

FPGA-Based Smart RFID Tag with Robust

Authentication Protocol

By

Leili Borghei

A Project

Presented to Ryerson University

In partial fulfillment of the

Requirement for the degree of

Master of Engineering

In the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

©Leili Borghei, 2009

PROPERTY OF
RYERSON UNlVERSlTY LIBRARY

Author's Declaration

I hereby declare that I am the sole author of this thesis project.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

ii

Instructions on Borrowers

Ryerson University requires the signature of all persons using or photocopying this thesis. Please

sign below, and give address and date.

iii

Abstract

FPGA-Based Smart RFID Tag With Robust

Authentication Protocol

©Leili Borghei, 2009

Master of Engineering

Electrical and Computer Engineering

Ryerson University

Radio Frequency Identification (RFID) technology is being deployed increasingly in diverse

applications and has become pervasive and ubiquitous. While the characteristics of RFID make

recognition possible without physical contact, it also has many problems pertaining to privacy

and security. This has led to slow adaptation of RFID technology for large number of

applications. Moreover, any approach without addressing the crucial factors like, scalability,

flexibility, cost, performance, computational resources and ease of use is not acceptable for

deploying the RFID technology. This project provides an introduction to RFID technology and

the privacy and security threats it faces. It reviews recently proposed RFID authentication

techniques, and presents an FPGA-based RFID tag with a secure authentication protocol between

the tag and reader, addressing all RFID security issues and threats including forward secrecy,

eavesdropping, tracking, cloning, replay attack and denial of service attack. The project explores

RFID authentication protocol using the Altera's Nios II embedded processor that provides a

flexible exploration environment.

IV

Acknowledgments

I would like to greatly thank the supervision and guidance of my supervisor Dr. Gul Khan during

this thesis project. I am particularly thankful to him for providing me with supervision in

defining and directing this project work. I would like to thank him for his encouragement and

inspiration that boosted my enthusiasm in embedded systems development and

hardware/software co-design. I am also much grateful to his patience and willingness throughout

my work on this project.

I would also like to express my deep appreciation to my supervisor Dr. Kaamran Raahemifar

for providing me with the assistance and resources through my entire Master's program. I am

much indebted to his kind sharing of his expertise and research insight in searching materials,

writing reports, preparing presentations and giving wise advice that have been all invaluable to

me. It has been a distinct privilege for me to work with both Dr. Kaamran Raahemifar and Dr.

GulKhan.

Heartly thanks to all of my friends for their diligent help all through my Master's program. I

would like to thank one and all in Electrical and Computer Engineering Department of Ryerson

University who supported me in pursuing my Master's program.

Finally, I would like to express my greatest gratitude to my lovely daughter Ghazal, my dear

husband Alireza, and my dearest parents. I feel proud and consider myself to be fortunate to have

their encouragement and support. To them I dedicate this thesis.

v

Table of Contents

Introduction 1

1.1 Structure of RFID Systems .. 1

1.2 RFID Applications .. 2

1.3 Motivation, Objective and Project Organization ... 5

2 RFID System Essentials 6

2.1 RFID Tags .. 6

2.2 RFID Tag Classes .. 7

2.3 RFID Readers .. 9

2.4 Privacy and Security in RFID .. 14

2.4.1 Privacy .. 14
2.4.2 Security 15

2.5 RFID System Performance ... 17

3 RFID Privacy and Security Solutions 19

3.1 Killing and Sleeping .. 19

3.2 Re-Labelling ... 20

3.3 Hardware Cryptography .. 21

3.4 Re-Encryption Approach ... 21

3.5 Minimalist Cryptography ... 22

3.6 Hash Lock Scheme 23

3. 7 Challenge and Response ... 24

3.8 Blocking .. 25

3.9 Timestamp Approach ... 26

3.10 Summary 27

4 RFID Tags with Randomized Access Authentication Protocol 28

4.1 What is A Hash Function? ... 29

4.2 Related Work ... 29

4.3 Authentication Protocol Proposal.. .. 33

vi

4.4 The Proposed Protocol- Operational Properties ... 37

4.5 The Proposed Protocol- Security Properties 39

4.6 Comparison .. 41

5 Implementation and Results 43

5.1 Software and Tools .. 43

5.2 RFID System Experimental Setup ... 47

5.3 Software Design ... 52

5.4 Results .. 54

6 Conclusion 60

6.1 Concluding Remarks .. 60

6.2 Future Work .. 61

7 Appendix A 62

8 References 77

vii

List of Figures

Figure 1.1: RFID Systems ... 1

Figure 1.2: Car Tracking with RFID-Tagged License Plates .. 3

Figure 2.1: Block Diagram of a Typical RFID Reader ... 9

Figure 4.1: SRAC Authentication Protocol.. ... 30

Figure 4.2: Proposed Randomized Access RFID Authentication Protocol 35

Figure 4.3: Proposed Robust Authentication Protocol.. .. 37

Figure 5.1: Block diagram of the DE2 board .. 44

Figure 5.2: Nios II Embedded Processor Development Flow ... 46

Figure 5.3: The Proposed RFID Tag ~ .. · 47

Figure 5.4: SOPC Builder System Contents ofRFID Tag .. 49

Figure 5.5: Block Symbol ofNios II System for RFID Tag .. 49

Figure 5.6: A Part of the Generated VHDL Entity .. 50

Figure 5.7: Instantiating the Nios II System .. 51

Figure 5.8: General Purpose Hashing Algorithms .. 53

Figure 5.9: Compilation Report .. 54.

Figure 5.1 0: A Successful Authentication ... 55

Figure 5.11: Randomly Updated Secret Information after Authentication 57

Figure 5.12: Resistant Against Denial of Service Attack. ... 58

viii

List of Tables

Table 2.1: Frequency Characteristics of RFID Systems ... 7

Table 2.2: Tag Classes .. 7

Table 2.3: RFID Readers Classification .. 10

Table 4.1: Notations 34

Table 4.2: Comparison of Operational and Security Features .. 42

ix

Chapter 1

Introduction

Radio frequency identification (RFID) is an emerging technology, which brings enormous

productivity benefits in applications where objects have to be identified automatically. The main

benefits of RFID systems are that they can provide automated and multiple identification capture

and analysis. One can read several RFID tags in the field at the same time automatically to track

valuable objects [1]. However, while the RFID feature of recognition without physical contact

provides convenience to the user; many problems pertaining to privacy and security still exist.

This has led to the slow adaptation of RFID systems in a number of applications.

1.1 Structure of RFID Systems

RFID uses radio frequency for information transfer between tags and readers. Generally, an

RFID system consists of three components: RFID tags, RFID readers, and back-end servers with

databases, as shown in Figure 1.1.

I RFID Reader I I RFIDTe.g I

Figure 1.1: RFID Systems

In general, the reader queries tags by broadcasting a radio frequency signal. A tag responds

to the reader by transmitting back its identification information. The reader forwards the tag

response to a back-end server. The server has a database of tags and can retrieve detailed

information regarding the tag (or the item attached to the tag).

1.2 RFID Applications

As of today, RFID systems have been applied to a wide range of problems including supply

chain management to replacing barcode, access control in restricted areas such as laboratories

and airports, asset tracking, automatic payment and product authentication to detect counterfeits.

Some of the widely used applications of RFID are described in this section.

Supply Chain Management

Stores and libraries have used electronic article surveillance (EAS), a 1-bit form of RFID for

theft control since the 1960s. EAS tags indicate whether an item has been bought or properly

checked out; a clerk will usually deactivate the tag at checkout. By extension, RFID tags are

basically EAS tags augmented with additional data storage and processing. Low-cost RFID tags

promise to expedite supply chain processes, from moving goods through loading docks to

managing the terabytes of data collected from these goods. The US Department of Defence and

various retailers (such as Wal-Mart) are already conducting RFID trials at the pallet, case, and

item levels [2].

Automatic Payment

Automatic payment is another popular RFID application. Various industry sectors have

conducted trials ofRFID-enhanced cashless payment technology, ranging from RFID-augmented

credit cards and public transportation tickets to RFID-like near field communication in consumer

2

devices. Electronic toll collection using E-Z Pass is another widespread application. The active

E-Z Pass tag attaches to a car's windshield or front license plate; as the car drives on a toll road,

the tag sends account information to the toll collection equipment in the lanes or overhead.

Although customers consider the E-Z Pass hip and modem, the technology was patented in 1977

(as shown in Figure 1.2) and has been deployed since the 1980s [2].

Figure 1.2: Car Tracking with RFID-Tagged License Plates
(Courtesy Fred Sterzer, USPatent 4001822)

Access Control

Contactless access control with RFID is popular for securing physical locations, such as office

buildings, hospitals and university campuses. Charles Walton first invented an RFID-based

access control system in 1973 [2]. It involved an electronic lock that opened with an RFID key

card. The passively powered key card, which Schlage sold for US$1.25, was a 36-square-inch

circuit board loaded with chips and analog components [2]. Today, RFID-based access cards are

the size of a credit card and assist with policing border access. The US Department of Homeland

3

Security (DHS) and the International Civil Aviation Organization (ICAO) also plan to use

passive RFID to police airport access [2]. By 2015, the ICAO wants to replace all passports

(approximately 1 billion) with digital passports that store encrypted biometric data on an RFID

chip [2]. The DHS also wants to use RFID to record who is entering or leaving the US across

land routes [2].

Animal Tracking

RFID-tagged animals are already common. Applications vary from identifying runaway pets to

tracking cattle from pastures to the grocer's freezer. Cows and chips first met in the 1970s in

American microwave-based systems and European inductively powered systems [2]. Since then,

various parties have used RFID-based animal tracking to monitor cows, pigs, cats, dogs, and

even fish to control outbreaks of animal diseases such as avian influenza or bovine spongiform

encephalopathy ("mad cow disease").

RFID has also been used to track people. Manufacturers have created wearable RFID

wristbands, backpacks, and clothing to track prisoners, schoolchildren, and even the elderly.

Applied Digital created an injectable RFID tag called the Verichip [2]. This subdermal RFID

chip stores personal data that can be read at venues as varied as nightclubs and hospitals.

Other Applications

RFID tagging lets physical objects be represented in cyberspace and entered into databases.

Candidates include clothes (to be queried by smart washing machines), packaged foods (to be

queried by smart refrigerators), medicine bottles (to be queried by smart medicine cabinets),

rental cars, airline baggage, library books, banknotes, driver's licenses, employee badges, and

even surgical patients (to avoid mix-ups) [2].

4

1.3 Motivation, Objective and Project Organization

The objective of this project is to investigate an RFID tag with a secure authentication protocol

for communication between the tag and its reader in a way that not only it considers the privacy

and security issues but also adds flexibility to the tag. It is achieved in such a way that the cost

and time for redesigning and reusing of the tag can be minimized. In most applications, RFID tag

and reader hardware and software must be specifically designed for each particular application.

RFID system may be physically modified or redesigned every time either the specification for

the current application is adjusted or as new applications are introduced. This keeps the overall

design time long and the system costs high.

The project explores the RFID system using the Altera's FPGA and Nios II processor that

provides a huge advantage in this type of investigation. The tag is implemented as system on

programmable chip (SoPC) on the DE2 board [3]. Nios II embedded processor is deployed as a

controller. A secure authentication algorithm based on randomized access control is presented in

which messages are changed randomly between the tag and its reader, so that the responses are

different each time the authentication is in process.

The organization of this thesis report is as the following: Chapter 2 describes the essentials

of RFID systems including tag and reader classifications, privacy and security issues, and RFID

system performance. Chapter 3 presents a survey on recently proposed RFID systems and

existing methods for solving privacy and security issues. Chapter 4 describes the implementation

of the proposed FPGA-based RFID tag incorporating a secure randomized access authentication

protocol. Chapter 5 presents the tag and reader implementation results. Finally, Chapter 6

provides the conclusion and future work of this study.

5

Chapter 2

RFID System Essentials

2.1 RFID Tags

An RFID tag is a small microchip with an RF antenna that can be attached to various objects.

The microchip is capable of storing elementary information, some processing and radio

communication. RFID tags generally come in three types, active, semi-passive, and passive.

Active and Semi-Passive Tags

Active tags require an internal power source (usually a battery) to power the tag for receiving

queries and transmitting responses. The power supply also powers the tagis controller, which

may be an ASIC or an embedded microprocessor. There are two such types: semi-passive tags,

whose batteries power their circuitry when they are interrogated and active tags, whose batteries

power their transmissions. Active tags can initiate communication, and have reading ranges of

100 meters or more. [2]

Passive Tags

Passive tags have no on-board power source. As a result, these tags not only receive information

from a query, they also receive energy. This energy is used to power the tag to determine and

send a response to the query. While passive tags are generally cheaper than active tags, they have

two major disadvantages. Firstly, the range of passive tags is significantly lower than active tags,

and secondly, the complexity of response is significantly reduced over active tags due to the

limited energy budget. However, active tags in addition to being more costly than passive tags

6

also require maintenance, such as the change of the battery. Table 2.1 summarizes frequency

characteristics of RFID systems.

Table 2.1: Frequency Characteristics of RFID Systems

.Frequency Range
·· .. . '

Reading Range Tag Type
...

Low Frequency (LF) 124 kHz - 135 kHz Up to half a meter Passive

High Frequency
13.56 MHz Up to a meter or more Passive (HF) •·· ...

Ultra High Frequency
860 MHz- 2.45 GHz Up to tens of meters Passive or Active (UHF)

2.2 RFID Tag Classes

Depending upon the capabilities of the RFID tags, they are divided in different classes [5,6], as

described below and summarized in Table 2.2.

Table 2.2: Tag Classes

·~· _G, n 1/ .. A ····· •·· - ~~ c Class Known as Power Source lH'-'UAVA,J'
, ... :. ·•

0 EAS None Passive Anti Theft

1 ... EPC ·Read-Only Any Identification

2 EPC Read-Write Any Data Logging

Sensor Tags Read-Write
Semi-Passive

Sensors
Active

4 Smart Dust Read-Write Active
Ad-Hoc

Networking

Class 0 - Read Only - Factory Programmed

Class 0 tags are the simplest type of tags, where the data is usually a simple ID number, which is

written once into the tag during manufacture. The memory is then disabled from any further

updates. Class 0 tags are also used to define a category of tags called EAS (Electronic Article

Surveillance) or anti-theft devices, which h;;tve no ID, and only announce their presence when

7

passing through an antenna field. They are frequently found in library books or compact discs

[5,6].

Class 1 -Write Once Read Many (WORM) -Factory or User Programmed

Class 1 tags contain a unique identifying data stored in a write-once read-many (WORM)

memory. Data can either be written by the tag manufacturer or by the user, one time. They are

used as barcode replacement. Class 1 tags include EPC (Electronic Product Codes) tags that

enable high visibility of products in supply chain [5,6].

Class 2- Read Write

Class 2 tags are the most flexible type of tags, where users have access to read and write data

into the tags memory. Class 2 tags have read-write memory, which allows them to act as logging

devices. Class 2 tags may be recycled and used to identify many different items throughout their

lifetime [5,6].

Class 3- Read Write- with on board sensors

Class 3 tags contain on-board environmental sensors and may record parameters like

temperature, pres~ure, and motion; which can be recorded by writing into the tags memory.

Since sensor readings must be taken in the absence of a reader, class 3 tags are necessarily semi

passive or active [5,6].

Class 4 - Read Write - with integrated transmitters

Class 4 tags may establish ad-hoc wireless networks with other tags. Since they can initiate

communication, class 4 tags are necessarily active [5,6].

8

2.3 RFID Readers

An RFID reader is a device that can recognise the presence of RFID tags and read or write the

information from or to them. RFID readers are becoming more and more advanced with more

efficient anti-collision procedures, wider frequency bandwidth and greater data filtering

capabilities that allow fast and effective integration of RFID readers into overall information

systems. RFID readers consist of three main parts that allow them to function in RF and digital

systems. The main three components are control section, high frequency interface, and antenna,

as shown in Figure 2.1.

'--------------• Antenna

Figure 2.1: Block Diagram of a Typical RFID Reader

RFID readers can be classified on various bases such as power supply, communication

interface, mobility, and frequency response [7]. According to these categories, different types of

RFID readers are described in this section and summarized in Table 2.3.

Readers Using the Standard Power Network

Readers using the power network generally have a power cord connected to an appropriate

external electrical source. RFID readers need DC voltage supply for operation of their electronic

9

circuits and components. This means that an appropriate AC/DC adapter is used for the power

supply of such readers. Most readers that use this type of power supply are fixed stationary

readers and their operating power supply comply from 5V to 12V, but then~ are examples of

readers that operate at voltage levels of24V [7].

Table 2.3: RFID Readers Classification

Power

Readers Supplied
from the Power

Network

Mobility

Stationary RFID
Readers

· Hand-held RFID
Readers

Battery Operated RFID Readers

Communication Interface

Serial RFID Readers Network RFID Readers

Frequency Response

Unique Frequency
Response Based Readers

Non-Unique Frequency
Response Based Readers

Battery powered (BP) readers are powered by using a battery source attached to their

motherboard or packaging. These types of readers proviqe more flexibility when implementing

an RFID system due to the fact that the reader does not need external power supply and thus does

not depend on the location of power outlets or the use of power cables. Most BP readers are

hand-held but there are stationary readers that are battery assisted as well. BP readers use from

5V to 12V batteries for their power supply [7]. The Alien ALR-2850 is a high-performance BP

reader designed for range, sensitivity and sophisticated data handling that works with 12V

battery [8].

Serial RFID Readers

Serial readers use a serial communication link for communication with the host computer or

software application. The reader is physically connected to a host computer using the RS-232,

10

RS-485, I2C or USB serial connection [7]. Serial readers have the advantage of being more

reliable for data transmission than network readers. The disadvantage of serial readers is that

there are a limited number of serial ports at the host side and it might be needed to have a large

number of host computers to connect all the serial readers. Moreover, the serial RS-232/485

cable is limited in length and the data transfer rate is lower than the network data transmission

rate [7].

Network RFID Readers

Network readers are connected to the host computer via a wired or wireless network. These types

of readers behave as a standard network device and do not require particular knowledge of the

hardware and system configuration.

Today's RFID readers support multiple network protocols such as Ethernet, TCP/IP, UDPIIP,

HTTP, LAN, WLAN and others. This allows easier tracking and maintenance of the readers

installed in the system. The number of readers or their placement in the system environment isn't

determined or restricted by the wired connection as it is the case with serial connections. The

data transmission rate of network readers is far greater than with serial readers (up to 1 OMbps for

Ethernet) and thus data is collected at a higher rate [7,9].

The disadvantage of network readers is that the communication link is not as reliable as

serial communication. When the communication link goes down, the back ·end cannot be

accessed. As a result, the RFID system might come to a complete standstill. RFID readers have

internal memory to store the received data from the tags, so that short time network failures may

be compensated. The Samsys MP9320 v2.8 reader [9] provides multiple communication options

including RS-232, RS-485, and 10/100 Mbps Ethernet connectivity.

11

Stationary RFID Readers

Stationary RFID readers are also known as fixed readers. This term comes from the reader's

ability to be mounted on walls, portals, doors or other objects where they can perform effective

tag readings and are not meant to be moved or carried. Fixed RFID readers are mainly used for

wireless data capture in supply chain management, asset and product control. Today's fixed

RFID readers are used for personnel identification and authentication for restricted access areas

installed and mounted on portals and doors as well [7].

Most stationary readers support multiple protocols for tag and reader communication and can

operate in standalone and in networking mode. A new trend involving· the design of stationary

readers places multiple antenna connections for connecting more than one antenna to the reader,

allowing the user to achieve greater and diverse radiation patterns of the reader's interrogation

area. They use power supply from 12V to 24V, weigh from 1.5 kg to 5kg and can achieve

reading ranges up to 300m [7,10]. The 303 MHz Mantis II reader is an advanced stati~nary RFID .

reader in RF Code's Mantis product family [10]. Mantis II readers track battery-powered RFID

tags to quickly locate and identify assets or people in a defined area.

Hand-held RFID Readers

Hand-held RFID reader is a mobile reader that can be carried and operated by a user as a hand

held unit. Hand-held readers have built in antennas and usually do not have connectors for

additional antennas. They are battery powered and light weight (from 82g to 700g) and can

achieve shorter reading ranges than fixed readers (up to 100 meters) [7, 11].

Hand-held readers are used in tracking live stock, locating items in stores and in stock, etc.

They communicate with the host computer using wireless communication protocols and contain

memory blocks for saving data and then after the user has finished dat~ capturing it enables data

12

transfer from the reader to a database via wired communication. Most hand-held readers have the

ability to call out to a specific tag and even allow location of a tag for the location of the hand

held RFID reader. Hand-held RFID readers are integrated with bar code scanners so users can

perform both tag and bar code identification with one device, enabling flexible and multiple

applications [7]. The i-CARD CF is the world's first RFID reader in compact flash format that

can attain ranges of up to I 00 meters (300 feet) [II].

Unique Frequency Response Based Readers

Unique frequency response based readers operate at a defined frequency range and use this

frequency for both data transmission and reception. The reader transmits AC power and the

reader's command via its antennas to the tags in its reader zone·~ This is part of a transceiver unit

that is responsible for sending the reader's signal to the surrounding environment and receiving

the response back from the tags.

The receiver is the second part of the transceiver module and is responsible for receiving the

analog signals from the antenna. It then sends the signals to the reader microprocessor, where it

is converted to a digital signal. The microprocessor thus decodes the received analog signal and

performs data processing. It also codes and modulates the reader carrier signal when it wants to

send out a message to one particular tag or toward all the tags in the interrogation area. The vast

majority of RFID readers that can be found on the market today are unique frequency response

based readers [7].

Non-Unique Frequency Response Based Readers

Non-unique frequency response based readers operate using one frequency for sending a

command or just provide a carrier signal at a certain frequency and listen for an integer multiple

13

of its carrier frequency, generally in the form of a 2nd harmonic, or a frequency divided signal as

the tag's response [12]. Two RF frequencies used for communication by the reader to the RFID

system allows fast and reliable full-duplex communication but needs a more complex RF front

end for both the reader and tag module. Some RFID systems are designedin such a way that

multiple frequency use is enabled by using multiple antennas operating at different but

predefined frequencies.

2.4 Privacy and Security in RFID

RFID technology has become an important part of everyday life and incoming ubiquitous

environment. However, the communication between tag and reader in RFID ·system has been

conducted by wireless communication at radio frequency and the information on identification

could be eavesdropped by a third party maliciously. Such eavesdropped information· could be

used to impair the privacy of its users.

To provide widespread adoption of RFID, security mechanisms is therefore of utmost

important. As a result, many studies have been performed to provide robust wireless

communication between tag and reader, addressing privacy and security issues. Generally, the

privacy and security concerns and threats in an RFID system can be classified as given below.

2.4.1 Privacy

One of the main concerns for RFID systems is privacy. RFID systems use a shared radio

medium, which allows eavesdropping. Unprotected communications between tags and readers

over a wireless channel can disclose information about the tags and their positions. In an RFID

system, there are two major privacy issues: tag information and location privacies.

14

Tag Information Privacy

In a typical RFID system, when an RFID reader queries RFID tags, they respond by sending

their identifier to the reader; the reader can then request further details by sending the identifiers

to a server. If unauthorised readers can also get a tag identifier, then they may be able to

determine the additional information related to the tag. For example, if the information

associated with a tag attached to a passport, ID-card or medical record can be obtained by any

reader, then the damage would be very serious [1]. To protect against such information leakage,

RFID based transactions need to be controlled so that only authorised readers are able to access

the information associated with a tag . .

Tag Location Privacy

If the responses of a tag are linkable to each other or distinguishable from those of other tags,

then the location of a tag could be tracked by multiple collaborating tag readers. For example, if

the response of a tag to a reader query is a static ID code, then the movements of the tag can be

monitored, and the social interactions of an individual carrying a tag may be available to third

parties without him or her knowing. If messages from tags are anonymous, then the tag tracking

problem can be avoided [1].

2.4.2 Security

The other important concern for RFID systems is security of the RFID protocols. There are many

attacks that threat the communication between the RFID reader and tag. Security threats to RFID

protocols can be classified as tag impersonation, server impersonation, denial of service attack,

replay attack, forward and backward traceability. These threats are described in the following.

15

Tag Impersonation

An eavesdropper could impersonate a target tag without knowing the tag 's internal secrets. It

could communicate with readers instead of the tag and be authenticated as the tag [1].

Server Impersonation

In this category of impersonation, an adversary with knowledge of the internal state of a tag is

able to impersonate the valid server to the tag. One reason that this is a genuine threat is because

of the following attack. If it is possible to impersonate a server to a tag, an adversary could

request a target tag to update its shared secrets. The tag and the real server would then be

desynchronised, and incapable of successful communications. This threat can also be considered

as a reader impersonation [1].

Denial of Service Attack

An adversary disturbs the interactions between readers and tags by, intercepting or blocking

messages transmitted. Such an attack could cause a server and a tag to lose synchronisation. For

example, the server might update the shared data while the tag does not; in such a case they

would no longer be able to authenticate each other [1].

Replay Attack

In such an attack, an attacker reuses communications from previous sessions to perform a

successful authentication between a tag and a server [1].

Forward Traceability

This can similarly be defined as where knowledge of a tag's internal state at time t can help to

identify tag interactions that occur at a time t ' > t. The only way of maintaining future security

16

once the current tag secrets have been revealed is to detect key compromise as soon as possible,

and to replace the exposed key to protect future transactions [1, 13].

Backward Traceability

This occurs if, given all the internal state of a target tag at time t, the attacker is able to identify

target tag interactions that occurred at a timet'< t. That is, knowledge of a tag's current internal

state could help identify the tag's past interactions [13].

2.5 RFID System Performance

Authentication protocols for RFID systems should not only be designed to address the privacy

and security threats, but should also take into account the limited capabilities of RFID tags. For

example, the use of extensive cryptography-based authentication or high-quality random

numbers on the tag-side may not be possible for low cost tags. Extensive cryptographic

operations can be shifted to the reader-side [1]. However, this requires the tag to either store

large keys or frequently communicate with the reader over a secure out-of-band channel to

obtain authorization information. The former option is impractical due to limited tag-side

storage; the latter one decreases the utility of an RFID system due to time and cost saving

identification technology [14]. The main concerns for limited capability of RFID tags can be

classified and summarized as following.

Capacity - The volume of data stored in a tag should be minimised because of the limited size

of tag memory [1].

Computation - Tag side computations should also be minimised because of the very limited

power available to an RFID tag [1].

17

Scalability - The server in an RFID system should be able to handle growing amounts of work

in a large tag population. Moreover, the reader should be able to identify multiple tags that share

the same radio channel [14].

Communication - The volume of data that each tag can transmit per second is limited by the

bandwidth available for RFID tags [15].

18

Chapter 3

RFID Privacy and Security Solutions

Many research groups have proposed solutions to the privacy and security problems in RFID

systems. These solutions can be broadly divided into two categories: hardware based and protocol

based [16]. Hardware based solutions emphasize on improving RFID tag hardware to provide

additional security primitives like elliptic curve cryptography. Protocol based solutions emphasize

on designing better protocols using mostly lightweight primitives known to be implementable on

RFID tags.

The proposed RFID authentication solution of this project falls under the protocol based

category, which will be completely described in chapter. 4. In this chapter; a survey on prior work

done in both categories with different technical approaches is presented. Through the survey, it is ·

assumed that the connection between the RFID reader and the server is a secure one.

3.1 Killing and Sleeping

Electronic Product Code (EPC) tags address consumer privacy with a simple and draconian

provision known as tag killing. When an EPC tag receives a "kill" command from a reader, it

renders itself permanently inoperative. To kill a tag, a reader must also transmit a tag-specific

PIN (32 bits long in the EPC Class-1 Gen-2 standard) in order to prevent unwanted deactivation

of tags. As "dead tags tell no tales," killing is a highly effective privacy measure [4]. Removable

RFID tags of Marks and Spencer support a similar approach [17].

Killing or discarding tags enforces consumer privacy effectively, but it eliminates all of the

post-purchase benefits of RFID for the consumer. Moreover, in some cases, such as libraries and

19

rental shops, RFID tags cannot be killed because they must survive over the lifetime of the

objects they track. For these reasons, it is imperative to look beyond killing for more balanced

approaches to consumer privacy. Rather than killing tags at the point of sale, they can be put to

"sleep" [4]. Therefore, some form of access control would be needed for the waking of tags. This

access control might take the form of tag specific PINs, much like those used for tag killing. To

wake a sleeping tag, a reader could transmit this PIN.

3.2 Re-Labelling

Even if the identifier emitted by an RFID tag has no intrinsic meaning, it can still enable

tracking. For this reason, merely encrypting a tag identifier does not solve the problem of
. . . .

privacy. An encrypted identifier is itself just a meta-identifier. It is static and, therefore, subject

to tracking like any other serial number. To prevent RFID-tag tracking, it is necessary that tag

identifiers be suppressed, or they can be changed over time [4].

Sarma et al. proposed the idea of effacing unique identifiers in tags at the point of sale to

address the tracking problem, but retaining product-type identifiers (traditional barcode data) for

later use [18]. Inoue et al. suggested that consumers be equipped to re-label tags with new

identifiers, but that old tag identifiers remain subject to reactivation for later public uses, like

recycling [19]. As a remedy for clandestine scanning of library books, Good et al. proposed the

idea of re-labelling RFID tags with random identifiers on checkout [20].

The limitations of these approaches are clear. Effacement of unique identifiers neither

eliminates the threat of clandestine inventorying, nor does it eliminate the threat of tracking. Use

of random identifiers in place of product codes addresses the problem of inventorying, but does

not address the problem of tracking. To prevent tracking, identifiers must be refreshed on a more

frequent basis [4].

20

3.3 Hardware Cryptography

Another approach to RFID security focuses on changing the physical hardware of the RFID tag

itself [16]. Batina et al. investigated the possibility of building RFID hardware that is capable of

performing public key based authentication [21]. Their efforts have centered on using a

particular . flavour of public key cryptography based on elliptic curve cryptography (ECC). ECC

has been suggested as a good replacement for RSA based public key cryptosystems since a 160-

bit ECC offers the same level of security as · a 1 024-bit RSA encryption. While a public key

cryptosystem for RFID tags greatly improves RFID privacy and security, it is more costly to

implement than the cryptographic hash functions [16]. Other cryptographic primitives such as

Advanced Encryption Standard (AES) and Cyclic Redundancy Check (CRC) are also better fit
I o .I

for the specific demands of RFID [22].

3.4 Re-Encryption Approach

Juels and Pappu addressed the privacy implications ofRFID-tags embedded in banknotes, with a

scheme where banknote tag serial numbers are encrypted with a law enforcement public key

[23]. The resulting ciphertexts undergo periodic re-encryption to reduce the linkability of

different appearances of a given tag. Because of the severely restricted computing resources of

RFID tags, it is proposed that there-encryption should be performed by readers [24].

In order to prevent wanton re-encryption (e.g., malicious passers-by), it is proposed that

banknotes carry optical write-access keys to re-encrypt a ciphertext and a reader must scan this

key. From several perspectives, like the need for re-encrypting readers, the system is very

cumbersome [4]. Moreover, it has introduced the principle that cryptography can enhance RFID-

tag privacy even when tags themselves cannot perform cryptographic operations [4].

21

Golle et al. described a similar scheme that is more suitable for privacy-protection of RFID

tags embedded in consumer goods [25]. They use multiple public keys; thanks to a- technique

called "universal re-encryption". This is an extension of the El Gamal cryptosystem in which it is

possible to re-encrypt a ciphertext without knowing the associated public key. The Golle et al.

scheme suffers from the same drawback as that of Juels and Pappu, namely the requirement for

an infrastructure of re-encryption devices [24].

3.5 Minimalist Cryptography

While high-powered devices like readers can· relabel tags for privacy, tags can alternatively

relabel themselves. Juels proposed a "minimalist" system in which every tag contains a small

collection of pseudonyms [26]. It rotates these pseudonyms, releasing a different one on each

reader query. An authorized reader can store the full pseudonym set for a tag in advance and,

therefore, identify the tag consistently. An unauthorized reader (the one without knowledge of

the full pseudonym set for a tag) is unable to correlate different appearances of the same tag.

To protect against an adversarial reader harvesting all pseudonyms through rapid-fire

interrogation, Juels proposed that tags "throttle" their data emissions, or slow their responses

when queried too quickly. As an enhancement to the basic system, valid readers can refresh tag

pseudonyms. The minimalist scheme can offer some resistance to corporate · espionage, like

clandestine scanning of product stocks in retail envinmments [4].

Hardware implementation of Feldhofer presents a novel minimalist approach of a 128-bit

AES implementation [27]. Their approach provides .a promising choice for strong authentication

in RFID systems and their proposed low-cost AES hardware implementation is used in various

proposals as an enabler of cost-efficient RFID cryptography [28].

22

3.6 Hash Lock Scheme

Hash-based Access Control (HAC), as defined by Weis et al., is a scheme which involves

locking a tag using a one-way hash function [29,30]. A locked tag uses the hash of a random key

as its meta!D. When locked, a tag responds to all queries with its meta!D. The reader forwards

this meta!D to the backend server which then retrieves the real tag ID for the reader. Every tag

has a unique meta!D and will always reply with the same meta!D value when queried. However,

this scheme allows a tag to be tracked because the same meta!D is used repeatedly [1].

Therefore, the authors proposed the Randomized Access Control (RAC), which employs a

random number generator to prevent the above tracking attack. Under this scheme, a tag .

generates a. new response as a hash function of the tag ID and a random number. The reader

forwards this reply to a secure database which then searches its database for tbe secret

information that matches the tag reply. However, tag impersonation remains possible because an

intercepted response can be replayed. Moreover, it does not provide backward untraceability

because the tag ID is fixed [1].

Molnar and Wagner pointed out that the randomized hash lock scheme does not defend

against an eavesdropper properly [31]. An adversary can e':lvesdrop on the communication

between readers and tags to learn the tag reply, (r,JD$ fk(r)). The adversary then uses this

information to impersonate the RFID tag to fool a reader. The authors suggested having both the

reader and tag each contribute a random number, r 1 and r2 respectively. Their approach assumes

that the reader knows the tag secret k. After the reader and tag exchange random numbers, the

tag replies withJD$ fk(O,fi,!"2). Since the reader knows k, it can derivefi(O, rl, r2) and obtain

!D. The protocol works without a central database. However, it does not consider the case of a

compromised reader. An adversary with a compromised reader will know the tag secret of every

23

tag the reader has access to. The adversary can then use this information to make duplicate tags

to fool other readers [16].

Ohkubo et al. also proposed a hash chain based scheme for privacy-preserving tag

identification on the face of active attacks [32]. Their scheme also provides forward security. Tag

'i' is initialized with secret x;, and h1 and h2 are independent one-way hash functions. When query

is sent to the tag, tag updates its secret key by applying h1 and sends 1Du=h2(hi(xJ) to the reader.

The reader in this scheme shares secrets with the tags. After receiving ID;,, , the reader

determines x; by brute-force search. They proposed a fixed upper bound 'm' on the number of

time steps over which tags operate. In their scheme, the reader pre-computes a giant table

T={[ID;,1,(1,t)]} where l::Si::Sn and l::St::Sm [33]. Their scheme uses a low-cost hash chain

mechanism to update tag secret information to provide indistinguishability (i.e. a tag output is

indistinguishable from a truly random value and unlinkable to the ID of the tag) and backward

untraceability. However, it is subject to replay attacks and hence it permits an adversary to

impersonate a tag without knowing the tag secrets [1].

The initial idea of this project, which is described in the next sections, is based on the

randomized access control scheme provided by Weis et al. [29], Lee et al. [34] and Jeong et. al.

[35]. The two schemes are used and have been expanded to offer more security and privacy in an

RFID system.

3.7 Challenge and Response

An alternative method for RFID authentication is based on a "challenge and response" between a

reader and a tag. Juels and Weis observed that human authentication protocols can be applied to

RFID, due to their weak computational capabilities, like humans [36]. They introduced HB

protocol based on the work of Hopper and Blum [37]. In HB Protocol, a reader issues a new

24

challenge to a tag each time it queries an RFID tag. The tag computes the binary inner product

based on the reader's challenge, and returns the answer to the reader. The reader authenticates
"' (

the tag by verifying the tag response. The HB+ protocol is an improvement over the HB protocol

and it employs an additional binding factor from the tag to defend against an acti~e ad~lersary.

HB++ is the later work that was improved on this idea [38].

Ranasinghe et al. presented ways to implement challenge-response authentication protocol

on RFID tags without using costly cryptographic primitives [39]. These proposals are based on a

Physical Unclonable Function (PUF) residing on the tag, which allows for calc4lation of unique

responses using only some hundreds of logical gates. A possible candidate for the PUF can be

found from Lee et al. work [40], where the manufacturing variations of each integrated circuit

are used to implement a secret key on a tag. The back -end server ne~ds to store a list of

challenge-response pairs for each PUF (i.e. for each tag) because, without encryption, a PUF

challenge-response pair that is once used, can not be used again since it may hav~ b.een observed

by an adversary. The PUF based security is still an area of active research. Also, Tuyls et al.

propose the use of PUFs to increase RFID tags resistance against both physical and

communication based cloning attacks and defined an offiine authentication protocol [41]. The

authors estimated that their anti-clone tag can be built with on the order of 5,000 g~tes.

3.8 Blocking

Juels et al. proposed a privacy-protecting scheme that they called blocking {24]. Their scheme

depends on the incorporation of a modifiable bit called a 'privacy bit' into tags. A '0' privacy bit

marks a tag as subject to unrestricted public scanning and a '1 ' bit marks a tag as private. They

refer to the space of identifiers with leading '1' bits as a privacy zone. A blocker tag is a special

RFID tag that prevents unwanted scanning of tags mapped into the privacy zone.

25

To illustrate how blocking might work in practice, a supermarket scenario may be

considered. When first created, and at all times prior to purchase - in warehouses, on trucks, and

on store shelves -tags have their privacy bits set to '0'. In other words, any reader may scan

them. When a consumer purchases an RFID-tagged item, a point-of-sale device flips the privacy

bit to a '1 '. Therefore, it transfers the tag into the privacy zone. This operation is much like the

"kill" function in EPC tags, and may be similarly PIN-protected [4]. Once in the privacy zone,

the tag enjoys the protection of the blocker. Supermarket bags might carry · embedded blocker

tags, to protect items from invasive scanning when shoppers leave the supermarket. Wh.en a

shopper arrives home, she/he removes items from shopping bags and puts them in. the

refrigerator. With no blocker tag inside, an RFID-enabled smart refrigerator can freely scan

RFID-tagged items. The consumer gets privacy protection from the blocker when it is needed,

but can still use RFID tags when desired [4].

3.9 Timestamp Approach

Tsudik introduced a novel technique, Y A-TRAP, which employs timestamps in RFID

authentication [42]. YA-TRAP provides tracking-resistant tag authentication through

monotonically increasing the timestamps on a tag. This is a novel approach for those RFID tags

that have no self-contained power source to keep track of time. In Y A-TRAP, a reader will send

a timestamp of the current time to a tag which then decides whether to return a random reply or

an encrypted reply based on the received timestamp and its own internal timestamp. The reader

sends this reply back to the backend server to obtain the tag data [42].

Chatmon et al. proposed anonymous RFID authentication protocols based on Y A-TRAP that

provide anonymity for authenticated tags and address some vulnerabilities of the original design,

while increasing the server workload [43].

26

3.10 Summary

Each year quite a large number of RFID authentication solutions are published in scientific

literature. Based on the computational cost and the operations supported on tags, the proposed

solutions can be broadly classified into two categories: protocol based and hardware based [16].

In the protocol based solutions, the emphasis is on designing better protocols using mostly

lightweight primitives known to be implementable on RFID tags. These protocols should support ·

Pseudo:.Random Number Generator (PRNG), one-way hashing function, functions like Cyclic

Redundancy Check (CRC), and bitwise operations (like XOR, AND; ·OR) on·· tags. The

Electronic Product Codes (EPC) tags that enable high visibility of products in supply chain are

one of the main applications in this category. EPC tags support PRNG and CRC'checksum.

In the hardware based solutions, the emphasis is on improving RFID tag hardware to provide

additional security primitives like symmetric encryption, elliptic curve cryptography, or even the

public key algorithms. E-passport is one of the main applications of the hardware based·

solutions.

27

Chapter 4

RFID Tags with Randomized Access ·Authentication

Protocol

The major areas that drive the commercial deployment of RFID technology are logistics, supply

chain management, library item tracking, medical implants, road tolling, building access control,

aviation security, and homeland security applications. Each of these RFID systems has

customized requirements that currently are defined ad hoc. In addition, multiple, often

competing, standards exist (ISO/IEC JTC I, ANSI, EPC, etc.) for RFID hardware, software, and

data management. [44]. In most applications, RFID tag and reader hardware and software must

be specifically designed for each particular application. Hardware and software must also be

physically modified or re-designed . every time the specification for the current application is

'
adjusted, as new applications are introduced, or the standards are modified. This keeps the

overall design time long and the system costs high.

The main idea of the proposed system is to implement a robust authentication protocol

between the RFID tag and the reader, which addresses all the security issues including

eavesdropping, tracking, cloning, replay attack and denial of service attack. A system on a

programmable chip (SoPC) tag based on Nios II embedded processor is implemented and a

secure randomized access authentication protocol is proposed. It is supposed that the server and

the reader have sufficient resources to use strong symmetric or asymmetric key algorithms so

that the comniunications between them are secure. The proposed RFID system can be extended

to a reconfigurable RFID tag system [44] as a future work in order to keep the overall design

28

time shorter and the system costs lower. This section describes and analyzes the proposed system

in detail.

4.1 What is A Hash Function?

A hash function His a transformation that takes an input m and returns a fixed-size string, which

is called the hash value h (that is, h = H(m)). Hash functions with just this property have a variety

of general computational uses, but when employed in cryptography, the hash functions are

usually chosen to have some additional properties [45].

The basic requirements for a cryptographic hash function are as follows.

• The input can be of any length.

• The output has a fixed length.

• H(x) is relatively easy to compute for any given x.

• H(x) is one-way.

• H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert, where 'hard to invert' means

that given a hash value h, it is computationally infeasible to find some input x such that H(x) =h.

If, given a message x, it is computationally infeasible to find a message y not equal to x such that

H(x) = H(y), then His said to be a weakly collision-free hash function. A strongly collision-free

hash function H is one for which it is computationally infeasible to find any two messages x and

y such that H(x) = H(y) [45].

4.2 Related Work

Lee and Verbauwhede proposed an RFID authentication protocol for secure and low-cost RFID

systems [34]. Their protocol SRAC (Semi-Randomized Access Control) is designed using only

29

hash function as security primitives in tags. In spite of very restricted functionality, SRAC

resolves not only security properties, such as the tracking problem, the forward secrecy and the

denial of service attack, but also operational properties such as the scalability and the uniqueness

of MetaiDs. Moreover, their scheme has significantly reduced the amount of tag transmissions

which is the most energy consuming task. They supposed that the communications between the

server and the reader are secure. Therefore, it is assumed that the messages arrived to the reader

are securely passed to the server. Figure 4.1 illustrates SRAC authentication protocol.

Reader
I

Server

· Tag

Figure 4.1: SRAC Authentication Protocol

In this scheme, each tag contains its own key which is irrelevant to the other tags and HO

represents one-way cryptographic hash function. SRAC. authentication protocol can be described

as follows:

Step 1: Reader sends the Query to the tag.

Step 2: Tag sends MetaiD=H(Key) to the reader/server.

Step 3: Server looks up Key using MetaiD, generates a random number Rs, and checks

whether H (Key EEl Rs) is unique among the other MetaiDs. If it is not unique, server

regenerates Rs until H (Key E9 Rs) becomes unique.

30

Server updates Key as follows.

If H (Keycurr)=MetaiD

KeyPrev~ Keycurr, Keycurr~ H(Keycurr Ef> RJ

If H(KeyPrev)=MetaiD

Keycurr~H(KeyPrev E9 Rs)

Server sends Rs and H (Key I IRs) to the tag through the reader.

Step 4: Tag checks whether H(KeyiiRs) is correct.

If it is correct, tag updates Key~ H (Key E9 Rs) .

In SRAC protocol, the reason they inserted Rs into a hash function is that the tag needs to

check the integrity of Rs. The server authenticates tags by checking whether the received MetaiD

is on the server's database, and tags authenticate the server by checking H(Keyi!Rs). In order to

be resilient against the denial of service attack, the key update of the server must be more

sophisticated than tags. The server keeps two keys, the current key (Keycurr) and the pervious key

(KeyPrev). SRAC uses only a hash function for security primitives.

In SRAC protocol, the server can search out a tag's Key using MetaiD (H(Key)). Since the

database of the· server can be indexed using MetalDs, the searching is efficient and thus the

system is scalable. SRAC resolves the problem of uniqueness of MetaiDs by checking whether

an updating MetaiD is to be unique in step 3. In this protocol the server only needs to regenerate

a random number Rs again until a new MetaiD becomes unique. Since the uniqueness is

confirmed, they do not need a large si.ze of MetaiDs to evade the conflictions of MetalDs.

Therefore, they can significantly reduce the number of bits used in MetaiDs, which means less

energy to .transmit and less memory to store a MetaiD. On the other hand, for each time of

31

authentication, the required cryptographic computations in tags are only three hashes, and the

amount of transmission of a tag is the size of the hash output. Their scheme can be implemented

very efficiently in computation and transmission [34]. ·

SRAC protocol, also, resolved the cloning problem, the forward secrecy and the denial of

service attack. The secret information stored on the tag is pertinent to each tag. Even if some tags

are compromised, the other tags are irrelevant to the compromised information. Therefore,

attacker cannot make any other fake tag except for the compromised tags. The proposed scheme

resolves the tracking problem by changing tags' secret information whenever the authentication

is successful [34].

In this protocol, the revealed secret information of tags cannot affect the past secrecy. Even

if all the communications between a reader and a tag were eavesdropped and recorded, using the

current secret information, i.e. Key, attackers cannot infer the past secret information. This is

because a reader and a tag update their secret information using a hash function each time of the

protocols. Therefore, as long as a hash function is not invertible, the past secret information is

secure [34].

In SRAC protocol, if the server fails in searching ·for a MetaiD, the server can search out

through the previous MetaiDs. Since only one more MetaiD for each tag is stored in the server,

they can effectively prevent the denial of service attack [34]. Therefore, SRAC can be a good

solution for low-cost RFID systems that require good operational and security properties [34].

The authentication protocol presented in this project is based on SRAC protocol, which has

been expanded to deploy more than one cryptographic hash function. For each authentication,

one of these hash functions is selected randomly. By deploying a randomly changed hash

function, the proposed protocol offers more security and privacy for an RFID system.

32

4.3 Authentication Protocol Proposal

The main idea of the proposed scheme originated from the fact that deploying standard

cryptography functions like RSA encryption or AES are not enough for providing security to the

RFID system. In fact, applying a robust authentication protocol · between the tag and reader can

be considered more important than deploying · the complex and computationally intensive

cryptography functions to encrypt messages transferred· between the tag and reader. ·

Generally, the authentication in an RFID system is ·done 'first by authenticating the reader to

a tag. Then, a tag is ready to open its information to a reader, and secondly, by authenticating a

tag to a reader so that the system prohibits the usage of fake tags. Existing authentication

protocols can be divided into two categories: fixed access control in which a tag replies a reader

with a fixed message, and randomized access control in which a tag replies to a reader with a

pseudo-random message which varies each time of the responses.

The fixed access control is the simplest type so that tags can be implemented in a cheap

price. However, this kind of protocols leads to the tracking problem. In such a system, even

though attackers cannot figure out the real ID, the constant responses of tags cause the tracking

problem. A solution to prevent the tracking problem is the randomized access control in which

messages are changed randomly so that the responses are different each time the authentication is

in progress. The proposed authentication protocol is based on this solution.

It is supposed that the server and the reader have secure conimunication in between for this

randomized access protocol. Therefore, only communications between the reader and tags are

considered and it is assumed that the messages arrived to the reader are securely passed to the

server. In the following protocol, which is illustrated in Figure 4.2, the reader and the server are

33

not separated. The definition of variables and operations used through the protocol description

are briefly introduced in Table 4.1.

Hnum

Hash()

RHnum

Table 4.1: Notations

The Identifier of Tag k

Hash Function Identifier Assigned to a Tag

One-way Hash Function

Random Number

Random Hash Function Identifier Assigned to a
T

Exclusive-Or Operation

Concatenation of Ml and M2

In the proposed system, tag k contains its own identifier (!Dk) which is irrelevant to other
(.

tags. For encryption of the tag identifier, the system deploys a list of one-way hash functions. A

one-way hash function is a cryptography function, besides the function being difficult to invert,

whose output should not reveal any substantial information on its input. In fact, use of secure

one-way hash functions should be considered for maximum security.

In this system, for applying more security, more than one-way hash function is deployed for

encryption and each tag contains its own hash function identifier (Hnum). This identifier

determines which hash function should be used to encrypt the tag identifier while . this identifier

is also irrelevant to other tags. These two identifiers are tag's secret information, which will be

randomly changed whenever the authentication is successful.

34

new ID: HashRHmm(IDk E9 Rn)

I check HashRHnum(illkiiR.J to be c
Then I update my ID!

Figure 4.2: Proposed Randomized Access RFID Authentication Protocol

The proposed authentication protocol can be described as following:

Step 1: Reader sends the Query to the tag.

Step 2: After receiving the Query, tag calculates the hashed value of tag identifier HashHnum(IDJ

according to its assigned hash function identifier Ht-zum.

Tag sends the result of HashHnum(ID,J to the reader.

Step 3: Reader authenticates the tag in this step:

Reader looks up tag identifier in its database using the received hashed value. If such an

identifier does exist, reader generates a random number Rn and a random hash fmiction

identifier RHnum, and updates tag identifier with the new value:

HashRHnum(lDk ffi Rn)

35

Reader saves the current tag identifier as previous identifier.

Reader sends random number, random hash function identifier, and the value of

HashRHnum(IDkiiR,J to the tag.

Step 4: Tag authenticates the reader in this step:

Tag calculates the value of HashRHnum(IDkiiRn) using the received random number,

received random hash function identifier and its own identifier IDk .

Tag compares the result with the received hashed value; if they are equal; tag calculates

its new identifier and updates it:

HashRHnum(lDk EB Rn)

The reason for inserting Rn and RHnum into the hash function in HashRHnum(IDkiiR,J is that the

tag needs to check the integrity of Rn and RHnum· The reader authenticates tags by checking

whether the received HashHnum(IDk) is on the server's database, and tag authenticates the reader

by checking HashRHnum(IDkiiR,J. In order to be resilient against the denial of service attack, the .

secret information update of the reader must be more sophisticated than tag~. The reader keeps

current and pervious secret information of each tag. The reason will be_ discussed in detail on the

following sub-section of security properties.

The drawback of this solution is that it is under the replay attack. In this system, the server

stores two identifiers for each tag, the current one and the previous one, and if it is matched with

either of two, the server will authenticate a tag. Attackers may eavesdrop and reuse the recently

used secret information and will succeed to be authenticated. To prevent the replay attack, the

proposed protocol is modified to use the challenge and response method for both directions, as

illustrated in Figure 4.3.

36

our new ID: HashRHrnml(IDk E8 Rn)

I check HashRHnumQDkiiRn IIRr) to be c
Then I update my ID!

Figure 4.3: Proposed RobustAuthentication Protocol

According to the protocol shown in Figure 4.3, the reader authenticates tags by checking

whether the received HashHnun;~(ID,J is on the server's database and checking

HashHnum(IDkiiRch), and tags authenticate the reader by checking HashRHnum(IDkiiRniiRr).

4.4 The Proposed Protocol - Operational Properties

In an RFID system, in addition to total life cycle cost (one-time and recurring costs), various

architectural and operational issues including scalability, computational resources, power

consumption, functionality, flexibility, system management and ease of use will drive the

competing system designs. In the following, operational properties of the proposed system are

described and analyzed.

37

Scalability

The efficiency of tag identification is an important issue in protocol design. Unlike several hash

based protocols that require exhaustive brute-force searches incur the heavy overhead for the

server. The server in the proposed scheme can search out a tag's identifier using Hash(ID). Since

the database of the server can be indexed using hashed values of tags identifiers~ this mitigates

the overhead of tag identification and helps the RFID system scale well. In other words, the

searching is efficient and thus the system is scalable.

Flexibility

The number of hash functions deployed in the proposed system can be added or their definitions

can be changed over time. Since the tag is implemented as a system on programmable chip and

can be developed as a reconfigurable system, changing the hash functions over time adds more

security to the system. Meanwhile, the system is also flexible and reusable for different

applications. It does not need to physically modify or re-design the proposed tag every time the

specification for the current application is adjusted, ,new applications are introduced, the

standards are modified or new standards are developed. This keeps the overall design time short

and the system cost low.

Computational Resources

For each authentication, the required cryptographic computations in tags are four hashes, two in

step 2 and two in step 4. In order to provide more security to the system, after any successful

authentication, the hash function will change. Number of different hash functions that ca~ be

added to the system depends on the memory space available. In addition to hash function

operations, exclusive-or and concatenation operations are also involved.

38

Maximum amount of transmission of a tag i~ as ~arge as the size of the hash output and for

the proposed authentication protocol; one may use the hash function producing small output.

Therefore, this scheme can be implemented very efficiently in terms of computation and

transmission. In the proposed system, lightweight hash functions are deployed for encryption.

The minimum number of hash functions is assumed to be three, the minimum length of tag

identifier is assumed to be 20 bytes or 160 bits that can include numbers and characters together,

and the minimum length of hash function identifier is considered to be one byte.

Power Consumption

The proposed active RFID tag requires an internal power source to power the 'transceiver for

receiving queries and transmitting responses. The power supply also powers the tag's controller,

which is Niosii!e embedded microprocessor. Nios Il/e provides lower power consumption than

off-the-shelf microprocessors by combining many functions onto one chip. Power consumption

in a N ios II design is as low as 1 00 m W. Since th~ proposed system· is ·implemented on an

evaluation FPGA board and transaction between the tag · and the reader is simulated using wired ·

serial RS232 standard protocol, measurement of the exact amtmnt of power consumption is not

feasible.

4.5 The Proposed Protocol - Security Properties

There are several common attacks on RFID systems. In this section, the resistance 'of the

proposed protocol against these attacks is discussed.

Fo,rward Secrecy

In this protocol, the revealed secret information of tags cannot affect the past secrecy. Even if all

the communications between the reader and tag are eavesdropped and recorded, using the current

39

secret information (i.e. tag identifier) attackers cannot infer the past secret information. This is

because a reader and a tag update their secret information using· a hash · function and a random

number each time of the protocol process while the hash function is also being changed for each

update. Therefore, the past secret information is secure.

Replay Attack Resistance

Another security property of the proposed RFID tag system is the resistance against the replay

attack. Since a reader and a tag both confirm the received message using hash outputs which

contain internally generated random numbers, attackers cannot reuse the past messages.

Cloning and Forgery Resistance

After selling a product to the consumer, the retailer inputs secret information into the tag

attached to this product. The database maintains the pair of tag identifier and hash function

identifier. This pair can be used to examine the forgery. It is extremely difficult for a forger to

make a fake tag of the proposed system unless he tampers a tag physically to harvest such a pair.

The secrete information stored on each tag including tag identifier and the assigned hash function

identifier is pertinent to each tag. Even if some tags are compromised, the other tags are

irrelevant to the compromised information. Therefore, attacker cannot make any other fake tag

except for the compromised tags.

Eavesdropping Resistance

The secret information of a tag is changed after successful authentication. Moreover, the

transmitted values are always hashed, XOR-ed, or concatenates with a different random value

every time. Therefore, the messages are indistinguishable from other random values and

40

meaningless for the adversary. Hence, the probability of breaking secret information is very low

and it is difficult for the adversary to extract any useful infonnation.

Tracking Protection

Tracking problem can occur when responses of a tag are constant. The proposed scheme resolves

this problem by changing the tag's secret information, which is used as identification data,

whenever the authentication is successful.

Denial of Service Attack Resistance

If the server updates secret information in the same way as tags, the protocol is under the denial

of service attack. Suppose the server keeps only the current secret information per tag. Then, the

attack is possible as following. An attacker generates a jamming signal at .step 3 so that the tag

cannot receive the message from the reader and does not update its secret information while the

server updates the tag's secret information. After this attack, the secret information will be

inconsistent between the reader and the tag. Therefore, the later protocols will fail due to lack of

synchronization. To resolve this problem, the server also needs to store the previous secret

information for each tag. If the server fails in searching for a Hash(IDk), the server can search out

through the previous values. Since only one more hash value for each tag is stored in the server,

it can effectively prevent the denial of service attack.

4.6 Comparison

Table 4.2 represents the comparison of some important operational and security properties

among the proposed RFID system and some existing systems [15,29,34,45]. From the analysis in

section 4.3 and 4.4, it can be concluded that the proposed protocol has a considerably high

operational properties and safety capabilities to withstand various attacks on an RFID system.

41

Table 4.2: Comparison of Operational and SecurityFeatures
...

Schemes ..

Properties
Weis[29] Ohkubo[15] Lee(34] Henrici[46] Proposed

... System
•.

Scalability Scalable Un-Scalable Scalable Scalable Scalable
...

'.

Flexibility Un-Flexible Un-Flexible Un-Flexible Un-Flexible Flexible

·. Eavesdropping
Vulnerable Strong Strong Strong Strong

Resistance
..

Cloning &
Forgery Strong Strong Strong Strong Strong

Resistance
Tracking

Vulnerable Strong Strong Vulnerable Strong
Protection

Replay Attack
Vulnerable Vulnerable Strong Vulnerable Strong

Resistance

Forward Secrecy Vulnerable Strong Strong Vulnerable Strong

Denial of Service
Attack Strong Vulnerable Strong Vulnerable Strong

Resistance .

42

. Chapter 5

Implementation and Results

An RFID tag is designed and implemented in this project as a . system on programmable chip

using Quartus II CAD software. The behavior of the RFID tag is developed in an embedded C

program which will be compiled and run on Nios II embedded processor. The RFID reader is

simulated and implemented as a C++ program which is executed on a PC. The communication

between the RFID tag and the reader is simulated and implemented by using RS-232 serial

communication. The following sections provide the design and implementation process and the

results in detail.

5.1 Software and Tools

This thesis project explores using the Altera's FPGA and embedded Nios II embedded processor

integrated in Altera Development and Education (DE2) board. All the tools and programs that

are used for completing the project are described here briefly.

DE2 Development and Education Board

The Altera DE2 board, as shown in Figure 5.1, has many features that allow the user to

implement a wide range of digital circuits, from simple circuits to various complex multimedia

applications. The DE2 board features a state-of-the-art Cyclone II FPGA. All important

components on the board are connected to the I/0 pins of this chip, allowing the user to control

all aspects of the board's operation. The DE2 board includes a sufficient number of switches,

LEDs, and 7 -segment displays, SRAM, SDRAM, and flash memory chips, as well as a 16 x 2

43

character LCD display. For experiments like this project requiring a processor and l/0 interfaces,

it is possible to instantiate Altera's Nios II processor and use interface standards such as RS-232

and JTAG UART.

Figure 5.1: Block diagram of the DE2 board

Quartus II

Quartus II is the main CAD software to be used for building a system on chip. It has many tools

to prepare VHDL or Verilog structures, compile and download them to the FPGA board. Quartus

II is used to build HDL codes while it is also possible to use the SOPC Builder tool that

specifies the Nios II processor core, memory and other peripherals. The assignment of the pins

can be done with the Assignment Editor, and downloading the compiled HDL files is done with

Programmer tool. JTAG programming is used so that the configuration bit stream is

downloaded directly to the FPGA.

SOPC Builder

SOPC Builder tool generates the Nios II processor system and adds the desire peripherals. The

Nios II processors implement instruction set based on a 32-bit RISC architecture. It has an

intuitive user interface that allows developer to select and parameterize components, select

44

connections between components, and generate a complete system. A majo~ challenge facing

embedded developers is selecting a processor that best suits their applications without

overspending for performance or sacrificing features. N ios II processors, the ideal embedded

solution, allow designers to:

• Choose the exact set of CPUs, peripherals, and interfaces needed for the application.

• Remotely upgrade in the field to stay competitive and address changing requirements.

• Increase performance without changing the board design and by accelerating only the

required functions.

• Eliminate the risk of processor and application specific standard product obsolescence.

• Lower overall cost, complexity, and power consumption by combining many functions onto

one chip.

With the perfect fit of CPUs, peripherals, memory interfaces, and custom hardware

accelerators, Nios II processors offer designers tremendous flexibility, where and when they

need it, to meet the unique demands of every new design cycle. Using SOPC Builder, it is

possible to choose in which language (Verilog or VHDL) is the code generated. The JTAG

UART provides a way to communicate with the processor through the USB-Blaster. Many other

components as timers, input/output ports, can be added and personal components and interfaces

can be created. SOPC Builder connects multiple components together to create a top-level HDL

file called the system module. SOPC Builder als<? generates A val on Switch Fabric

automatically that contains logic to manage the connectivity of all the components of the system.

Niosii IDE

Nios II integrated development environment (IDE) provides a graphical user interface {GUI) to

facilitate software development for Altera's Nios II processors. It compiles C language programs

45

and downloads them into the program memory ofNios II CPU. It is needed to select_ the SOPC

system used, the memory, timer and many different options of compiling, debugging.and running

the C program. JTAG UART is used to download the object code file to the Nios II program

memory.

The Hardware Abstraction Layer (HAL) system library provides a hosted C runtime

environment based on the ANSI C standard· libraries. The HAL provides generic I/0 devices,

allowing you to write programs that access hardware using the C standard library routines. The

HAL minimizes or eliminates the need to access hardware registers directly to control and

communicate with peripherals. The Nios II IDE contains a robust software debugger based on

the GNU debugger. The Nios II IDE allows you to run or debug the application software either

on a target board or the Nios II instruction set simulator. Figure 5.2 illustrates the entire

development flow of a system on programmable chip integrating Nios II processor.

FPGA Configuration

Targets

System
Test Bench

RTL Simuhation

lnstwdion Set
Simulotcw

Target Hardware

Figure 5.2: Nios II Embedded Processor Development Flow

46

5.2 RFID System Experimental Setup

The RFID tag system presented in this thesis is illustrated in Figure 5.3. The RFID tag consists

of a Nios Il/e embedded microprocessor core, 20K on-chip memory and 8M bytes of SDRAM

memory. To program the embedded processor, JTAG interface has been added. In order to

minimize the power consumption of the tag, the power-aware smart buffer can be added to the

tag to manage the activation of the controller.

---------;

Figure 5.3: The Proposed RFID Tag

Nios II/e processor is the economic type of Nios II CPU which contains about 700 logic

elements and works at 50MHz. The Nios II/e core has higher performance but is in the same cost

class as a typical 8051 architecture, achieving over 30 DMIPS at 200 MHz of clock. This

processor is optimal for cost-sensitive applications, such as those found in the automotive,

industrial, and consumer markets. For validation of the proposed RFID system, the reader is

47

simulated on PC and communication between the tag and reader is done wired through RS-232

serial port. The complete description of the tag implementation is presented later in this report.

Using Quartus II, a new project is created for the RFID tag named 'RFID -'-Tag.qpf. The

SOPC Builder tool is used to implement the design with Nios II processor core. For this project,

the result of generation is a block symbol named 'Nios _System' which is used to integrate the

system in the Quartus II project and a file named 'Nios_System.ptf. TheNios II. system in this

project, as shown in Figure 5.4, contains the following components:

• 50MHz RISC 32-bit Nios II/e processor core

• 20 Kbytes on-chip memory with 32 bits data width

• 8 Mbytes SDRAM memory controller with 16 bits data width

• UART RS-232 Serial Port

• JTAGUART

Nios II/e is the simplest version of processor with lower gate count . (CLB). For proper

operation of the SDRAM, it is necessary that its clock signal leads the Nios II system clock by 3

nanoseconds. This would insure that Nios II and SDRAM are properly connected. This can be

accomplished by using a phase-locked loop (PLL) circuit. There exists a Quartus II

Megafunction, called AL TPLL, which has been used to generate · the desired circuit for this

project. JTAG UART is added to provide a convenient way to communicate data/code between

the Nios II system and the host computer. RS-232 UART is added for serial communication

between the RFID tag system and the reader. Serial communication is ·considered with the baud

rate of 19200 bit/second, 8 bits data, 1 stop bit, and no parity. Figure 5.5 illustrates the

'Nios _System' block symbol which is generated by the SOPC Builder system.

48

: : ···· :· t«<s I Processc:t
• :tl Bridges and Adapters
j [~ ·irterface Prctocols

!±' ASI

lt Ethernet

tt' li!j~Speed
iti PCI
[~ Serial

Al/tlkn-ST Jj ··••

A'ltlkn-STS

. ·• JTAG UART j il
· ... "' SPI(3Wre~-:

~ UART(RS-2

ffl Legacy Components
8 Memories and Memory C

ilslru:tion _master
data_master

: Jag_debug_m:Ue
i 8 jtag_uart_1

! avalonjag_sl&ve
i 8 onehip_memory_l
· s1

God<Se<iling;

SOllee

!External

Description

Nos I Proces~
~valon hlelrory Mapped Master

~
' valon Memory Mapped Master

valon Memory Mapped Slave

TAGUART

!Avalon Memory Mapped Slave

~ hlenay (RAM IX ROM)
!Avalon Mem'y Mapped Slave

~ClrtroNer
jAvalon Memory Mapped Slave
juART (RS-232 Serial Pct1)
!Avalon Memory Mapped Slave

..

!elk

' i
!
!ell
i

! MHZ

!St.o .

no ol no
1x11111111 loxOlOlOfff

I
Oxt1111121 j0x010110Z7

l
lxl1111111 loxOlOOc:fft

I
lxllllllll jOxOOfttttt

I

Figure 5.4: SOPC Builder System Contents of RFID Tag

r x d_to_the_uart

zs_addr_from_the_sdram_0(11 . .OJ
·zs_ba_from_Jhe:...sdram_0[1 .. 0]

zs_cas _n_from_the _sdram_O
z s_cfce_from_the_.sdrenn_O

zs_cs_n_trom_the_ sdram_ O
zs_dq_to _and_from_the _s dram_0[1 5 .. 0]

zs_dqm_from_the_sdram_0[1 .. 0)
zs:_:ras_n_from_the_sdram_O
z s _ vVF.> __ n_from_the_sdrF.<tn_O

Figure 5.5: Block Symbol of Nios II System for RFID Tag

49

PROP.':STY OF
RYERSON UNIVERSJJY LJBRAB¥

The instantiation of the generated Nios II module into a Quartus II project and in the top-

level VHDL file is the next · step of the design. This is done by connecting all the ·inputs and

outputs ports, as well as the clock and reset inputs, to the appropriate pins ·on the Cyclone II

device. The VHDL entity generated by the SOPC Builder is in the file 'Nios _System. vhd' in the

directory of the project. The VHDL code is quite large. Figure 5.6 depicts the portion of the code

that defines the port signals for the entity 'Nios_System'.

~ Nios_Sf'leuhd I··
3051
3052 Ill entity Nio:s _System is
3053 :: port (
3054 -- 1! global signals :
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070

signal elk : IN STD_LOGIC;
signal re:set _ n : IN STD _LOGIC;

-- the sdre.m 0
signal zs_addr_from_the_sdram_O : OUT STD_LOGIC_VECTOR (11 DO'W't>JIO 0);
signal z:s_ba_from_the_:sdram_O : OUT STii_LOGIC_VECTOP (1 DOU.lNTO 0);
signal zs_cas_n_frOlll_the_:sdram_O : OUT STD_LOGIC;
signal z:s_cl!:e_from_the_:sdram_O : OUT STD_LOGIC;
signal zs_cs_n_from_the_sdram_O : OFT STr•_LC•GIC ;
s1gnal zs_dq_to_and_from_the_sdram_O : INOUT STL!_LOGIC_VECTOF. (15 DO'W'NTO 0);
signal zs_dqm_from_the_sdram_O : OUT STD_LOGIC_VECTOR (1 DO.w'NTO 0);
signal z:s_ras_n_frOlll_the_sdram_O : OUT STD_LOGIC;
signal zs_ve_n_from_the_sdram_O : OUT STD_LOGIC;

-- t he uart

3071 signal txd_frOlll_the_uart : OUT STD_LOGIC
3072) ;
3073 end entity Nios _System;

Figure 5.6: A Part of the Generated VHDL Entity

: ____ ;

'RFID_Tag.vhd' is a top-level VHDL entity that instantiates the Nios II system and is

presented in Figure 5.7. The input and output ports of the entity use the pin names that ~re

specified in the DE2 user manual and allows making the· pin assignments by importing them .

from the file called 'DE2_pin_assignments.csv' which is available at Altera's DE2 web pages.

50

-Filename: RFID_Tag.vhd
- Description: A Nios II system for the RFID tag on DE2 board
- Department: Computer and Electrical Engineering of Ryerson University
- Author: Leili Borghei
- Date: November 2008

LIBRARY ieee;
USE ieee.std _logic _1164.all;
USE ieee.std _logic_ arith.all;
USE ieee.std _logic_ unsigned.all;

ENTITY RFID _Tag IS
PORT(CLOCK_50: IN STD_LOGIC;

DRAM CLK, DRAM CKE : OUT STD LOGIC;
DRAM=ADDR: OUT-STD _LOGIC_ VECTOR(ll DOWNTO 0);
DRAM BA 1, DRAM BA 0 : BUFFER STD LOGIC;
DRAM=cs_=N, DRA~CAS_N, DRAM_RAS=N, DRAM_ WE_N: OUT STD_LOGIC;
DRAM_DQ: INOUT STD_LOGIC_ VECTOR(15 DOWNTO 0);
DRAM_UDQM, DRAM_LDQM: BUFFER STD_LOGIC;
UART_RXD: IN STD_LOGIC;
UART_TXD: OUT STD_LOGIC);

END RFID _Tag ;

ARCHITECTURE Structure OF RFID_Tag IS

COMPONENT Nios_System
PORT (elk: IN STD_LOGIC;

reset_n: IN STD_LOGIC;

zs addr from the sdram 0: OUT STD LOGIC VECTOR(ll DOWNTO 0);
zs=ba_f.:-om_the_sdram_o-;-BUFFER STD_LOGiC_ VECTOR(l DOWNTO 0);
zs_cas_n_from_the_sdram_O: OUT STD_LOGIC;
zs_cke_from_the_sdram_O: OUT STD_LOGIC;
zs cs n from the sdram 0: OUT STD LOGIC;
zs=d«l_t~_and)ro;;__the_;-dram_O: INOUT STD_LOGIC_ VECTOR(l5 DOWNTO 0);
zs_dqm_from_the_sdram_O: BUFFER STD_LOGIC_ VECTOR(l DOWNTO 0);
zs_ras_n_from_the_sdram_O: OUT STD_LOGIC; ·
zs_we_n_from_the_sdram_O: OUT STD_LOGIC;

rxd_to_the_uart: IN STD_LOGIC;
txd_from_the_uart: OUT STD_LOGIC);

END COMPONENT;

COMPONENT sdram_pll
PORT (inclkO: IN STD_LOGIC;

cO: OUT STD_LOGIC);
END COMPONENT;

SIGNAL BA: STD_LOGIC_ VECTOR(l DOWNTO 0);
SIGNAL DQM: STD_LOGIC_ VECTOR(1 DOWNTO 0);

BEGIN
DRAM_BA_1 <= BA(1);
DRAM_BA_O <= BA(O);

DRAM_UDQM <= DQM(l);
DRAM_LDQM <= DQM(O);

-Instantiate the Nios II system entity generated by the SOPC Builder.
Niosll: Nios_System PORT MAP (CLOCK_50, '1',

DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE,
DRAM_CS_N, DRAM_DQ, DQM, DRAM_RAS_N, DRAM_ WE_N,

. UART_RXD, UART_TXD);
-Instantiate the entity sdram_pll (inclkO, cO).
neg_3ns: sdram_pll PORT MAP (CLOCK_50, DRAM_CLK);

END Structure;

Figure 5.7: Instantiating the Nios II System

51

5.3 Software Design

As mentioned earlier in this report, Nios II IDE is used to develop and compile the 'RFID _ Tag.c'

program to be executed on Nios II processor. Target hardware of the system is selected as SOPC

Builder system of 'Nios_System.ptf. After building the C/C++ project, the program is ready to

be run on the target hardware by JT AG and USB devices. 'Reader.c++' is the program for

simulating the RFID reader in the proposed system. This program has been developed using

Microsoft Visual Studio 2005. Complete source codes of 'RFID_Tag.c' and 'Reader.c++'

programs are attached to this report in Appendix A.

For the proposed authentication algorithm three general purpose hashing algorithms are

being used. The number of the deployed hash functions is flexible and it can be extended to even

more hash functions, which depends to the size of the tag memory. The complexity of the hash

functions also depends on the application and more complex functions can be used for even more

security. Upon starting the authentication process, according to the hash function identifier which

is assigned to each tag, one of these hash functions is selected. Since this identifier is randomly

changed after a successful authentication, next time another hash function will be used to encrypt

the tag's secret information.

The sample hashing algorithms used in the proposed system, as shown in Figure 5.8, are

additive, multiplicative, and rotative hashing functions (47]. These functions are not

computationally intensive as the objective of this project is to design a secure and robust

authentication protocol between the RFID tag and reader. Moreover, deploying a robust

authentication protocol is more important than using a complex and computationally intensive

cryptography functions that increases the authentication time. As mentioned before for data

transaction between the tag and reader, RS-232 serial communication is used in this project.

52

Opening the serial port, setting serial port properties and timeouts, reading and writing data,

cleaning up, and managing serial port communications for PC serial port is done by using

Windows Application Programming Interfaces f 48].

ll=================================m===2 •====================================•=====•==
I* Hash(char h, char* str, unsigned int len) includes 3 hash functions to generate

the encrypted form of Tag ID. Any of the 3 hash functions may be selected according
to the assigned hash ID of the Tag which is randomly change *I

II===••====·==
unsigned int Hash(char h, char* str, unsigned int len)
{

unsigned int hash = 0;
unsigned int i = 0;

II RSHash parameters
unsigned int b = 378551;
unsigned int a = 63689;

II BKDRHash parameters
unsigned int seed = 131;

switch (h){
II ------------ RSHash function -------------
11 -------Robert Sedgwicks Algorithm
case 1 1 1

:

for(i = 0; i < len; str++, i++)
{

hash = hash * a + (*str);
a = a * b;

break;

II ----------------------- -------------------
11 -------- - --- JSHash function -------------
11 --------- Justin Sobel Algorithm --------
case 1 2 1

:

hash = 1315423911;
for(i = 0; i < len;
{

str++, i++)

hash A= ((hash<< 5) + (*str) + (hash>> 2));
}
break;

II --
11 ----------- BKDRHash function ---------~- -
11 Brian Kernighan & Dennis Ritchie Algorithm
case 1 3 1

:

for(i = 0; i < len; str++, i++)
{

hash= (hash* seed) + (*str);

break;

II --- -

return hash;

Figure 5.8: General Purpose Hashing Algorithms

53

5.4 Results

The RFID tag is implemented on the Altera's Cyclone II FPGA and other components of DE2

board. The flow summary ·of compilation is shown in Figure 5.9. As shown, the total logic

elements required for this implementation is 2,349 and the total memory bits are 174,080.

In .order to evaluate the authentication protocol, secret information (ID) of the tag is assigned

within the tag C program which runs on Nios II processor over the DE2 board .. A data file is

prepared for the reader as its database (ID _file.dat), which includes current and previous secret

information and the appropriated hashed values for ·each tag. The RFID tag system and the

authentication protocol are evaluated in various situations and the results are shown in the

following snapshots of the RFID reader screen.

Col!lpilation Report - Flow s_, !
- d C~ion Report

a~ le(Jal Notice

am Flow St.rnmary
•• Flow Setthgs a. Flow Non-oefault Glob
&til Flow Elapsed Time : ... sa Flow os SlrriiMry

a~ FlowLoo
l~J 1fi(J Analysis & Synthesis

''t:: e GJ Fitter
[+.) •D Assembler
l~J a CJ Timinc;J Analyzer

flow Summary
n ~ ~ - ~ n n -

Flow St.Jtus
Quartus II Version
Revision Name
Top-level Ent«y Name
Fsnily

Device
Tiling Models

Mel timing requirements

T otallogic elements

Total combinational functions
Dedicllled logic reOslers

T otalregisters

Total pins
Total virtual pins

Successful· Thu Jan 22·23:15:00 2009
8.1 Build 16310/28/2008 SJ Full Version
AFID_Tag
AFID_Tag
Cyclone II
EP2C35F672CG
Final
Yes
2,349/33,21617 r.)
2.204133.216 I 7 r.J
1.182/33.21614%)
1234
45/475 I 9 :(l
0

Total me!llOI.Y bits 174.080 /483,840 I 36 X l
Embedded Multiplier 9-bit elements 0/70 I 0% l
TotaiPLLs 1/4125'"1

Figure 5.9: Compilation Report

Figure 5.10 shows the reader activities for a successful authentication process. As shown in

Figure 5.10, after sending the query, the reader receives two values: hashed value of the tag

identifier (HashHnum(IDk)=3157342001), and its assigned hash function identifier (Hnum=l).

54

Figure 5.10: A Successful Authentication ·

The reader looks up the tag identifier in its database using the two received values. It finds

the tag identifier (JDk= 0123456789). The RFID reader has authenticated the tag at this step.

55

Then, the reader calculates the new tag identifier by generating a random number (Rn) and a

random hash function identifier (RHnum=2):

new IDk=HashRHnum(IDktf) R,J=2208174486

The reader, then, updates its database with the new information and sends the value of Rn,

RHnum, and HashRHnum(IDkiiRn) to the tag. The RFID tag uses these three values to authenticate

the reader. After successful authentication, the tag calculates its new identifier and updates the

old one. As shown in Figure 5.10, the value of the Hnum has been changed randomly, ami for the

next authentication between the RFID reader and tag, according to the new value of Hnum,

another hash function will be used to encrypt the secret information.

By using different hash functions through different authentication processes, the proposed

system makes a crucial improvement to the security and privacy issues on an RFID system.

Comparing with the SRAC protocol [34], the proposed system has doubled the levels of security

and .privacy of an RFID system. An eavesdropper needs more resources to reveal both the tag

identifier and the hash function identifier. On the other hand, it will be much more complicated

for the eavesdropper or attacker to find out and reveal all the hash functions deployed in the

proposed protocol comparing with one hash function of the SRAC protocol. As a result, the

RFID system will be considerably more secure against the usual threats including forward

secrecy, cloning and forgery, replay attack, eavesdropping, and tracking.

Figure 5.11 demonstrates another successful authentication processes through the reader

screen. As shown, th~ values of tag identifier (!Dk) and hash function identifier (Hnum) have been

changed after authentication. It is also shown that the old values will be stored in the reader's

database to prevent the RFID system from denial of service attack.

56

Figure 5.11: Randomly Updated Secret Information after Authentication

During the 3 rd step of the proposed authentication protocol, when the RFID reader sends

updating information to the tag, an attacker may generate a jamming signal causing a

desynchronization between the tag and reader. In the proposed system, the reader keeps current

57

and pervious secret information of each tag to prevent denial of service attack. This is ·

demonstrated and shown in Figure 5.12.

Figure 5.12: Resistant Against Denial of Service Attack

According to the data shown in Figure 5.12, after sending the query, the reader receives two

values: hashed value of the tag identifier (HashHnum(IDk)=3157342001); and its assigned hash

function identifier (Hnum= 1). The reader looks up the tag identifier in its database using the two

58

received values. It does not find the tag identifier in its current list of information, instead, it

finds the received values matching with a previous ID (previous !Dk= 0123456789). The RFID

reader concludes that a denial of service attack has been occurred during the last authentication

process of the tag. The reader, then, calculates the new tag identifier by generating a random

number (R,J and a random hash function identifier (RHnum=3):

new !Dk=HashRHnum(IDkffiR,J=35994791

The reader updates its database with the new information and sends the value of Rn, RHnum,

and HashRHnum(IDkiiR,J to the tag. The previous information of the tag will be kept as before in

the reader's database.

59

Chapter 6

Conclusion

6.1 Concluding Remarks

The objective of this project is to present an FPGA-based RFID tag with a secure authentication

protocol between the tag and reader. Privacy, security, scalability and flexibility are the main

contributions of this project to the RFID systems while minimizing the overall design time and

the system costs. This project report presented the design and implementation of an extensible

flexible RFID tag that deploys a robust authentication protocol based on . randomized access

control. The system is designed so that to be highly resistant against known threats to RFID

systems including forward secrecy, cloning and forgery, replay attack, eavesdropping, tracking,

and denial of service attack. The RFID tag was implemented as a system on programmable chip

using Nios II embedded processor.

The report started with an introduction to RFID system structure, motivation and objective.

Then essentials of an RFID system are presented including tag and reader classifications, privacy

and security issues, and RFID system performance. A survey on recently proposed and existing

methods for solving RFID privacy and security issues is provided. The design and

implementation steps of the proposed FPGA-based RFID tag with secure randomized access

authentication protocol is presented in detail followed by the comparison of operational and

security features of the proposed scheme with some existing technologies. Finally, the

implementation details and verification results are provided.

60

6.2 Future Work

C-to-Hardware (C2H) acceleration

In order to increase security of the proposed RFID system, complex one-way hashing functions

or standard encryption functions can be deployed within the authentication protocol; while the

award winning Nios II embedded processor C-to-Hardware (C2H) acceleration compiler is being

added to boost the performance and lower power consumption. This tool, provided by Altera,

boosts the performance of time-critical ANSI C functions of the Nios II system by converting

them into hardware accelerators in the FPGA.

The rule of thumb in system design has been that adding hardware increases power demands.

The careful use of hardware accelerators, however, inverts the rule: ad9ing hardware can reduce

power. By analyzing algorithms and implementing appropriate accelerators in the programmable

logic, developers can increase their design's performance while reducing power consumption in

an embedded computing system.

Reconfigurable RFID tag

RFID tag development requires lengthy design, fabrication, and testing cycles which can

take many months with intellectual property (IP) reuse to many years if developing new IP. A

programmable customizable RFID tag can handle variations in standards and requirements as

they are developed with a significantly shorter time to market. Such a tag could be mass

produced and tailored to a particular RFID application after fabrication. With the use of

automation to program the device, the design time could be reduced. Developing a

reconfigurable tag can be the second suggested work for continuing this project.

61

Appendix A

RFID_Tag.vhd

1 --Filename: RFID_Tag.vhd
2 --Description: A Nios II system for the RFID tag on DE2 board
3 -- Department: Computer and Electrical Engineering of Ryerson University
4 -- Author: Leili Borghei
5 --Date: November 2008
6
7 LIBRARY ieee;
8 USE ieee.std_logic_1164.all;
9 USE ieee.std_logic_arith.all;
1 0 USE ieee.std _logic_ unsigned.all;
11
12 ENTITY RFID_Tag IS
13 PORT (CLOCK_50: IN STD_LOGIC;
14 DRAM_CLK, DRAM_CKE: OUT STD_LOGIC;
15 DRAM_ADDR: OUT STD_LOGIC_ VECTOR(ll DOWNTO 0);
16 DRAM_BA_l, DRAM_BA_O: BUFFER STD_LOGIC;
17 DRAM_ CS _N, DRAM_ CAS_N, DRAM _RAS _N, DRAM_ WE_N :·OUT STD _LOGIC;
18 DRAM_DQ: INOUT STD_LOGIC_ VECTOR(15 DOWNTO 0);
19 DRAM_UDQM, DRAM_LDQM: BUFFER STD_LOGIC;
20 UART_RXD: IN STD_LOGIC;
21 UART_TXD: OUT STD_LOGIC);
22 END RFID _Tag ;
23
24 ARCHITECTURE Structure OF RFID _Tag IS
25
26 COMPONENT Nios_System
27 PORT (elk: IN STD_LOGIC;
28 reset_n: IN STD_LOGIC;
29
30
31
32
33
34
35
36
37
38
39

zs_addr_from_the_sdram_O: OUT STD_LOGIC_ VECTOR(ll DOWNTO 0);
zs_ba_from_the_sdram_O: BUFFER STD_LOGIC_ VECTOR(! DOWNTO 0);
zs_cas_n_from_the_sdram_O: OUT STD _LOGIC;
zs_cke_from_the_sdram_O: OUT STD_LOGIC;
zs_cs_n_from_the_sdram_O: OUT STD_LOGIC;
zs_dq_to_and_from_the_sdram_O: INOUT STD_LOGIC_ VECTOR(15 DOWNTO 0);
zs_dqm_from_the_sdram_O: BUFFER STD_LOGIC_ VECTOR(! DOWNTO 0);
zs_ras_n_from_the_sdram_O: OUT STD _LOGIC;
zs_we_n_from_the_sdram_O: OUT STD_LOGIC;

40 rx.d_to_the_uart: IN STD_LOGIC;
41 txd_from_the_uart: OUT STD_LOGIC);
42 END COMPONENT;
43
44 COMPONENT sdram_pll
45 PORT (inclkO: IN STD_LOGIC;
46 cO: OUT STD_LOGIC);
47 END COMPONENT;
48
49 SIGNAL BA: STD_LOGIC_ VECTOR(! DOWNTO 0);

62

50 SIGNAL DQM: STD_LOGIC_ VECTOR(! DOWNTO 0);
51
52 BEGIN
53 --BA <= (DRAM_BA_l & DRAM_BA_O);
54 --DQM <= (DRAM_UDQM & DRAM_LDQM);
55 DRAM_BA_l <= BA(l);
56 DRAM_BA_O <= BA(O);
57
58
59
60
61
62
63
64
65
66

DRAM_UDQM <= DQM(l);
DRAM_LDQM <= DQM(O);

--Instantiate the Nios II system entity generated by the SOPC Builder.
Niosll: Nios_System PORT MAP (CLOCK_50, '1',

DRAM_ADDR, BA, DRAM_CAS_N, DRAM_CKE,
DRAM_CS_N, DRAM_DQ, DQM, DRAM_RAS_N, DRAM_ WE_N,

UART_RXD, UART_TXD);

67 --Instantiate the entity sdram_pll (inclkO, cO).
68 neg_3ns: sdram_pll PORT MAP (CLOCK_50, DRAM_CLK);
69 END Structure;

63

RFID_Tag.c

1 I* Filename: RFID _ Tag.c
2 *Description: RFID Tag inC running on NIOS-II soft processor
3 *Department: Computer and Electrical Engineering of Ryerson University
4 * Author: Leili Borghei
5 *Date: November 2008
6 ***I
7
8 #include <stdio.h>
9 #include <string.h>
1 0 #include <stdlib.h>
11
12

'II====
13 I*
14 Hash(char h, char* str, unsigned int len) includes 3 hash functions to generate
15 the encrypted form of Tag ID. Any of the 3 hash functions may be selected according
16 to the assigned hash ID of the Tag which is randomly change
17 *I
18
II
19 unsigned int Hash(char h, char* str, unsigned int len)
20 {
21 unsigned int hash = 0;
22 unsigned int i = 0;
23
24 II RSHash parameters
25 unsigned int b = 378551;
26 unsigned int a = 63689;
27
28 II BKDRHash parameters
29 unsigned int seed= 131;
30
31 switch (h) {
32 II------------ RSHash function -------------
33 II------- Robert Sedgwicks Algorithm-------
34
35
36
37
38
39
40
41
42

case '1':
for(i = 0; i <len; str++, i++)
{

hash = hash * a+ (*str);
a= a* b;

break;
I I --

II ------------ JSHash function -------------
11 ---------Justin Sobel Algorithm---------
case '2':

hash= 1315423911;
for(i = 0; i <len; str++, i++)
{

43
44
45
46
47
48
49
50
51

hash/\= ((hash<< 5) + (*str) +(hash>> 2));

break;

64

52 I I _________ .:.--------------------------------
53
54 II----------- BKDRHash function------------
55 II Brian Kernighan & Dennis Ritchie Algorithm
56 case '3':
57 for(i = 0; i <len; str++, i++)
58 {
59 hash= (hash* seed)+ (*str);
60 . }

61 break;
62 I I --
63
64 return hash;
65}
66
67
II
68 I*
69 main() function is defined for sending Tag secret information to the Reader,
70 authenticating Reader and updating Tag information, using a secure
71 authentication protocol
72 *I
73
II
74 intmain()
75 {
76 int step;
77 inti;
78
79 int Rn;
81

II Random number for choosing hash function
II (received from the Reader)

82
83
84

char ReciDcatRn[257]; II Hash{IDIIRn) from the Reader
char IDcatRn[257]; II Hash(IDIIRn)

85 char buffer[257];
86
87 char query[257];
88
89 char temp 1 [256+ 1];
90 char temp2[256+ 1];
91
92 char tempiD[257] ;
93 char MetaiD[257];
94
95 II--------------------- This Tag's Progile --------------------------
96
97 char 10[257]= "0123456789\0";
98 char Hnum[257] = "1\0";
99
1 00 I I ---
101
1 02 F.ILE *fs;
103
104 strcpy(query, "HELL0\0");
105
106 printf("Beginning ... \n\n");

65

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
);
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

fs=fopen ("/dev/uart", "rw+"); //open file for reading and writing

step= 2; II Waiting for query from the Reader

do{
switch (step){

/* Step 2: Tag receives query from the Reader,
and sends MetaiD=Hash(ID) to the Reader*/

case 2:
if (fs) {

do{
printf("Waiting for query ... \n");
fscanf(fs,"%s",buffer);

}. while (strcmp (buffer,query) != 0);
printf(" >>>Query received. \n\n");

printf ("Sending Hash(ID) and Hnum to the Reader ... : %u, %s \n\n", Hash(Hnum[O],ID,strlen(ID)),Hnum

if(fs){
sprintf(MetaiD, "%u" ,Hash(Hnum[O],ID,strlen(ID)));
fwrite(MetaiD, 256, 1, fs); //serial port buffer length is 256

if(fs){
fwrite(Hnum, 256, 1, fs); //serial port buffer length is 256

step= 4;
break;

II waiting for update information from the Reader

/*Step 4: Tag receives update information from the Reader,
and updates ID ifHash(IDIIRn) is equal to the received information*/

case 4:
if(fs){

printf("Waiting for update information from the Reader ... \n");
//do{
fscanf(fs, "%s" ,buffer);
//}while (strcmp (buffer,NULL) = 0);

if(!strcmp(buffer,"Failed\0"))
{

printf(" >>>Authentication F AILED!\n");
printf(" ======\n\n");
step=2;
break;

else
{

Rn = atoi(buffer);
printf(" >>>Received Rn: %d \n", Rn);

//do{
fscanf(fs,"%s",buffer);
//} while (strcmp (buffer,NULL) = 0);

66

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203 }

stmcpy(Rh,buffer, 1);
Rh[1]='\0';
printf(" >>>Received RHnum >>> %s \n", Rh);

lido{
fscanf(fs,"%s",buffer);
//}while (strcmp (buffer,NULL) = 0);
strcpy(ReciDcatRn, buffer);
printf(" >>>Received Hash(IDIIRn) >>> %s \n\n", ReciDcatRn);

strcpy(templ,ID); II tempi: ID
sprintf(temp2,"%d",Rn); II temp2: Rn
strcat(temp 1 ,temp2); II temp 1: IDIIRn
sprintf(IDcatRn, "%u" ,Hash(Rh[O],temp 1 ,strlen(temp 1)));

printf("Verifying received information ... \n");
//printf("%s\n",ReciDcatRn);
I /printf("%s\n" ,IDcat~);
if(!strcmp(ReciDcatRn,IDcatRn)) //checks whether Hash(IDIIRn) is correct
{

i=O;
for(i=O; i<strlen(ID); i++)
{

tempiD[i]= ID[i]"Rn;
}
tempiD[i]='\0';
sprintf(ID,"%u",Hash(Rh[O],tempiD,strlen(tempiD)));
strcpy(Hnum,Rh);
printf{" >>>Verified>>> ID updated>>> New ID =Hash (ID xor Rn): %s \n",ID);
printf(" >>> Hnum >>> %s \n",Hnum);
printf(" ---------------------------------------\n \n ");

else
{

printf(" >>>NOT verified! >>> ID is not updated!\n");
printf(" --\n \n ");

step=2;

break;

204 }while(!);
205
206 fclose(fs);
207
208 return 0;
209}
210
211
212

67

Reader.cpp

1 I* Filename: Reader.cpp
2 *Description: RFID Reader in C++
3 *Department: Computer and Electrical Engineering of Ryerson University
4 * Author: Leili Borghei
5 * Date: November 2008
6 ***I
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <stdafx.h>
11 #include <iostream>
12 #include <string.h>
13 #include <windows.h>
14 #include <time.h>
15
16 using namespace std;
17
18 HANDLE hSerial;
19
20
11-- ---
21 I*
22 SeriaiComm () is used to set up serial communication through serial port on PC.
23 Parameters are defined as following:
24 Baud Rate = 19200
25 Byte Size = 8
26 Stop bits = 1
27 Parity =None
28 *I
29
II
30 void SerialComm ()
31 {
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

hSerial = CreateFile("COM 1 ",
GENERIC_READ I GENERIC_ WRITE,

0,
0,
OPEN_EXISTING,
FILE_A TTRIBUTE_NORMAL,
0);

if(hSerial=INV ALID _HANDLE_ VALUE) {
printf("Error: Serial port does not exist...\n");
}

DCB dcbSerialParams = { 0};

dcbSerialParams.DCBlength=sizeof(dcbSerialParams);

if (!GetCommState(hSerial, &dcbSerialParams)) {
printf("Error in getting serial port state ... \n");

68

52 dcbSerialParams.BaudRate =CBR _19200;
53 dcbSerialParams.ByteSize =8;
54 dcbSerialParams.StopBits =ONESTOPBIT;
55 dcbSerialParams.Parity =NOPARITY;
56 dcbSerialParams.fRtsControl =RTS _CONTROL_ DISABLE;
57 dcbSerialParams.tDtrControl =DTR _CONTROL_ DISABLE;
58
59 if(!SetCommState(hSerial, &dcbSerialParams)){
60 printf("Error in setting serial port state ... \n");
61
62
63 COMMTIMEOUTS timeouts={O};
64 timeouts.Readlnterva1Timeout=50;
65 timeouts.ReadTotalTimeoutConstant=50;
66 timeouts.ReadTotalTimeoutMultiplier= 1 0;
67 timeouts. WriteTotalTimeoutConstant=50;
68 timeouts. WriteTotalTimeoutMultiplier= 1 0;
69
70 if(!SetCommTimeouts(hSerial, &timeouts)){
71 printf("Error in setting timeout... \n ");
72
73}
74
75
II
761*
77 Hash(char h, char* str, unsigned int len) includes 3 hash functions to generate
78 the encrypted form of Tag ID. Any of the 3 hash functions may be selected according
79 to the assigned hash ID of the Tag which is randomly change
80 *I
81
fi'===
82 unsigned int Hash(char h, char* str, unsigned int len)
83 {
84 unsigned int hash = 0;
85 unsigned int i = 0;
86
87 II RSHash parameters
88 unsigned int b = 378551;
89 unsigned int a = 63689;
90
91 II BKDRHash parameters
92 unsigned int seed = 131;
93
94 switch (h) {
95 II------------ RSHash function-------------
96 II ------- Robert Sedgwicks Algorithm -------
97
98
99
100
101
102
103
104
105

case '1 ':
for(i = 0; i <len; str++, i++)
{

}

hash= hash* a+ (*str);
a= a* b;

break;
II --

69

106
107
108
109
110
Ill
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128}
129
130
II
131 /*
132
133
134 */
135
II

II ------------ JSHash function ------------
//---------Justin Sobel Algorithm--------
case '2':

hash= 1315423911;
for(i = 0; i <len; str++, i++)
{

hash/\= ((hash<< 5) + (*str) +(hash>> 2));
}
break;

I I --

II----------- BKDRHash function-----------
//Brian Kernighan & Dennis Ritchie Algorithm
case '3':

for(i = 0; i <len; str++, i++)
{

hash= (hash* seed)+ (*str);

break;
I I --

return hash;

main () function is defined for reading, authenticating and updating Tag
secret information using a secure authentication protocol

136 int main() {
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

DWORD dwBytesWrite= 0;
DWORD dwBytesRead = 0;

char buffer[256+ 1]= { 0};
char temp Buffer 1 [256+ 1];
char tempBuffer2[256+ 1];

inti;
int step;
int finished=O;

char rec_MetaiD[257];
char rec_Hnum[257];

bool found_ID;
bool DOS;

intRn;
char Rh[257];
char tempiD[257];

int taglndex;

//Denial OF Service attack

I /Random number
//Random Hash number
I /temporary ID

70

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

char YesNo[5];

class tag {
public:

} ;

FILE *q;
tag tagArray[10];

SerialComm ();
step= 1;

do{
switch (step)
{

char curriD[257];
char CmetaiD[257];
char Hc[257];
char previD[257];
char PmetaiD[257];
char Hp[257];

II Current ID
II Hash of Current Id
II Current Hash function
II Previous ID
II Hash of Previous Id
II Previous Hash function

I* Step 1: Reader sends query to Tag *I
case 1:

printf("Sending query to the Tag ... \n\n");

lstrcpy((LPTSTR)buffer, "HELLO \0");
WriteFile(hSerial,buffer,lstrlen(buffer),&dwBytesWrite,NULL);
lstrcpy((LPTSTR)buffer," \n");
WriteFile(hSerial,buffer,lstrlen(buffer),&dwBytesWrite,NULL);

step=J;
break;

I* Step 3: Reader receives MetaiD=hash(ID) from the Tag,
checks database for valid ID,

case 3:

updates ID, and
sends update information to the Tag*/

II Receive Hash(ID) and Hnum from the Tag
printf("Receiving Hash(ID) and Hnum ... \n\n");

if(!ReadFile(hSerial, buffer, 256, &dwBytesRead, NULL))
{

}
else
{

printf("IICommunication error occurred. 1\n");
finished= 1;
break;

strcpy(rec_MetaiD, buffer);
rec _ MetaiD[dwBytesRead]='\0';
printf(" >>>Received Hash(ID) >>> %s \n", rec_MetalD);

if(!ReadFile(hSerial, buffer, 256, &dwBytesRead, NULL))

71

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

}
else
{

printf("IICommuniation error occurred. 1\n");
finished= 1 ;
break;

stmcpy(rec _ Hnum, buffer, 1);
rec _ Hnum[1]='\0';
printf(" >>>Received Hnum >>> %s \n\n", rec_Hnum);

II Copy database to Tag array
printf("Checking database ... \n\n\n");

231 q=fopen("C:\\Documents and Settings\ \Dear-User\ \My Documents\\ Visual Studio
2005\\Projects\\Reader\\ID _ file.dat", "r");
232
233
\n");
234

printf("
\n\n");

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

printf("\n
\n\n");

261
262
263
264
265

printf("Tag CurrentiD C-Hnum C-Hash(ID) I PreviousiD P-Hnum P-Hash(ID)

for(i=O; i<IO; i++)
{

printft"%2d" ,i);
fscanf(q,"%s",tagArray[i].curriD);
printf("%14s ",tagArray[i].currlD);

fscanf(q,"%s",tagArray[i].Hc);
printf(" %s",tagArray[i].Hc);

I I read ID from database

fscanf(q,"%s",tagArray[i].CmetaiD); II read Metald from database
printf(" %14s ",tagArray[i].CmetaiD);

printf(" ");

fscanf(q,"%s",tagArray[i].previD);
printf("%15s ",tagArray[i].previD);

fscanf(q,"%s",tagArray[i].Hp);
printf(" %s",tagArray[i].Hp);

I I read ID from database

fscanf(q,"%s",tagArray[i].PmetalD); II read Metald from database
printf("% 15s\n" ,tagArray[i].PmetaiD);

fclose(q);

II Check database for valid ID
i=O;
found_ ID=false;
do{

72

266
tagArray[i] .Hc))
267
268
269
270
271 .
272
273
274
275
276
277
278
279
280
281
tagArray[i].Hp))
282
283
tagArray[i].previD);
284
authentication!! !\n\n");
285
286
287
288
289
290
291
292
293 II Updates ID
294
295
296
297
298
299
300
hash function
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

if(!strcmp(rec_MetaiD, tagArray[i].CmetaiD) && !strcmp(rec_Hnum,

i=i+1;

printf(" >>>Found ID in database>>> %s \n\n", tagArray[i].curriD);
taglndex=i;
found_ID=true;

} while (i<lO && !(found_ID));

II ID not found>>> Check database for previous ID in case DOS has happened!
i=O;
DOS=false;
if (!(found_ID))
{

do{
if(!strcmp(rec_MetaiD, tagArray[i].PmetaiD) && !strcmp(rec_Hnum,

i=i+1;

printf(" >>>Found ID in Previous database>>> %s \n",

printf(" >>>DOS has ·happened in last

taglndex=i;
found_ ID=true;
DOS=true;

} while (i<lO && !(found_ID));

if (found_ID) .
{

srand (time(NULL));
Rn =rand()% 100 + 1;

II initialize random seed
II generate random number for XORing with ID

srand (time(NULL)); II initialize random seed
sprintf(Rh, "%d", (rand()% 3 + 1)); II generate random number for choosing

Rh[1)='\0';

printf("Updating information ... \n\n");
switch(DOS)
{

case false:
i=O;
for(i=O; i<lstrlen(tagArray[taglndex].curriD); i++)
{

tempiD[i]= tagArray[taglndex] .curriD[iY'Rn;
}
tempiD[i)='\0';
sprintf(tempiD,"%u",Hash(Rh[O],tempiD,strlen(tempiD)));

II Updates current and previous ID
strcpy(tagArray[taglndex] .prev ID ,tagArray[taglndex] .curriD);

73

317
318
319
320
321
322

strcpy(tagArray[taglndex].curriD,tempiD);

strcpy(tagArray[taglndex]. Hp, tagArray[taglndex]. He);
strcpy(tagArray[taglndex] .Hc,Rh);

strcpy(tagArray[taglndex].PmetaiD,tagArray[taglndex].CmetalD);
323

sprintf(tagArray[taglndex].CmetaiD,"%u",Hash(Rh[O],tempiD,strlen(tempiD)));
324 break; ·
325
326 case true:
327 II Denial of Service attack has happened in last authentication
328 II that Tag could not update its ID
329 i=O;
330 for(i=O; i<lstrlen(tagArray[taglndex].previD); i++)
331 {
332 tempiD[i]= tagArray{taglndex].previD[i)ARn;
333 }
334 tempiD[i]='\0';
335 sprintf(tempiD,"%u",Hash(Rh[O],tempiD,str1en(templD)));
336
337 II Updates only current ID
338 strcpy(tagArray[taglndex].curriD,tempiD);
339
340 strcpy(tagArray[taglndex] .Hc,Rh);
341
342

343
344
345

sprintf(tagArray[taglndex].CmetaiD,"%u",Hash(Rh[O],tempiD,strlen(tempiD)));
break;

346
347
348

printf(" >>>New ID =Hash (ID xor Rn) >>> %s \n", templD);
printf(" >>> RHnum >>> %s \n\n\n", Rh);

349 q=fopen("C:\\Documents and Settings\\Dear-User\\My Documents\\ Visual
Studio 2005\\Projects\\Reader\\ID _ file.dat" ,"w+");
350
351
352
Hash(ID) \n");
353

printf("
==\n\n");
354
355
356
357
358
359
360
361
362
363
database
364

II Save Tag array in database and show updated database
printf("Tag CurrentlD C-Hnum C-Hash(ID) I PreviousiD P-Hnum P-

for(i=O; i<10; i++)
{

printf("%2d" ,i);
fprintf(q,"%s\n",tagArray[i].curriD);
printf("%14s ",tagArray[i].curriD);

fprintf(q,"%s\n",tagArray[i].Hc);
printf(" %s" ,tagArray[i].Hc);

fprintf(q,"%s\n",tagArray[i].CmetaiD);

printf(" %14s ",tagArray[i].CmetaiD);

74

II write ID into database

II write Metald into

365
366
367
368
369
370
371
372
373
374
database
375
376
377
378

printf("\n
==== \n\n");
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
Previous one!
398
399
400
buffer2: Hash(RNIIID)
401
402
403
404
405
406
407
408
409
410
411
412
413
414

.}
else ·
{

printf(" ");

fprintf(q,"%s\n",tagArray[i].previD); //write ID from database
printf("% 15 s ", tagArray[i]. prev ID);

fprintf(q, "%s\n" ,tagArray(i] .Hp);
printf(" %s" ,tagArray[i].Hp);

fprintf(q,"%s\n\n\n",tagArray[i].PmetaiD); II write Metald into

printf("% 15s\n" ,tagArray[i].PmetalD);

fclose(q);

II Send update information to the Tag: Rn and hash(IDI!Rn)
printf("Sending Rn, RHnum and Hash (ID II Rn) ... \n\n");

sprintf(tempBufferl;"%d ",Rn); /lint to char
lstrcpy((LPTSTR)buffer,tempBuffer 1);
WriteFile(hSerial,buffer,lstrlen(buffer),&dwBytes W rite,NULL);

//printf("Rn: %d.\n",Rn);

sprintf(tempBuffer 1, "%s ",Rh);
lstrcpy((LPTSTR)buffer,tempBuffer 1);
WriteFile(hSerial,buffer,lstrlen(buffer),&dwBytesWrite,NULL);

//printf("RHnum: %s.\n" ,Rh);

strcpy(tempBufferl ,tagArray[taglndex].previD); II buffer!: ID, of course

sprintf(tempBuffer2,"%d",Rn); II buffer2: Rn
strcat(tempBufferl,tempBuffer2); //buffed: IDI!Rn
sprintf{ tempBuffer2, "%u ",Hash(Rh[O],tempBuffer 1 ,strlen(tempBuffer 1))); II

lstrcpy((LPTSTR)buffer, tempBuffer2);
WriteFile(hSerial,buffer,lstrlen(buffer),&dwBytesWrite,NULL);

//printf("Hash(IDI!Rn): %u.\n",Hash(Rh{O],tempBufferl,strlen(tempBufferl)));

printf(" >>>Could NOT find ID in database! \n\n");
printf(" >>>Authentication FAILED! \n\n");
lstrcpy((LPTSTR)buffer, "Failed ");
W riteF ile(hSerial,buffer,lstrlen(buffer),&dw Bytes W rite,NULL);

75

415

printf("-------------------~----------\n\
n");
416
417
418

printf("Read another Tag? (YIN)");
scanf("%s", Yes No);

printf(" ______________________________ \n\
n");
419 if (! strcmp(Y esN o, "Y")II! strcmp(Y esN o, "y"))
420 {
421 printf("\n\n\n");
422 step=1;
423
424 else
425 {
426 finished= 1;
427
428 break;
429 }
430 } while(!finished);
431
432 CloseHandle(hSerial);
433
434 return 0;
435}
436
437

. 438
439

76

References

[1] B. Song and C. J. Mitchell, "RFID Authentication Protocol for Low-cost Tags",

Proceedings of the First ACM Conference on Wireless Network Security, Alexandria, VA,

USA, Page(s): 140-147, March- April2008.

[2] M. R. Rieback, B. Crispo, and A. S. Tanenbaum, "The Evolution of RFID Security",

IEEE Pervasive Computing, Volume 5, Issue 1, Page(s): 62-69, January- March 2006.

[3] Altera® Development and Education (DE2) Board Webpage: <http://www.altera.com/

education/univ/materials/boards/unv-de2-board.html>

[4] A. Juels, "RFID Security and Privacy: A Research Survey", IEEE Journal · on

Selected Areas in Communications, Volume 24, Issue 2, Page(s): 381-394, February 2006.

[5] S. Boumerdassi, P. K. Diop, E. Renault, and A. Wei, "T2MAP: A Two-Message Mutual

Authentication Protocol for Low-Cost RFID Sensor Networks", IEEE 64th Vehicular

Technology Conference, Montreal, Canada, Page(s): 1-5, September 2006.

[6] S. Lewis, "A Basic Introduction to RFID Technology and its Use in the Supply Chain",

Laran RFID, White paper, 2004.

[7] S. Preradovic and N. C. Karmakar, "RFID Readers- A Review", International Conference

on Electrical and Computer Engineering, Dhaka, Page(s): 100-103, December 2006.

[8] Alien Technology Corporation Webpage: <http://www.alientechnology.com/readers/

index.php>

[9] Samsys Technologies Inc. Webpage: <http://old.samsys.com/default.php>

[10] RF Code Inc. Webpage: <http://www.rfcode.com>

[11] IDENTEC SOLUTIONS Inc. Webpage: <http://www.identecsolutions.com>

[12] Active Wave Inc. Webpage: <http://www.activewaveinc.com>

77

[13] C. H. Lim and T. Kwon, "Strong and Robust RFID Authentication Enabling Perfect

Ownership Transfer", Conference on Information and Communications Security, Raleigh,

North Carolina, USA, Page(s): 1-20, December 2006.

[14] S. Karthikeyan and M. Nesterenko, "RFID Security without Extensive Cryptography",

Proceedings of the 3rd ACM Workshop on Security of Ad hoc and Sensor Networks,

Alexandria, VA, USA, Page(s): 63-67, 2005.

[15] M. Ohkubo, K. Suzuki and S. Kinoshita, "Cryptographic Approach to Privacy-Friendly

Tags", RFID Privacy Workshop, MIT, November 2003.

[16] C. C. Tan, B. Shengm, and Q. Li, "Secure and Serverless RFID Authentication and Search

Protocols", IEEE Transactions on Wireless Communications, Volume 7, Issue 4, Page(s):

1400-1407, April 2008.

[17] J. Collins, "Marks & Spencer Expands RFID Trial", RFID Journal,

http://www.rfidjournal.com/article/articleview/791/1/1/, February 2004.

[18] S. E. Sarma, S. A. Weis, and D. W. Engels, "RFID Systems, Security and Privacy

Implications", 4th International Workshop on Cryptographic Hardware and Embedded

Systems, Redwood Shores, CA, USA, Page(s): 454-469,2002.

[19] S. Inoue and H. Yasuura, "RFID Privacy Using User-Controllable Uniqueness", RFID

Privacy Workshop, MIT, Massachusetts, USA, November 2003.

[20] N. Good, J. Han, E. ·Miles, D. Molnar, D.Mulligan, L. Quilter, J. Urban, and D. Wagner,

"Radio Frequency Identification and Privacy with Information Goods", Proceedings of the

ACM workshop on Workshop on Privacy in the Electronic Society, Washington DC, USA,

Page(s): 41-42, 2004.

78

[21] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede, "An Elliptic

Curve Processor Suitable For RFID-Tags", Cryptology ePrint Archive, Report 2006/227,

Available at http://eprint.iacr.org, July 2006.

[22] H. M. Sun, C. E. Lu, and S. M. Chen, "An authentication Protocol in Mobile RFID

Environment", IEEE Region 10 Conference, Taipei, Taiwan, Page(s): 1-4, October

November 2007.

[23] A. Juels and R. Pappu, "Squealing Euros: Privacy Protection in RFID-Enabled

Banknotes", Financial Cryptography, Volume 2742, Page(s): 103-121, Springer

Berlin/Heidelberg, 2003.

[24] A. Juels, R. L. Rivest, and M. Szydlo, "The Blocker Tag: Selective Blocking of RFID Tags

for Consumer Privacy", Proceedings of the lOth ACM Conference on Computer and

Communications Security, Washington DC, USA, Page(s): 103-111, 2003.

[25] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, "Universal Re-Encryptionfor Mixnets",

The Cryptographers' Track at the RSA Conference Cryptographers, San Francisco, CA,

USA, Page(s): 163-178, February 2004.

[26] A. Juels, "Minimalist Cryptography for Low-Cost RFID Tags", 4th International

Conference on Security in Communication Networks, Volume . 3352, Lecture Notes in

Computer Science, Page(s): 149-164, September 2004.

[27] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, "Strong Authentication for RFID

Systems Using the AES Algorithm", Workshop on Cryptographic Hardware and Embedded

Systems, Cambridge, MA, USA, Volume 3156, Page(s): 357-370, Springer, August 2004.

79

[28] M. Lehtonen, T. Staake, F. Michahelles, and E. Fleisch, "From Identification to

Authentication- A Review of RFID Product Authentication Techniques", Printed handout

of Workshop on RFID Security, Graz, Austria, July 2006.

[29] S. Weis, S. Sarma, R. Rivest, and D. Engels, "Security and Privacy Aspects of Low-Cost

Radio Frequency Identification Systems", 1st International Conference of Security in

Pervasive Computing, Boppard, Germany, Page(s): 201-212, March 2003.

[30] D. Henrici and P. Muller, "Hash-based Enhancement of Location Privacy for Radio

Frequency Identification Devices using Varying Identifiers", Proceedings of the 2nd IEEE

Annual Conference on Pervasive Computing and Communications Workshops, Orlando,

FL, USA, Page(s): 149-153, March 2004.

[31] D. Molnar and D. Wagner, "Privacy and security in library RFID: Issues, Practices, and

Architectures", Proceedings of the lith ACM conference on Computer and

communications security, Washington DC, USA, Page(s): 210-219, October 2004.

[32] M. Ohkubo, K. Suzuki, and S. Kinoshita, "RFID Privacy Issues and Technical

Challenges", IEEE Engineering Management Review, Volume 35, issue 2, Second Quarter

2007, Page(s): 51 -51, 2007.

[33] D. H. Seo, J. M. Baek, J. Li, S. Y. Kang, I. Y. Lee, and H. G. Oh, "A Study on Improved

RFID Authentication Scheme", International Conference on Multimedia and Ubiquitous

Engineering, Seoul, Page(s): 567-572, April2007.

[34] Y. K. Lee and I. Verbauwhede, "Secure and Low-cost RFID Authentication Protocols",

Proceedings of the 2nd IEEE Workshop on Adaptive Wireless, · St. Louis, Missouri,

November 2005.

80

[35] Y. S. Jeong, N. Sun, Y. C. Hwang, K. S. Kim, and S. H. Lee, "RFID Authentication

Protocol Using Synchronized Secret Information", Proceedings of the First International

Symposium on Data, Privacy, and £-Commerce, Chengdu, China, Page(s): 459-461,

November 2007.

[36] A. Juels and S. Weis, "Authenticating Pervasive Devices with Human Protocols", 25th

Annual International Cryptology Conference, Santa Barbara, California, USA, Volume

3621, Page(s): 293-308, August 2005.

[3 7] N. J. Hopper and M. Blum, "Secure Human IdentificatiQn Protocols", Proceedings of the

7th International Conference on the Theory and Application of Cryptology and Information

Security: Advances in Cryptology, Gold Coast, Australia, Page(s): 52-66, Volume 2248,

December 2001.

[38] J. Bringer, H. Chabanne, and E. Dottax, "HB++: A Lightweight Authentication Protocol

Secure Against Some Attacks", 2nd International Workshop on Security, Privacy and Trust

in Pervasive and Ubiquitous Computing, Lyon, France, Page(s): 28-33, June 2006.

[39] D. Ranasinghe, D. Engels, and P. Cole, "Security and Privacy: Modest Proposals for Low

Cost RFID Systems", Auto-ID Labs Research Workshop, Zurich, Switzerland, September

2004.

[40] J. Lee, D. Lim, B. Gassend, G. E. Suh, M. Dijk, and S. Devadas, "A Technique to Build a

Secret Key in Integrated Circuits for Identification and Authentication Applications",

Sympo.sium on VLSI Circuits, Honolulu, Hawaii USA, Page(s): 176-179, June 2004.

[41] P. Tuyls, and L. Batina, "RFID-tagsfor Anti-Counterfeiting", In Topics in Cryptology CT

RSA- The Cryptographers' Track at the RSA Conference, San Jose, USA, Page(s): 115-

131, volume 3860, February 2006.

81

[42] G. Tsudik, "YA-TRAP: Yet another Trivial RFID Authentication Protocol", Proceedings of

the 4th Annual IEEE International Conference on Pervasive Computing and

Communications Workshops, Pisa, Italy, Page(s): 640-643, March 2006.

(43] C. · Chatmon, T. V. Le, and M. Burmester, "Secure Anonymous RFID Authentication

Protocols", Technical Report TR-060112, Florida State University, Department of

Computer Science, Tallahassee, Florida, USA, 2006.

[44] A. K. Jones, R. Hoare, S. Dontharaju, S. Tung, R. Sprang, J. Fazekas, J. T. Cain, and M. H.

Mickle, "An Automated, FPGA-based Reconjigurable, Low-Power RFID Tag", Journal of

Microprocessors and Microsystems, Volume 31, Issue 2, Page(s): 116-134, March 2007.

[45] RSA Laboratories Webpage: < http://www.rsa.com/rsalabs/node.asp?id=2176>

[46] D. Henrici and P. Muller, "Hash-based Enhancement of Location Privacy for Radio

Frequency Identification devices using Varying Identifiers", Proceedings of the 2nd .IEEE

Annual Conference on Pervasive Computing and Communication Security, Orlando, FL,

USA, Page(s): 149-153, March 2004.

[47] A. Partow, "General Purpose String Hashing Algorithms", http://www.partow.net/

programming/hashfunctions/index.html

[48] R. Bayer, "Windows Serial Port Programming", March 2008.

82

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

