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Abstract 

This paper explores existing electrical disaggregation workflows and how they can be augmented 

with context awareness through datasets. The goal of energy disaggregation is to educate consumers on 

their energy usage. Additional benefits in automation, security, and energy auditing can be realized 

through disaggregation. The use of statistical analysis provides specific device consumption information 

that can be actioned to conserve energy in a directed and methodical manner. The current landscape of 

disaggregation is a complex workflow involving algorithms that detect, analyze and reveal consumption 

patterns. Disaggregation workflows involve the acquisition of energy signals for an entire building, 

refining readings, detecting events, extracting features, and classification. Each step in the workflow 

impacts the accuracy in which individual devices are detected. Disaggregation workflows may 

incorporate device usage and weather patterns to improve accuracy, but crowdsourcing signatures and the 

incorporation of datasets that allow for context awareness are strategies yet to be adopted.  
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1. Introduction 

Property ownership comes with many associated costs. Some costs associated with 

homeownership are easy to budget for due to low variances in amount and frequency. Property taxes 

would be an example of a budgetable expense. Maintenance is at the other end of the spectrum because it 

is sporadic and varies according to several factors such as property age, usage, and weather patterns 

(Kolokotsa et al, 2011). Utilities hold the middle ground of expected frequency and varying cost. 

Depending on occupancy and appliance usage, utility costs may vary greatly on a month-to-month basis. 

 Of the top costs associated with homeownership, utilities rank fourth after mortgage 

payments, insurance, and taxes (USAA, 2013). Although electrical costs comprise only 4% of a 

Canadian’s average daily budget, trends show this has been increasing annually with rising energy costs 

(StatsCan, 2011). North American homes may see similar pricing to European countries if our electrical 

consumption issues are not addressed. The average household in Denmark spends 4 times more on 

electricity compared to Canada (IEA, 2012). Canadian electrical prices increased 9% overall from 2010 to 

2014  (Hydro Quebec, 2014). Trends show utility costs will continue to rise. 

Rising energy prices and increasing energy demands have created a trend of energy conservation 

initiatives. New products, such as Belkin’s Conserve Socket (Belkin, n.d.) are being created to 

autonomously turn off power to devices that are not in use. There are also a slew of sensors to control 

lighting, HVAC and blinds (SmartHome, n.d.). The common goal is to reduce energy consumption. The 

autonomous category of devices is parallelled with habit-forming devices that provide information in 

order to persuade consumers to conserve.  

Forming conservation habits using real-time visual feedback at the appliance can influence 

consumers to save 12% on energy costs annually (Armel et al, 2013). When real-time feedback is paired 

with incentives, these savings can be increased to 32% (Peterson, 2007). Smart metres are an example of 

devices that communicate real-time power consumption through the display of dollars per hour or 
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kilowatt-hours. The smart part of the metre is a misnomer to consumers because they don’t directly 

enable users to reveal devices that consume energy. This is due to configuration of these devices relative 

to the mainlines, which only allows for aggregate readings. Users can only receive an overview of 

consumption for the entire premises. 

Table 1: Comparison of disaggregation benefits by group 

Perspective	   Benefits	  

Consumer	   Conservation,	  pricing	  incentives,	  financial	  savings,	  appliance	  replacement,	  
automation,	  property	  valuation,	  usage	  tracking,	  feedback	  on	  initiatives,	  
auditing	  bills	  

Utility	   Pricing	  considerations,	  remote	  metre	  readings,	  regional	  load	  tracking,	  
conservation	  recommendations,	  distribution,	  planning	  

Manufacturers	   Appliance	  innovation,	  lifespan	  assessment,	  fault	  detection,	  warranty	  
assurance,	  efficiency	  validation,	  gathering	  customer	  knowledge	  	  

Building	  Design	   LEED	  certification,	  energy	  efficiency	  assessments	  throughout	  the	  year,	  
automation,	  research	  data	  

Government	   Energy	  policy	  decision	  making,	  census	  studies,	  forecasting,	  funding,	  
incentives	  

 

Data made available by monitoring an electrical line allows for further analysis of what devices 

are causing consumption. The alternating current power system uses a frequency much like audio or light. 

For sound to be perceived, fluctuations must occur within a frequency ranges that can be perceived by the 

human ear. Creating software and hardware to track a speaker in a room with many people is a task 

comparable to disaggregation. If a single person is talking, it’s a seemingly simple task. When multiple 

people are talking at the same time, the same task beings to compound in difficulty with every additional 

concurrent speaker. The issue associated with tracking an individual speaker in a room where multiple 

people are talking is known as the cocktail party problem. Furthermore, disaggregating multiple potential 

sources of speech is known as blind source separation (Kyan, 2015). 
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The method of deciphering an individual speaker is comparable to tracking electrical usage of a 

single device from an aggregate reading. Electricity is used by devices at varying magnitudes, much like 

varying volume when talking. For the electrical spectrum, we are able to use a comparable set of inputs. 

Vocal tone, accent, modulation, and sentence structure all contribute to a vocal signature (Bronkhorst, 

2000). For the signature of an electrical appliance, these contributions would take the form of harmonics, 

current draw, duration of usage, and transient states. Measurement quality, accounting for multiple 

characteristics, and classification algorithms are components used to improve recognition accuracy.  

Context can also be used as a method for disaggregation. For listeners, context is provided 

through lip movement, gestures, and eye direction. Being able to see the speaker can help simplify the 

isolation of their dialogue in a noisy environment, much like knowing a user’s location simplifies the 

probability devices within their proximity are in use. Date, time, weather patterns, number of occupants, 

location of occupants, and recurring habits can all be used to provide adjustments to probabilities. Context 

can enable educated guessing. Not only does it help solve decisions when choosing several highly 

probably options, it can be used to improve processing efficiency by reducing the number of options to 

account for. 

2. Approaches to Electrical Monitoring 

Initial readings are obtained through paper statements, power plugin metres, smart metres, or 

induction clamps. Each method has its pros and cons. Induction clamps (as seen in figure 3) are a non-

intrusive means to monitoring with low costs and high sampling rates. Smart metres are gaining adoption 

rapidly because utility provides benefit from remote monitoring (Navigant, 2014). Plugin metres, such as 

a Kill-A-Watt metre (P3 International, n.d.), are highly accurate, but unattractive due to their cost and 

manual tracking requirements. Bills are gateways to other monitoring methods since they alert consumers 

to the growing costs of electricity. 
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Table 2: Comparison of tracking methods 

	   Accuracy	   Sample	  Rate	   Installation	   Adoption	   Cost	  

Bills	   0	  devices	   Billing	  Cycle	   None	   Ubiquitous	   $0	  

Plugin	  metres	   One	  per	  plug	   ~1s	   Easy	   Low	   $20-‐$60/ea	  

Smart	  metres	   Large	  appliances	   1s+	   None	   Very	  High	   $0	  

CT	  Clamps	   Potential	  for	  all	   >1	  Hz	   Hard	   Low	   $150+	  

 

2.1 Bills & Statements 

The general low-tech method to monitor electric consumption is through the review of a periodic 

bill. The minimum content a paper statement conveys is kilowatt usage and associated charges. Newer 

statements may provide daily trends and graphs that communicate usage over the billing period. 

Considering the delays involved with receiving a paper statement, communicating unusually high 

consumption will often be after the fact. Bill recipients are unable to be proactive about their usage and 

therefore play a reactive role in conservation. Therefore, bills play an initiating part in influencing 

conservation.  

Once electrical expenses are realized, conservation efforts require further investigation. Property 

owners first spend time reviewing what appliances are onsite and then begin reviewing historic usage if 

available. Without some form of logging, it becomes necessary to employ a proactive monitoring strategy 

to review which devices are in use and compare observations to resulting bills. The time requirements to 

obtain feedback and inaccuracy make for an inefficient approach to monitoring. 

2.2 Plugin Metres 

At the device level, power plugin metres provide the most accurate measure of real time 

consumption. A typical plugin metre ranges from $30-$80 each and are widely available. Typical 



 5 

statistics provided by these metres include forecasting, cumulative kilowatt hours, volts, amps, watts, 

hertz, volt-amps. Many libraries in North America offer the Kill-A-Watt plugin metre for loan. With an 

accuracy of 0.2%, it is the most accurate method of logging device consumption (P3, 2015). 

Vampire power or parasitic load occurs when a device is off, yet still plugged in and drawing 

power (Kim et al, 2011). Although the amount of power consumed is relatively low, having many devices 

drawing low amounts of energy can add up to a significant load. Plugin metres have the added benefit of 

sensitivity since they can detect standby usage. 

The primary downside of a plugin metre is cost. With the number of devices in a typical 

household or business environment, it would cost thousands of dollars to install enough plugin metres to 

monitor each (unique) device. Should a building manager decide to accept the costs involved, the 

monitoring and logging is typically a manual task with these devices. A plugin metre excels in creating an 

accurate real-time snapshot of a particular device. Typical plugin metres do not provide statistics other 

than a kilowatt average and real-time load information. Therefore, they are not an effective long-term 

solution to conserving energy. 

Assuming only a handful of plugin monitors were implemented, they would typically be used to 

monitor major appliances. Users would typically miss out on the many low energy devices. In some 

cases, the consumption of these devices shall outweigh the few energy hungry devices in terms of overall 

energy consumption. This distribution is known as the long tail (Anderson, 2008). If aggregate data is 

being tracked, it is possible to determine the scope of this amount by simply subtracting the monitored 

devices from the total aggregate. However, this does not account for any unknown devices that are not 

anticipated as heavy consumers. 

Monitoring issues aside, another downside of plugin monitors is the additional energy these 

require to operate. Tracking for purposes of conservation by these devices will increase consumption 

slightly. The use of many plugs at a location would increase consumption and may negate the value of 
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their use. Plugin metres do consume some power to operate. If many are left plugged in for an entire year, 

the total consumption to run the metres needs to be considered. 

Considering the equipment cost, consumption, and labour associated with tracking plugin 

monitors, it does not make sense to use them to track the majority of devices in a building. Similar 

devices such as power bars with built in digital monitors offer the same drawbacks. The benefits in terms 

of precision are not important enough to justify their usage.  

2.3. Smart Metres 

Smart metre adoption has been growing steadily at about 5% per annum in North America and 

projected to reach 80% penetration by 2023 (Navigant, 2013). Utility providers save money because 

smart metres enable them to remotely receive metre readings. The traditional method involved an 

employee physically visiting a location to manually log metre readings. Readings would then be input 

into a database for billing purposes. Due to the labour and time involved with the traditional process, 

smart metres not only help the bottom line, they also offer a better resolution to readings so utility 

providers can understand usage by region. This information is used for planning, marketing, and 

forecasting. 



 7 

 

Figure 1: Smart metre penetration by region 

Utilities have been using smart metres to overcome the costs and lead time associated with 

technicians physically visiting locations to track analogue metres. There is enough incentive to push this 

technology to their customers. Therefore, there is no impact to their customers in terms of cost, network 

infrastructure, or additional hardware within the premises.  

Installation of a smart metre takes place where analogue metres are installed. In commercial and 

industrial buildings, there may be several locations where metres are installed. These additional metres 

are at entry points of mainlines and sometimes sub metres that are installed to gauge energy use by area or 

industrial equipment. A utility is concerned with the mainline metres for billing purposes, not submetres.  

There are many variations to smart metres, but the most prevalent ones are retrofitted onto 

existing analogue electrical metres. These adaptors convert analogue signals into digital signals for 

dispatch to the utilities servers for billing and tracking purposes. The data being transmitted by a smart 

metre represents the aggregate electrical consumption of a building. Since aggregate data is being made 
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available by these devices, it appears ideal for the data to be analyzed for disaggregation. There are 

however limitations to the data being made available due to sampling resolution. 

Smart metres produce data at intervals ranging from 1 hour to 1 second. The intervals are 

dependant on manufacturer configurations and are limited by hardware and firmware (Armel et al, 2012). 

Lowering the interval is primarily to reduce network loads and hardware costs, but also has a relation to 

privacy. Higher frequencies would reveal customer habits, which has been cited as a concern by privacy 

groups advocating against smart metre technologies. Privacy issues are covered extensively in 

McLaughlin et al’s (2011) paper on protecting consumer policy from electric load monitoring and 

Lisovich & Wicker (2008). Privacy concerns are not the focus of this paper. 

In terms of network load, the infrastructure currently used to transmit data has the bandwidth for 

increased intervals over 2 kHz range (Armel et al, 2012). The restrictions on this are due to hardware at 

the analogue to digital conversion, processor, memory, communications interface, and home area 

network. Within 1 Hz to 2 kHz, the restrictions are primarily due to firmware, not hardware, because 

compressing data batches alleviates the need to strain communications interfaces. Surpassing the 2 kHz 

sample rate allows for medium order harmonic devices to be detected, including toasters, computers, and 

televisions. 

Due to the low frequency of data intervals (greater than 1 second), the decision of which 

algorithm to use comes with limitations regarding the type and number of devices that can be detected. 

Smaller devices in use are left out while only major appliances are detectable. Very few devices can be 

detected with a high accuracy causing a major limitation with this technique (Armel et al, 2010). 

The primary benefit of pursuing smart metres for disaggregation is their prevalence in developed 

countries. Utilities are the primary beneficiary of the data these devices produce. Since the cost and 

installation are handled by the utility, it places no burden on the customer aside from a brief power outage 

during installation. Smart metres are already placed on the main lines entering a premises, so it would be 
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ideal to modify the transmission interval for disaggregation. As an added benefit and incentive to 

customers, utility providers can produce relevant statistics that can influence conservation initiatives from 

their customers. 

Daily pricing schedules are being replaced by peak pricing methods. Utilities are shifting towards 

variable pricing strategies to initiate customer driven conservation. In order to communicate changes to 

pricing, short-term notifications through email and mobile applications are paired with real-time pricing 

indicators on a smart metre (Peaksaver, n.d.). These methods are enabled because the smart metre allows 

for customers to be more informed through digital technologies. 

2.4. Induction Clamp 

 Also known as current clamps, clamp metres, or current probes. Induction clamps are an 

ideal sensor for non-intrusive load monitoring because they support a high sample rates and do not require 

mainlines to be intrusively modified in anyway. These devices are comprised of a split ring that can be 

easily opened by hand and clamped around a cable. Once installed, data generated from the clamp is 

transmitted to a measuring transmitting unit (MTU). The MTU can then transmit readings through a serial 

interface, powerline Ethernet, Ethernet, or wireless transmission. 

An AC clamp metre generates data using a current to voltage converter, also known as a current 

transformer (CT). The principle of variable flux is used to generate signals that in turn generate data 

(Silva, 2005). Fluctuations in current can be thought of as a relative motion to the point of observation by 

the clamp. This rapid electrical movement creates a magnetic field around the cable. The clamp’s metallic 

core is position around the cable and therefore is able to observe the alternative current of electricity. CT 

signals to an analogue to digital converter for logging and display purposes.  

In North America, homes usually have 2 main lines entering a building. These lines distribute 

electricity 120V of electricity and are 180º out-of-phase from one another (Hart, 1992). Appliances 

consuming 120V are connected to breakers that alternate between the 2 lines in a breaker box. 240V 
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appliances are wired in an unbalanced fashion resulting in varying consumption on both lines. Therefore, 

a current clamp is needed to monitor each line and used additively to provide an accurate aggregate 

measurement. 

 

 

Figure 2: Breaker box with 2 phase 

configuration 

 

Figure 3: Induction clamp installation 

Induction clamps are ideal disaggregation monitors because of their price relative to other 

options. They also come with the benefits of easy installation. One of the most important aspects to 

consider is a clamps ability to provide a sample rate of greater than 1Hz. Compared to smart metres, 

clamps don’t require any hardware modifications. The importance of resolution is discussed in the section 

4 of this paper. 
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3. Opportunities with Disaggregation 

Having detailed data on energy consumption on bills account for a 10% reduction in energy usage 

(Darby, 2006). Direct feedback through a real-time monitor can reduce consumption by up to 20% 

(Faruqi et al, 2010). Although having a metre provide live consumption readings can help reduce energy 

consumption, it does not reveal the specific devices that are contributing to the total reading. Without 

device level information, conservation efforts cannot be targeted unless further investigation is conducted. 

Combining real-time monitoring with specific device information and automation enables savings ranging 

from 15 to 40% (Mercier & Moorfield, 2011). This value does not take into account the time saved by not 

having to investigate aggregate consumption readings. 

Using disaggregation information to notify users that a device has been left powered on would be 

another major benefit of disaggregation. Through a mobile notification platform, messages could be 

received for devices that are being used outside of their standard usage duration or time of day. A 

projector or lights left on overnight could be dealt with in sooner, saving on energy costs and 

maintenance. Combining smart, network enabled devices with remote notifications can allow for remote 

shutoff, especially in the case of computers.  

If devices have been turned off in a certain area, it may indicate users are not present. This 

information could be used to turn off air conditioning, heating, and lighting after a grace period. Remote 

shutoff can be enabled through networked devices or smart electrical terminals. The number of network-

enabled devices is growing at a compound annual rate of 25% (James, 2014). The emersion of devices 

that support network communications will add to the cache of controllable devices. 

The opposite of remote shutoff also holds true. Devices could be linked together in workflows to 

enable group activations. Such activations could be performed using device states by interpreting 

disaggregated signatures. This would allow automation that is driven by device processes rather than 

on/off states. For commercial applications, there may be an opportunity to create interoperable systems. 
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For example, a printing press changes speed once a print run is started. The initial make-ready process is 

much slower because it is used to prime inks and register offset images. The difference in speeds result in 

a change in power draw and could be used to run converters or have logs created in job tracking systems. 

Instead of having many devices on standby, disaggregation could allow a single device to trigger 

start-up at the level of an electrical circuit. A single circuit often distributes power to a zone or room in a 

building. Zone-based control would be possible, allowing entire areas to activate their respective devices. 

For example, a swipe card lock could enable current to all devices within a room. Networked devices 

could be used to allow complex logical states that are workflow-based rather than zone-based. 

Certification programs, such as Leadership in Energy and Environmental Design (LEED), assess 

buildings on their energy efficiency. Measurement and validation are used as rating criteria. Active 

monitoring and disaggregation allow for both aspects to be realized. Certification programs are only 

validating a premises for a snapshot in time (Lee & Burnett, 2008). Maintaining an electrical 

measurement and validation system can be provided using non-intrusive load monitoring (NILM). 

Through disaggregation, a building’s occupants and devices could also be assessed to dictate conservation 

initiatives. For example, without device specific data, the specific benefits of upgrading or replacing 

equipment is unknown. 

Through the analysis of device specific energy signatures, the devices state can be revealed. Not 

only the operational state (on/off), but also the device’s efficiency over time. Poorly operating devices 

consume more electricity due to friction and degrading components (Xudong et al, 1998). Increased 

consumption at various cycles could be used to indicate the specific components that are failing before 

equipment is permanently damaged.  

4. The Building Blocks of Disaggregation 

Disaggregation is made possible due to the unique electrical consumption patterns of devices. A 

consumption pattern can be based on power draw, functional or transient states, and frequency of use. 
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Each of these characteristics contribute to a unique device fingerprint that can be used by algorithms to 

isolate the device from the aggregate consumption reading, which is often captured through the use of 

induction clamps on a building’s main electrical lines. 

For example, a typical washing machine has a wash, rinse, and spin cycle. Each one of these 

cycles have a discernable consumption pattern. These changes in consumption reveal changes in a 

device’s operation mode and are referred to as transient states. Algorithms can use transient states to 

determine the current device operation mode and instigate the past and upcoming cycles. There will be 

some consumption variances between manufacturers and how a machine handles common programs, such 

as; delicates, permanent press, cottons, and so on. Variations would require training for a database to 

capture the appropriable device signatures to dictate disaggregation accuracy. 

  

Figure 4: Aggregate and disaggregated plots (figure from Elhamifar & Sastry, 2015) 

A good way to visualize disaggregation is through the use of blocks. Each block represents an 

individual devices signature. Blocks come in various shapes, sizes, and colours. The shape of a block 

would relate to the consumption as it varies over time. The shape represents the magnitude of 

consumption. Colours can be assigned to show device type. Aggregate consumption can be seen as a wall 

containing many coloured blocks. There is often more than one configuration that can be used to build the 
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wall. Disaggregation algorithms try to build an accurate representation of the wall when only being 

provided a silhouette of the wall.  

Whenever a new device transitions in terms of its consumption, a peak or trough occurs. These 

changes relate to the device’s components turning on or off. It can also relate to a change in functional 

states. For example, a washing machine switching from a wash to spin cycle. Changes in consumption are 

typically drastic for appliances with large power draws. Edges are formed by the sudden functional 

changes and create an ideal starting point to find matching signatures. 

The total initial draw of a device will have an equal reduction when usage ends. If a 60W bulb is 

turned on, the aggregate usage will reveal an increase of 0.5A on a 120V circuit. This consumption will 

be sustained for the entire duration the bulb is left on. Once turned off, there will be a 0.5A reduction in 

the aggregate consumption. If the bulb is the only item in use, it’s very easy to see the point in time where 

it switches on and off.  

When multiple bulbs are turned on or off, there is no way of discerning which exact bulb was 

involved. The complexity of disaggregation is compounded when many 60W devices are in use or there 

are appliances that have 0.5A fluctuations in their consumption as they change states. Unless additional 

information is provided to a disaggregation algorithm, accuracy will remain low for devices with similar 

consumption signatures. 

Hart (1992) proposed the use of a Zero Loop-Sum Constraint (ZLSC). The premise of ZLSC is 

that all devices will always have an equal increase and decrease in power consumption throughout their 

use. If a device draws 10W when in use, then we will observe a -10W drop when not in use. This is 

applicable to all transient states a device may have. Comparable to the conservation of energy law, ZLSC 

can be used as a method to account for multiple devices when disaggregating. 
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4.1. Power Draw 

Power draw is based on the appliance’s consumption. An algorithm may use additive 

consumption to detect a device for the duration it is on. This works for devices that have a consistent 

power draw for each usage case. 

Another method is to use the spike in consumption that occurs when a device turns on. This is 

often found with devices that require more energy to overcome inertial forces such as motors and heating 

elements (Hart, 1992). These types of devices can be modeled as linear. Real and reactive power can also 

be used to detect devices.  

 Real and reactive power are two distinguishing characteristics of a device. Real power 

occurs when resistance dissipates power while voltage and current remain in phase (Kelly & Knottenbelt, 

2011). Reactive power in contrast borrows and returns power to the AC source but the voltage and current 

are out of phase from each other. 

4.1.1. Real Power 

Real power is found in devices that are resistive or use electricity with a resistant element to 

produce heat or light. When such a conversion occurs, the characteristics of this conversion can be 

detected and used to model to a device accordingly. Sub-characteristics of a device’s real power can be 

noted over time. These can assist when differentiating devices from one another. For example, resistance 

can increase or decrease over time. A light filament’s resistance increases in relation to heat while a 

heating element stabilizes once the threshold temperature is reached (Hart, 1992).  

4.1.2. Reactive Power 

Devices that step down or drop voltage exhibit reactive power. The unit of measurement is Volt-

Amps-Reactive (VAR) and is represented by the letter Q. Reactive power occurs in inductive loads that 

are stored and discharged. Devices containing motors, transformers, or solenoids exhibit reactive power 
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(Piotrowski, n.d.). Although the energy used is stored and dispelled back into the system, it causes 

returning electricity to be out of phase. 

4.1.3. Harmonics 

Certain devices inject electrical anomalies into the alternating current power system known as 

harmonics. Electricity in North America is delivered at 60Hz and harmonics occur at intervals that are 

multiples of 60 (Ling & Eldridge, 1994). There is some distortion inherent to electricity that is created 

during generation, but this varies between 1% and 2% (Sankaran, 1999). Harmonics are created by 

devices such as battery chargers, computers, and motors with variable frequency drives. These devices are 

described as non-linear because the voltage distortions created are at particular frequencies above the 60-

hertz range. Because the distortions occur at frequencies that are multiple of the standard, they can be 

more readily isolated and used to characterize a device.  

A Fast Fourier Transform (FFT) allows for information in the time domain to be adapted to the 

frequency domain. Through this method, we can reveal devices that produce harmonics (or any other 

characteristic frequency signature). Electrical data being captured must be at a sample rate much greater 

than 60Hz for this method to be useful. Due to the sample rate being higher than what is generally 

available through monitoring devices, it is difficult to rely on harmonics for signatures unless specialized 

monitoring hardware is used. 

4.2. States 

A state (in the context of energy disaggregation) can be described as a steady consumption 

pattern over time. A standard light would exemplify a binary state (dual state of ‘on’ or ‘off’). Multiple 

states can also be found in devices such as room fans, where a user is able to select different speeds. As 

long as the fan’s motor functions in a steady state, a pattern can easily be deciphered from aggregate 

consumption data. Transient states are found when a device has multiple cycles. Washing machines and 

dish washing machines both have multiple states in each of their programs. The difficulty in 
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disaggregating devices with transient states is due to the length of each state being dynamic in terms of 

duration and power draw. To overcome accounting for transient states, ZLSC can be used to balance the 

sum of power changes by ensuring total of all state transitions are equal zero. 

4.3. Frequency of Use 

Frequency based identifiers work well for devices that contain a switched-mode power supply. 

These are byproducts of modern devices that release harmonic distortions into the electrical grid within a 

building. They may also have transient states and programmed cycles. Examples of these devices are 

computers and low voltage DC devices that convert alternating current. In order to analyze the 

consumption patterns of switched-mode power supplies, the time-based consumption readings must be 

converted into frequency-based readings. Using a Fourier transform and a sufficient sample rate to reveal 

harmonics are requirements for this to be possible. Ideal rates are 60Hz for low-order harmonics and over 

1MHz for high-order harmonics (Armel et al, 2012). 

5. Algorithms for Disaggregation 

5.1. Factorial Hidden Markov Model (FHMM) 

Developed in 1906 by Andrey Andreyevich Markov, the Markov Model is used to reveal patterns 

within stochastic or chaotic data chains. The key characteristic of a data chain is its capture over a period 

of time. The preceding and succeeding data fragments have a relationship and therefore can be used to 

create a baseline for comparison. It is an opportunity to filter outliers and develop the underlying pattern 

that is trying to be modelled.  

A Hidden Markov Model (HMM) is used for calculating multidimensional probabilities when 

there are a number of observable states (Kouemou, 2011). Each state is a part of a chain of segments. We 

are analyzing an excerpt of the overall data chain and comparing data segments to future and past 

segments to extrapolate states. Therefore, we have no baseline function from which to build a start and 
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end state. Instead, we are modelling a function that comes as close as possible to the real function. The 

calculations are based on probability and therefore are meant to infer what is observed from the data 

collected. The Viterbi algorithm is then used to predict the outcome or resulting state (Ghahramani & 

Jordan, 1997). 

An analogy for the HMM would be to consider a taxi picking and dropping off passengers at 

various locations throughout a city. The pickup and drop-off locations are known along with the time 

taken to complete the journey. The possible route taken for each journey is unknown but can be 

determined by calculating the time for each possible route. Approximate route time for each variation is 

then used to calculate probabilities for each possible route according to how close it is to the expected 

travel time. 

HMM is an efficient yet simple machine learning method for classification of a single appliance. 

Using HMM is unrealistic because multiple devices need to be found in an aggregate reading. HMM 

works well for single device searches in the aggregate. For energy disaggregation, the Factorial Hidden 

Markov Model (FHMM) is employed because it can account for multiple independent relations. FHMM 

avoids the complexities involved with using HMM to reveal several underlying signatures. For FHMM, 

each signature or device is considered to be a chain in parallel to one-another at the cost of precision 

(Mackonin, 2009). Hidden state estimation is performed using a process such as Gibbs sampling (Kim et 

al, 2011). The resulting accuracy for this method alone is approximately 65% (Kolter et al, 2011). To 

improve disaggregation accuracy, it is not practical to rely solely on FHMM. A characteristic of FHMM 

is that a state occupancy duration is constrained to be geometrically distributed (Kim et al, 2011). 

Between 69-98% accuracy on 10 homes was achieved using FHMM, CFHMM, CFSHMM, EM, 

and MLE (Kim et al, 2010). Using variations of FHMM, DFHMM, AFHMM, and a custom Additive 

Fractional Approximate algorithm, 71% accuracy can be achieved (Kolter et al, 2012). Another 

combination of FHMM, FSM, and VAST could be used to achieve an accuracy of over 87.2% on major 

appliances (Kolter et al, 2012).  
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5.2. Artificial Neural Networks (ANN) 

Neurons are specialized nerve cells found in the brain that use electrical and chemical signals. 

The way neurons are connected to one another has inspired the machine learning method known as ANN. 

Modelling a neural network requires a real value weight, an activation function, input connections, one or 

more hidden layers, and an output layer (Xu & Milanovic, 2015). The real value weight is a number 

between 0 and 1 inclusively and is used to quantify connections between neurons. Activation functions 

allow neurons to be triggers if the sum of input connections meet a predetermined threshold. The output 

from a neuron is used as inputs to neurons connected to subsequent layers. The number of layers is 

determined through training or manually adjusted. The output layer is the final layer in the neurons where 

an observable output is provided. 

 

Figure 5: Feed forward ANN (Xu & Milanovic, 2015)  

After outputs are observed, training must take place to improve ANN accuracy. The 

backpropagation algorithm is used to train ANN (Siau, 2004). This measures the expected output relative 

to the resulting output. Errors at each neuron are measured and provided an adjustment factor. Training is 

a manual procedure that is required to correct errors. As devices are added to the system, further training 

is required. The result is disaggregation accuracy that greatly drops below 40% when greater than three 

devices are added (Chang et al, 2009). 



 20 

5.3. Support Vector Machines (SVM) 

SVM is the strategy of determining the line with the greatest margin between recorded signatures. 

This is known as optimal line separation. By determining margins, signatures can be differentiated during 

training. For actual data, margins are calculated again to classify signatures found in aggregate. SVM 

performs this task efficiently for small datasets (Marsland, 2009). 

Figueiredo et al (2012) was able to achieve 96.4% accuracy using SVM for 6 household devices 

using a low sample rate. By testing various SVM and k-NN combinations, they were able to further 

improve the algorithm to 99.1% using a combination of 5 nearest neighbors (5-NN). Due to the low 

sample rate, the algorithm worked well for major home appliances, but further testing would need to be 

done to assess their algorithm on faster sample rates and a larger range of devices. 

5.4. Nearest Neighbour (k-NN) 

Through the measurement of distance between data, the nearest neighbour algorithm rates data to 

training data. Therefore, k-NN is an algorithm requiring supervision to be implemented. When classifying 

data, k-NN uses a distance calculation to vote which signature is the closest match. The k-factor is used to 

determine the search output. If there are several signatures that are a close match, a k-factor of 3 would 

return the single closest signature. When set to 5, the result is based on the majority vote of the closest 

neighbours (Makonin, 2012). On its own, k-NN does not perform well for disaggregation. It can detect 

major appliances, but requires extensive training and adjustments to k. 

5.5. Dynamic Time Warping (DTW) 

Developed for linear sequences, DTW originated as a speech recognition algorithm (Sakoe & 

Chiba, 1978). DTW approaches comparison through the measurement of similarity between sequences. 

Warping refers to the non-linear comparison that is made possible by the algorithm. The shape of a series 

in terms of magnitude (y-axis) is what matters more than the location of a point in time (x-axis). This 
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makes DTW ideal for speech and handwriting recognition, and signal disaggregation. Implementing 

DTW for disaggregation requires the algorithm to run after event detection is completed. A recognition 

accuracy of 85% can be obtained using DTW for disaggregation (Elafoudi et al, 2014). 

6. Disaggregation Workflow 

6.1. Measure Aggregate 

Measurements are obtained at a defined interval in aggregate from the mains. The sample rate is 

dictated by the hardware and software in use. Data is often stored locally and polled or posted to an 

external server in batches for processing (TED, 2010).  

6.2. Store Aggregate Reading 

Although raw data may be captured at a high frequency, it may be unnecessary to store high-

resolution data once harmonics are revealed. The primary reasons for this are overhead and the user’s 

needs. Storing data in 1-second increments is sufficient for review and targeting large appliances. The 

actual storage procedure should batch intervals together, compress, and transmit data to an external 

database to reduce network traffic. This is especially important when the database is being stored offsite. 

Therefore, a local buffer is needed to batch intervals together and perform the initial pass. 

6.3. Initial Pass 

Raw aggregate readings require several operations before being run through segmentation. The 

first is normalization, which is used to compensate for problems that occur during the delivery of 

electricity. These include external factors such as fluctuations in voltage. Another aspect of normalization 

is splitting the two legs of the 120V circuit that enter as 240V in North America. The second step of the 

initial pass is to remove noise and amplify the readings so the segmentation process can be more accurate.  
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6.4. Data Segmentation 

Edge or event detection is used to determine when devices on the aggregate readings are 

changing states. This information is used to break signatures into pieces that are comparable to the 

existing signatures in the database. It is beneficial to store segment timestamps for recall when a device 

signature spans multiple segments due to transitions in states. 

6.5. Signature Matching 

Segments are processed through cluster analysis (Kouemou, 2011). In this stage, FHMM or 

comparable algorithms are used to disaggregate individual device states. Hints from the database of 

existing signatures can be used to detect transient states and harmonics. Devices should be matched 

within a tolerance of ±10% because of the expected voltage variances. This may be adjusted depending 

on how well the initial pass removes variances in advance. 

 Once a match occurs, the device information is stored into the database. This information 

is used to educate the user when they are reviewing their consumption statistics. 
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Figure 6: Mockup showing disaggregation workflow 

7. Furthering the Workflow 

Additional steps can be taken to improve signature classification and conservation efforts. The 

goal is to grow the database of signatures over time in order to create a system that is increasingly 

adaptive and accurate. Such an improvement would allow for an opportunity to educate the user in real-

time on their behaviours and develop strategies that guide conservation efforts according to detected 

trends. 
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The standard protocol is to turn all devices off and classify the signature of each device, or use a 

separate piece of hardware, such as a plug, inline with the device’s circuit. These standard methods are 

time consuming and require a user to be actively involved in the process of capturing device signatures. It 

is important to also consider that the property would experience downtime of all equipment while training 

is taking place. Any additional users would need to coordinate their use of electricity so as to not 

contaminate the trained signatures. 

This paper proposes an asynchronous, less involved approach to classifying unknown signatures. 

Some training is necessary especially for the signatures of major appliances that are known to draw 

significant electricity. Fridges, stoves, washing machines, clothes dryers, microwaves, and air 

conditioners are examples of these appliances. These major appliances account for 60% of residential 

energy consumption (Hart, 1992). Providing these signatures have been captured, we are left with the 

remaining signatures of several low-power devices and a handful of mid-power devices. Low-power 

devices consume less than 50W, such as: lighting, security cameras, proximity or IR sensors, and key 

fobs. Televisions, sound systems, game consoles, and projectors constitute mid-power devices which 

consume less than 500W. 

The storage of unmatched edges can follow the storage of matched signatures. Since each edge 

describes a device transition or on/off state, it can be used as an opportunity to classify a device for future 

comparisons. A user would need to intervene and provide device information to the database. This step 

can take place real-time when a new device comes online or when a user is reviewing their aggregate 

usage over a period. All newly categorized signatures are centralized for other users to benefit from the 

knowledge contributed by the community. 

A crowd-sourced approach to signature classification would require the following considerations: 

1.   Calibrated hardware 

2.   NILM Hardware with greater than 1Hz resolution 
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3.   Details on device characteristics 

4.   Consensus  

 Calibration is an important step in configuring the device for use in a crowd-sourced 

approach. The expectation is that there will be a 10% variation in the voltage being delivered to the 

premises (Hart, 1992). If hardware is incorrectly calibrated, the variation may be amplified. Because edge 

detection requires a threshold to reveal a device changes state, variations in delivery may also set off false 

positives in the edge detection algorithm resulting in invalid signature captures. It is not only inefficient to 

try and classify an invalid signature, it is also detrimental to the entire disaggregation system because an 

increased number of signatures requires a greater amount of processing to search for a best match. 

By having the user provide device characteristics, the classification algorithm can use this 

information to predict on/off and transient states. The features can also be used to infer how often the 

device is in use, usage duration, standby state, autonomous usage over a period (turns itself on for 

maintenance), and the number of states. The makeup of a device would reveal parts that contribute to the 

consumption pattern, such as motors or resistive components that give off harmonics. A combination of 

device harmonics, usage durations, power draw, and operating states allow an algorithm to develop a 

device profile that can be used for search, comparison and classification. 

Consensus or quorum allows a signature to be vetted before being used as a truth for all users. 

Some users may improperly classify a signature to a particular device. When a signature is initially 

classified, it is saved as a hint to direct other users in the validation process. Should other users agree with 

the classification, the probability of the signature being an accurate match increases. As more data is 

collected, the types of matches found would increase, but may also cause multiple matches for a single 

unknown signature. Therefore, the number of users to reach quorum to classify a device is an important 

consideration. The opinion of 4 users can be taken to emulate a single expert user (Snow et al, 2008). 

Therefore, when 4 confirmations of a signature are received, we can use the match to automatically 

classify the device for other users encountering the same signature.  
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There will be cases where consensus improperly matches a signature. Users coming across this 

issue will need to reclassify the device. The change would result in another hint if the new classification 

does not exist in the database. Once again, 4 users in total will need to agree with the classification before 

the device will be automatically classified for future users. The variations between the 2 similar signatures 

will need to amplified to improve categorization in the future. In a case where the consumption patterns 

do not vary for the devices, the system would need to recall past classifications (if any) from the user and 

use those as a basis for future categorizations. This means if 2 devices (A and B) have the same signature 

and a user classifies their signature as device B, all future matches would automatically be classified as 

device B without requiring further intervention by the user.  

The outcome of this process is to provide the user with historic trends for the device, allowing 

them to intervene and conserve energy. Having accurate classification when there are multiple variations 

of the same signature reduces issues associated with having to search and locate devices in a property. In 

turn, users are enabled in taking action because the information needed to make conservation decisions is 

clearly communicated. 

7.1. Workflow Using Crowd-sourcing 

1.   Unknown signature detected (or possibility thereof - due to edge occurrence) 

2.   Signature stored for classification as a hint with timestamp 

3.   Device details are input by user 

4.   Quorum is achieved  

5.   Autonomous classification occurs for all users 

6.   New hint is created when user tags a wrongful classification  

7.   Quorum for new hint is achieved 

8.   Variation in 2 potential matches is determined and stored 

9.   Autonomous classification occurs for all users 
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Figure 7: Proposed Disaggregation workflow with external datasets, notifications, and quorum 

Although the user may not know the particular consumption pattern of a particular device, some 

characteristics can be provided. The power supply often denotes the voltage and amperage. The user 

could also classify whether or not the device has multiple modes of operation, number of usage states, 

resistive, or releases harmonics. To simplify classification, the device could be categorized so these 

properties can be inferred. The user could also determine their typical usage in regards to time-of-day and 

duration. A brief survey of the components (motorized, resistive, computerized) can lead the database to 

capturing the device in the future. Without some form of training to capture a device signature, a survey 

on its own will not result in accurate disaggregation. Instead, survey results can be used when 

uncategorized signatures are detected. 

Users contributing categorization information are able to derive context through the use of 

timestamps. The moment in time where a device is in use provides users with an opportunity to recall 

what was in use. This coupled with disaggregation information of matched devices can increase the 

chances of accurately matching the device in use. Without having user context present it is much harder to 

determine what the device is purely based on an energy signature. Therefore, the relationship of time and 
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device usage allows the user to provide their understanding of their environment in order to categorize an 

unknown device. 

Another opportunity to further device detection is notifications through a smartphone or other 

network enabled device. Asking the user as soon as an unknown device is detected would improve 

categorization while adding signatures to a centralized database. Other users can benefit from that shared 

intelligence. Finally, an interface could be created to allow the user to categorize unknown devices during 

a review process. 

8. Integrating External Datasets 

To improve the probability of categorizing a detected signature, contextual information from 

other sources can potentially aid in improving accuracy. In order to provide context to an algorithm, an 

external dataset provides hints that can be used to change the weights of probabilities associated with 

particular signatures (Kim et al, 2011). The simplest dataset could rely on the probability a particular 

device may be in use at a given time of day. This is an example of what George Hart describes in his 

algorithm that references time of day, duration, and idle time (Hart, 1992). There are many other datasets 

that can be cross-referenced to improve disaggregation. This paper will analyze the process of creating 

datasets and concepts of how these datasets can be applied to improve accuracy. Additionally, the process 

of solving unknowns arising from the disaggregation process will be discussed. 

8.1. User Habits and Trends 

Recurring events occur at all homes and businesses throughout the day. These trends are more 

apparent for homes and businesses with set work routines. Tracking trends and cross-referencing them to 

electrical consumption would be one method to create an external dataset. Any datasets that relate 

influences on user behaviour to consumption can be used to infer device usage. Certain datasets are 

directly related to user actions while others are linked to actions. For example, a direct result of turning on 

a smart TV would be a connection to the network to check for a software update. The action of turning on 



 29 

the TV could therefore be cross-referenced with network traffic and validated to the aggregate reading. 

Although this would verify the TV is in use, the TV does not always make this request. Therefore, a 

separate dataset, such as the user’s favourite cable or over-the-air broadcasts could be used to predict 

when the TV is most likely in use. This dataset would need to be provided by the user using their Internet 

Movie Database (IMDB) profile or the TV Guide website. 

Overall, a habits-based dataset would need to be active only when the user is on site. Tracking 

real-time geographic locations would be a good indicator of active device use versus maintenance or 

standby device usage. Devices that contain microcontrollers often turned on without user intervention to 

request software updates or perform routine maintenance or surveillance. Outdoor lighting, security 

cameras, sprinkler systems, and network-enabled devices would be examples in this category. By 

referencing a user’s geographic location, an algorithm can determine if the user was not involved in the 

activation of the device and therefore the device was running autonomously. When multiple people use a 

particular location, knowing which particular user is on-site can help target the correct habit-based 

dataset. 
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Figure 8: On vs. off durations for common home appliances (figure from Hart, 1992) 

Sequential events and usage trends can both contribute to a habits-based dataset. A sequential 

event takes place when the use of one device is followed by the use of a different device with a high 

probability. A disaggregation algorithm to improve choices when multiple matches exist for an event can 

use the correlation of use between multiple devices. 

Usage trends result from use cases of devices. Some factors relating to a device use case are time 

of day, date (weekend, weekday, holiday), on duration, off duration, number of people onsite, and 

frequency of use. There are some devices that may turn on and off for a few minutes throughout the day. 
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Other devices may be left on in the morning, while others are typically used on weekends. Standard usage 

trends can be developed using typical use scenarios for locations by their function. For example, a washer 

and dryer would be used primarily on a weekend at any point during the day. In contrast to a washer, a 

dishwasher may be run daily in the evening. To further standard use trends, a residence would have a 

different profile to a call centre due to the tasks performed, type and number of devices on site, and 

number of people. 

Using a sequence of events, the habits dataset could be enabled and disabled. For example, If 

using the coffee machine is followed by the garage door opening and closing, the habits dataset can be 

disabled. To improve the logic of toggling a habits dataset, devices that reveal a user active on-site can 

signal if the dataset should be enabled.  

Models for presence detection could be made irrelevant if an alarm system’s state is made 

available. A typical alarm system has three states; away, home, and disarmed. These three states can be 

simplified to two because the disarmed state does not provide any information about the users that are 

onsite. Ideally, we would use the energy signatures of an alarm system to indicate the system’s state, but 

this is not possible because a system transition does not reveal a transient energy signature. Another input 

would be required to capture a system state change. Therefore, a network connected alarm system would 

be ideal for this occasion. 

8.2. Conceptual Workflows for Context Awareness 

Context can also be introduced through location awareness, of which there are 2 methods 

available. The first would require a user’s location to be tracked, while the second would rely on device 

tagging, eliminating the need for a user’s positional information. The goal of location awareness could be 

twofold. The first is to reveal a devices location so conservation efforts can be targeted to a specific 

device. The second is to allow the user to categorize or tag a device for future tracking and signature 

classification. In most cases, it is cost prohibitive to monitor individual devices because additional 
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hardware is required. The alternative is to minimize the impact by using the tracking capabilities of other 

systems. Through a user’s positional information, devices the user interacts with can be noted. If device 

characteristics match changes to aggregate readings, it can be assumed the device is in use. 

Geo-fencing or tracking a user’s location in relation to a geographic boundary could be used to 

limit the number of signatures used for analysis of aggregate consumption. A catalogue of devices by 

location would need to be built to augment disaggregation with user location awareness. It is not 

necessary for a catalogue to be built in advance to implement disaggregation, instead a user could use a 

mobile application to tag and build the database of devices. A workflow involving the user in the system 

would enhance conservation efforts. 

Integrating a location awareness database into a disaggregation workflow could allow servers that 

process data to run more efficiently and accurately. Knowing which subset of signatures to use in an 

initial search would reduce the pool of data. For signatures that are unknown, having user location 

information aids in the classification of an unknown signature. If the user’s position were related to the 

use of a device, they would be able to recall and tag the signature. Having location awareness associated 

with aggregate data provides the opportunity to conserve energy by targeting specific devices. 

Several technologies exist for implementing location awareness. The choice of which system to 

implement requires an assessment in regards to cost, accuracy relating location to device usage, user 

impact, complexity of integration, and ancillary benefits. This section will explore the methods used to 

track users within a building and focuses on their synergy with a disaggregation system. Although this 

paper does not contain an exhaustive list of location awareness technologies, it not only tries to cover 

systems that a business may already have present, but also focuses on emerging location awareness 

technologies and datasets.  
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Table 3: Location awareness technologies 

	   Prevalence	   Cost	   Accuracy	   Complexity	   Impact	   TTL	  

Alarm	  System	   High	   Low	   Binary	   Simple	   Low	   Short	  

Security	  Cameras	   High	   Medium	   Varies	   Moderate	   Low	   Short	  

Facial	  Recognition	   Low	   High	   Varies	   High	   Low	   Medium	  

Network	  Traffic	   High	   Low	   Device	   Low	   Low	   Short	  

WiFi	  Tracking	   Low	   Low	   <	  12cm	   Moderate	   Low	   Medium	  

Swipe	  Cards	   Medium	   Medium	   <	  7m	   Moderate	   Medium	   Short	  

Mobile	  Device	   High	   Low	   <	  300m	   Low	   High	   Medium	  

Beacons	   Low	   High	   ~3cm	   Moderate	   Low	   Short	  

Ultrasonic	   Low	   High	   <	  1cm	   Moderate	   Low	   Short	  

Habit	  Tracking	   Moderate	   Low	   Varies	   High	   High	   Long	  

External	  Datasets	   High	   Low	   Varies	   High	   Low	   Short	  

Sub	  Metres	   Low	   Varies	   Zone	   Low	   Low	   Short	  

Socket	  Tagging	   Low	   High	   Device	   Low	   High	   Short	  

 

For some location integrations, the user’s location may not be accurate to a particular device. 

Locations may relate to an area of the building, such as a zone or room. A disaggregation workflow 

would need to consider a user’s proximity to a device rather than a particular room. To overcome this, a 

database would need to allow reference to a related set of devices. Creating a dataset of devices by 

location is tedious and may not be a viable long-term solution. For locations where devices are often 

moved, it may not be possible to maintain a catalogue of device locations. 
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8.2.1. Alarm Systems 

A simple method to tracking a user's presence at a location is through an alarm system. These 

systems typically consist of a control panel, motion sensors, door contacts, window break sensors, siren, 

and a power supply. Newer systems provide smartphone applications for monitoring and control. Systems 

that provide API controls are ideal for integration with a disaggregation system because no modifications 

would be required. Low-end systems would require a control panel that is capable of sharing the system’s 

status. If motion sensor information is shared while the system is not armed, it can be used to determine a 

user’s location within a building. Since motion sensors are not available in all rooms, their accuracy is 

limited to spaces where they are installed. Therefore, they may not be an ideal candidate for location 

tracking within a building. Another downside to motion sensors is that they lack direction, so it is not 

clear if a user is working within, exiting, or entering an area. 

Without access to motion sensors, security systems only provide onsite information for an entire 

location. If this information were made available, it would allow a system to dynamically select which 

devices are in use when people are onsite. Without unique control panel user codes, there is no distinction 

regarding who is onsite when the alarm is disabled, nor does it provide a user’s location within the 

building. For a multi-user location, the lack of detail does not assist with disaggregation algorithms. It 

does work well for a residential scenario where residents are generally away during the day. There is also 

a potential issue when the system is not engaged, yet users are not onsite. Therefore, an alarm system has 

the potential to augment an algorithm, but it is beneficial to look at other integrations to provide deeper 

location awareness. 

8.2.2. Security Cameras 

Installing a camera system varies greatly in cost depending on the type of technology (IP or 

analogue). Regardless of the cost of individual cameras, the software to process camera feeds is where 

location awareness can be communicated. This takes place at a DVR (Digital Video Recorder), where 
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software is used to store and interpret footage. Majority of DVRs have motion tracking and remote 

access. The camera feeds can be captured using third party software to allow for further processing.  

Tracking movement using a camera feed would indicate a user’s location, but it does not reveal 

identity. Similar to motion sensors, security cameras are unable to easily associate position. Therefore 

algorithms would not implement individual user habits, rather bias detection towards the devices that are 

contained within a specific camera monitored locations within the building.  In such a case, a 

disaggregation algorithm would need to associate a catalogue of devices to the location in which the 

motion was detected. 

Facial recognition when paired with location would provide details of the individual. If devices 

can be located on camera feeds, their location can further dictate the devices they are interacting with. 

These details can be used to track habits of individual so their trends can also be used to target a subset of 

device signatures. Since the individual’s details are being provided, an algorithm could then bias device 

usage is they have similar consumption characteristics. 

The downside is the cost and infrastructure required. Processing video footage real-time can be 

resource intensive and expensive. Most commercial locations have security cameras within the premises, 

so it may be possible to integrate third-party software. The IT requirements to support such a system may 

be out of reach for most businesses. This paired with camera coverage within a location would make it an 

expensive undertaking. 

8.2.3. Smartphone Location Tracking  

Using a mobile device’s location services would require a user to opt into the tracking system. In 

a commercial environment, it may be difficult to persuade employees to opt in to tracking. Unless mobile 

phones are owned and managed by the company, it may not be feasible. Therefore smartphone tracking 

would be ideal for residential users that are open to moving past privacy concerns to enable conservation 
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efforts. Aside from the installation of a mobile application, there is no additional infrastructure required to 

implement location based services (LBS). 

LBS on a smartphone use a combination of cellular, WiFi and GPS to work. A-GPS (Assisted 

Global Positioning Systems) are generally employed by mobile devices because they contain don’t 

contain a full GPS chip (Zendbergen, 2009). Instead a server-side proxy is used to interpret GPS signals 

and relayed to the mobile device. Beacons can also play a part in improving location accuracy and are 

covered separately in this section because they require additional infrastructure. WiFi is a ubiquitous 

network infrastructure and is remains a part of location services. There is an emerging technology that 

uses WiFi to sense movement in order to reveal location and implement gesture tracking. This technology 

is covered in WiFi Tracking. 

The use of location based services on a mobile device varies over a kilometre at times. This is due 

to the poor cellular coverage and a lack of cellular towers for triangulation. To overcome this, a building 

can employ a dense mesh of wireless access points (AP). The positioning capabilities of multiple 

networks provides geolocation within 5m (Mok & Retscher,  2007). This would be ideal for a practical 

application for disaggregation but is expensive to employ over a large multi-floor building. For 

metropolitan locations, the Place Lab project was able to achieve positioning within 15 to 40m (Cheng et 

al, 2005). 

Table 4: Comparison of location services by median error 

Type	   Median	  Error	  

GPS	   8m	  

WiFi	   74m	  

Cellular	  (3G)	   600m	  
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8.2.4. Swipe Cards 

In order to control entry points for security purposes, swipe card systems log a unique 

identification number for each user along with a zone ID that is associated with the swipe panel. These 

systems rely on a passive RFID tag or a magnetized strip that is embedded into a keycard. Implementing a 

swipe card system involved the cabling and mounting of panels throughout a premises. All panels 

communicate with a server that validates the keycard to a database containing all configured panels.  

Typical RFID-based swipe panels employ a low-frequency communication allowing for up to 

30cm ranges (Rieback et al, 2006). Systems that use higher frequencies in the 2.45GHz range allow for 

distances up to 7m. Longer distances could be used to actively check for an individual but cause door 

locks to open for other people if authorized users are in proximity to the sensor. An ideal case would be a 

panel that uses a low and high frequency. The low frequency communication would be used to authorize 

users, while the high frequency communication would be used for user tracking. 

Since the user and location database are already part of a swipe card system’s implementation, an 

appliance location database would need to be generated. Items in this additional database would relate 

location to the panel location IDs in the existing database. The subset of devices within the access area 

would then be given an increased probability of usage. Event detection algorithms would associate or tag 

events with access to a particular area. 

The primary downside relates to entry tracking. Swipe cards are generally one-way systems, 

meaning only entry is being tracked. They do not enable the active location tracking of a user, nor do they 

explicitly enable knowledge on device usage. Instead, all information is inferred. If a user swipes their 

card, it is expected they are entering and actively participating within the space beyond the entry point. 

There are cases where a user may swipe and decide not to enter. For those users that enter a space, over 

time their location would grow stale and the probability they are remaining within the area decreases. 

Using a panel for all entry and exit would eliminate this at the cost of the user’s ease-of-use.  
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8.2.5. WiFi Tracking 

Routers with multiple antennae that support multiple-input and multiple-output (MIMO) 

transmissions have the ability to track the reflection of signals to track movement. Line of sight is not 

required for wireless frequencies to be used as a tracking medium. A single antenna when used has the 

ability to sense a change in object position, but does not discern direction. This is achieved using the 

properties of the Doppler effect, or a wave’s change in frequency when the source moves relative to the 

observer (Gupta et al, 2012). When several antennae are used, object tracking in 3-space is enabled. As an 

added benefit, several moving objects can be tracked at once. WiFi tracking technologies would allow for 

disaggregation algorithms to benefit from user positioning as an input to improve accuracy. 

Wireless tracking by Wi-Vi and WiSee rely on the 2.4GHz transmission frequency and MIMO 

antenna configurations. WiTrack uses a low power signal that sweeps from 5.46-7.25GHz every 2.5 

milliseconds (Fadel et al, 2015). Although WiFi signals permeate solid walls, their accuracy is affected by 

building materials. Glass, wooden doors, and hollow walls cause a 1-way radio frequency attenuation 

between 3dB and 9dB (Cumberland, n.d.) . Concrete and steel have a greater impact, fairing over 18dB 

and 40dB respectively. Considering materials in use at a location employing this technology would be an 

important consideration. 

Gesture tracking is also enabled using Wi-Vi frequency tracking. Using the systems gesture 

tracking accuracy of 100% within 8m of the antennae, human-device interactions can be tracked (Adib et 

al, 2013). The WiSee system has an average accuracy of 95% using a single transmitter and four receivers 

(Pu et al, 2013). Setting this up would require training for every device. If a device is ever relocated, 

training would need to be performed again. Training could be an automated process if change events were 

linked with user locations and gestures. Over time, validating events by location could be used for 

autonomous tagging. Tags would allow a user to classify the event asynchronously. This would then be 

used to link an action to a particular device signature. 
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The three WiFi tracking systems mentioned in this section have not revealed the accuracy 

implications of a wireless mesh network spanning large areas. Without further testing, it is unknown if 

using 802.11 wireless signals are viable for a large facility. For smaller locations, using wireless signals to 

track movement and position may hold the key to location tracking. More research needs to be conducted 

on tracking users in multiple rooms using broadly located antennae or APs. 

8.2.6. Ultrasonic 

Ultrasonic systems are highly accurate for location tracking. Often placed in the ceiling, a 

hardware device known as a Mobile Positioning Device, or MPD, emits a pulse. The MPD or another 

receiver device calculates the pulse times-of-flight. Receivers are placed at known locations and relay the 

pulse measurements to a computing device known as a matrix manager. Through a process known as 

multilateration, user and object positions are revealed. The entire process is similar to a bat or dolphins’ 

navigation system. 

Ultrasonic systems such as the Active Bat can pulse up to 50 times per second. The positioning 

information it provides is accurate within 3cm 95% of the time (Madhavapeddy & Tse, 2005). Such 

systems would allow location data to be matched to device usage within a location, providing a matrix of 

MPDs and receivers is installed throughout the location. 

Similar to beacons, an ultrasonic system requires the installation and calibration of hardware. 

Although the unit price of receivers is low, the cost to run cables to a matrix of receivers over a large area 

would be justifiable simply for conservation efforts. 

8.2.7. Beacons 

Bluetooth enabled beacons require a user to carry a mobile device to detect position. The cost to 

integrate beacons is reliant on the square-footage of a building. Each beacon must be placed at location 

intervals that are determined by the manufacturers specifications. The detection of an individual 
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smartphone requires a process known as fingerprinting. Through this process, a user’s location can be 

determined to 3cm in 3D at 95% confidence (Fangher et al, 2014).  

The energy use of a beacon is relative low compared to WiFi. Therefore the impact to the end 

user is low while offering improved accuracy over a mobile phone’s location services. Installing beacons 

usually requires cabling to be run to each deployment. Wireless beacons are also an option, but replacing 

batteries is tedious. 

8.2.8. Network Traffic 

At a corporate and residential level, a gateway can be used to analyze network traffic. Cross-

referencing network data with device consumption information can be used to validate the device in use 

through its media access control address (MAC address). Since a MAC address is a unique identifier, it 

provides information on the manufacturer and can be traced back to an individual device. This match is 

ideal for network enabled devices such as computers, smart TVs, printers, and network hardware.  As 

more devices are network enabled, it will be possible to track the usage of lights, kitchen appliances, 

electrical sockets, and more.  

Accuracy in the case of network traffic may be impacted by the delay in communication. 

Network interfaces often take time to come online when a system is turned on. A disaggregation system 

would need to take this into account and track the duration a MAC address is online relative to the 

aggregate consumption edge detection. In the case of a desktop computer booting up, it may take over a 

minute for a network interface controller (NIC) to come online, while shutdown may take place 

immediately. It would be necessary for a disaggregation algorithm to account for temporal variations in 

network traffic relative to electrical consumption. 

 For devices left on standby, their NIC may be online the entire time to allow for wake-on-LAN 

protocols or scheduled updates. In these cases, the number of frames being transferred to the device 

would reveal its state. Since Ethernet frames are sent with MAC address information within the headers, it 
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would not be difficult to track active usage versus standby usage. However, racking standby usage can 

also be used to reveal vampire power. The actual magnitude of a device’s consumption in standby mode 

may not be revealed without sub-second readings. However, it may be noted that the device is an active 

contributor to the noise floor. 

To integrate a disaggregation system with a network traffic analysis would require a router or 

firewall to be configured to share a portion of layer 2 communications. The raw network data would not 

be needed, just a portion of frame headers. An Ethernet frame has 8 parts consisting of a preamble, start 

frame delimiter, destination and source MAC address, frame length, data, padding, and checksum 

(Mackenzie, 2011). The only item required is the source MAC address originating from the device along 

with a timestamp. An open firmware could be modified for this task or a piece of hardware installed at a 

cost of under $100. The impact to the end user would be negligible.  

9. Conclusion 

9.1. Summary of Findings 

Accurately disaggregating energy through NILM has the potential to improve our conservation 

efforts. The adoption of smart metres in homes and businesses produces a timely opportunity to harness 

the data being produced. The downside is that sampling rates of smart metres are not detailed enough for 

the use of disaggregation of more than 8 appliances. Unless hardware and firmware changes take place, 

the data produced will only allow for lighting and mid-size devices. In cases where high-efficiency 

appliances have already been installed, the next step would be to tackle moderate and low powered 

devices that significantly contribute to consumption in both residential and business environments. Small 

electric devices, heating elements, and motors account for 27% of residential consumption. When paired 

with lighting, entertainment systems, and computers, the total is 47% (UEIA, 2015). 
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Advances in disaggregation algorithms continue due to work being done in image and audio 

source separation. There is no doubt that accuracy will improve but unless context can be provided, it 

may be unfeasible to expect consistency. Either sampling rates need to exceed 60Hz, or external datasets 

need to be included. APIs can be used to access datasets, but efforts need to be made regarding the 

integrating and development of logic to support this addition.  

From the research conducted, it appears CFHSMM is an algorithm suited for disaggregation. Its 

allowance for external contextual datasets while keeping computing requirements low is ideal for 

disaggregation. Coupling context with a crowd sourced database of device signatures would enable a 

large number of devices to be detected without engaging the user in a training process. Another 

consideration is the low sample rate available with smart metres. If sample rates are increased to allow for 

harmonic analysis, it may not be necessary to include contextual datasets. The detail and accuracy offered 

by algorithms processing high-frequency samples would require a shared signatures database and device 

locations. Having this information would improve classification and targeted conservation efforts. 

9.2. Future Considerations/Research 

A practical application of crowdsourcing signatures for disaggregation should be conducted. 

Determining quorum, number of false positives, database growth rate, and creating a database of 

signatures would further research disaggregation development. It would require more people to adopt 

open monitoring systems that allow for changes to hardware and software configurations. 

Since smart metres are being provided to customers at low costs, the customer is denied access to 

modifying the hardware. Until utility providers see the value in higher sample rates, it will be up to the 

customer to find a work around. The only viable alternative to smart metres for NILM is the induction 

clamp. Pairing clamps with software through the open-source community and private sector enables the 

general user to access the power of disaggregation. The process is not as easy as it should be, but there 

have been many advances in this aspect. 
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There is still the opportunity to refine the accuracy of classification algorithms such as ANN, 

DTW, SVM, k-NN, and FHMM. The situations in which one algorithm should be used over another 

would reveal no single combination of classification, training, and event detection workflows will work as 

a one-size-fits-all solution. Instead, testing needs to be done to dynamically select algorithms according to 

a location’s profile. It may be that the device generating data will dictate the ideal workflow to use.  

The increasing adoption of network-enabled devices may allow for tagging or external datasets to 

be generated. It will take time for this class of devices to work with a disaggregation system. The question 

of interoperability would be paramount to having a fully integrated disaggregation system. Providing an 

standard is created and adopted by manufacturers, network enabled devices may come with the added 

benefit of remote control. Chaining devices together would allow for area or process driven automation. 

Technological breakthroughs and the penetration of energy monitoring systems may lead to a 

large improvement in conservation efforts. The improved efficiency in appliances coupled with users 

changing their habits will help lower usage, but history reveals there is often an opposite effect. Even with 

lowering resource usage, the growing population and demand continues to increase. Jevon’s paradox 

described the soaring consumption of coal in England in the 19th century (Alcott, 2005). Due to the 

efficiencies created by James Watt’s coal-fired steam engine, travel became more affordable. People 

travel more often and further than ever before. Through the replacement of equipment with energy 

efficient equivalent, the paradox is that their usage increases and we as a global population install more 

products. 
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