further detail below.

ALX3d beliefs versus CK concepts

CK’s first definition of “design” [1] can now be written as: design is the
process of expanding R and D to go from Formula 2 to Formula 1.

The CK notion of K-relativity is consistent with ALX3. That is, in
CK, determining the logical status of a proposition is done with respect to
the available knowledge (K-space). If there is no K-space or if it is empty,
nothing can be done. If K-space is not sufficiently rich, C→K, K→K, and
K→C operators may be unable to give useful results.

In ALX3d, R⇒D is evaluated with respect to what is known to the de-
sign agents (our equivalent of K-space) in the current “world” – which is
similar to K-relativity.

Where ALX3d and CK differ here is that CK does not seem to account
for the differences in what each agent knows, whereas ALX3d can (at least
to a degree). The ability to distinguish between what two agents know is
inherent in ALX3. It is perfectly reasonable to write that Kaψ ∧ ¬Kbψ;
that is, agent a knows ψ but agent b does not.

One can then use this to describe some aspects of the collaborations
between multiple agents. For example, one may say that in the final state
all agents must know the design, ΛaKaD. This might be reasonable in
small projects, but in large and complex projects such as the design of a
commercial airliner, this is not feasible or even necessary. In the latter

 F.A. Salustri

8

case, one might associate an agent i with an element of D. The element is
the conjunction of only some of the propositions that constitute D – call it
Di; a necessary condition here would be D⇒Di in any desirable state.
Thus, each agent knows a part of the design, KiDi. One may then imagine
a supervisory agent s (a project manager or team leader), who would not
need to know the design, but only that the agents in his team know their
respective design elements. We can write this as Ks(∀i KiDi).

This is only a superficial description of the organizational/social rela-
tionships that would occur. The author’s goal here is not to exhaustively
describe these relationships, but only to suggest that ALX3 has the capaci-
ty to represent them. Detailing the organizational/social aspects of engi-
neering teamwork will be the subject of a future paper. In the meantime,
one can refer the interested reader to [4], in which some further details of
how ALX3 can be used to describe organizations is discussed.

In CK, “the formulation of the requirements is a first concept formula-
tion which is expanded by the designer in a second concept that is called
the proposal” [1]. There is a problem, however, if we accept requirements
as C-space elements, as implied in [1]. We must know at least some of the
requirements, i.e. know their logical status, because in CK, one can only
reason about things with defined logical status. Without this, the initial re-
quirements, the initial design (the “first concept formulation”), and the de-
sign proposal are all extra-logical, which defeats the purpose of formaliza-
tions like CK. Other requirements may begin as beliefs (in C-space) and
migrate through design actions to K-space, but we cannot create the design
without actually knowing (some of) the product’s requirements.

In ALX3d, on the other hand, we can reason about beliefs because
they are assumed to have a “temporary” logical status as described above.
This means that ALX3d is a richer representation than CK, without violat-
ing the intention of CK.

CK concepts have “no logical status.” Without this, one cannot identi-
fy individual concepts from within sets of concepts because this is done in
first order logic by finding a (possibly complex) predicate that is true for
only one element of a set, thus identifying it. The treatment of sets is con-
ventionally done in logical systems with set theory, and typically with a
particular development of set theory called Zermelo-Fraenkel (ZF) set the-
ory [11]. In ZF, there is a specific axiom, the Axiom of Choice, which de-
fines how one may select individuals from sets. The axiom is necessary in
any development requiring the individuation of specific set elements. In
CK, then, the Axiom of Choice is excluded because concepts are without
logical status. The set of concepts is defined implicitly by means of prop-
ositions that enumerate characteristics of any suitable concept.

Reformulating CK theory with an action logic 9

This is unwarranted in ALX3d. Beliefs are assumptions regarding the
logical status of propositions. The collection of beliefs (the belief struc-
ture) allows provisional and conditional reasoning. A belief can be re-
tracted, which would then require validating all inferences that include the
retracted belief. Nonetheless, reasoning is possible. Therefore, we do not
need to exclude the Axiom of Choice in ALX3d; indeed, at this time, the
author finds no conclusive argument either for or against the inclusion of
the Axiom of Choice. This gives us a certain greater flexibility of design
representation.

The capacity to reason about beliefs is an important element of ALX3d
that CK does not provide. What designer would pursue a concept he did
not believe would be fruitful? What company would pursue a product de-
velopment project that its members did not believe would be successful?
Designers cannot wait for the certainty of knowledge all the time, so they
must make assumptions to proceed, and backtrack if those assumptions
turn out to be wrong. The belief system support in ALX3d lets us do this.

Translating CK operators to ALX3d

In CK, one changes the logical status of concepts by adding or subtracting
properties. In logic, we represent properties with propositions. For exam-
ple, weight(motor, 5kg) asserts a motor has the property of weight with
value 5kg. Description logics [7] can be used to develop ontologies (for-
mal descriptions of bodies of knowledge) based on those properties, but
this is beyond the scope of this paper.

In ALX3d, we add and subtract propositions that ascribe properties to
R and D, such that subsequent application of validation actions hopefully
turns beliefs into knowledge. From this, all four kinds of CK operators
(C→C, C→K, K→C, and K→K) translate easily to ALX3d.

Consider an example in [1] about bicycles with pedals and “effective
wings.” “Bicycles with Pedals” (denoted by the predicate bp) leads to a
ALX3d belief Ba(∃x bp(x)), while “Bicycles with Effective Wings” (de-
noted by the predicate bew) leads to Ba(∃x bew(x)). “Bicycles with pedals
and effective wings” is written Ba(∃x[bp(x)∧bew(x)]). Note that these are
beliefs held by an agent – that is, they are design concepts. The real ques-
tion is not whether such a design is possible but rather whether R⇒x; that
is, does there exist a situation wherein a bicycle with pedals and effective
wings is appropriate. If there is no such situation, then even considering
the concept is pointless.

The answer depends on what is known (the content of CK’s K-space).
For example, in a dome with an atmosphere on the Moon or some other
very low gravity setting, bew(x) might be perfectly reasonable. The reason

 F.A. Salustri

10

why bew(x) seems silly is because of the situation (context) we assume in
the absence of specific knowledge of the implication. Context logics [6]
and work on situated design [8] might also help here, but again this is be-
yond the scope of the current paper.

Let us now consider the CK operators in more detail.
In CK, K→C operators add or subtract properties, written as proposi-

tions in K-space, to or from concepts thus creating disjunctions in C-space
[1]. This corresponds to the design activity of generating alternatives.
These operators expand C-space with elements from K-space. The dis-
junction arises from considering that adding a property partitions the set of
all extant concepts into a set of those that satisfy the property and another
of those that do not. Furthermore, C→C operators expand or “flesh out” a
concept by adding yet other propositions.

In ALX3d, these two kinds of operators are treated uniformly. We can
add a new design proposition d’ to D. To write this in ALX3d, we let R1
and R2 be any pair conjunctions of subsets of the requirements, such that
R1∧R2⇔R. Then we can write:

 Ba(R1 ⇒ d’) ∴ Ba(D’: D∧d’), or (4a)

 Ba(R1 ⇒ ¬d’) ∴ Ba(D’: D∧¬d’). (4b)

Formula 4a reads that if a designer were to believe that some require-
ments that were theretofore unsatisfied, are satisfied by a new design
proposition d’, then the agent would believe that the design can be im-
proved by adding the new proposition to the current design. Formula 4b is
similar, but for propositions believed to not fulfill any requirements.

In a sense, there is no real distinction in ALX3d between what CK
calls calls K→C and C→C operators, because in ALX3d they are simply
means to develop new concepts. If it is necessary, for some reason, to dis-
tinguish between them, then one only need recognize that K→C operators
will involve knowledge operators in ALX3d while C→C operators will in-
volve belief operators in ALX3d. The actions associated with these state
transitions (implied by the ∴ operator) are actions by which a designer
proposes new aspects of a design. This partitions states into those where
d’ holds and those where ¬d’ holds.

We can see how this reasoning can be represented with ALX3d in the
following hypothetical sequence of activities.

1. An initial state is assumed of KaR ∧ BaD. The design agent knows the

(initial) requirements R and believes the (initial) design D.

Reformulating CK theory with an action logic 11

2. The agent attempts to perform a validation action, but finds that vali-
dation cannot be done: KaR ∧ BaD ∴ ¬Ka(R⇒D).

3. Since the validation cannot be done, either D or R must be explicated
further. The agent chooses to expand D with a new proposition d’:
Ba(R1 ⇒ d’) D ∴ KaR ∧ Ba(D∧d’).

4. The agent attempts to validate the design again. This time, validation
fails: KaR ∧ Ba(D∧d’) ∴ Ka(¬(R⇒(D∧d’))).
Since the first validation (step 2) could not be done, but including d’
causes validation to fail, the only alternative is ¬d’.

5. The error is corrected: Ka(¬(R⇒(D∧d’))) ∴ KaR ∧ Ba(D∧¬d’).
If validation of the design in step 5, cannot be performed, we know

that neither D∧d’ nor D∧¬d’ is a sufficient solution and that more expan-
sion must be done to the design (and possibly the requirements).

If the validation in step 4 yielded ¬Ka(R⇒(D∧d’)), we would not be
able to choose between d’ and ¬d’ because neither led to a suitable design.
Some alternative courses of action here include the following.
• The agent could try a different validation action since it might be the

validation action itself that cannot operate on the available information
in R and D∧¬d’.

• The agent could pursue both D∧d’ and D∧¬d’ as design alternatives
until validation does give a distinct answer.

• The agent could change R and try to validate again.
• The agent could choose d’ or ¬d’ based on the agent’s own prefer-

ences (e.g. d’Pa¬d’).
Changing R is done just as changing D, by adding r’ or ¬r’ to R.
If, on the other hand, the validation in step 5 fails, then neither d’ nor

¬d’ is a suitable solution. This means that there is an error in R, since one
of d’ or ¬d’ must be true (whether the agent knows which one is true is not
the point). In this case, one must use some sort of strategy to backtrack to
earlier states until one finds a state in the history of changes to R where ei-
ther d’ or ¬d’ does hold.

The preceding discussion applies equally to CK’s expanding partitions
(operations that increase the number of possible design concepts) and re-
stricting partitions (operations that decrease the number of possible design
concepts). Expanding partitions are those for which the designer only be-
lieves d’, Bad’; restricting partitions are those for which the designer
knows d’, Kad’.

In CK, the current state can be “backtracked” by returning to a previ-
ous state, but the theory itself does not formally describe this (for example,
by some appropriate operator). In ALX3d, however, we can use belief re-
traction to formalize backtracking directly. We can write this as D’: D\d’

 F.A. Salustri

12

– that is, D’ is like D but without d’. Backtracking in this manner applies
only to beliefs and not to knowledge, because it is a principle of action
logics that knowledge cannot become unknown once it is known. (Note:
this is not the same as backtracking in logic programming languages like
Prolog.)

Details of this strategy constitute future work; here it is sufficient to
recognize that such representations are possible in ALX3d.

Let us now consider C→K operators, which turn a concept into
knowledge in CK. In ALX3d, these are validation actions. Once a (de-
sign) concept becomes knowledge in CK, it is a sufficient design solution.
In ALX3d, validation actions validate a belief, turning it to knowledge. As
in CK, such actions include conducting mathematical analyses, experi-
mental tests, etc. The only substantive difference is that in ALX3d the key
belief that must be validated is the implication R⇒D, rather than the de-
sign D itself. In ALX3d, knowing D follows from knowing (validating)
this implication.

Finally, CK’s K→K operators expand knowledge space through logi-
cal and scientific reasoning. Any such operator is available within the
first-order logic underlying ALX3d.

An example

In [10], Hatchuel et al present examples of the application of CK theory.
In this section, the author will discuss how ALX3d can achieve at least the
same level of description as CK. We will use one of the examples in [10]:
the design of a new chemical (Mg-CO2) rocket motor for use in Mars ex-
ploration missions. In [10], the case study is divided into four phases; we
will follow the same layout here.

The initial state (Phase 0) is the proposal that a Mg-CO2 engine would
be “better” than the conventional solution. Per [10], we label this proposal
C0. In CK, the proposal is a concept because it has no logical status. In
ALX3d, the proposal is a belief, a statement that we assume to be true and
then reason with it until we can either prove or disprove it. We write it in
ALX3d as BaC0.

In Phase 1 of the case study, an attempt was made to use the Mg-CO2
concept for a sample return mission to Mars (labeled A1 in [10]). We can
write this in ALX3d as Ba(C0∧A1). An “evaluation” was then carried out
by comparing the new motor to existent ones with respect to the key crite-
rion of minimum landed mass on Mars for a sample return mission. This
constitutes a validation action in ALX3d. It was found that the new motor

Reformulating CK theory with an action logic 13

failed the validation; that is, the new motor is not as good as a convention-
al motor. In ALX3d as in CK, this only means that Ka¬(C0∧A1). As in
CK, and by the fundamental properties of first order logic, this does not
necessarily imply that ¬C0. So we can preserve our core belief, BaC0, by
contending that Ba¬A1, which would account for the validation result. The
designer’s new belief is then Ba(C0∧¬A1). We can write all this as:

 (C0Pa¬C0 ∧ (Ba(C0∧A1) ∴ Ka¬(C0∧A1)) ⇒ Ka(¬C0∨¬A1)) ∴
Ba(C0∧¬A1). (11)

Note that in CK, it is assumed at this point that A1 is false; i.e. that the
new motor will not work for a sample return mission. This is in fact incor-
rect. All that the agents can infer logically is that they believe the Mg-CO2
motor will not work in this kind of mission; they only know that the com-
bination C0∧A1 will not work. At this point, CK would have us accept the
validity of our main proposal C0, but the whole point of the exercise is to
determine if the concept has any merit at all. We see then that ALX3d is
more expressive of the actual state of affairs in this case.

In Phase 2 of the case study, it is reported that a study conducted of
mission profiles excluding sample return missions (i.e. Ba(C0∧¬A1)) yield-
ed no positive results, but that this was due to an excessive number of at-
tributes placed on the problem during evaluation. It is also suggested that
CK provides a key insight here – that those excess attributes must be re-
moved in order to discover other possible solutions. However, the current
author has been unable to find a clear indication of how CK itself accom-
modates this. Indeed, the current author contends that this is a feature of
an ontological representation of design problems as a composition of facts.
This is how logic works in general, and is not a feature particular to CK.
There is an old adage: always question premises. In this case, the premises
are the attributes. Questioning them involves determining whether they
are necessary or simply accepted by fiat, convention, or error.

In the case of the Mg-CO2 motor, it is evident that all scenarios had at
least one attribute in common: that the motor would be used in transit to
Mars. This is the premise that is questioned in [10]. In fact, then, the be-
lief (the CK concept) Ba(C0∧¬A1) was interpreted incorrectly because the
premise of using the motor in transit is not part of the concept; that is, A1
(use for sample return missions) does not necessarily imply use in transit.
It would appear then that human error is the root cause of this situation.

Let us assume, lacking other information from [10], that we should
have distinguished transit as a key element of the mission profile. Let us
further assume for the sake of simplicity that the mission profile can be
exhaustively divided into two main segments: the transit to Mars (both go-

 F.A. Salustri

14

ing and coming) and the mission on Mars. We can rewrite the original be-
lief Ba(C0∧A1) now as Ba(C0∧A1t∧A1m) where A1t stands for “using the
motor for transit” and A1m stands for “using the motor on Mars.”

Given this, the failure of the validation action noted above then tells us
that if we wish to maintain C0, then either A1t or A1m must be wrong. We
would have then had the belief: Ba(C0 ∧ [A1t ∨ A1m]). That is, the Mg-CO2
motor might be suitable for either transit to Mars or operation on Mars, but
not both.

Since all the investigated scenarios involved A1t, the logical alternative
here, regardless of the use of CK or ALX3d, is to use the Mg-CO2 motor
for purposes other than the transit to Mars. Practically, this is equivalent to
using the motor only on Mars, labeled A2 in [10], which we can represent
in ALX3d as Ba(C0∧A2), so long as we also accept that A2⇒¬A1.

Continuing through the case study, [10] then identifies four other at-
tributes that constitute possible uses of the Mg-CO2 motor on Mars: A3 –
“used for mobility,” A4 – “unplanned mobility,” A5 – “emergency lift-off,”
and A5’ – “additional distance.” The systematic appearance of these alter-
natives follows from the use of CK only insofar as CK implies the use of
breadth-first searches, which is our only logical course of action. A new
concept is then specified in [10], which can be written in ALX3d as
Ba(C0∧A2∧A3∧A4∧A5).

There are, however, two problems here. First, both this belief and its
CK variant mean that the agent believes an appropriate design is a Mg-CO2
motor used for unplanned emergency lift-off mobility on Mars; that is, the
mission involves the simultaneous occurrence of A2 through A5, because
of the logical conjunctions.

The current author believes this was not the actual intention. Rather, it
makes more sense that the intention was for the new motor to be used in
any combination of the situations denoted by A2 – A5. That is, a disjunc-
tion should have been used, i.e. Ba(C0∧(A2∨A3∨A4∨A5)), to correctly rep-
resent that any of A2 – A5 could constitute an appropriate use of the Mg-
CO2 motor.

The second problem arises from considering the nature of propositions
A2 – A5. Specifically, three important facts are missing. First, A2 is a gen-
eralization of A3 – A5; that is, “use on Mars” includes “use for mobility,”
“use for unplanned mobility,” and “use for emergency lift-off.” Second,
A3 is a generalization of A4 and A5; that is “use for mobility” covers both
emergency and unplanned mobility. Third, some design activities must
have occurred to get from A2 to A3 and then to A4 and A5; that is, for ex-
ample, in moving from “use on Mars” to “use for unplanned mobility” im-
plies some design action that identifies the required mobility as unplanned.

Reformulating CK theory with an action logic 15

The current author therefore suggests the following ALX3d represen-
tation for situation reported in [10]:

 ((Ba(C0∧A2)∴BaA3)∴BaA4)∴Ba(A5∨A5’). (12)

Formula 12 captures a great deal about the situation:
• Initially, the agent believes the Mg-CO2 motor is a viable alternative

for use on Mars (C0∧A2).
• There is a causal relation between use on Mars and mobility on Mars

(A3), so some design action must occur for the relation to hold.
• To achieve A3, there must exist some design action (a “conceptual ex-

pansion” in CK) that moves the agent there. This is a human cognitive
act connecting a means (the motor) to a desirable capability (mobility).

• Similarly, once the agent believes A3, there is an action that will lead
the agent to a new state where the mobility is unplanned (A4).

• Finally, once the agent is in a state of believing A4, there is an action
that will lead the agent to believe either emergency lift-off or addition-
al distance (A5 or A5’) as alternate suitable situations.

We note that once we reach a state where A5 or A5’ is true (and only in

such states), then we can also say that Ba(A5∨A5’)⇒A4⇒A3⇒A2, which
gives a causal chain back to the original propositions. Again, this demon-
strates that ALX3d provides a richer representation of designing than CK,
while remaining consistent with the intent and general principles of CK.

Finally, in Phase 3 of the case study, a comparison of the Mg-CO2
concept and an alternative design, the ExoMars Rover, is reported. The
concept used is that of Mg-CO2 combustion for unplanned mobility on
Mars; that is, A5 and A5’ are not used. The ExoMars performance con-
straints are given as (a) motor weighing less than 60kg, (b) mission life of
no more than 180 days, (c) maximum power consumption of 200W, and
(d) minimum 10km range. These constraints are used to limit a perfor-
mance domain that the Mg-CO2 concept must satisfy. Based on existent
knowledge (e.g. principles of rocket propulsion), two key design parame-
ters for the Mg-CO2 concept are discovered – motor mass (mm), and mass
of the CO2 acquisition plant (mp) – that can be used to calculate values for
performance characteristic of lifetime (t), power (p), and range (r).

The values of the parameters exist within a bounded domain; any val-
ue set within the domain constitutes a possible solution, i.e. where the Mg-
CO2 motor concept can compete against the ExoMars alternative. The au-
thors argue [10] that this opens up new possibilities for mission concepts
and design alternatives that would not have been noticed otherwise.

 F.A. Salustri

16

Phase 3 is described in [10] using text and diagrams, and it is not nec-
essarily clear which activities are derived from CK and which arise simply
from the use of rational, logical reasoning in general, or innovative think-
ing about the problem. No matter which is actually the case, the current
author will show that stages of development that occurred in Phase 3 can
be represented directly in the language of ALX3d and consistently with
CK. We recall that the goal is not to have ALX3d lead designers through
the process, but rather to capture descriptively the reported design activi-
ties.

First, let ΔD be true only for any design concept D; that is, ΔD is a
predicate that identifies design concepts. We would therefore assert ΔC0 to
mean that C0 is a design concept. The set of all known design alternatives
satisfying some propositions ψ is given in ALX3d by

 Da(ψ): {x: KaΔx ⇒ Baψ}. (13)

The agent knows that Δx because the agent asserted it. Note that KaΔx
(knowing that x is a design concept) does not imply Ka(R⇒x) (knowing
that x is an acceptable design concept for a given problem). For example,
consider the previous example of bicycles with pedals and effective wings.
Let B0 be “bicycle,” P1 be “with pedals,” and P2 be “with effective wings.”
Furthermore, assume we were interested in finding alternatives that have
wings (P2) to “bicycles with pedals” (B0∧P1). The set of alternatives is
given by Da(P2): {x: KaΔx ⇒ BaP2}, which would include bicycles with
pedals and any other design concept satisfying “with effective wings.”
Similarly, Da(P1): {y: KaΔy ⇒ BaP1} would contain the alternatives to bi-
cycles with effective wings that also satisfy “with pedals.”

Now, returning to the Mars case study, let C1: C0∧A4; i.e. C1 is the
concept of using Mg-CO2 motors for unplanned mobility on Mars. The
designer can assert ΔC1 as a possible design. The designers’ state thus in-
cludes BaC1. To look for alternative concepts, we need to identify con-
cepts that involve A4 – all cases of unplanned mobility on Mars – but
without C0. We can write this as C1\C0. Now the set of all design alterna-
tives is just:

 Da(C1\C0): {x: KaΔx ⇒ BaA4}. (14)

Da(C1\C0) includes all the design concept alternatives to C1. To gather
these alternatives, the designers began with a belief C1, and did the appro-
priate research (a C→K operator in CK) to find the design alternatives
Da(C1\C0). We can represent this as a causal relation in ALX3d:

 BaC1∴ Da(C1\C0) ∨ ¬ Da(C1\C0). (15)

Reformulating CK theory with an action logic 17

That is, every subsequent state following the search for design alterna-
tives is one that either definitely does or does not have such alternatives.
Obviously, to continue the case study, we must assume that Da(C1\C0) is in
fact the case.

One might ask: is there some feature of a state where BaC1 that draws
the agent to look for alternatives? The original case study [10] only states
“…the prototype should overcome the rover solution for the next known
missions….” At this time, the current author can only propose that setting
a goal of comparing concepts to alternatives is an extra-logical design
principle. This activity may be a part of a validation action; that is, it
could be one way to determine if a design concept has merit. This might
suggest an axiom (a statement accepted as true but not provable within a
logic) for ALX3d, but setting out exactly what this axiom might be re-
mains an item for future study.

We can now describe this phase of the case study in ALX3d. Let the
design parameters P for the Mg-CO2 motor be mm and mp. Let the values
of the design parameters be written as functions mapping a design parame-
ter to a value: mm(d), mp(d). Let the performance metrics of any designs be
M: {p, t, r} (power, lifetime, range). The values of metrics can be written
as functions p(d), t(d), and r(d) for a design d.

The metric values lead to (or “cause” in ALX3d) the parameter values.
That is, the case study indicates that p, t, and r were dependent values, and
mm and mp were the independent values. In ALX3d, this is written:

 ∀d[[mm(d) ∧ mp(d)] ∴ [p(d) ∧ t(d) ∧ r(d)]]. (16)

Furthermore, the values can be partially ordered, e.g. p(x)Opp(y), for
different designs, where Op is a generalized ordering operator on p.

Constraints were defined in the case study based on knowledge of
rocketry and physics. Let the constraints be written as: maximum power
consumption p = 200 W, expected operating life t = 180 days, and mini-
mum range of operation r = 10 km. A condition for a satisficing design [5]
is given by: p(d)<p ∧ t(d)<t ∧ r(d)>r. We can now write a satisficing goal
for the Mg-CO2 concept C1 as a belief in a causal relation. Since the de-
sign is only a concept, we cannot know this satisficing relation, but only
believe it. In ALX3d, we can write a satisficing goal for this case as:

 Gs[C1]: Ba[[mm(C1) ∧ mp(C1)] ∴ [p(C1)<p ∧ t(C1)<t ∧ r(C1)>r]]. (17)

This statement essentially captures the domain of possible values for
the identified design parameters such that any design that satisfies this
statement is a possible solution. This kind of formal representation of the
goal of design activity is not available in CK theory.

 F.A. Salustri

18

We can also go beyond the case study somewhat by considering a way
to find the best design within the domain of satisficing solutions given by
Gs[C1]. Let there be two designs based on C1, defined by C2: C1∧x and
C3: C1∧y and that both satisfy Gs[C1]. We can use the formalism of trade-
off goals [3] to capture the agent’s preference for one satisficing design
over another. Given C2 and C3 as defined above, and letting u, v, and z be
other satisficing designs in Gs[C1], and letting φ and ψ stand for any two of
the metrics, we can write the following.

 Gt[φ(C2)]: [φ(C2)Paφ(C3)] ∧ [φ(C2)∴ψ(u)] ∧
Ba[¬∃z (φ(z)Paφ(C2) ∧ φ(z)∴ψ(v) ∧ ψ(u)Paψ(v)], (18a)

 C2PaC3 ⇒ Ba[φ(C2) Oφ φ(C3)]. (18b)

This says that C2 is preferred to C3 if C2 attains a “better” value of one
of the metrics (φ) than does C3, and doing so will not limit finding a more
preferred value for one of the other metrics (ψ).

We have now developed a new model of the case study in [10] that is
grounded far better in a formalism of design activities than CK can pro-
vide.

Potential Benefits of ALX3d

The author has introduced ALX3d, a formal theory of design activities
built upon the action logic ALX3, and designed to account for the key fea-
tures and intent of CK theory. A case study from the existent CK literature
was reworked in ALX3d to demonstrate its representational richness.

The purpose of any formal model, including ALX3d, is only to pro-
vide a reasoning tool, a mechanism to allow one to reason in as rational
and structured a manner about a domain. All models are by definition in-
complete; else they would be indistinguishable from the thing being mod-
eled. Models like ALX3d provide one perspective on a thing. There are
other equally meaningful ways to think about design processes. ALX3d in
no way discounts them; it only provides an alternative.

Furthermore, this work in no way invalidates CK. Rather, it demon-
strates that the fundamental premises of CK are reasonable premises re-
garding the act of designing; namely, that there is an important difference
between knowledge and concepts, and that a rational (logical) process can
describe (but not necessarily explain) at least some parts of the act of de-
signing. ALX3d also demonstrates the power of logical systems to capture
essential aspects of design processes, especially the decisions that design-

Reformulating CK theory with an action logic 19

ers must make based not only on knowledge but also on their beliefs and
preferences.

ALX3d is a research tool, not something to be used by practicing de-
signers. However, continued development of theories in mathematics and
the sciences have often let eventually to practical benefits for designers. It
is reasonable to assume the same could happen with logical theories like
ALX3d and CK. As ALX3d matures, it will be possible to use it for sev-
eral purposes in this regard, some of which include the following.

Appeal to formal systems researchers. CK theory, which has dis-
tinct benefits as a design research tool, is somewhat hindered because it
does not conform to conventions of formal systems. ALX3d maintains the
intent and basic principles of CK while casting it in a form more readily
understood by those with grounding in formal systems. As such, ALX3d
makes CK theory more appealing to the community of design researchers
who understand and use formal systems, including researchers in artificial
intelligence, computer science, and cognitive science.

Reasoning about documented design processes. Assuming a com-
plete description of a design process as documented either in industry or
the literature can be constructed (and the author currently believes this is
entirely possible), then the description can be reasoned about using the in-
ference rules that are built into ALX3 to study the process, and find and
address its problematic aspects. This would significantly advance our un-
derstanding of the nature of engineering design.

Construction of new design processes. It may well be that in the
natural course of analyzing design processes, new process descriptions
may arise that could significantly improve the design capability of a group
of designers. The description of rules for establishing trade-off goals, and
for switching between different types of design tasks – as outlined in the
preceding sections – are examples of this. It may be that new, “industry-
strength” methods can be developed by considering different ways that
such activities can be described in ALX3d.

Construction of new computer-based design aids. Logical systems
are well suited to implementation in computer tools. It should be possible
to use ALX3d to develop new design applications of artificial intelligence
and knowledge-based systems. Such systems may also yield significant
advantages for practicing designers. For example, it may be possible to
develop tools that will suggest sequences of design activities that are more
likely to lead quickly to better (or at least satisficing) designs. One may
also envision case-based reasoning engines that use sequences of actions
as cases.

 F.A. Salustri

20

Conclusion

ALX3d, a reformulation of CK theory based on the action logic ALX3, has
been introduced. Beyond what is currently possible with CK, ALX3d lev-
erages ALX3 to provide a richer framework for describing design activi-
ties in formal terms. While adding support to the CK approach, ALX3d
also demonstrates the potential benefits of using formal systems in design
research. Although ALX3d is still being developed, there are strong indi-
cations, as demonstrated in this paper that it may be a useful tool for de-
sign research.

References

1. A. Hatchuel and B. Weil (2009) CK design theory: an advanced formulation.
Research in Engineering Design, 19(4):181–192.

2. A.O. Kazakci and A. Tsoukias (2004) Extending the CK design theory to
provide theoretical background for personal design assistants. in D. Marja-
novic (ed), DESIGN 2004, pages 45-52.

3. F.A. Salustri (2003) Towards an action logic for design processes. Proc. Intl.
Conf. on Engineering Design, paper #1051.

4. Z. Huang (1994) Logics for agents with bounded rationality. PhD Thesis,
University of Amsterdam.

5. H.A. Simon (1981) The Sciences of the Artificial. The MIT Press, Cam-
bridge, Mass.

6. V. Akman and M. Surav (1996) Steps toward Formalizing Context. AI Mag-
azine, 17(3):55-72.

7. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider and L.A. Resnick
(1991) LIVING WITH CLASSIC: When and How to Use a KL-ONE-Like
Language. In Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge (ed. John F. Sowa); Morgan Kaufmann Publishers,
Inc., San Mateo; pages 401-456.

8. J.S. Gero (2004) Situated design computing: Introduction and implications, in
D. Marjanovic (ed), DESIGN 2004, pages 27-36.

9. M.J. French (1992) The Opportunistic Route and the Role of Design Princi-
ples. Research in Engineering Design, 4(3):185-190.

10. A. Hatchuel, P. Le Masson, and B. Weil (2004) CK theory in practice: lessons
from industrial applications. In D. Marjanovic (ed), DESIGN 2004, pages
245-257.

11. I.M. Copi (1979) Symbolic Logic, 5/e. Prentice-Hall.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Representing CK theory with an action logic
	Filippo A. Salustri
	Recommended Citation

