
ADAPTIVE REPRESENTATIONS FOR IMPROVING

EVOLVABILITY, PARAMETER TUNING, AND

PARALLELIZATION OF GENE EXPRESSION PROGRAMMING

by

Nigel P. A. Browne

B. Sc. Ryerson University, 2005

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Canada, 2009

© Nigel P. A. Browne 2009

PRO~Cf
RYEROON t;ffiVimtTY UBftARV'

• \ '0/ ~. _ .. ~ "

.. ~ .. ~~~~:~~~;~~~~?~~~~~~~:~~ ~7 _7 -",~,~~,

I
I

I
;
1

I ,
1

Ii , "

I ii
;

-.- '1
,j

•

•

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Signed:~
I I
----------------___ l

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signed:-i1-

-

iii

771'77 .. r.7 .. ?F ..] ... 7 s~

I .' ,

iv

•

ADAPTIVE REPRESENTATIONS FOR IMPROVING EVOLVABILITY,

PARAMETER TUNING, AND PARALLELIZATION OF GENE EXPRESSION

PROGRAMMING

Nigel P. A. Browne

M. Sc. in Computer Science, 2009

Ryerson University, Toronto, Canada

Abstract

Gene Expression Programming (GEP) is a genetic algorithm that evolves linear chromosomes

encoding nonlinear (tree-like) structures. In the original GEP algorithm, the genome size is

problem specific and is determined through trial and error.

In this work, a novel method for adaptively tuning the genome size is presented. The approach

introduces new mutation, transposition and recolI)bination operators that enable a population

of heterogeneously structured chromosomes, something the original GEP algorithm does not

support. This permits crossbreeding between normally incompatible individuals, speciation

within a population, increases the evolvability of the representations and enhances parallel

GEP.

To test our approach an assortment of problems were used, including symbolic regression,

classification and parameter optimization. Our experimental results show that our approach

provides a solution for the problem of self-adaptively tuning the genome size of GEP's repre-

sentation.

v

r" -IQC' -~: 'p. :::.: :" . :rr: '. ·;c:.:~~: .. -: .. g',"" " . '.'::' 'p' -s" Tg' " . .. " ... -'-- rY--

,.' :' .
. .

I
• i : ;

vi

Acknowledgements

There are a number of individuals without whom this thesis would not have been possible and

I would like to emphatically thank all of them for their assistance and input.

First and foremost, I need to thank my thesis supervisor Marcus dos Santos, for being particu­

larly effective at directing my efforts, shaping my ideas, wading through the verbiage that was

the early draft of my thesis, and knowing when to use the carrot and when to use the stick.

I'd like thank my friends and colleagues Dana Cotant and Greg Smith for their support through-

out my master's degree.

My good friends (you know who you are) deserve a huge "thank you" for periodically pulling

me out of my research bubble, making me laugh and generally reminding me that the world

still existed.

Mom, Dad and my brother Drew, thanks for being my cheerleaders, occasionally feeding me,

and listening to me ramble (incessantly) about my research.

Nigel P. A. Browne

Ryerson University

September 2009

vii

t:
"

, ~,

viii

Dedication

For Mom and Dad, thanks for the genes.

ix

-

p . _. . .. , .
I "..~ .. ,! ;

I

2

x

Table of Contents

1 Introduction 1
1.1 Approach . . II · · · 2
1.2 Contribution . . . · . · . · . · · . · . · · . 3
1.3 Overview of Thesis · . . Ii • · . · · · . · . . 4

2 Background and Related Work 5
2.1 Canonical GEP Algorithm · . . . · . · . . · · · · . 5

2.1.1 Chromosome encoding . · . · . · . . · · 7
2.1.2 Standard Genetic Operators · . · . · . · · . · · . 8

2.2 Evolvability · . · . · . · . · 10
2.3 Crossbreeding and Speciation. · . . · . · · . 11
2.4 Distributed Evolution · . · . · . · . . · 12

.:. 2.5 Parameter Tuning and Self-Adaptation . . · · 14

3 Methodology and Implementation 17
3.1 Proposed GEP Algorithm Enhancements . · . · . 17 I

3.1.1 Enhancements for Parameter Tuning and Evolvability . · 17 I'
I

3.1.2 Speciation and Crossbreeding 22
I · . · . . · · . · .

3.2 Syrah Implementation . 25 I. . . · . · . · . . · .
3.2.1 Development and Runtime Envir~nments · . · 25 !

3.2.2 Parallelization · . · · . · 26 I

3.2.3 Population Initialization
~

27
I · . · I

3.3 Experimental Design · . . . · . . · . · . · .. 27 !.
3.3.1 Symbolic Regression Experiments . • · . . · · · · . · · 28 k
3.3.2 Classification Experiments . . · · 31 !

3.3.3 Parameter Optimization Experiments · . . · . · · · . . · . 32

4 Results and Discussions 37
4.1 Symbolic Regression Results · . · . . · . · . · · . 37

4.1.1 Discussion of Symbolic Regression Experiments · · . . · . · 37
4.2 Classification Results · · · . · · . 43

4.2.1 Discussion of Classification Experiments · . . · . · . 44

4.3 Parameter Optimization Results · · . · . 46
4.3.1 Discussion of Parameter Optimization Experiments · · . 51

4.4 General Discussion 52 Ii · · . . · . .
5 Conclusion and Future Work 55

5.1 Future Work • • · . · · . · . · · 57
"

xi

bn

(, .

xii

JlGi'fSITFFW .-'

,.

b

T

List of Tables

3.1 Common Symbolic Regression Run Parameters ...
3.2 Classification Experiment Run Parameters . . . • . .
3.3 Common Parameter Optimization Run Parameters. .

4.1 Summary of symbolic regression experimental results •
4.2 Summary of classification experimental results ..•.
4.3 Summary of parameter optimization experimental results

xiii

29
32
33

37
44

,46

: j'.

"I· . , I
It
"op

xiv

b

List of Figures

2.1 Flowchart of the canonical Gene Expression Programming algorithm [1]. ... 6
2.2 Chromosome with two genes, head size 3, tail size 4. 8

3.1 Flowchart of the proposed changes to the Gene Expression Programming algo-
rithm. 18

3.2 One-point recombination of two chromosomes. PI and l'2, containing 3 and
2 genes, respectively; hand t denote the head and tail portions of each gene,)
respectively. In Figure (a) the crossover point locates in the head of a gene. In
Figure (b) the crossover point locates in the tail of a gene. . 24

4.1 Symbolic regression experiment 1: chromosome sizes . . 38
4.2 Symbolic regression experiment 2: chromosome sizes. • • . . • 38
4.3 Symbolic regression experiment 3: chromosome sizes.. 39
4.4 Symbolic regression experiment 1: chromosome size in the population. 39
4.5 Symbolic regression experiment 2: chromosome size in the population • • • .. 40
4.6 Symbolic regression experiment 3: chromosome size in the population 40
4.7 Symbolic regression experiment 4: chromosome sizes. 41
4.8 Symbolic regression experiment 5: chromosome sizes. • • • . .• 41
4.9 Symbolic regression experiment 5: Target vs Model. • • • • .• 42
4.10 Symbolic regression experiment 4: chromosome size in the population . 42
4.11 LiveDescribe experiment: chromosome sizes 44
4.12 LiveDescribe experiment: chromosome sJze in the population. 45
4.13 Parameter optimization experiment 1: chromosome sizes 46
4.14 Parameter optimization experiment 2: chromosome sizes 47
4.15 Parameter optimization experiment 3: chromosome sizes 47
4.16 Parameter optimization experiment 4: chromosome sizes . . . • . . 48
4.17 Parameter optimization experiment 5: chromosome sizes • 48
4.18 Parameter optimization experiment 1: chromosome size in the population 49
4.19 Parameter optimization experiment 2: chromosome size in the population 49
4.20 Parameter optimization experiment 3: chromosome size in the popUlation 50
4.21 Parameter optimization experiment 4: chromosome size in the population 50
4.22 Parameter optimization experiment 5: chromosome size in the population 51

xv

r'" , .. ! .. ~;.-... r, ::J.:'.$. :~W···.··:· ~·:.m:·::· " ' .: r·1t··m.;::.~··· ; "'p;.' . .. -•... T"T as ~..-'- Z"1Il:!iIi
. , ,

I . .!

I

. ' ...•.• -...... :"' : ",'::''':,.: :~'···,"·E··~···,· -:-·· .. :

xvi

w ,
I

Chapter 1

Introduction

Evolutionary computation (EC) is a machine learning technique that uses processes often. in­

spired by biological mechanisms to obtain a solution to a given problem. Applying an EC

algorithm to a problem begins by defining how potential solutions are represented, which is

known as the problem representation. A problem representation is defined by the type of input

data (the Terminal Set) used to generate a solution, the desired number and types of outputs

and the operations (the Function Set) used to transform the inputs into the output values. An

important step in applying an EC methodology to a particular problem is the specification of pa­

rameters that define the problem representation and control the algorithm. Finding appropriate

parameter values that yield satisfactory results usually requires carefully developed heuristics

or expert knowledge. In EC algorithms, the conc:pt of a popu!ation of candidate solutions,

or individuals, is used to represent a pool of possible solutions to a particular problem .. The

encodings, or genomes. used to represent a solution vary depending on the EC methodology. It

can be as simple as binary code, or as complex as a fuJI fledged programming language. The

Gene Expression Programming (GEP) algorithm [1], developed by Candida Ferreira, is an EC

algorithm which uses separate encodings for the genotype and phenotype.

This thesis introduces novel enhancements to the Gene Expression Programming (GEP)

algorithm that enable flexible genome representations, endow self adaptive characteristics, in­

creases the diversity within a population and enhances the parallelization of the algorithm. The

following issues are particularly relevant to the work presented here:

1. Evolva~ility:. the structure of the problem representation does not vary during a run, as it

is restricted to the initial values for the head domain length and number of genes. This

constrains the algorithm to narrow bands of exploration and reduces its ability to produce

I '

meaningful change or a paradigm shift within a population.

2. Crossbreeding and Speciation: in GEp, genetic operations and transformation are re­

stricted to identically structured genomes, preventing different species, or disparately

structured genomes, from evolving and competing within a population.

3. Distributed Evolution: parallelization is restricted by the inability for disparate popula-

tions to interact, slowing the exploration of the search space.

4. Parameter Thning and Self Adaptation: the GEP algorithm lacks a self-adaptation mech­

anism and thus requires additional time and resources to systematically evaluate different .

control parameter sets and subjecting the algorithm to operator biases.

1.1 Approach

To address the evolvability of the problem representation, we developed two new operators to

permit the structure of the GEP genome to be changed during a run. We call these new opera­

tors the Adaptive Chromosome Size (ACS) Mutation operator and the Head Insertion Sequence

(IDS) Transposition operator.

The problems of sp~iation and genome interactions between disparately structured in~­

viduals was solved by replacing the canonical GEP recombination operators with modified

versions that permit dissimilarly structured individuals to interact.

From the beginning of our explorations we wanted to improve the performance of the GEP

algorithm when distributed. We quickly realized that transferring individuals between sepa-
. I .

.. .
rate GEP populations was severely limited by the inability for structurally different individuals

to recombine. This issue was eliminated by the introduction of our modified recombination

operators.

Finally, to enable parameter ·tuning in the GEP algorithm, we designed our IDS and ACS

mutation operators to eliminate the two critical parameters of the GEP algorithm, the head size

and the number of genes. Additionally, the HIS and ACS mutation operators were designed to

2

..

permit the algorithm to self-adaptively tune the optimal chromosome structure.

Our proposed methodology was empirically evaluated using an assortment of problem

classes and complexity levels. Symbolic regressions evaluated were kinematics proble~ns, a se­

ries of polynomial regressions, and the "Sunspot Problem". The classification problem tested

was the LiveDescribe dataset from the The Center for Learning Technology at Ryerson Uni­

versity. Finally, the effectiveness of the proposed methodology for optimizing parameters was

evaluated using the De Jong test functions [2].

The effectiveness of the proposed changes were evaluated by comparing the performance

of the enhanced GEP algorithm against the original GEP algorithm. Additionally, the symbolic

regression results were compared to the adaptive distributed GEP algorithm developed by Park

- et al.. [3]. The results obtained using an application developed during the course of this thesis,

known as Syrah, and the results were validated using the K-Fold method with 10 folds.

1.2 Contribution

The specific contributions of this work are:

1. Development of the Head Insertion Sequence (HIS) operator to self-adaptively tune the

head size parameter in the GEP algorithm and to enable the structure of the individual to

evolve during a run.

2. Creation of the Adaptive Chromosome Size (ACS) Mutation operator that self-adaptively

tunes the number of genes of an individual in a GEP population. This further allows the

genome structure to evolve.

3. Addition of new recombination operators to the GEP algorithm to enable structurally

dissimilar genomes to interact. This also enables indi~iduals to be transfered between

separate GEP populations ,without any genomic structural constraints. This feature is

particularly important to parallel GEP systems, as it permits unrestricted migration."

3

(;'1

.'

t, .. ~:

1.3 Overview of Thesis

The material following this introduction is organized as follows: Background material (Chapter

2), Materials and Methods (Chapter 3), presentation and discussion of our results (Chapter 4),

and Conclusion and Future Work (Chapter 5).

Chapter 2 reviews prior work in evolutionary computation, specifically the GEP algorithm,

distributed EC and various methods for parameter tuning. Additionally, we discuss material

relevant to the development of our testing methodology and the Syrah system.

Chapter 3 introduces our new operators for the GEP algorithm. which solve the problems

associated with the existing methods of parameter optimization in GEP. The. new operators .

transform GEP populations from a collecticn of homogeneous individuals, with static sizes,

to a dynamic population of heterogeneous individuals. This chapter also presents the Syrah
• ~7_'

system, which was developed to test and validate our hypothesis.

Chapter 4 presents the results of our experiments, which show that our new GEP operators

perform better than previously explored methods. The new operators were tested using a variety

of problems, and the performance was compared to other GEP-based methods.

Chapter 5 closes the thesis with the concluding remarks regarding the success of the new

operators and a discussion of possible future work.

4

;.

Chapter 2

Background and Related Work

This chapter presents the relevant existing research that pertains to the key issues addressed by

this thesis, including: the canonical Gene Expression Programming algorithm, the evolvabil­

ity of the problem representation, genome crossbreeding and speciation, distributed evolution,

parameter tuning and self-adaptation.

2.1 Canonical GEP Algorithm

The Gene Expression Programming (GEP) algorithm was first published by Candida Ferreira in

2001 [1]. Like other EC methodologies, GEP derives its inspiration from biological processes

and has been successfully applied to a variety of problems [4-9]. The outline of the canonical

GEP algorithm is shown in Figure 2.1.

A significant difference in GEP, compared to Genetic Programming (GP) [to] or Genetic

Algorithms (GA) [11], is the separation of the phenotype and genotype. Many existing method­

ologies (such as GP and GAs), use a single representation for both the genotype and the pheno­

type. By separating the representation, the GEP algorithm is able to benefit from the speed of

operating on a linear genotype and the flexibility offered by the tree-based phenotype. It also

permits the physical representation to affect the genetic code of the individual. as is found in

nature.

In the GEP algorithm, each individual or candidate progran:t is referred to as a chromosome.

Every chromosome in the population represents a syntactically correct program, because of the

underlying nature of the chromosome's encoding and representation.

5

j

1·
i I .'

~ .

l
;- .

Create C/uomOsomes 01 Initial Population

New Cluomosomes 01 Nex1 a ""'tion

Figure 2.1: Flowchart of the canonical Gene Expression Programming algorithm [1].

6

2.1.1 Chromosome encoding

In GEP the genome (or chromosome) consists of a linear, symbolic string of one or more genes,

each gene coding for an expression tree (ET). A gene consists of two adjacent regions called the

head, containing symbols from both the function and terminal sets, and the tail, which encodes

symbols from the terminal set. The tail only contains leaf nodes of the encoded ET, while the

head may contain both leaf and internal nodes. In canonic GEP, both the number of genes and

the head size of a gene are input parameters for the algorithm. The tail size t, in GEP, is a

function of the head size h, and is determined as follows:

t = h(nmax-1)+ 1 (2.1)

where nmax denotes the maximum arity found in the function setl.

In the case of mUltigenic chromosomes, all ETs are connected by their root node using a

linking function, which is a defined parameter. In the GEP system presented in this work we

used the addition operator as the linking function. Figure 2.2 shows sample chromosome and

the respective tree it encodes. The linear genome 1S encoded using Karva notation [1 J and is

translated into the expression tree by reading left to right and top to bottom. Using gene 1 in

Figure 2.2 as an example, the first symbol (*) is used as the root node of the ET. Since the (*)

operator has an arity of two, the next two symbols (a and I) are read from the linear genome

and added as child nodes to the root of the ET. Next, since the (a) node is a terminal, it is a leaf

node in the ET but the (I) node requires two child nodes (since it has an arity of two). The next

two symbols are read from the linear genome (a and b) and added as child nodes to the (I) node.

This completes the translation of the linear genome to the expression tree, since all of the leaf

nodes consists of symbols from the terminal set. The two symbols remaining in the gene (a and

a) are not used for the current translation, but could become active as a result of later changes

to the genome. These regions that are not translated are call~ introns. Conversely, the region

of the gene that is translated (designated by positions (4) is called the Open Read Frame. The

1 Like in genetic programming, the function set is also a parameter to the GEP algorithm.

7

1.·11
, I

f! I,;

I;
I'
\

I,
!
f

linking function, used to join the genes during evaluation, is not encoded in the chromosome

because it is specified in the algorithm's parameters.

Gene 1 Gene 2

0 1 2 3 4 5 6 0 1 2 3 4 5 6

(* a / a b a a) (- ')'(a b b a b)
~ pi", .. ~ ... d'J

head tail head tail

.....-- linking function

ETencoded
i'+l
\ .. / ET encoded

by gene 1

~ K
by gene 2

0' * 0
/ ® 0

Figure 2.2: Chromosome with two genes, head size 3, tail size 4.

2.1.2 Standard Genetic Operators

The standard GEP algorithm implements several different classes of genetic operators, includ-

ing: selection, mutation, inversion, transposition and recombination. Each operator promotes

the exploration of the search space using different methods and have their own application

rates.

Most genetic operators in GEP are applied in a different manner'than they are' applied in

other methodologies, such as Genetic Programming. When an operator is applied to the pop­

ulation, a subset of the population determined by the operator rate (probability of application)

is selected. Each individual in this subset then has the operator applied to it. This contrasts to

applying the rate individually to each genome, as in genetic programming. The exception to

this is the mutation operator, which is applied to each chromosome in the population.

8

b

The standard GEP mutation operator is the main source of genetic variation in the algorithm.

It can function anywhere within the chromosome, using rules depending on where the selected

point is located. For example, if the mutation is to occur in the head of a gene, then the

mutated value may be any element from the function or terminal sets. However, if the mutation

occurs in the tail only terminals may be used. As a result, the modified chromosome will

always be syntactically correct. As mentioned earlier, the mutation operator is applied to every

chromosome in the population. Since every chromosome undergoes mutation, the mutation

rate refers to the number of point mutations in the genome.

The inversion operator is used to reverse the order of a section of a genome. Since parts of

the genotype may not be translated into the phenotype, inversion allows non-coding regions to

become active.

There are three methods for mixing the sequence of symbols (or codons) within a chromo-

some when using the GEP algorithm: Insertion Sequence (IS) Transposition. Root Insertion

Sequence (RIS) Transposition and Gene Transposition. This family of operators selects a se­

quence and relocates it within the chromosome. Th.e IS Transposition operator is permitted to

select any sequence within the gene and insert it into any position except the root position of a

gene. The RIS Transposition operator operates similarly to the IS Transposition operator, ex­

cept it always inserts the selected sequence into the root position of the targeted gene. Since it

is inserted into the root position, a sequence starting with a function is always selected. Finally,

the Gene Transposition operator shuffles an entire gene within the chromosome.

The final class of standard genetic operators in the Gene Expression Programming algo­

rithm are the Recombination, or Crossover, operators. The GEP,algorithm supports three dif­

ferent recombination operators, each of which involves two chromosomes and creates two off­

spring. The One-Point recombination operator selects a single point along the chromosome

pair and exchanges the genetic material after that point. The ,two point recombination opera­

tors selects two points within the chromosome and exchanges the codons between those points.

Finally, the gene recombination operator swaps an entire gene between the two chromosomes.

9

t. , ..

2.2 Evolvability

Evolvability refers to the ability of a genome to change over time and to occasionally produce

offspring that are more effective at a particular problem (and thus permit the algorithm to per­

form an effective search) [12,13]. For evolutionary computation, this becomes significant for

representations, such as GEP. that separate the phenotype from the genotype. In the case of

this thesis, we focus on the evolvability of the structure and encoding of the genotype. This is

particularly important in the case of GEP, since the canonical algorithm uses a fixed genome

structure and the structure controlled by two problem-specific parameters.

Lopes and Weinert [14] proposed an enhanced GEP algorithm called EGIPSYS that var-

ied the length of the head domain on a genome-level basis. The individuals, however. were

composed of a fixed number of equal-length genes. This contrasts with the approach presented

here, where each individual may have any number of genes and each gene may have a unique

head length. Additionally, EGIPSYS did not implement the one-point recombination operator

nor introduce operators to vary a chromosome's length. It also restricted the operation of the

gene recombination operator to like-sized individuals. All of these issues are resolved in the

method presented here.

In an attempt to improve the evolvability of the individuals in GEP. Yue et al. [15] proposed

a crossover strategy Valid Crossover Strategy which would crossover all individuals in a popu­

lation and create the subsequent popUlation from the n-best valid chromosomes. This approach

helped the evolution of the solution, but not the evolution of the genome structure itself.

Several different strategies for improving the GEP algorithm were presented by Tang et al.
I

in [16]. A feature of interest that they developed was an adaptive mutation mechanism, 'which

was essentially a fitness proportional mutation rate. On an individual basis, the mutation rate

applied to a chromosome was inversely proportional to its fitness. '!hus, highly fit individuals

would have a lower mutation rate applied to them, reducing the number of potentially disruptive

changes to chromosome. Conversely, poorly fit individuals were more likely to have significant

mutation performed on their chromosomes. The implementation of the Adaptive Chromosome

10

Size Mutation Operator introduced in this work uses the idea of a fitness proportional mutation

rate to prefe!entially mutate the number of genes in poorly fit individuals.

In this work ~e introduce new operators to improve the evolvability of GEP genomes. The

new operators are the HIS transposition and ACS mutation operators, which allow the structure

of a GEP genotype to change over time. The evolution of the genotype occurs in parallel

to the exploration of the search space for a particular problem. but these two processes are

fundamentally linked. These evolutionary processes are interconnected because changes in the

genotype can permit the exploration of search space regions that may be inaccessible to other

genome structures.

2.3 Crossbreeding and Speciation

The concept of crossbreeding and speciation embraced in this thesis is that of interactions be-

tween disparately structured, but fundamentally compatible, genomes. The idea of crossbreed­

ing specifically refers to the ability for any individual, regardless of structure to reproduce and

create viable offspring. The ability to crossbreed 'any individual permits a more genetically

diverse population and enable unrestricted exploration of the search space by the algorithm.

Speciation, on the other hand, can have several different interpretations. In particular, it can

refer to the ability for "sub-populations" to exist within a single main population for the purpose

of "niching" [17]. Speciation an~ niching is used to promote diversity within a population,

prevent (or limit) convergence and to address multi-modal problems whe~ different areas of

the solution space require different individuals [13]. Two methods for using speciation, or

niching, are Crowding [2] and Function Sharing [18].

The EGIPSYS algorithm [14] permits different sized chromosomes within a population,

which other systems, such as canonical GEP. AdaGep [19] and PGEP-O [3], do not support.

All individuals in an EGIPSYS population. however, were required to have the same number of

genes. This contrasts with our proposed methodology, which supports (and, in fact, encourages)

populations consisting of individuals that have both differing head domain lengths and gene:

11

,',
: 1

I
·1
1

r' .' I ,. "

counts.

Park et al. introduced a parallel system, PGEP-O [3], ~hich attempted to dynamically tune

specific parameters of the GEP algorithm. In the work, the individuals were constrained by

the genome restrictions of canonical GEP, that is, only identically structured individuals were

able to interact and exist withing a single population or island. This methodology was limited

because the transfer of individuals between islands, or migration, could only occur between

islands with identical gene counts and head domain sizes. The methodology presented in this

thesis eliminates these constraints by creating new operators that do not restrict the interaction

of genomes with fundamentally different structures.

The contributions presented in this thesis enable crossbreeding between disparately struc­

tured individuals in a GEP population, a feature unavailable in canonical GEP. This enables

evolution of different species within a popUlation, and while specifically implementing niching

is beyond the scope, of this work, it could be examined in the future.

2.4 Distributed Evolution

The intrinsic parallel nature of Evolutionary Computation (EC) can often be further exploited

by distributing a given EC algorithm. Parallelization techniques can generally be classified

by their granularity, defined as either fine grained or coarse grain~ models. Fine grained

techniques commonly have low computational requirements, but higher communication needs

and are well suited for multi-processor systems. Coarse gained models, on the other hand, tend

to be computationally intensive but have lower communication requirements and are better
I

suited to discrete computational nodes. The Island Model is a coarse grained technique that

was popularized by [20] and has been shown to be fault tolerant [21]. The distributed system

implemented to validate our methodology uses the island model.

The exchange of genetic material between islands, or demes, is referred to as migration.

The structure of the connections between islands, or the topology, is bounded by the cases of

isolated islands (no migration) and fully-connected islands (migration to all other demes) [22],

12 .

f

I
!
I

I
L

:1 . I t
~

" , ~ j

p'"" sr" yrTIe'SN' T!"

Our approach used a fully-connected coarse-grained model with random migration and to

removed the restrictions placed on the migration mechanism by. canonical GEP's inability to

support dissimilarly structured chromosomes in a single population. By permitting unrestrained

migration, populations in a parallel setting are now able to freely exchange candidate solutions

to enhance the solution quality and diversity.

2.5 Parameter Tuning and Self-Adaptation

Most Evolutionary Computation algorithms require a set of control parameters, which influ­

ence the process evolution to be configured based on the particular problem being explored.

The process of setting these parameters often require complex heuristics, "rules of thumb" or

specific knowledge from a domain expert. Thus. it is desirable to automatically tune the pa­

rameter values prior to executing the algorithm or to self-adaptively tune the parameters during

the run.

In problem solving and optimization, the impossibility theory of "No Free Lunch" [35]

has been" postulated and roughly states that without a priori knowledge of a problem (to tailor

the methodology to it) no single problem solving method is inherently better for all prob­

lem classes [36]. This has implications for any evolutionary algorithm and parameter tuning

method. especially those that attempt to optimize the parameters prior to executing an evo­

lutionary run and then use static values throughout the run [37]. Additionally, it has been

shown [38] that optimal parameter values can vary throughout a single run. This implies that,

while it may be impossible to determine optimal values for all problems and situations, it should
I

be possible to' evolve values that are "good enough". Additionally. it implies that method~lo-

gies that are able to optimize their parameter values dynamically have an inherent advantage
.

over those that do not.

The PGEP-O system presented in [3] approached the issue of parameter tuning as a sepa­

rate optimization problem that ran in parallel to the main evolutionary algorithm. This system

was a parallel GEP implementation that used the island model to evolve solutions to the target

14

problem and a Genetic Algorithm (GA) running on a separate client to optimize the two GEP

parameters. The head size and gene count parameters were optimized by using trial values on

each GEP isla~~ and then reporting back to the GA parameter optimizer. This approach, while

successful, suffered from several issues that are remedied by our proposed methodology. The

PGEP-Q algorithm required additional resources, since the parameter optimization was a sepa­

rate calculation. Additionally, the GA optimizer had to wait for an entire run to complete before

it was able to execute a new generation, which is problematic for long running evolutions. '

The DM-GEP algorithm [33] introduced a dynamic mutation rate operator in an attempt to

guide evolution. DM-GEP divided the execution of a run into three stages, the initial stage, the

metaphase stage and the anaphase stage. Each stage was then assigned a specific mutation rate

and the mutation rate used in each generation was progressively scaled, by a fixed amount, from

one value to the next. In this manner, the number of generations executed in a run was directly

related to the mutation rates. This approach did not, strictly speaking, tune the mutation pa­

rameter and was not self-adaptive, but did dynamically alter the rate and showed improvement

over the standard GEP implementation.

Bautu et al. introduced in [19] an algorithm, called AdaGEp, for automatically tuning the

number of genes of a GEP representation. The approach involved add~ng to the genome a bit

array that maps each bit to a gene in the chromosome. The bit in ea~h position of the array

indicates if that gene would be included in the translation to an expression tree during the

fitness evaluation. Specific genetic operators were designed to operate on this bit array, thus

evolving an optimal mask. The AdaGEP algorithm was limited by the fact that the total number

of genes in any chromosome could never change. Thus, there was little benefit to using that

method versus using automatically defined functions, or homeotic genes, in GEP's jargon, to

evolve the execution order of the genes. Additionally, the size of individuals in the algorithm's

population could never change, so that even if fewer genes were required, the genetic operators

would still be performed on the full chromosome.

The work presented in [15] included a method to vary the mutation and crossover rates

during a run, based on the Cloud Model [39]. This methodology improved the performance of

15

,',
,
r.
t
I
r
L
I'

I ,
,

d
Ii
!

;1
I

I

~
~
jj

":1

* .~

1
i

J
J
I
1 ,
\

1
1
I
~
1

" ~
~
~ ,
l , ,
~>

. '~

i
i
}
y

.. ii,

the GEP algorithm, but was only applied to like-structured genomes.

Eiben et al. stated in their "Parameter Control in Evolutionary Algorithms" survey [37] that

determining successful values for algorithm parameters in EC is a "grand challenge" problem.

The approach to parameter tuning and self adaptation presented in this thesis was accom­

plished using multiple techniques which work together to self-adaptively tune GEP parameters.

To tune the head domain length and number of genes, we developed the HIS Transposition and

ACS mutation operators. In addition to these operators, we created new recombination oper-

ators which allowed structurally disparate (and normally incompatible) genomes to be able to

crossbreed and create viable offspring, which permits individuals with different head domain

length and gene count parameters to compete within a single population.

..<

16

Chapter 3

Methodology and Implementation

This chapter introduces the proposed enhancements to the GEP algorithm to address the is­

sues identified in Chapter 1, to wit: the evolvability of the problem representation, genome

speciation and crossbreeding, distributed evolution, and parameter tuning and self-adaptation

in the canonical GEP algorithm. The chapter will introduce our proposed enhancemeI).ts, the

details of the implementation of the framework used for evaluation, and the experiments used

to validate our hypothesis.

3.1 Proposed GEP Algorithm Enhancements

To address the issues of evolvability, crossbreeding~ distributed evolution and parameter tuning

found in canonical GEP, our proposed modifications to GEP include several new operators and

. also modifications to the existing recombination operators. The new operators introduced in the

following section offer solutions to the problems of evolvability and the tuning of two critical

parameters in GEP. The modified recombination operators were developed to permit speciation

within a GEP population and to enhance distributed GEP populations. The operators are shown,

with heavy borders and a grey background, in the context of the GEP algorithm in Figure 3.1.

3.1.1 Enhancements for Parameter Thning and Evolvability

The original version of the GEP algorithm required that two critical parameters, the length of

the head domain and the number of genes in the chromosome, be set to fixed values prior to the

execution of a run. These parameters are generally domain and problem specific, which further

exacerbates the problem of finding "good" values (not even particularly optimal ones) for the

17

.'

Figure 3.1: Flowchart of the proposed changes to the Gene Expression Programming algorithm.

18

parameters. By devel~ping new operators which pennit genome structure changes. we enabled

the head domain length and number of genes to be implicitly tuned during a run. Our algorithm

enhancements also pennit each gene in a chromosome to have a unique head domain length.

This extra feature enables the length of the gene to vary, and thus. the length of the function

encoded by that gene.

In addition to parameter tuning, our approach improves the evolvability. or the ability of

the structure of the genome to evolve, by removing the fixed length chromosome restrictions

in canonical GEP and allowing the number of genes to vary during a run. Chromosome evolv­

ability was specifically addressed by designing our new operators to increase the capacity of

the genome for extracting and exploiting the underlying structure of the fitness function under

consideration.

3.1.1.1 Adaptive Chromosome Size Mutation Operator

In Algorithm 1 we present the pseudo-code for the Adaptive Chromosome Size (ACS) mutation

operator used in our enhanced GEP algorithm. The ACS operator mutates the number of genes

in a chromosome. potentially increasing or decreasing the total number of genes when it is

applied. The ACS operator is applied to the entire population during e<1:ch generation.

The AcsGeneMutation{ ...) method takes a chromosome (chr) as a parameter and mutates

it according to the following procedure. Initially, it calculates the decayRate, which is used

to decrease the operator's applica~on as the run progresses. In the decayRate calculation the

factor is a user defined value that scales the decayRate and is set to 0.2 for all experiments.

This scales the decayRate to zero for the final 20 percent of the run.

Next, the algorithm calculates the probability of mutation muP. The probability of muta­

tion is inversely proportional to the individual's fitness when compared to the best fitness in the

current generation. If the muP is less than the user defined minimum mutation rate, minRate.

then muP is set equal to minRate. The mutation rate. muP •. is then scaled by decayRate to

arrive at the final muP value. The operator then generates a random probability using Rand­

Probability() and compares it to muP to determine if the AcsGeneMutation will be applied to

19 .")

:

.:" .-

I ,I

I
I

I

I I:
!
'I tl ,.

t

t:'

1 "

!
! r:
I'

\ r
1
II

r:

,~ !

Algorithm 1: ACS Mutation Operator Pseudocode
Data: Chromosome
Result: Mutated chromosome
begin

1* Calculate the decay rate
scaleFactor = 0.2
decayRate = 1 - (gen + maxGen * scaleFactor) I maxGen

1* Calculate the mutation rate, inverse to the fitness
muP = (1 - ehr.Ftn I bestFtn)

1* Adjust the mutation rate if it is below the minimum
if muP less than minRate then
I muP = minRate

end

1* Apply the decay to the mutation rate
muP = muP * decayRate

1* Determine if mutation will occur
if RandProbability() less than or equal to muP then

1* Randomly decide to grow or shrink
if DoCoinToss() then

1* Grow the chromosome by adding a new gene
insertionPoint=GetRnd(O, ehr.NGenes)
InsertGeneAt(insertionPoint)

else

*1

*1

* 1 .~

*1

*1

*1

*1

1* Shrink the chromosome by deleting a gene,
have at least two genes

but only if we
*1

if chr.NGene greater than 1 then

I, deletionGene = GetRnd(1, chr.NGenes)
DeleteGeneAt(deletionGene)

end
end

end
end

20

the chromosome. Next, the operator performs a coin toss using DoCoinTossO to determine if

a gene should be added or removed. When a gene is added, the operator selects an insertion

point, insertion!.'.oint, at a random position in the sequence of genes of the chromosome.

It then calls the worker method,lnsertGeneAt(... }, to insert a randomly created gene at the

insertion point. When a gene is removed, the operator first verifies that there is more than one

gene (chr.NGenes) in the chromosome. It then randomly selects a gene in the chromosome

using the GetRnd(...) method and calls the DeleteGeneAt(...) method to remove the gene from

the chromosome.

The mutation operator always uses a step size equal to one. Thus, it modifies a single gene

in the chromosome during each application of the operator. Alternative step sizes were not

investigated. but will be examined in future work.

3.1.1.2 HIS Transposition Operator

To dynamically tune the size of a gene. we introduced a new transposition operator called

head insertion sequence transposition, HIS transposition, for short. The transposable elements

(also called transposons) in this case are fragments of the genome, located in the head of a

gene, that can be activated and jump to (possibly) another gene head in .the chromosome. '!\vo

features make this operator different from the canonic transposition operators used in GEP, to

wit:

• the transposable element is ~ecessarily located in the head of a gene; and

• during transposition. the transposon is cut from the place of origin (instead of copied.

like in canonic transposition in GEP). thus shortening the length of the respective gene.

and then inserted in the place of destination located necessarily in the head of (possibly)

another gene, thus elongating the gene length at the target site.

Specifically. the HIS transposition operator works as follows. Initially the operator ran­

domly chooses the chromosome. the start and end sites of the transposon, and the the target

site. As mentioned above, these start and end sites are located in the head of a gene. Moreover,

21

r" 1." ,;
. . ,

r'

transposons contain at most three elements. Next, the operator cuts the transposon from the site

of origin, making the necessary arrangements to maintain the structural integrity of the gene.

That is, if the transposon locates in the middle of the head of a gene, then the left and right

.. remaining segments of the head are concatenated, thus forming the new gene head. Next, the

operator inserts the transposon at the target site, thus elongating the head of the gene. Notice

that the gene heads' at the place of origin and at the target site have now changed, the latter is

now longer by say, k elements, and the former is k elements shorter. Finally, using Equation

(2.1), the operator adjusts the respective new tail sizes of those genes. If the tail requires extra

material, it is cut from the remaining genetic material in the source gene's tail.

3.1.2 Speciation and Crossbreeding

The notion of species is not present in canonic GEP, as all chromosomes have the same struc­

ture, i.e., all individuals in a population have the same gene head size, same gene tail size and

the same number of genes. The possibility of different species within a single GEP popula­

tion is highly desirable feature for the parallelization of the algorithm, particularly when using

a migration mechanism in a distributed setting. By modifying the existing GEP recombina­

tion operators to handle genomes with different structures, our enhanced GEP algorithm now

supports crossbreeding and speciation within both a single population and distributed islands.

3.1.2.1 Recombination Operators for Nonunifonn Chromosomes

To support different sized chromosomes created by ACS mutation and HIS transposition oper­, .,
ations, we created modified versions for the one point and two points recombination operators

used in GEP. These operators also facilitate integrating individuals with differing genome struc-.
tures (i.e., a differing number of genes and head domain lengths) into a target population during

migration, when distributed. Recombination via these operators works as follows: initially the

first positions for the head and tail sections of the two parent chromosomes are paired (see

Figure 3.2). Then the crossover point (or points, in the case of two points recombination) is

22

-

L

randomly chosen from the overlapping sections of the chromosome. The crossover point 10-

cates either in the head of a gene or in the tail. If it falls in the head, then the genetic material

is exchanged (the strands swapped) at the crossover point (see Figure 3.2(a». For this case,

there is no need to adjust the structure (tail size) of the gene containing the crossover point. If it

locates in the tail of a gene, then we use the following process to exchange the genetic material

of the genes where the crossover point is located. First we exchange the genetic material at

the point of crossover. Then, we verify the tail sizes of the resulting genes comply with the

respective resulting head sizes. If the tail size of a recombined gene is s elements shorter than

the allowed size, then we append to it s elements from the tail of the other parent gene, thus

making the final tail size of the recombined gene compliant with its head size (notice the strand

added to O} in Figure 3.2(b». On the other hand, if the tail size of the recombined gene is

s symbols longer than the allowed size, then we cut its s last symbols out (notice the strand

removed from 02 in Figure 3.2(b».

The rest of genetic material is exchanged as in normal crossover, with a caveat: for the case

of GEP-RNC (GEP with real number constants [7]), if the crossover point locates in the tail

of a gene, the genetic material in the domain of constants (Dc) is exchanged as normal and

the length of the Dc domains are adjusted. If the crossover point falls in the Dc domain, then

recombination proceeds via the same procedure used for the tails, as illustrated in Figure 3.2(b).

The arrays containing the gene's real number constants are exchanged in their entirety [40].

Analogous to GEP, our recombination operators also produce two children from the parents.

When the recombination point falls within the head region, one child having the same length

as one of the parents, and the other child having the same length as the other parent. However,

when the recombination point falls in the tail, the tail regions length of the children may need

to be modified (using material from the parent), to satisfy Equation 2.1.

23

tl
. I
"I

I

i I

... ;

1

I
1

I
I I I I
I t

I I
1

I ___ ~, t

PI - -.,....,

P2 [I] Q UJ ! ~bOIS added from PI

,............,

01 -
02 [I] Q

• ~ t : .:

UJoa~ -• a : . . .
; ~

"'-- symbols removed

(b)
,

Figure 3.2: One-point recombination of two chromosomes. PI and P2. containing 3 and 2 genes.
respectively; h and t denote the head and tail portions of each gene. respectively. In Figure (a)
the crossover point locates in the head of a gene. In Figure (b) the crossover point locates in
the tail of a gene.

24

3.2 Syrah Implementation

In this study, a parallel capable GEP system called Syrah. which dynamically tuncs the number

of genes and gene size was developed. To test this system, a suite of non-trivial symbolic

regressions was used and the quality of the models was benchmarked against model. obtained

via a canonic GEP system and competing methodologies.

Syrah's system requirements differ from GEP-RNC (OEP with real number con~tant' (7])

in regards to the genetic operators it uses, which are detailed in Sections 3.1.1.1, 3.1,1,2, and

3.1.2.1.

In Syrah's implementation, tournament selection with elitism was used. Tournamem ~J.ec...

tion involves randomly selecting two individuals from the population. comparing their Ijtne~J

values and then adding the more fit individual to the population used for the next ~atioo,

When elitism is used, the best individual from each generation is carried OVet w the n.ext ~ ..

anon. Many GEP implementations use Roulette Wheel seJect.ion, but as loo8 u eliti$ID i~ u:sed,

various selection methods will produce equally good resulU [1].

When the Syrah system is operating in parallel. it U~ a coat~ Uainc4 ~ (<< I~

Model [20]) to distribute the populations. Syrah UJeJ the pr~ ,~ opuaton to pm»Jt

dispara1e genome structures to be integrated into a Jiven poputamm durin~ a mi~9n e'¥~

3..2..1 Del'elopment and ltuntime EnvIronments

All ~ of the f~,h IYJtem Syrah wuc WfJtt.eIJ m at U$fflJ tb.e ~o.1it ~

~ l'tDJon 3,5 and aeveJ0pe4 U$W, Mla'o§dt \'j.§wa 5w.ow 2fXjS .. flaw ~e;an4

~ waf ~JM'1C4 u§inJ Mi&ro.wft MJL Smtl ZOOj ~~ 00 Mi4~ ~

~XP Pm/e.f§/QIIIlI; lMd~ ~§ i1~ fJ,~ fbg MiI;f()wjl ~w~XP Rmfe.~$.~

~§Y~

']
i

. ;t

1

I

~ ,
, <

I
I, i,

I

I:
1.

t

I

l

L

3.2.2 Parallelization

Different methods and techniques exist for operating an Ee algorithm in parallel. Generally

parallel techniques can be divided into two categories, fine grained and coarse grained [24].

Fine grained techniqu~s involve para1lelizing the evaluation of the test cases and usually have

more intensive communication requirements. Alternatively. coarse grained techniques dis­

tribute populations and have lower communication requirements, but higher computational

needs. Our experimental system uses a common coarse grained technique known as the Is-

land Model [20J to distribute populations to discrete computational nodes.

The network communication between nodes was implemented using the HTTPvI.I proto-

col over an SSL connection. The server node is designed to listen for client requests on port

443, the standard port used by SSL web servers. Additionally, the communication between

the client and the server is always initiated by the client. This combination of techniques was

selected so that the communication would be relatively secure and to facilitate communication ..

between the client and server. when the client was located behind a firewall. This circumvented

firewall issues in the original network used for testing.

3.2.2.1 The Island Model

The Island Model [20] is a coarse grained method for parallelizing an Ee algorithm that in­

volves distributing a population (or subset of a population) to discrete computation nodes. Each
I

computational node. or client, is responsible for independently executing a full evolutionary run

and only reports it's final results to the managing server node.
f

J

Each node also has the ability to exchange individuals with other islands in the topol-

ogy. This exchange of genetic material is referred to as migration and helps maintain diversity

amongst the islands. The Island Model implemented in Syrah is a fully-connected topology that

supports random-random migrations, meaning that a migration event can (randomly) involve

any node in the system. Details regarding migration can be found in [22-24,26,27,29,41].

Finally, based on [21], the nodes do not implement any special handling for detecting and

26

-

preventing network topology faults. When a client is unable to complete a run (i.e., because the

host w~ restarted, the network failed, etc,), the client is simply starts a new run when it rejoins

the Syrah topol~gy.

3.2.3 Population Initialization

With the use of our recombination operators, the population is able to support individuals with

different chromosome sizes. To take advantage of this feature, the population is seeded with

randomly sized chromosomes. Both the number of genes and the head domain length of each

gene are varied during this phase. The number of genes in each individual is randomly selected

from between 1 and 10. During the creation of the chromosome, each gene selects a random

head domain length between 5 and 15. These values were empirically determined during ini·

tial testing and were found to provide good genetic diversity. Additionally, we selected the

random initialization method over a "ramped half and half" method [10] as a result of early

experimentation.

The elements of the head are selected from a weighted bag. If the function set is smaller

-
than that of the terminals, then the probability of selecting a function is 1/2, otherwise they are

equally weighted.

3.3 Experimental Design

An assortment of problems, of varying types and difficulty, were selected to evaluate the per·

formance of our approach. The problems were selected from three areas to which Evolutionary

Computation is commonly applied:

1. Symbolic regression, or the automatic synthesis of functions.

2. Classification, or generating boolean results (or labels) from a set of input values.

3. Parameter Optimization. or the automatic discovery of parameter values which produce

a maximum andlor minimum for a given function.

27

: .~\
1

..

Each experiment was perfonned using k-fold validation with 10 folds and 30 runs per fold.

Each experiment consisted of two sets: a baseline set and an adaptive set. The baseline runs

were executed using the standard GEP-RNC algorithm implemented as a part of the Syrah

system with parameter tuning disabled. The adaptive runs were then executed in the same

manner, but using the methodologies outlined previously.

Each experiment was executed using the Syrah framework's parallel mode, which uses the

island model to distribute the populations to separate computational nodes. The experiments

used 32 islands that were executed on 16 dual-core Intel computers. running the Windows

XP Professional operating system. The Syrah system supports migration between the islands,

but to facilitate the statistical analysis of the results, these experiments were run without this

feature.

, ~

The baseline experiments were perfonned repeatedly using the values presented in Tables

3.1,3.2 and 3.3. During the adaptive evolution runs, the number of genes and the size of the

hend domain were tuned using our new operators. The details of the initial chromosome lengths

can be found in Section 3.2.3.

3.3.1 Symbolic Regression Experiments

nlC first three problems selected were the same problems used by H.H. Park et ai. in [3],

These were selected so that the pedonnance of this methodology could be compared t~ an
I

e;tisting (parallel) GEP-b3sed self-adaptive approach. The fowth experiment was a regression

of a sa\\100th wa\-e. while the fifth experiment was a more difficult time series analysis problem.

'The common a.lgorithm configuration parameters are outlined in Table 3.1 and were shared

amongst all of the e.'<.perimenbl setups. The baseline experiments all produced poor results

for gene counts of 1 through 3, which required 900 (3 x 10. folds x 30 runs per fold) runs to

'!\~te.

28

Table 3.1: Common Symbolic Regression Run Parameters

Selection Method
Parameter
Number of Generations
Population Size
Initial Head Size
Initial Number of Genes
One point recombination rate
Two point recombination rate
Gene recombination rate
Mutation rate
Minimum ACS Mutation Rate
IS transposition rate
RIS transposition rate
HIS transposition rate
Gene transposition rate
Function set
Linking function
K-Fold Validation
Evolutionary Clients (Syrah)

3.3.1.1 Experiment 1

Elitist Tournament
Value

100
50

5-15
1-10
0.5
0.1
0.1

0.07
0.05
0.1
0.1
0.1
0.1

+, ., * ,I
+

10 folds
31

The first problem evaluated was a kinematics symbolic regression that modeled the movement

of a vertically fired object. The kinematic equation for the position of the object at time t is

defined by the following equation:

(3.1)

IT we use an initial velocity, Vo = 25m/ s, an initial position of So = 0, and assume the

acceleration is equal to earth's gravity. a = -9.8m/sZ, then we can simplify the equation as:

-9.81% 1
S(/) = 25t+--r- =251-4.91 (3.2)

For this experiment, fifty data points were sampled from the interVal t = 0.1 to t = 5 and

used as the test cases.

29

n
;

.1

I

I

________ ~----------------------_III

;-

I .-

\

;;

i
j

)\

,j~

! ~
"
~
~

.~
i

:i "~
I "

...... --

.'

3.3.1.2 Experiment 2

Our second experiment extended the first, using two independent variables instead of one. Mod­

ifying equation 3.1 with the same assumptions as in experiment one, but with an independent

initial velocity, gives:

5(t) = vt -4.912 (3.3)

The test cases for this experiment were generated using Vo values of 20.25 and 30. The

values of t were the same as in the first experiment.

3.3.1.3 Experiment 3

The third symbolic regression experiment used a fourth order polynomial that was used in [3]

and similar to the ones used in [1,7].

y = -2.5x4 +4.&3 +3x2+2x+ 1 (3.4)

The algorithm attempted to evolve the function from 10 equally spaced samples taken from

values of the Polynomial (3.4), in the interval x = [1,10].

3.3.1.4 Experiment 4: Sawtooth Wave

The fourth experiment was a regression of a sawtooth wave, which has been used as a bench-

mark in other works [42]. The function is defined by:

F(x) = to (}sin(iX») :n= 1, ... ,9 (3.5)

The dataset consisted of 250 equally spaced data points in the range x = [-8,8]. This range

was selected instead of the 40 points in [-: 1, 1 J used in [42] after discovering that the algorithm

required a more challenging set of inputs.

30

3.3.1.5 Experiment 5: Wolfer Sunspot Time Series Prediction

The final experiment attempted to create a predictive model using 100 observations from the

well known Wolfer Sunspot Series [43]. The data was formatted for time series analysis, using

a delay time of I and an embedding dimension of 10. This dataset has also been used to evaluate

other GEP systems, including [7] and [14].

3.3.2 Classification Experiments

Classification is a common and important task that evolutionary computation algorithms are

applied to. The classification experiment performed in this work used a large. real world clas­

sification problem from the from the The Center for Learning Technology (CLT) at Ryerson

University.

The evaluation of the classification experiments was accomplished using the "Hits with

Penalty" method, as described in [7].

Table 3.2 lists the algorithm configuration value,S that were used for the classification ex­

periments.

3.3.2.1 The LiveDescribe Dataset

The LiveDescribe project [44] is a software application developed by the Center for Learn­

ing Technology (CLT) at Ryerson University to add video descriptions (for the deaf) to video

content. The project had originally used a manual process to select regions of dialog verses non­

dialog in video content, so that descriptive video captions could be programmatically added to

the non-dialog sections. Since the process of selecting the non-dialog regions was a manual

and user intensive process, the CLT modified their application using a human designed classi­

fier system. This system was, on average. 70% effective. ,

The dataset 'consists of six real value inputs and a single boolean output per tuple. Part of

what makes this dataset a challenge is it's size. The initial dataset consisted of approximately

90,000 tuples. The input variables are the audio metries RMS standard deviation, RMS average.

31

I

d
','I ;:;

______________________ ~~'III

r
I'
I , t

I

I

,
i
"

Table 3.2: Classification Experiment Run Parameters

Selection Method
Parameter
Number of Generations
Population Size
Initial Head Size
Initial Number of Genes
One point recombination rate
Two point recombination rate
Gene recombination rate
Mutation rate
Minimum ACS Mutation Rate
IS transposition rate
RIS transposition rate
HIS transposition rate
Gene transposition rate
Function set

Linking function
K-Fold Validation
Evolutionary Clients (Syrah)

Elitist Tournament
Value

175
75

5-15
1-10
0.5
0.1
0.1

0.07
0.05
0.1
0.1
0.1
0.1

+. -. * .1. sqrt. exp, sin, cos, tan, fioor,
ceiling, OR. AND, <, >. ~, 2!. =, !=

+
10 folds

31

m

a measure of audio entropy, zero crossing above to below, zero crossing left skew and a zero

crossing low energy measurement. These inputs were sampled once for every 1 second of

audio.

3.3.3 Parameter Optimization Experiments

The five parameter optimization test functions were selected from the the well known De Jong

test functions [2]. These test functions were originally selected by De Jong to test the effective­

ness of a given EC algorithm over a broad class of problems. While attempts have been made to
I

improve the test set, it remains the de facto standard for parameter optimization validation. The

five functions are presented here in their original form. but were modified (where necessary) to

change them all to maximization functions, which allows for simpler evaluation with the GEP

algorithm.

Table 3.3 lists the algorithm configuration values that were shared amongst all of the pa­

rameter optimization experiments.

32

7'

~

Table 3.3: Common Parameter Optimization Run Parameters

Selection Method Elitist Tournament
Parameter Value
Number of Generations 100
Population Size 50
Initial Head Size 1-15
Initial Number of Genes 1-10
One point recombination rate 0.5
Two point recombination rate 0.1
Gene recombination rate 0.1
Mutation rate 0.07
Minimum ACS Mutation Rate 0.05
IS transposition rate 0.1
RIS transposition rate 0.1
HIS transposition rate 0.1
Gene transposition rate 0.1
Function set +, -, * ,I
Linking function +
K-Fold Validation 10 folds
Evolutionary Clients (Syrah) 31

3.3.3.1 De Jong Fl: Sphere Model

The first function in the De J ong test set is a three diritensional parabola that is convex, unimodal

and continuous. The function has a maximum of 78.6 at (XI,X2,X3) = (±5.12,±5.12,±5.12).

3

!(XI,X2,X3) = Exl : -5.125 x 5 5.12 (3.6)
i=1

3.3.3.2 De Jong F2: Rosenbrock's Function

The second function in the De Jong test set was first proposed by Rosenbrock [45] and is

commonly referenced in optimization literature. This function is non-convex, unimodal and

continuous, with a maximum of 3905.93 at (XI,X2) = (-2.048, -2.048).

I(x) = 100 x (xt-X2)2+(1-Xl)2: -:-2.048 5~ 5 2.~8

33

(3.7)

r

'I

I
I
I
J
I
I:
I
~ ,

f, ,
i
i
I

I
I , ~

, I

I
j, ,

' !

I
I

. I;'
..... ;

i
1
I
~!

1:
r

1 ,
f
I
~
I r
I

I
}

i

3.3.3.3 De Jong F3: Step Function

The third De Jong test function is a five dimension step function that is discontinuous, non­

convex, unimodal and piece-wise constant. De Jong originally selected this function to test the

ability for algorithms to handle discontinuities [2]. This function is restricted to -5.12 =:; x =:;

5.12 for testing. This function has a known maximum of 25 when the inputs are held at 5.12.

5
I(x) = EXi: -5.12 =:; x =:; 5.12

i=1

3.3.3.4 De Jong F4: Quadratic Function with Noise

(3.8)

The fourth test function in the De Jong colh:~ction is a noisy, quadratic function that is continu­

ous, unimodal. convex and has a high dimensionality. The function uses a Gaussian function to

add noise. The function was limited to -1.28 =:; x =:; 1.28. This experiment used alternative val- '

ues for the number of generations and the population size than the other parameter optimization

experiments. This experiment had 350 generations ~d 500 individuals in the popUlation.

The maximum of this function is approximately 1248.2 and occurs when all inputs are equal

to ±1.28.

30
f(x) = Ei xx1 + Gauss (0, 1): -1.28 =:; x =:;1.28 (3.9)

;=1

3.3.3.5 De Jong F5: Shekel's Foxholes

This is a two dimension function that is continuous. non-quadratic and non-convex. with 25

local maximums. It was originally suggested by Shekel [46]. This version [47] of the function

has maximum of approximately 499.002.

34

1
f(x,y) = 500 24 (3.10)

0.002+ Lj=o 1/ [1 +i + (x- a(i»6 + (y - b(i»6]

where

a(i) = 16 x (i mod 5 -2)

b(i) = 16 x (l ~ J - 2)

- 65.523 S x S 65.523

35

(3.11)

(3.12)

I

!
i

I
I

I
t
i;
~ .

; i
I !

I,
' ! ,

I l . , ,

1 ,
;
I

I I ,. I ,

36

Chapter 4

Results and Discussions

'This chapter presents the results of the experiments outlined in Chapter 3 that were used to val·

, idate our enhancements to the GEP algorithm and that address the issues identified in Chapter

1.

4.1 Symbolic Regression Results

Table 4.1 shows a summary of the experiment results, including the best individual's fitness

and chromosome sizet• The best fitness is expressed as a percentage of the number of fitness

cases solved. The visualized results and perfonnance of the experiments are shown by Figures

4.1-4.10.

4.1.1 Discussion of Symbolic Regression Experiments .

There are two figures for each of the first four experiments perfonned. The first figure of

each pair shows the minimum, maximum and average chromosome lengths in the population

1 Note that the size of a chromosome (i.e., the length of the chromosome string) depends on its number of genes
and the head size of each gene.

Table 4.1: Summary of syml 0 Ie regressIOn ex penmen resu ts

Exper. Ours Comparison

Number Length Fitness Length Fitness

11 254 99.984% 266 99.496%

b r tal

21 87 99.983% 282 99.907 %

31 155 99.735 % 470 96.187 %

42 62 99.987 % 185 99.966%

52 55 99.179 % 186 98.936%

1: Compared to PGEP-O
2: Compared to canonical distributed OEP

37

"

OJ
N
U)

500

450

400

350

;.l~
I ·ftl

300

250

200

150

100

50

Generations

_ - - - - - - -Min Size- • - -, - - -
Max Size

50000

Avg . Size
Best Fitness - - - - - 49950

~9900

(~)) i\ 49850
h.,

49800

49750

49700

<1'1
<II
OJ

.-E
u-
rn
OJ

CD

Figure 4.1 : Symbolic regression experiment 1: chromosome sizes

450
\'

400

350

300

250
OJ
N
ci)

200

150

100

• 50

I
\

~.l~'

I

10 20 30 40 50 60
Generations

Min . Size n
Max. Size "
Avg . Size

Best Fitness

70 80 90

150000

149950

149900

149850

149800

149750

149700
100

Figure 4.2: Symbolic regression experiment 2: chromosome sizes

38

•

~
OJ
E
~

en
OJ
ill

500

450

400

350

300

<lJ
N 250 Ji

200

150

100

50

1;
/~~

,\.t'o;

Generations

Min. Size
Max. Size
Avg. Size

Best Fitness

10000

80110

6000

4000

1000

Figure 4.3: Symbolic regression experiment 3: chromosome sizes

29

15

18

1l1li

<JI
<JI
<lJ
5
u::
<JI
<lJ
m

Figure 4.4: Symbolic regression experiment I: chromosome size in the population

39

29

l '
59
45

40 19
35
38

2'
29
15
18

'It

188

Figure 4.5: Symbolic regression experiment 2: chromosome size in the population

35

38

25

29

l'
18

188

29

15

19

Figure 4.6: Symbolic regr ssion xperiment : chrom som size in the population

40

II>
N en

450 T-r- -.-
Min S I7
Max Size

400 AV~ Size:
13 SI lIn as :

'"
350

300

250

- - .
200

150 , - . - -
< •

100

50

20 30 40 50 60 70 130 90

Generation

Figure 4.7: Symbolic regression experiment 4: ch 0

12fi!l!lO

')')n910

1250 0

12595

27,,940

12 ... 930

22597

n5910

775WO
100

~ .-----~----~----,_----,_--~,_----_r----_r----_, t;4,

450

400

Igu 4.: Sy I1bolic egre il)1

41

P
u..
~
Jj

160

140

120

100

<f) 80 a
n
<I,
e: :::,

(f) 60

40

20

0

-20 I
0

198

88

68

48

20

"0

10 20 30 40 50 60

Time

Target -e-­
Model

~
, t

':; ~ ..
,>

~ ~
,

70 80

figure 4.9: Symbolic regression experiment 5: Target vs Model

199

69

60

40

20

1118

90

Figure 4.10: Symbolic regression experiment 4: chromosome size in the population

42

5
, on rrw

for each generation. The other figures display a surface visualization of the distribution of

the chromosome lengths in the population, with respect to the generation number in the run.

For the final experiment, the surface plot was omitted because of the rapid convergence to a

narrow range of chromosome lengths. Figure 4.9 compares the evolved model's performance

to the target data. Since k-fold validation was used, every tenth data point in Figure 4.9 was

previously unseen by the model.

The figures show that while the algorithm was optimizing the chromosome length, it ini­

tially explored a wide search space, then focused on a band of neighboring chromosome sizes.

A significant result was that the best solutions found using our new operators, evolved bet­

ter individuals with smaller representations than the PGEP-O system presented in [3] and the

canonical GEP algorithm. It is interesting to note that the best chromosomes evolved for the two

most difficult problems were significantly smaller than those evolved by the PGEP-O. Specifi­

cally, during the second and third experiments, the best evolved individuals were approximately

30% to 33% of the size of the individuals evolved using the PGEP-O methodology. Similarly,

in experiments four and five, where our methodology was compared to a distributed canoncial

GEP algorithm (based on Syrah), our methodology produced results 33% and 30% the size of

the alternative's results.

The results of the experiments, as shown in Table 4.1, show that our new operators are

significantly more efficient and produced better results for symbolic regression problems. This

may have been because our populations were evolving smaller solutions and were able to ex­

plore the search space more effectively.

4.2 Classification Results

Table 4.2 shows the results of the classification experiments. These include the chromosome

size and the best fitness found, expressed as a percentage of the number of fitness (or test)

cases solved. The visualized results and performance of the experiments are shown by Figures

4.11-4.12.

43

-

Total Len.
247

IlJ
N
rJi

Table 4 .2: Summary of classification experimental resul ts
Ours Canonical GEP

Genes Avg Gene Len . Fitness Total Len. Genes Gene Len.
8 30.9 81.08 % 770 10 77

450 .----r----.----,----,----.----,----,--~~~--r-~I
Min. Size "

950

Max Size < • •
Avg Size - - .,.:

Best Fitness - - . . -400

350

250

200

150

30 40 50 60 70 80 90

Generations

Figure 4.11: LiveDescribe experiment: chromosome sizes

940

930

920

910

900

890
100

4.2.1 Discussion of Classification Experiments

Fitness
80.31 %

'" III
IlJ .s
u::
1;;
IlJ
aJ

As stated in chapter 3, the full LiveDescribe data set consisted of approximately 90,000 entries,

each with 6 real number variables and grouped into two classes. One of the challenges of this

experimenl was the computational resources required to evolve candidate solutions.

Both our methodology and canonical GEP evolved individuals with similar performance,

with both systems evolving a classifier capable of successfully identifying 80%-81 % of the

fitness cases. This is a substantial improvement over the original, human written classifier

(developed by the CLT at Ryerson [44]), which was able to correctly classify approximately

70% of the fitness cases. Based on discussions with the CLT lab, it is believed that 85% may

be the practical limit for identifying non-dialog sections of video using the current variable

44

30

25
35

30 20

25 15
20
15 10

10
5

8
0

Figure 4.12: LiveDescribe experiment: chromosome size in the population

set. The CLT is currently working to modify their data aquisition software to colkct additional

parameters.

Examining the solutions evolved by our enhanced algorithm and canonical GEP, it is im-

portant to !lote that our methodology evolved a solution 32.1 % the size of the one evolved by

the standard algorithm. Since the size of the candidate solution's genome has a direct impact

on the evaluation of the fitness cases (and live data, once implemented in the real world), the

reduction in representation size may improve the overall performance of the system, even after

considering the additional computation requirements of our new operators .

The small number of classes in this experiment may have been a possible limitation. With

only two possible classes, the evolutionary process may not have been significantly challenged.

However, it is felt that the number of test cases may have offset this. In the future, more

complex classification problems should be investigated.

What the summary of results do not show is the number of additional runs (and thus pro­

cessing time) requir~d to evaluate different values for the head domain length and number of

45

__________________________ ~III

genes for the canonical GEP algorithm that was used for comparison.

4.3 Parameter Optimization Results

Table 4.3 shows a summary of the results of parameter optimization experiments. The summary

shows the maximum function value found, the average gene length (static for canonical GEP)

and the total genome size. The visualized results and performance of the experiments are shown

by Figures 4.13-4.22.

Table 4.3: Summary of parameter optimization experimental results
Exper. Ours Canonical GEP

Number Total Len. Avg. Gene Len. Maximum Total Len. Gene Len. Maximum
1 105 35 78.30 231 77 78.51
2 10 5 3904.62 184 92 3902.40
3 25 5 25 385 77 25
4 426 14.2 1233.87 780 26 1125.61
5 22 11 499.002 : 94 47 499.002

200r----r----r----r--~----~--~----r_--_r----r_--~ 80

75

70

65
(I)
(I)
II)

60
,€
u..
tl
<l)

/XI

55

50

45

o ~--~--~~~~--~---L--~~--~---L--~~~ 40
o 10 20 30 40 50 60 70 80 90 100

Generations

Figure 4.13: Parameter optimization experiment 1: chromosome sizes

46

?? T

70

30

20

10 20 30 40 50
Generations

60 70 80 90

4000

3500

3000

2500

2000

1500

1000

500
100

Figure 4.14: Parameter optimization experiment 2: chromosome sizes

250 r----r----.----.----,----,--~~--~----~----r_--__

,.,
200

Min. Size -'j .. ~
•.••. , 'Max: Size' ~'.-.c;., .. -'

Avg. Size .,.".t .. __

Best Fitness ,. - ••

26

24

22

20

'" III
Q)

.E u:
1;;
Q)
ell

150
18 j

100

50

u:
16 i
14

12

°OL----~10----~20----~3-0--~4-0--~5-0--~6~0--~7~0--~8LO----9LO--~10:

Generations

Figure 4.15: Parameter optimization experiment 3: chromosome sizes

47

-

GJ
N
Ui

GJ
. ~
Cf)

iOOO r-------.------,-------,--- ---~------.---M-in-.-S-izre------,

Max. Size
Avg. Size

1400

800 _ • . h .,_8~.s.tfl~.·.-·· -., - 1200

800
1000

700

800

600

400

200

0
350

100 L-____ -L ______ ~ ____ _L ______ ~ ____ _L ______ L_ ____ ~.

o 50 100 150 200 250 300

Generations

Figure 4.16: Parameter optimization experiment 4: chromosome sizes

90
,''f.VJ.OH .. V

I
80 J,~

70

60

50

40

30 , r.U

: \ . :.J,l, !
20 " n; '1.1"

.1\1

\
\
l

«rHn rIUJ1HRl..T

500

499

498

497

496

495

494

493

: I
I~~

10 [¥t~ __ ~ ____ L_ __ ~~ __ ~ ____ _L ____ L_ __ ~~ __ ~ ____ _L ____ ~ 492

o 10 20 30 40 50 60 70 80 90 100
Generations

Figure 4.17: Parameter optimization experiment 5: chromosome sizes

48

<II
<II
GJ .s

u:::
iii
<lJ
co

<II
<II
GJ .s

u:::
en
GJ

<D

40
35

50 30
45

40 25
35 20
30
25 15
20 10 15
10 5

" 0
8

100

Figure 4.18: Parameter optimization experiment 1: chromosome size ;n the population

40

35

50 30

25

40
20

30 15

10 10

10
5

0

8
00

100

Figure 4.19: Parameter optimization experiment 2: chromosome size in the population

49

•

i uO

80

100
60

80
40

60

40 20

20 0

8
.:~50

100

Figure 4.20: Parameter optimization experiment 3: chromosume size in the population

»
90
BO
70
60
50
40
30
20
10

8
25

50
75

100
125

150
175

200
Generati on s 225

250
275

300
325

350

Size

70

60

50

40

30

20

10

o

Figure 4.21: Parameter optimization experiment 4: chromosome size in the population

50

30

25
')0

20
p 50

';0 15

30 10

~O 5
10

0

8

100

Figure 4 -22: Parameter optimization experiment 5: chromosome size in the population

4.3.1 Discussion of Parameter Optimization Experiments

The results of the parameter optimization experiments show that both our methodology and

canonical GEP are effective at evolving either optimal or near-optimal sclutions to the problems

in the De long test suite. As seen in the previous series of experiments, our enhancements

enabled the algorithm to consistently evolve solutions WhI Ch were significantly smaller than

those evolved by canonical GEP.

The solutions evolved by our enhanced algorithm in experiments two and three were re-

markably smaller than those found by canonical GEP. Specifically, they were 5.4% and 5.5 7(1

the size of those found by standard GEP.

Both methodol ogies had difficultly with the high-dimension problem found in parameter

optimization experiment 4. However, our enhanced GEP algorithm evolved a slightly better

result and had a representation size 54.6% the size of the one evolved by the standard algorithm.

It is believed that the difficultly of this problem and the inability of the algorithm to locate

the optimal parameter values contributed to the evolved size of the genome. Similarly, the

51

r
F

5

numerical results of experiment 1 were comparable, but the solutions evolved using the HIS

operator and our other enhancements were 45.5% the size of standard GEP's solutions.

The chromosome sizes evolved during final parameter optimization experiment were closer

to what we had observed during the Symbolic Regression and Classification experiments, with

our evolved solutions being approximately 23.4% the size of those evolved by canonical GEP.

In this case, both methodologies successfully found the maximum value of Shekel's fox-holes.

All of the parameter optimization experiments have shown that our enhancements retained

GEP's problem solving ability while allowing it to evolve smaller genomes. While the De

Jong functions have been reported [48] to not be an effective test set, they have been repeat­

edly shown to provide a good metric of the effectiveness of algorithms for a broad range of

optimization problems.

A possible limitation is that it is not currently possible to use the ACS mutation operator

with our existing experimental setup. Since we have not used Automatically Defined Functions

(ADFs) [1], we must use a fixed number of genes - one per parameter requiring optimization.

While we were still able to obtain good results, we can only speculate that using ADFs and

allowing the number of "normal" genes to evolve (as they do in the symbolic regression and

classification experiments), would enhance the solutions of more difficult parameter optimiza­

tion problems.

4.4 General Discussion

Reviewing the results of our experiments, we see that our enhancements to the GEP algorithm

consistently produced smaller solutions (sometimes significantly so) than canonical GEP. Since

the represent~tion size of a genome has a direct impact on the evaluation of the fitness cases,

the reduction in representation size may improve the overall performance of the system, even

after considering the additional computation requirements of our new operators. This was indi­

rectly observed during the classification experiments while waiting for the two methodologies

to complete their evolutionary runs. When our enhanced algorithm was running, it was notice-

52

- IF

arm 7 Fe ~ REtrH

ably faster than when the standard GEP algorithm was processing the same problem.

The tuning of the number of genes and the head size of each gene was an implicit part of

our GEP run and, thus, we did not require separate clients for optimization. This reduced the

overall computational resources required to evolve solutions.

For all of the parameter optimization experiments the ACS mutation operator was disabled

and thus, we were unable to evaluate its potential effectiveness for this class of problems. The

operator was disabled because of the evaluation method used. Since our GEP implementation

did not use ADFs, it required one gene per parameter to optimize. It is possible that if we

implemented automatically defined functions and used the ACS mutation operator to evolve

the number of "normal" genes, we would see different results.

The decision to randomly initialize the genes that were inserted during the ACS muta­

tion phase appears successful. However, it would be interesting to investigate the use of gene

cloning, or other methods, in the future.

We observed that the insertion point in the ACS mutation operator for classification and

symbolic regression problems was not important because we used a commutative linking func­

tion during testing. The insertion point, however, may have been significant because of the way

the gene would mix within the population during recombination. Additionally, since the Gene

Transposition operator was used, good genes could be reordered within the chromosome. Had

we used a non-commutative linking function or homeotic (ADF) genes, the insertion location

could have had a greater impact.

Based on the results of our experiments, our new operators were able to successfully self­

adaptively tune the two critical parameters of the GEP algorithm, the head domain length and

the number of genes. While our new operators have additional computational costs associated

with them, it is believed that the additional operator execution times are offset by the shorter

time required to evaluate the fitness functions, because of the smaller representations it evolved.

Our new recombination operators have also been empirically shown to permit crossbreeding

and speciation within a single GEP population. Additionally, our operators have been shown to

be effective in a distributed environment. However, additional research into the effects of our

53

m 7 "5
3 ""

FE •

operators on migration is required.

t

54

Chapter 5

Conclusion and Fllture Work

This thesis presented novel enhancements to the Gene Expression Programming algorithm that

enabled flexible genome representations, endowed self-adaptive characteristics, assisted with

maintaining diversity within a population and enhanced the parallelization of the algorithm.

In particular, the enhancements addressed issues of evolvability, crossbreeding and speciation,

parameter tuning and parallelization in canonical GEP.

Through a series of experiments that used an assortment of problem classes, including sym­

bolic regression, classification and parameter optimization, we have shown that our proposed

methodology produced better results and, generally, smaller genome representations than the

canonical GEP algorithm and the PGEP-O system [3] (for symbolic regression).

Specifically. the contributions presented in this work were:

1. Creation of a new transposition operator, the Head Insertion Sequence (HIS), which self­

adaptively tunes the head domain length of a gene.

2. Development of a new mutation operator, the Adaptive Chromosome Size (ACS) muta­

tion, which mutates the number of genes in an individual to tune the gene count parame-

ter.

3. Addition of new GEP recombination operators to permit structurally dissimilar individ­

uals to interact. This removed the structural constraints imposed when transferring an

individual from one population to another and permitted both crossbreeding and specia-

tion.

Our enhancements to the GEP algorithm also simplified its use, by implicitly tuning the

head domain length and number of genes throughout an evolutionary run. By removing the

55

need to set these two critical GEP parameters prior to executing a run, the level of "expert

knowledge" required to use GEP is reduced and allows EC novices to use the algorithm more

effectively.

The simplification of the algorithm's configuration and the implicit parameter tuning of the

two critical parameters are still subject to the concept of "No Free Lunch" [35]. The "No Free

Lunch" theorem [35] states that without a priori knowledge of a problem, all potential solution

methods are equal. While the values of the parameters evolved during a run may not be optimal

for all problem types, they are frequently "good enough" and "No Free Lunch" is partially offset

by the ease of using the new algorithm. This was seen during our experimental verification of

the algorithm and when comparing our methodology to canonical GEP. To detenrune the GEP

experimental baselines, several runs with different head domain length and number of gene

parameter values were required, to obtain usable results. Comparatively, with our enhanced

algorithm we only needed to start a run sequence and let the algorithm evolve the parameters.

While our enhancements to the GEP algorithm have proven to be successful, they are not

without costs and limitations. Since we have added extra operators to enable our meta-evolution

of the parameters, we also have added additional computational overhead. In particular. the

ACS mutation operator has significant overhead when it generates a new gene from random el­

ements. The overhead associated with the new operators may be partially offset by the reduced

size of the solution representations (as experienced during our trials), but further experimenta­

tion and analysis are required to confirm this.

Another side effect of our self-adaptive method is that we have increased the search space

available to the algorithm. This is both a benefit and a liability, since the algorithm can traverse

the entire space defined by any combination of head domain length and number of genes. This

allows the algorithm to find novel solutions, but also increases the number of potential solutions

dramatically, possibly increasing the search time and allowing the algorithm to get stuck in at

a non-optimal solution.

When developing the enhancements to the GEP algorithm, the possibly of introducing bloat,

or the excessive creation of introns to protect a genome's functionality, was a major concern.

56

By eliminating the fixed chromosome size (which was necessary to remedy the issues we saw

with GEP), the potential for the genome representation and size to grow unchecked became a

possibility, even with the parameter tuning inherent in the new operators. One possible reason

for not observing bloat is because the HIS Transposition operator, which is responsible for

tuning the head size, restructures the genome by adding sections from one domain to another

instead of simply inserting or deleting material. This does not account for the effect of the

ACS mutation operator, which mutates the number of genes in a chromosome. However, the

selection pressure from the Tournament Selection with Elitism selection method may have

provided resistance to unnecessary gene additions. It is possible that in more difficult problems

(that require longer runs or larger datasets), we may begin to observe bloat and need to take

steps to measure and constrain it.

Related to the previous topic of bloat and introns, is the matter of genetic diversity within

a population. OUf current research did not include any specific mechanisms to measure the

diversity of individuals within a population (either in a single population or distributed multi­

population setting), but the genome length statistics, recorded during the experiments, can be

used as a simple metric. Using the surface plots of the chromosome lengths (found in chapter

4) we can suppose that our methodology maintains a level of genetic diversity throughout a run.

While the populations were initially very diverse and chaotic, as the runs progressed the outliers

were reduced and a narrower band of chromosome sizes (and thus diversity) was maintained.

Overall, our enhancements have been shown to be effective at addressing the issues of

evolvability, crossbreeding and speciation, parameter tuning and parallelization in the canonical

GEP algorithm.

5.1 Future Work

Though our enhancements have been effective, there is still work that can be done to further

our understanding of them, their relationship and application to Evolutionary Computation in

general, and the workings of the GEP algorithm itself.

57

-

-

mE 7

A detailed study of the effects of our enhancements on the levels of genetic diversity in

a population would aid in understanding the mechanisms that make the operators effective.

Additionally, applying the "Nonsynonymous to Synonymous Substitution Ratio (Ka/Ks)" [49)

to study the rate of evolution, in conjunction with a diversity study, could show where further

improvements could be made in the GEP algorithm.

Applying our enhancements to Automatically Defined Functions (ADFs) in GEP could

potentially provide interesting results and bears further investigation. This could be particularly

useful for difficult or complex parameter optimization problems, since, when using GEP-PO,

the number of genes must always equal the number of parameters being optimized. Using

ADFs would allow the number of normal genes to be adaptively tuned using the ACS mutation

operator.

Further research into the potential of unrestrained chromosome growth, or bloat, and se­

lection pressure in our enhanced GEP algorithm would be interesting, as we did not observe

significant bloat during our experiments. In evolutionary computation, any algorithm or rep­

resentation that allows unrestrained growth and yet demonstrates resistance to bloat warrants

further investigation.

The impact of our operators on migration and the exchange of genetic material in a dis­

tributed setting requires further study. In particular, a thorough examination our system when

running in a distributed, multi-island settings with different connection topologies and migra­

tion strategies would be useful for determining the optimal configuration (if possible).

While the enhancements presented in this work enabled crossbreeding and the evolution of

different species within a population, we did not specifically implement any niching methods.

This could prove to be an interesting avenue of exploration in the future, as it could enhance

the algorithm'~ performance with multi-modal problems.

Finally, adapting our enhancements to neuroevolution, or the evolution of neural networks,

using GEP (such as the GEP-nets algorithm [7)) has great potential. This is because our en­

hancements could permit size and structure changes to the evolved neural networks. allowing a

more dynamic and complicated structure to be evolved.

58

"

•

Bibliography

[1] C. Ferreira, "Gene expression programming: A new adaptive algorithm for solving prob­

lems," Complex Systems, vol. 13, no. 2, pp. 87-129, 2001.

[2] K. A. De Jong, "Analysis of the behavior of a class of genetic adaptive

systems," Ph.D. dissertation, University of Michigan, 1975. [Online]. Available:

http://hdl.handle.netl2027.42/4507

[3] H.-H. Park, A. Grings, M. dos Santos, and A. Soares, "Parallel hybrid evolutionary com­

putation: Automatic tuning of parameters for parallel gene expression programming,"

Appl Math Comput (New York), 2008.

[4] K. Zhang, S. Sun, and H. Si, "Prediction of retention times for a large set of pesticides

based on improved gene expression programming," in GECCO '08: Proceedings of the

10th annual conference on Genetic and evolutionary computation. New York, NY, USA:

ACM, 2008, pp. 1725-1726.

[5] Z. Xie, X. Li, B. Di Eugenio, P. C. Nelson, W. Xiao, and T. M. Tirpak, "Using gene

expression programming to construct sentence ranking functions for text summarization,"

in COLING '04: Proceedings of the 20th international conference on Computational

Linguistics. Morristown, NJ, USA: Association for Computational Linguistics, 2004, p.

1381.

[6] J. Venter and A. Hardy, "Generating plants with gene expression programming," in AFRI­

GRAPH '07: Proceedings of the 5th international conference on Computer graphics, vir­

tual reality, visualisation and interaction in Africa. New York, NY, USA: ACM, 2007,

pp. 159-167.

[7] C. Ferreira, Gene Expression Programming - Mathematical Modeling by an Artificial

Intelligence, 2nd ed. Springer-Verlag, 2006.

59

7 m T Sf VB' 7

[8] M. Ostaszewski, P. Bouvry, and F. Seredynski, "Multiobjective classification with mogep:

an application in the network traffic domain," in GECCO '09: Proceedings of the 11th

Annual conference on Genetic and evolutionary computation. New York, NY, USA:

ACM, 2009, pp. 635-642.

[9] J. Yin. L. Huo, L. Guo, and J. Hu, "Short-term load forecasting based on improved gene

expression programming," in Intelligent Control and Automation, 2008. WCICA 2008.

7th World Congress on, June 2008, pp. 5647-5650.

[10] 1. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection. The MIT Press, 1992.

[11] D. E. Goldberg, Genetic Algorithms in Search. Optimization, and Machine Learning.

Addison-Wesley Professional, 1989.

[12] J. Reisinger, K. O. Stanley, and R. Miikkulainen, "Towards an empirical measure of evolv­

ability," in GECCO '05: Proceedings of the 2005 workshops on Genetic and evolutionary

computation. New York, NY, USA: ACM, 2005, pp. 257-264.

[13] K. O. Stanley, "Efficient evolution of neural networks through complexification," Ph.D.

dissertation, The University of Texas at Austin, August 2004.

[14] W. R. W. Heitor S. Lopes, "Egipsys: An enhanced gene expression programming ap­

proach for symbolic regression problems," Int. J. Appl. Math. Comput. Sci, vol. 14, no. 3,

pp. 375-384, 2004.

[15] J. Yue, T. Chang-jie, Z. Hai-chun, L. Chuan, C. Yu, W. Jiang, and W. Dong-lei, "Adaptive

gene expression programming algorithm based on cloud model," in BioMedical Engineer­

ing and Informatics. 2008. BME12008. International Conference on, vol. 1, May 2008,

pp. 226-230.

[16] C. Tang, L. Duan, J. Peng, H. Zhang, and Y. Zong, "The strategies to improve performance

of function mining by gene expression programming: Genetic modifying, overlapped

60

F 77

gene, backtracking and adaptive mutation." in Proceedings of the 17th Data Engineering

Workshop, 2006.

[17] O. M. Shir and T. Back,Algorithmic Bioprocesses. Springer Berlin Heidelberg, 2009, ch.

Niching Methods: Speciation Theory Applied for Multi-modal Function Optimization,

pp. 705-729. [Online]. Available: http://dx.doi.org/lO.1007/978-3-540-88869-735

[18] J. H. Holland, Adaptation in natural and artificial systems. an introductory analysis with

applications to biology, control and artificial intelligence. University of Michigan Press,

1975.

[19] E. Bautu, A. Bautu, and H. Luchian, "Adagep - an adaptive gene expression programming

algorithm," Symbolic and Numeric Algorithms for Scientific Computing, 2007. SYNASC.

International Symposium on, pp. 403-406, Sept. 2007.

[20] M. Gorges-Schleuter, "Explicit parallelism of genetic algorithms through population

structures," Parallel Problem Solving from Nature, pp. 150-159, 1991. [Online].

Available: http://dx.doLorgll 0.10071BFb00297 46

[21] 1. Hidalgo, F. De Vega, 1. Lanchares, and D. Lombrana, "Is the island model fault toler­

ant?" in 9th Annual Genetic and Evolutionary Computation Conference, GECCO 2007,

London, 2007.

[22] E. Cantu-Paz and D. Goldberg, "Efficient parallel genetic algorithms: Theory and prac­

tice," Comput. Methods Appl. Mech. Eng., vol. 186, no. 2-4, pp. 221-238, 2000.

[23] J. Berntsson and M. Tang, "Dynamic optimization of migration topology in internet-based

distributed genetic algorithms," in GECCO 2005 - Genetic and Evolutionary Computation

Conference, B. H.G., O. U.M., A. D., B. W., B. C., B. E.W., C.-P. E., D. D., D. K., and

et aI, Eds., Washington, D.C., 2005, pp. 1579-1580.

[24] E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algorithms. Springer, 2000.

61

1

[25] E. Alba and 1. Troya, "Analyzing synchronous and asynchronous parallel distributed ge­

netic algorithms," Future Gener Comput Syst, vol. 17, no. 4, pp. 451-465, 2001.

[26] Z. Skolicki and K. De long, "The influence of migration sizes and intervals on island

models," in Proceedings of the Genetic and Evolutionary Computation Conference, 2005.

[27] Z. Skolicki and K. De long, "The importance of a two level perspective for island model

design," in Proceedings of the IEEE Congress on Evolutionary Computation, 2008.

[28] S.-K. Oh, C. T. Kim, and 1.-1. Lee, "Balancing the selection pressures and migration

schemes in parallel genetic algorithms for planning multiple paths," in Robotics and Au-

tornation, 2001. Proceedings 2001 ICRA.IEEE International Conference on, vol. 4, 2001,

pp. 3314-3319 vol.4.

[29] S.-C. Lin, I. Punch, W.E, and E. Goodman, "Coarse-grain parallel genetic algorithms:

categorization and new approach," in Parallel and Distributed Processing, 1994. Pro-

ceedings. Sixth IEEE Symposium on, Oct 1994, pp. 28-37.

[30] E. Alba and l. Troya, "Influence of the migration policy in parallel distributed gas with

structured and panmictic popUlations," ApplIntell, vol. 12, no. 3, pp. 163-181,2000.

[31] Y. Lin, H. Peng, and J. Wei, "A niching gene expression programming algorithm based

on parallel model," in Lecture Notes in Computer Science, vol. 4847 LNCS, Guangzhou,

2007, pp. 261-270.

[32] J. Wu, C. Tang, T. Li, S. Qiao, Y. Jiang, and S. Ye, "Parallel multi-objective gene ex-
f

pression programming based on area penalty," in International Conference on Computer

Science and Information Technology, 29 2008-Sept. 2 2008, pp. 264-268.

[33] Q. Liu, T. Li, C. Tang, Q. Liu, C. Li, and S. Qiao, "Multi-population parallel genetic al-

gorithm for economic statistical information mining based on gene expression program-

ming," in Natural Computation, 2007. ICNC 2007. Third International Conference on,

vol. 3, Aug. 2007, pp. 461-465.

62

[34] X. Du, L. Ding, and L. Jia, "Asynchronous distributed parallel gene expression program­

ming based on estimation of distribution algorithm," in Natural Computation, 200B.ICNC

'OB. Fourth International Conference on, vol. 1, Oct. 2008. pp. 433-437.

[35] D. Wolpert and W. Macready, "No free lunch theorems for optimization;' IEEE Trans

Evol Comput, vol. I, no. I, pp. 67-82,1997.

[36] Y. Ho and D. Pepyne, "Simple explanation of the no-free-Iunch theorem and its implica­

tions," J. Optim. Theory Appl., vol. 115, no. 3, pp. 549-570, 2002.

[37] A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, "Parameter control in evolution­

ary algorithms," Stud. Comput.Intell., vol. 54, pp. 19-46,2007.

[38] T. Bck, "Self-adaptation in genetic algorithms," in Proceedings of the First European

Conference on Artificial Life. MIT Press, 1992, pp. 263-271.

[39] M. H.-j. LI De-yi and S. Xue-mei, "Membership clouds and membership cloud genera­

tors," Journal of Computer Research and Development, pp. 15-20., 1995.

[40] C. Ferreira, "Questions and answers from personal correspondence," September 2009.

[Online]. Available: http://www.gene-expression-programming.com!Q&A03 .asp

[41] J. Branke, A. Kamper, and H. Schmeck, "Distribution of evolutionary algorithms in het­

erogeneous networks," Lecr. Notes Comput. Sci., vol. 3102, pp. 923-934, 2004.

[42] R. McKay, H. X. Nguyen, J. R. Cheney, M. Kim, N. Mori, and T. H. Hoang, "Estimating

the distribution and propagation of genetic programming building blocks through tree

compression," in Proceedings ofGECCO 2009, Sigevo. ACM,2009.

[43] T. W. Anderson, The statistical analysis of time series. Wiley New York" 1971.

[44] Livedescribe video description software. The Center for Learning Technology at Ryerson

University. [Online]. Available: http://www.livedescribe.com!

63

,

r
i

[451 II. Rosenbrock. "An automatic method for finding the greatest or least value of a function."

Compo J., vol. 3, pp. 175-184 .• 1960.

[461 J. Shekel, "Test functions for multi modal search techniques," in Fifth Annual Princeton

Conference olllnfonllatioll Science and Systems., 1971.

[471 J. Alami, A. E. Imrani. and A. Bouroumi, "A muItipopulation cultural algorithm

using fuzzy clustering," Applied Soft Computing, vol. 7, no. 2, pp. 506 - 519, 2007.

[On1 ine 1. Available: http://www.sciencedirect.comlscience/articleIB6W86-4MJCI VF-21

213c9b90ea39aab93a935d8151Id0614c2

[48] D. Whitley, K. Mathias, S. Rana, and 1. Dzubera. "Building better test functions," Proc.

Sixth ITttemational Conference Oil Genetic Algorithms, vol. -, pp. 239-246, 1995.

[49] T. Hu and W. Banzhaf, "Nonsynonymous to synonymous substitution ratio kalks: Mea-

surement for rate of evolution in evolutionary computation," Lecture Notes in Computer

Science, pp. 448-457, 2008.

64

4

