
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

Inventory control in a two-level supply chain with
learning, quality and inspection errors
Mehmood Khan
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Khan, Mehmood, "Inventory control in a two-level supply chain with learning, quality and inspection errors" (2010). Theses and
dissertations. Paper 740.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/740?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca


INVENTORY CONTROL IN A TWO-LEVEL SUPPLY 

CHAIN WITH LEARNING, QUALITY AND INSPECTION 

ERRORS  
 

 

by 

MEHMOOD KHAN 

Bachelor of Engineering in Mechanical Engineering 

NED University of Engineering & Technology, Karachi, Pakistan, 1997 

Master of Science in Systems Engineering, 

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, 2000 

 

A dissertation presented to  

RYERSON UNIVERSITY 

 

in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in the program of 

MECHANICAL ENGINEERING 

Toronto, Ontario, Canada, 2010 

©Mehmood Khan 2010   



(ii) 
 

  



(iii) 
 

Author's Declaration 

I hereby declare that I am the sole author of this thesis or dissertation. 

I authorize Ryerson University to lend this thesis or dissertation to other institutions or 

individuals for the purpose of scholarly research. 

 

 

Mehmood Khan 

 

 

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or 

by other means, in total or in part, at the request of other institutions or individuals for the 

purpose of scholarly research. 

 

 

Mehmood Khan 

 

  



(iv) 
 

Inventory Control in a Two-Level Supply Chain with Learning, Quality and 

Inspection Errors 

 

PhD 2010 

 

Mehmood Khan 

 

Mechanical Engineering 

Ryerson University 

Abstract: 

A common measure of quality for a buyer or a vendor is the defect rate. Defects may 

represent an attribute, a dimension or a quantity. They may be classified as product quality 

defects or process quality defects. Product quality defects may be caused by human error which 

can be due to fatigue, lack of proper training, or other reasons. For example, an inspector may 

misclassify a defective fuel tank of a car as good. On the other hand, process quality defects 

maybe caused by a machine going out-of-control.  

While many researchers assume that the screening processes which separate the defective 

items are error-free, it would be realistic to consider misclassification errors in this process. 

Beside inspection errors, learning is another human factor that brings in enhancement in the 

overall performance of a supply chain. Learning is inherent when there are workers involved in a 

repetitive type of production process. Learning and forgetting are even more important in 

manufacturing environments that emphasize on flexibility where workers are cross-trained to do 

different tasks and where products have a short life cycle.  

Inventory management with learning in quality, inspection and processing time will be the 

focus of this thesis. A number of models will be developed for a buyer and/or a two level supply 

chain to incorporate these human factors. The key findings of this work may be summarized as  
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1. Inspection errors significantly affect the annual profit. 

2. An increase in the unit screening cost reduces the annual profit to a great extent at slower 

rates of learning. 

3. For the two-level supply chain we investigated, learning in production drops the annual 

cost significantly while the learning in supplier’s quality results in a situation where there 

are no defectives from the suppliers.  

4. Type II error may seem to be beneficial for a two level supply chain as the order/lot size 

goes down and thus affects the costs of ordering, production and screening.  

5. Consignment stocking policy performs better than conventional stocking when holding 

costs go higher than a threshold value. 
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CHAPTER 1 BACKGROUND OF THE RESEARCH 

 

1.1 Introduction 

 The use of the economic/production quantity (EOQ/EPQ) model has been quite popular 

among researchers and industries for the last hundred years (Simpson, 2001). This model is 

essentially a summary of ordering/setup and holding/carrying costs in a vendor/buyer setup/order 

that presents an economic order/lot size by balancing or trading off these costs. Although this 

model has been widely cited, accepted and utilized, it has several weaknesses (e.g., Jaber et al., 

2004). The inherent idealistic assumptions claim there is a perfectly steady demand known with 

certainty and all the items received from the suppliers are of a perfect quality (e.g., Jaber, 

2006b). These assumptions initiated a huge arena of research for many in the industry and 

academics. The result was a vast literature that studies the basic EOQ/EPQ model under real life 

situations, e.g., Porteus (1986b), Rosenblatt and Lee (1986) and Silver (1976).  

 Another challenging aspect of the above model is ignoring the role of human factors like 

inspection errors, fatigue and learning (both in production and quality). These factors have never 

been modeled in the context of supply chain management though they play a vital role in 

measuring the performance of a supply chain. That is, although the impact of learning has been 

studied in production (Salameh et al., 1993 and Jaber and Bonney, 1999), its combined effect on 

screening and production in a two-level supply chain has never been studied before. Besides, an 

effective depiction of these human factors helps to ensure quality in a global supply chain where 

the cost of a defective item is relatively higher.  

 Human errors in inspection are found in the literature for single sampling and repeat 

inspection plans. These errors can be fatal in the case of some critical components, for example, 

parts of an aircraft or a complex gas ignition system. Repeating the inspection process is believed 

to reduce the effect of human error at a nominal increase in the inspection cost (Swain, 1970). 

The other prominent literature in the prevailing line of research is Bennett et al. (1974) for single 

sampling plan (Raouf et al., 1983) for repeated inspections for multicharacteristic components, 

and Duffuaa and Khan (2002) for repeated inspections with general classifications.  
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 Another interesting human aspect that is important in the area of inventory management is 

learning. This aspect is not new in determining the optimal lot sizes (Jaber and Bonney, 1999), 

but it has yet to gain its due place in the supply chain models (Jaber et al., 2010). Learning is 

inherent when there are workers involved in a repetitive type of production process. The learning 

process affects production time, product quality and the inspection errors too, with the passage of 

time.  A learning process is described by a power curve suggested by Wright (1936). The first 

who investigated the lot sizing problem with learning and forgetting effects is Keachie and 

Fontana (1966), who considered a simplistic forgetting relationship. Adler and Nanda (1974) 

developed two models of optimal lot sizes with learning. The first one was restricted to the equal 

lot sizes while the second one was restricted to equal production intervals. The other studies, but 

not limited to, in this line of research are surveyed in Jaber and Bonney (1999). While learning is 

significant in production, it is also important in improving the quality of a product with the 

passage of time. It is again inherent that human beings tend to become more and more 

accustomed to the processes, thus resulting in better quality of the product. Recently, Jaber et al. 

(2008) presented a model for the case where the quality of supplier’s items improves following a 

learning curve. They based their study on the data collected from an automotive industry. 

Learning curve has been referred to in the literature by different names. For example, the 

‘Experience curve’ is a similar term which explains an improvement over n cycles (Dar-El, 

2000) but is more commonly used to show a decrease in the cost of performing a task with 

experience. In this thesis, the improvement in learning is time based and the term "learning 

curve" will be used throughout. 

Salameh and Jaber (2000) exposed a new course of research to the field of inventory and 

logistics management that ensures quality of the suppliers’ items. This model has been getting 

more and more attention as it touched upon a vital limitation to the earlier literature. It has been 

widely extended to address the issues of shortages/backorders, quality, fuzziness input 

parameters (e.g., demand), and joint lot sizing in two-level supply chains. Few of these 

extensions are Goyal and Cárdenas-Barrón (2002), Goyal et al. (2003), Wang (2005), 

Papachristos and Konstantaras (2006), Wee et al. (2007), Eroglu and Ozdemir (2007), 

Konstantaras et al. (2007), and Maddah and Jaber (2008b).   

 Goyal and Gupta (1989) suggested that coordination between a vendor and a buyer (i.e., 

integrated inventory models) can be attained through joint replenishment policies.  Other types of 
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coordination mechanisms have been used in supply chain literature such as quantity discount 

(Munson and Rosenblatt, 2001), buy-back and revenue sharing contracts (Cachon, 2003), 

common replenishment epochs (Viswanathan and Piplani, 2001), permissible delay in payments, 

(Jaber and Osman, 2006). Readers may refer to the works of Sarmah et al. (2006), Ben-Daya et 

al. (2008) and Jaber and Zolfaghari (2008) for reviews. Coordination may involve several 

decision makers in supply chains. These decision makers may belong to different firms and thus 

may have conflicting objectives. This is the case of decentralized decision making process. This 

thesis assumes that the decision making process is centralized where the players in a two-level 

supply chain (vendor-buyer) belong to one firm. 

 With this formal introduction to the various issues in supply chains, this thesis will aim at 

studying these issues in isolated and integrated models in a two-level supply chain. The objective 

of the work would be to extend the model of Salameh and Jaber (2000) to present a realistic 

approach of studying supply chain inventory models. A brief review of the various topics 

covered in the thesis is presented in the following sections. The model of Salameh and Jaber 

(2000) will be explained at the end of this chapter.   

1.2 Supply Chains 

In today’s competitive markets, there is an increase in the willingness on the part of a 

vendor to pay close attention to the design and assembly processes of its suppliers, to ensure 

certain level of quality. They have also become keen in accomplishing the needs of their end-

consumer. The more they become involved with other stakeholders downstream or upstream in 

the supply chain, the more are the overall benefits to the supply chain.  

 Some supply chains also involve a number of other companies that play a very important 

role in providing information (upstream) or products (downstream). These companies can be the 

providers of service, warehouses, trucking, shipping or just information systems. With this 

background, a supply chain can be defined as the alignment of firms that bring products or 

services to market (Lambart et al., 1998). A supply chain can be classified on the basis of the 

number of stakeholders, their relationships, or coordination mechanisms (Stadtler and Kilger, 

2008).       

The focus in this thesis would be on a two-level (2 stakeholders) supply chain. A number of 

supplier-vendor and a vendor-buyer supply chain in models will be considered in the thesis. The 



22 
 

number of stakeholders in most of the supply chain literature has been two, three or four. A 

typical four level (or tier) supply chain would be composed of a supplier, a vendor, a distributer 

and a buyer. A number of coordination mechanisms will be illustrated for these supply chains to 

compare their performance. An internal supply chain at the vendor’s site and its incorporation 

into the two level supply chain will be left for future research.   

1.2.1 Coordination in a Supply Chain 

Responsibilities in a firm are usually divided among different departments such as 

engineering, purchasing, marketing and logistics (Mentzer, 1993). An inter-functional or inter-

firm coordination in itself is not enough to manage a supply chain. Effective coordination is 

associated by an increased contact with other departments and firms, through information flows 

(Urban and Hauser, 1993). Several strategies are used to align the business processes and 

activities of the members of a supply chain to ensure better coordination (Sarmah et al., 2006). 

These strategies tend to improve the performance in terms of cost or response time. There is not 

a single coordination strategy effective for all supply chains. As noted earlier, various 

coordination mechanisms have been used in supply chain coordination literature such as buy 

back or return policy, option to credit, quantity discount, or delay in payments. 

A number of researchers have illustrated the coordination between a single vendor and a 

single buyer. For example, Goyal (1977), Banerjee (1986a), Goyal (1988), Goyal and Gupta 

(1989), Lu (1995) and Goyal (1995). Hill (1997) described a general inventory policy for the 

coordination between a single vendor and a single buyer. The behavior of a vendor’s inventory 

with this approach is shown in Figure 1.1 below.  
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Figure 1.1 Behavior of a vendor’s inventory (similar to Hill's (1997) model) 

Another single vendor and single buyer setup that is applied in practice, is Consignment 

Stock (CS) (Braglia and Zavanella, 2003). Although an old practice, (Kisner et al., 1975) CS 

started gaining attention in recent years. It requires a continuous exchange of information 

between the two parties. The utility of this approach comes from the fact that leads to a reduction 

in the vendor’s inventory costs, as this party will use the buyer’s facility or warehouse to stock 

its material, usually because it is cheaper. This warehouse is assumed to be close to the buyer’s 

production line so that the material may be picked up when needed. Besides, it would be the 

vendor’s responsibility to ensure that no stock-out situation will occur. The buyer will take from 

the store the quantity of material necessary to cover the production planned. The continuous 

exchange of this information keeps the vendor aware of the consumption rate. The behavior of a 

vendor’s inventory with this approach is shown in Figure 1.2. 
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Khouja (2003) discussed three different coordination schemes for a three level supply 

chain comprising of a supplier, a vendor and a buyer. He developed closed form solutions for the 

optimal cycle time for the three coordination mechanisms. In the first mechanism, they assumed 

that the cycle time used throughout the chain is the same for all its stakeholders; in the second 

mechanism, each stakeholder has a cycle time which is an integer multiplier of that of the 

adjacent downstream stage; while in the third mechanism, each stakeholder has a cycle time 

which is an integer-power-of-two multiplier of that of the adjacent downstream stage.  

Two types of supply chain coordination schemes will be adopted in this thesis. That is, 

variables of interest will be evaluated as a single decision maker for the whole supply chain. In 

other words, their annual cost and profit would be evaluated through a joint decision. 

Coordination may result in one or more player benefiting more than the others in the chain. 

These players will compensate the loosing ones. To understand this point, consider a simple 

vendor-buyer supply chain for a single product. The total annual costs of the two stakeholders 

are given by 

𝑇𝐶𝑈𝑏(𝑄) =
𝐴𝑏𝐷 
𝑄

+
ℎ𝑏𝑄 

2
  (1.1) 

𝑇𝐶𝑈𝑣(𝑄,𝑛) =
𝐴𝑣𝐷 
𝑛𝑄

+
ℎ𝑣𝑄(𝑛 − 1) 

2
  (1.2) 

Assume that 𝐷 = 1,000 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 𝐴𝑏 = $25, 𝐴𝑣 = $400, ℎ𝑏 = $5 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, 

ℎ𝑣 = $4 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟. In case of no coordination, the optimal order size Q is determined 

by solving Eq. (1.1). Eq. (1.2) is solved for the optimal number of shipments 𝑛 with this Q. This 

way the values of Q and 𝑛 would be 100 and 4 respectively while the total cost of the supply 

Inventory Level 
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 Figure 1.2 Behavior of a vendor’s inventory in Braglia and Zavanella (2003) model 
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chain ends up being $2100. The annual costs of the buyer and the vendor in this case are $500 

and $1600 respectively. On the other hand, with coordination, the sum of Eqn. (1.1) and (1.2) 

will be solved for Q in terms of 𝑛 and an optimal 𝑛 will be determined through iteration. 

Following this, the optimal Q and 𝑛 would be 224 and 2 respectively with an annual cost of 

supply chain being $2013. The share of the buyer and the vendor in this cost is $671 and $1342 

respectively. It should be noticed that although the annual cost of the supply chain does not 

change noticeably but the vendor benefits from coordination while the buyer does not. That is 

why the vendor will have to compensate the buyer. This compensation may be in the form of 

lump payments or some sort of discount (e.g., quantity discounts).  

Firstly, we will study different human factors with the first two coordination mechanisms 

given by Khouja (2003) in a supplier-vendor supply chain. Then we will compare the two 

coordination schemes given by Hill (1997) and Braglia and Zavanella (2003) respectively, for a 

vendor-buyer supply chain.  

1.3 Quality 

There are many ways to define quality. A common definition in the industry is “meeting or 

exceeding customer expectations” (Sontrop and MacKenzie, 1995). Many companies refine their 

processes/products to meet the customer expectations based on their surveys. The customers can 

be internal or external. For example, the internal customers for a fuel tank would be an assembly 

line or the paint shop while its external customers would be a car dealer or the purchaser.  

The definition of quality emphasized in this thesis is “conformity to specifications”. 

Specifications are target values and tolerances such as the length of trunk lid can be 150 ± 1 cm. 

That is, a conforming length falls in the interval 149 to 151 cm. Targets and tolerances are set by 

the design and manufacturing engineers in a plant. The other characteristics of interest can be 

design configuration like weight, thickness, reliability and ease of fitness.   

The most successful organizations today have learned that statistical process control (SPC) 

only works when the operating philosophy is that everyone in the organization is responsible for 

and committed to quality. SPC focuses on the methods by which results are generated – on 

improvements to the processes that create products and services of the least variability. The 

traditional tools that SPC uses to improve on variability are (i) flow charts, (ii) cause-and-effect 
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diagrams, (iii) pareto charts, (iv) histograms, (v) scatter plots and (vi) control charts (Sontrop and 

MacKenzie, 1995).  

Quality starts at the design stage (Hollins, 1995). A designer takes information from the 

customer (market) to define what the customer wants, needs, and expects from a particular 

product. These requirements are then translated into specifications and tolerances. The 

production department uses this information, along with the prescribed machinery, to fabricate 

the product. The product is then delivered via marketing channels to the customer, after passing 

through quality checks. To satisfy the customer, the product must perform the specified or 

associated functions. Thus, quality can also be demonstrated through a happy customer. 

Customer feedback to the designers and makers comes in terms of the number of products sold 

and the warranty, repair, and complaint rate. Increasing sales volume and market share with low 

warranty, repair, or complaint rates indicates high quality (i.e. happy customers). 

1.3.1 Fraction of Defectives as Quality 

With this notion of quality or quality control in mind, the industry today refers to the 

fraction of defective items in their production or in the supplier-lots as the “quality” of the lot 

produced or received. A defective unit denotes that a part or a product (assembly of parts) is unfit 

for use (Sontrop and MacKenzie 1995). The in-built defectiveness is an imperfection in the 

whole product or one or more parts. A common practice in the industry to describe this statistic 

is to use a p-chart. This chart tracks the proportion of defectives in a collection of units taken 

from shipments or batches. The utility of the chart is that it is based on a pass/fail test that can be 

applied to a single characteristic or multiple characteristics in a part and/or a product. Typically, 

a single point on this chart represents the outcome for all the parts/products received in a single 

batch/shipment.  

This thesis will explore the relationship of this quality with errors in screening and learning 

in production and screening process. A formal understanding of inspection errors and learning 

process, will be developed later in this chapter.  

1.3.2 Inspections Errors 

 Inspection means comparing or determining the conformance of products to established 

specifications. Inspection tasks may be classified into three basic categories; (a) tasks involving 
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visual scanning, (b) tasks involving measurements, and (c) tasks involving monitoring of a 

process. Although there have been advancements in technology there are still wastes generated 

by errors in screening. In addition, ignoring the presence of inspection error can severely distort 

the performance measures of any inspection activity. It is not unusual to find inspection error 

rates of 25% or 30% in complex inspection activities (Jaraiedi et al., (1987).  

 The inspection accuracy is influenced by a number of factors. These factors can be 

categorized into three groups: 

1. Inspector related factors, such as the age, experience, sex, visual activity, intelligence, level 

of training, and psychological factors.  

2. Task related factors, such as task pacing, task perception, task complexity, design of work 

place and rate of defects.  

3. Environmental and organizational factors, such as illumination, noise, temperature, 

humidity, motivation and incentives.  

Inspectors make two types of errors. That is Type I error, in which a conforming quality 

characteristic is classified as nonconforming; and Type II error, in which a nonconforming 

characteristic is passed as conforming. This is illustrated in Figure 1.3 below. An inspector 

screens a lot with γ percent defectives and the probabilities that he will commit as Type I and 

Type II errors are m1 and m2, respectively. 

 

 

 

 

 

 

 

Figure 1.3 Four possibilities in an inspection process 
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1.3.3 Quality Investment 

There are a number of articles in the literature that highlight the importance of investment 

in reducing the fraction of defectives or in other words, improving the quality, for example, Lee 

(2005). In the context of a supply chain, the decision maker has to find a trade-off between this 

investment and the savings by the reduction of the defective items. The vendors learn to select 

optimal investment levels by developing cost/benefit models for different investment strategies 

(Lee, 2005). This optimal investment affects the management performance of a vendor or a 

supply chain.  

1.4 Learning 

 Learning in an organization has been receiving more and more attention. Steven (1999) 

presented examples from electronics, construction and aerospace to conclude that learning curves 

will gain more interest in high technology systems. Wright (1936) was the first to model the 

learning relationship in an industrial setting. This complex behavior has had different names; 

such as start-up curves, (Baloff, 1970), progress functions, (Glover,1965), and improvement 

curves, (Steedman, 1970). But researchers have agreed that the power-form learning curve are 

the most widely used to depict the learning phenomenon, (Yelle,1979; Jaber, 2006b).  

 It is very hard to define this complex behavior. But practitioners and researchers mostly 

believe that it is the trend of improvement in performance achieved by virtue of practice. The 

Wright (1936) learning curve states that time to produce every successive unit in repetition keeps 

on decreasing till plateauing occurs. Plateauing is a state where a system or a worker ceases to 

improve in his performance. The reason for this could be the worker ceasing to learn or the 

unwillingness of the organization to invest any more capital. The mathematical form of Wright’s 

model is given by 

𝑇𝑥 = 𝑇1𝑥−𝑏   (1.3) 

where x is the tally of the unit being produced, Tx and T1 are the times to produce the 𝑥𝑡ℎ  and the 

first unit respectively, and b is the learning exponent. This model is illustrated in Figure 1.4. The 

learning exponent in this expression is often referred to as an index called learning rate (LR).  

Learning occurs each time the production quantity is doubled; such as 
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𝐿𝑅 =
𝑇2𝑥
𝑇1𝑥

=
𝑇1(2𝑥)−𝑏

𝑇1(𝑥)−𝑏
= 2−𝑏   (1.4) 

To illustrate, if T1=10 minutes, b = 0.3218 (LR=80%), then assembling the second unit would 

take T2 = 10×2−0.3219 = (0.8)(10) = 8 minutes, the fourth unit would take T4 = 10×4−0.3219 

(0.8)(8) = 6.4 minutes, and so on. Thus the Wright’s learning curve can be drawn as Figure 1.4. 

Thus, following the above learning curve, time to produce x units, t (x), is given by 

𝑡(𝑥) = �𝑇1𝑖−𝑏
𝑥

𝑖=1

= �𝑇1

𝑥

𝑖=0

𝑖−𝑏𝑑𝑖 =
𝑇1

1 − 𝑏
𝑥1−𝑏   (1.5) 

Note that (1.4) is valid when 0 ≤ b <1, which what has been observed in practice (Dutton and 

Thomson, 1985; Dar-El, 2000). Extreme cases where b ≥ 1 (Jaber and Guiffrida, 2007) are not 

discussed in this thesis. 

 Although Figure 1.4 and the above expression represent the improvement in the time to 

process a unit, learning can be shown in the cost, productivity and other similar measures of a 

production system. The outcome of applying learning theory is that a firm can expect continuous 

improvements of its productivity ratio as a consequence of increasing its experience or stock of 

knowledge (Dar-El,2000). Besides, a good learning may be required for determining labor 

costing, manpower policies, time standards and the optimal cycle times for assembly of a 

product.  
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Figure 1.4 Wright’s learning model 

 Learning can be categorized into four groups; (a) individual learning that includes factors 

as forgetting and relearning, (b) product learning where individual learning is integrated with all 

aspects of a product improvement, (c) learning in design and development where learning 

introduces rapid changes and (d) organizational learning that incorporates almost all the 

functions of improvement in an organization (Dar-El, 2000). The level of learning attained by a 

worker in a repetitive task is governed by a number of factors. These factors are previous 

experience, training, motivation, job complexity, number of repetitions, length of the task, errors 

and forgetting (e.g. Jaber, 2006b). Quantifying these factors would help in a better prediction of 

the learning rate for a worker.  

It should be noticed that there are some limitations to the use of learning curves (Rea and 

Kerzner, 1997): (i) the learning curve plateaus after some cycles, (ii) an inspector may have 

different learning rate for different products or processes, (iii) the results of a learning curve may 

be overestimated if the loss of learning (forgetting) is ignored, (iv) the benefits of learning are 

more visible in long-term horizons. 

1.5 Forgetting 

Most of the literature on learning assumes continuous learning though interruptions occur 

regularly and frequently. This brings in another related notion into light which is forgetting. That 

is the loss of skill or knowledge because of interruption (a production break). The effects of 
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forgetting are important where estimates of man-hours, production schedules and manpower are 

required. A distinction is made between procedural and psychomotor tasks in this context (Dar-

El, 2000). Procedural tasks consist of a series of discrete motor tasks as found in most industrial 

activities. Psychomotor tasks involve repetitive movements without a clear beginning or end -  

such as riding a bicycle. It is obvious that the later exhibits lesser forgetting. Besides, the time 

required to teach a psychomotor task is longer and as a result they are retained better. Another 

fact that affects forgetting is the level of learning before the break. That is, if a worker is highly 

skilled at an activity for a long time, his performance would not be affected by even a long 

interruption. Another distinction can be made between automatic and controlled tasks. Automatic 

skills are related to quick and unconscious activities while controlled skills are the systematic 

response to failure of a system. Fisk et al. (1987) found that there is a large decline with the 

performance of controlled tasks after a non-practice of one year, whereas automatic tasks have 

good retention even after a year. The tendency in the industry is to automate mechanical tasks as 

much as possible and to utilize people for control and decision-making purposes. A lot more 

research is yet to come for a better understanding of the relationship between the break length 

and the forgetting process.  

The loss of learning (forgetting) in screening is studied in chapter 4. The forgetting curve 

(Jaber and Bonney,1996), is usually taken to be a mirror image of the learning curve. To 

determine the forgetting exponent βi in cycle i, it is customary to equate the learning and 

forgetting time at the instant a worker has inspected Qi units. This determines the value of the 

intercept of the forgetting curve 𝜋1�, where the ‘^’ represents mirror image. That is, the forgetting 

curve takes the form  

𝜋𝑚� = 𝜋1�𝑚β   (1.6) 

where 𝜋1� = 𝜋1𝑚−(β+𝑏)and 𝜋𝑚� = 𝜋𝑚, where m is the equivalent number of items that could have 

been screened. The forgetting exponent in cycle i is determined by Jaber and Bonney (1996) as 

β𝑖 =
𝑏(1 − 𝑏) log(𝑢𝑖 + 𝑦𝑖)

log(1 + 𝐿
𝜆𝑖� )

 (1.7) 
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where L is the time for total forgetting to occur and is assumed to be an input parameter, ui is the 

experience remembered in cycle i, log is logarithm base 10, and λi is the time to inspect (ui + yi) 

items without interruption. 

So, from Jaber and Bonney (1996): 𝜆𝑖 = (𝑢𝑖+𝑄𝑖)1−𝑏

𝑥1(1−𝑏)
, 𝑢𝑖 = (𝑢𝑖 + 𝑄𝑖)

(β𝑖+𝑏)
𝑏 𝑅𝑖

−β𝑖
𝑏  

with 

𝑅𝑖 = �𝑥1(1 − 𝑏)(𝑇 − 𝜏1)(𝑢𝑖 + 𝑄𝑖)(1−𝑏)� 
1

(1−𝑏)  (1.8) 

where Ri is the equivalent number of items that could have been screened if no interruption 

occurs of length τi, and τi is the screening time in cycle i. In case of breaks in screening, one 

should note that 0 < 𝑢𝑖 < ∑ 𝑄𝑗𝑖−1
𝑗=1  when 𝑇 − 𝜏𝑖 < 𝐿, for partial forgetting; ui = 0 when 𝑇 − 𝜏𝑖 ≥

𝐿, for total forgetting; and 𝑢𝑖 = ∑ 𝑄𝑗𝑖−1
𝑗=1  when L becomes infinite, for total transfer of learning. 

Detailed derivations of Eqs. (1.6) − (1.7) can be found in Jaber and Bonney (1996). Eq. (1.5) 

will be used to determine the equivalent experience remembered at the start of each cycle, in 

case of partial and total transfer of learning. For a relationship between the forgetting slope (β𝑖) 

and learning slope (b), Jaber and Kher (2002, p.241–242 ) have shown that the forgetting slope is 

a concave function over the interval of learning slope from zero to one (βi >0 , ∀ 0 ≤ b < 1) with 

a unique maximum at learning slope = 0.5. 

1.6 Why Learning and Quality Together? 

Most of the researchers and practitioners using learning curves have assumed that all the 

units produced are of perfect quality requirements (Jaber, 2006b). However, most of the 

manufacturing processes end up in a fraction of defective units which are either reworked or 

scrapped (e.g., Jaber and Khan, 2010). Thus, it is significant to address these two issues together 

for a production facility though a little attention has been paid to this area. For example, Dance 

and Jarvis (1992a) studied the importance of learning curves in the semiconductor industry. 

Besides, Jaber and Guiffrida (2004) extended Wright (1936) learning curve by incorporating 

quality. They discussed an imperfect production in which defective items can be reworked and 

proposed a composite learning curve, which is the sum of two learning curves, i.e. learning in 

production and reworks. However, their quality learning curve had some limitations. That is, 
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their model (a) did not apply to cases where defective items are discarded or scrapped, (b) 

assumed the rate of generating defective items is constant, and (c) was for a single stage and a 

single cycle production facility only. They tackled this third assumption in their later work (Jaber 

and Guiffrida, 2008) by interrupting a production process to restore its quality (Khouja, 2005).  

1.7 Salameh and Jaber’s (2000) Model 

Porteus (1986) and Lee and Rosenblatt (1987) had assumed that all defective items are 

reworkable. The work of Salameh and Jaber (2000) is the first model that treats imperfect quality 

items (not defectives) to be salvaged at a discounted price. They implied that imperfect quality 

items are functional items that fo not meet the quality requirements for a given product/task; 

however, they do for a lower grade one. Salameh and Jaber (2000)  extended the traditional EOQ 

model by assuming that each lot received from a vendor contains imperfect quality items. They 

assumed that (i) the demand is deterministic and that it occurs parallel to the inspection process 

and is fulfilled from goods found to be perfect by the inspection process, (ii) the orders are 

replenished instantaneously, (iii) there are no shortages, (iv) the lot contains a fixed fraction γ of 

imperfect items with known probability density function, (v) a 100% screening is performed to 

separate these defective items, and (vi) items of poor quality are kept in stock and sold prior to 

receiving the next shipment as a single batch at a discounted price. The behavior of inventory is 

as described in Figure 1.5.  

Note that the behavior in Figure 1.5 is an average one. If the model is simulated for 

different values of γ, the average ending inventory by time T is either positive or negative. The 

average access inventory can be assumed to be zero. A simulation study was conducted to verify 

this with ten thousand runs with parameters: Q=100, D=10, γ ~ U (0, 0.2) and γ ~U(0,0.5). In 

other words, access ending inventory in one cycle would be used to cover for a stock out in a 

subsequent cycle. This behavior incurs additional costs (extra holding and shortage costs). It is 

assumed that the value of h in the work of Salameh and Jaber (2000) and this thesis is significant 

enough to account for these additional costs. A detailed study of this issue may be addressed in a 

technical note or short communication. This will be left for a future work.  
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where Q is the lot size γ is the percentage of imperfection in Q, τ is the inspection time and T is 

the cycle time. The screening and cycle time are shown by τ and T respectively. To guarantee 

there are no shortages, Salameh and Jaber (2000) set the condition γ = 1 − 𝐷/𝑥 where x is the 

screening rate (x  > D) The number of good items in each order of size Q, is 

𝑁(𝑄, 𝛾) =  𝑄 − γ𝑄 = (1 − γ)𝑄 (1.9) 

The total revenue per cycle is given by the sum of the revenue from selling defective and 

nondefective items, as  

𝑇𝑅(𝑄) = 𝑠1𝑄(1 − γ) + 𝑣𝑄γ (1.10) 

where s1 and 𝑣 are the unit selling price of a good item and the unit salvage price of an imperfect 

quality item. 

Time 

 τ 

 T 

Inventory level 

γQ 

Figure 1.5 Behavior of inventory in Salameh and Jaber (2000) model 
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The total cost per cycle is the sum of ordering, purchasing, screening and holding costs. It is 

given by  

𝑇𝐶(𝑄) =  𝐴𝑏  +  𝑐1𝑄 +  𝑑𝑄 +  ℎ𝑏 �
𝑄(1 − γ)𝑇

2
+

γ𝑄2

𝑥
� (1.11) 

where Ab is the buyer's order cost, c1 is the unit purchase cost, d is the unit screening cost, and h 

is the unit holding cost. Detailed derivations of Eqs. (1.9) and (1.10) are provided in Salameh and 

Jaber (2000). So, the total profit per cycle would be 

𝑇𝑃(𝑄) = 𝑇𝑅(𝑄) − 𝑇𝐶(𝑄) (1.12) 

Total profit per unit time is  

𝑇𝑃𝑈(𝑄) = 𝑇𝑃(𝑄)
𝑇

  where 

 𝑇 = (1−𝛾)𝑄
𝐷

. So, 

𝑇𝑃𝑈(𝑄) = 𝐷 �𝑠1 − 𝑣 +
ℎ𝑏𝑄
𝑥
� + 𝐷 �𝑣 −

ℎ𝑏𝑄
𝑥

− 𝑐1 − 𝑑 −
𝐴𝑏
𝑄
� �

1
1 − γ

�

−
ℎ𝑏𝑄(1 − γ)

2
 

(1.13) 

Taking the fraction of defectives as a random variable, the expected annual profit would then be 

E[𝑇𝑃𝑈(𝑄)] = 𝐷 �𝑠1 − 𝑣 +
ℎ𝑏𝑄
𝑥
� + 𝐷 �𝑣 −

ℎ𝑏𝑄
𝑥

− 𝑐1 − 𝑑 −
𝐴𝑏
𝑄
�E �

1
1 − γ

�

−
ℎ𝑏𝑄(1 − E[γ])

2
 

Refer to Salameh and Jaber (2000) for detailed derivations of TPU(Q) and 

E[TPU(Q)].  

(1.14) 

To find the optimal value of the above profit, they differentiated the above equation w.r.t Q 

and equated that to zero. The second derivative of the above equation remains negative for all 
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values Q which implies that there exists a unique value Q* that maximizes the above profit. That 

value would be  

𝑄∗ = �
2𝐴𝑏𝐷E[1/(1 − γ)]

ℎ𝑏[1 − E[γ] − 2𝐷(1 − E[1/(1 − γ)])/𝑥] 
(1.15) 

 Note that when γ =0, the denominator reduces to h and the numerator reduces to 2𝐴𝑏𝐷.  

It should be noted that the above equation reduces to the traditional EOQ model when 

percentage defective γ is zero. They concluded that economic lot size quantity tends to increase 

as the average percentage of imperfect quality items increase. The number “2” in the 

denominator was missing in the above equation in Salameh and Jaber (2000) which was pointed 

out by Cárdenas-Barrón (2000). For a detailed derivation of the above model, refer to Salameh 

and Jaber (2000), page 61. This model can be referred to as a base EOQ model for imperfect 

items. This model was extended in a number of directions. Few of these extended models are 

outlined here: Goyal et al. (2003) used the base model to develop a two level supply chain model 

for imperfect items, Chan et al. (2003) introduced a number of quality classifications in the base 

model, Papachristos and Konstantaras (2006) developed the sufficient conditions for the base 

model and that of Chan et al. (2003), Wee et al. (2007) incorporated backordering, and Maddah 

and Jaber (2008) suggested using renewal reward theorem to estimate the expected annual profit. 

Goyal and Cárdenas-Barrón (2002) simplified the above base model by ignoring the 

screening and purchasing costs. They showed that this simplification results in almost zero 

penalty. Maddah and Jaber (2008) used this simplified and corrected a flaw in the base model. 

They noticed that the annual profit in the base model is not exact as the cycle profit is a renewal 

process. They suggested using renewal reward theory to compute it. That is, the annual profit 

should be calculated as a ratio of profit per cycle and the cycle time, in the presence of imperfect 

items in the lot being screened. So, the expected time unit profit function is written as   

E[𝑇𝑃𝑈(𝑄)] =
E[𝑇𝑃(𝑄)]

E[𝑇]  

=
1

1 − E[𝛾] �
[𝑠1(1 − E[𝛾]) + 𝑣𝐸[𝛾]− 𝑐1 − 𝑑] −

𝐴𝑏𝐷
𝑄

−
ℎ𝑏𝑄

2
E[(1− 𝛾)2]−

ℎ𝑏𝐷
𝑥

E[𝛾]� 

(1.16) 
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Thus, they obtained simpler expressions for the annual profit and the optimal order size 

while the penalty for using their annual profit function instead of that in Salameh and Jaber 

(2000) was negligible. They also showed that the optimal order size has a direct relation with the 

screening rate and the fraction of defectives.  

A possible issue with the base model is if it addresses the uncertainty in a supplier’s quality 

well with a uniform distributed fraction of defectives. Numerous examples were tested to study 

the difference in the annual profit in Maddah and Jaber (2008) for (i) uniformly and (ii) normally 

distributed fraction of defectives. The mean and variance of the uniform distribution were used 

as input parameters for normal distribution. A snapshot of this experiment is shown in Appendix 

1. It was observed that the difference in expected cost and the lot size quantity were insignificant, 

which reasonably justifies the use of the uniform distribution in the base model. Besides, a 

uniform distribution was adopted in all the studies that extended or modified the model of 

Salameh and Jaber (2000).  The same distribution will be used for the numerical analysis 

throughout this thesis.  

1.8 Summary 

A number of human factors have been introduced in this chapter that will be used 

throughout the thesis. These factors are screening errors, learning and forgetting in processing 

time. A detailed description of the model of Salameh and Jaber (2000) is given as all the models 

developed in this thesis are an extension of this base model. A number of possible questions 

related to uncertainty of results in the base model have also been addressed.  

The direct extensions studied in the thesis include (i) errors in the screening process,        

(ii) learning and forgetting in the screening process, and (iii) two different designs of two-level 

supply chains under a number of coordination mechanisms. The thesis is structured as follows. 

Chapter three and four present extensions for the errors and learning/forgetting in the screening 

process, respectively. Chapter five presents a two-level supplier-vendor supply chain with (i) 

errors in buyer’s screening process, (ii) learning in vendor’s production process and (iii) learning 

in suppliers’ quality. Chapter six and seven present a two-level vendor-buyer supply chain with 

conventional and consignment stocking schemes, respectively. Errors in buyer’s screening and 

learning in vendor’s production process are studied in these two chapters. Lastly, chapter eight 

presents results and avenues of possible future research.       
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CHAPTER 2 LITERATURE REVIEW 

  

2.1 Introduction 

In this Chapter, a thorough review of the related research is presented. This survey will 

cover the different aspects of research covered in the thesis. These aspects are, as discussed in 

Chapter One, supply chains, quality management and learning and forgetting. The survey 

classifies the literature in several categories that encompass these aspects of research. That is,   

(i) EOQ/EPQ models for imperfect items (ii) rework and scrap items (iii) supply chains           

(iv) quality and investment to improve quality (v) imperfect inspection (vi) shortages and 

backordering (vii) learning and forgetting (viii) consignment stock and (ix) contemporary trends 

in EOQ/EPQ modeling.  

The work of Salameh and Jaber (2000) has been a major source of inspiration for the 

research in this thesis. They extended the EOQ model for the case where each lot contains a 

random fraction of imperfect items. They assumed that (i) this fraction has a known probability 

distribution, (ii) each shipment goes through complete screening, and (iii) the defective items are 

all separated and sold at a discounted price in each cycle. Recently, this model has got noticeable 

attention by the researchers in this field. This model has been re-examined and extended in a 

number of ways. The broad scope and application of this work indicates its importance in the 

concerned literature. The literature review in this chapter will include, but is not limited to, all 

the important extensions of the work of Salameh and Jaber (2000) that are relevant to the scope 

of the thesis. 

2.2 EOQ/EPQ Models for Imperfect Items  

Szendrovits and Drizner (1975) illustrated the functional relationship between the 

manufacturing cycle time and process inventory. The production system consisted of a fixed 

sequence of manufacturing operations, with constant times per unit at various operations. Each 

operation was performed by a single facility with no capacity constraint and there was only one 

setup for the whole production lot size. It was assumed that a constant lot size is manufactured 

through several operations with only one set-up at each stage, but transportation of sub-batches 

was allowed which resulted in an overlap between operations to reduce the manufacturing cycle 
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time. The inventory system assumed an infinite planning horizon with fixed per-lot costs and 

linear carrying costs. A process inventory must be carried until products are finished at the last 

operation during the manufacturing cycle time. The economic lot size was determined by 

minimizing the sum of the fixed costs per lot and the costs of the average finished product and 

process inventories.  

Silver (1976) extended the economic order quantity model for the case where there is a 

difference between quantity received and quantity ordered by a buyer. That is, the supplied 

quantity can be more or less than the ordered quantity. The reason for this difference could be: (i) 

inadequate raw material, (ii) human error in counting, (iii) scrapped items, (iv) exceptionally 

good production, (v) rounding of the items, and (vi) damage in transit. Two situations were 

discussed where the standard deviation of the received quantity is independent or proportional to 

the ordered quantity.  

Rosenblatt and Lee (1986) assumed that the time between the in-control and the out-of-

control state of a process follows an exponential distribution and that the defective items are 

reworked instantaneously. They suggested producing in smaller lots when the process is not 

perfect. In a later model, Lee and Rosenblatt (1987) studied a joint lot sizing and inspection 

policy for an EOQ model with a fixed percentage of defective products. A simple relationship 

was developed to determine whether maintenance by inspection is worthwhile or not. They 

showed that the optimal inspection schedule is equally spaced throughout the production run. 

Gerchak et al. (1988) analyzed a single period production problem and extended it to an n-period 

problem where the production process has a variable yield and the demand is uncertain. 

Cheng (1991) proposed an extension to the EOQ model in which demand exceeds supply 

and the production process is imperfect. Thus, the amount of demand the firm chooses to satisfy 

was a decision variable. Unit production cost was assumed to decrease as more demand is 

satisfied (economies of scale) and to increase as process reliability is improved (due to 

investment in technology). He derived a closed form expressions for the optimal demand to 

satisfy ordering quantity and process reliability. 

Khouja and Mehrez (1994) formulated and solved an economic production lot size problem 

of an imperfect production process. They assumed that (i) production rate is a decision variable, 

(ii) unit production cost is a function of the production rate, (iii) quality of the production process 
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deteriorates with increased production rate. They showed that for both weak and strong 

relationships between the production rate and process quality, the optimal production rate may be 

considerably different from the production rate that minimizes unit production cost. For cases 

where the mean time until the process shifts 'out-of-control' is strongly dependent on the 

production rate, the optimal production rate is smaller than the production rate that minimizes 

unit production cost. The opposite is true when the mean time until the process shifts 'out-of-

control' is mostly independent of the production rate. 

Yano and Lee (1995) reviewed and identified shortcomings in the literature dealing with 

determining lot sizes where production or procurement yields are stochastic. They claimed that 

good models for lot sizing decisions in the presence of random yields require adequate treatment 

of these elements. That is, (i) characterization of the yield loss process and the distribution of 

yield losses; (ii) characterization of the inspection process and its effect on timing and costs; (iii) 

possible recourse actions in response to defects; (iv) objective function and constraints that 

capture the consequences of yield losses; (v) proper accounting of the time and timing elements 

of the problem; and (vi) linkages across products and among different parts of a production 

system.  

Ben-Daya and Hariga (2000) discussed the effects of imperfect quality and process 

restoration on the economic lot scheduling problem. They assumed that the production facility 

starts in the in-control state and shifts at a random time to an out of control state and begins to 

produce nonconforming items. Moon et al. (2002) extended the work of Ben-Daya and Hariga 

(2000) for the capacity constraints of setup and production lengths for non-zero setup times of a 

machine which is used for multiple products. 

Inderfurth (2004) determined an optimal production policy for a uniformly distributed 

demand and yield rate and discussed some managerial aspects of this policy. Wang (2005) 

considered a production system with random deterioration from an in-control state to the out-of-

control state while the in-control period follows a general probability distribution. They 

developed an optimal policy for production run length and inspection, and showed that the run 

length is an increasing function of the restoration cost. Rekik et al. (2007) extended the work of 

Inderfurth (2004) for two cases: (a) an additive errors case where the variability of errors is 

independent of the order quantity, and (b) a multiplicative errors case where the variability of 
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errors is proportional to the order quantity. They showed that, depending on values that system 

parameters take, the optimal quantity to order may not be in the form of a newsvendor type 

solution adjusted by the average error rate. They developed a complete analysis that enables to 

determine the optimal order quantity in the presence of errors for all values of system 

parameters. Besides, they evaluated the benefit that would stem from eliminating the uncertainty 

on the quantity received by comparing the optimal costs associated with a model without errors 

and a model where errors disturb the quantity effectively received from the supplier.  

Sana et al. (2007a) considered a flexible manufacturing system with two types of demand 

rates, i.e. one for perfect quality items and the other for imperfect items. The imperfect items, as 

in Salameh and Jaber (2000), were sold in a secondary market at a discounted price. They 

assumed the unit production cost to be a function of production rate which was treated as a 

decision variable. In a similar work, Sana et al. (2007b) assumed that the demand for imperfect 

items is a function of the reduction in selling price. Tsou (2007) introduced the cost of quality 

into the model of Salameh and Jaber (2000) and model the cost of quality for the items within the 

specification limits using a Taguchi loss function. They also compared their results to those of 

the traditional EOQ model and showed that the economic order quantity is larger due to the 

amount of defectives and the Taguchi loss. 

Maddah and Jaber (2008) revisited the work of Salameh and Jaber (2000) and present a 

renewal reward theorem for determining the expected annual profit. They further extended the 

model by allowing for several batches of imperfect quality items to be consolidated and shipped 

in a single lot. Nahavandi and Haghighirad (2008) investigated an inventory system of two 

products where one of the products is an ingredient for the other.  

El-Kassar (2009) discussed a situation where the imperfect items received by the buyer in 

Salameh and Jaber (2000) model are not defective. Rather, they assumed that the demands for 

both perfect and imperfect quality items are continuous during the inventory cycle. Yoo et al. 

(2009) incorporated inspection error and sales-return option to address the scenario where buyers 

receive defective products even after the inspection at suppliers’ end. They showed that the 

annual profit may even increase by increasing the fraction of defectives and the Type I error and 

conclude that managers need to make more careful decisions to control the production/inspection 

process.  
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Continuing their line of research Sana (2010) generalized the model of Khouja and Mehrez 

(1994) by assuming that the percentage of defective items varies nonlinearly with production rate 

and production-run-time. Under this generalization, production starts with a variable production 

rate that shifts to an ‘out-of-control’ state. The duration of time leading to the production rate 

shift follows an exponential distribution function with defective items being reworked 

immediately and incurring a rework cost. This practical model could be used by managers to 

make ‘what-if’ analysis in order to gain specific insights into their cost reduction manufacturing 

problems. 

2.3 Rework and Scrap 

Hayek and Salameh (2001) studied the effect of imperfect quality on a finite production 

process. They suggested reworking imperfect items after the production process stops. Chiu et al. 

(2004) extended the work of Hayek and Salameh (2001) to study an EPQ model with imperfect 

rework in every cycle. They assumed that the scrap items are produced randomly during 

production and rework processes and showed that various models in the literature dealing with 

perfect rework and no-scrap are special cases of their work.  

Chan et al. (2003) integrated lower pricing, rework and reject situations into a single EPQ 

model. They developed three scenarios on when to dispose the defective items. That is, selling 

them at a discounted price (i) when identified, (ii) at the end of production and (iii) just before 

the start of the next cycle. Jamal et al. (2004) determined an optimal batch quantity in a single-

stage system with reworking under two different operational policies to minimize the total 

system cost. The first policy dealt with reworking within the same cycle, after production. The 

second policy dealt with the reworking N cycles of production.  

Chiu and Chiu (2005) studied the effect of rework process in Hayek and Salameh (2001) 

model without backlogging. Papachristos and Konstantaras (2006) revisited the work of Salameh 

and Jaber (2000)  and Chan et al. (2003) and showed that the conditions given in these models 

are not enough to ensure non-shortages. They presented a model where defective items are 

withdrawn at the end of a cycle. They showed that the results given in Salameh and Jaber (2000) 

can be obtained by considering the costs only rather than the revenues as in there. Sheu et al. 

(2006) discussed production correction in an imperfect process. Their model also assumed two 

outcomes of inspection of the system, (i) in-control state or (ii) out-of-control state. They 
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assumed that correction may worsen the system or bring it back to the initial state. They 

determined an optimal number of successive out-of-control states after which the system must be 

maintained.  

Konstantaras et al. (2007) extended the work of Salameh and Jaber (2000) in two 

directions. One is by assuming that the acceptable items are sent to working inventory in batches 

and not on unit-by-unit basis. The other is by reworking the defective items to bring them to 

acceptable quality standards and then using them to meet the demand. Ojha et al. (2007) 

assumed a 100% inspection and rework of the defectives, after production, before delivering a 

product to the buyer. They assumed three scenarios for this; (a) a single lot of raw material for 

multiple lots of finished product and delivery of the product in multiple batches, (b) a single lot 

of raw material for multiple lots of finished product and delivery of the product in a single batch, 

and (c) lot-for-lot of raw material and delivery of finished product in single batch. Liao (2007b) 

proposed investigating a system after each production cycle and that the system may either be in 

an in-control (Type I) or out-of-control (Type II) state depending on whether the correction 

process might be either imperfect or perfect. He suggested that after N Type I states, the 

operating system must be reorganized and returned to the initial condition. The model of the 

optimum N states was examined. Liao (2007a) also studied a production process that is 

maintained and renewed after N corrections.  

Hejazi et al. (2008) extended the work of Chan et al. (2003) and Jamal et al. (2004) for the 

fact that reworking an imperfect item cannot be instantaneous and it takes time and money as 

does the processing/production of a product. He followed Chan et al. (2003) assumption that 

processing leads to four groups of products, i.e. (i) perfect products, (ii) imperfect products, (iii) 

defective but reworkable products, and, finally (iv) non-reworkable defective products. Biswas 

and Sarker (2008) considered a single stage production of reworkable and scrap items along with 

the finished product. Their model assumed reworking the defective items within each production 

cycle and that the scrap was detected (i) ‘before’ rework, (ii) ‘during’ rework, and (iii) ‘after’ 

rework. To avoid shortage of finished products due to scrap production, there was a buffer of 

finished products. They showed that the lowest total cost is obtained when the scrap is detected 

before rework. Sarker et al. (2008) developed models similar to that in Jamal et al. (2004) for the 

optimum batch quantity in a multi-stage system with rework process. They observed that the 

second policy incurs shortages and the optimal batch quantity increases with defects, in both 
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policies, to compensate for the loss of planned products. Lo and Yang (2008) developed an 

integrated inventory model for a single vendor single buyer setup, with process unreliability 

consideration and permissible delay in payments. The imperfect quality items were reworked 

immediately after production. They showed that permissible delay in payments can promote the 

profit improvement and cost reduction.  

Tsou et al. (2009) followed the studies of Salameh and Jaber (2000), Chan et al. (2003) and 

Papachristos and Konstantaras (2006) to develop an EPQ model with continuous quality 

characteristic, rework and reject situations. Chiu and Chang (2009) studied a JIT lot sizing 

problem with rework and variable setup cost. They showed that the lot size and the rework cost 

have a direct relation with the fraction of defectives. Their results also showed the setup cost 

influences the overall cost in a lean manufacturing environment. Haji et al. (2009a) discussed an 

economic batch quantity model for a single machine system in which defective items in N equal 

cycles of production are reworked in the N+1th cycle called the rework cycle. They assumed that 

there is a limit on the number of defective items and that the rework process is defect free. Haji 

et al. (2009b) extended their study in Haji et al. (2009a) to the case where reworks are performed 

in every cycle.  

Haji et al. (2010) discussed an imperfect production system in which all the defective items 

are reworked in the same cycle after production. A 100% inspection of the produced and 

reworked items, with Type I and Type II errors was included in their model. It should be noted 

that the vendor in this thesis is assumed to have a perfect production and an imperfect inspection 

process. The items found defectives after rework were scrapped. They showed that fraction of 

defectives and Type I error have a significant impact on the batch size and the total cost. 

2.4 Supply Chains 

Goyal (1977) stressed that the requirement of raw material in a product dictates the 

ordering policy of a buyer/vendor. He developed a joint inventory policy for the raw material and 

the finished product assuming no lead time. Goyal (1977) pointed out that the analysis of a single 

product with variable lead time would have similar results.  

Banerjee (1986a) demonstrated the advantage of the joint economic lot size (JELS) 

approach through an analysis of the cost trade-offs and appropriate price adjustment from the 

perspective of each party’s optimal position. It was shown that by adopting a jointly optimal 
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ordering policy, one party’s loss is more than offset by the gain of the other, and the net benefit 

can be shared by both parties in some equitable fashion. Deterministic demand and lead times 

were the limitations to their work. Banerjee (1986b) developed a pricing model from the 

perspective of a supplier who produces a product for a single customer. The objective was to 

determine the product's price in order to achieve a stated level of gross profit. He assumed that 

the supplier follows a lot-for-lot production strategy. This assumption would suit the instances 

where there is an unusually high inventory carrying cost or a lack of storage space.  

Goyal and Satir (1989) reviewed joint replenishment models for deterministic and 

stochastic problems. The deterministic joint replenishment models approach the objective of 

minimization of inventory related costs by calculating the (near) optimum values of cycle time of 

ordering and positive integer number for ordering cycle frequency for each item. Thus, they can 

be considered as periodic review inventory models. On the other hand, stochastic joint 

replenishment models are continuous review models with decision variables of can-order, must-

order and order-up-to points. They suggested that the future research should focus on (a) flexible 

manufacturing and just-in-time environments; (b) operational systems with resource restrictions 

such as transportation or production capacities, shelf life and demand interactions due to product 

substitutions; (c) multi-echelon production/inventory systems. Furthermore, the applicability of 

the above models could be enhanced by considering (i) multiple coordinated parallel cycles, 

thereby facilitating non-integer values of multipliers; (ii) interactions in the replenishment cost 

(iii) stochastic replenishment lead times. 

The inventory problems of vendor and buyer have long been treated in isolation. Goyal and 

Gupta (1989) reviewed the literature that deals with the interaction between a buyer and a 

vendor. The integrated models were classified as (i) models that deal with joint economic lot 

sizing policies; (ii) models that deal with coordination of inventory by simultaneously 

determining the order quantity of the buyer and the vendor; (iii) models that deal with integrated 

problem but do not determine simultaneously the order quantity of the buyer and the vendor; (iv) 

models that deal with buyer-vendor coordination due to marketing considerations. They also 

discussed the incentives for the vendor to offer price quantity discount as: (i) larger orders from 

buyers may result in lower sales costs since there would be fewer sales cells necessary and fewer 

orders to be processed, (ii) the vendor may in turn save by obtaining quantity discounts on raw 

materials from his suppliers, (iii) larger orders, if produced to order, will result in fewer 
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manufacturing setups per year and longer production runs leading to higher production 

efficiency, (iv) larger orders may allow the vendor to take advantage of transportation discounts 

that may be available, and (v) larger orders will exhibit a change in the pattern of orders placed 

throughout the years which may mean a shift in the timing of order payments that in turn may 

lead to larger revenues available to the vendor for reinvestment for longer periods.  

Hill (1997) discussed the benefits of multiple deliveries for a single order in an integrated 

inventory model, showing that a cooperative batching policy can significantly reduce total costs 

in a JIT environment. It was assumed that the supplier could start shipping even before 

completing the entire lot as soon as the production quantity becomes greater than the shipping 

size. 

Munson and Rosenblatt (2001) proposed a mechanism by which a company can coordinate 

its purchasing and production functions and create an integrated plan that dictates order and 

production quantities throughout a three layer channel. That is, they modeled a company that 

attempts to dictate channel lot sizes by obtaining a quantity discount from its supplier while 

offering a different one to its customer. The model is quite useful as it takes care of a three level 

chain (supplier – vendor – buyer) and explores the benefits of using quantity discounts on both 

ends of the supply chain to decrease costs. They showed that incorporating quantity discounts 

into both ends of the supply chain can significantly decrease costs compared to concentrating 

only on the lower end. 

Kim and Ha (2003) developed a JIT lot-splitting model that deals with buyer–supplier 

coordination. They discussed a simple JIT environment, i.e., single buyer and single supplier, 

under deterministic conditions for a single product. They examined the benefits of the proposed 

JIT lot-splitting policy of multiple deliveries over the lot-for-lot delivery policy. It was shown 

that regardless of the order size, the delivery size converges to an optimal size that can be used as 

a basis for determining a standard transportation vehicle size. Singer et al. (2003) considered the 

strategic behavior regarding quality within a supplier–buyer partnership in a disposable product 

industry. They studied a single-product distribution channel where a supplier manufactures items 

of a given type, some of which are defective. The buyer detects only a subset of the defective 

items, passing the rest along to customers. They were concerned with questions such as, (i) what 

is the effect of the different cost and demand parameters? (ii) in what circumstances can non-
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observable parameters be inferred? (iii) how quality performance is affected by observable 

parameters in a vertical integration? (iv) if agents should remain autonomous, is it possible to 

devise transfer contracts that can lead to quality improvements? and (v) can they reach optimality 

in a non-cooperative setup? 

Goyal et al. (2003) performed a sensitivity analysis of different parameters on the 

integrated model. They concluded that the number of shipments has a direct relationship with the 

holding cost for the buyer while it has an inverse one with the holding cost for the vendor. 

Khouja (2003) formulated a three-stage supply chain model where a firm can supply many 

customers. They dealt with three inventory coordination mechanisms between chain members 

and solved a cost minimization model for each. In the first mechanism the same cycle time is 

used throughout the supply chain. In the second mechanism the cycle time at each stage of the 

chain is an integer multiple of the cycle time of the adjacent downstream stage. In the third 

mechanism the cycle time of each firm is integer powers of two multiples of a basic cycle time. 

Their analysis showed that the integer multipliers mechanism has lower total cost than the equal 

cycle time mechanism, and the integer powers of two multipliers mechanism have lower cost 

than the integer multipliers mechanism. These models had several limitations, such as: (i) each 

buyer received its raw material from only one supplier, (ii) a deterministic demand was assumed, 

and (iii) they did not describe how to distribute the savings from the implementation of their 

models, among the stakeholders in the supply chain.  

Huang (2004) extended the work of Salameh and Jaber (2000) and Ha and Kim (1997) to 

determine a joint inventory policy for a single-vendor single-buyer case. Under the assumption 

that the buyer’s order quantity was replenished in n shipments of identical size, a mathematical 

model for the optimal order size and the number of shipments was developed and illustrated 

using the example found in Salameh and Jaber (2000).  

Sarmah et al. (2006) investigated supply chain coordination models that have used quantity 

discount as coordination tool under deterministic environment, considering quantity discount to 

be one of the most popular mechanisms of coordination between the business entities. They 

categorized the coordination models as (i) vendor perspective models, (ii) joint buyer and 

supplier perspective models, (iii) models using joint buyer and supplier coordination through 
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cooperative and non-cooperative game, and (iv) models with single vendor and multiple buyers 

using any of the first three categories.  

Jaber et al. (2006) extended the model of Munson and Rosenblatt (2001) to investigate the 

coordination in a supplier-vendor-buyer supply chain. They assumed a unit price discounts, 

profit maximisation approach. A price elastic demand and a profit sharing mechanism were 

adopted. They showed that as demand becomes more sensitive to price discount, the 

replenishment policies for the players were to order in larger quantities.  

Wu et al. (2007) studied a buyer-vendor inventory system where the buyer inspects sublots. 

They derived two integrated models with backorders, where the first model assumed a normal 

distribution while the second model used a distribution-free minimax approach, for the lead time 

demand. Lo et al. (2007) developed an integrated production-inventory model from the 

perspectives of both a vendor and a buyer. They assumed a varying rate of deterioration with 

partial backordering, inflation, imperfect production processes and multiple deliveries. They 

showed that the integrated decision results in a lower optimal joint cost when compared with an 

independent decision by the vendor or the buyer.  

Jaber and Zolfaghari (2008) reviewed the literature on quantitative models for the 

coordination in a centralized supply chain, for the period between 1990 and 2007. They 

classified the models on the basis of coordination schemes, supply chain, assumptions and levels 

of supply chain. They also provided directions for future research in the respective areas based 

on the assumptions and limitations in the available literature. Chung and Wee (2008) developed 

an integrated two-stage production-inventory deteriorating model for the buyer and the supplier 

with stock-dependent selling rate. They considered a single setup and multiple JIT deliveries 

strategy for a single product. They derived optimal results for the number of inspections and 

deliveries as well as the optimal delivery-time interval. 

Huang (2002) used the approach of Salameh and Jaber (2000) to develop an optimal 

integrated vendor-buyer inventory policy for imperfect items in a just-in-time (JIT) 

manufacturing environment. Lin (2009) extended Huang (2004) model to present a 

production/inventory model with imperfect quality and screening errors. He showed that the lot 

size per shipment and the number of deliveries per cycle have a direct relationship with Type I 

screening error while they have an inverse one with Type II screening error.  
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Chung et al. (2009) generalized the work of Salameh and Jaber (2000) to develop an 

inventory model for two warehouses that are constrained with limited storage capacity. An 

interesting feature of their model is the use of a   piecewise concave function for determining the 

expected total profit per unit time. 

2.5 Learning, Quality and Investment 

Towill (1985) studied the effect of industry learning on batch production policy and found 

that production management should take steps to reduce slippage in performance in a 

manufacturing firm. Slippage is caused by the elapsed time between the completion of one batch 

and the start of the next. This effect causes a significant increase in manufacturing times, and 

hence in direct labour costs.  

Chiu (1997) incorporated both learning and forgetting into discrete time-varying demand 

lot-sizing model. The production cost required to produce the first unit of each successive lot 

over a finite planning horizon was derived. Besides, an optimal lot sizing model and three 

heuristic models were developed by extending the existing models without learning and 

forgetting considerations. He showed that larger lot sizes are needed when learning and 

forgetting are considered. An alternate to this would be to use automated equipment to avoid 

heavy reliance on worker proficiency.  

Jaber and Bonney (1998) examined the impact of learning and forgetting on the optimal 

production lot size in an infinite and a finite planning horizons, where production runs are 

intermittent. They assumed that the optimal production quantity depends on (i) the maximum 

inventory accumulated prior to interruption; (ii) the length of the interruption required for total 

forgetting; and (iii) the level of experience in equivalent units remembered at the start-up of the 

next production run. They showed that under the partial transfer of learning (PTL), the optimal 

policy was to carry less inventory in later lots. Jaber and Bonney (1999) surveyed the literature 

that deals with the effect of learning on the lot-size problem. They suggested that the traditional 

lot size problem can be extended in a number ways. That is, by (i) investigating the impact of 

learning/forgetting on the lot size and the setup frequency, (ii) acquiring the optimal rate of 

learning to minimize the cost of learning, the cost of reworking defective items and the total cost 

of inventory system, and by (iii) studying the effects of learning and forgetting on the lot-size 

problem with non-stationary demand rates.  
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Huan et al. (2003) extended Chiu (1997) in a number of ways. That is, (i) they considered 

both learning and forgetting in setups and production simultaneously, (ii) they assumed that the 

forgetting rate in production is a function of the break length and the level of experience gained 

before the break, and (iii) they assumed that each production batch is completed as close as 

possible to the time of delivery in order to reduce the inventory carrying cost. Chiu and Chen 

(2005) also incorporated both learning and forgetting in setups and production into the dynamic 

lot-sizing model to obtain an optimal production policy. They showed that the effects of 

production learning on the number of production runs and total cost are more influential than that 

of setup learning. 

Tsou and Chen (2005a) developed a quality improvement model based on the classical 

EOQ theory. They assumed that the mean and standard deviation of a quality distribution for the 

product can be improved through an investment. They verified their model through analyzing a 

car seat assembly line and proved that the quality investment ends up reducing the overall cost of 

the production system.  Tsou and Chen (2005b) considered a defective production system and 

compared the total cost with and without quality improvement (Poka-Yoke). They verified their 

model through a case study and showed that the total cost increases with the number of 

production runs. Comeaux and Sarker (2005) addressed shortcomings and assumptions regarding 

inspection policy, scarp generation and inspection errors (Type I and Type II) in models for 

vendor-buyer coordination.  They developed models for the optimal joint economic lot size and 

optimal fraction conforming to quality and showed that increasing the fraction of product 

inspected increases the total cost while decreasing the optimal batch size. 

Dobos and Richter (2006) investigated a production-recycling model with quality 

consideration. They showed that it is better to outsource the quality control and repurchase only 

reusable products. They claim that a mixed strategy would be economical compared to the pure 

strategies, that is either production or recycling. Their results motivate an examination of the 

trade-off between an investment in improving quality and cost of handling defective items. Lee 

(2008) developed cost/benefit models for investments made in quality improvements in a multi-

level assembly system. He suggested investment in preventive maintenance to reduce variance 

and the deviation of mean from the target value of the quality characteristic, hence to reduce the 

proportion of defectives and also to increase reliability.   
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Tsou and Chen (2008) studied the impact of preventive activities on the economics of 

defective production systems. They showed through a practical case that return of the 

improvement depends on the cost of poor quality and that of the preventive activities. Tomlin 

(2009) tried to understand the operational implications of supply learning. He argued that 

assuming that a firm knows the supply distribution of its suppliers with certainty is a strong 

standpoint. His objective was to investigate how an uncertainty about a supplier’s true reliability 

influences a firm’s optimal sourcing and inventory decisions. That is, (i) if uncertain reliability 

makes a supplier more or less attractive? and (ii) if it increase or decrease the firm’s incentive to 

invest in inventory? Using a Bayesian approach for supply learning (i.e., reliability-forecast 

updating), he characterized the firm’s optimal sourcing and inventory decisions. He proved that 

for a given expected supplier reliability (i.e., the mean of the firm’s forecast for a supplier’s 

reliability), increasing forecast uncertainty (coefficient of variation) increases the attractiveness 

of a supplier, but it reduces the firm’s wish to invest in inventory to protect against future supply 

failures. Kulkarni (2008) considered an inspection, inventory planning and process investment 

problem when process yield is random and backorders are permitted. He concluded through 

numerical analysis that modified reflected normal loss in the lot-sizing problem serves better 

than Taguchi loss function.  

Wang (2009) presented an investment model with nonlinear stochastic functional 

differential equations. He also established criteria for the exponential stability of nonlinear 

stochastic neutral technical progress and investment system. Hsu et al. (2009) derived a 

replenishment policy for an EOQ model of deteriorating items where investment is made to 

improve the production process. They studied sensitivity of the investment to the fraction of 

defectives. Mehdi et al. (2009) presented a joint strategy of quality control and preventive 

maintenance for an imperfect production process. They used three decision variables, i.e. (i) the 

rate of producing defective units, (ii) the size of the buffer stock, and (iii) the threshold level of 

the rate of rejection.  

Although learning is commonly believed to cause improvement in the time to process a 

unit only, learning can be shown in the cost, productivity and other similar measures of a 

production system. In this section the literature that links quality and learning will be categorized 

through exploring the literature that finds a (i) mathematical relationship, and (ii) empirical 

relationship. 



52 
 

2.5.1 Mathematical Relationship 

Wright (1936) was probably the first one to come up with a relationship that signifies the 

importance of experience or learning in a production facility.  He studied the variation in 

production cost with production quantity on cost. A curve depicting such variation was worked 

up empirically from the two or three points which previous production experience of the same 

model in differing quantities made possible. This curve was found to take an exponential form. 

Levy (1965) is among the first few who captured the linkage between quality and learning. 

Fine (1986) demonstrated that learning is the bridge between quality improvement and 

productivity increase. This supports the observation of Deming (1982) that quality and 

productivity are not to be traded off against each other; instead, productivity increases follow 

from quality improvement efforts. He introduced and formally modeled a theory of quality-based 

learning. He was of the view that when costs are affected by quality-based learning curve, 

product quality favourably influences the rate of cost reduction due to learning. Thus, costs 

decline more rapidly with the experience of producing higher quality products. He presented two 

formulations for quality based learning. The first assumes that quality-based experience affects 

direct manufacturing costs. The second formulation assumes that quality-based experience 

affects quality control costs. In this case, the optimal quality level is always increasing over time.  

A key feature of the second quality-based model is that it resolves the controversy between 

the economic conformance level model of Juran (1978), which asserts that one should use cost-

tradeoff analysis to find the optimal quality level, and the claims of Deming (1982) and Crosby 

(1979), that zero defects is always the optimal quality level. Fine claimed that firms choosing to 

produce high quality products will learn faster or go down a steeper experience curve than firms 

producing lower quality products (where quality is defined as degree of conformance to design 

specification). Fine’s quality-based learning theory added a dynamic learning curve effect to the 

static economic conformance level model so that the modified model is consistent with the 

”higher quality costs less” school of thought and is consistent with the evidence from Japan. In 

the quality-based learning formulation, both induced learning and autonomous learning are 

modeled. Induced learning, in contrast to autonomous learning, depends on conscious actions 

and efforts by management and technical people to improve the efficiency of the production 

system.  
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Porteus (1986a) modeled the relationship between quality and learning in a different way. 

He assumed that for a very small probability that a process goes out of control, the expected 

number of defective items in a lot is proportional to this probability. Tapiero (1987) discussed 

the practice in manufacturing in which quality control is integrated into the process of production 

in altering both the product design and manufacturing techniques to prevent defective units. He 

developed a stochastic dynamic programming problem for determining the optimal parameters of 

a given quality control policy with learning. He defined the knowledge in a production facility 

with quality control as a learning function. It was concluded that the optimal quality control 

policy a vendor may use is not only a function of the costs of inspection and the costs of 

products’ failures but also of the vendor’s ability to use the inspected samples in improving 

(through “experience”) the production technology. This observation is of course in line with the 

Japanese practice of “full inspection” and of learning “as much as possible” to obtain finally a 

zero-defects production technology.  

To help explain how one firm can have both higher quality and lower costs than its 

competitors, Fine (1988) explored the role of inspection policies in quality-based learning, a 

concept introduced in Fine (1986) and extended by Tapiero (1987). He discussed an imperfect 

production process, i.e., one that at times produces defective items. The process may produce 

defective items for any of a large number of reasons, such as poorly designed or poorly 

constructed materials and/or components, substandard workmanship, faulty or poorly maintained 

equipment, or ineffective process controls. This model permits the production process to be 

improved through "quality-based learning" by the operators. It has tight quality control standards 

for the time in the "out of control" state, enforced by intensive inspection procedures, thus 

resulting in faster learning. This leads to lower long-run failure costs than the short-run 

inspection costs. This work is different from that of Fine (1986) and Tapiero (1987) in that it 

attempts to model more explicitly how learning events arise rather than using an aggregate 

measure of cumulative experience or learning. The model points out to managers responsible for 

quality policies that they may be choosing suboptimal inspection policies if they are ignoring 

potential learning benefits from inspection.  

Chand (1989) used the same approach to model the expected number of defective units in a 

production lot. It was assumed that the process is in control at the start of a production lot and no 

corrective steps are taken if the process goes out of control while producing a lot. Before starting 
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a new production lot, the process was reset so that it is in control. Chand (1989) elaborated the 

benefits of small lot sizes in terms of reduced setup costs and improved process quality due to 

worker learning. He discussed a lot sizing problem with learning in process quality and in setups 

but no learning in processing times. He showed that the lot sizes do not have to be equal in the 

optimal solution even if the demand rate is constant.  

Urban (1998) modeled the defect rate of a process as a function of the run length, and 

derived closed-form solutions for the economic production quantity. This model accounted for 

either positive or negative learning effects in production processes. To elaborate the learning 

effect of run length on product quality and thus on production costs, a generalization of the basic 

economic production quantity (EPQ) model was examined by taking the defect rate as a function 

of the production lot size. A constant and deterministic demand of a single item was discussed 

without any backorders. This functional form was found to be very useful for a number of 

reasons, (i) using appropriate parameters, this functional form can represent the JIT philosophy, 

the disruptive philosophy, or a constant defect rate independent of the lot size, (ii) it provides a 

bound for the defect rate i.e. as the lot size increases, the defect rate approaches a given value, 

(iii) it is straightforward to estimate the model parameters in practice, using simple linear 

regression and generally readily available data on lot sizes and defect rates, and (iv) a closed-

form solution can easily be obtained, which can then be examined to gain important insights into 

the problem. 

It should be noticed that the traditional way to obtain data for a learning cycle is usually 

erroneous as the individual data is composed of some variance. To counter this, Zangwill and 

Kantor (1998) proposed to measure the individual improvements directly and to use the learning 

cycle repeatedly. This would make the management observe which techniques are producing 

greater improvement and thus learn how to improve processes faster and faster. They came up 

with a differential equation which was composed of three forms of learning, i.e. power form, 

exponential form, and the finite form. Zangwill and Kantor (2000) extended upon their earlier 

work and emphasized that traditional learning curve cannot identify which techniques are 

making improvements and which are not, on a period by period basis. Their approach helps to 

boost rate of improvement in every cycle and makes the learning a dynamic process. 
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Jaber and Guiffrida (2004) presented a quality learning curve (QLC) which is a 

modification of Wright’s learning curve (WLC) for imperfect processes where defectives can be 

reworked. They incorporated process quality into the learning curve by assuming no 

improvement in reworks and then modeled the same situation by relaxing this assumption. Their 

approach was similar to that of Porteus (1986a) in that the process remains in control at the 

beginning of the lot and generates no defects. In the course of learning, there is a point where 

there is no more improvement in performance. This phenomenon is known as plateauing. The 

possible reasons for plateauing may be (i) labor ceases to learn, (ii) management becomes 

unwilling to invest in learning efforts, and (iii) management becomes sceptical that learning 

improvement can continue.  

Their composite learning model resulted in the following findings: (i) for a learning in 

reworks such that the learning exponent is less than half, composite learning curve was found to 

be convex with a local minimum that represents cumulative production in a given cycle, (ii) for 

the learning exponent equal to half, the composite learning curve would plateau at a fixed value, 

as cumulative production approaches infinity, (iii) when the learning exponent remains between 

half and one, learning was found to behave in a similar manner to that of Wright (1936). That is, 

as cumulative production approaches infinity, the time to produce a unit would approach zero. 

Their work had some limitations too. That is, (i) it cannot be applied to cases where defects are 

discarded, (ii) the rate of generating defects is constant, (iii) the process can go out-of-control 

with a given probability each time an item is produced, Porteus (1986a), (iv) there is only one 

stage of production and rework considered.  

Jaber and Guiffrida (2008) assumed that an imperfect process can be interrupted to restore 

quality. This way they addressed the shortcomings in Wright’s learning curve (WLC), i.e., (i) the 

learning phenomenon continues indefinitely and (ii) all units produced are of acceptable quality. 

This model also addressed the third limitation in the work of Jaber and Guiffrida (2004), as 

stated above. They assumed that (i) a lot is divided into n equal sub-lots corresponding to (n – 1) 

interruptions, and (ii) the restoration time is a constant percentage of the production time. This 

way they modified the equations for total time to produce x units, in Jaber and Guiffrida (2004), 

for the cases of with and without learning in reworks. Their results indicated that introducing 

interruptions into the learning process to restore the production process quality, may improve 

performance when the percentage of the production time that represents the process restoration 
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time is smaller than the production learning rate. Otherwise, they recommended the use of QLC 

(Jaber and Guiffrida, 2004). One important outcome of this research was that restoring the 

production process breaks the plateau barrier and thus provides opportunities to improve 

performance. 

2.5.2 Empirical Relationships 

Foster and Adam (1996) included speed of quality improvement in Fine (1986) quality-

based learning curve model. The model demonstrated that under different circumstances, rapid 

quality improvement effects are either beneficial or unfavourable to improvement in quality-

related costs. They demonstrated that rapid quality improvement, if sustained and permanent, can 

lead to higher levels of learning. However, under certain conditions, rapid speed of quality 

improvement can also impede organizational learning. They developed two hypotheses from this 

analysis and tested them in an automotive parts manufacturing company with five similar plants. 

It was found that rapid speed of quality improvement resulted in reductions in the rate of 

improvement in quality-related costs. In addition, slower quality improvement was more closely 

associated with reductions in quality-related costs. This behavior was named as organizational 

learning. This type of learning is found in many organizations. For example, with the passage of 

time, (i) inspection related costs are reduced, (ii) need for acceptance sampling of raw materials 

is reduced, (iii) prevention related costs decline, and (iv) prevention activities become more 

focused and specific. The overall result of all this is the reduction in quality or improvement 

related costs due to learning.  

This model demonstrated that some quality related efforts may go ineffective. They 

proposed that a slower, steadier speed of quality improvement with learning was more strongly 

associated with decreases in quality-related costs than with rapid improvement. That is, rapid 

speed of quality improvement can be detrimental on the cost side of the business. The model was 

supported by the empirical findings. 

Forker (1997) examined the results of a survey of 348 aerospace component vendors to 

investigate the factors that affect supplier quality performance. He discussed the process view of 

quality management to describe the inconsistent association between practice and performance in 

a supplier firm. This helped him link the quality management with process optimization to 

address both effectiveness and efficiency concerns. The quality performance of a supplier was 
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linked with a variety of dimensions such as features, reliability, conformance, durability, 

serviceability and aesthetics.  

The role of human learning in his theory and hypotheses was important as (i) learning 

curve affected the transaction cost of different supplies, and (ii) suppliers’ attitude towards 

learning and thus their efficiency impacted quality magnitude. The study showed that as 

processes become more streamlined and capable, firms should invest their resources in product 

design and in training all employees in quality improvement concepts and techniques. 

Li and Rajagopalan (1997) collected about three years of data on quality levels, production, 

and labor hours from two manufacturing firms, to answer the three questions related to the 

impact of quality on learning. That is, (i) how well does cumulative output of defective or good 

units explain learning curve effects? (ii) do defective units explain learning curve effects better 

than good units? (iii) how should cumulative experience be represented in the learning curve 

model when the quality level may have an impact on learning effects? The data was taken from 

two plants making tire tread and medical instruments (kits and fixtures) respectively.  

They used defect levels as a substitute for the effort devoted to process improvement. In 

another model, Li and Rajagopalan (1998) had shown that the optimal investment in process 

improvement effort is proportional to the defect levels. In the traditional learning curve model, 

defective units and good units were assumed to be equivalent in explaining learning curve 

effects. Therefore, cumulative production volume was used as a proxy for knowledge or 

experience. They proposed a model complementary to the one in Fine (1986) and demonstrated 

that if the defective level in a period is very high, it immediately gets the attention and 

considerable effort is directed at identifying the source of defectives. If defect levels continue to 

be high for a few consecutive periods, increased attention is paid and additional resources are 

devoted to investigate the cause of the defects. They concluded that defective and good units do 

not explain learning curve equally as is implicitly assumed in traditional learning curve models. 

In other words, defective units are statistically more significant than good units in explaining 

learning curve effects. 

Badiru (1995) claimed that quality is a hidden factor in learning curve analysis. Quality 

was considered to be a function of performance which in turn is a function of production rate. 

Forgetting was believed to affect the product quality in the sense that it can impair the 
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proficiency of a worker in performing certain tasks. That is, the loss in worker performance due 

to forgetting is reflected in product quality through poor workmanship. It was demonstrated that 

forgetting can take different forms as (i) intermittent forgetting (i.e. in scheduled production 

breaks), (ii) random forgetting (e.g. machine breakdown), and (iii) natural forgetting (i.e. effect 

of ageing) 

Badiru (1995) formulated a multivariate learning curve and tested it on the 4-year record of 

a troublesome production line. This production line was a new addition to an electronics plant 

and thus was subject to significant learning. The company used to stop the production line 

temporarily if the quality problems would arise. It was hypothesized that the quality problems 

could be overcome if the downtime (forgetting) could be reduced so that workers could have a 

more consistent operation. The variables of interest were: production level, number of workers, 

and number of hours of production downtime. The dependent variable was the average 

production cost per unit. An analysis of variance of the regression model showed the fit is highly 

significant with 95% variability in the average cost per unit. It was noticed that the average cost 

per unit would be underestimated if the effect of downtime hours is not considered. Thus, the 

multivariate model would provide a more accurate picture of the process when there are many 

factors associated with the process.  

Mukherjee et al. (1998) studied why some quality improvement projects are more effective 

than others. They explored this by studying 62 quality improvement projects undertaken in one 

factory over a decade, and identified three learning constructs that characterize the learning 

process. That is, scope, conceptual learning, and operational learning. The purpose of their study 

was to establish a link between pursuit of knowledge and pursuit of quality.  

This study followed Kim (1993) approach of distinguishing between two types of effort, 

conceptual learning and operational learning. Conceptual learning is in essence trying to 

understand why events occur, i.e., the acquisition of know-why. In contrast, operational learning 

consists of implementing changes and observing the results of these changes. Operational 

learning is basically developing a skill of how to deal with experienced events, i.e., the 

acquisition of know-how. 

In order to establish links between learning and quality, field researchers tried to control 

potentially confusing factors such as variations in product and resource markets, general 
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management policies, corporate culture, production technology, and geographical location. They 

must have access to detailed data about the systems used to improve quality. They concluded that 

(i) management plays a role in addressing 80-85% of quality problems, (ii) in dynamic 

production environments a cross-functional project team is in a better position to create 

technological knowledge, and that (iii) operational and conceptual learning have different 

potentials in a plant.  

Lapre et al. (2000) explored the learning curve of total quality management (TQM) in a 

factory. In this model, they extended the link between learning and quality from a cross-

sectional, project-level analysis to a longitudinal, factory-level analysis. They focused on waste 

which is a key driver of both quality and productivity. The learning rate was not taken as 

constant. It was rather modeled as a variable that depends on autonomous and induced learning. 

The parameters of this model were determined by analyzing a number of projects in a factory. 

These projects were coded on questions that dealt with their learning process and their 

performance by giving a response on a five-point likert scale.  

Jaber and Bonney (2003) used the record of an electronics production line in Badiru (1995) 

to show that it follows two hypotheses; (i) the time required to rework a defective item reduces 

as production increases and the rework times conform to a learning relationship, (ii) quality 

deteriorates as forgetting increases due to interruptions in the production process. 

To validate the first hypothesis, they analyzed the effect of cumulative production level on 

the average time to rework a unit. The analysis of variance showed that 84% of the variability in 

the average rework time per unit is explained by cumulative production as an independent 

variable. Similarly, to validate the second hypothesis, they analyzed the impact of forgetting due 

to production down time on the average rework time for a unit and cumulative production level. 

In this case, the analysis of variance showed that 88% of the variability in the average rework 

time per unit is explained by cumulative production and production down time as independent 

variables. 

Hyland (2003) reported their research into continuous improvement and learning in 

logistics of a supply chain. This research was based on a model of continuous innovation in the 

product development process and a methodology for mapping learning behaviors. Learning was 

taken to be crucial to innovation and improvement. To build innovative capabilities, 
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organizations need to develop and encourage learning behaviors. People could question, through 

learning, the existing standard behavioral patterns. He believed that capabilities could only be 

developed over time by the progressive consolidation of behaviors, or by strategic actions aimed 

at the stock of existing resources. He identified four key capabilities that are central to learning 

and continuous improvement (CI) in a supply chain. That is (i) the management of knowledge; 

(ii) the management of information; (iii) the ability to accommodate and manage technologies 

and the associated issues; and (iv) the ability to manage collaborative operations. 

Salameh and Jaber (2000) had assumed the fraction of defectives to be following a known 

probability density function. Jaber et al. (2008) noticed that the data for this fraction from an 

automotive industry reduces according to a learning curve, over the number of shipments. They 

tried to fit several learning curve models to the collected data and found that the S-shaped 

logistic learning curve fitted the data well. Two models similar to that of Salameh and Jaber 

(2000) were developed. That is, one for an infinite planning horizon and the other for a finite 

planning horizon. They found that in the infinite planning model, the number of defective units, 

the shipment size, and total cost reduces with an increase in learning increases. On the other 

hand, for the finite learning model, an increase in learning recommends larger lot sizes less 

frequently. 

In this thesis, learning from cycle to cycle will be considered in a vendor’s production 

process (time) and in supplier’s quality (fraction of defectives). That is, vendor’s production time 

and supplier’s fraction of defectives are assumed to decrease while moving from one cycle to 

another in learning. 

2.6 Imperfect Inspection 

Collins et al. (1973) considered the effects of inspection error on the probability of 

acceptance, average outgoing quality and average total inspection. They examined these 

measures under both replacement and non-replacement assumptions. Bennett et al. (1974) 

investigated the effect of error on a single sampling plan with known incoming quality.  

Raouf et al. (1983) were the first to develop a model for determining the optimal number of 

repeat inspections for multi-characteristic components to minimize the total expected cost per 

accepted component due to Type I error, Type II error and the cost of inspection. Lee (1988) 

provided a simplified version of the model given by Raouf et al. (1983) to evaluate the costs 
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involved in the multiple-cycle inspection schemes for multi-characteristic components. He 

extended the results for the case where the probabilities of defectives are random.  

Chandra and Schall (1988) studied the effect of replicate measurements on average 

outgoing quality and the average total inspection. They obtained the optimum number of 

replications based on the total cost of inspection. Duffuaa and Raouf (1989) developed three 

mathematical optimization models for multi-characteristic repeat inspection. Duffuaa and Raouf 

(1990) established an optimal rule for sequencing characteristics for inspection in the plan 

proposed by Raouf et al. (1983). Duffuaa and Nadeem (1994) extended the model proposed by 

Raouf et al. (1983) to cases where defective rates are statistically dependent. They proposed an 

algorithm to determine the optimal number of repeat inspections and sequenced the 

characteristics for inspection in order to minimize the total expected cost.  

Sylla and Drury (1995) proposed a model that uses a form of SDT to predict inspector 

performance in order to improve system performance. They presented the concept of lability to 

characterize the inspector’s ability to respond to the costs, penalties and probabilities involved in 

the inspection decision. 

Duffuaa and Al-Najjar (1995) proposed a new inspection plan for critical multi-

characteristic components with a variable number of inspections for different characteristics. 

They proposed an algorithm to determine the optimal number of repeat inspections and 

sequenced the characteristics for inspection in order to minimize the total expected cost. Duffuaa 

(1996) investigated the statistical and economic impact of inspector errors on the performance 

measures, i.e. ATI, AOQ and ETC, of a complete inspection plan. He concluded that Type I and 

Type II errors have a significant effect on the performance measures of repeat inspection plans. 

Hong et al. (1998) developed economic screening procedures when the rejected items are 

reworked. Screening procedures based on the performance variable of interest and a correlated 

variable are considered. They considered the cost incurred by imperfect quality, reprocessing 

cost and inspection cost.  

Duffuaa and Khan (2002) provided a more realistic formulation to the models for 

inspecting multi-characteristic components. Their inspection plan assumed three classifications 

for the components under inspection, which were: characteristics meet specifications (good), 

need rework or are scrap. In this situation an inspector could make six types of errors. These are 
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(i) a good characteristic is classified as rework or scrap, (ii) a rework characteristic is classified 

as good or scrap, and (iii) a scrap characteristic (defective) is classified as good or rework. So, 

there could be six types of misclassifications in this plan. A number of practical applications of 

the model were identified such as gas ignition systems, aircraft avionics systems, space shuttle 

and nuclear reactors.  

Duffuaa and Khan (2005) quantified the effect of inspection errors, mainly on the 

performance measures of a complete repeat inspection plan (Duffuaa and Khan, 2002). This was 

accomplished by conducting a sensitivity analysis on the errors and then observing the changes 

in expected total cost (ETC), average total inspection (ATI) and average outgoing quality 

(AOQ). They showed that the errors of classifying good items as scrap and scrap as good have 

significant effect on the performance measures of the repeat inspection plan.  

Duffuaa and Khan (2008) presented an inspection plan for the case where the 

characteristics’ defective rates are statistically dependent. This model was an extension of the 

work of Duffuaa and Khan (2002) and Duffuaa and Nadeem (1994). They assumed that 

characteristic defective rates can be obtained from historical data or the production process 

capability. 

In this thesis, Type I and Type II errors have been incorporated in the screening process 

both at a vendor’s and a buyer’s end in a two level supply chain context. 

2.7 Fuzzy Set Theory 

The fraction of defectives in Salameh and Jaber (2000) is usually taken from historical 

data. In the absence of such historical evidence, fuzzy set theory can be used to parameterize the 

level of quality of a supplier. Chang (2004) reformulated the EOQ model of Salameh and Jaber 

(2000) to capture the uncertainty in the defective rate using fuzzy set theory. In this extension, 

the complement of the defect rate, 𝜑 = 1 − 𝛾, was used as a triangular fuzzy number 𝜑�   of the 

form 𝜑� = (𝜑 − Δ1,𝜑,𝜑 + Δ2). The parameters Δ𝑖(𝑖 = 1,2) are determined by the decision 

maker’s interpretations of the magnitude of the complement of the defective rate and are 

constrained as 0 < ∆1< 𝜑 and 0 < ∆2< 1 − 𝜑  respectively. Ouyang et al. (2006) extended the 

integrated vendor-buyer lot sizing model of Huang (2002) with imperfect quality by treating the 

defective rate as the triangular fuzzy number 𝛾� = (𝛾 − Δ1, 𝛾, 𝛾 + Δ2) where 0 < Δ1, < 𝛾 

and0 < Δ2, < 1 − 𝛾. The fuzzy set theory was originally introduced by Zadeh (1965) and has 
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been implemented in inventory and production management environments. See Guiffrida and 

Nagi (1998) and Guiffrida (2009) for reviews. Fuzzy set theory will not be considered in this 

thesis.  

2.8 Shortage and Backordering   

Montgomery et al. (1973) studied a periodic review inventory model where lost sales and 

backorders are caused by the stock-out of inventory in a production system. Kim and Park (1985) 

studied a stochastic inventory model for situations in which, during a stock out period, a fraction 

of the demand is backordered and the remaining fraction of the demand is lost. The model is 

suggested by the different reactions of a buyer to the stock out condition. That is, during the 

stock out period, some buyers wait until their demand is satisfied, while others cannot wait and 

have to fill their demand from another source. The cost of a backorder was assumed to be 

proportional to the length of time for which the backorder exists, and a fixed penalty cost 

incurred per unit of lost demand. They developed a mathematical model for the average annual 

cost and treated the reorder point with a heuristic approach. It was shown that erroneous 

assumption of the fraction backordered is very sensitive to the average annual cost.  

Nahmias and Smith (1994) discussed a similar model with partial lost sales. They assumed 

instantaneous deliveries from the warehouse to the buyers. Andersson and Melchiors (2001) 

derived an approximate solution for the case where customer demand is a Poisson process, 

demand during a stockout is lost, buyers operate (one for one) base stock control policies and the 

warehouse lead time is fixed. They adjusted the arrival rate of buyer orders to allow for the effect 

of stockouts at the buyers and they estimate and then use the mean extra delay at the warehouse. 

Yeh and Chen (2003) extended the work of Salameh and Jaber (2000) to account for shortages 

backordered. They assumed that the shortages are fulfilled without screening, once the order 

arrives. This would result in a warranty cost. Chiu (2003) extended the work of Hayek and 

Salameh (2001) to present a modified EPQ model, for the fact that only a fraction of (instead of 

all) the defective items are reworkable.  

Rezaei (2005) also extended Salameh and Jaber (2000) to include shortages. He optimized 

simultaneously the lot size and the shortage level and showed that the lower the percentage of 

defectives, the higher the savings in the expected total profit per unit time for proposed model 

with respect to Salameh and Jaber (2000) model. Yu et al. (2005) extended the work of Salameh 
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and Jaber (2000) to include deterioration in the process and partial backordering. They 

considered a ratio of the backorder and lost sales in their model and determined the lower bound 

of this ratio through iteration, for a feasible profit function. They showed that the management of 

an enterprise can select suppliers based on the percentage of defectives and the deterioration rate 

of the products supplied by each supplier. Wee et al. (2006) extended the work of Salameh and 

Jaber (2000) for a single-vendor single-buyer supply chain with product deterioration. They 

assumed complete backordering of the shortages. They showed that imperfect quality, 

deterioration and backordering have a significant effect on the supply chain performance. Chiu 

and Chiu (2006) extended the work of Chiu (2003) for an imperfect repair process. They 

assumed that a portion of the reworked items fails the repairing process and thus becomes scrap.  

Hill et al. (2007) considered a single-item, two-echelon, continuous-review inventory 

model. The unfulfilled demand at a buyer was considered as lost. They approximated the arrival 

of orders at the warehouse from the buyers as a Poisson process. The results of simulation 

proved that this approximation has excellent results in describing the behavior of the system. The 

steady state of the system was determined by an iterative scheme. An important feature of this 

research was the finite state space at the warehouse. Eroglu and Ozdemir (2007) extended the 

work of Salameh and Jaber (2000) by allowing shortages that are backordered. They also 

examined the effects of different levels of fraction of defectives on lot size and expected total 

profit and showed that the optimal total profit per unit time decreases when defective and scrap 

rates increase individually. Wee et al. (2007) also extended the work of Salameh and Jaber 

(2000) by considering permissible shortage backordering. They studied the effect of varying 

backordering cost and showed that the traditional EOQ and Salameh and Jaber (2000) models 

become special cases of their model as the backordering cost tends to infinity. Chiou and Chen 

(2007) also dealt with the failure in repair.  

Haji et al. (2009) discussed the collaboration in a single-vendor single-buyer inventory 

system with lost sale and backordering, without defective items. They suggested that while JIT 

and collaboration keep the inventory level of the players low, they make the whole supply chain 

more vulnerable to lost sales and/or backorders. They showed that the joint inventory cost 

decreases by implementing their model as compared to a usual joint economic lot size (JELS) 

model. Chang and Ho (2009) revisited the work of Wee et al. (2007) and adopted renewal 

reward theorem to derive the expected profit per unit time, as suggested by Maddah and Jaber 
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(2008). They used algebraic methods to derive the exact closed-form solutions for optimal lot 

size, backordering quantity and maximum expected profit. Cárdenas-Barrón (2009) extended the 

work of Jamal et al. (2004) by bringing in backorders to the EPQ model for a single stage, single 

product model. Both the models suggest reworking the defective products in the same cycle.  

Maddah et al. (2010) brought in the concept of order overlapping to avoid shortages in 

Salameh and Jaber (2000). They assumed that a new order is placed when the inventory is just 

enough to cover the demand during the screening period. They showed that the loss profit due to 

this order overlapping is negligible. 

Two cases of shortages, i.e. lost sales and backordering will be introduced in chapter four 

where the screening for defective items starts at a slower rate as compared to the demand. Three 

cases for the transfer of learning will be discussed to enhance the study.  

2.9 Consignment Stocks 

Although not new, this technique has recently been revived in the inventory control 

literature. There has been a trend to adopt this strategy for storing inventory in a supply chain. 

This technique has been named as vendor-managed-inventory or consignment stock (e.g. Braglia 

and Zavanella,  2003; Persona et al., 2005). Consignment stocks can be defined as ‘stocks owned 

by the vendor’ but on the customer’s premises and managed by the buyer. The importance of this 

stocking policy comes from the fact that it (i) saves the buyer the investment in inventory value, 

(ii) assures the supplier/vendor of an almost captive customer/buyer, and (iii) reassures the buyer 

that the supply is conveniently available (Wild, 2004). In the following, a brief review of the 

recent literature on consignment stock is presented.  

Corbett (2001) analyzed two models of contracting on inventory policies for a supplier-

buyer setup. He suggested that if supplier’s long production cycles are the key driver of 

inventory, the supplier should be made to bear the costs of the resulting cycle stocks, e.g., 

through a consignment scheme. On the other hand, if uncertainty about down-stream demand is 

the main driver, the buyer should bear the costs of the resulting safety stock. He concluded that 

consignment stock helps reduce cycle stock by providing the supplier with an additional 

incentive to decrease batch size, but simultaneously gives the buyer an incentive to increase 

safety stock by exaggerating backorder costs. Valentini and Zavanella (2003) showed how 

consignment stock can be used in joint-profit maximizing models that use (s, S) policies. They 
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used simulation experiments to demonstrate the rationale behind the implementation of a CS 

policy. They provided through an industrial case the tactical issues that a company has to address 

once it decides to adopt the CS policy. 

Braglia and Zavanella (2003) demonstrated that the most evident difference between 

consignment stock and Hill (1997) conventional model lies in the location of the stocks. They 

modeled the CS problem analytically for a single vendor and a single buyer and compared their 

results with those of Hill (1997). They showed how CS policy might be profitable in situations 

where demand and delivery lead times are uncertain. Zanoni and Grubbstrom (2004) used 

Grubbstrom and Erdem (1999) approach to extend the theoretical solution proposed by Braglia 

and Zavanella (2003). They provided explicit analytical expressions for the optimal lot size, the 

optimal total number of deliveries, the number of deliveries to be delayed and the corresponding 

cost incurred. Srinivas and Rao (2004) provided a framework for the application of CS strategy 

for the stochastic systems. They reduced the effect of stochastic lead times by adding a crashing 

cost. They observed that the supply chain ends up having lower costs than the CS model while 

Hill’s model always offers lower cost due to its deterministic demand profile.  

Persona et al. (2005) proposed an analytical model to take into account the effects of 

obsolescence in a supply chain managed with a CS policy. They used Braglia and Zavanella 

(2003) deterministic model to show that (i) obsolescence reduces the optimal inventory level, 

particularly in the case of a short period of life, (ii) the effects of obsolescence on the correct 

estimation of the optimal shipment dimension are higher when the production rate is close to the 

demand rate. Li and Hong (2006) extended the model of Braglia and Zavanella (2003) for the 

case of defective deliveries from the vendor. They also studied the effect of the number of 

delayed deliveries on the annual cost of vendor-buyer supply chain. Liu et al. (2007) extended 

the model of Persona et al. (2005) under two different transportation policies. That is, 

transporting to two buyers simultaneously each time and transporting to one buyer alternately 

each time. They also analyzed the situation of indeterminate cycle time with obsolescence of the 

products, to show that high production flexibility and keeping outdated products in the vendor’s 

site can lead to lower system costs. 

Srinivas and Rao (2007) developed an inventory model for a single vendor single buyer 

where stochastic lead time in a CS strategy is controlled to minimize the joint expected total cost. 
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They suggested that a consignment stock-lead time (CS-LT) policy is best suitable for low or 

reasonable price items and when the demand is stochastic in nature. Lee and Wang (2008) 

studied the impact that the buyer’s warehouse space capacity constraint has on the vendor’s total 

set-up, inventory holding, and replenishment costs when there is a consignment purchasing 

policy between the vendor and the buyer. They derived a joint economic lot size model for the 

vendor’s production lot and replenishment lot sizes.  

Zavanella and Zanoni (2009) extended the model of Braglia and Zavanella (2003) for the 

case of a single-vendor, multi-buyer system, under the shared management of the buyers’ 

inventory. They showed how the CS policy works better than the uncoordinated optimization. A 

sensitivity analysis was also carried out to study the influence of the parameters relevant to the 

economic performance of the supply chain. Huang and Chen (2009) extended the model of 

Braglia and Zavanella (2003) to highlight the fact that that all financial costs are borne by the 

vendor until the goods are used or sold. They divided the unit holding cost into a financial and a 

storage one to show that whether the CS model offers lower costs depends on the comparative 

values of buyer’s and vendor’s storage costs. Savasaneril and Erkip (2010) analyzed two settings 

of inventory management for a supply chain of a single vendor and a single buyer. These settings 

were: a traditional system where the buyer manages and owns the inventory, and a vendor-

managed system. They modeled two cases for the vendor-managed system based on the 

ownership of stock. Under the no-consignment stock model (VM-NC), the stock was managed 

by the vendor while owned by the buyer. On the other hand, under the consignment stock model 

(VM-C), the inventory was both managed and owned by the vendor. They showed that under the 

vendor-managed system, a vendor can take a proactive approach in responding to a buyer’s 

demand and thus can increase the capacity utilization.  

Srinivas and Rao (2010) developed four analytical models with consignment stock strategy 

for a single-vendor–multi-buyer supply chain. That is (i) CS policy without delay deliveries, (ii) 

CS with delay deliveries, (iii) CS with information sharing and with delay model, and (iv) CS 

with controllable lead time. These scenarios are suitable for the contemporary supply chains 

having stochastic demand. Battini et al. (2010) extended the work of Braglia and Zavanella 

(2003), Valentini and Zavanella (2003), and Persona et al. (2005) to bring in the issues such as 

safety stocks, stock-out risk and restricted space availability. They demonstrated that 

consignment stock policy is always convenient when compared with the EOQ policy materials. 
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Consignment stock policy will be adopted in chapter seven for a two level (vendor-buyer) 

supply chain. Learning in production and errors in screening will be introduced to enhance the 

study.  

2.10 Contemporary Trends in EOQ/EPQ Modelling 

Balkhi (2004) investigated the effects of inflation and time value of money in a general 

EPQ model for an imperfect quality product. He assumed that production, demand, and 

deterioration rates are all known and differentiable functions of time. The model allowed for 

shortages but only a fraction of the stock out was backordered, and the rest was lost. Neither 

imperfect nor the deteriorated items were replaced or repaired. He used differential calculus to 

guarantee that the solution is minimal (optimal).  

Tsou and Chen (2005c) proposed a power function to model the relationship between cost 

and yield rate of a JIT production system. They used geometric programming approach to obtain 

the optimal production cost and setup cost. Chung and Huang (2006) extended the work of 

Salameh and Jaber (2000) and Goyal (1985) by considering permissible delay in payments and 

interest charges on inventory costs of a buyer. They developed two theorems to determine 

buyer’s ordering quantity. Chiu et al. (2006) examined a model for stationary and random 

defective rates.  

Chiu et al. (2007) proposed a revised cost-benefit algorithm for solving the expediting 

completion time of end product (ECTEP) problem with defective components/materials in the 

product structure diagram. They used adjusted the unit procurement cost and the required 

quantity to address the defective materials procured. The critical path method and time-costing 

method were utilized in the proposed solution procedures for finding the optimal material 

procurement alternatives that minimize the end product unit manufacturing cost.  

Darwish (2008) claimed that the setup cost and the cycle length in the classical EPQ model 

can be related to the process deterioration, learning and forgetting effects. He used the simplified 

form of the models given by Jaber and Bonney (2003) and developed two models for the optimal 

cost, that is, with and without shortages. He showed that the setup shape parameter defines the 

category of the production system under consideration, that is, smaller or larger lots.  
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Liao et al. (2009) presented an integrated EPQ and maintenance model by considering the 

impact of restoration actions such as imperfect repair, rework and preventive maintenance (PM) 

on the damage of a deteriorating production system. They claimed that if the PM learning rate is 

estimated based on the actual data, learning curves can be used to project the PM costs in the 

integrated EPQ model. Kelle et al. (2009) discussed yield uncertainty in a buyer – supplier 

cooperation. They extended Huang (2004) and Salameh and Jaber (2000) by assuming a known 

mean and variance of the random proportion of defective items. They examined two scenarios, 

that is (i) the buyer does the 100% inspection, and (ii) the supplier does the 100% inspection, to 

discuss the circumstances where the yield characteristics are (i) important or (ii) negligible. 

Maddah et al. (2009) extended the classical single period (newsvendor) and the economic order 

quantity (EOQ) models by accounting for random supply and imperfect quality items. The 

imperfect items were assumed to have their own demand and cost structure. They showed that 

incorporation of imperfect quality items can significantly increase the expected profit in many 

cases.  

Hsu and Yu (2009) studied the situation where a supplier faces a surplus in inventory, or a 

change in the production run of a product. In either case, he/she may offer a special price 

discount to motivate buyers to buy in larger than normal order quantities. This work is an 

extension of Salameh and Jaber (2000) to investigate an EOQ model with imperfect items under 

a one-time-only sale. Hsu and Yu (2011) also extended the model of Salameh and Jaber (2000) 

to describe three scenarios for the time at which a price increase is introduced to motivate the 

buyer to order in larger than normal order quantities. Chen and Kang (2009) considered trade 

credit and imperfect quality in the integrated vendor–buyer model for a single product. They 

developed theorems to determine the optimal solutions of buyer’s optimal replenishment period 

and frequency. They also suggested a profit sharing approach in which the vendor raises the 

warranty cost per defective item for the buyer to balance the cost saving between the vendor and 

buyer based on a coefficient of negotiation. The cost saving for the buyer would be negative in 

the integrated model if the warranty cost is the same as that in the non-integrated model. Under a 

long-term relationship, the vendor would raise the warranty cost per unit to compensate the 

buyer to achieve a win–win situation.  

Nadjafi and Abbasi (2009) discussed another realistic situation where (i) the value or utility 

of goods, while in stock, may decrease in case of deteriorating items, and (ii) production run 
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length influences the quality of goods. They developed an economic production quantity (EPQ) 

model considering both the depreciation cost of stored items and process quality cost. They 

assumed depreciation cost to be a continuous non-decreasing function of holding time, and 

process quality cost to be a continuous convex function of production run length. They solved 

the problem through simulated annealing (SA) and Iterated Local Search (ILS) and found ILS to 

be better.  

2.11 Research Questions 

The rationale for academic research extends far beyond the so-called economic benefits 

usually considered in our society. If on one hand it extends the depth and horizon of the area 

studied, the education of students on the other hand, which occurs in many academic projects 

turns out to be socially important as well (Mansfield, 1991). Inventory management is one of the 

most important areas of interest among modern researchers and practitioners. The industry has 

developed a lot in its course from using mere MS Access programs to advanced packages like 

ERP or SAP MM (Material Management Module), which is quite common today. The analytical 

research in this thesis can be of great help for engineers developing such packages. In other 

words, industry can benefit from this research instead of relying only on past data. 

The survey of the related literature is summarized in Table 2.1. A cell with a cross means 

that the corresponding research issue has been addressed in the literature, whereas an empty cell 

reflects a research scarcity in the corresponding area. Table 2.1 shows that research addressing 

inventory control with learning in quality and processing time with inspection errors is quite 

limited and thus is a fertile field to be explored. As shown in Table 2.1, there are no available 

models in the literature that link inventory control in a supply chain with inspection errors along 

with learning in production and demand. Thus, there are following research questions to be 

answered: 

1. What happens to the lot size policy if there are errors in inspection? 

2. How does learning in inspection affect the inventory policy for a lot sizing problem? 

3. How inspection errors affect order policies in a supplier-vendor supply chain? 

4. What if there is learning in production and in suppliers’ defective items? 
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5. What is the impact of inspection errors and learning in production in the traditional vendor 

buyer supply chain? 

6. Is consignment stock (CS) a better policy than a centralized coordination one to manage 

inventory when defective items and errors in inspection exist in a vendor-buyer supply 

chain? 

Thus, the shaded cells at the bottom of the table reflect the areas covered in the thesis. 

Table 2.1 Research overview 
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1 Goyal 1977   X         

2 Raouf et al. 1983  X      X    

3 Banerjee 1986   X         

4 Porteus 1986 X   X        

5 Salameh & Jaber 2000 X X          

6 Hayek & Salameh 2001 X X  X       X 

7 Goyal et al. 2003 X X X         

8 Kim & Ha 2003   X         

9 Khouja 2003         X   

10 Braglia & Zavanella 2003   X       X  

11 Jamal et al. 2004 X X  X X       

12 Jaber & Guiffrida 2004 X   X   X     

13 Maddah & Jaber 2008 X X   X       

14 Jaber et al. 2008 X X    X      
             

 The Thesis            
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2.12 Research Methodology 

The research objective in the thesis is to develop inventory models for a buyer or in a 

supply chain context with defective items. The issues to be explored in the thesis are: learning in 

production and rework, inspection errors, learning in inspection and learning in suppliers’ 

defective items. A consignment stock alongside a centralized coordination strategy will also be 

studied to better manage inventory in the presence of defective items.  Besides, the thesis will 

also present the behavior of the developed models with respect to parameters in learning and 

inspection. Analytical models would be developed to answer most of the research questions 

mentioned above. These models will be solved through closed forms or optimization in 

Mathematica or Excel Solver enhanced with VBA codes when necessary. Theorems explaining 

the behavior of the presented models may also be developed. Simulation will be used to carry 

out the statistical and sensitivity analysis of the developed models.  

The layout for the thesis is given in Figure 2.1. Two models to extend Salameh and Jaber 

(2000) for the case of ‘inspection errors in screening’ and ‘learning in screening’ will be 

presented in chapters three and four respectively. The case of ‘inspection errors in screening’ 

will then be incorporated in a supplier-vendor supply chain with ‘learning in production’ and 

‘learning in supplier’s quality’ for two different coordination mechanisms in chapter five. A 

different two level supply chain will then be considered in chapters six and seven. That is the 

same human factors (learning in production and inspection errors in screening) will be studied in 

a vendor-buyer supply chain. A classical stocking policy and a consignment stock will be 

adopted in the two chapters respectively. The conclusion of the research and directions for future 

research will be outlined in chapter eight. More specifically, the research carried out is 

distributed in the following steps: 

Chapter 3 This chapter will  

 

1. Extend Salameh and Jaber (2000) for the case of inspection errors in the 

screening process instituted by a buyer. 

2. Discuss managerial implications of the model. 
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Chapter 4 This chapter will  

 

1. Extend Salameh and Jaber (2000) for the case of learning in inspection when 

there is total forgetting, partial and total transfer of learning from cycle to cycle.  

2. Discuss managerial implications of the model. 

Chapter 5 This chapter will 

 

1. Extend Salameh and Jaber (2000) for a two level supplier-vendor supply chain 

to explore the three different coordination schemes given by Khouja (2003). 

2. Study the effect of inspection errors on the schemes. 

3. Study the effect of learning in production at the vendor’s end. 

4. Study the effect of learning in the supplier’s defective items. 

Chapter 6 This chapter will  

 

1. Present a different two level supply chain (vendor-buyer) model, extending the 

model of Salameh and Jaber (2000) in the context of Hill (1997) approach.  

2. Incorporate human factors like learning in production and inspection errors in 

the supply chain. 

3. Discuss managerial implications of the model. 

Chapter 7 This chapter will  

 

1. Extend Salameh and Jaber (2000) for a vendor-buyer supply chain with 

consignment stock strategy given by Braglia and Zavanella (2003). 

2. Incorporate human factors like learning in production and inspection errors in 

the supply chain. 

3. Discuss managerial implications of the model and its differences with the 

model in chapter 6. 

Chapter 8 This chapter will  

 
1. Present the results and outcomes of the research carried out in the thesis. 

2. Outline the future directions of potential research. 
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CHAPTER 3 ECONOMIC ORDER QUANTITY (EOQ) FOR ITEMS 

WITH IMPERFECT QUALITY AND INSPECTION ERRORS 

 

3.1 Introduction 

Traditional inventory models tend to obtain an economic optimal order quantity (EOQ) or 

economic production quantity (EPQ) based on the ordering/setup cost and the inventory carrying 

cost. They make many assumptions while coming up with a closed form solution for the most 

economical batch size in a stock or a production facility. One assumption is that the items 

produced by the facility are all of a perfect quality. Another is that the screening process that 

identifies the defective items in a lot is error-free. That is, the defective items from a lot can be 

screened out through 100% inspection. This is an idealistic approach. In practice, the production 

lot may contain a substantial number of defective items, possibly because of weak process 

control, deficient planned maintenance, inadequate work instructions and/or damage in transit 

(Rahim 1985). Also, the screening process, e.g. at the end of an assembly line, is never perfect. 

Hence, a need exists to determine an optimal order quantity when the inspection process is prone 

to making errors while screening a defective lot.  

A number of researchers have worked to counter the perfect quality assumption above.  

Porteus (1986a) studied the effect of defective items on the basic EOQ model. He assumed that 

there is a fixed probability that the process would go out of control. Rosenblatt and Lee (1986) 

assumed that the time between the in-control and the out-of-control state of a process follows an 

exponential distribution and that the defective items are reworked instantaneously. They 

suggested producing in smaller lots when the process is not perfect. In a later paper, Lee and 

Rosenblatt (1987) studied a joint lot sizing and inspection policy for an EOQ model with a fixed 

percentage of defective products.   

While most of the literature in this area deals with deterministic problems, many 

researchers have discussed stochastic production yield and demand rates. Gerchak et al. (1988) 

analyzed a single period production problem and extended it to an n-period problem where the 

production process has a variable yield and the demand is uncertain. Yano and Lee (1995) 

reviewed and identified shortcomings in the literature dealing with determining lot sizes where 
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production or procurement yields are stochastic. Grosfeld-Nir and Gerchak (2004) also reviewed 

the literature on single stage and multistage imperfect production systems that involve random 

yield and inspection. Inderfurth (2004) determined an optimal production policy for a uniformly 

distributed demand and yield rate and discussed some managerial aspects of this policy. Rekik et 

al. (2007) extended the work of Inderfurth (2004) for two cases: (a) an additive errors case 

where the variability of errors is independent of the order quantity, and (b) a multiplicative errors 

case where the variability of errors is proportional to the order quantity.  

The model of Salameh and Jaber (2000), suggested that the imperfect items are not 

reworked but just withdrawn from the received lot. It is also assumed that there is no human 

error in the screening process. Raouf et al. (1983) studied human error in inspection planning. 

They came up with one of the first inspection plans with misclassifications for multi-

characteristic critical components. They suggested repeating the cycle of inspection to ensure the 

product quality and determined an optimal number of inspection cycles based on the cost of 

inspection and misclassifications. Duffuaa and Khan (2002) suggested an inspection plan for 

these critical components where an inspector can commit a number of misclassifications. They 

extended the Raouf et al. (1983) inspection plan for the case of a number of misclassifications. 

This was a realistic approach where an inspector can classify an item to be nondefective, 

reworkable or scrap. In a later paper, Duffuaa and Khan (2005) carried out a sensitivity analysis 

to study the effect of different types of misclassifications on the optimal inspection plan.  

There may be many sources of errors in inspection, one of which is inaccuracy in records.  

Kök and Shang (2007) discussed inaccuracies in inventory records. They proved that an 

inspection adjusted base-stock policy is optimal for a single period problem, where inspection is 

performed if the inventory recorded is less than a threshold level. Atali et al. (2009) also 

modeled the discrepancies between actual and the recorded inventories in retail and distribution 

environments. They quantified the value of RFID (radio-frequency identification) that reduces 

the amount of such discrepancies. We leave this issue here for future research. 

This chapter extends the work of Salameh and Jaber (2000) model by assuming that the 

screening process is not error-free. The Raouf et al. (1983) approach is used to suggest that an 

inspector could make two classifications while screening, i.e. an item may be classified as 

defective or nondefective. However, because the inspection process is not error free, a good item 
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may be classified as defective, i.e. a Type I error, while a defective item may be classified as 

good, i.e. a Type II error (Jacobson, 1952). The rest of the chapter is organized as follows. 

Section 3.2 describes the model in the chapter. Section 3.3 produces a mathematical model. 

Section 3.4 presents a numerical example and discusses the results. Section 3.5 presents a 

summary and conclusions. 

3.2 Model Description 

Consider a lot of size Q being delivered to a buyer. It is assumed that each lot contains a 

fixed proportion γ of defective items. An inspector screens out the defective items from the lot 

with fixed rate of misclassifications. That is, a proportion m1 of nondefective items are classified 

to be defective and a proportion m2 of defective items are classified to be nondefective. It is 

assumed that 𝛾, m1 and m2 are independent and identically distributed (iid) continuous random 

variables with known probability density functions, f1, f2 and f3 (Appendix 3). Besides, it is quite 

intuitive that the suppliers’ fraction of defectives would be independent of buyer’s screening 

errors (Comeaux and Sarker, 2005). It is also assumed that the items that are returned from the 

market are stored with those that are classified as defective by the inspector. This is a reasonable 

assumption as the returned items are not repaired and are sold as defectives. They are all sold as 

a single batch at a discounted price in each cycle. The behavior of the inventory level is 

illustrated in Figure 3.1, where T is the cycle length, B1 is the batch classified as defective by the 

inspector while B2 is the batch of returned units from the market accumulated over T.  

An optimal inventory policy is determined using the total revenues and the total costs. The 

costs considered in the model are the procurement cost, screening cost, misclassification cost and 

the inventory carrying cost.  
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Figure 3.1 Behavior of the inventory level over time. 

3.3 Mathematical Model 

Figure 3.1 shows how the inventory behaves with a buyer. It should be noted here that 

Salameh and Jaber (2000) suggested this behavior. The screening and consumption of the 

inventory continues until time τ1, after which all the defectives (B1) are withdrawn from 

inventory as a single batch and are sold to the secondary market. The consumption process 

continues at the demand rate until the end of cycle time T. Due to inspection error, some of the 

items used to fulfill the demand would be defective. These defective items are later returned to 

the inventory and are shown in Figure 3.1 as B2. The position of B2 is chosen to ensure the 

disposal of two defective batches (B1 and B2) at the same time. The cycle inventory is kept at a 

minimum level this way. It may be beneficial to sell the defective lot in two batches (𝐵2′  and 𝐵2′′) 

in a cycle, as shown in Figure 3.2, where the holding cost of the returned inventory is less; 

however, implicitly, this may incur additional cost such as transportation (fixed and variable 

cost), which makes the savings in inventory less than the additional costs incurred. So, in this 
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chapter, it is assumed here that the two types of defective items (screened and misclassified) are 

sold at the same time, as shown in Figure 3.1.  The model in Figure 3.2 may be addressed in a 

technical note sometime in the near future. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Selling the defective items twice in a cycle 

To avoid shortages, it is assumed that the number of nondefective items is at least equal to the 

adjusted demand, that is the sum of the actual demand (D) and items that are replaced for the 

ones returned (γm2 D) from the market over T. Thus 

𝑄 − 𝑄(1 − 𝛾)𝑚1 − 𝑄𝛾(1 −𝑚2) ≥ 𝐷𝑇 + 𝛾𝑚2𝑄  

𝑄(1 − 𝛾) −𝑄𝑚1(1 − 𝛾) ≥ 𝐷𝑇  

𝑄(1 − 𝛾)(1−𝑚1) ≥ 𝐷𝑇  

So, for the limiting case, the cycle length (which includes the screening time) can be written as 

𝑇 =
𝑄(1 − 𝛾)(1−𝑚1)

𝐷
 (3.1) 
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It should be noted that the above expression is unaffected by the Type II error and reduces to the 

cycle length in Salameh and Jaber (2000) if the Type I error becomes zero.  

Consider now the different cases of misclassifications that an inspection process can have. 

There are four possibilities in such an inspection process. Those are: Case (1) A nondefective 

item is classified as nondefective; Case (2) A nondefective item is classified as defective; Case 

(3) A defective item is classified as nondefective and Case (4) A defective item is classified as 

defective. This scenario is depicted in Figure 3.3 below. The number of items going into 

different categories following these cases is given by:  

Case (1): 𝑄(1 − 𝛾)(1−𝑚1) 

Case (2): 𝑄(1 − 𝛾)𝑚1  

Case (3): 𝑄𝛾𝑚2 

Case (4): 𝑄𝛾(1 −𝑚2) 

Now B1 and B2 are given by 

𝐵1 = 𝑄(1 − 𝛾)𝑚1 + 𝑄𝛾(1 −𝑚2) 

𝐵2 = 𝑄𝛾𝑚2 

 

 

 

 

 

 

 

 

Figure 3.3 Four possibilities in the inspection process 

Inspection/Decision Picking an Item for Inspection 

Nondefective (1 – γ) 

Defective (γ) 
Classify an item as defective (1 – m2) 

Classify a bad item as Nondefective 
 

Classify an item as Nondefective (1 – m1) 

Classify a good item as defective 
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The items in batch B2 are returned from the market at the rate 𝑄𝛾𝑚2/𝑇 and are taken from the 

inventory with batch B1. Therefore the revenue from salvaging B = B1 + B2 items within a cycle 

are given by:  

𝑅1 = 𝑣(𝐵1 + 𝐵2) = 𝜈𝑄(1 − 𝛾)𝑚1 + 𝜈𝑄𝛾(1 −𝑚2) + 𝜈𝑄𝛾𝑚2 

or 

𝑅1 = 𝜈𝑄(1 − 𝛾)𝑚1 + 𝜈𝑄𝛾 

The revenue from selling the good items is computed as 

𝑅2 = 𝑠1𝑄(1 − 𝛾)(1−𝑚1) + 𝑠1𝑄𝛾𝑚2 

So, the total revenue is given as  

𝑅 = 𝑅1 + 𝑅2 

𝑅 = 𝑠1𝑄(1 − 𝛾)(1 −𝑚1) + 𝑠1𝑄𝛾𝑚2 + 𝜈𝑄(1 − 𝛾)𝑚1 + 𝜈𝑄𝛾 (3.2) 

Consider now the different costs of the inventory system. The procurement cost per cycle is 

𝑃𝐶 = 𝐴𝑏 + 𝑐1𝑄 (3.3) 

where 𝑐1 is the variable cost. The screening cost per cycle is the sum of the costs of inspection 

and misclassifications which is given by  

𝐼𝐶(𝑄) = 𝑑𝑄 + 𝑐𝑟(1 − 𝛾)𝑄𝑚1 + 𝑐𝑎𝑄𝛾𝑚2 (3.4) 

The holding cost per cycle is the cost of carrying the (i) nondefective lot, (ii) defective lot and 

(iii) returned lot. So, from Figure 3.1 the holding cost for a cycle can be written as 

𝐻𝐶(𝑄) = ℎ �
(𝑄 − 𝑍1)𝜏1

2
+ 𝑍1𝜏1 +

𝑍2𝑡2
2
� + ℎ �

𝐵2𝑇
2
� 

 where Z represents the stock level before and after the screening/inspection process. Replacing 

B2 with Q𝛾m2, Z2 with Z1 – B1, Z1 with Q – Dτ1 and τ1 with D/x, it can be written as 
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𝐻𝐶(𝑄) =
ℎ𝑏𝑄2

2
�

2
𝑥
−
𝐷
𝑥2

+
𝑉2

𝐷
� + ℎ �

𝑄𝛾𝑚2𝑇
2

� (3.5) 

where 𝑉 = 1 − 𝐷
𝑥
− (𝑚1 − 𝛾) + 𝛾(𝑚1 + 𝑚2) 

Therefore the total cost per cycle is given by summing up Eq. (3.3), Eq. (3.4) and Eq. (3.5), i.e. 

𝐶𝑏 = 𝑃𝐶 + 𝐼𝐶 + 𝐻𝐶 or 

𝐶𝑏(𝑄) = 𝐴𝑏 + 𝑐1𝑄 + 𝑑𝑄 + 𝑐𝑟(1− 𝛾)𝑄𝑚1 + 𝑐𝑎𝑄𝛾𝑚2 +
ℎ𝑏
2
��

2
𝑥
−
𝐷
𝑥2

+
𝑉2

𝐷
�𝑄2 + 𝑄𝛾𝑚2𝑇� 

The term 𝑉2 is simplified in Appendix 2. Figure 3.1 depicts the behavior of different types 

of inventory in the order cycle. The triangle at the bottom represents the defective lot that is 

returned by the market and is accumulated into the salvaged lot.  

The total profit per cycle can now be written as the difference between the total revenue 

and total cost per cycle, that is  

𝑇𝑃(𝑄) = 𝑠1𝑄(1 − 𝛾)(1 −𝑚1) + 𝑠𝑄𝛾𝑚2 + 𝜈𝑄(1 − 𝛾)𝑚1 + 𝜈𝑄𝛾 

         − �𝐴𝑏 + 𝑐1𝑄 + 𝑑𝑄 + 𝑐𝑟(1− 𝛾)𝑄𝑚1 + 𝑐𝑎𝑄𝛾𝑚2 +
ℎ𝑏
2
��

2
𝑥
−
𝐷
𝑥2

+
𝑉2

𝐷
�𝑄2 + 𝑄𝛾𝑚2𝑇�� 

(3.6) 

Since 𝛾, 𝑚1 and 𝑚2 are assumed in this thesis to be independent and identically distributed 

random variables with probability density functions 𝑓1(𝛾), 𝑓2(𝑚1) and 𝑓3(𝑚2), respectively. The 

expected total profit can be written as 

E[𝑇𝑃(𝑄)] = 𝑠1𝑄(1 − E[𝛾])(1 − E[𝑚1]) + 𝑠𝑄E[𝑚2]E[𝛾] + 𝜈𝑄(1 − E[𝛾])E[𝑚1] 

                +𝜈𝑄E[𝛾] − 𝐴𝑏 − 𝑐1𝑄 − 𝑑𝑄 − 𝑐𝑟(1 − E[𝛾])𝑄E[𝑚1]− 𝑐𝑎𝑄E[𝑚2]E[𝛾] 

    −
ℎ𝑏
2
��

2
𝑥
−
𝐷
𝑥2

+
E[𝑉2]
𝐷

�𝑄2 + 𝑄E[𝑚2]E[𝑇]E[𝛾]� 

(3.7) 

Now from Eq. (3.1), the expected cycle length would be: 

E[𝑇] =
𝑄(1 − E[𝛾])(1− E[𝑚1])

𝐷
 (3.8) 
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Maddah and Jaber (2008b) corrected the approach in the Salameh and Jaber (2000) model to 

determine the annual profit. They suggested using renewal reward theorem. Using this new 

approach, the expected annual profit for our model, is written as 

E[𝑇𝑃𝑈(𝑄)] =
E[𝑇𝑃(𝑄)]

E[𝑇]
 

or 

E[𝑇𝑃𝑈(𝑄)] = 𝑠1𝐷 +
𝑠𝐷E[𝛾]E[𝑚2]

(1 − E[𝛾])(1− E[𝑚1]) +
𝑣𝐷E[𝑚1]

(1 − E[𝑚1]) +
𝑣𝐷E[𝛾]

(1 − E[𝛾])(1− E[𝑚1]) −  

               
𝐷 �𝐴𝑏𝑄

�  + 𝑐1 + 𝑑 + 𝑐𝑟(1 − E[𝛾])E[𝑚1] �+𝑐𝑎E[𝛾]E[𝑚2] + ℎ𝑏
2 ��2

𝑥 −
𝐷
𝑥2 + E[𝑉2]

𝐷 �𝑄��

(1 − E[𝛾])(1 − E[𝑚1])  

               −
ℎ𝑏𝑄E[𝛾]E[𝑚2]

2
 

(3.9) 

It should be noted that Eq. (3.9) converges to the expected annual profit equation in 

Maddah and Jaber (2008b) once the value of errors goes to zero. It can be demonstrated that this 

expected annual profit follows a concave function. The first derivative of Eq. (3.9) is given by 

d
d𝑄

E[𝑇𝑃𝑈(𝑄)] = −
𝐷 �−𝐴𝑏𝑄2

�  �+ ℎ𝑏
2 ��2

𝑥 −
𝐷
𝑥2 + E[𝑉2]

𝐷 ���

(1 − E[𝛾])(1 − E[𝑚1]) −
ℎE[𝛾]E[𝑚2]

2
 

The second derivative of Eq. (3.9) is 

d2

d𝑄2 E[𝑇𝑃𝑈(𝑄)] = −
2𝐴𝑏𝐷

𝑄3(1 − E[𝛾])(1 − E[𝑚1]) 

Since 𝐴𝑏> 0, D> 0, 0 < E[𝛾] < 1, and 0< E[m1] < 1, then d
2

d𝑄2
E[𝑇𝑃𝑈(𝑄)]< 0 for every 𝑄 > 0, 

suggesting that the annual profit in Eq. (3.9) is concave. This fact is also demonstrated 

graphically in the next section. Thus, the optimal order size that represents the maximum annual 

profit, is determined by setting the first derivative equal to zero and solving for Q to get  
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𝑄∗ = �
2𝐴𝑏𝐷

ℎ𝑏E[𝛾]E[𝑚2](1− E[𝛾])(1 − E[𝑚1]) + ℎ𝑏𝐷 �
2
𝑥 −

𝐷
𝑥2 + E[𝑉2]

𝐷 �
 (3.10) 

It should be noticed that the denominator in Eq. (3.10) remains always positive, since x > D, 0 , 

E[𝛾]< 1, 0< E[𝑚1]< 1, ℎ𝑏 > 0, and E[𝑉2] > 0 from Appendix 2. Note also that when γ = m1 = m2 

= 0, Eq. (3.10) reduces to the traditional EOQ formula.   

3.4 Numerical Analysis 

Consider a production system that replenishes the buyer’s orders instantly. This system is 

not perfect, i.e. it produces some defective items. The inspection process that screens out the 

defective items is also imperfect. The probability density functions for the fraction of defective 

items and the inspection errors are mostly taken from the history of a supplier/machine and 

workers. In the case when these values are not known, the fraction of defectives in a lot can be 

determined by using the lot size, as in Porteus (1986a) and Urban (1998), or the time at which a 

process goes out-of-control in a cycle, as in Rosenblatt and Lee (1986). Similarly, the parameters 

for inspection errors can be determined by the methods suggested by Cary et al. (1994) or 

Jaraiedi (1983). In the following analysis, most of the data is taken from the Salameh and Jaber 

(2000) model. 

D = 50000 units/year,  x = 1 unit/min, 

c1 = $ 25/unit,  d = $ 0.5/unit, 

Ab = $ 100/cycle,  ℎ𝑏 = $ 5/ unit, 

s1 = $ 50/unit,  ca = $ 500/unit, 

v = $ 20/unit,  cr = $ 100/unit, 

f1(𝛾) = �1/(0.04 − 0),
  0,        0 ≤ 𝛾 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� ⇒ E(γ) = 0.02 

f2(𝑚1) =     �1/(0.04 − 0),
  0,        0 ≤ 𝑚1 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� ⇒ E(m1) = 0.02 
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f3(𝑚2) =     �1/(0.04 − 0),
  0,        0 ≤ 𝑚2 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� ⇒ E(m2) = 0.02 

Assuming that the buyer operates for 8 hours per day for 365 days per year, the annual 

screening rate would be, x = 1(60)(8)(365) = 175200 units. Substituting above values in Eq. 

(3.10) and (3.9) respectively, we obtain the optimal values of the order size and the annual profit 

as: 

𝑄* = 1454 units 

E[TPU(Q)] = $ 1095090/year, 

 

Figure 3.4 Expected annual profit is a concave function of the order size 
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Figure 3.5 Optimal order size with respect to the probability of defectives 

Figure 3.4 demonstrates the concavity of the annual profit with respect to the order size. 

That is, there is an optimal order size for the input parameters taken here, with respect to the 

annual profit. One should notice that although Figure 3.4 does not show much variation in annual 

profit with the order size, there is a noticeable deviation in the costs and profits per cycle as the 

order size moves away from the optimal one. For example, the cycle profit changes by 11% 

($27344 from $30584) and 10% ($33654 from $30584) respectively if the order size per cycle is 

moved from the optimal value to 1300 and 1600.  

 

Figure 3.6 Optimal order size with respect to Type I Error 
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Figure 3.7 Optimal order size with respect to Type II Error 

The results in our numerical example indicate that the optimal order quantity is almost the 

same as it was in the Salameh and Jaber (2000) model but the cost of misclassifications, i.e. false 

rejection and false acceptance cause a huge drop in the annual profit as compared to that in the 

Salameh and Jaber (2000) model. This specifies the significance of the human errors in 

inspection. A different example was tried with a lower profit margin (s1 = $30) but it made no 

difference on the order size though the annual profit is reduced by 91%. The rationale for this is 

that the profit margin (s1 – c1) in Eq. (3.9) is independent of the order size. This fact prevails 

throughout the thesis. One should also observe that the loss in profit has a direct relation to the 

fraction of defectives in the supplier’s lot. To further elaborate on the impact of the different 

random fractions in the model, Figures 3.5, 3.6 and 3.7 represent the effect of the fraction of 

defectives, Type I error and Type II error respectively, on the optimal order size. We noticed that 

the first two of these three factors tend to increase the order size while the third one slightly 

decreases it. The rationale for this is that the more the defective items the more is the number of 

non-defective items needed by the buyer. Similarly, Type I error takes away more and more non-

defective items and makes the buyer order more. But on the other hand, Type II error makes the 

buyer order less. It should be noticed that the order quantity is insensitive to changes in the value 

of Type II error  
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Figure 3.8 Annual profit with respect to the cost of false rejection 

 

Figure 3.9 Annual profit with respect to the cost of false acceptance 

Figure 3.8 and 3.9 show the impact of the cost of false rejection and false acceptance 

respectively, on the annual profit. As one should expect, they both tend to decrease the annual 

profit. It should be noticed that the two costs of error have different impact on the profit and thus 

have different range of values. That is why, they were shown in separate figures.   

Figure 3.10 shows the impact of fraction of defectives on the behavior of annual profit, for 

the suggested model. This curve is obtained by varying the upper limit of the pdf of the fraction 

of defectives at a fixed (0.04) level of both inspection errors (Type I and Type II). The order size 
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per cycle is kept fixed at 1439, i.e. of Salameh and Jaber (2000). It is clear that the annual profit 

tends to decrease with the fraction of defectives as more and more items would have to be sold at 

a discounted price.  

 

Figure 3.10 Relationship between the annual profit and the fraction of defectives 

3.5 Managerial Implications 

The model of Salameh and Jaber (2000) has recently been extended for a number of 

practical circumstances such as reworks, shortages and supply chain. The model in this chapter is 

an addition to this line of research. The approach adopted here provides the practitioners with a 

more functional alternative to the Salameh and Jaber (2000) model because it incorporates the 

screening costs more accurately in the economic order sizing decision.   

It should be emphasized that the inspection part in the Salameh and Jaber (2000) model is 

suitable for buyers that have an automated screening system where one can expect no errors. On 

the other hand, if the characteristic of interest cannot be screened through a machine and is 

inspected by human beings, the screening process is bound to have misclassifications. For 

example, a superstore would screen the incoming products and sell the nondefective ones to its 

customers. It would usually sell the items of low quality at a discount price. The returned 

defective items, that were misclassified, would also be sold at the discount price. On the other 
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inspection and It sells the defective items to a secondary market, after inspection. These 

misclassifications are critical if the parts under inspection are of an aircraft, a space shuttle or a 

complex gas ignition system. The reason is that the results of misclassification in such systems 

could be fatal. That is why the quality requirements for such components are very tight, 

Zunzanyika and Drury (1975). A common practice in the industry is to institute multiple 

inspections to reduce the effect of errors, for these components, Chandra and Schall (1988). So, 

it is vital for a buyer to be aware of not only the accurate parameters of error about his inspectors 

but also the ways to mitigate these errors. 

3.6 Summary and Conclusions 

This chapter makes use of Salameh and Jaber (2000) and Duffuaa and Khan (2002) models 

to determine an inventory policy for imperfect items received by a buyer. A realistic approach of 

screening is adopted. That is, an inspector may classify a nondefective item to be defective (Type 

I error) and he may also classify a defective item to be nondefective (Type II error). The 

defective items classified by the inspector and those returned from the market are accumulated 

and sold at a discounted price at the end of each procurement cycle.  

The model in this chapter suggests that the annual profit with inspection errors remains 

concave with respect to the order size. Comparing the results with those in Salameh and Jaber 

(2000), the optimal order size is almost the same but the annual profit is much smaller. This 

signifies the effect of inspection errors. The increasing fraction of defectives keeps on reducing 

the annual profit. The fraction of defectives and Type I error both increase the order size while 

Type II error decreases the order size. Our results also suggested that the costs of Type I and 

Type II errors both cut off some of the annual profit.  

The model in this chapter could be extended for the case where demand is uncertain. 

Furthermore, learning in the inspection rate would also enhance the usefulness of the model 

presented here.  
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CHAPTER 4 ECONOMIC ORDER QUANTITY MODEL FOR ITEMS 

WITH IMPERFECT QUALITY WITH LEARNING IN INSPECTION 

 

4.1 Introduction 

The EOQ is the earliest, simplest and most appreciated inventory model in the literature, 

(Osteryoung et al., 1986). Its popularity amongst academicians and businesspeople has been 

attributed to the ease of manipulation and calculation (Woolsey, 1990). However, some of its 

assumptions are never met in practice (Jaber and Sikström, 2004). One of these assumptions is 

that items ordered (or produced) are of perfect quality (Cheng, 1991). 

One fertile area in this line of research is that the production facilities do overcome their 

shortages through a human phenomenon known as learning. That is, the workers tend to produce 

faster as they spend more time on the same machine in a line. This natural phenomenon was 

shown by Wright (1936) learning curve. With an interruption in the production, the workers tend 

to forget part of their skills. The earliest work in the literature that investigated the lot sizing 

problem with learning and forgetting is Keachie and Fontana (1966). Since there has been some 

interest in this subject, Jaber and Bonney (1998) provided almost a comprehensive survey (for 

the period 1966-1998).  Some of the works in this line of research are, but not limited to, Balkhi 

(2003); Chiu et al. (2003), Chiu and Chen (2005), Jaber and Bonney (2007), Alamri and Balkhi 

(2007), Jaber and Bonney (2003), Jaber and Bonney (2007) and Jaber et al. (2009). Although 

there is consensus among these works on the form of the learning curve, it was not so for 

forgetting, Jaber (2006b).  However, Jaber and Bonney (1996) developed a learn-forget curve 

model (LFCM) that, properly represents the learning-forgetting process, Jaber and Bonney 

(1997); Jaber et al. (2003); Jaber and Sikström (2004). 

There are situations where the time to inspect defective items follows a learning curve, e.g. 

(Sikström and Jaber, 2002). None of the above surveyed articles and those available in the 

literature investigated the model of Salameh and Jaber (2000) for learning in inspection. This 

chapter addresses this research scarcity and extends Salameh and Jaber (2000) in two directions. 

First, this chapter considers that the screening rate of defectives follows a learning curve where 

stock-out may occur when the screening rate is slower than the demand rate. These stock-outs 
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can be treated as either lost-sales or backorders. Second, this chapter also includes the transfer of 

knowledge in learning when the production moves from one cycle to another in three possible 

scenarios: (i) no transfer of learning, (ii) complete transfer of learning, and (iii) partial transfer of 

learning. 

The remainder of this chapter is organized as follows. Section 4.2 provides a brief 

introduction to the model of Salameh and Jaber (2000) and to the learning and forgetting theory. 

Section 4.3 and 4.4 are for mathematical modeling. Section 4.5 provides numerical examples and 

discusses results. Section 4.6 is for the conclusions of the research in this chapter. 

4.2 Mathematical Model 

Consider a buyer, as in Salameh and Jaber (2000) where the inspection time in a cycle isτi. 

Assume that workers screen these items at the rate x, which goes up with the passage of time, 

following learning. Unlike their work, it is assumed that the screening rate is less than the 

demand D, in the beginning, and catches up with time by virtue of learning. The demand is not 

fulfilled during time tsi and there is a shortage of ysi items in cycle i. These shortages will be 

dealt with as both lost sales and backorders in this chapter. It is important to note that the time tsi 

may become zero in the subsequent cycles due to learning. Three scenarios will be considered 

for the transfer of learning from cycle to cycle: (i) partial forgetting (partial transfer of learning), 

(ii) total learning (total transfer of learning) and (iii) total forgetting (no transfer of learning). The 

optimum cycle time Ti and the order size Qi will be obtained through maximizing the expected 

annual profit.  

Inspection is usually a manual task where an inspector tests incoming units for specific 

quality characteristics to determine if the units conform to the quality requirements. Time to 

inspect (or screen) each unit reduces as the number of inspected units increase and is represented 

as 𝑥𝑛 = 𝑥1𝑛−𝑏, where 𝑥1 = 1 𝜋1� and 𝑥𝑛 = 1 𝜋𝑛�  (assuming 𝜋𝑛 to be the time to screen the nth 

unit); whereas Salameh and Jaber (2000) assumed 𝑥1 = 𝑥𝑛 > 𝐷. Here, it is assumed that 𝑥1 < 𝐷 

for 𝑦𝑠 < 𝑦. It is also assumed that items are subject to 100% screening and defective units will 

never make it to customers, meaning that if 𝑥𝑛 < 𝐷, then the demand met is 𝑥𝑛 and the rate at 

which units lost or backordered is 𝐷 − 𝑥𝑛, and 𝐷 otherwise. The length of the stock-out period or 

the period over which backorders are accumulated is given as 
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𝑡𝑠𝑖 = ∫ 1
𝑥1
𝑦−𝑏𝑑𝑦𝑄𝑖+𝑢𝑖

𝑢𝑖
− ∫ 1

𝑥1
𝑦−𝑏𝑑𝑦𝑄𝑖+𝑢𝑖

𝑄𝑠𝑖+𝑢𝑖
= �(𝑄𝑠𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�

(1−𝑏)𝑥1
  (4.1) 

where 𝑄𝑠𝑖 = [(1 − 𝑏)𝑥1𝑡𝑠𝑖 + 𝑢𝑖1−𝑏]
1

1−𝑏 − 𝑢𝑖. Based on the fact that 𝑄𝑠𝑖 is utilized to fulfill the 

demand during time 𝑡𝑠𝑖 , one can write 

  𝑄𝑠𝑖 = �𝐷 𝑥1� �
1
𝑏 − 𝑢𝑖.  

Now the time to screen 𝑄i items in a cycle.  

𝜏𝑖 = �(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
(1−𝑏)𝑥1

  (4.2) 

In case of no transfer of learning, that is, a worker does not retain any knowledge from earlier 

cycles (𝑢𝑖 = 0), it will be taken as 

𝑄𝑠 = 𝑄𝑠𝑖 = �𝐷 𝑥1� �
1
𝑏   (4.3) 

Substituting it in Eq. (4.1) 

𝑡𝑠 = 𝑡𝑠𝑖 = 𝐷
1−𝑏
𝑏

(1−𝑏)𝑥1
1/𝑏  (4.4) 

𝜏 = 𝜏𝑖 = 𝑄1−𝑏

(1−𝑏)𝑥1
  (4.5) 

Similarly, in the case of total transfer of learning, Eqs. (4.1) and (4.2) are used with 𝑢𝑖 =

∑ 𝑄𝑛𝑖
𝑛=1 . 

 Two cases (lost sales and backorders) will be considered now to deal with the shortages, in 

each of the three scenarios for the transfer of learning from one cycle to another. These models 

are a direct extension to the work of Salameh and Jaber (2000). 

4.3 Lost Sales 

In this case, the demand that cannot be fulfilled due to slow screening will be taken as lost 

sale. By virtue of learning, the screening will become equal to or more than the demand and 
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there won’t be any lost sales after some cycles. Three scenarios of learning will be considered 

now to develop a mathematical model for the expected annual profit of a buyer. 

4.3.1 Lost sales for partial transfer of learning 

The behavior of inventory in the lost sales case is shown in Figure 4.1, which is duplicated 

in subsequent cycles. In the beginning, the screening rate is slower than the demand rate. Thus, 

the demand is lost till the time tsi. At this point, the screening rate and the demand rate become 

equal. In the rest of the cycle, inventory behaves as it does in Salameh and Jaber (2000). In case 

of partial transfer of learning (i.e. partial forgetting), a worker loses part of his/her knowledge 

while he/she is not screening during the break which is Ti – τi. It should be noted that the 

inspection time keeps on decreasing due to transfer of learning. This affects the overall cycle 

length and the annual profit.  

 

 

 

 

 

 

 

 

 

This model differs from that of Salameh and Jaber (2000) in two ways; slower screening in the 

beginning of the cycle changes the inventory profile of the cycle, and it introduces a stock-out 

cost. The inventory level in a cycle, at time t in Figure 4.1 is represented as: 

𝐼𝑖(𝑡) = �
𝑄𝑖 − [(1 − 𝑏)𝑥1𝑡]

1
(1−𝑏)� , 0 ≤ 𝑡 < 𝑡𝑠𝑖

𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖), 𝑡𝑠𝑖 ≤ 𝑡 < 𝜏𝑖
(1 − 𝛾)𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖), 𝜏𝑖 ≤ 𝑡 < 𝑇𝑖

�  (4.6) 

 τi 

tsi 

 

𝑄i 

 

Ti 

 

𝛾𝑄𝑖 

Inventory Level 

 

Time 

 
Figure 4.1 Learning in inspection with lost sales 
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At time t = Ti, the inventory level can be assumed to be zero as discussed in chapter 1 directly 

above Figure 1.5, i.e. (1 − 𝛾)𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖) = 0, and the cycle time is given as 

𝑇𝑖 = (1−𝛾)𝑄𝑖
𝐷

− 𝑄𝑠𝑖
𝐷

+ 𝑡𝑠𝑖  (4.7) 

The holding costs for the three different behaviors of inventory shown in Figure 4.1 are 

determined respectively from (4.6) as: 

𝐻𝐶1𝑙(𝑄𝑖) = ℎ𝑏 � �𝑄𝑖 − {(1 − 𝑏)𝑥1𝑡}
1

(1−𝑏)� � 𝑑𝑡
𝑡𝑠𝑖

0
  

          = ℎ𝑄𝑖𝑡𝑠𝑖 − ℎ �1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏  

(4.8) 

𝐻𝐶2𝑙(𝑄𝑖) = ℎ𝑏 ∫ [𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖)]𝑑𝑡𝜏𝑖
𝑡𝑠𝑖

  

          = ℎ𝑏(𝑄𝑖 − 𝑄𝑠𝑖 + 𝐷𝑡𝑠𝑖)(𝜏𝑖 −  𝑡𝑠𝑖) −
ℎ𝑏𝐷
2

(𝜏𝑖2 − 𝑡𝑠𝑖2 )  
(4.9) 

𝐻𝐶3𝑙(𝑄𝑖) = ℎ𝑏 ∫ [(1 − 𝛾)𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖)]𝑑𝑡𝑇𝑖
𝜏𝑖

  

          = ℎ𝑏(𝑄𝑖 − 𝑄𝑠𝑖 + 𝐷𝑡𝑠𝑖)(𝑇𝑖 −  𝜏𝑖) − ℎ𝑏𝛾𝑄𝑖(𝑇𝑖 −  𝜏𝑖) −
ℎ𝑏𝐷
2

(𝑇𝑖2 − 𝜏𝑖2)  
(4.10) 

Adding the costs for three different behaviors, we can get the total holding cost for the lost sales 

case as 

𝐻𝐶𝐿(𝑄𝑖) = ℎ𝑏(1 − 𝛾)𝑄𝑖𝑇𝑖 + ℎ𝑏𝛾𝑄𝑖𝜏𝑖 − ℎ𝑇𝑖(𝑄𝑠𝑖 − 𝐷𝑡𝑠𝑖) + ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 −
ℎ𝑏𝐷
2

(𝑇𝑖2 + 𝑡𝑠𝑖2 )  

            −ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏 

(4.11) 

Substituting τi and Ti in terms of 𝑄i from Eqs. (4.2) and (4.7) respectively, and replacing 

(Dtsi – 𝑄si) with Zi (the lost inventory), the above expression can be simplified as 

𝐻𝐶𝐿(𝑄𝑖) = ℎ𝑏
2

[𝑄𝑖2(1− 𝛾)2 + 2𝑄𝑖𝑍𝑖(1 − 𝛾) + 𝑍𝑖2] − ℎ𝑏𝐷
2
𝑡𝑠𝑖2 + ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖  (4.12) 
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            + ℎ𝑏𝛾𝑄𝑖�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) − ℎ𝑏 �

1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏 

It should be noted that the above holding cost reduces to the one in Salameh and Jaber 

(2000) once b, tsi, 𝑄si and ui become zero. Now, 

Cost of the lost sales =  𝑐𝐿(𝐷𝑡𝑠𝑖 − 𝑄𝑠𝑖)  

Cost of inspection =  𝑑1𝜏𝑖 = 𝑑1�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏)  

It should be noticed that the experience 𝑢𝑖 will be taken as an input for every cycle of learning. 

The total profit per cycle for the lost sales case with partial transfer of learning, is 

𝑇𝑃𝐿(𝑄𝑖) = [𝑠(1 − 𝛾) + 𝜈𝛾 − 𝑐1]𝑄𝑖 − 𝐾 − 𝑐𝐿𝑍𝑖 −
ℎ𝑏
2𝐷

[𝑄𝑖2(1 − 𝛾)2 + 2𝑄𝑖𝑍𝑖(1 − 𝛾) + 𝑍𝑖2              

 + ℎ𝑏𝐷
2
𝑡𝑠𝑖2 −

(ℎ𝑏𝛾𝑄𝑖+𝑑1)�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) − ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 + ℎ𝑏 �

1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏 

(4.13) 

The expected total profit per cycle is 

E[𝑇𝑃𝑖𝐿(𝑄𝑖)] = {𝑠(1 − E[𝛾]) + 𝜈E[𝛾]− 𝑐1}𝑄𝑖 − 𝐾 − 𝑐𝐿𝑍𝑖 −
ℎ𝑏
2𝐷

{𝑄𝑖2E[(1 − 𝛾)2]� 

�               +2𝑄𝑖𝑍𝑖(1 − E[𝛾]) + 𝑍𝑖2} + ℎ𝑏𝐷
2
𝑡𝑠𝑖2 −

(ℎ𝑏𝑄𝑖E[𝛾]+𝑑1)�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) − ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖            

                +ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏 

(4.14) 

The expected cycle time E[𝑇𝑖𝐿] can be written as 

E[𝑇𝑖𝐿] =
(1 − E[𝛾])𝑄𝑖

𝐷
−
𝑄𝑠𝑖
𝐷

+ 𝑡𝑠𝑖 

Salameh and Jaber (2000) determined the expected annual profit from the expected value 

of the annual profit of the buyer. Maddah and Jaber (2008b) corrected this flaw and suggested 

the used of renewal reward theorem. That is, the expected annual profit should be a ratio of the 

expected profit per cycle and the expected cycle time. So,  

E[𝑇𝑃𝑈𝑖𝐿(𝑄𝑖)] =
E[𝑇𝑃𝑖𝐿(𝑄𝑖)]

E[𝑇𝑖𝐿]  (4.15) 
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It should be noted that the length of a cycle with learning in screening is independent of the 

fraction of defectives. Appendix 4 provides a proof of concavity of Eq. (4.15). 

4.3.2 Lost sales for total transfer of learning 

In case of total transfer of learning, the screening will start in each cycle with a cumulative 

experience gained from earlier cycles. The total screening time will tend to decrease from cycle 

to another. This will bring a change in the subsequent cycle lengths and the costs associated with 

each cycle. The experience gained in each cycle i will be taken as 

𝑢𝑖 = ∑ 𝑄𝑗𝑖−1
𝑗=1   (4.16) 

This implies that the worker does not lose any knowledge in his break while he is not screening. 

The holding cost and the expected profit in Eqs. (4.12) and (4.14), respectively, will be 

determined using Eq. (4.16). This will change the annual profit in Eq. (4.15) accordingly. 

4.3.3 Lost sales for total forgetting 

In case of total forgetting, screening in each cycle starts with no prior knowledge, which 

means that the worker loses all the experience gained in the earlier cycles. This implies that ui in 

cycle i will be taken as zero. Therefore, the order quantity and the screening time in every cycle 

remains the same. This will change the inspection time in Eq. (4.2) and the holding cost in Eq. 

(4.12), respectively, to 

𝜏 = 𝑄1−𝑏

(1−𝑏)𝑥1
  (4.17) 

𝐻𝐶𝐿(𝑄) = ℎ𝑏
2𝐷

[𝑄2(1 − 𝛾)2 + 2𝑄𝑍(1 − 𝛾) + 𝑍2] − ℎ𝑏𝐷
2
𝑡𝑠2 + ℎ𝑏𝛾𝑄2−𝑏

𝑥1(1−𝑏)  +ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 

            −ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠
2−𝑏
1−𝑏  

(4.18) 

The expected profit per cycle and the expected annual profit in Eqs. (4.13) and (4.14), 

respectively, will be determined using Eqs. (4.17) and (4.18).  
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4.4 Backorders 

The behavior of inventory for the backorders case is shown in Figure 4.2 where Bi 

represents the size of backorder in cycle i. The screening rate becomes equal to the demand rate 

at tsi. The dotted line shows that the backorder that piles up till tsi is fulfilled at the time (tsi+tBi). 

Inventory in the rest of the cycle, behaves as it does in Salameh and Jaber (2000). This behavior 

repeats itself in the subsequent cycles. The maximum backorder level in Figure 4.2 is 

𝐵𝑖 = 𝐷𝑡𝑠𝑖 − 𝑄𝑠𝑖 

Now, following its definition in the notations, 𝑄Bi can be written as 

𝑄𝐵𝑖 = 𝐷𝑡𝐵𝑖 + 𝐵𝑖 + 𝑄𝑠𝑖 = 𝐷(𝐷𝑡𝐵𝑖 + 𝑡𝑠𝑖) 

The time tBi can be written as 

𝑡𝐵𝑖 = ∫ 1
𝑥1

𝑄𝐵𝑖
0 𝑦−𝑏𝑑𝑦 − ∫ 1

𝑥1

𝑄𝑠𝑖
0 𝑛−𝑏𝑑𝑛 = 𝑄𝐵𝑖1−𝑏

𝑥1(1−𝑏) −
𝑄𝑠𝑖1−𝑏

𝑥1(1−𝑏)  

Substituting QBi: 

𝑡𝐵𝑖 = [𝐷(𝑡𝐵𝑖+𝑡𝑠𝑖)]1−𝑏

𝑥1(1−𝑏) − 𝑡𝑠𝑖  or 𝑡𝐵𝑖 + 𝑡𝑠𝑖 = [𝐷(𝑡𝐵𝑖+𝑡𝑠𝑖)]1−𝑏

𝑥1(1−𝑏)  

 

 

 

 

 

 

 

 

 

 

 Figure 4.2 Learning in inspection with backorders 
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This time can be taken as  

𝑡𝑋 = 𝑡𝐵𝑖 + 𝑡𝑠𝑖 = 𝐷
1−𝑏
𝑏

𝑥11/𝑏(1−𝑏)1/𝑏  (4.19) 

Again, with the help of learning, the screening will become equal to or more than the 

demand and there won’t be any backorders after some cycles. The three scenarios of learning 

discussed in the lost sales case, will be considered here to develop the expected annual profit of a 

buyer. 

4.4.1 Backorders for partial transfer of learning 

The inventory level in Figure 4.2 can be represented as  

𝐼𝐵(𝑡) =

⎩
⎪
⎨

⎪
⎧𝑄𝑖 − [(1 − 𝑏)𝑥1𝑡]

1
(1−𝑏)� ,

𝑄𝑖 − 𝑄𝑠𝑖 − 𝐷(𝑡 − 𝑡𝑠𝑖),
𝑄𝑖 − 𝐷𝑡,

(1 − 𝛾)𝑄𝑖 − 𝐷𝑡,

         

0 ≤ 𝑡 < 𝑡𝑠𝑖
𝑡𝑠𝑖 ≤ 𝑡 < 𝑡𝑠𝑖 + 𝑡𝐵𝑖
𝑡𝑠𝑖 + 𝑡𝐵𝑖 ≤ 𝑡 < 𝜏𝑖

𝜏𝑖 ≤ 𝑡 < 𝑇𝑖

�   (4.20) 

At time t = Ti, the inventory level is zero, i.e. (1 − 𝛾)𝑄𝑖 − 𝐷𝑡𝑖 = 0. The cycle time Ti is 

𝑇𝑖 = (1−𝛾)𝑄𝑖
𝐷

  (4.21) 

The holding costs for the four different time intervals shown in Figure 4.2 are determined 

respectively from Eq. (4.20) as: 

𝐻𝐶1𝐵𝑖(𝑄𝑖) = ℎ𝑏𝑄𝑡𝑠𝑖 = ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏  (4.22) 

𝐻𝐶2𝐵𝑖(𝑄𝑖) = ℎ𝑏(𝑄𝑖 − 𝑄𝑠𝑖 + 𝐷𝑡𝑠𝑖)𝑡𝐵𝑖 −
ℎ𝑏𝐷
2

[(𝑡𝑠𝑖 + 𝑡𝐵𝑖)2 − 𝑡𝑠𝑖2 ]  (4.23) 

𝐻𝐶3𝐵𝑖(𝑄𝑖) = ℎ𝑏[𝜏𝑖 − (𝑡𝑠𝑖 + 𝑡𝐵𝑖)]𝑄𝑖 −
ℎ𝑏𝐷
2

[𝜏𝑖2 − (𝑡𝑠𝑖 + 𝑡𝐵𝑖)2]  (4.24) 

𝐻𝐶4𝐵𝑖 = ℎ𝑏(1 − 𝛾)(𝑇𝑖 − 𝜏𝑖)𝑄𝑖 −
ℎ𝑏𝐷
2
�𝑇𝑖2 − 𝜏𝑖2�  (4.25) 
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Adding Eqs. (4.22) – (4.25) to get the holding cost for the backorder case: 

𝐻𝐶𝐵𝑖(𝑄𝑖) = ℎ𝑏𝑄𝑖𝑡𝑠𝑖 − ℎ𝑏 �
1 − 𝑏
2 − 𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏

+ ℎ𝑏(𝑄𝑖 − 𝑄𝑠𝑖 + 𝐷𝑡𝑠𝑖)𝑡𝐵𝑖  

            −ℎ𝑏𝐷
2

[(𝑡𝑠𝑖 + 𝑡𝐵𝑖)2 − 𝑡𝑠𝑖2 ] + ℎ𝑏[𝜏𝑖 − (𝑡𝑠𝑖 + 𝑡𝐵𝑖)]𝑄𝑖 −
ℎ𝑏𝐷
2

[𝜏𝑖2 − (𝑡𝑠𝑖 + 𝑡𝐵𝑖)2]  

             +ℎ𝑏(1 − 𝛾)(𝑇𝑖 − 𝜏𝑖)𝑄𝑖 −
ℎ𝐷
2
�𝑇𝑖2 − 𝜏𝑖2�  

(4.26) 

Using Eq. (4.19) and simplifying the above expression results in: 

𝐻𝐶𝐵𝑖(𝑄𝑖) = ℎ𝑏(1 − 𝛾)𝑄𝑖𝑇𝑖 + ℎ𝑏𝛾𝑄𝑖𝜏𝑖 + ℎ𝑏𝑡𝑋𝐵 + ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 −
ℎ𝑏𝐷

2
(𝑇𝑖2 + 𝑡𝑠𝑖2 )  

               −ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏  

(4.27) 

Substituting τi and Ti in terms of 𝑄i from Eqs. (4.2) and (4.21) respectively, the above expression 

can be simplified as 

𝐻𝐶𝐵𝑖(𝑄𝑖) = ℎ𝑏
2𝐷
�𝑄𝑖2(1 − 𝛾)2� − ℎ𝑏𝐷

2
𝑡𝑠𝑖2 + ℎ𝑏𝛾𝑄𝑖�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�

𝑥1(1−𝑏) + ℎ𝑏𝑡𝑋𝐵 +

ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 −  ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

(1−𝑏)� 𝑡𝑠𝑖
2−𝑏
1−𝑏     

(4.28) 

It should be noted that the above holding cost reduces to the one in Salameh and Jaber (2000) 

once b, tx , tsi, 𝑄si and ui become zero. 

Now the backorder cost in a cycle is = 𝑐𝐵𝑡𝑠𝐵𝑖
2

+ 𝑐𝐵(𝑡𝑋 − 𝑡𝑠𝑖)𝐵𝑖 = 𝑐𝐵 �𝑡𝑋 −
𝑡𝑠𝑖
2
�𝐵𝑖 

So, the total profit per cycle is given by 

𝑇𝑃𝑖𝐵(𝑄𝑖) = [𝑠(1 − 𝛾) + 𝜈𝛾 − 𝑐1]𝑄𝑖 − 𝐾 − 𝑐𝐵 �𝑡𝑋 −
𝑡𝑠𝑖
2
� 𝐵𝑖 −

ℎ𝑏
2𝐷

[𝑄𝑖2(1 − 𝛾)2] + ℎ𝑏𝐷
2
𝑡𝑠𝑖2                

      − (ℎ𝑏𝛾𝑄𝑖+𝑑1)�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) − ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 − ℎ𝑏𝑡𝑋𝐵 + ℎ𝑏 �

1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

1−𝑏𝑡𝑠𝑖
2−𝑏
1−𝑏 

(4.29) 

and the expected total profit per cycle is  
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E[𝑇𝑃𝑖𝐵(𝑄𝑖)] = {𝑠(1 − E[𝛾]) + 𝜈E[𝛾] − 𝑐1}𝑄𝑖 − 𝐾 − 𝑐𝐵 �𝑡𝑋 −
𝑡𝑠𝑖
2
�𝐵𝑖 −

ℎ𝑏
2𝐷 �

𝑄𝑖2E[(1 − 𝛾)2]� 

+ ℎ𝑏𝐷
2
𝑡𝑠𝑖2 −

{ℎ𝑏𝑄𝑖E[𝛾]+𝑑1}�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) − ℎ𝑏𝑄𝑠𝑖𝑡𝑠𝑖 − ℎ𝑏𝑡𝑋𝐵 + ℎ𝑏 �

1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

1−𝑏𝑡𝑠𝑖
2−𝑏
1−𝑏              

(4.30) 

The expected cycle time E[𝑇𝑖𝐵] can be written using Eq. (4.21) as 

E[𝑇𝑖𝐵(𝑄𝑖)] =
(1 − E[𝛾])𝑄𝑖

𝐷
 

So, the expected annual profit can be written as 

E�𝑇𝑃𝑈𝑖𝐵�𝑄𝑖�� =
E[𝑇𝑃𝑖𝐵(𝑄𝑖)]

E[𝑇𝑖𝐵]  (4.31) 

Eq. (4.31) is concave (refer to Appendix 4 for proof).  
 
4.4.2 Backorders for total transfer of learning 

In this case, the worker will retain all the experience gained in the earlier cycles. This 

experience will be calculated using Eq. (4.16). The holding cost, the expected profit per cycle, 

and the expected annual profit in Eqs. (4.28), (4.30) and (4.31), respectively, will be determined 

using this experience in each cycle.  

4.4.3 Backorders for total forgetting 

In this case, the experience ui in cycle i becomes zero and the inspection time will be 

determined by Eq. (4.17). The holding cost in Eq. (4.28) will be written as  

𝐻𝐶𝐵(𝑄) = ℎ𝑏
2𝐷

[𝑄2(1− 𝛾)2]− ℎ𝑏𝐷
2
𝑡𝑠2 + ℎ𝑏𝛾𝑄2−𝑏

𝑥1(1−𝑏) + ℎ𝑏𝑄𝑠𝑡𝑠 + ℎ𝑏𝑡𝑋𝐵  

              −ℎ𝑏 �
1−𝑏
2−𝑏

� [(1 − 𝑏)𝑥1]
1

1−𝑏𝑡𝑠
2−𝑏
1−𝑏  

(4.32) 

The expected profit per cycle and the expected annual profit in Eqs. (4.30) and (4.31) 

respectively, will be determined using Eqs. (4.16) and (4.32). 
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4.5 Numerical Analysis 

Consider a buyer who receives a lot of y units with defective items and the lot is screened 

out by workers. Unlike Salameh and Jaber (2000), at the beginning of the cycle, the screening 

rate is less than the demand rate and results in lost sales or backorders. As learning takes place in 

the screening process, the worker catches up with demand. Thus, there won’t be any lost sales or 

backorders after some cycles of procurement.  

Learning rates vary from industry to industry. For example, Cunningham (1980) collected 

learning rates reported in different industries that ranged from 95% (b = 0.074) in electric power 

generation to 60% (b = 0.737) in semiconductor manufacturing. Dutton and Thomas (1984) 

plotted learning rates found in 108 manufacturing firms, with 55% (b = 0.862) being the fastest 

learning rate reported. Dar-El (2000) on page 58, tabulated learning rates reported from previous 

studies that ranged from 95% (b = 0.074) to 68% (b = 0.556). Some studies observed total 

forgetting in a period ranging from few months to more than a year, e.g., Anderlohr (1969), 

McKenna and Glendon (1985). The learning rate in our example is taken to be 80% (b = 0.32) as 

observed in many manufacturing industries, Argote and Epple (1990). 

Besides, Salameh and Jaber (2000) used an inspection cost of $0.5/unit and obtained an 

optimal order size of 1439 units per cycle. They assumed a very high value of the inspection rate 

(175200 units per year) that represents a plateau in a learning curve. That is, when the screening 

rate on the learning curve exceeds 175200, the models developed herein converge to that of 

Salameh and Jaber (2000) whose closed form solution is given by Eq. (4.2). The time and the 

cost of inspection per cycle, using the parameters in Salameh and Jaber (2000), imply that an 

annual cost of $87600 be used in our example. An analysis of how unit inspection cost affects 

the annual profit will be carried out at the end of this section.  

The unit cost of backordering depends on when a buyer fulfills the backordered demand. Its 

value is taken to be twice as the unit holding cost, as in Wee et al. (2007). On the other hand, 

cost of lost sales is the sum of the lost revenue and the cost of goodwill: Goyal and Giri (2001); 

Ouyang et al. (2006a). Thus, it should be greater than or equal to the unit selling price. The unit 

cost of lost sales is taken to be equal to the unit selling price, in this numerical example. The 

effect of these two costs on the annual profit will be analyzed later in this section. Four percent 

defective items (γ) are assumed while the time for total forgetting (L) is taken to be 300 days. 
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The sensitivity of the total forgetting time will also be analyzed later. The rest of the data for this 

numerical analysis is taken from Salameh and Jaber (2000). The probability density function for 

the percentage of defectives is taken to be 

𝑓1(𝛾) = �1/(0.04 − 0),
  0,        0 ≤ 𝛾 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

Microsoft Excel Solver is used to obtain the optimal annual profit for a certain learning 

exponent and the percentage of defectives. It is observed that the annual profit plateaus to some 

extent after ten cycles, as a result of learning and forgetting. Therefore, in case of partial or total 

transfer of learning, an average of the results from the first ten cycles is used to compare them 

with those from the other scenarios of learning. To illustrate this, Table 4.1 shows the changes in 

the cycle length, the order size, the forgetting exponent and the annual profit from cycle to cycle, 

for the case of partial transfer of learning.  

Table 4.1 Results of partial transfer of learning from cycle to cycle 

Lost Sales 
 

Backorders 

         Ti Qi βi E[TPU(Qi)] 
 

Ti Qi βi E[TPU( Qi)] 
0.0711 3625 0.4277 1216192 

 
0.0573 2923 0.4025 1218890 

0.0493 2517 0.3914 1220513 
 

0.0488 2491 0.3909 1220626 
0.0450 2297 0.3886 1221502 

 
0.0447 2279 0.3885 1221589 

0.0419 2137 0.3889 1222305 
 

0.0416 2123 0.3890 1222379 
0.0394 2012 0.3913 1223009 

 
0.0392 2001 0.3917 1223076 

0.0375 1912 0.3956 1223650 
 

0.0373 1903 0.3961 1223711 
0.0359 1831 0.4013 1224244 

 
0.0357 1824 0.4020 1224301 

0.0346 1765 0.4084 1224802 
 

0.0345 1759 0.4092 1224856 
0.0335 1710 0.4168 1225332 

 
0.0334 1705 0.4177 1225383 

0.0431 2201 0.4011 1222394 
 

0.0414 2112 0.3986 1222757 
(the bold values are the averages of the columns) 

The input data and the results of the numerical example are shown in Table 4.2. It should 

be noted that the total transfer of learning is a better approach for both lost sales and backorders. 

The rationale is that while retaining the previous knowledge in screening, the buyer orders less. 

Total forgetting in both lost sales and the backorders does not result as a profitable option which 

is an understandable finding as the buyer has to screen with no previous experience. 
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The difference between lost sales and the backorders is not huge in case of total or partial 

transfer of learning. The reason is that the reported results are an average of the values in ten 

cycles. This minimizes the difference in the two approaches to a great extent. On the other hand, 

this difference in case of no transfer of learning is a noticeable one.  

Table 4.2 Input data and results of the numerical examples 

D x1 K 𝑑1 𝑐1 s v cB cL ℎ𝑏 γ b L 
50000 30000 100 87600 25 50 20 10 50 5 0.04 0.32 0.82 
units/  

yr 
units/

yr $/cycle $/yr $/unit $/unit $/unit $/unit/
yr $/unit $/unit/

yr - - yr 

             
    Lost Sales  Backorders   
    𝑄𝑖∗ Annual Profit  𝑄𝑖∗ Annual Profit   

  Partial 
Forgetting 2201 1222394  2112 1222757   

  Total 
Learning 1701 1228448  8085 1228516   

  Total 
Forgetting 3625 1216192  2923 1218890   

To enhance the above example, the effect of the change in learning exponent was studied 

on the three scenarios discussed, for lost sales and backorders, at a fixed percentage of 

defectives. The average of the expected annual profit from the first ten cycles of learning was 

obtained at different values of the learning exponent. The results are shown in Figures 4.3 and 

4.4. It can be seen that the annual profit in both the cases, in all the scenarios of learning, tends to 

be increasing with the learning exponent except only for total forgetting in case of lost sales. 

That is, learning in screening makes the buyer order less and less. This saves him some of the 

screening cost and the holding cost, and causes increase in the annual profit. The unusual 

behavior in case of lost sales with total forgetting tells us that at a very high learning exponent, 

the buyer tends to pile inventory with him, i.e. an increase in the holding cost which is not there 

in other scenarios of learning. This counters the increase in the annual profit. In general one can 

say that the more the knowledge in screening is retained the more is the annual profit. 

Furthermore, total transfer of learning remains to be the best of the three scenarios discussed, 

both for lost sales and backorders, in terms of annual profit.  
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Figure 4.3 Annual profit w.r.t. b for lost sales at γ = 0.04 

 

Figure 4.4 Annual profit w.r.t. b for backorders at γ = 0.04 

Similarly, to understand the effect of the shortage costs, annual profit was obtained for 

varying lost sales and backorder costs, for the case of partial transfer of learning. Again, an 

average of the annual profit from ten consecutive cycles of learning was obtained at different 
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unit-costs of lost sales, at a fixed value of the learning exponent. Figure 4.5 shows that, as 

intuitively expected, the annual profit tends to decline with the increasing unit lost sales cost. 

That is, the lost sales cost offsets the annual profit margin of the buyer. On the other hand, the 

annual profit for the backorder case showed almost no variation when the unit backorder cost 

was varied from twice to four-times the unit holding cost. This indicates that this much change in 

the unit backorder cost is just not enough to hint a clear difference in the annual profit, especially 

when the learning rate is fixed. It should be noted that in the backorder case, the demand is 

eventually met and hence profit is not lost. However, the only additional cost is that of back 

orders, which is more than the holding cost, for the quantity backordered. In order to investigate 

the effect of defective items on the annual profit, the sensitivity of the model to 𝛾, was tested for 

the lost sales case with partial transfer of learning. Figure 4.6 shows that at a fixed learning 

exponent, the annual profit tends to be decreasing with the percentage of defectives. This is an 

expected result as the imperfect items are likely to slash the profit obtained from the non-

defective items.  

 

Figure 4.5 Annual profit w.r.t. cL for lost sales with partial forgetting 
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Figure 4.6 Annual profit w.r.t. γ for lost sales with partial forgetting 

To investigate the sensitivity of the time for total forgetting, the response of the model to 

varying L was tested for the lost sales case with partial transfer of learning. The three curves in 

Figure 4.7 indicate that as the worker retains his/her skills for a longer period, the increase in the 

profit by virtue of learning ends up at a higher level than for the case where he loses his 

experience in shorter spells of time. As shown in Table 4.1, it can also be seen here (Figure 4.7) 

that the most of the benefit from learning shows in the earlier cycles (e.g., from 1 to 2). 

 

Figure 4.7 Annual profit w.r.t. L for lost sales with partial forgetting 
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Finally, the sensitivity of the model to the unit inspection cost is explored. The response of 

the annual profit for the lost sales case, with total transfer of learning, is plotted in Figure 4.8, at 

different levels of learning. That is, the unit inspection cost is varied from $0.5 to $2.5 for b 

between 0.05 and 0.4. It should be noted here that the unit inspection cost in all the above 

analyses was $0.5. Figure 9 indicates that the annual profit drops by a great extent by varying the 

unit inspection cost at lower levels of b (i.e. when the learning is slow). This difference in the 

annual profit starts diminishing as learning becomes faster (higher values of b). This indicates 

that the unit inspection cost affects the annual profit more at the higher values of screening time. 

One should notice that the screening time per cycle gets shorter and shorter with learning which 

tends to increase the annual profit. Besides, this screening time has an inverse relation to the 

learning exponent b.   

 

 

Figure 4.8 Annual profit w.r.t. d and b for lost sales with total transfer of learning 
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4.6 Summary and Conclusions 

This chapter is an extension of Salameh and Jaber (2000) for the case where the buyer’s 

inspection process undergoes learning while screening for defective items in a lot. It is assumed 

that a 100% inspection is carried out with an error free screening and the rate of screening tends 

to increase by virtue of learning. This counters an assumption in Salameh and Jaber (2000) that 

the inspection rate is fixed and is always greater than demand. This chapter makes a realistic 

move and contributes to the area by giving some insights to a practical scenario. Having a 

screening rate lesser than demand rate in the beginning of the screening process, incurs shortages 

which are tackled in the chapter as both lost sales and backorders. Three scenarios of learning, 

available in the literature, are compared for the above set-up. These scenarios are (i) total 

forgetting, where an inspector starts in every cycle with no prior experience, (ii) total transfer of 

learning, where the inspector does not lose any knowledge or skills in the breaks and the learning 

curve continues as if there were no interruptions, and (iii) partial transfer of learning, where an 

inspector carries part of his experience to the subsequent cycles. The last situation is the most 

generalized and the realistic one. The results indicate that total transfer of learning remains better 

for both the lost sales and the backorders set-up. The reason is that the buyer orders less and pays 

less in inventory and screening cost, by virtue of learning. The sensitivity of the model was 

tested for a number of parameters. The results indicated that the annual profit tends to increase 

with the learning exponent in screening. That is, the faster the learning in screening the lesser is 

the screening time. A similar finding of the research is that the annual profit can be increased by 

retaining more and more knowledge in screening process. This was pointed out by experimenting 

different levels of time for total forgetting, at fixed values of the learning exponent.  

It was noticed that an increase in the percentage of defectives decreases the annual profit at 

a fixed exponent of learning. The unit cost of lost sales is also shown to have a similar effect on 

the annual profit. It was shown that an increase in the unit screening cost reduces the annual 

profit to great extent at the slower rates of learning.  

The study could be enhanced in a number of ways. For example, one could study the effect 

of learning in suppliers’ proportion of defectives. The buyer and the supplier can agree on a fixed 

proportion of defective items, and look for a coordinated order size per cycle. 



110 
 

CHAPTER 5 THE EFFECT OF HUMAN FACTORS ON THE 

PERFORMANCE OF A SUPPLIER–VENDOR SUPPLY CHAIN 

 

5.1 Introduction 

The EOQ/EPQ model has been quite popular among researchers and industries ever since 

its inception in the beginning of the last century (Simpson, 2001). This model can be 

summarized as determining an order quantity that makes a balance or trade-off between the 

ordering costs and the holding costs. Regardless of such a wide acceptance, this basic model has 

several weaknesses. The main idealistic assumptions claim there is a perfectly steady demand 

known with certainty and all the items received from the suppliers are of a perfect quality. These 

assumptions initiated a huge arena of research for many in the industry and academics. The result 

was a vast literature that studies the basic EOQ/EPQ model under real life situations, e.g., 

Porteus (1986a), Rosenblatt and Lee (1986) and Silver (1976).  

In this chapter, a two-level (supplier-vendor) supply chain is considered. The vendor   

follows an EPQ policy to manufacture a single product. The coordination mechanism is such that 

(i) the vendor receives the market demand and orders for the different components that are 

needed to make the single product; (ii) every supplier provides a single type of a part/item 

required for the product; (iii) all the suppliers replenish the orders at the same time, i.e. at the 

beginning of the vendor’s production cycle. The raw material from the suppliers is assumed to 

follow the assumptions of Salameh and Jaber (2000) where each shipment contains imperfect 

quality items.  These defective items received from the suppliers may be a result of weak process 

control, deficient planned maintenance, inadequate work instructions and/or damage in transit: 

(Ouyang et al., 2006b). Two coordination mechanisms are considered here, as in Khouja (2003). 

An optimal production quantity and the annual cost of the whole supply chain are determined for 

each of the mechanism. The model is then extended to introduce human factors such as 

inspection error, and learning in production and quality. In the first extension, the screening 

process is assumed to have Type I and Type II errors. In the second extension, the vendor’s 

production process is assumed to follow Wright (1936) learning curve, thus affecting the 

production time. In the third extension, the quality of suppliers’ items is assumed to follow 
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learning. An optimal lot size and the annual cost of the supply chain are determined for each of 

these extensions. Thus, the major contributions of this chapter can be summarized as  

1. It brings in the concept of defective items in a supplier-vendor supply chain whereas 

Huang (2002) and Goyal et al. (2003) have done the same for a vendor-buyer supply chain. 

2. It extends the coordination mechanisms in Khouja (2003) for defective items from 

suppliers, i.e. Salameh and Jaber (2000), learning in vendor’s production process, i.e. Jaber and 

Bonney (2003), inspection error in vendor’s screening process, as in Raouf et al. (1983) and 

learning in suppliers’ defective items, as in Jaber et al. (2008). 

3. Results of this research have endorsed Khouja (2003) finding for all the extensions, that 

integer multiplier mechanism remains better than the equal cycle time mechanism.   

The rest of the chapter is arranged as follows: In section 5.2, the description and 

formulation of the models are given. An approximate solution procedure to determine the 

multipliers of the cycle time is also presented in this section. A number of extensions of the 

model in section 5.2, for different human factors are introduced in section 5.3. Section 5.4 

presents numerical examples and the sensitivity analysis of the different parameters used in the 

models. Section 5.5 presents conclusions, limitations and some suggestions for future research. 

5.2 Model Description and Development 

Consider a two-level supply chain scenario where a vendor has to make Q (a deterministic 

quantity) assembled items of a product in each production segment of length Tp at a rate P, which 

is consumed at a rate D (P > D) over the cycle time T = Q/D. Each of the finished products needs 

µs parts from supplier s, where s = 1, 2, …, m.  A fixed percentage γs of these parts is believed to 

be defective. For this, the vendor institutes a 100% inspection and screens out all the defective 

items from the lots provided by the suppliers, at a rate of 𝑥 per unit time. Though we take the 

same inspection rate x here, it is quite reasonable to assume different screening rates for a 

number of parts provided by the suppliers. The rationale for this is that the parts may have a 

different level of complexity (Duffuaa and Khan, 2005). Since every part is assumed to have a 

different rate of being defective, the vendor would end up with some parts left in each cycle that 

would be utilized in the subsequent cycles.   



112 
 

An optimal production quantity for each mechanism, as described above, will be 

determined by minimizing the total costs experienced by all the stakeholders of the supply chain. 

The costs considered in the model are ordering/setup cost, screening cost, and the inventory 

carrying cost. The objective of the study is to minimize the total annual cost through (i) an 

optimal production quantity and (ii) an optimal multiplier for each supplier.  

Figure 5.1 illustrates the behavior of inventory for raw material (dotted lines) and finished 

goods (solid lines).  The behavior of raw material inventory is similar to that described in 

Salameh and Jaber (2000). Production and screening start at time zero. The figure represents the 

inventory of the raw material from three suppliers but the notations are given for the first 

supplier only. The inspection process, that takes time t11, results in a defective sub-lot, B1. As 

each supplier may have a different percentage of defectives, the vendor may have a number of 

unused parts l1, l2 left at the end of each cycle. It should be noticed that the lot with the highest 

number of defective items (shown by a red line) would not have any leftovers. These parts are 

used in the subsequent cycle.  

5.2.1 Equal Cycle Time Mechanism  

In this mechanism, the supplier is assumed to follow a lot-for-lot policy. Following an 

equal cycle time for all the stakeholders in such a system, the total annual cost will be computed 

in this section. It should be noted that the vendor has to accommodate the minimal number of 

parts left, ls in each cycle. For simplicity, we relax the integer number restriction and compute ls 

as  

E[𝑙𝑠] = 𝑄𝑠(E[𝛾max]− E[𝛾𝑠]) 

Therefore, the order quantity of the raw material/parts of type s, in a cycle, would be 

E[𝑄𝑠] = 𝑄𝜇𝑠 − E[𝑙𝑠] or 

E[𝑄𝑠] = 𝑄𝜇𝑠{1 − (E[𝛾max] − E[𝛾𝑠])} = 𝑄𝜇𝑠E[𝜋𝑠] (5.1) 

where 𝛾max = max{𝛾𝑠, 𝑠 = 1,2, … ,𝑚} 
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Figure 5.1 Vendor’s inventory level for raw material and finished product (s = 1, 2, 3) 
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The fraction πs balances for the leftovers of type s in a cycle. Therefore the raw material in 

each cycle would consist of (i) nondefective parts, (ii) defective parts and (iii) the leftovers. It 

should be noted that production and screening processes, both, start at time zero in each cycle. 

The defective raw material from supplier 1 is screened out at time t11, whereas the inventory 

level for this raw material drops from Z11 to Z21, as described in Figure 5.1.The different costs of 

the raw material/parts of type s, for the vendor, in a cycle, are given in the following: 

Ordering cost =  𝑎𝑣𝑠𝑄𝜇𝑠E[𝜋𝑠] 

Holding cost = ℎ𝑣1𝑠 �
(𝑄+E[𝑍1𝑠])E[𝑡1𝑠]

2
+ E[𝑍2𝑠]�E�𝑇𝑝�−E[𝑡1𝑠]�

2
+ E[𝑙𝑠]E[𝑇𝑑]�     

where avs and hv1s are respectively the vendor’s  unit variable cost for ordering and storing one 

unit and from supplier s.  As defined in the notations, the terms in the above expression are: 

E[𝑡1𝑠] =
E[𝑄𝑠]
𝑥

=
𝑄𝜇𝑠
𝑥

−
E[𝑙𝑠]
𝑥

 

E[𝑍1𝑠] = E[𝑄𝑠] − 𝐷E[𝑡1𝑠] = E[𝑄𝑠] �1 − 𝐷
𝑥
� and      

 

E[𝑍2𝑠] = E[𝑍1𝑠] − E[𝛾𝑠]E[𝑄𝑠] = E[𝑄𝑠] �1 − E[𝛾𝑠] −
𝐷
𝑥
� 

where 𝐷 < 𝑥 and E[𝛾𝑠] + 𝐷
𝑥
 < 1.  

Using Eq. (5.1), it can be simplified as  

Holding cost = ℎ𝑣1𝑠𝑄
2

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+ �𝜇𝑠E[𝜋𝑠]
𝑃

� �1 − E[𝛾𝑠] − 𝐷
𝑥
�� + ℎ𝑣1𝑠𝑄𝜇𝑠(1 −

E[𝜋𝑠]) �E[𝑇]− 𝑄
𝑃
� 

Screening cost = 𝑑𝑠𝑄𝜇𝑠E[𝜋𝑠] 

where ds is the cost to screen one item received from supplier s. Thus, the vendor’s total cost of 

the raw material, in a cycle, would be: 

𝐶𝑣𝑟(𝑄) = ∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝑄𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄2

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+ �𝜇𝑠E[𝜋𝑠]
𝑃

� �1 −𝑚
𝑠=1

                   E[𝛾𝑠] − 𝐷
𝑥�� + ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �E[𝑇] − 𝑄

𝑃
��  

(5.2) 
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Similarly, the vendor’s cost of the finished products, in a cycle, is the sum of its setup cost, 

production cost and holding cost. That is  

𝐶𝑣𝑓(𝑄) = 𝐴𝑣 + 𝑐𝑄
𝑃

+ ℎ𝑣2𝑄E[𝑇]
2

�1 − 𝐷
𝑃
�  

where Av, c and hv2 are, respectively, the vendor’s setup cost, unit production cost, and the unit 

holding cost for a finished item. So, the total cost of the vendor, per cycle, can be written as 

𝐶𝑣(𝑄) =

𝐴𝑣 + 𝑐𝑄
𝑃

+ ℎ𝑣2𝑄E[𝑇]
2

�1 − 𝐷
𝑃
� + ∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝑄𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄2

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+𝑚
𝑠=1

                 �𝜇𝑠E[𝜋𝑠]
𝑃

� �1 − E[𝛾𝑠] − 𝐷
𝑥
�� + ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �E[𝑇]− 𝑄

𝑃
��   

(5.3) 

Using E[𝑇] or Q/D as vendor’s cycle time, its annual cost can be written as 

𝑇𝐶𝑈𝑣(𝑄) =
𝐴𝑣𝐷
𝑄

+ 𝑐𝐷
𝑃

+ ℎ𝑣2𝑄
2
�1 − 𝐷

𝑃
� + 𝐷∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+𝑚
𝑠=1

             �𝜇𝑠E[𝜋𝑠]
𝑃

� �1 − E[𝛾𝑠] − 𝐷
𝑥
��� + ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷

𝑃
�  

(5.4) 

The term E[𝜋𝑠2] is simplified in Appendix 5. Now, for a lot-for-lot (LFL) case, the suppliers 

have order costs, As, but no carrying costs.  That is, they supply all their raw material at the 

beginning of each cycle to the vendor. Thus the annual cost for a supplier s is  

𝐶𝑠 = 𝐴𝑠 

So, the annual cost of all the suppliers would be 

𝑇𝐶𝑈𝑠(𝑄) = 𝐷∑ 𝐴𝑠𝑚
𝑠=1
𝑄

  (5.5) 

Thus, the total annual cost of the whole supply chain for an equal cycle time mechanism, would 

be 
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E[𝑇𝐶𝑈(𝑄)] = 𝐷(𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )

𝑄
+ 𝑐𝐷

𝑃
+ ℎ𝑣2𝑄

2
�1 − 𝐷

𝑃
� + 𝐷∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠] +𝑚

𝑠=1

ℎ𝑣1𝑠𝑄
2

�𝑢𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ �𝜇𝑠E[𝜋𝑠]

𝑃
� �1 − E[𝛾𝑠] − 𝐷

𝑥
��� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷

𝑃
�𝑚

𝑠=1   
(5.6) 

The second derivative of the above expression with respect to the production size in a cycle, is 
2𝐷(𝐴𝑣+∑ 𝐴𝑠𝑚

𝑠=1 )
𝑄3

 which turns out to be positive (∀ D > 0, 𝐴𝑣 > 0, 𝐴𝑠 > 0 and Q > 0) and proves its 

convexity of Eq. (5.6). Taking the first derivative of this total annual cost and solving for 

dE[TCU(Q)]/dQ = 0 gives the following optimal production quantity 

𝑄 = �
2𝐷�𝐴𝑣+∑ 𝐴𝑠𝑚

𝑠=1 �

ℎ𝑣2�1−
𝐷
𝑃�+𝐷∑ ℎ𝑣1𝑠�𝜇𝑠2E�𝜋𝑠2��

1+E[𝛾𝑠]
𝑥 �+𝜇𝑠E[𝜋𝑠]

𝑃 �1−E[𝛾𝑠]−𝐷𝑥��+2∑ ℎ𝑣1𝑠𝜇𝑠(1−E[𝜋𝑠])�1−𝐷𝑃�
𝑚
𝑠=1

𝑚
𝑠=1

  (5.7) 

It should be noticed that an expected value of the percentage of defective parts is used to indicate 

uncertainty of the model. The denominator of Eq. (5.7) is positive since D < P, 0 < E[𝜋𝑠] < 1, and 

E[𝛾𝑠] + 𝐷
𝑥
 < 1.  

5.2.2 Integer-Multiplier Cycle Time Mechanism 

Many researchers have found that the equal cycle time mechanism is not an optimal 

solution to the problem considered. Thus, it is now assumed that the cycle time for the suppliers 

and the vendor is not the same but all the suppliers still follow the same cycle time. The 

suppliers’ cycle time is an integer multiplier of the basic cycle time T used by the vendor. As the 

vendor in this case follows the basic cycle time T, its annual cost is given by Eq. (5.4). On the 

other hand, for a supplier, during the non-production time, the inventory drops every T years by 

TDs = TQus. So, its inventory level in the non production portion of the cycle is (Ks–1)TDs, (Ks–

2)TDs ……, TDs, and 0 as shown in Figure 5.2.  
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Figure 5.2 Supplier’s inventory level in integer-multiplier mechanism, Ks = 4 

Therefore, the inventory level for a supplier for its non-production period is 

𝐾𝑠E[𝑇][(𝐾𝑠 − 1)𝑄𝜇𝑠ℎ𝑠]/2. The total cost for a supplier s, in a cycle, can be written as 

𝐶𝑠(𝑄) = 𝐴𝑠 + 𝐾𝑠(𝐾𝑠 − 1) 𝑄𝜇𝑠ℎ𝑠E[𝑇]
2

  

where As and hs are, respectively,  supplier’s s order cost and unit holding costs. Using a 

supplier’s cycle time as Ks E[𝑇], its annual cost would be 

𝐶𝑈𝑠(𝑄) = 𝐴𝑠
𝐾𝑠E[𝑇] + (𝐾𝑠 − 1) 𝑄𝜇𝑠ℎ𝑠

2
  

Thus, the total annual cost of all the suppliers for integer multiplier mechanism, would be 

E[𝑇𝐶𝑈𝑠(𝑄)] =
∑ 𝐴𝑠

𝐾𝑠
𝑚
𝑠=1

E[𝑇] + 𝑄∑ (𝐾𝑠−1)𝜇𝑠ℎ𝑠𝑚
𝑠=1

2
=

𝐷∑ 𝐴𝑠
𝐾𝑠

𝑚
𝑠=1

𝑄
+ 𝑄∑ (𝐾𝑠−1)𝜇𝑠ℎ𝑠𝑚

𝑠=1
2

  (5.8) 

It should be noted that the above expression reduces to Eq. (5.5) when Ks = 1. That is, the 

integer multiplier mechanism reduces to the LFL policy for an equal cycle time mechanism when 

Ks = 1. Using Eq. (5.4), the annual cost of the whole supply chain in case of an integer-multiplier 

cycle time mechanism would be 

E[𝑇𝐶𝑈(𝑄)] =
𝐷�𝐴𝑣+∑

𝐴𝑠
𝐾𝑠

𝑚
𝑠=1 �

𝑄
+ 𝑐𝐷

𝑃
+ 𝑄

2
�ℎ𝑣2 �1 − 𝐷

𝑃
�+ ∑ (𝐾𝑠 − 1)ℎ𝑠𝜇𝑠𝑚

𝑠=1 �  

  +𝐷∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ �𝜇𝑠E[𝜋𝑠]

𝑃
� �1 − E[𝛾𝑠] −𝑚

𝑠=1

             𝐷
𝑥��� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷

𝑃
�𝑚

𝑠=1   

(5.9) 

(Ks –1) Qµs 

 

  (Ks – 3) Qµs 

  (Ks – 2) Qµs 

(Ks –1)Qµs 

  Ks E[𝑇] 
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As in Eq. (5.6), the above expression is also convex in Q. Taking the first derivative of this 

total annual cost and solving for d[TCU(Q)]/dQ = 0 gives the following optimal production 

quantity: 

𝑄 =

�
2𝐷�𝐴𝑣+∑

𝐴𝑠
𝐾𝑠

𝑚
𝑠=1 �

ℎ𝑣2�1−
𝐷
𝑃�+∑ (𝐾𝑠−1)ℎ𝑠𝜇𝑠𝑚

𝑠=1 +𝐷∑ ℎ𝑣1𝑠�𝜇𝑠2E�𝜋𝑠2��
1+E[𝛾𝑠]

𝑥 �+𝜇𝑠E[𝜋𝑠]
𝑃 �1−E[𝛾𝑠]−𝐷𝑥��+2∑ ℎ𝑣1𝑠𝜇𝑠(1−E[𝜋𝑠])�1−𝐷𝑃�

𝑚
𝑠=1

𝑚
𝑠=1

  
(5.10) 

The denominator of Eq. (5.10) is positive since D < P, 0 < E[𝜋𝑠] < 1, and E[𝛾𝑠] + 𝐷
𝑥
 < 1.  

5.2.3 Approximation for Ks 

In this section, an analytical approach would be used to determine the optimal multipliers 

for mechanism two, discussed in section 5.2.2. Consider the total cost in Eq. (5.9) for the 

mechanism two that is the integer multiplier Ks mechanism. Assume for simplicity that Ks is a 

real number, then an approximate multiplier for supplier s can be determined by setting the first 

derivative of TC in Eq. (5.9) w.r.t  Ks equal to zero and solving for Ks to get 

𝐾𝑠 = 1
𝑄 �

2𝐴𝑠𝐷
ℎ𝑠𝜇𝑠

 = 𝐻𝑠
𝑄

   (5.11) 

where 𝐻𝑠 ≅ �2𝐴𝑠𝐷
ℎ𝑠𝜇𝑠

 

Substituting Eq. (5.11) in Eq. (5.9) and simplifying results in  

E[𝑇𝐶𝑈(𝑄)] = 𝐴𝑣𝐷
𝑄

+ ∑ �2𝐷𝐴𝑠ℎ𝑠𝜇𝑠𝑚
𝑠=1 + 𝑐𝐷

𝑃
+ 𝑄

2
�ℎ𝑣2 �1 − 𝐷

𝑃
� − ∑ ℎ𝑠𝜇𝑠𝑚

𝑠=1 �  

   +𝐷∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠𝜋𝑠 + ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ �𝜇𝑠E[𝜋𝑠]

𝑃
� �1 − E[𝛾𝑠] −𝑚

𝑠=1

              𝐷
𝑥��� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷

𝑃
�𝑚

𝑠=1   

 

As in Eq. (5.6), the second derivative test proves the convexity of the above expression. An 

approximate production quantity, which is independent of the multipliers, would then be 
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𝑄 = �
2𝐴𝑣𝐷

ℎ𝑣2�1−𝐷𝑃�−∑ ℎ𝑠𝜇𝑠
𝑚
𝑠=1 +𝐷∑ ℎ𝑣1𝑠�𝜇𝑠2E�𝜋𝑠2��

1+E�𝛾𝑠�
𝑥 �+𝜇𝑠E[𝜋𝑠]

𝑃 �1−E�𝛾𝑠�−
𝐷
𝑥��+2∑ ℎ𝑣1𝑠𝜇𝑠(1−E[𝜋𝑠])�1−𝐷𝑃�

𝑚
𝑠=1

𝑚
𝑠=1

  (5.12) 

The denominator of Eq. (5.10) is positive since D < P, 0 < E[𝜋𝑠] < 1, and E[𝛾𝑠] + 𝐷
𝑥
 < 1.  

To validate this approximation, one thousand examples were tried. That is, the exact and 

approximate production quantities were computed through Eq. (5.10) and Eq. (5.12) 

respectively. The difference between the costs calculated with these production quantities, was 

almost zero in one thousand cases. Thus, a solution procedure for the last two mechanisms would 

be as follows: 

1. Estimate an approximate production quantity, using Eq. (5.12).  

2. Estimate an approximate multiplier for supplier s using Eq. (5.11).  

3. Determine integer values of the multipliers as ⌊𝐾𝑠⌋ and ⌈𝐾𝑠⌉ 

4. Determine an exact production quantity for each combination of the multipliers from step 

3, using Eq. (5.10).   

5. Determine an annual cost using Eq. (5.9), for each combination from step 3, using Q 

from step 4.   

6. Determine an optimal annual cost of the supply chain as the minimum of the costs from 

step 4. This will indicate the optimal production quantity and the optimal set of 

multipliers.  

5.3 Model Extensions 

In this section, a number of extensions as outlined in section 5.1 will be discussed for the 

model in section 5.2.  

5.3.1 Type I and Type II Errors in Screening 

The screening process in most of the supply chain literature is assumed to be error-free, for 

example Huang (2002) and Goyal et al. (2003). But it is quite realistic to account for Type I and 

Type II errors committed by inspectors in this process with probabilities m1 and m2 respectively. 

In this section, it is assumed that the inspectors at the vendor’s end commit errors while 

screening the suppliers’ items. That is, they will classify some non-defective items as defectives 
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while some defective items as non-defectives. In other words, they will attribute a percentage of 

defective to each supplier, different from the actual one. Thus, the defective items of type s 

classified by the inspection process would be 

𝑄𝑠′ = 𝑄𝜇𝑠(1 − E[𝛾𝑠])E[𝑚1] + 𝑄𝜇𝑠E[𝛾𝑠](1 − E[𝑚2])

= 𝑄𝜇𝑠{(1 − E[𝛾𝑠])E[𝑚1] + E[𝛾𝑠](1 − E[𝑚2])} = 𝑄𝜇𝑠E[𝑀𝑠] 

Thus, the fraction accommodating the leftovers of type s in a cycle, will be given as 

E[𝜋𝑠𝑒] = 1 − (E[𝑀max] − E[𝑀𝑠]) 

where E[𝑀max] = max{E[𝑀𝑠], 𝑠 = 1,2, … ,𝑚} and Eq. (5.1) can be written as   

𝑄𝑠 = 𝑄𝜇𝑠{1 − (E[𝑀max]− E[𝑀𝑠])} = 𝑄𝜇𝑠E[𝜋𝑠𝑒]  (5.13) 

So, the vendor’s total cost of the raw materials can now be written as 

𝐶𝑣𝑟(𝑄) = ∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝑄𝜇𝑠E[𝜋𝑠𝑒] + ℎ𝑣1𝑠𝑄2

2
�𝜇𝑠

2E�𝜋𝑠𝑒2 �(1+E[𝑀𝑠])
𝑥

+ �𝜇𝑠E[𝜋𝑠𝑒]
𝑃

� �1 −𝑚
𝑠=1

E[𝑀𝑠] − 𝐷
𝑥�� +  ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠𝑒]) �E[𝑇] − 𝑄

𝑃
��   

(5.14) 

The defective raw material misclassified by an inspector ends up making a defective 

product. This is assumed to cost the vendor an extra 𝑐𝑓E[𝑚2]𝑄∑ E[𝛾𝑠]𝑚
𝑠=1 . This may be taken as 

a goodwill cost or warranty cost. The loss due to misclassifying nondefective raw material is 

neglected for simplicity here. The rest of the model remains the same as in section 5.2.  

5.3.2 Learning in Vendor’s Production Process 

In this section, it is assumed that the vendor’s production process follows Wright (1936) 

learning curve. That is, vendor produces the final product at an increasing production rate which 

is consumed at a constant rate. Let us assume that Tpi, Tdi and Ti are the production time, 

depletion time and the cycle time, respectively, in any cycle, as shown in Figure 5.3. The process 

produces a fixed quantity Q and builds up a maximum inventory Zi, in each cycle i. The level of 

inventory in each cycle can be expressed as a function of time as  
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Φ𝑖(𝑡) = �
𝑄(𝑡) − 𝐷𝑡 0 < 𝑡 < 𝑇𝑝𝑖
𝐷𝑇𝑖 − 𝐷𝑡 𝑇𝑝𝑖 < 𝑡 < 𝑇𝑖

� (5.15) 

Let us now assume that b is the learning exponent, while 0 ≤ bi < 1 is the learning exponent 

in cycle i of production. Faster learning is associated with higher values of b. The production 

time in a cycle i is written as 

𝑇𝑝𝑖 = ∫ 𝑇1𝑥−𝑏𝑖𝑑𝑥
𝑖𝑄

(𝑖−1)𝑄   or 

𝑇𝑝𝑖 = 𝑇1𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

  (5.16) 

 

 

 

 

 

 

 

Figure 5.3 Vendor’s inventory of the final product with learning in ith cycle 

where T1 = 1/P is the time to assemble (produce) the first unit on the learning curve.  To 

understand the changing learning rate, assume that the vendor produces x units in one cycle and y 

units in the next. If T1 and T2 are times to produce the first unit in the two cycles, the time to 

produce the yth unit can be written as 

𝑇𝑦 = 𝑇1(𝑥 + 𝑦)−𝑏   (5.17) 

and  

Time 

Zi 

Tdi Tpi 
Ti 

Inventory 
level 
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𝑇𝑦 = 𝑇2𝑦−𝑏2  or 

𝑇𝑦 = 𝑇1(𝑥 + 1)−𝑏𝑦−𝑏2    (5.18) 

Equating expressions (5.17) and (5.18), it can be written as 

𝑏2 = 𝑏[log(𝑥+𝑦)−log(𝑥+1)]
log(𝑦)   

In case of producing a fixed quantity Q in each cycle, the new learning rate can be written as 

𝑏𝑖 = 𝑏[log(𝑖𝑄)−log{(𝑖−1)𝑄+1}]
log(𝑄)   (5.19) 

Now, the average inventory of finished products in a cycle i can be written as 

∫ Φ𝑖(𝑡)𝑑𝑡
𝑇𝑖
0 = ∫ (𝑄 − 𝐷𝑡)𝑑𝑡𝑇𝑝𝑖

0 + 𝑍𝑖𝑇𝑑𝑖
2

  

After simplification, it can be written as 

∫ Φ𝑖(𝑡)𝑑𝑡
𝑇𝑖
0 = 𝑄2

2𝐷
− 𝑇1𝑄2−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
  (5.20) 

So, the vendor’s total cost of the finished products in cycle i would be 

𝐶𝑣𝑓(𝑄) = 𝐴𝑣 + 𝑐𝑇1𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

+ ℎ𝑣2 �
𝑄2

2𝐷
− 𝑇1𝑄2−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
�  

Inventory buildup behaves linearly when learning in production is fast. Therefore, using 

Eq. (5.2), the vendor’s total cost of the raw material, in cycle i would be 

𝐶𝑣𝑟(𝑄)=∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝑄𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �E[𝑇]− 𝑄
𝑃
� +𝑚

𝑠=1

                                      ℎ𝑣1𝑠𝑄
2

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

�1 − E[𝛾𝑠] − 𝐷
𝑥
���  

So, the vendor’s total cost in a cycle would be 



123 
 

𝐶𝑣(𝑄)=𝐴𝑣 +

∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝑄𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄2

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

�1 − E[𝛾𝑠] −𝑚
𝑠=1

𝐷
𝑥�� + ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �E[𝑇]− 𝑄

𝑃
�� + 𝑐𝑇1𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
+

ℎ𝑣2 �
𝑄2

2𝐷
−   𝑇1𝑄

2−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)(2−𝑏𝑖)

�   

and the vendor’s annual cost would be 

E[𝑇𝐶𝑈𝑣(𝑄)]= 𝐴𝑣𝐷
𝑄

+ ℎ𝑣2 �
𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� + 𝐷∑ �ℎ𝑣1𝑠𝑄

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+𝑚
𝑠=1

𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

�1 − E[𝛾𝑠] − 𝐷
𝑥
�� + (𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠]� +

∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷
𝑃
�𝑚

𝑠=1 + 𝑐𝐷𝑇1𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

   

(5.21) 

Using Eq. (5.5), the total annual cost of the supply chain for the equal cycle time can be written 

as 

E[𝑇𝐶𝑈(𝑄)]= (𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )𝐷
𝑄

+ ℎ𝑣2 �
𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� +

𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠] − 𝐷

𝑥
�� +𝑚

𝑠=1

(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠]� + ∑ ℎ𝑣1𝑠𝑄𝑢𝑠(1 − E[𝜋𝑠]) �1 − 𝐷
𝑃
�𝑚

𝑠=1 + 𝑐𝑇1𝐷𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

    

(5.22) 

Eq. (5.22) is convex in Q (see Appendix 6 for proof). An iterative procedure will be carried 

out to determine the level of learning, production quantity and the annual cost for ten cycles of 

learning. An average of these measures will be used to compare the results with those for the 

other scenarios studied in the chapter.  

Using Eqs. (5.8) and (5.22), the annual cost of the supply chain in a cycle, for the integer 

multiplier mechanism, would be 

E[𝑇𝐶𝑈(𝑄)]= 
𝐷�𝐴𝑣+∑

𝐴𝑠
𝐾𝑠

𝑚
𝑠=1 �

𝑄
+ ℎ𝑣2 �

𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� + (5.23) 
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𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠] − 𝐷

𝑥
�� +𝑚

𝑠=1

(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠]� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷
𝑃
�𝑚

𝑠=1 +

𝑐𝐷𝑇1𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

+ 𝑄∑ (𝐾𝑠−1)ℎ𝑠𝜇𝑠𝑚
𝑠=1

2
    

For an approximate value of the multipliers in Eq. (5.23), substituting Ks from Eq. (5.11) in 

Eq. (5.23), we get 

E[𝑇𝐶𝑈(𝑄)]= 𝐴𝑣𝐷
𝑄

+ ∑ ��2𝐴𝑠𝐷ℎ𝑠𝜇𝑠 −
𝑄ℎ𝑠𝜇𝑠
2
�𝑚

𝑠=1 + ℎ𝑣2 �
𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� +

𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠] − 𝐷

𝑥
�� +𝑚

𝑠=1

(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠]� +   ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷
𝑃
�𝑚

𝑠=1 +

𝑐𝐷𝑇1𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

     

(5.24) 

The convexity of Eq. (5.24) can be shown in a similar manner to that of Eq. (5.22) (see 

Appendix 6 for proof). Again, an approximate value of the production quantity and the learning 

rate would be computed through iterating Eq. (5.25). This will be used to calculate the real-

numbered values of multipliers by employing Eq. (5.11). The integer multipliers would be the 

values ⌊𝐾𝑠⌋, ⌈𝐾𝑠⌉ respectively. The minimum for the second policy will be found by plugging 

these integer values in Eq. (5.24). Again, an average of the ten cycles of learning will be 

calculated here.  

5.3.3 Learning in Suppliers’ Quality 

In this section, it is assumed that the percentage of defectives per lot, from each supplier 

decreases following a learning curve. This improved quality may be attributed to the human 

learning in production and/or inspection at suppliers’ end. Jaber et al. (2008) discovered this 

behavior in the items of an automotive industry. They showed that the data follows a logistic 

learning curve of the form  
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𝛾(𝑖) = 𝑎
𝑔+𝑒𝑏𝑖

  (5.25) 

where a and g are the fit parameters while b is the learning rate and i is the number of shipments. 

Substituting this in Eq. (5.9), it becomes 

E[𝑇𝐶𝑈(𝑄)] =
𝐷�𝐴𝑣+∑

𝐴𝑠
𝐾𝑠

𝑚
𝑠=1 �

𝑄
+ 𝑐𝐷

𝑃
+ 𝑄

2
�ℎ𝑣2 �1 − 𝐷

𝑃
�+ ∑ (𝐾𝑠 − 1)ℎ𝑠𝜇𝑠𝑚

𝑠=1 �  

  +𝐷∑ �(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠] + ℎ𝑣1𝑠𝑄
2

�𝑢𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠(𝑖)])

𝑥
+ �𝜇𝑠E[𝜋𝑠]

𝑃
� �1 −𝑚

𝑠=1

             E[𝛾𝑠(𝑖)]− 𝐷
𝑥��� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠]) �1 − 𝐷

𝑃
�𝑚

𝑠=1   

(5.26) 

The second derivative test proves the convexity of above cost function, as in Eq. (5.6). This 

annual cost function will be iterated through ten shipments. The average level of quality (γs) will 

be used to approximate Eq. (5.12) and the procedure to find the multipliers will remain the same 

as in section 5.2. 

5.3.4 Integrated Model 

It would be more realistic to consider all the human factors at the same time in our model. 

To do this, the inspection errors and learning in supplier’s quality will have to be incorporated in 

Eq. (5.22), i.e. the case of learning in production. The resulting equation would be 

E[𝑇𝐶𝑈(𝑄)]= (𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )𝐷
𝑄

+ ℎ𝑣2 �
𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� +

𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠𝑒2 �(1+E[𝛾𝑠(𝑖)])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠𝑒]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠(𝑖)]−𝑚

𝑠=1

𝐷
𝑥
�� + (𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠𝑒]� +    ∑ ℎ𝑣1𝑠𝑄𝑢𝑠(1 − E[𝜋𝑠𝑒]) �1 − 𝐷

𝑃
�𝑚

𝑠=1 +

𝑐𝐷𝑇1𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

    

(5.27) 

Similarly, for the integer multiplier mechanism, the annual cost would be 

E[𝑇𝐶𝑈(𝑄)]= 
𝐷�𝐴𝑣+∑

𝐴𝑠
𝐾𝑠

𝑚
𝑠=1 �

𝑄
+ ℎ𝑣2 �

𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� + (5.28) 
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𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠𝑒2 �(1+E[𝛾𝑠(𝑖)])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠𝑒]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠(𝑖)]−𝑚

𝑠=1

𝐷
𝑥
�� + (𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠𝑒]� + ∑ ℎ𝑣1𝑠𝑄𝜇𝑠(1 − E[𝜋𝑠𝑒]) �1 − 𝐷

𝑃
�𝑚

𝑠=1 +

𝑐𝑇1𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
(1−𝑏𝑖)

+ 𝑄∑ (𝐾𝑠−1)ℎ𝑠𝜇𝑠𝑚
𝑠=1

2
       

Eq. (5.28) is convex in Q. A similar proof to the one in Appendix 6 can be applied here. An 

average of ten cycles of learning will be computed here for the production size and the annual 

cost.  

5.4 Numerical Analysis   

Consider a two-level supply chain with two suppliers and a vendor. The vendor produces a 

single product and procures its parts from suppliers. Most of the data is obtained from Khouja 

(2003) and Salameh and Jaber (2000). The vendor’s production rate is taken to be three times its 

demand while its unit holding cost of the final product is taken to be much more than that of the 

raw material. This accounts for the value added during the production process. For simplicity of 

the analysis, it is assumed that all the suppliers have the same setup cost. Besides, the percentage 

of defectives and the inspection errors are assumed to be uniformly distributed and are given 

respectively by 

𝑓1(𝛾) = �1/(0.1 − 0),
  0,        0 ≤ 𝛾 ≤ 0.1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

𝑓2(𝑚1) = �1/(0.1 − 0),
  0,        0 ≤ 𝑚1 ≤ 0.1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

𝑓3(𝑚2) = �1/(0.1 − 0),
  0,        0 ≤ 𝑚2 ≤ 0.1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

The learning curve for the two suppliers is taken to be (Jaber et al., 2008) 

𝛾1(𝑛) = 40
999+𝑒0.8𝑛 and 

𝛾2(𝑛) = 80
999+𝑒0.8𝑛 respectively.  
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5.4.1 Effect of Human Factors 

The data and results for the different mechanisms under a number of human factors 

discussed in this chapter are given in Table 5.1. A base case for this data is solved to have a 

bench mark where there are no defective items from the suppliers, no learning and there is no 

inspection error.  

Table 5.1 Input data and results of the numerical examples 

Av A1 A2 av1 av2 h1 h2 u1 u2 d hv1 
200 400 400 1 1 0.5 1 10 3 0.1 2 

             
hv2 γ1 γ2 P c D x m1 m2 b cf 
15 0.04 0.08 30000 1000000 10000 175200 0.04 0.05 0.1 50 
                      
               
    

Base Case (No Defective Items) 
   

              
        Q TC     
   Mechanism 1   808 501078     
   Mechanism 2 Ks 3,4 418 497070     
                      

 
Defective Items 

  
Inspection Error 

               Q TC      Q TC 
Mechanism 1   809 498418  Mechanism 1   809 499034 
Mechanism 2 Ks 3,4 418 494420  Mechanism 2 Ks 3,4 418 495030 

                     

 
Learning in Production (Vendor) 
  

Learning in Quality (Supplier) 

                Q TC      Q TC 
Mechanism 1 

  924 308951  
Mechanism 1 

  809 499248 
Mechanism 2 Ks 3,3 462 160547  Mechanism 2 Ks 3,4 418 496902 

                      
    Integrated Model    
              
        Q TC     
     Mechanism 1   923 310215     
      Mechanism 2 Ks 3,3 463 163034       
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It should be noted that for this base case, as one moves from mechanism 1 (equal cycle 

time) to mechanism 2 (integer multiplier cycle time), both the production quantity per cycle and 

the annual cost decrease. The rationale for this is that increased number of shipments forces both 

the vendor and the suppliers to carry smaller inventories, thus decreasing the overall inventory 

cost. This indicates that there exists an optimal set of multipliers for the given data and the 

overall performance of the supply chain starts deteriorating as we move away from that set of 

multipliers. The outcome of this example is that once the multiplier (Ks) goes beyond a certain 

number, the annual cost starts increasing again. One should observe that mechanism 1 is a 

special case of mechanism 2, for Ks = 1.   

Khouja (2003) proposed another coordination mechanism, integer-power-of-two or 2Ms, 

where Ks = 2Ms= 1, 2, 4, 8, when Ms= 0, 1, 2, 3. One thousand data sets for the model input 

parameters (i.e., As, avs, µs, Av, hv1s, hv2, hs) were randomly generated and used to optimize a 

corresponding number of numerical examples for the model described in section 5.2 first by 

optimizing for Ks and then by replacing Ks in Eqs. (5.9) and (5.10) by 2Ms. The results showed 

that the 2Ms policy never performs better, which is why this policy was not considered in this 

chapter. 

The above trend remained the same for all the cases (human factors) discussed in the 

chapter, as shown in Table 5.1. That is, the case with (i) defective items from the suppliers, (ii) 

vendor’s inspection error, (iii) vendor’s learning in production, (iv) suppliers’ learning in quality, 

(v) the integrated model. As we include the defectives in our study, it is seen that there is a 

noticeable drop in the annual cost while the production quantity has a minor change. This 

indicates that the screened items at the vendor’s end decrease its carrying cost.  

5.4.2 Sensitivity Analysis 

An interesting outcome of this example suggests that including the defective items results 

in the reduction of the annual cost of the supply chain. The rationale for this unusual behavior is 

that the leftovers considered in our example tend to decrease the annual cost, in case there are 

some defective items from the suppliers.  

To further illustrate the effect of the defective items on the annual cost, the variation of the 

cost for the first mechanism, with respect to the percentage of defectives from the suppliers is 

shown in Figure 5.4. While varying the fraction of defectives from one supplier, the other 
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supplier is assumed to supply 10% defective parts. It can be seen from Figure 5.4 that the 

defective items from supplier 2 have more variation in the impact on the annual cost of the 

supply chain while those from supplier 1 have little variation on this cost. This is attributed to the 

number of leftover parts from the other suppliers in each cycle. That is, the more the number of 

parts, the more are the leftovers which reduces the holding cost of the parts and thus the annual 

cost of the supply chain. 

 

Figure 5.4 Effect of percentage of defective parts from suppliers 

Introducing inspection error to the model brings in a slight increase in the annual cost. This 

accounts for the non-defective parts misclassified. To illustrate the effect of the inspection errors, 

the variation of the annual cost with these errors, for the first mechanism is drawn in Figure 5.5 

and 5.6. Both the errors tend to raise the annual cost but Type II error has a pronounced effect as 

compared to that of Type I error. That is, the misclassified defective items cause a major impact 

on the overall cost of the supply chain. However, if the loss due to misclassification of perfect 

items is included, it may change the magnitude of the effect of Type 1 error.   

Learning at the vendor’s end brings in the most savings when compared to the base case 

(about 38%). The rationale for this is that learning decreases the production time and results in a 

major cut down in the overall cost for the whole supply chain. On the other hand, learning in the 
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suppliers’ quality brings the supply chain close to the state where there are no defectives from 

the suppliers.  

For the integrated model, it can be seen that the savings from learning decrease which is 

quite intuitive as this is the effect of inspection errors.  

 

Figure 5.5 Effect of Type I error on the cost of supply chain with Type II error = 5% 
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Figure 5.6 Effect of Type II error on the cost of supply chain with Type I error = 5% 

5.5 Summary and Conclusions 

In this chapter, a two-stage, multi-supplier, single-vendor supply chain is formulated. A 

vendor is supposed to ask for a number of components from different suppliers, which are 

needed to make a single product. Suppliers are believed to be providing a certain fixed 

percentage of defectives in their supplies. As it is costlier to send the defective items back to the 

suppliers, the vendor institutes a 100% inspection process and sells the defectives in the local 

market at a discounted price.  

Two mechanisms, as in Khouja (2003) were studied for the coordination between suppliers 

and the vendor. The first mechanism is governed by an equal cycle time for all the stakeholders 

of the supply chain. In the second mechanism, each supplier’s cycle time is taken to be an integer 

multiplier of the vendor’s cycle time. It was observed that mechanism 1 is a special case of 

mechanism 2, for certain values of the multiplier. An approximate solution method is provided to 

attain the multipliers in the second mechanism. This approximation is validated through 

numerical examples and is found to work well. The third mechanism in Khouja (2003) was 

ignored in this research as it does not result in better costs than those of the second policy. The 

numerical examples presented showed that the integer multipliers mechanism behaves better 
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than the equal cycle time mechanism. That is, the suppliers are supposed to follow a relaxed and 

practical approach of the integer multipliers cycle time rather than forcing themselves to follow 

an equal cycle time. The rationale is that after certain level of multiples of the cycle time, the 

total cost of the supply chain starts rising up. Besides, integer multiplier presents a practical 

scenario for coordination in a supply chain. 

A number of human factors are brought into the picture in this chapter. First of all, a 

scenario is considered in which the inspectors at the vendor’s end make misclassifications. This 

factor is shown to increase the carrying cost of the vendor and thus the overall annual cost of the 

supply chain. Next, the production process of the vendor is assumed to follow learning as 

workers tend to perform the same job at a faster pace. This brings in a substantial drop in the 

annual cost of the supply chain. Lastly, the quality of the suppliers’ items is assumed to follow a 

logistic learning curve. This effect brings the supply closer to the state in which there are no 

defectives from the suppliers. Finally, the integrated model results in savings in the annual cost 

which are lesser than those experienced in the case of learning in production only.  

An avenue for future research is incorporating a stochastic percentage of defectives. This 

would further enhance the coordination mechanisms. Another possible study could be to 

investigate learning in inspection errors. One could also study the effects of a probabilistic 

demand from the vendor in response to the market’s behavior.  
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CHAPTER 6 A VENDOR-BUYER SUPPLY CHAIN WITH INSPECTION 

ERRORS AND LEARNING IN PRODUCTION 

 

6.1 Introduction 

The use of the economic order/production quantity model is quite common for about 

hundred years in the literature concerning inventory: Simpson (2001). This model is a trade-off 

between the holding cost and ordering cost of a buyer. Although this model has been so widely 

used it has several weaknesses. For example a steady demand from the buyer or the supply of 

perfect quality products from the vendor, is usually out of question. These assumptions paved the 

path for many researchers. The example of such literature could be Porteus (1986b), Rosenblatt 

and Lee (1986) and Silver (1976).  

In this chapter an equal size policy is adopted as in Huang (2002) for a two-level vendor-

buyer supply chain. The vendor follows an EPQ policy to manufacture a single product. The 

coordination mechanism is such that (i) the vendor receives the buyer’s demand produces the 

single product; (ii) the vendor replenishes the order in a number of equal-sized shipments. 

Besides, we assume that (i) the vendor experiences learning in the production process, (ii) some 

of the products are defective (iii) the buyer institutes an inspection process as suggested by 

Salameh and Jaber (2000), and that (iv) this inspection process is prone to Type I and Type II 

errors.  The defective products from the vendor may be a result of weak process control, 

deficient planned maintenance, inadequate work instructions and/or damage in transit: Ouyang et 

al. (2006b). An equal-shipment-size coordination between vendor and buyer is described with 

fixed and variable transportation cost. An optimal lot size and the annual cost are determined for 

the two level supply chain. The model is then extended to include Type I and Type II errors in 

the buyer’s screening process. In the second extension, the vendor’s production process is 

assumed to follow Wright (1936) learning curve, thus affecting the production time. An optimal 

lot size, the number of shipments and the annual cost of the supply chain are determined for each 

of these extensions.  

The rest of the chapter is arranged as follows: In section 6.2, a description and formulation 

of the model and its extensions are given. Section 6.3 presents numerical examples for the base 
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model and the extensions. Section 6.4 presents conclusions, limitations and some suggestions for 

future research. 

6.2 Model Description 

Consider a two level supply chain scenario with one vendor and one buyer. Let us suppose 

that the vendor has to make nQ products in each cycle of production. A fixed percentage γ of 

these products is believed to be defective. For this, the buyer institutes a 100% inspection and 

screens out all the defective products from the lots provided by the vendor, at a rate of x per unit 

time.  

Following Salameh and Jaber (2000) approach for defective products, we assume that each 

lot received by a buyer contains a fixed percentage of defectives, γ, with a known probability 

density function, f1. Figure 6.1 and Figure 6.3 depict the behavior of the vendor’s and buyer’s 

inventory level, respectively. Figure 6.2 shows the accumulation of inventory at the buyer’s and 

vendor’s end. 

The costs considered in the model would be ordering/setup cost, screening cost, the 

inventory carrying cost, shipment cost and the production cost. The buyer bears the fixed and 

variable cost (per unit) of shipment to the buyer. An optimal production quantity and number of 

shipments per cycle will be determined through the total cost of the supply chain.  
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Figure 6.1 Vendor’s inventory level in a cycle with time 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Accumulation and depletion of vendor’s inventory in a cycle 
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Figure 6.3 Buyer’s inventory in vendor’s one cycle 

The objective of the study would be to minimize the total annual cost through an optimal 

production quantity. 

6.2.1 The Base Model 

Total inventory with the vendor in a cycle, is the sum of areas of the triangle and the 

rectangle with dotted line as one side, in Figure 6.1, i.e.   

𝐴𝑟𝑒𝑎 1 = 1
2

(𝑛𝑄/𝑃)(𝑛𝑄) = 𝑛2𝑄2

2𝑃
  (6.1) 

𝐴𝑟𝑒𝑎 2 = 𝑛𝑄 �(𝑛 − 1) �
𝑄
𝐷
−
𝑄
𝑃
�� =

𝑛𝑄2(𝑛 − 1)(𝑃 − 𝐷)
𝑃𝐷

  (6.2) 

The total inventory moved to the buyer in a cycle by vendor is 𝑛(𝑛 − 1)𝑄2/2𝐷. So, vendor’s 

total inventory in a cycle is  

𝐼𝑣(𝑄,𝑛) =
𝑛2𝑄2

2𝑃
+
𝑛𝑄2(𝑛 − 1)(𝑃 − 𝐷)

𝑃𝐷
−
𝑛(𝑛 − 1)𝑄2

2𝐷
=
𝑛𝑄2

2𝐷
�(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� (6.3) 

Vendor’s total cost in a cycle is the sum of setup, carrying and production costs:  

𝐶𝑣(𝑄,𝑛) = 𝐴𝑣 +
ℎ𝑣𝑛𝑄2

2𝐷
�(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� +

𝑛𝑐𝑄
𝑃

 

The buyer’s total cost in vendor’s one cycle is the sum of ordering, carrying, screening and the 

shipment costs:  

     nT 

Inventory Level 
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𝐶𝑏(𝑄,𝑛) = 𝑛𝐴𝑏 + 𝑛ℎ𝑏 �
𝑄(1 − 𝛾)𝑇

2
+
𝛾𝑄2

𝑥
� + 𝑛𝑑𝑄 

Total cost of the two level (vendor-buyer) supply chain in a cycle is 

𝑇𝐶 = 𝐴𝑣 +
ℎ𝑣𝑛𝑄2

2𝐷
�(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� +

𝑛𝑐𝑄
𝑃

+ 𝑛𝐴𝑏 + 𝑛ℎ𝑏 �
𝑄(1 − 𝛾)𝑇

2
+
𝛾𝑄2

𝑥
� 

           +𝑛𝑑𝑄 

(6.4) 

Since γ is a random variable with probability density function f1, the expected total cost of the 

supply chain per cycle, after rearranging the terms, is 

𝑇𝐶(𝑄,𝑛) = 𝐴𝑣 + 𝑛𝐴𝑏 +
𝑛𝑄2

2𝐷
�ℎ𝑣 �(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� +

2ℎ𝑏𝐷E[𝛾]
𝑥

�+
𝑛𝑐𝑄
𝑃

 

            +
𝑛ℎ𝑏𝑄(1 − E[𝛾])E[𝑇]

2
+ 𝑛𝑑𝑄 

As we have  

E[𝑇] = (1−E[𝛾])𝑄
𝐷

, using 𝑛E[𝑇] as the total cycle time, the expected annual cost, using Maddah 

and Jaber (2008) approach, would be 

E[𝑇𝐶𝑈(𝑄, 𝑛)] =
𝐷

(1 − E[𝛾])𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝑑𝐷

(1 − E[𝛾]) 

            +
𝑄

2(1 − E[𝛾]) �ℎ𝑣 �
(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� +

2ℎ𝑏𝐷E[𝛾]
𝑥

�+
𝑐𝐷

𝑃(1 − E[𝛾]) +
ℎ𝑏𝑄(1 − E[𝛾])

2
 

or 

E[𝑇𝐶𝑈(𝑄, 𝑛)] =
𝐷

(1 − E[𝛾])𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝐷

(1 − E[𝛾]) �𝑑 +
𝑐
𝑃
� 

                 +
𝑄
2
�

ℎ𝑣
(1 − E[𝛾]) �

(𝑛 − 1) − (𝑛 − 2)
𝐷
𝑃
� + ℎ𝑏{(1 − E[𝛾]) +}

2𝐷E[𝛾]
𝑥(1 − E[𝛾])� 

(6.5) 

Let 𝑀1 = E[𝛾] and 𝑀2 = 1
(1 − E[𝛾])�  
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E[𝑇𝐶𝑈(𝑄, 𝑛)] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝐷𝑀2 �𝑑 +
𝑐
𝑃
� 

                    +
𝑄
2
�ℎ𝑣𝑀2 �(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� + ℎ𝑏{(1 −𝑀1) +}

2𝐷𝑀1𝑀2

𝑥
� 

(6.6) 

The second derivative of the above expression is positive  𝑑
2

𝑑𝑄2
𝐸[𝑇𝐶𝑈] = 2𝐷𝑀2

𝑄3
�𝐴𝑣
𝑛

+ 𝐴𝑏� > 0 , 

∀ 𝑄 > 0, which shows that Eq. (6.6) convex in Q. To obtain an optimal batch size and the 

number of shipments per cycle from the above expression, we would equate its first derivative 

with respect to Q, to zero and then find the value of n through iteration.  

6.2.2 Inspection Error 

The screening process in most of the supply chain literature is assumed to be error-free, for 

example Huang (2002) and Goyal et al. (2003). But it is quite realistic to account for Type I and 

Type II errors committed by inspectors in this process. In this section, it is assumed that the 

inspectors at the buyer’s end commit errors while screening the vendor’s product. That is, they 

will classify some non-defective products as defectives while some defective products as non-

defectives. In other words, they will attribute a percentage of defective to the vendor which is 

different from the actual one. Thus, the fraction of defective products as perceived by the 

inspectors would be 

𝛾𝑒 = (1 − 𝛾)𝑚1 + 𝛾(1 −𝑚2) 

and 

E[𝛾𝑒] = (1 − E[𝛾])E[𝑚1] + E[𝛾](1 − E[𝑚2]) 

So the time interval between successive shipments would now be 

E[𝑇] =
(1 − E[𝛾𝑒])𝑄

𝐷
=

{(1 − E[𝛾])E[𝑚1] + E[𝛾](1− E[𝑚2])}𝑄
𝐷

 

Similarly 𝑀1𝑒 = E[𝛾𝑒] and 𝑀2𝑒 = 1
(1 − E[𝛾𝑒])�  

Thus Eqs. (6.5) and (6.6), for the expected annual cost of the supply chain would now be written 

as 
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E[𝑇𝐶𝑈(𝑄, 𝑛)] =
𝐷

(1 − E[𝛾𝑒])𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝐷

(1 − E[𝛾𝑒]) �𝑑 +
𝑐
𝑃
� 

                 +
𝑄
2
�

ℎ𝑣
(1 − E[𝛾𝑒]) �

(𝑛 − 1) − (𝑛 − 2)
𝐷
𝑃
� + ℎ𝑏{(1 − E[𝛾𝑒]) +}

2𝐷E[𝛾𝑒]
𝑥(1 − E[𝛾𝑒])� 

(6.7) 

𝐸[𝑇𝐶𝑈(𝑄, 𝑛)] =
𝐷𝑀2𝑒

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝐷𝑀2𝑒 �𝑑 +
𝑐
𝑃
� 

                    +
𝑄
2
�ℎ𝑣𝑀2𝑒 �(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� + ℎ𝑏{(1 −𝑀1𝑒) +}

2𝐷𝑀1𝑒𝑀2𝑒

𝑥
� 

(6.8) 

The second derivative of the above expression is positive  𝑑
2

𝑑𝑄2
𝐸[𝑇𝐶𝑈] = 𝐷

(1−E[𝛾𝑒])𝑄3
�𝐴𝑣
𝑛

+ 𝐴𝑏� >

0 , ∀ 𝑄 > 0  where 0 < E[𝛾𝑒] < 1, which shows that Eq. (6.8) is convex in Q. We will use the 

procedure described above to determine the optimal batch size and the number of shipments with 

screening errors.  

6.2.3 Learning in Production 

In this section, it is assumed that the vendor’s production process follows Wright (1936) 

learning curve. That is, vendor produces the product at an increasing production rate which is 

consumed at a constant rate. Assume that every cycle of production makes Qp (nQ) products, 

with a learning rate b. This situation for cycle i is described in Figure 6.4 and Figure 6.5. The 

production time in cycle i is  

𝑇𝑝𝑖 = � 𝑇1𝑥−𝑏𝑑𝑥
𝑄

(𝑖−1)𝑄
 

𝑇𝑝𝑖 =
𝑇1𝑥1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
 (6.9) 
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Figure 6.4 Vendor’s inventory level in ith cycle with learning in production 

So, the production quantity in cycle i can be written as 

𝑄(𝑡) = �
(1 − 𝑏)𝑡

𝑇1
�

1
𝑖1−𝑏 − (𝑖 − 1)1−𝑏��

1
1−𝑏

 (6.10) 

Now, the average inventory of products in a cycle i during production is 

𝐼𝑇𝑝𝑖 = � 𝑄(𝑡)𝑑𝑡
𝑇𝑝𝑖

0
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or 

𝐼𝑇𝑝𝑖 =
𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏
 (6.11) 

Time for the first dispatch after the start of production in ith cycle, in Figures 6.4, 6.5 would be: 

𝑇1𝑖 = � 𝑇1𝑥−𝑏𝑑𝑥
𝑄+(𝑖−1)𝑛𝑄

(𝑖−1)𝑛𝑄
 

𝑇1𝑖 =
𝑇1𝑄1−𝑏[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
 

Now we determine vendor’s average inventory in a cycle. The area of the rectangles ABEF, 

BFDH and AECG are given by: 

𝐴𝑟𝑒𝑎𝐴𝐵𝐸𝐹 = 𝑛𝑄𝑇1𝑖 =
𝑛𝑇1𝑄2−𝑏[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
 

 

Figure 6.5 Vendor’s total inventory in ith cycle with learning in production 
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𝐴𝑟𝑒𝑎𝐵𝐹𝐷𝐻 = 𝑛𝑄 �(𝑛 − 1)
𝑄
𝐷
� =

𝑛(𝑛 − 1)𝑄2

𝐷
 

𝐴𝑟𝑒𝑎𝐴𝐸𝐶𝐺 = 𝑛𝑄𝑇𝑝𝑖 =
𝑇1(𝑛𝑄)2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
 

So, the vendor’s average inventory in the depletion period in ith cycle is determined from the 

three areas above as 

𝐼𝑇𝑑𝑖 = 𝐴𝑟𝑒𝑎𝐴𝐵𝐸𝐹 + 𝐴𝑟𝑒𝑎𝐵𝐹𝐷𝐻 − 𝐴𝑟𝑒𝑎𝐴𝐸𝐶𝐺 

𝐼𝑇𝑑𝑖(𝑄,𝑛) =
𝑛𝑇1𝑄2−𝑏[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
+
𝑛(𝑛 − 1)𝑄2

𝐷
 

            −
𝑇1(𝑛𝑄)2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
 

(6.12) 

As in Eq. (6.3), vendor’s average inventory in a cycle would be 

𝐼𝑣𝑖 = 𝐼𝑇𝑝𝑖 + 𝐼𝑇𝑑𝑖 −
𝑛(𝑛 − 1)𝑄2

2𝐷
 

Using Eqs. (6.11) and (6.12): 

𝐼𝑣𝑖(𝑄,𝑛) =
𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏
+
𝑛𝑇1𝑄2−𝑏[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
 

           +
𝑛(𝑛 − 1)𝑄2

𝐷
−
𝑇1(𝑛𝑄)2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
−
𝑛(𝑛 − 1)𝑄2

2𝐷
 

or 

𝐼𝑇𝑑𝑖(𝑄,𝑛) =
𝑛𝑇1𝑄2−𝑏[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
+
𝑛(𝑛 − 1)𝑄2

2𝐷
 

            −
𝑇1(𝑛𝑄)2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(2 − 𝑏)(1− 𝑏)  

(6.13) 

It should be noted that by substituting T1 by the initial production rate P and b by zero, the above 

expression reduces to Eq. (6.3), where there is no learning. In other words, Eq. (6.13) represents 

an extension of Hill (1997) model of equal shipments, for learning in production.  

Now, vendor’s total cost in a cycle is 
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𝐶𝑣𝑖(𝑄) = 𝐴𝑣 + ℎ𝑣 �
𝑛𝑇1𝑄2−𝑏[{1 + (𝑖 − 1)𝜆}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]

1 − 𝑏
+
𝑛(𝑛 − 1)𝑄2

2𝐷
� 

         �   −
𝑇1(𝑛𝑄)2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(2 − 𝑏)(1− 𝑏) �+ 𝑐𝑇𝑝𝑖 

or 

𝐶𝑣𝑖(𝑄) = 𝐴𝑣 +
ℎ𝑣𝑄2−𝑏

𝑃(1 − 𝑏) �𝑛
[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏]−

𝑛2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}
(2 − 𝑏) � 

           +
ℎ𝑣𝑛(𝑛 − 1)𝑄2

2𝐷
+
𝑐(𝑛𝑄)1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏)  

So, the total cost of the two level supply chain, with learning in production would be 

𝑇𝐶𝑖(𝑄) = 𝐴𝑣 +
ℎ𝑣𝑄2−𝑏

𝑃(1 − 𝑏) �𝑛
[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏] −

𝑛2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}
(2 − 𝑏) � 

            +
ℎ𝑣𝑛(𝑛 − 1)𝑄2

2𝐷
+
𝑐(𝑛𝑄)1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏) + 𝐴𝑏 + 𝑛ℎ𝑏 �
𝑄(1 − 𝛾)𝑇

2
+
𝛾𝑄2

𝑥
� 

            +𝑛𝑑𝑄 

The expected total cost in a cycle is  

E[𝑇𝐶𝑖(𝑄,𝑛)] = 𝐴𝑣 + 𝑛𝐴𝑏 

                 +
ℎ𝑣𝑄2−𝑏

𝑃(1 − 𝑏) �𝑛
[{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏] −

𝑛2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}
(2 − 𝑏) � 

                  +
ℎ𝑣𝑛(𝑛 − 1)𝑄2

2𝐷
+
𝑐(𝑛𝑄)1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏) + 𝑛ℎ𝑏 �
𝑄(1 − E[𝛾])E[𝑇]

2
+

E[𝛾]𝑄2

𝑥
� 

                  +𝑛𝑑𝑄 

and the expected annual cost is 
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E[𝑇𝐶𝑈𝑖(𝑄, 𝑛)] =
𝐷

(1 − E[𝛾])𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝑑𝐷

(1 − E[𝛾]) 

                 +
ℎ𝑣𝐷𝑄1−𝑏

𝑃(1 − E[𝛾])(1 − 𝑏) �
{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏

−
𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(2 − 𝑏)
� 

                  +
ℎ𝑣(𝑛 − 1)𝑄

2(1 − E[𝛾])𝐷
+
𝑐(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − E[𝛾])(1− 𝑏) +
ℎ𝑏𝑄(1 − E[𝛾])

2
+

ℎ𝑏E[𝛾]𝑄𝐷
𝑥(1 − E[𝛾]) 

Replacing 𝑀1 = E[𝛾] and 𝑀2 = 1
(1 − E[𝛾])� : 

E[𝑇𝐶𝑈𝑖(𝑄, 𝑛)] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝑑𝐷𝑀2 +
ℎ𝑏𝑄𝐷𝑀1𝑀2

𝑥
 

                     +
ℎ𝑣𝐷𝑀2𝑄1−𝑏

𝑃(1 − 𝑏) �{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏

−
𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(2 − 𝑏)
� 

                     +
ℎ𝑣(𝑛 − 1)𝑄𝑀2

2𝐷
+
𝑐𝑀2(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏) +
ℎ𝑏𝑄(1 −𝑀1)

2
 

(6.14) 

Eq. (6.14) is convex in Q (see Appendix 7 for proof). We assume that the learning in the 

vendor’s production process plateaus to some extent after ten cycles. Mathematica 5 will be used 

to find an optimal batch size and the number of shipments from Eq. (6.14), with the steps given 

below: 

1. Set i = 1 and n = 1.  

2. Find an optimal value of Q and annual cost from Eq. (6.14) through iteration. Set n = 2. 

3. Repeat steps 2 till the annual cost for n shipments is more than that of (n – 1) shipments. 

4. Record the optimal values of Q and annual cost for n* = n – 1. 

5. Set i = i + 1 and n = 1. 

6. Repeat steps 2 through 4 till i = 10. (A maximum of 10 cycles is considered) 
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7. Find an average of the number of shipments, batch size and the annual cost from the values 

recorded in step 4.      

It should be noted that for an integrated model that incorporates learning in production and 

the inspection errors at the same time, the fraction of defective (M1 and M2) in Eq. (6.14) will 

have to be updated.  

6.3 Numerical Example 

Consider a two-level vendor-buyer supply chain. The vendor produces a single product to 

fulfill the demand of the buyer. Most of the data is obtained from Goyal et al. (2003) and 

Salameh and Jaber (2000). The unit holding cost of the product at buyer’s end is taken to be 

more than that the vendor’s end which accounts for the value added during the production 

process. The percentage of defectives and the inspection errors (Type I and Type II) are assumed 

to be uniformly distributed as given by  

𝑓1(𝛾) = �1/(0.04 − 0),
  0,        0 ≤ 𝛾 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

𝑓2(𝑚1)= �1/(0.04 − 0),
  0,        0 ≤ 𝑚1 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

𝑓3(𝑚2)= �1/(0.04 − 0),
  0,        0 ≤ 𝑚2 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

respectively. 

To illustrate the iterative procedure for a cycle of learning in section 6.2.3, an example is 

provided in Table 6.1a and b. The Table 6.1a shows the results of the first cycle of learning 

while Table 6.1b indicates how we take an average of ten cycles. The optimal values used in the 

analysis are shown in bold. It can be seen that for the first cycle of learning, the optimal number 

of shipments is 5 while the size of each shipment and the annual cost are 206 and $ 8255 

respectively. It should be noticed in Table 6.1b that by virtue of learning, the total inventory in a 

cycle reduces from 1030 (5×206) to 639 (3×213) i.e. 38% while the annual cost is reduced from 

8255 to 4611, i.e. about 44%. This indicates a reduction in the average cost per unit from 8.01 

(8255/1030) to 7.22 (4611/639). 
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Table 6.1a Iterative procedure to find n and Q with learning 

i n Q E[TCU (Q)] 
1 1 880 8592 

 
2 478 8356 

 
3 330 8289 

 
4 253 8263 

 
5 206 8255 

 
6 174 8258 

 

Table 6.1b The optimal policies for 10 consecutive cycles 

i n Q E[TCU(Q)] 
1 5 206 8255 
2 4 201 6153 
3 3 245 5635 
4 3 235 5337 
5 3 229 5133 
6 3 225 4981 
7 3 221 4862 
8 3 218 4764 
9 3 215 4681 

10 3 213 4611 
Average 3 221 5441 

 

The results in Table 6.2 indicate that bringing in screening errors at the buyer’s end makes 

the annual cost of the supply chain a little higher which accounts for the increase in the order 

size. That is, the inspectors classify some non-defective items as defectives and some defective 

items as non-defectives.  To illustrate the effect of the inspection errors, the variation of the 

annual cost with these errors, is drawn in Figure 6.6 and 6.7. It can be seen that for this vendor-

buyer supply chain, Type I error has a pronounced effect as compared to that of Type II error. 

That is, the more non-defective items are misclassified the higher is the order size and so is the 

annual cost of the supply chain. Type II errors reduces the annual cost of the supply chain 

because it tends to bring in more and more defective items into the system and thus reduces the 

order/lot size per cycle.  
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Table 6.2 Input data and results of the numerical example 

D P Av Ab hv hb c d x b 
1000 3200 400 25 4 5 100000 0.5 175200 0.32 

units/yr units/yr $/cycle $/cycle $/unit/ 
yr 

$/unit/ 
yr $/yr $/unit unit/yr - 

    # of Shipments 
per Cycle 

Batch Size per 
Shipment 

Expected 
Annual Cost 

Base Model  7 779 34328 
Inspection Errors  7 785 35001 

Learning in Production  5 943 5441 
Integrated Model  5 951 5529 
          

 

Figure 6.6 Effect of Type I errors on the annual cost of supply chain 

33800.0

34000.0

34200.0

34400.0

34600.0

34800.0

35000.0

35200.0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

0.
01

2

0.
01

4

0.
01

6

0.
01

8

0.
02

0

0.
02

2

0.
02

4

0.
02

6

0.
02

8

0.
03

0

0.
03

2

0.
03

4

0.
03

6

0.
03

8

0.
04

0

An
nu

al
 C

os
t

Probability of Type I Error



148 
 

  

Figure 6.7 Effect of Type II errors on the annual cost of supply chain 

To study the impact of learning, an average of ten cycles of production is reported in 

Table 6.2. Learning in the vendor’s production process brings in a substantial amount of saving 

(about 86%) to the supply chain as the production time becomes shorter and shorter in the 

subsequent cycles. Figure 6.8 indicates that this saving increases as the learning becomes faster. 

The batch size in this case goes up as the vendor replenishes the order in lesser number of 

shipments. A number of experiments with the fraction of defectives and inspection errors showed 

that the trend in Figure 6.8 remains the same as the curve always tends to plateau at a certain 

annual cost.   
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Figure 6.8 Effect of learning in production on the annual cost of supply chain 

Studying the effect of both the above factors, that is, screening errors and learning indicates 

a slight loss in the savings of the supply chain. The rationale for this is the screening errors at 

buyer’s end.  

6.4 Conclusions 

In this chapter, a two-stage, single-vendor, single-buyer supply chain is formulated. A 

vendor is supposed to make a single product for its buyer and it is believed that a known fraction 

of its lots is defective. The buyer institutes a 100% inspection process to separate these defective 

products. A model depicting this scenario is formulated to find an optimal batch size and the 

number of shipments for each order.   

Two human factors are brought into the picture in this chapter. First of all, a scenario is 

considered in which the inspectors at the buyer’s end make misclassifications. This factor is 

shown to increase the inspection cost and thus the overall annual cost of the supply chain. Next, 

the production process of the vendor is assumed to follow learning as workers tend to perform 

the same job at a faster pace. This brings in a substantial drop in the annual cost of the supply 

chain.  
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 Analysis of the parameters indicated that Type I error has a pronounced effect on the 

supply chain as compared to the Type II errors. The rationale for this is an increased order size 

and thus the inspection cost. There is a limitation to the model that it does not consider costs of 

Type I and Type II errors. On the other hand, increasing the level of learning at vendor’s 

production process ends up in more and more savings to the supply chain.  

This study can be enhanced in a number of ways. For example, one could investigate the 

effect of learning in buyer’s inspection errors. Another practical situation would be to study the 

effects of a probabilistic demand from the buyer in response to the market’s behavior.  
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CHAPTER 7 CONSIGNMENT STOCK POLICY FOR A VENDOR-

BUYER SUPPLY CHAIN WITH INSPECTION ERRORS AND LEARNING 

IN PRODUCTION 

 

7.1 Introduction 

The industry today is striving hard to achieve more and more coordination in their joint 

businesses. Information technology has had a substantial impact in achieving this goal in 

contemporary supply chains. Scanners collect sales data at the point-of-sale and electronic data 

interchange (EDI) allows these data to be shared immediately with all stages of the supply chain. 

The application of these technologies, especially in the grocery industry, has substantially 

lowered the time and cost to process an order, leading to impressive improvements in supply 

chain performance (Cachon and Fisher, 2000).  

Inventory includes a company’s raw material, work in process, supplies used in operations, 

and finished goods. Inventory can be something as simple as a bottle of glass cleaner, or 

something as complex as a mix of raw materials and subassemblies used as part of a 

manufacturing process. Raw material inventory is used to produce partial products or completed 

goods. On the other hand, a finished product is a product ready for current customer sale. It can 

also be used to buffer manufacturing from predictable and unpredictable market demand. A third 

category in inventory is work-in-process (WIP) is the raw material that is being converted into 

partial product, subassemblies, and finished product (Muller, 2003).  

This chapter extends the work of Braglia and Zavanella (2003) to incorporate the approach 

of Salameh and Jaber (2000) for the products received at the buyer’s warehouse. That is, the 

buyer would institute an inspection process for each lot to screen out the imperfect products. 

These imperfect items would be separated from the inventory after the screening is finished. 

There are some limitations to this work. That is, (i) the vendor’s production process is not 

considered in this model, (ii) the buyer’s screening process is assumed to be free of errors, (iii) 

there is no strategy to dispose the imperfect quality items, and (iv) the transportation cost of the 

deliveries to the buyer is ignored. The rest of the chapter is organized as follows. Section 7.2 

describes the mathematical model. Section 7.3 presents a numerical example and discusses the 



152 
 

results of the model in section 7.2. Section 7.4 introduces different human factors into the model 

in section 7.2. Section 7.5 presents a numerical analysis of the extensions in section 7.4. Section 

7.6 presents a summary and conclusions. 

7.2 Model Description 

Consider a vendor-buyer supply chain in which vendor produces in batches. Each batch is 

transported to the buyer in a number of deliveries. Following the consignment stock policy the 

vendor uses buyer’s warehouse to store/stock its products. The buyer withdraws from this 

inventory based on the market demand. The vendor makes sure that the quantity stored in the 

buyer’s warehouse is always between a maximum level (S) and a minimum one (s). To extend 

the model in Braglia and Zavanella (2003) it is assumed that each lot withdrawn by the buyer, 

contains a fixed proportion γ of defective items. An inspector screens out the defective items 

from the lot with fixed rate of inspection. These defective products are disposed off from each lot 

after finishing the screening process. The behavior of the inventory level is illustrated in Figure 

7.1, where T is the cycle length. An optimal inventory policy and the number of deliveries per 

batch, is determined using the total annual cost of the supply chain with this setup. The following 

nomenclature is used throughout the chapter. 
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Figure 7.1 The behavior of inventory for vendor and buyer (n = 4) 
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As shown in Figure 7.1, the inventory with the buyer contains several profiles similar to 

those given by Salameh and Jaber (2000). Let us first of all determine the area of buyer’s 

inventory profile in Figure 7.1. The area of the shaded profiles ‘1’ would be 

𝐴𝑟𝑒𝑎 1 =  
𝑛𝐷𝑄2

2𝑃2
+
𝑛𝛾𝑄2

𝑥
 (7.1) 

Now for the rectangles ‘2’, we notice that they increase by one every time the buyer starts his 

replenishment process. So, their area is given by 

𝐴𝑟𝑒𝑎 2 =  
𝑛(𝑛 + 1)𝑄2

2𝑃
�1 − 𝛾 −

𝐷
𝑃
� (7.2) 

The rest of the inventory profile is the big triangle ‘3’. Its area is 

𝐴𝑟𝑒𝑎 3 =  
1
2
�𝑛𝑄 �

1
𝐷
−

1
𝑃
�� �𝑛𝑄 �1 − 𝛾 −

𝐷
𝑃
�� 

or 

𝐴𝑟𝑒𝑎 3 =  
𝑛2𝑄2

2
�

1
𝐷
−

1
𝑃
� �1 − 𝛾 −

𝐷
𝑃
� (7.3) 

Therefore, the buyer’s holding cost in vendor’s one cycle of production is computed using the 

areas in Eqs. (7.1), (7.2) and (7.3), as 

𝐻𝐶𝑏(𝑄) = ℎ𝑏𝑛𝑄2 �
𝐷

2𝑃2
+
𝛾
𝑥
� +

ℎ𝑏𝑄2

2
�1 − 𝛾 −

𝐷
𝑃
� �
𝑛(𝑛 + 1)

𝑃
 +  𝑛2 �

1
𝐷
−

1
𝑃
�� (7.4) 

The expected holding cost per cycle would be: 

E[𝐻𝐶𝑏(𝑄)] = ℎ𝑏𝑛𝑄2 �
𝐷

2𝑃2
+

E[𝛾]
𝑥
� +

ℎ𝑏𝑄2

2
�1 − E[𝛾]−

𝐷
𝑃
� �
𝑛(𝑛 + 1)

𝑃
 +  𝑛2 �

1
𝐷
−

1
𝑃
�� 

Using 𝑛𝑄(1−E[𝛾])
𝐷

 as the cycle length, buyer’s annual holding cost can be written as 
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E[𝐻𝐶𝑈𝑏(𝑄)] =
E[𝐻𝐶𝑏]

E[𝑇] =
ℎ𝑏𝑄

2
�𝑛 +

𝐷
𝑃

+ �
𝐷

1 − E[𝛾]��
2E[𝛾]
𝑥

−
𝑛
𝑃
�� (7.5) 

For the case of no defectives, the above equation reduces to buyer’s annual cost in Braglia and 

Zavanella (2003), i.e. Eq. (7), on page 3798. For the purpose of comparison, the inventory 

behavior with respect to the two stakeholders in Hill’s (1997) model is given in Appendix 8.   

Having computed the above holding cost, the buyer’s total annual cost which is composed of 

ordering, holding, inspecting will be given by  

E[𝐶𝑈𝑏(𝑄,𝑛)] =
𝐴𝑏𝐷

𝑄(1 − E[𝛾]) +
𝑑𝐷

(1 − E[𝛾]) +
ℎ𝑏𝑄

2
�𝑛 +

𝐷
𝑃

+ �
𝐷

1 − E[𝛾]� �
2E[𝛾]
𝑥

−
𝑛
𝑃
�� (7.6) 

Note that the above expression follows renewal reward theory. Similarly, the vendor’s annual 

cost would be  

E[𝐶𝑈𝑣(𝑄, 𝑛)] =
𝐴𝑣𝐷

𝑛𝑄(1 − E[𝛾]) +
ℎ𝑣𝑄𝐷

2𝑃(1 − E[𝛾]) +
ℎ𝑣′ 𝑄

2
�𝑛 +

𝐷
𝑃

+ �
𝐷

1 − E[𝛾]��
2E[𝛾]
𝑥

−
𝑛
𝑃
�� (7.7) 

It should be noted from Eqs. (7.6) and (7.7) that the holding costs for stocking items at the 

buyer’s warehouse, according to the Consignment Stock agreement, are carried by the buyer for 

the non-financial component while for the financial component are carried by the vendor. One 

may need to understand that the financial component includes the investment while the non-

financial component has the storage cost only. This point was not explicitly considered in the 

analytical model of Braglia and Zavanella (2003) and the readers might end up underestimating 

the total costs, while it is clearly addressed in Valentini and Zavanella (2003) Thus, the total 

annual cost of the supply chain, after simplification is 
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E[𝑇𝐶𝑈(𝑄,𝑛)] =
𝐷

𝑄(1 − E[𝛾]) �
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝑑𝐷

(1 − E[𝛾])

+
𝑄
2
�

ℎ𝑣𝐷
𝑃(1 − E[𝛾]) + (ℎ𝑏 + ℎ𝑣′ ) �𝑛 +

𝐷
𝑃

+ �
𝐷

1 − E[𝛾]��
2E[𝛾]
𝑥

−
𝑛
𝑃
��� 

(7.8) 

The expected annual cost of the supply chain, after simplification is 

E[𝑇𝐶𝑈(𝑄,𝑛)] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝑑𝐷𝑀2

+
𝑄𝑀2

2
�
ℎ𝑣𝐷
𝑃

+ (ℎ𝑏 + ℎ𝑣′ ) �(1 −𝑀1) �𝑛 +
𝐷
𝑃
� + 𝐷 �

2𝑀1

𝑥
−
𝑛
𝑃
��� 

(7.9) 

where 

𝑀1 = E[𝛾] and 𝑀2 = 1
(1 − E[𝛾])�  

Eq. (7.9) is convex in Q, since 𝜕
2

𝜕𝑄2
E[𝑇𝐶𝑈(𝑄, 𝑛)] = 𝐷𝑀2

𝑄3
�𝐴𝑣
𝑛

+ 𝐴𝑏� > 0, ∀ Q > 0. Eq. (7.9) is also 

convex in n, since 𝜕2

𝜕𝑛2
𝐸[𝑇𝐶𝑈(𝑄,𝑛)] = 𝐷𝑀2

𝑄
�𝐴𝑣
𝑛3
� > 0, ∀ n > 0 indicating that E[𝑇𝐶𝑈(𝑄,𝑛∗ −

1)] > E[𝑇𝐶𝑈(𝑄,𝑛∗)] < E[𝑇𝐶𝑈(𝑄,𝑛∗ + 1)]. To obtain an optimal batch size and the number of 

shipments per cycle from the above expression, we would equate its first derivative with respect 

to Q, to zero and then find the value of n through iteration. Thus, the optimal lot size Q in terms 

of n is  

𝑄(𝑛) = �
2𝐷 �𝐴𝑣𝑛 + 𝐴𝑏�

ℎ𝑣𝐷
𝑃 + (ℎ𝑏+ℎ𝑣′ ) �(1 −𝑀1) �𝑛 + 𝐷

𝑃� + 𝐷 �2𝑀1
𝑥 − 𝑛

𝑃��
 (7.10) 
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7.3 Numerical Example 1 

Consider a two-level vendor-buyer supply chain. The vendor produces a single product to 

fulfill the demand of the buyer. The supply chain is assumed to have a consignment stock policy 

where the vendor keeps on supplying the inventory the buyer’s warehouse with a regular interval 

while the buyer withdraws from this warehouse following the market demand. The problem here 

would be to determine the optimal size of each shipment, the number of shipments per batch and 

the total annual cost of the supply chain. Most of the data is obtained from Goyal (1988) and 

Salameh and Jaber (2000). The unit holding cost of the product at buyer’s end is taken to be 

more than that the vendor’s end which accounts for the value added during the production 

process. More specifically, the non-financial component at the buyer’s end is taken to be higher 

than that at the vendor’s end. The percentage of defectives is assumed to be uniformly distributed 

as given by 

𝑓1(𝛾) = �1/(0.04− 0),
  0,        0 ≤ 𝛾 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

The results indicate that following Salameh and Jaber (2000) approach with the 

consignment stock (CS) policy addressed by Braglia and Zavanella (2003), turns up increasing 

the annual cost of the supply chain. The major contributors of this difference are the costs of 

inspection and that of carrying the defective items. Figure 7.2 shows the convex behavior of the 

model in this chapter and that of the above two models in the literature. It should be noticed that 

moving from Hill’s approach to that of Braglia and Zavanella, the shift in the cost is mostly 

governed by the difference in carrying cost of the two stakeholders. On the other hand, when we 

move from Braglia and Zavanella’s policy to ours, the escalation in the cost is dominated by the 

inspection cost to screen out the defective products. In short, the practical methodology 

introduced in this chapter does increase the overall cost. Establishing a warranty from the vendor 
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for its products can enforce the reduction not only in the fraction of defective products but the 

total cost of the supply chain too.  

Table 7.1 Input data and results of the numerical example 1 

D P Av Ab hv h’v hb d x 
1000 3200 400 25 4 2 3 0.5 175200 

units/yr units/yr $/cycle $/cycle $/unit/yr $/unit/yr  $/unit/yr $/unit unit/yr 

 # of Shipments 
per Cycle 

Lot Size per 
Shipment 

Expected 
Annual Cost 

Model in the Chapter 
 

4 124 2559.80 
Zavanella’s Model 4 123 2034.85 

Hill’s Model 5 131 1903.29 
 

 

  

Figure 7.2 Variation in the annual cost of the three models 

To further enhance the results, Figure 7.3 compares the annual cost of the model in this 

chapter to that of Hill, assuming that it has defective items too (model in chapter 6). It can be 

seen that the difference in the two costs reduces as the defective products tend to increase the 

other costs of the two stakeholders.  
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Figure 7.3 Comparison of the results with those in chapter 6 

 

 

Figure 7.4 Variation of the annual cost with fraction of defectives 

Figure 7.4 shows the sensitivity of our model to the fraction of defective products. We 

noticed that an increasing fraction of defective products goes on enhancing all the cost elements 

for the buyer and the vendor in this setup though the inspection cost and buyer’s carrying costs 

are affected the most.  
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One may wonder if there would be a set of holding costs at the ends of the two stakeholders 

that make the costs in our model and in that of Hill (1997) with defective items and inspection, 

equal. This later model is described in chapter 6. To investigate this, we varied the financial 

(investment) component of the holding costs at the vendor’s and the buyer’s end, and computed 

the difference of the annual cost in our models in this chapter and that in chapter 6. The result is 

shown in Figure 7.5 that shows that the two annual costs become approximately equal when the 

financial component of their holding costs is 2.61. It should be noticed that the model in this 

chapter performs well even with inspection costs when this component of holding costs goes 

beyond 2.61.  

 

Figure 7.5 Difference of annual costs of the models in chapter 6 and chapter 7 

7.4 Inspection Error and Learning 

Let us now consider the two human factors for the model depicted in section 7.2. It should 

be noted that in section 7.2, vendor’s production cost was ignored. Thus, incorporating it in Eq. 

(7.8) becomes  

E[𝑇𝐶𝑈(𝑄,𝑛)] =
𝐷

𝑄(1 − E[𝛾]) �
𝐴𝑣
𝑛

+ 𝐴𝑏� +
𝐷

(1 − E[𝛾]) �𝑑 +
𝑐
𝑃
� (7.11) 
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           +
𝑄
2
�

ℎ𝑣𝐷
𝑃(1 − E[𝛾]) + �ℎ𝑏+ℎ𝑣

′ � �𝑛 +
𝐷
𝑃

+ �
𝐷

1 − E[𝛾]��
2E[𝛾]
𝑥

−
𝑛
𝑃
��� 

Similarly, the expected annual cost of the supply chain, in Eq. (7.9), after simplification is 

E[𝑇𝐶𝑈(𝑄,𝑛)] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝐷𝑀2 �𝑑 +
𝑐
𝑃
� 

                 +
𝑄𝑀2

2
�
ℎ𝑣𝐷
𝑃

+ �ℎ𝑏+ℎ𝑣
′ � �(1 −𝑀1) �𝑛 +

𝐷
𝑃
� + 𝐷 �

2𝑀1

𝑥
−
𝑛
𝑃
��� 

(7.12) 

Eq. (7.12) is convex in Q, since 𝜕
2

𝜕𝑄2
E[𝑇𝐶𝑈(𝑄, 𝑛] = 𝐷𝑀2

𝑄3
�𝐴𝑣
𝑛

+ 𝐴𝑏� > 0, ∀ Q > 0. Eq. (7.12) is 

also convex in n, since 𝜕2

𝜕𝑛2
E[𝑇𝐶𝑈(𝑄, 𝑛)] = 𝐷𝑀2

𝑄
�𝐴𝑣
𝑛3
� > 0, ∀ n > 0 indicating that 

E[𝑇𝐶𝑈(𝑄,𝑛∗ − 1)] > E[𝑇𝐶𝑈(𝑄, 𝑛∗)] < E[𝑇𝐶𝑈(𝑄,𝑛∗ + 1)].  

In the following subsections, the two human factors namely, inspection errors in the buyer’s 

screening process and the learning in vendor’s production process will be considered for the 

consignment stock policy described above.  

7.4.1 Inspection Errors 

The screening process in most of the supply chain literature is assumed to be error-free, for 

example Huang (2002) and Goyal et al. (2003). But it is quite realistic to account for Type I and 

Type II errors committed by inspectors in this process. In this section, it is assumed that the 

inspectors at the buyer’s end commit errors while screening the vendor’s product. That is, they 

will classify some non-defective products as defectives while some defective products as non-

defectives. In other words, they will attribute a percentage of defective to the vendor which is 

different from the actual one. Thus, the fraction of defective products as perceived by the 

inspectors at the buyer’s facility would be 

𝛾𝑒 = (1 − 𝛾)𝑚1 + 𝛾(1 −𝑚2) 

and 

E[𝛾𝑒] = (1 − E[𝛾])E[𝑚1] + E[𝛾](1 − E[𝑚2]) 

So the time interval between successive shipments would now be (1−E[𝛾𝑒])𝑄
𝐷

, and we can write  
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𝑀1𝑒 = E[𝛾𝑒] and 𝑀2𝑒 = 1
(1 − E[𝛾𝑒])�  

Thus Eq. (7.12), for the expected annual cost of the supply chain would now be written as 

E[𝑇𝐶𝑈(𝑄,𝑛)] =
𝐷𝑀2𝑒

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝐷𝑀2𝑒 �𝑑 +
𝑐
𝑃
� 

                 +
𝑄𝑀2𝑒

2
�
ℎ𝑣𝐷
𝑃

+ �ℎ𝑏+ℎ𝑣
′ � �(1 −𝑀1𝑒) �𝑛 +

𝐷
𝑃
� + 𝐷 �

2𝑀1𝑒

𝑥
−
𝑛
𝑃
��� 

(7.13) 

Eq. (7.13) is convex in Q, since 𝜕2

𝜕𝑄2
E[𝑇𝐶𝑈(𝑄, 𝑛] = 𝐷𝑀2𝑒

𝑄3
�𝐴𝑣
𝑛

+ 𝐴𝑏� > 0, ∀ Q > 0. Beside, Eq. 

(7.13) is also convex in n, since 𝜕2

𝜕𝑛2
E[𝑇𝐶𝑈(𝑄,𝑛)] = 𝐷𝑀2𝑒

𝑄
�𝐴𝑣
𝑛3
� > 0, ∀ n > 0 indicating that 

𝑇𝐶𝑈(𝑄,𝑛∗ − 1) > 𝑇𝐶𝑈(𝑄,𝑛∗) < 𝑇𝐶𝑈(𝑄,𝑛∗ + 1).  

The procedure described above will be used to determine the optimal batch size and the number 

of shipments with screening errors. 

7.4.2 Learning in Production 

In this section, it is assumed that the vendor’s production process follows Wright (1936) 

learning curve. That is, vendor produces the product at an increasing production rate which is 

consumed at a constant rate. Assume that every cycle of production makes Qp (nQ) products, 

with a learning rate b. This situation for cycle i is described in Figure 7.6. Note that the 

replenishments of equal shipments are still made at equal intervals, as in Figure 7.1. The 

production time in cycle i is  

𝑇𝑝𝑖 = � 𝑇1𝑥−𝑏𝑑𝑥
𝑖𝑄𝑝

(𝑖−1)𝑄𝑝
 

𝑇𝑝𝑖 =
𝑇1𝑄𝑝1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(1 − 𝑏)  (7.14) 
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Figure 7.6 Vendor’s inventory level in ith cycle with learning in production 

So, the production quantity in cycle i can be written as 

𝑄𝑝(𝑡) = �
(1 − 𝑏)𝑡

𝑇1
�

1
𝑖1−𝑏 − (𝑖 − 1)1−𝑏��

1
1−𝑏

 (7.15) 

Now, the average inventory of products in a cycle i during production is 

𝐼𝑇𝑝𝑖 = � 𝑄𝑝(𝑡)𝑑𝑡
𝑇𝑝𝑖

0
 

Using Eqs (7.14) and (7.15), the vendor’s average inventory in ith cycle can be simplified as 

𝐼𝑇𝑝𝑖 =
𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏
 

So, vendor’s total cost in a cycle would be  

𝐶𝑣𝑖 = 𝐴𝑣 +
ℎ𝑣𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏
+ 𝑐𝑇𝑝𝑖 

or 

𝐶𝑣𝑖 = 𝐴𝑣 +
ℎ𝑣𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏
+
𝑐𝑇1(𝑛𝑄)1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
 

Inventory level 

Q 

Time   t   t   t   t 
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and vendor’s expected annual cost is 

E[𝐶𝑈𝑣𝑖] =
𝐷

𝑛𝑄(1 − E[𝛾]) �𝐴𝑣 +
ℎ𝑣𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)2−𝑏

2 − 𝑏

+
𝑐𝑇1(𝑛𝑄)1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
� 

or 

E[𝐶𝑈𝑣𝑖] =
𝐷

(1 − E[𝛾]) �
𝐴𝑣
𝑛𝑄

+
ℎ𝑣𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)1−𝑏

2 − 𝑏

+
𝑐𝑇1(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
� 

Using Eq. (7.6), the total expected annual cost of the supply chain in a cycle, would be  

E[𝑇𝐶𝑈𝑖(𝑄,𝑛)] =
𝐴𝑏𝐷

𝑞(1 − E[𝛾]) +
𝑑𝐷

(1 − 𝛾) +
�ℎ𝑏+ℎ𝑣

′ �𝑄
2

�𝑛 +
𝐷
𝑃

+ �
𝐷
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+
ℎ𝑣𝑇1{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)1−𝑏

2 − 𝑏
+
𝑐𝑇1(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
� 

or 

E[𝑇𝐶𝑈𝑖(𝑄,𝑛)] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝑑𝐷𝑀2 +
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                 +
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𝑃
�
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+
𝑐(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
� 

(7.16) 

Eq. (7.16) is convex in Q (see Appendix 9 for proof). We assume that the learning in the 

vendor’s production process plateaus to some extent after ten cycles. The following steps will be 

used to find an optimal batch size and the number of shipments from Eq. (7.16), 

1. Set i = 1 and n = 1. 

2. Find an optimal value of Q and annual cost from Eq. (7.16) through iteration. Set n = 2.   

3. Repeat Step 2 till the annual cost for n shipments is more than that of (n – 1) shipments. 

4. Record the optimal values of Q and annual cost for n* = n – 1. 

5. Set i = i + 1 and n = 1. 
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6. Repeat steps 2 through 4 till i = 10. (A maximum of 10 cycles is considered) 

7. Find an average of the number of shipments, batch size and the annual cost from the values 

recorded in step 4. 

7.5 Numerical Example 2 

Consider the same numerical values as in Example 1 with annual production cost of       

100, 000 and  

𝑓2(𝑚1) = �1/(0.04 − 0),
  0,        0 ≤ 𝑚1 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

𝑓3(𝑚2) = �1/(0.04 − 0),
  0,        0 ≤ 𝑚2 ≤ 0.04

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

To illustrate the iterative procedure for a cycle of learning in section 7.4.2, an example is 

provided in Table 7.2a and b. The Table 7.2a shows the results of the first cycle of learning 

while Table 7.2b indicates how we take an average of ten cycles. The optimal values used in the 

analysis are shown in bold. It can be seen that for the first cycle of learning, the optimal number 

of shipments is 6 while the size of each shipment and the annual cost are 185 and $ 8113 

respectively. It should be noticed in Table 7.2b that by virtue of learning, the total inventory in a 

cycle reduces from 1110 (6×185) to 700 (4×175) i.e. 37% while the annual cost is reduced from 

8113 to 4497, i.e. about 45%. This indicates a reduction in the average cost per unit from 7.31 

(8113/1110) to 6.42 (4497/700).  

Table 7.2a Iterative procedure to find n and Q with learning 

i n Q E[TCU(Q)] 
1 1 872 8622 

 
2 493 8288 

 
3 346 8181 

 
4 267 8137 

 
5 218 8118 

 
6 185 8113 

 
7 161 8115 
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Table 7.2b The optimal policies for 10 consecutive cycles 

i n Q E[TCU(n,Q)] 
1 6 185 8113 
2 5 174 6026 
3 5 164 5512 
4 4 192 5216 
5 4 187 5014 
6 4 183 4864 
7 4 181 4745 
8 4 178 4648 
9 4 176 4567 

10 4 175 4497 
Average 4 180 5320 

 

The results in Table 7.3 indicate that bringing in screening errors increases the lot size per 

delivery that ultimately affects all the cost factors and thus the annual cost of the supply chain. 

The level of this annual cost in the base case is higher as compared to that in example 1, which 

accounts for the increased holding cost in the consignment stock policy and the reduced number 

of deliveries per batch. Besides, the impact of inspection errors there was not so prominent 

because the number of deliveries did not change while moving from the base case. It should also 

be noticed that introducing vendor’s production cost causes huge increase in the annual cost of 

consignment stock policy in section 7.2. The benefit of this practical change in the analytical 

model is more evident when learning is brought into the picture. The average of ten cycles of 

learning in our model showed that this could save the annual cost of the supply chain up to 86%. 

That is, accounting for learning in vendor’s production process keeps on decreasing the supply 

chain’s annual cost in every successive cycle. This saving reduces to some extent when 

inspection errors and learning in production are considered at the same time. This accounts for a 

little change in the lot size per delivery. 
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Table 7.3 Results of the numerical example 2 

 # of Shipments 
per Cycle 

Lot Size per 
Shipment 

Expected 
Annual Cost 

Base Model 
 

4 124 34452 
Inspection Errors 4 126 35109 

Learning in Production 4 180 5320 
Integrated Model  4 183 5384 

 

Figures 7.7 and 7.8 show the sensitivity of annual cost of the supply chain to the Type I and 

Type II errors respectively, in buyer’s screening process. While one error is varied, the other is 

kept at the level of 0.05. Obviously, when the two errors are at this level, the annual cost in Table 

7.3 is obtained. The effect of Type II error gives an impression that it is favourable for the supply 

chain to make this error. The rationale is that the inspectors keep on adding the defective 

products to the lot and thus force the vendor to produce lesser. This affects every cost factor in 

the two level supply chain, the most critical of which is vendor’s production cost. In other words, 

the buyer has to carry lesser inventory to fulfil the demand in this case. An interesting avenue of 

research would be to study the impact of warranty costs on the overall costs and the production 

quantity.  

 

Figure 7.7 Variation in the annual cost with Type I error 
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Figure 7.8 Variation in the annual cost with Type II error 

Type I error has an opposite impact on the annual cost as shown by Figure 7.7. It could be 

inferred that the buyer’s screening process rejects a good number of non-defective products and 

thus forces the vendor to produce more. This adds up not only the production cost but the 

carrying cost of both stakeholders too. A proper disposal of such components is another avenue 

of research.  

 

Figure 7.9 Variation in the annual cost with learning exponent 
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Figure 7.9 shows the drop in the annual cost of the supply chain by virtue of learning in 

vendor’s production process. That is, the production time in a cycle of the supply chain becomes 

lesser and lesser by increasing the learning exponent. This affects the major cost component, the 

annual production cost. A more realistic approach would be to integrate loss and continuation of 

the learning process from cycle to cycle.  

7.6 Conclusions 

A single vendor, single buyer supply chain is studied in this chapter. The vendor is 

supposed to make a single product and it is believed that a known fraction of its lots is defective. 

The buyer institutes a 100% inspection process to separate these defective products. They follow 

a consignment stock policy according to which the vendor keeps on supplying its inventory to 

the buyer’s warehouse with regular intervals. The buyer withdraws from this warehouse 

according to the market demand. A model depicting this scenario is formulated to find an 

optimal lot size and the number of shipments per batch for the vendor. This work is a extension 

of the work of Braglia and Zavanella (2003) and Salameh and Jaber (2000).  

The results indicate that incorporating screening for the defective items results in an 

increase in the overall supply chain cost. An increase in the annual cost was observed when we 

moved from Hill (1997) model to Braglia and Zavanella (2003) and then to our model in this 

chapter. The difference in the cost of our model with that of Hill (1997) shrinks when it is 

assumed to have defective products too. This accounts for the increase in the cost governed by 

the defective lot. The model shows sharp increase in the cost with respect to the fraction of 

defectives. The results also showed that the annual costs in this model are better than that in 

chapter 6 when holding costs go higher than a threshold value.  

The chapter deals with some interesting issues which are related to operative practice in 

supply chains. In particular, some issues addressed here are:  

1. Finding an appropriate lot size when the cost for intercepting defects is considered. 

2. Balancing the time for inspection cycle and defective items percentage. This time may be 

reduced by sacrificing the efficiency in intercepting defective items, as in Braglia and 

Zavanella (1994). 

3. Correcting the production capacity at the vendor’s side with respect to process 

defectiveness (when defects are intercepted at the buyer’s side). 
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 In the next part of the chapter, buyer’s screening process is taken to be error prone. That is, 

the inspectors make Type I and Type II errors in screening. Besides, the vendor’s production 

process follows learning from cycle to cycle. A model depicting this scenario is formulated to 

find an optimal lot size and the number of shipments per batch for the vendor. The results 

indicate that incorporating screening errors increases the annual cost of the supply chain due to 

an increase in the number of deliveries per cycle. On the other hand, learning in production 

results in huge savings as the major cost component in the model studied is the cost of 

production. The more is the level of learning, the more is this saving. Type I error resulted in 

increasing the lot size and thus the annual cost while Type II error had an opposite impact on the 

supply chain.  

This study could be enhanced in a number of ways. For example the effect of partial and 

transfer of learning would increase the usefulness of the present work. Warranty costs and 

different scenarios of disposing the defective products are other possible avenues of research.  
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CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS 

 

8.1 Introduction 

 In spite of its wide usage, EOQ/EPQ model has several flaws and limitations. The result is 

that this model fails to capture and remains away from the real-world production lines and the 

coordination mechanisms practiced today. These limitations have opened doors for many 

researchers in the recent literature on inventory and supply chains.  

 One of the major drawbacks of the model is that it takes all the products in a production 

line to be defect free. This strong assumption not only ends up in higher costs of warranty but 

also results in losing customer satisfaction level. Another challenging aspect of the above model 

is ignoring the role of human factors like inspection errors, fatigue and learning (both in 

production and quality). These factors have never been modeled in the context of supply chain 

management though they play a vital role in measuring the performance of a supply chain.  

 While there is a need to screen out defective items from a lot, human errors in screening 

can be fatal in case of some critical components, for example, parts of an aircraft or a complex 

gas ignition system. Repeating the inspection process is believed to reduce the effect of human 

error (Swain, 1970) at a nominal increase in the inspection cost. Another interesting human 

aspect that is important in the area of inventory management is learning. Learning is inherent 

when there are workers involved in a repetitive type of production process. The learning process 

affects production time, product quality and the inspection errors too, with the passage of time.  

That is, human beings tend to become more and more accustomed to the processes, thus resulting 

in better quality of the product.  

To address these limitations, the work of Salameh and Jaber (2000) is used in this thesis as 

a base model. This model has been getting more and more attention recently as it touched upon 

screening of the defective items in the EOQ model. Therefore, through a series of contributions 

in this thesis, several models were developed to address the above mentioned limitations in the 

context of EOQ/EPQ and a two level supply chain. This way, the research in the area of 

inventory management is brought closer to reality which will help the students and practitioners 

understand the human behaviors and coordination mechanisms of a supply chain in an extensive 
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manner. The developed models assume unlimited storage capacity, infinite planning horizon and 

a single product case. 

The area of research covered in this thesis is still fertile and there are several limitations 

which entice future research. These directions will be outlined at the end of this chapter.  

8.2 Contributions 

A thorough review of the literature is presented in chapter two. This review covers the 

work concerning different aspects studied in the thesis in the context of EOQ model for 

imperfect items. The review in chapter two provides a useful resource for researchers currently 

engaged in the work on inventory systems with imperfect items, and hopefully may provide new 

ideas for further stimulating this field of research. 

The first contribution in the thesis is presented in chapter three. This chapter makes use of 

Salameh and Jaber (2000) and Duffuaa and Khan (2002) models to suggest that an inspector may 

make Type I and Type II errors while screening for defective items. The annual profit with 

inspection errors remained concave with respect to the order size. The significance of inspection 

errors was indicated by the fact that annual profit becomes much smaller than that in Salameh 

and Jaber (2000) and that it keeps on reducing with an increase in fraction of defectives. It was 

emphasized that the misclassifications are critical if the parts under inspection are of an aircraft, 

a space shuttle or a complex gas ignition system. So, it is vital for a buyer to be aware of not only 

the accurate parameters of error about his inspectors but also the ways to mitigate these errors. 

This work has been published in a journal (Khan et al., 2011a).  

The second contribution in the thesis is presented in chapter four. This chapter is an 

extension of Salameh and Jaber (2000) for the case where the buyer’s inspection process 

undergoes learning while screening for defective items in a lot. A 100% inspection is carried out 

with an error free screening and the rate of screening tends to increase by virtue of learning. This 

counters an assumption in Salameh and Jaber (2000) that the inspection rate is fixed and is 

always greater than demand. Having a screening rate lesser than demand rate in the beginning of 

the screening process, incurs shortages which are tackled in the chapter as both lost sales and 

backorders. Three scenarios of learning, available in the literature, are compared for the above 

set-up. These scenarios are (i) total forgetting, where an inspector starts in every cycle with no 

prior experience, (ii) total transfer of learning, where the inspector does not lose any knowledge 
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or skills in the breaks and the learning curve continues as if there were no interruptions, and (iii) 

partial transfer of learning, where an inspector carries part of his experience to the subsequent 

cycles. The last situation is the most generalized and the realistic one. The results indicate that 

total transfer of learning remains better for both the lost sales and the backorders set-up. Besides, 

the annual profit tends to increase with the learning exponent in screening. That is, the faster the 

learning in screening the lesser is the screening time. A similar finding of the research is that the 

annual profit can be increased by retaining more and more knowledge in screening process. This 

was pointed out by experimenting different levels of time for total forgetting, at fixed values of 

the learning exponent. It was noticed that an increase in the percentage of defectives decreases 

the annual profit at a fixed exponent of learning. The unit cost of lost sales was also shown to 

have a similar effect on the annual profit. It was shown that an increase in the unit screening cost 

reduces the annual profit to great extent at the slower rates of learning. This work has been 

published in a journal (Khan et al., 2010a). 

The third contribution in the thesis is presented in chapter five. In this chapter, a two-stage, 

multi-supplier, single-vendor supply chain is formulated. A vendor is supposed to ask for a 

number of components from different suppliers, which are needed to make a single product. 

Suppliers are believed to be providing a certain fixed percentage of defectives in their supplies. 

The vendor institutes a 100% inspection process and sells the defectives in the local market at a 

discounted price. Two mechanisms, as in Khouja (2003) were studied for the coordination 

between suppliers and the vendor. The first mechanism is governed by an equal cycle time for all 

the stakeholders of the supply chain. In the second mechanism, each supplier’s cycle time is 

taken to be an integer multiplier of the vendor’s cycle time. The results indicated that the 

suppliers are supposed to follow a relaxed and practical approach of the integer multipliers cycle 

time rather than forcing themselves to follow an equal cycle time. A number of human factors 

are brought into the picture in this chapter. First of all, a scenario is considered in which the 

inspectors at the vendor’s end make misclassifications. Next, the production process of the 

vendor is assumed to follow learning as workers tend to perform the same job at a faster pace. 

Lastly, the quality of the suppliers’ items is assumed to follow a logistic learning curve. It was 

observed that the inspection errors tend to increase the annual cost of the supply chain, learning 

in production drops this cost to great extent while the learning in supplier’s quality results in a 

situation as if there are no defectives from the suppliers. The savings in the annual cost of a 
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model that incorporates all of the above human factors were lesser than those experienced in the 

case of learning in production only. Parts of this work have been accepted for publication in two 

journal articles: Khan and Jaber (2011) and Khan et al. (2011b). 

The fourth contribution in the thesis is presented in chapter six. In this chapter, a two-stage, 

single-vendor, single-buyer supply chain is formulated. A vendor is supposed to make a single 

product for its buyer and it is believed that a known fraction of its lots is defective. The buyer 

institutes a 100% inspection process to separate these defective products. A model depicting this 

scenario is formulated to find an optimal batch size and the number of shipments for each order. 

Two human factors are brought into the picture in this chapter. First of all, a scenario is 

considered in which the inspectors at the buyer’s end make misclassifications. Next, the 

production process of the vendor is assumed to follow learning as workers tend to perform the 

same job at a faster pace. The results showed that inspection errors increase the inspection cost 

and thus the overall annual cost of the supply chain. Type I error has a pronounced effect on the 

supply chain as compared to the Type II errors because of an increased order size and the 

inspection cost. On the other hand, increasing the level of learning at vendor’s production 

process brought more and more savings to the supply chain. Part of this work has been presented 

in a conference (Khan et al., 2010b).  

The fifth contribution in the thesis is presented in chapter seven. This chapter again takes a 

two-stage, single-vendor, single-buyer supply chain. The vendor is supposed to make a single 

product and it is believed that a known fraction of its lots is defective. The buyer institutes a 

100% inspection process to separate these defective products. They follow a consignment stock 

policy according to which the vendor keeps on supplying its inventory to the buyer’s warehouse 

with regular intervals. The buyer withdraws from this warehouse according to the market 

demand. A model depicting this scenario is formulated to find an optimal lot size and the number 

of shipments per batch for the vendor. This work is an extension of the work of Braglia and 

Zavanella (2003) and Salameh and Jaber (2000). In the next part of the chapter, buyer’s 

screening process is taken to be error prone. That is, the inspectors make Type I and Type II 

errors in screening. Besides, the vendor’s production process follows learning from cycle to 

cycle. A model depicting this scenario is formulated to find an optimal lot size and the number of 

shipments per batch for the vendor. The results showed that the annual cost increases when one 

moves from Hill (1997) model to Braglia and Zavanella (2003) and then to our model in this 
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chapter. Besides, it was observed that the annual costs in this model are better than that in 

chapter 6 when holding costs go higher than a threshold value. The chapter dealt with some 

interesting issues such as:  

1. Finding an appropriate lot size when the cost for intercepting defects is considered. 

2. Balancing the time for inspection cycle and defective items percentage. This time may be 

reduced by sacrificing the efficiency in intercepting defective items, as inBraglia and 

Zavanella (1994). 

3. Correcting the production capacity at the vendor’s side with respect to process 

defectiveness (when defects are intercepted at the buyer’s side). 

Part of this work has been presented in a conference (Khan et al., 2010c). 

8.3 Future Directions 

This thesis has covered several limitations in the EOQ/EPQ and supply chain modeling but 

there is still room for much more work to be done. Some important limitations to this work are 

known and deterministic demand, fraction of defectives, and zero delivery-lead-time. Besides, 

issues of transportation, warehouse capacity and a proper disposal of defective items still remain 

the untouched aspects.  

In the scenario studied in the thesis, the buyer and the supplier can agree on a fixed 

proportion of defective items, and look for a coordinated order size per cycle. Another interesting 

feature would be to consider learning and transfer of learning in the rate of inspection errors. The 

effect of partial transfer of learning could also enhance the consignment stock policy. Lastly, an 

internal supply chain for the vendor’s serial production line could be studied with learning in 

production and reworks (Jaber and Khan, 2010). This could be extended to consider the case of 

dual resource constrained (DRC) system where the number of machines on a production line 

exceeds the number of workers in which case the workers are trained for a number of work 

stations.  
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More specifically, the following directions of research can be recommended: 

1. The model in chapter three could be extended for the case where demand is uncertain. 

Furthermore, learning in the inspection rate would also enhance the usefulness of the model 

presented here. 

2. The model in chapter four could be enhanced by studying the effect of learning in 

suppliers’ proportion of defectives. The buyer and the supplier can also agree on a fixed 

proportion of defective items, and look for a coordinated order size per cycle. 

3. The model in chapter five could be extended for stochastic fractions of defectives. One 

could also investigate learning in inspection errors there. Besides, the effects of a 

probabilistic demand from the vendor in response to the market’s behavior would help in 

presenting a realistic scenario.  

4. The model in chapter six can be extended to investigate the effect of learning in buyer’s 

inspection errors. Another practical situation would be to study the effects of a probabilistic 

demand in this model.  

5. The model in chapter seven could be extended for partial and transfer of learning in 

production from cycle to cycle. Besides, one could also study the impact of warranty costs 

and different scenarios of disposing the defective products, in this model.  

To summarize, this thesis contributes to the area of inventory control in today’s production 

environment that is constantly trying to address increased competitiveness, shorter lead times, 

shorter product life cycles and the need for greater responsiveness (Bonney et al., 2003). The 

contemporary production environment requires more product variety, better quality products, 

items delivered on time at a competitive price and a better planning and control. More and more 

literature is bound to appear in this particular area of research as there is a need to address issues 

such as stochastic demand, cross training, warranty, remanufacturing and transportation. These 

models for multi-tier systems are aimed at helping engineers and practitioners developing MRP 

and SAP systems for better inventory control.  
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APPENDIX 1 Uncertainty of Results in Salameh and Jaber (2000) 

 Uniform Distribution Normal Distribution  % Error 
γ Avg. γ Q EC Avg. γ Q EC  % Q % EC 

0.01 0.0050 1432 7074.2 0.0050 1419 7081.4  0.86% -0.10% 
0.02 0.0100 1434 7084.7 0.0100 1424 7091.7  0.65% -0.10% 
0.03 0.0150 1440 7098.0 0.0150 1429 7101.8  0.75% -0.05% 
0.04 0.0200 1442 7108.9 0.0200 1435 7114.8  0.48% -0.08% 
0.05 0.0250 1445 7115.2 0.0250 1440 7124.8  0.37% -0.13% 
0.06 0.0300 1452 7132.0 0.0300 1445 7136.7  0.46% -0.07% 
0.07 0.0350 1456 7144.6 0.0350 1449 7145.9  0.47% -0.02% 
0.08 0.0399 1459 7153.9 0.0399 1455 7159.8  0.28% -0.08% 
0.09 0.0450 1464 7166.5 0.0449 1460 7170.9  0.32% -0.06% 
0.10 0.0500 1471 7181.5 0.0501 1466 7186.6  0.30% -0.07% 
0.11 0.0549 1477 7195.9 0.0551 1472 7201.0  0.35% -0.07% 
0.12 0.0600 1480 7205.9 0.0600 1474 7207.1  0.37% -0.02% 
0.13 0.0650 1484 7221.3 0.0649 1482 7225.6  0.17% -0.06% 
0.14 0.0699 1500 7235.4 0.0701 1487 7240.3  0.84% -0.07% 
0.15 0.0750 1496 7248.5 0.0749 1490 7249.5  0.38% -0.01% 
0.16 0.0800 1509 7262.2 0.0800 1496 7267.1  0.84% -0.07% 
0.17 0.0850 1508 7284.8 0.0849 1501 7280.3  0.43% 0.06% 
0.18 0.0900 1507 7287.9 0.0902 1510 7306.0  -0.20% -0.25% 
0.19 0.0951 1516 7315.3 0.0950 1516 7321.7  0.04% -0.09% 
0.20 0.1000 1523 7333.0 0.1003 1520 7334.8  0.20% -0.03% 
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APPENDIX 2 Expected Value of A in Equation (3.5) 

From Eq. (3.5): 
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𝐴2 = �1 −
𝐷
𝑥
�
2

+ (𝑚1
2 + 2𝑚1𝛾 + 𝛾2) + 𝛾2(𝑚1

2 + 2𝑚1𝑚2 + 𝑚2
2) − 2 �1 −

𝐷
𝑥
� (𝑚1 + 𝛾) 

           −2𝛾(𝑚1
2 + 𝑚1𝑚2 + 𝛾𝑚1 + 𝛾𝑚2) + 2𝛾 �1 −

𝐷
𝑥
� (𝑚1 + 𝑚2) 

Now, the expected value of above expression including three random variables, is 

E[𝐴2] = �1 −
𝐷
𝑥
�
2

+ (E[𝑚1
2] + 2E[𝑚1]E[𝛾] + E[𝛾2]) 

                 +E[𝛾2](E[𝑚1
2] + 2E[𝑚1]E[𝑚2] + E[𝑚2

2]) − 2 �1 −
𝐷
𝑥
� (E[𝑚1] + E[𝛾]) 

                 −2E[𝛾](E[𝑚1
2] + E[𝑚1]E[𝑚2] + E[𝛾]E[𝑚1] + E[𝛾]E[𝑚2]) 

                 +2 �1 − 𝐷
𝑥
� (E[𝛾]E[𝑚1] + E[𝛾]E[𝑚2])  

(A2.1) 
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APPENDIX 3 Independence of γ, m1 and m2 

Assume x and y are independent random variables that are uniformly distributed; x~[a,b] and 

y~[d,c]. Then, 

∫ ∫ (1−𝑥)
𝑏−𝑎

𝑑
𝑐

(1−𝑦)
𝑑−𝑐

d𝑦𝑏
𝑎 d𝑥 = (𝑐+𝑑)(𝑎+𝑏)

4
− (𝑎+𝑏+𝑐+𝑑)

2
+ 1  (A3.1) 

Now, (1 − E[𝑥])(1 − E[𝑦]) = �1 − 𝑎+𝑏
2
� �1 − 𝑐+𝑑

2
� = 1 − (𝑎+𝑏+𝑐+𝑑)

2
+ (𝑐+𝑑)(𝑎+𝑏)

4
   

Therefore 

(1 − E[𝑥])(1− E[𝑦]) = ∫ ∫ (1−𝑥)
𝑏−𝑎

𝑑
𝑐

(1−𝑦)
𝑑−𝑐

d𝑦𝑏
𝑎 d𝑥  (A3.2) 

Similarly, 

∫ ∫ 𝑥
𝑏−𝑎

𝑑
𝑐

𝑦
𝑑−𝑐

d𝑦𝑏
𝑎 d𝑥 = 1

4
�𝑑2−𝑐2�(𝑏2−𝑎2)

(𝑏−𝑎)(𝑑−𝑐)
= (𝑑+𝑐)(𝑏+𝑎)

4
 (A3.3) 

and  

E[𝑥]E[𝑦] = �𝑎+𝑏
2
� �𝑐+𝑑

2
� = (𝑑+𝑐)(𝑏+𝑎)

4
       

So, 

 E[𝑥]E[𝑦] = ∫ ∫ 𝑥
𝑏−𝑎

𝑑
𝑐

𝑦
𝑑−𝑐

d𝑦𝑏
𝑎 d𝑥 (A3.4) 

Now, let us assume that x and y are independent random variables that are exponentially 

distributed; x~[0,∞) and y~[0,∞), where λ and µ are the parameters of their exponential 

distributions. Then, 

∫ ∫ (1 − 𝑥)∞
0 (1 − 𝑦)𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦∞

0 d𝑥 =  �lim𝑥→∞ lim𝑦→∞
(1−𝜆+𝜆𝑥)(1−𝜇+𝜇𝑦)

𝜆𝜇𝑒𝜇𝑦+𝜆𝑥
� − (1−𝜆)(1−𝜇)

𝜇𝜆
  

∫ ∫ (1 − 𝑥)∞
0 (1 − 𝑦)𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦∞

0 d𝑥 = (𝜆−1)(𝜇−1)
𝜇𝜆

  (A3.5) 

and 

(1 − E[𝑥])(1− E[𝑦]) = �1 − 1
𝜆
� �1 − 1

𝜇
� = (𝜆−1)(𝜇−1)

𝜇𝜆
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Therefore,  

(1 − E[𝑥])(1− E[𝑦]) = � � (1 − 𝑥)
∞

0
(1 − 𝑦)𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦

∞

0
d𝑥 (A3.6) 

Similarly, 

E[𝑥]E[𝑦] = ∫ ∫ 𝑥∞
0 𝑦𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦∞

0 d𝑥 =  �lim𝑥→∞ lim𝑦→∞
(1+𝜆𝑥)(1+𝜇𝑦)
𝜆𝜇𝑒𝜇𝑦+𝜆𝑥

�+ 1
𝜇𝜆

  

E[𝑥]E[𝑦] = ∫ ∫ 𝑥∞
0 𝑦𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦∞

0 d𝑥 =  1
𝜇𝜆

  (A3.7) 

and 

E[𝑥]E[𝑦] = �1
𝜆
� �1

𝜇
� = 1

𝜇𝜆
  

Therefore, 

E[𝑥]E[𝑦] = � � 𝑥
∞

0
𝑦𝜆𝜇𝑒−𝜇𝑦𝑒−𝜆𝑥d𝑦

∞

0
d𝑥 (A3.8) 

Based on the above, it can be cautiously assumed that when x and y are independent random 

variables that are normally distributed with probability density functions f(x) and f(y), then, 

∫ ∫ (1 − 𝑥)(1 − 𝑦)𝑓(𝑥)𝑔(𝑦)d𝑦d𝑥 = (1 − 𝐸[𝑥])(1− 𝐸[𝑦]+∞
−∞

+∞
−∞ ).  

Note that, for simplicity, the uniform distribution will be used throughout the thesis. 
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APPENDIX 4 Concavity of the Annual Profit in Eq. (4.15) 

The expected total net revenue per cycle is: 

𝐸[𝑅𝑖𝐿] = {𝑠(1 − E[𝛾]) + 𝜈E[𝛾] − 𝑐1}𝑄𝑖 = 𝐴𝑄𝑖 , where A > 0 since s > 𝑐1.  

The expected total cost per cycle is: 

𝐸[𝑇𝐶𝑖𝐿(𝑄𝑖)] = 𝐾 + 𝑐𝐿𝑍𝑖 +
ℎ

2𝐷
{𝑄𝑖2E[(1 − 𝛾)2]�� +2𝑄𝑖𝑍𝑖(1 − E[𝛾]) + 𝑍𝑖2} 

                   − ℎ
2𝐷
� 𝑄𝑠𝑖
1−𝑏

�
2

+ (ℎ𝑄𝑖E[𝛾]+𝑑1)�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏) + ℎ 𝑄𝑠𝑖

2

𝐷(1−𝑏)
− ℎ �𝑥1𝑄𝑠𝑖

𝐷
�

1
1−𝑏 𝑄𝑠𝑖

𝐷(1−𝑏)
  

The expected cycle time E[𝑇𝑖𝐿] is: 

E[𝑇𝑃𝑖𝐿(𝑄𝑖)] =
(1 − E[𝛾])𝑄𝑖

𝐷
−
𝑄𝑠𝑖
𝐷

+ 𝑡𝑠𝑖 =
(1 − E[𝛾])𝑄𝑖

𝐷
−
𝐷
1−𝑏
𝑏

𝑥1
1/𝑏 +

𝐷
1−𝑏
𝑏

(1 − 𝑏)𝑥1
1/𝑏 

=
(1 − E[𝛾])𝑄𝑖

𝐷
+
𝐷
1−𝑏
𝑏

𝑥1
1/𝑏 �

𝑏
1 − 𝑏

� =
(1 − E[𝛾])𝑄𝑖

𝐷
+
𝑄𝑠𝑖
𝐷
�

𝑏
1 − 𝑏

� =  
(1 − E[𝛾])𝑄𝑖 + 𝑍𝑖

𝐷
 

E[𝑇𝑖𝐿] =
(1 − E[𝛾])𝑄𝑖

𝐷
−
𝑄𝑠𝑖
𝐷

+ 𝑡𝑠𝑖 =
(1 − E[𝛾])𝑄𝑖

𝐷
−
𝐷
1−𝑏
𝑏

𝑥1
1/𝑏 +

𝐷
1−𝑏
𝑏

(1 − 𝑏)𝑥1
1/𝑏 

= (1−E[𝛾])𝑄𝑖
𝐷

+ 𝐷
1−𝑏
𝑏

𝑥1
1/𝑏 �

𝑏
1−𝑏

� = (1−E[𝛾])𝑄𝑖
𝐷

+ 𝑄𝑠𝑖
𝐷
� 𝑏
1−𝑏

�= 𝐹𝑄𝑖 + 𝐺,  

where 𝐹 = (1−E[𝛾])
𝐷

> 0 and 𝐺 = 𝑄𝑠𝑖
𝐷
� 𝑏
1−𝑏

� > 0. 

and Zi =   (Dtsi – 𝑄si), 𝑄𝑠 = 𝑄𝑠𝑖 = �𝐷 𝑥1� �
1
𝑏  , 𝑡𝑠 = 𝑡𝑠𝑖 = 𝐷

1−𝑏
𝑏

(1−𝑏)𝑥1
1/𝑏 = 𝑄𝑠𝑖

𝐷(1−𝑏)
, 𝜏 = 𝜏𝑖  

or   Zi =   �𝐷 𝐷
1−𝑏
𝑏

(1−𝑏)𝑥1
1/𝑏  –  �𝐷 𝑥1� �

1
𝑏�=� 𝐷

1
𝑏

(1−𝑏)𝑥1
1/𝑏  – 𝐷

1
𝑏

𝑥1
1/𝑏� = 𝑏

1−𝑏
�𝐷 𝑥1� �

1
𝑏 = 𝑏

1−𝑏
𝑄𝑠𝑖,  

Therefore, Zi is a constant. 

The expected total profit per cycle is E[𝑇𝑃𝑈𝑖𝐿] = E[𝑇𝑃𝑖𝐿]
E[𝑇𝑖𝐿] = E[𝑅𝑖𝐿]−𝐸[𝑇𝐶𝑖𝐿]

E[𝑇𝑖𝐿]    =  E[𝑅𝑖𝐿]
E[𝑇𝑖𝐿] −

𝐸[𝑇𝐶𝑖𝐿]
E[𝑇𝑖𝐿] . 
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The per unit time revenue 𝑌 = E[𝑅𝑖𝐿]
E[𝑇𝑖𝐿] = 𝐴𝑄𝑖

𝐹𝑄𝑖+𝐺
 , 𝑑𝑌

𝑑𝑄𝑖
= 𝐴(𝐹𝑄𝑖+𝐺)−𝐹(𝐴𝑄𝑖)

(𝐹𝑄𝑖+𝐺)2 = 𝐺
(𝐹𝑄𝑖+𝐺)2 > 0,∀𝑄𝑖 > 0  , 

𝑑2𝑌
𝑑𝑄𝑖

2 = − 𝐺
(𝐹𝑄𝑖+𝐺)3 < 0,∀𝑄𝑖 > 0 is strictly increasing function in 𝑄𝑖. Furthermore, lim𝑄𝑖→∞ 𝑌 →

𝐴
𝐹

> 0. 

We need now to show that 𝑊 = E[𝑇𝐶𝑖𝐿]
E[𝑇𝑖𝐿]  is a convex function. To do so, it is easier to tackle each 

term or few terms together but not the whole function as this is a bit complex.  

𝑈1 = 𝐾+𝑐𝐿𝑍𝑖
𝐹𝑄𝑖+𝐺

 , 𝑑
𝑑𝑄𝑖

𝑈1 = −𝐹(𝐾+𝑐𝐿𝑍𝑖)
(𝐹𝑄𝑖+𝐺)2   , 𝑑

2

𝑑𝑄𝑖
2 𝑈1 = 2𝐹2(𝐾+𝑐𝐿𝑍𝑖)2

(𝐹𝑄𝑖+𝐺)3 >0, ∀𝑄𝑖 > 0   (A4.1) 

𝑈2 = ℎ
2𝐷

�𝑄𝑖
2E�(1−𝛾)2���+2𝑄𝑖𝑍𝑖(1−E[𝛾])+𝑍𝑖

2�
𝐹𝑄𝑖+𝐺

   (A4.2) 

𝑈2′ = 𝑄𝑖
2E�(1−𝛾)2�
𝐹𝑄𝑖+𝐺

 , 𝑈2′′ = 2𝑄𝑖𝑍𝑖(1−E[𝛾])
𝐹𝑄𝑖+𝐺

 , 𝑈2′′′ = 𝑍𝑖
2

𝐹𝑄𝑖+𝐺
 

𝑑
𝑑𝑄𝑖

𝑈2′ = E�(1−𝛾)2��2𝑄𝑖(𝐹𝑄𝑖+𝐺)−𝐹𝑄𝑖
2�

(𝐹𝑄𝑖+𝐺)2 = E�(1−𝛾)2��𝐹𝑄𝑖
2+2𝑄𝑖𝐺�

(𝐹𝑄𝑖+𝐺)2   

𝑑2

𝑑𝑄𝑖
2 𝑈2′ = 2E�(1−𝛾)2��2(𝐹𝑄𝑖+𝐺)2−2𝐹𝑄𝑖(𝐹𝑄𝑖+2𝐺)�

(𝐹𝑄𝑖+𝐺)4 = 2E�(1−𝛾)2�𝐺2

(𝐹𝑄𝑖+𝐺)3 > 0,∀𝑄𝑖   (A4.2a) 

𝑑
𝑑𝑄𝑖

𝑈2′′ = 2𝑍𝑖(1−E[𝛾]){(𝐹𝑄𝑖+𝐺)−𝐹𝑄𝑖}
(𝐹𝑄𝑖+𝐺)2 = 2𝑍𝑖(1−E[𝛾])𝐺

(𝐹𝑄𝑖+𝐺)2   

𝑑2

𝑑𝑄𝑖
2 𝑈2′′ = −4𝐹𝐺𝑍𝑖(1−E[𝛾])

(𝐹𝑄𝑖+𝐺)3  <0,∀𝑄𝑖 

𝑑
𝑑𝑄𝑖

𝑈2′′′ = − 𝐹𝑍𝑖
2

(𝐹𝑄𝑖+𝐺)2  ,   
𝑑2

𝑑𝑄𝑖
2 𝑈2′′′ = 2𝐹2𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3 >0,∀𝑄𝑖  

Now since, 𝑍𝑖 = 𝑏
1−𝑏

𝑄𝑠𝑖 , 𝐹 = (1−E[𝛾])
𝐷

 and 𝐺 = 𝑄𝑠𝑖
𝐷
� 𝑏
1−𝑏

� = 𝑍𝑖
𝐷

 

𝑑2

𝑑𝑄𝑖
2 𝑈2′′ + 𝑑

𝑑𝑄𝑖
𝑈2′′′=−

4𝐹𝑍𝑖𝐺(1−E[𝛾])
(𝐹𝑄𝑖+𝐺)3 + 2𝐹2𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3 =
2𝐹2𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3 −
4𝐹𝐺𝑍𝑖(1−E[𝛾])

(𝐹𝑄𝑖+𝐺)3  

𝑑2

𝑑𝑄𝑖
2 𝑈2′′ + 𝑑2

𝑑𝑄𝑖
2 𝑈2′′′ = 2𝐹𝑍𝑖

(𝐹𝑄𝑖+𝐺)3
{𝐹𝑍𝑖 − 2𝐺(1 − E[𝛾])} = 2𝐹𝑍𝑖

(𝐹𝑄𝑖+𝐺)3
[𝐹𝑍𝑖 − 2𝐹𝑍𝑖] = − 2𝐹2𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3, 
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𝑈3 = 1
𝐹𝑄𝑖+𝐺

�ℎ 𝑄𝑠𝑖
2

𝐷(1−𝑏)
− ℎ �𝑥1𝑄𝑠𝑖

𝐷
�

1
1−𝑏 𝑄𝑠𝑖

𝐷(1−𝑏)
− ℎ

2𝐷
� 𝑄𝑠𝑖
1−𝑏

�
2
� = 1

𝐹𝑄𝑖+𝐺
�ℎ 𝑄𝑠𝑖

𝐷(1−𝑏)
�𝑄𝑠𝑖− �

𝑥1𝑄𝑠𝑖
𝐷
�

1
1−𝑏 −

𝑄𝑠𝑖
2(1−𝑏)

�� = 1
𝐹𝑄𝑖+𝐺

� ℎ
2𝐷

𝑄𝑠𝑖
2

(1−𝑏)2
� = 1

𝐹𝑄𝑖+𝐺
� ℎ
2𝐷

𝑍𝑖
2

(1−𝑏)𝑏2
�= ℎ

2𝐷
𝐻𝑍𝑖

2

𝐹𝑄𝑖+𝐺
 

𝑑
𝑑𝑄𝑖

𝑈3 = − ℎ
2𝐷

𝐹𝐻𝑍𝑖
2

(𝐹𝑄𝑖+𝐺)2, 
𝑑2

𝑑𝑄𝑖
2 𝑈4 = + 𝐹2𝐻𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3  (A4.2b) 

𝑑2

𝑑𝑄𝑖
2 𝑈2′′ + 𝑑

𝑑𝑄𝑖
𝑈2′′′ + 𝑑2

𝑑𝑄𝑖
2 𝑈3= − 2𝐹2𝑍𝑖

2

(𝐹𝑄𝑖+𝐺)3 + 𝐹2𝐻𝑍𝑖
2

(𝐹𝑄𝑖+𝐺)3 > 0 ⇒−2 + 𝐻 > 0⇒−2 + 1
(1−𝑏)𝑏2

 > 0 

Note that, (1 − 𝑏)𝑏2 holds its maximum value  when b = 2/3 (set the first derivative to zero), 

where 1
(1−𝑏)𝑏2

 holds a minimum value of 1
(1−2/3)(2/3)2 = 27

4
, which means that −2 + 1

(1−𝑏)𝑏2
 is 

always positive for 0 < b < 1. Therefore, 𝑑
2

𝑑𝑄𝑖
2 𝑈2 + 𝑑2

𝑑𝑄𝑖
2 𝑈4 = 𝑑2

𝑑𝑄𝑖
2 𝑈2′ + 𝑑2

𝑑𝑄𝑖
2 𝑈2′′ + 𝑑2

𝑑𝑄𝑖
2 𝑈2′′′+

𝑑2

𝑑𝑄𝑖
2 𝑈3 

>0, ∀Qi. 

Let 𝑈4 = (ℎ𝑄𝑖E[𝛾]+𝑑1)�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
𝑥1(1−𝑏)(𝐹𝑄𝑖+𝐺)

= ℎE[𝛾]
𝑥1(1−𝑏)

𝑄𝑖�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
(𝐹𝑄𝑖+𝐺)

+ ℎ𝑑1
𝑥1(1−𝑏)

�(𝑄𝑖+𝑢𝑖)1−𝑏−𝑢𝑖1−𝑏�
(𝐹𝑄𝑖+𝐺)

 

 For simplicity, and without loss of generality, assume 𝑄𝑖 = 𝑄, and 𝑢𝑖 = (𝑖 − 1)𝑄, where i 

≥0, 𝐹𝑄 + 𝐺 ≈ 𝜃𝑄 and    

Let 𝑈′4 = 𝛼 𝑄2−𝑏

𝜃𝑄
, 𝑈′′4 = 𝛽 𝑄1−𝑏

𝜃𝑄
, where 𝛼 = ℎ𝐸[𝛾]�𝑖1−𝑏−(𝑖−1)1−𝑏�

𝑥1(1−𝑏)   

and 𝛽 = ℎ𝑑1�𝑖1−𝑏−(𝑖−1)1−𝑏�
𝑥1(1−𝑏)  

𝑑2

𝑑𝑄2
𝑈′

4 = −𝛼 𝑄−𝑏𝑏(1−𝑏)
𝜃𝑄

, 𝑑
2

𝑑𝑄2
𝑈′′

4 = 𝛽 (1+𝑏)𝑏𝑄−1−𝑏

𝜃𝑄
 

𝑑2

𝑑𝑄2
𝑈′

4 + 𝑑2

𝑑𝑄2
𝑈′′

4 = −𝛼 𝑄−𝑏𝑏(1−𝑏)
𝜃𝑄

+  𝛽 (1+𝑏)𝑏𝑄−1−𝑏

𝜃𝑄
, 

𝑑2

𝑑𝑄2 𝑈
′
4 +

𝑑2

𝑑𝑄2 𝑈
′′
4 =

1
𝜃𝑄1+𝑏

�−𝛼𝑏(1 − 𝑏) +  𝛽
(1 + 𝑏)𝑏

𝑄
� 

 

−𝛼𝑏(1 − 𝑏) +  𝛽 (1+𝑏)𝑏
𝑄

> 0⇒ 1
𝑄

>𝛼
𝛽

(1−𝑏)
1+𝑏

⇒ 𝑄 < 𝑑1(1+𝑏)
𝐸[𝛾](1−𝑏)

, which implies that 𝑑
2

𝑑𝑄2
𝑈′

4 + 𝑑2

𝑑𝑄2
𝑈′′

4 

 



183 
 

is positive for 0 < 𝑄 < 𝑑1(1+𝑏)
𝐸[𝛾](1−𝑏)

. For larger values of Q, we notice that 𝑑
2

𝑑𝑄2
𝑈′

5 + 𝑑2

𝑑𝑄2
𝑈′′

5 will 

go asymptotic to zero. Showing that 𝑑2

𝑑𝑄2
𝑈′

5 + 𝑑2

𝑑𝑄2
𝑈′′

5>0 ∀𝑄 > 0 my not be as strong as the 

other terms, but we can reasonably conclude that the sum of  

𝑑2

𝑑𝑄𝑖
2 𝑈1 + 𝑑2

𝑑𝑄𝑖
2 𝑈2 + 𝑑2

𝑑𝑄𝑖
2 𝑈3 + 𝑑2

𝑑𝑄𝑖
2 𝑈4 > 0,∀𝑄𝑖 > 0, suggesting that the expected unit time  cost 

function, E[𝑇𝐶𝑖𝐿]
E[𝑇𝑖𝐿]  , is convex in Q, of the form  𝐴

𝑥
+ 𝐵𝑥.  It was shown that the expected unit time 

net revenue, 𝑌 = E[𝑅𝑖𝐿]
E[𝑇𝑖𝐿], is a monotonically increasing function in Q,  𝐶𝑥 The difference of these 

two functions, 𝑓 = 𝐶𝑥 − 𝐴
𝑥
− 𝐵𝑥, would be a concave function,  𝑑

2𝑓
𝑑𝑥2

= −2𝐴
𝑥2

<0,∀𝑥 > 0, with a 

unique maximizer. Therefore Eq. (4.14) is a concave function in Q > 0.  
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APPENDIX 5 𝐄[𝝅𝟐] in Chapter 5 

It is assumed that the fraction of imperfect quality items per shipment from supplier s, 𝛾𝑠, is 

independent of those from other suppliers. So, it can be reasonably assumed that 𝛾𝑠 are 

independent and identically distributed (i.i.d.) random variables with known probability density 

functions 𝑓(𝛾𝑠). The expected leftovers in a cycle are  

E[𝑙𝑠] = 𝑄𝑠(E[𝛾max]− E[𝛾𝑠]) = 𝑄𝑠 � 𝛾max𝑓(𝛾max)𝑑
+∞

−∞
𝛾max − 𝑄𝑠 � 𝛾s𝑓(𝛾𝑠)𝑑

+∞

−∞
𝛾𝑠 (A5.1) 

The fraction 𝜋𝑠 is defined as  

𝜋𝑠 = 1 − (𝛾max − 𝛾𝑠) 

(𝜋𝑠)2 = [1 − (𝛾max − 𝛾𝑠)]2 

(𝜋𝑠)2 = 1 − 2(𝛾max − 𝛾𝑠) + (𝛾max − 𝛾𝑠)2 

(𝜋𝑠)2 = 1 − 2𝛾max − 2𝛾𝑠 + (𝛾max2 − 2𝛾max𝛾𝑠 + 𝛾𝑠2) 

For i.i.d. fractions of defectives, the expected value of the above expression is 

E[𝜋𝑠2] = 1 − 2E[𝛾max]− 2E[𝛾𝑠] + E[𝛾max2] − 2E[𝛾max]E[𝛾𝑠] + E[𝛾𝑠2] (A5.2) 
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APPENDIX 6 Convexity of the Annual Cost in Eq. (5.22) 

Let us assume  

𝐴𝐴 =

E[𝑇𝐶𝑈(𝑄)]= (𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )𝐷
𝑄

+ ℎ𝑣2 �
𝑄
2
− 𝑇1𝐷𝑄1−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)(2−𝑏𝑖)
� +

𝐷∑ �ℎ𝑣1𝑠𝑄
2

�𝜇𝑠
2E�𝜋𝑠2�(1+E[𝛾𝑠])

𝑥
+ 𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
�1 − E[𝛾𝑠] − 𝐷

𝑥
�� +𝑚

𝑠=1

(𝑎𝑣𝑠 + 𝑑𝑠)𝜇𝑠E[𝜋𝑠]� +   ∑ ℎ𝑣1𝑠𝑄𝑢𝑠(1 − E[𝜋𝑠])𝑚
𝑠=1 + 𝑐𝑇1𝐷𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
    

It should be noticed that the production quantity in every cycle of learning was taken to be Q. 

𝑑𝐴𝐴
𝑑𝑄

=  − (𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )𝐷
𝑄2

+ ℎ𝑣2 �
1
2
− 𝑇1𝐷𝑄−𝑏𝑖�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(2−𝑏𝑖)
� + 𝐷∑ �ℎ𝑣1𝑠

2
�𝜇𝑠

2E�𝜋𝑠2�(1+E[𝛾𝑠])
𝑥

+𝑚
𝑠=1

            𝑄−𝑏𝑖𝜇𝑠E[𝜋𝑠]𝑇1{𝑖1−𝑏𝑖 − (𝑖 − 1)1−𝑏𝑖} �1 − E[𝛾𝑠] − 𝐷
𝑥
��� +   ∑ ℎ𝑣1𝑠𝑢𝑠(1 − E[𝜋𝑠])𝑚

𝑠=1 −

            𝑏𝑖𝑐𝑇1𝐷𝑄
−𝑏𝑖−1�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

(1−𝑏𝑖)
  

 𝑑
2𝐴𝐴
𝑑𝑄2

= 2(𝐴𝑣+∑ 𝐴𝑠𝑚
𝑠=1 )𝐷
𝑄3

+ ℎ𝑣2 �
𝑏𝑖𝑇1𝐷�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

𝑄1+𝑏𝑖(2−𝑏𝑖)
� −  

            ∑ �
𝑏𝑖ℎ𝑣1𝑠𝜇𝑠E[𝜋𝑠]𝑇1𝐷�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖��1−E[𝛾𝑠]−𝐷𝑥�

2𝑄1+𝑏𝑖
� + 𝑏𝑖(1+𝑏𝑖)𝑐𝑇1𝐷�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

𝑄2+𝑏𝑖(1−𝑏𝑖)
𝑚
𝑠=1   

(A6.1) 

where 

 2
(𝐴𝑣+∑ 𝐴𝑠𝑚

𝑠=1 )𝐷
𝑄3

> 0, ∀Q > 0 since D > 0, Av > 0, and As > 0.  

  𝑐 𝑏𝑖(1+𝑏𝑖)𝑇1𝐷�𝑖
1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�

𝑄2+𝑏𝑖(1−𝑏𝑖)
> 0, since 0 ≤ 𝑏𝑖 < 1, 𝑇1 > 0, c > 0, and 𝑖1−𝑏𝑖 − (𝑖 − 1)1−𝑏𝑖 ≥ 0 

Now we need to need to prove that: 

𝑏𝑖𝑇1𝐷�𝑖1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
𝑄1+𝑏𝑖

� ℎ𝑣2
(2−𝑏𝑖)

� − ∑ �
ℎ𝑣1𝑠𝜇𝑠E[𝜋𝑠]�1−E[𝛾𝑠]−𝐷𝑥�

2
�𝑚

𝑠=1 > 0  

As  𝑏𝑖𝑇1𝐷�𝑖
1−𝑏𝑖−(𝑖−1)1−𝑏𝑖�
𝑄1+𝑏𝑖

> 0, it reduces to  

� ℎ𝑣2
(2−𝑏𝑖)

� − ∑ �
ℎ𝑣1𝑠𝜇𝑠E[𝜋𝑠]�1−E[𝛾𝑠]−𝐷𝑥�

2
�𝑚

𝑠=1 > 0  (A6.2) 
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For the case of the supplier with maximum fraction of defectives, where 𝛾𝑚𝑎𝑥 − 𝛾𝑠=0, E[𝜋𝑠] =

1. Besides, we can assume without loss of generality, that 𝜇𝑠 = 𝜇, ℎ𝑣1𝑠 =  ℎ𝑣1, 𝑏𝑖 =  𝑏 and 

𝛾𝑠 =  𝛾. Expression (A6.2) can then be written as 

� ℎ𝑣2
(2−𝑏)� − ℎ𝑣1

𝜇𝑚
2
�1 − 𝐸[𝛾]− 𝐷

𝑥
�  (A6.3) 

By definition, each unit of a finished product consist of mµ units with unit cost of a finished 
product being 𝑚𝑐𝑢𝜇 + 𝑐𝑝 where 𝑐𝑢 and 𝑐𝑝 are the unit purchase cost of raw material and the unit 
production cost of the finished product respectively. Therefore, ℎ𝑣2 = 𝑘�𝑐𝑢𝑚𝜇 + 𝑐𝑝� and 
ℎ𝑣1 = 𝑐𝑢𝑘, where k is the interest rate. So, following the Eq. (A6.3), we are left to prove 

�𝑘�𝑐𝑢𝑚𝜇+𝑐𝑝� 
(2−𝑏) � − 𝑘𝑐𝑢

𝑚𝜇
2
�1 − 𝐸[𝛾]− 𝐷

𝑥
� > 0 or 

𝑘𝑐𝑝 
(2−𝑏) + 𝑘𝑐𝑢𝑚𝜇 

(2−𝑏) −
𝑘𝑐𝑢𝑚𝜇

2
�1 − 𝐸[𝛾] − 𝐷

𝑥
� > 0 or 

𝑘𝑐𝑝 
(2−𝑏) + 𝑘𝑐𝑢𝑚𝜇 �

 1
(2−𝑏) −

1
2
�1 − 𝐸[𝛾]− 𝐷

𝑥
�� > 0  

which is true if 

1
2−𝑏 −

1
2
�1−𝐸[𝛾]− 𝐷

𝑥� > 0 or 

1
2−𝑏 −

𝑊
2

 > 0 where 𝑊 = 1−𝐸[𝛾]− 𝐷
𝑥   

⇒ 1
2−𝑏 > 𝑊

2
 or 

1
𝑊

> 2−𝑏
2

.   

Since 0 ≤ 𝑏 < 1 and W < 1, then 2−𝑏
2

< 1, which makes 1
𝑊

> 2−𝑏
2

 True.  

Therefore,  

� ℎ𝑣2
(2−𝑏𝑖)

� − ∑ �
ℎ𝑣1𝑠𝜇𝑠E[𝜋𝑠]�1−E[𝛾𝑠]−𝐷𝑥�

2
�𝑚

𝑠=1 > 0, and 𝑑
2𝐴

𝑑𝑄2
> 0∀Q > 0, suggesting that AA is convex in 

Q.  
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APPENDIX 7 Convexity of the Annual Cost in Eq. (6.14) 

 

E[𝑇𝐶𝑈𝑖] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑟� + 𝑑𝐷𝑀2 +
ℎ𝑟𝑄𝐷𝑀1𝑀2

𝑥
 

                     +
ℎ𝑣𝐷𝑀2𝑄1−𝑏

𝑃(1 − 𝑏) �{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏 −
𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

(2 − 𝑏) � 

                     +
ℎ𝑣(𝑛 − 1)𝑄𝑀2

2𝐷
+
𝑐𝑀2(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏) +
ℎ𝑟𝑄(1 −𝑀1)

2
 

d
dQ

E[𝑇𝐶𝑈𝑖] = −
𝐷𝑀2

𝑄2 �
𝐴𝑣
𝑛

+ 𝐴𝑟� +
ℎ𝑟𝐷𝑀1𝑀2

𝑥
 

                     +
ℎ𝑣𝐷𝑀2𝑄−𝑏

𝑃
�{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏 −

𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}
(2 − 𝑏) � 

                     +
ℎ𝑣(𝑛 − 1)𝑀2

2𝐷
−
𝑐𝑏𝑀2𝑛−𝑏𝑄−1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃(1 − 𝑏) +
ℎ𝑟(1 −𝑀1)

2
 

d2

dQ2 E[𝑇𝐶𝑈𝑖] =
2𝐷𝑀2

𝑄3 �
𝐴𝑣
𝑛

+ 𝐴𝑟� 

                    −𝑏
ℎ𝑣𝐷𝑀2𝑄−1−𝑏

𝑃
�{1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏 −

𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}
(2 − 𝑏) � 

                   +
𝑐𝑏𝑀2𝑛−𝑏𝑄−2−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃
 

𝑛1−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏} > 0, since 𝑛 ≥ 1, 𝑖 ≥ 1, and 0 ≤ 𝑏 < 1. 

2𝐷𝑀2
𝑄3

�𝐴𝑣
𝑛

+ 𝐴𝑟� > 0,∀𝑄 > 0 , since all the other parameters are > 0 

𝑐𝑏𝑀2𝑛−𝑏𝑄−2−𝑏�𝑖1−𝑏−(𝑖−1)1−𝑏�
𝑃

> 0,∀𝑄 > 0 , since all the parameter are positive and 𝑖1−𝑏 −
(𝑖 − 1)1−𝑏 > 0,∀𝑖 ≥ 1 𝑎𝑛𝑑 0 ≤ 𝑏 < 1 

+𝑏 ℎ𝑣𝐷𝑀2𝑄−1−𝑏

𝑃
�𝑛

1−𝑏�𝑖1−𝑏−(𝑖−1)1−𝑏�
(2−𝑏) � > 0,∀𝑄 > 0, , since all the parameter are positive and 𝑖1−𝑏 −

(𝑖 − 1)1−𝑏 > 0,∀𝑖 ≥ 1 𝑎𝑛𝑑 0 ≤ 𝑏 < 1. 

 

 



188 
 

Observation 1

𝑓 = {1 + (𝑖 − 1)𝑛}1−𝑏 − {(𝑖 − 1)𝑛}1−𝑏 holds a maximum value of 1 when 𝑖 = 1 when  
𝑛 ≥ 1, 0 ≤ 𝑏 < 1. As i increase, f approaches zero. It approaches zero faster when n is large and 
b is close to 1. (the proof is below)  

: 

 

𝑓′ = (1 − 𝑏)(1− 𝑖){1 + (𝑖 − 1)𝑛}−𝑏 − (1 − 𝑏)(1 − 𝑖)1−𝑏𝑛−𝑏 ≤ 0,⇒ 

{1 + (𝑖 − 1)𝑛}−𝑏 − (1 − 𝑖)−𝑏𝑛−𝑏 ≤ 0⇒{1 + (𝑖 − 1)𝑛}−𝑏 ≤ (1 − 𝑖)−𝑏𝑛−𝑏⇒ 

 

�1+(𝑖−1)𝑛
(1−𝑖)𝑛

�
−𝑏

≤ 1  ⇒� 1
(1−𝑖)𝑛

+ 1�
−𝑏

≤ 1, True 

𝑓′′ = −𝑏(1 − 𝑏)(1 − 𝑖)2{1 + (𝑖 − 1)𝑛}−1−𝑏 + (1 − 𝑏)𝑏(1 − 𝑖)1−𝑏𝑛−1−𝑏 < 0⇒ 

−(1 − 𝑖){1 + (𝑖 − 1)𝑛}−1−𝑏 + (1 − 𝑖)−𝑏𝑛−1−𝑏 < 0⇒−(1− 𝑖){1 + (𝑖 − 1)𝑛}−1−𝑏 <

−(1 − 𝑖)−𝑏𝑛−1−𝑏⇒⇒(𝑖 − 1)1+𝑏 �1+(𝑖−1)𝑛
(𝑖−1)𝑛

�
−1−𝑏

> 1 for every i > 1 

 

Observation 2

Since the term 𝑏 ℎ𝑣𝐷𝑀2𝑄−1−𝑏

𝑃
→ 0 as Q increases (where 0<b<1, (D/P<1), M2 >0, hv>0), then from 

observations 1 and 2, we can safely assume that the impact of  𝑏 ℎ𝑣𝐷𝑀2𝑄−1−𝑏

𝑃
𝑓 in d

2

dQ2
E[𝑇𝐶𝑈𝑖] is 

insignificant as it is very close to zero.  

: 

Therefore,  𝑑
2

𝑑𝑄2
E[𝑇𝐶𝑈𝑖] > 0,∀𝑄 > 0, and Eq. (6.14) is convex with a unique minimizer.  
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APPENDIX 8 Hill (1997) Generalized Model 

The behavior of vendor’s inventory in the Hill’s (1997) generalized model is described in Figure 

6.1.  

The vendor’s total inventory in a cycle is 

𝐼𝑣 =
𝑛2𝑄2

2𝑃
+
𝑛𝑄2(𝑛 − 1)(𝑃 − 𝐷)

𝑃𝐷
−
𝑛(𝑛 − 1)𝑄2

2𝐷
=
𝑛𝑄2

2𝐷
�(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� 

So, the total annual cost of the supply chain would be 

𝑇𝐶(𝑄,𝑛) =
(𝐴𝑣 + 𝑛𝐴𝑏)𝐷

𝑛𝑄
+
ℎ𝑣𝑄

2
�(𝑛 − 1) − (𝑛 − 2)

𝐷
𝑃
� +

ℎ𝑏𝑄
2

 

or 

𝑇𝐶(𝑄,𝑛) =
(𝐴𝑣 + 𝑛𝐴𝑏)𝐷

𝑛𝑄
+ ℎ𝑣 �

𝐷𝑄
𝑃

+
(𝑃 − 𝐷)𝑛𝑄

2𝑃
� +

(ℎ𝑏 − ℎ𝑣)𝑄
2
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APPENDIX 9 Optimality of the Annual Cost in Eq. 7.16 

Let 

𝐶 = E[𝑇𝐶𝑈𝑖] =
𝐷𝑀2

𝑄
�
𝐴𝑣
𝑛

+ 𝐴𝑏� + 𝑑𝐷𝑀2 +
�ℎ𝑏+ℎ𝑣

′ �𝑄
2

�𝑛 +
𝐷
𝑃

+ 𝐷𝑀2 �
2𝑀1

𝑥
−
𝑛
𝑃
�� 

                 +
𝐷𝑀2

𝑃
�
ℎ𝑣{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}(𝑛𝑄)1−𝑏

2 − 𝑏
+
𝑐(𝑛𝑄)−𝑏{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

1 − 𝑏
� 

(A9.1) 

𝑋 = 𝐷𝑀2 �
𝐴𝑣
𝑛

+ 𝐴𝑏� ,𝑌 =
𝐷𝑀2{𝑖1−𝑏 − (𝑖 − 1)1−𝑏}

𝑃
 

Differentiating Eq.(A9.1) with respect to Q: 

𝑑𝐶
𝑑𝑄

= −
𝑋
𝑄2 +

�ℎ𝑏+ℎ𝑣
′ �

2
�𝑛 +

𝐷
𝑃

+ 𝐷𝑀2 �
2𝑀1

𝑥
−
𝑛
𝑃
�� +

(1 − 𝑏)ℎ𝑣𝑌𝑛1−𝑏𝑄−𝑏

2 − 𝑏
−
𝑏𝑐𝑛−𝑏𝑌𝑄−𝑏−1

1 − 𝑏
 

𝑑2𝐶
𝑑𝑄2 =

2𝑋
𝑄3 −

𝑏(1 − 𝑏)ℎ𝑣𝑌𝑛1−𝑏𝑄−𝑏−1

2 − 𝑏
+
𝑏(1 + 𝑏)𝑐𝑌𝑛−𝑏𝑄−𝑏−2

1 − 𝑏
 (A9.2) 

From the other Appendices, we know that the bracket of i in Y is positive. The first term in Eq. 

(A9.2) is positive. So, we are left to prove that  

−
𝑏(1 − 𝑏)ℎ𝑣𝑌𝑛1−𝑏𝑄−𝑏−1

2 − 𝑏
+
𝑏(1 + 𝑏)𝑐𝑌𝑛−𝑏𝑄−𝑏−2

1 − 𝑏
> 0 

𝑏(1 + 𝑏)𝑐𝑌
𝑛𝑏(1 − 𝑏)𝑄𝑏+2

−
𝑏(1 − 𝑏)ℎ𝑣𝑌

𝑛𝑏−1(2 − 𝑏)𝑄𝑏+1
> 0 

(1 + 𝑏)𝑐
(1 − 𝑏)𝑄

−
(1 − 𝑏)𝑛ℎ𝑣

(2 − 𝑏) > 0 

Substituting 𝑖𝑐/𝐷 for ℎ𝑣, where 𝑖 is the interest rate: 

(1 + 𝑏)𝑐
(1 − 𝑏)𝑄

−
𝑛(1 − 𝑏)
(2 − 𝑏) �

𝑖𝑐
𝐷
� > 0 

(1 + 𝑏)
(1 − 𝑏)𝑄

−
𝑛(1 − 𝑏)
(2 − 𝑏) �

𝑖
𝐷
� > 0 (A9.3) 

Rewriting expression (A9.3) 
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(1 + 𝑏)
(1 − 𝑏) >

𝑛𝑖(1 − 𝑏)
(2 − 𝑏) �

𝑄
𝐷
� 

(1 + 𝑏)(2 − 𝑏)
𝑖(1 − 𝑏)2 >

𝑛𝑄
𝐷

 

The right hand side in the above expression is the cycle time (T ) in years, in our model in 

chapter seven. So, the condition for a convex annual cost would be: 

𝑇 <
(1 + 𝑏)(2 − 𝑏)
𝑖(1 − 𝑏)2  (A9.4) 

The above condition was tested for ten thousand examples through a simulation by choosing 

random interest rate (between 1% and 50%) and learning exponent (between 0 and 0.95), which 

resulted in a reasonable number for T (in years). Thus, the annual cost can be assumed to be 

positive.  
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	4.3.1 Lost sales for partial transfer of learning
	It should be noted that the length of a cycle with learning in screening is independent of the fraction of defectives. Appendix 4 provides a proof of concavity of Eq. (4.15).
	4.3.2 Lost sales for total transfer of learning
	4.3.3 Lost sales for total forgetting
	Eq. (6.14) is convex in Q (see Appendix 7 for proof). We assume that the learning in the vendor’s production process plateaus to some extent after ten cycles. Mathematica 5 will be used to find an optimal batch size and the number of shipments from Eq. (6.14), with the steps given below:
	and vendor’s expected annual cost is

