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Abstract  

Title of the thesis: Development of a Micromirror Based Laser Vector Scanning Automotive 

HUD 

Name: Fan Chao 

Master of Applied Science, Mechanical Engineering, Ryerson University, 2011 

 

Head-Up-Display (HUD) for automobiles is a system that displays the driving information 

such as the speed, fuel level, turning signal, GPS, etc on the windshield or on the road through a 

virtual image. With HUD, the driver does not need to lower his head to check the front panel for 

driving information and thus the driver can have a longer eyes-on-road time to improve the 

driving safety and comfort. LCD (Liquid Crystal Display) and VFD (Vacuum Fluorescent 

Display) based HUDs dominate today’s automotive HUD market. In this thesis, a novel 

micromirror laser vector scanning HUD is developed for automobiles, which has the advantages 

over existing technologies including: 1) Higher brightness and contrast; 2) Wider angle of view; 

3) Smaller size; and 4) Lower cost.  
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Chapter 1 Introduction 

1.1 What is head up display  

  Head Up Display (HUD) is a system that allows the pilot or the driver to obtain useful 

information without bending down their head to look at the front panel or the dash board. As a 

result, the operator can keep their eyes focusing on the view in front which significantly 

improves the driving safety and comfort. HUD evolved from the reflector sight which is used in 

the military helicopters and the fighters. The reflector sight is an optical device that can project a 

cross hair on the gun sight or on a piece of glass in front of the pilot. This kind of reflector sight 

appeared during the First World War and was widely used in the Second World War. The HUD 

was developed then for the military purpose which can project the computed gunnery solutions, 

radar information, and artificial horizontal on the windshield or a piece of reflective glass in front 

of the pilot. In 1975, the HUD was first used for civil purpose by Sextant Avionique, a main 

equipment supplier of civil and military avionic systems for the Dassault Mercure aircraft in 

1975. In later 1970s, HUD was used in the MD80 series aircraft of Douglas Aircraft Company. 

By the end of the 20
th

 century, the HUD system has been widely used in the aircraft.  

 

Figure 1.1 The HUD on Airbus A350 [1] 
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Figure 1.2 HUD on Boeing 737-800 [2] 

 

Figure 1.3 The HUD on F16 fighter [3] 

 

1.2 Automotive HUD 

 The 1988's Oldsmobile Cutlass Supreme by GM was the first car that equipped with HUD. 

Since increasing car number, the workload for the driver becomes heavier. With the development 

of car industry driving safety related information such as GPS, tire Pressure, car reverse radar, 

outside temperature, driving comfort information such as radio channel, music name, air 

conditioning temperature  are provided to the driver. The large quantities of information which 

are displayed on the front panel increase the frequency and time the driver look down the 
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dashboard which will add more burdens to the driver. Automotive HUD as a resolution which 

was used mainly on the aircraft before begin to attract many companies attention. Major car 

companies in the world all bring out cars installed with HUD, such as BMW 5-series, 7-

series,M-series [4]; Lexus RX-series [5]; GM chevrolet covette-series [6]; Peugeot 3008-series 

and 5008-series [7].  

 

Figure 1.4 The HUD on BMW 5-series [6] 

 

Figure 1.5 The HUD on Peugeot 5008 [7] 
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1.3 Advantages of the HUD compared to HDD 

 The traditional dashboard display system is the head down display (HDD) which is always 

compared with the HUD. It has been proved that HUD improves the driving safety and comfort. 

The advantages of the HUD compared with HDD are shown below. 

 HUD has a shorter accommodation time when the drivers obtain necessary driving 

information. In another word, HUD can achieve a longer eyes-on-road time which increase the 

driving safety. The process of getting information is composed of 3 stages. First the drivers need 

to move their eyes from the road to the display. Then focus on the display for a while to obtain 

information. At last, the eyes transit from the display back to the road again. The time cost of 

HUD and HDD on this process is compared under the low workload situation and a HUD time 

benefit window was concluded by R.J. Kiefer. In Kiefer's study [8,9], the process of getting 

information is defined as speedometer scanning cycle (SSC). In his experiment, the mean time of 

SSC for HUD is 777ms which is 144ms faster than HDD. The mean display fixation time for 

HUD is 619ms which is 711ms for the HDD.   

 

Figure 1.6 HUD time benefit window [8] 

 Another more reliable study of HUD and HDD is performed by Markus [10]. JANUS eye 

tracking system is used to measure the total eye gaze time, gaze frequency, and gaze duration 

time.  
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Figure 1.7 JANUS eye tracking system [10] 

 It has been proved that by using HUD 15%-20% reduction of the gaze retention on the 

display can be achieved compared to HDD in uncritical situation. In a heavy traffic situation, the 

reduction can be up to 25%. Also, their results show that HUD is more helpful to the older 

drivers whose ages are between 51 and 60. The information collection using HUD can be 200ms 

faster.  

 

Figure 1.8 Gaze retention periods according to age [10] 
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Another simulation experiments performed by Yung-Ching Liu and Ming-Hui Wen [11] enhance 

the result that HUD enable drivers to have a faster emergence response time and maintain the 

vehicle speed to a more consistent level.  

Table 1.1 Performance measures for HUD vs. HDD in driving load conditions [11] 

 

 Also HUD can display more information than the HDD. Functions such as GPS information 

for navigation [12,13], road sign recognition [14], and object recognition on the road can be 

displayed by the HUD while some of them are impossible to integrate on the dashboard. That 

information will provide driver with a full driving information system that will improve the 

driving safety and the comfort.   

    

Figure 1.9 The GM augmented reality full windshield display prototype [14] 

 

1.4 Classification of the HUD technology and their working principle 

 A HUD system is composed of 2 parts, the display module and an optical system. The 

desired images are generated by the display module first. Then the images source is processed by 

a series of optical system to form the image on the windshield.  
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 According to the image-forming principles, the HUD can be classified into 2 types. One is to 

form a real image on the windshield [15]; the other one is to form a virtual image behind the 

windshield [16].  The real image HUD forms a real image on the windshield, shown in Fig. 1.10. 

 

Figure 1.10 Real image HUD 

 The virtual image HUD forms a virtual image in front of the windshield, above the engine 

hood, see Fig. 1.11.  

 

Figure 1.11 Virtual image HUD 
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According to the display module, the HUD can be classified as follows. 

(1) Emissive displays, such as cathode ray tube (CRT), organic light-emitting diode (OLED), 

vacuum fluorescent display (VFD)  

(2) Backlit display, such as liquid crystal display (LCD)  

(3) Laser display, such as Liquid crystal on silicon (LCoS) and micromirror based laser 

scanned displays.  

 CRT is first used for the head up display. However, because of the bulky volume of the 

device, high power consumption and harmful radiation, it had been replaced by LCDs [17]-[19]. 

Nowadays, LCD based head up display share most part of the aircraft HUD market. VFD and 

LCD HUD share most part of the automotive HUD market because of their compact size and low 

cost. However, VFD is limited mainly by the amount of information it can display. LCD HUD is 

limited by the brightness. New emitting display technology OLED can generate a transparent 

display on a thin layer and is brighter than LCDs which is suitable for real image HUD [20]-[21]. 

However, its display is limited because of its low brightness, high cost and relative short life time. 

Compared with the emitting and backlight display, laser display is superior.  

 Laser is a monochrome, directional light generated by optical amplification process. Because 

of its highly directional, the laser beam has high power density which can generate brighter 

display compared to the traditional display methods. Laser based HUD is superior because it can 

form a high contrast ratio display, which means a better visibility. Contrast ratio is an important 

performance characteristic for HUD which is defined below: 

luminanceDisplay 

luminance  worldReal-luminanceDisplay 
ratiocontrast                         (1.1) 

 Display luminance is the luminance of the displayed light that reaches the driver or pilot’s 

eyes. Real world luminance is the ambient luminance of the real world. The preferable HUD 

contrast ratio is 1.3. Any ratio below 1.2 will cause a dim display. An excessive contrast ratio 

will cause an opaque display which will be a problem when driving at night or low luminance 

condition. When driving in the sunny day and towards the sun, the real world luminance can be 

very high which requires a high display luminance. While most of the other display methods 
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cannot produce a qualified display, the laser based head up display can still achieve a good 

performance due to the high power density of laser. Also, laser based HUD has the ability to 

display a large amount of information.  

 The laser based techniques can be divided into 2 main categories. One is the hologram 

display which uses the LCoS as its main component [22]. The Light Blue Optics (LBO) 

Company is developing projection and HUD products using LCoS [23]. The basic principle of 

this technique is as follows. Assume we want to generate an image Fxy, we transform the image 

Fxy into image huv which is displayed on the LCoS. Illuminated by a laser beam, the desired 

image Fxy can be displayed by two-dimensional diffraction.  

 

Figure 1.12 The principle of hologram display [23] 

 

Figure 1.13 Image formed using LBO's holographic laser HUD, captured in daylight [24] 

 The other laser based HUD technique is using the rotational micromirror which is a Micro-

Electro-Mechanical systems (MEMS) product to control the laser beam to scan a certain 2D area.  

There are two types of display method of laser scanned display, vector display and raster display 

which corresponding to two types of micromirror, non-resonant micromirror and resonant 

micromirror. Laser vector display means that the laser spot keeps scanning arbitrary points which 
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form the patterns periodically. If the scan speed is fast enough, stable shapes can be formed. 

Laser raster display means that the laser spot scans a certain area line by line. In the raster 

display, each point is one pixel on the image. Laser brightness is modulated in different pixel to 

generate the desired image. The disadvantage of the vector display is that it only can display the 

outline of the objects and the amount of the displayed content is limited by the scan speed. 

Nowadays, most of the commonly used display equipment such as the TV and projector are 

using the raster display which can provide more image information. However, for the HUD 

application, vector display had been widely used in the aircraft for the reasons below. First, a 

brighter display can be achieved because limited information needs to be displayed as simple 

shapes and the vector display allows a slower scan, consequently a brighter image. Then 

transparency of the display region is an important safety factor. Raster display in preferred HUD 

display ratio may cause an opaque region. However, this can be avoided by turning off the laser 

in the regions which do not contain the useful information. In this point, the vector display and 

raster display don’t have a big difference in HUD. In addition, the laser based raster display 

requires a higher power laser which consumes more power and has a potential safety problem. In 

this case the vector based display is more suitable for HUD.  

 The micromirror used for vector HUD and raster HUD have the common character that they 

are both rotational and can steer the laser beam to scan through a 2D area.  

 

Figure 1.14 The working principle of micromirror scanned displays 
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As shown in Fig. 1.14. The micromirror plate is actuated by MEMS actuators such as 

electrostatic actuator, electromagnet actuator, and piezoelectric actuator and can rotate with 

respect to two perpendicular axes X and Y. With the rotation of the micromirror, the emergent 

laser beam is able to scan through a 2D plane. By controlling the micromirror rotation, desired 

displays can be drawn by the emergent laser beam.  

 The difference of micromirror for vector HUD and raster HUD is that they work in different 

principles. The micromirror used for the raster HUD works in the resonant mode which means 

when the micromirror is working; the micromirror is controlled to vibrate with two axes in 

different manners and in specific frequencies all the time [28]-[30]. The combination of the two 

vibrations enables the micromirror to scan through a 2D area line by line, shown in the Fig.1.15.  

 

Figure 1.15 2D area scanned by the laser 

 In this scan scheme, to achieve the biggest scan area and fastest scan speed, one of the axes 

of micromirror is vibrating in the resonant frequency. This resonant vibration working 

mechanism is defined as resonant mode. Opposite to the resonant mode is the non-resonant mode 

which is usually used for the vector display. When working, the micromirror is controlled to 

steer the laser beam goes to the desired point on the 2D plane after stabilized goes to another 

point. If the laser beam is controlled to scan a group of points in order and fast enough, the 

shapes can be displayed then by the laser path. Some micromirror can just work in one mode and 

some micromirrors can work in both mode.  

  One of the examples of raster display HUD is the vehicle HUD from Microvision Company 

[25,26]. A two-axis electromagnetic actuated micro-scanner is used to reflect and control the 

laser beam to perform scanning. Another example of raster laser display is developed by 
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Mirrorcle company which use the electrostatic comb-driven micromirror to display and can 

perform vector display and raster display. 

       

                         (a)                                                                       (b) 

 (a) Electromagnet driven micromirror (b) HUD prototype by MicroVision 

Figure 1.16 The micromirror based HUD from MicroVision 

             

                  (a)                           (b)                            (c) 

 (a) Electrostatic driven micromirror (b) Vector display (c) Raster display 

Figure 1.17 The micromirror based display from ARI [27,28] 

 The vector display HUD product has not appeared in the market yet. This paper will develop 

a micromirror based vector display HUD system. The micromirror used here is an electrostatic 

repulsive force actuated micro-mirror designed by Siyuan He [32]-[35]. The micromirror is 

driven by 4 repulsive actuators and can steer the laser beam to scan a 2D plane. 

 Above all, compared to all of the other HUD display techniques, the micromirror based 

vector HUD has some advantages. First, the laser display can generate higher brightness images 
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compared to the LCD and OLED display. The brightness is usually 5-10 times of the LCD and 

OLED. For laser vector display, the laser beam just focus on the desired trajectories which can 

generate even brighter display than the laser raster display. Second, the micromirror based laser 

scanned display has a bigger angle of view which is 5-10 time bigger than the traditional HUD 

such as LCD HUD and OLED HUD. Third, the micromirror based HUD can form both real 

image and virtual image which makes it flexible. However, the mainly used LCD HUD can only 

generate virtual image display which cannot be used for some vehicle such as trucks. Different 

from sedan, the windshield for the truck is almost flat and vertical. From the image forming 

principle of flat mirror, it is hard to setup the HUD. So micromirror based HUD has more 

flexibility. Also the micromirror based HUD module has a much smaller volume than the LCD 

HUD. Because of the curvature of the windshield, a compensational optics is needed to generate 

an undistorted image on the windshield which increases the volume of the HUD module. For the 

micromirror based vector HUD, a pre-distorted image can be produced by compensating in the 

control signal, which does not need the compensational optics. The small size of the electrostatic 

micrormirror whose diameter is 1mm can largely reduce the HUD system volume.  At last, the 

polysilicon multiuser MEMS process (PolyMuMps) fabrication process of the micromirror can 

make low coat production which results a relative low cost of the HUD system.     

  

1.5 Literature review of the micromirror control  

 Control is necessary for the micromirrors for several reasons. One reason is that micromirror 

is a damping system, which means when moving from one desired position to another; the 

micromirror will have overshoot and oscillation. If this oscillation is not restricted, the display 

will have distortion. Another reason is that, for the electrostatic attractive force driven 

micromirror there is a “pull in” phenomenon [36,37]. Close loop is usually performed to 

eliminate the pull in phenomenon. “Pull in” phenomenon means that the micromirror will be 

snapped down and stick to the electrode when the micromirror is close to the electrode. The 

touching of the micromirror and the electrode will cause a short circuit to the driving equipment 

and may damage both of the driving equipment and the micromirror. Driven by the open loop 

scheme, the tilt angle of the micromirror is limited beyond the pull in point which leads to a poor 
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optical performance. It this case close loop control is necessary for this kind of micromirror. For 

the electrostatic repulsive force micromirror talked in this paper, “pull in” phenomenon does not 

exist. To overcome the oscillation and the overshoot is the main purpose for control. Because 

many of the control literatures are about how to eliminate the pull in phenomenon and the control 

process of which are also valuable to our control research, those papers are also studied below.  

 Open loop and close loop control are the two control schemes usually used for the micro-

device like micromirror control [39]. Each scheme has its own advantages and disadvantages. 

Open loop control uses the pre-designed signal to drive the micromirror directly which does not 

require a high computational controller and the feedback mechanism. So the open loop 

controlled system can be implemented by simple microprocessor without the feedback 

mechanism. Close loop control requires a feedback back sensor which is usually expensive and 

increases the complexity and the volume of the system. However, using close loop control, a 

large operation range, more accurate positioning, fast response, small overshoot and disturbance 

restricted system can be achieved. In some high performance required applications close loop 

control is essential. In this case which control method to use is decided by the specific 

application and system requirement. 

  Widely used open loop control method for the micro-device is the input shaping control (or 

pre-shaped control). This control method is first used to improve the dynamic behavior of the 

linear macro-scale devices. The theory of the input shaping for linear system has been well 

developed such as zero vibration shaper (ZV) [40], Zero vibration derivative shaper (ZVD) [41], 

and extra insensitive shaper (EI). Then Borovic B. [38] uses the input shaping method to the 

micro-devices (MEMS product). However, because of the nonlinearity of most of the MEMS 

devices, the previous developed linear throes of input shaping cannot be used. Mohammed F. 

Daqaq [42] developed an iterative algorithm for a nonlinear tensional electrostatic micromirror. 

Simulation result showed a good performance of their algorithm. However, experiment had not 

been performed to validate their algorithm and the control performance is highly dependent on 

the accuracy of the plant model which is not possible but time consuming and costly to obtain.  

 Closed loop of the micromirror attracts more attention to the researchers because the 

excellent performance they can achieve.  Because of the nonlinearity of the  electrostatic force 

with the driving voltages, most of the electrostatic micromirrors  are nonlinear systems which 
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linear control scheme such as proportional-integral-derivative (PID) controller are not suitable to 

control the micromirror in a large operating range. However, linear controllers which are easy to 

be implemented work well in a small linear operation range.  

 Nonlinear control is widely studied due to its good performance. Adaptive control which is 

an online parameter self updating method is applied to a 1D electrolstatically driven torsional 

micromirror by K.P. Tee [43] and Ke-Min Liao [44]. For Ke-Min Liao’s [44] work, the 

Simulation result shows that the adaptive controller has better performance in step response and 

in trajectory following compared to the open loop control and PID controllers. Experiment is 

performed and verifies the controller can be practically achieved. However, no detailed real-time 

performance of the controller is given. Only simulation result is given by K.P. Tee [43].variable 

universe adaptive fuzzy logic controller (ADFL) which use the fuzzy logic is introduced, which 

extend the micromirror control area. Further study is needed about this control method. Sliding 

mode controller is used to control electrostatic micromirrors [44]-[47]. 

 

1.6 Thesis objectives 

 The objective of the thesis is to design a micromirror based laser scan HUD system. The 

work is composed of two parts. The first part is to design a control system for the display module. 

The second part is to build a hardware setup for the HUD system. Real image HUD and virtual 

images HUD are both built as well. Between the two objectives mentioned above, control of the 

micromirror has the first priority. Because of the complexity of the micromirror dynamic and the 

costly process to create the model, the dynamic model of the micromirror will be not fully 

studied in this thesis. However, an estimation of the system model will be done. Time response 

and frequency response of the micromirror system will be studied to have an estimation of the 

system model. A model free open loop control algorithm is developed. The requirement for the 

open loop is to design a simple open loop algorithm that is easy to implement. FPGA is used to 

implement the control algorithm. The algorithm should also lead to a minimum distorted image 

which means the control algorithm should reduce the overshoot as much as possible.  
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 The second task of the thesis is to study and build the optical setup of the HUD system. The 

optical system is designed to obtain a high contrast ratio and clear display. The whole HUD 

system then will be tested on the windshield to evaluate the performance.       
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Chapter 2 The introduction of the micromirror 

2.1 The working principle of the micromirror 

The micromirror is fabricated using the mature surface micromachining process, polysilicon 

multiuser MEMS process (PolyMuMps). It is composed of 4 electrostatic repulsive force 

actuators and a mirror plate. The actuator is composed of unaligned fixed finger electrode, 

aligned fixed finger electrode and the moving finger electrode. The aligned fixed finger electrode 

and the moving finger electrode are connected and are always applied the same voltage, while 

the voltage on the unaligned fixed finger electrode is different. 

The mirror plate is operated by 4 actuators. A rectangular coordinate system can be built on 

the mirror plate. The origin of the coordinate O lies on the center of the mirror plate and XOY 

plane is parallel to the substrate, see Fig. 2.1. The actuators are named as North, East, South and 

West and they can be divided into 2 groups, North-South and East-West. North side and South 

side actuators control the mirror plate to rotate with respect to Y axis; East side and West side 

actuators control the mirror plate to rotate with respect to X axis. Combing the 2 rotations around 

X and Y axis, the mirror plate can rotate to an arbitrary angle inside the tilt range. This working 

principle allows the micromirror to steer the laser beam to scan through a 2D area, see Fig 2.1.            

 

Figure 2.1 The electrostatic repulsive force actuated micromirror 
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2.2 Design the driving method of micromirror 

The operating voltages for the actuators are 0V-200V. 0V corresponds to the zero 

displacement of the actuator and 200V corresponding to the maximum displacement. The driving 

voltages for the actuators are denoted as VN, VE, VS, VW and can be divided into 2 groups same 

as the actuators, VN~VS and VE~VW. VN~VS drive the mirror plate to rotate with respect to Y axis 

and VE~VW drive the mirror to rotate with respect to X axis.  

Assume there is a laser beam shooting on the micromirror in a fixed angle. The rotation of 

the micromirror can enable the laser beam to scan through a 2D plane in front of the micromirror. 

A rectangular coordinate system is built on the 2D plane which defines the scanning area of the 

laser beam. The origin of the coordinate is decided by the laser spot reflected by the micromirror 

on the 2D plane when the micromirror is in its initial position. The initial position of the 

micromirror is the position from which the micromirror begins to rotate. Because the symmetry 

structure of the micromirror, the South-North actuators is used to explain the different driving 

method, see Fig. 2.2, assuming East-West actuators are not actuated.  

 

Figure 2.2 The micromirror working principle 

There are 2 driving strategy for the micromirror to perform the display function. The first 

one is when the micromirror is working, one of the driving voltages belong to one group is fixed 

while the other one changes, called fixed voltage method. The other one is that the driving 

voltages belong to one group change at the same time, called changing voltage method. The 

displacement difference of the actuators in the same group, decides the rotation angle of the 
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micromirror. The larger the displacement is, the greater the rotation angle is.   

For the fixed-voltage method, in order to have a maximum rotation angle, the fixed voltage 

should either be 0V or 200V so that the maximum displacement can be achieved. Take North-

South drive for example, when VN is chosen to be the fixed voltage which is 0V, increasing VS 

will drive the laser spot to move to the positive direction of X axis from the origin on the 2D 

plane. In the same fashion, if VS is chosen to be the fixed voltage which is 0V, increasing VN will 

drive the laser spot to move to the negative direction of X axis from the origin. Another fixed 

voltage driving method is to set the initial value of the 4 driving voltages to 200V, which will lift 

the micromirror to the biggest displacement to the substrate. From this initial position the 

micromirror begin to rotate. Still take North-South actuators for example, when VN is fixed to 

200V, decreasing VS will drive the laser spot move to the negative direction of X axis. When VS 

is fixed to 200V, decreasing VS will drive the laser spot move to the positive direction of X axis.                          

       

(a)                     (b)             (c) 

 Figure 2.3 Driving methods of the micromirror  (a) Fixed voltage driving method, fixed 

voltage is set to 0V (b) Fixed voltage driving method, fixed voltage is set to 200V (c) 

Changing-voltage driving method, initial voltage is set to75V 

The other driving method is the changing-voltage driving method. The micromirror is lifted 

to a certain height which is approximately half of the maximum height. When the micromirror 

begins to work, the control voltages belong to one group change the same absolute value, but in 

different direction. Take North-South for example, before driving initial voltage V0 is applied to 

all of the actuators to raise the mirror plate to a certain height. Then if VN increase bias voltage 

ΔV, VS will decrease bias voltage ΔV1, shown in Eq. (2.1)-(2.2).  VE and VW have the same 

fashion, shown in Eq. (2.2)-(2.4). In this case, the micromirror will rotate with respect to Y axis.  
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10 VVVN                                                                  (2.1) 

10 VVVS                                                                (2.2) 

20 VVVE                                                               (2.3) 

                   20 VVVW                                                               (2.4) 

The changing-voltage driving method has some advantages compared with the fixed-voltage 

driving method due to the characteristic of the micromirror. First, the fixed-voltage method will 

lose control to the micromirror when the mirror plate is controlled to go back to a smaller 

rotation angle from a big rotation angle. However, the changing-voltage method has the control 

of the micromirror all the time. Because the actuators use the electrostatic repulsive force to 

drive the micromirror, it can just provide the lift up force. In the fixed-voltage driving method, 

when the mirror plate rotates from a big angle to a smaller angle, the electrostatic repulsive force 

disappears and the free end of mirror plate will be snapped down by the gravity. In this case, the 

mirror plate is driven by the electrostatic force when it tilts up and driven by gravity when it tilts 

down. The different characteristics of the driven force may cause the different dynamic 

characteristic when the mirror plate is rotating. It has been proved that the lifting up electrostatic 

force is much bigger than the snapping down gravity which means the falling process of the 

mirror plate is much slower than the rising process. In this case, the falling process is treated as 

out of control, because no matter what voltage is applied, this process cannot be controlled. The 

changing-voltage driving method can overcome this defect, because whatever the mirror rotate, 

there is always a repulsive force applied to one end of the mirror so that we can control the tilting 

speed through the driving voltages. The second advantage of the changing-voltage driving 

method is that for the same laser incident angle the changing-voltage method can achieve a 

bigger scanning range. The proof is shown below.  
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Figure 2.4 Changing-voltage driving method 

Shown in Fig. 2.4, assume the radius of the mirror plate is l and there is a plane which is 

parallel to the substrate. The distance between this plane with the substrate of the micromirror is 

d. For the analysis simplicity the incident laser beam is treated as a thin straight line which 

means the diameter of the laser beam is ignored. The laser beam is assumed to shoot just onto the 

center of the mirror plate. The incident angle of the laser beam is assumed to be θ1, and the tilt 

angle of the micromirror is assumed to be θ. The relationship between the tilt angles of the 

micromirror with laser spot displacement on the 2D plane can be found based on the assumption 

above.   

For the changing-voltage driving method, the mirror plate rotate θ degree with respect to its 

center O. OO1 is the normal of the mirror plate at its initial position and OO2 is the normal of the 

mirror plate after rotation. A1O is the incident laser beam. OB1 is the emergent laser beam with 

respect to OO1 and OC1 is the emergent laser beam with respect to OO2. It can be proved that 

∠ B1OC1 equals to 2θ and ∠ OB1C1 equals to π/2+θ1. From ΔO1OB1 we can have: 

1cos

d
OB                                                                    (2.5) 

From ΔO1OC1 we can have: 
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)2cos( 1  


d
OC                                                           (2.6) 

Using sine theorem in ΔB1OC1 and substituting OB1, OC1 into equation, we can have the 

displacement of laser spot B1C1. 

)2cos(cos
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CB                                                    (2.7) 

For the fixed-voltage driving method (see Fig. 2.5), the mirror plate rotate θ degree with 

respect to one of its end, E2 for example here. O'O1' is the normal of the mirror plate at its initial 

position and O'O2' is the normal of the mirror plate after rotation. A2O' is the incident laser beam. 

O'B1' is the emergent laser beam with respect to O'O1' and O'C1' is the emergent laser beam with 

respect to O'O2'. It can be proved that ∠ B2D2C2 equals to 2θ and ∠ D2B2C2 equals to π/2+θ1. 

O'B2 is the same as changing-voltage method. In ΔF2O'E2, ∠ F2O'E2 equals to π/2+θ1 and 

∠ F2O'E2 equals to θ, sine theorem can be used to obtain O'F2.  
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In ΔO'F2D2, ∠ F2D2O' is 2θ, ∠ O'F2D2 is π-2(θ1+θ), sine theorem can be used to obtain D2O'.  
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In ΔD2B2C2, ∠ C2D2B2 is 2θ, ∠ D2B2C2 is π/2+θ1, sine theorem can be used to obtain the 

displacement of laser spot B2C2. 
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 Figure 2.5 Fixed voltage driving method (fixed voltage is set to 0V) 

Comparing Eq. (2.7) and Eq. (2.11), it can be concluded that changing-voltage driving 

method can lead to a bigger laser spot movement than fixed voltage method.  

 

2.3 Time response of the micromirror   

The model of a plant is very important for analyzing the physical system and designing 

control system. However, the micromirror system (including the magnification lens) is a non-

linear system which makes it difficult to build a mathematical model. The nonlinearity of the 

system comes from 3 parts. The first one is the non-linear relationship between the driving 

voltage and the rotation angle. The second one is the changing damping ratio when the 

micromirror is rotating. The damping of the micromirror comes from 2 sources. One is the 

mechanical damping which is nearly a constant. The other one is the damping caused by the air. 

The gap between the mirror plate and the substrate is very close and when the air between the 

mirror plate and the substrate is compressed or decompressed it will apply a non-linear friction to 

the micromirror. Also the lens in front of the micromirror increases the non-linearity of the 

system.   

  However, as a control system, instead of modeling the micromirror from mathematical 

deduction, the micromirror performance can be studied from experiments. The experiments here 
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refer to the time response test and frequency response test. Both of them treat the micromirror 

system as a black box and different designed test input signals are given to the micromirror and 

corresponding output of the system is measured and recorded. By studying the relationship 

between the system input and output and using the time responses and frequency responses 

analysis method from control theory, a rough model of the micromirror can be assessed.  

The time response of the micromirror consists of 2 parts, the transient response and steady-

state response. The transient response is the process that the output of the system goes from the 

initial state to the final state. The steady-state response is the manner of the system output when 

the time approaches infinity.  

 

2.4 The transient response of the micromirror 

2.4.1 The setup of the experiment 

The hardware setup for the calibration is shown in the Fig. 2.6 below. The driving signals 

are sent out by the analog output of NI PCIe-7852R board which is installed into a PCI express 

slot of the PC mother board. The analogy output and input can be controlled by the FPGA on the 

board. The output of NI PCIe-7852R board is 0V~2.5V linear driving voltages. The driving 

voltages are then amplified 60 times to 0V~ 150V by the Bias-Differential Quad-Channel (BDQ) 

amplifier to drive the micromirror. A 532 nm and 5 mW green laser is used to shot onto the 

mirror plate. A 900nm pin hole is used to limit the diameter of the laser so that the laser spot is 

small enough to just lie inside the mirror plate. The PSD (Position Sensing Detector) and On-

Tark OT-301 position sensing amplifier is used to detect the position of the laser spot. The PSD 

is an optical sensor, which can detect the position of the laser spot in the active sensing area. The 

PSD returns the x and y coordinates of the laser spot on the sensor as the form of analog voltages. 

The output of the PSD is usually proportional to the laser spot position. The On-Tark OT-301 

position sensing amplifier is used to process the output signal from the PSD to reduce the noise 

and make the output voltage range suitable to use. The X and Y information of the laser spot is 

then send to the analog input port NI PCIe-7852R to be processed and saved.  
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 Figure 2.6 Setup for calibration 

2.4.2 The experiment design 

The test signal for the time response is always chosen to be the form of the input under 

which the system is frequently operated. Here step signal is chosen to be the test input. The time 

response is tested based on the driving method discussed in section 2.2. In this case, the 

micromirror system has 2 input control voltages, VW, VS and 2 outputs X and Y coordinate of the 

laser spot on the sensor. The transient response of a system depends on the initial condition. 

Driven by changing-voltage method, the initial condition of the system is when all of the 

actuators are applied 75V voltage and the mirror plate is parallel to the substrate. VS controls the 

micromirror to rotate along Y axis and VW controls the micromirror to rotate along Y axis. The 

driving axis X and Y are tested separately and 2 sets of experiments are designed for the 

transient response test.  

The first set of the experiment is used to test the performance of North and South actuation, 

driven by which the laser spot moves along Y axis of the sensor. Bias voltage ∆V1 is used to 

generate the step control signal VS, as described in Eq. (2.1)-(2.4). When VS and VN is given a 

step control signal, VW and VE is fixed to be 75V. The second set of the experiment is used to 

test the performance of West and East actuation driven by which the laser spot moves along X 

axis of the sensor. Bias voltage ∆V2 is used to generate the control voltage Vw, as described in 

Eq. (2.1)-(2.4).  When VW and VE are given step control signals, VN and VS is fixed to be 75V. 

Each ∆V (∆V1 or ∆V2) can generate a step signal of driving voltage (VS or VW), shown in figure 

below.   
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 Figure 2.7 Driving voltage generated by bias voltage 

In the experiment, the incensement of ΔV1 and ΔV2 is 6V. VS and VW change in this fixed 

incensement from -36V to 36V, which generates 12 sets of step test voltages. Fig. 2.8 shows the 

active sensing area. A rectangular coordinate has been built on it. The origin of the coordinate 

lies in the center of the sensor. When the micromirror is at its initial position the laser spot lies at 

the origin. Driving the laser spot moving along X axis is called X axis driving and driving the 

laser spot moving along Y axis is called Y axis driving. When ΔV1 is bigger than zero, VS is 

bigger than 75V, VN is smaller than 75V and the laser spot will move along the positive Y axis. 

Otherwise when ΔV1 is smaller than zero, the laser spot will move along the negative Y axis. In 

the same fashion, when ΔV2 is bigger than zero, the laser spot will move along the negative X 

axis, otherwise the laser spot moves along the positive X axis.  

 

 Figure 2.8 Moving direction of the laser spot 
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For each test, only the paired 2 actuators are driven and 35Hz square wave is applied to the 

corresponding actuators, shown in Fig 2.9. The test signal is designed to be the square wave in 

order to observe repeatable experiment results. In Fig 2.9 the left coordinate represents the 

sensing area,, and the left coordinate shows the driving square of one period. The solid signal is 

VS and the dashed signal is VN. Taking Y axis actuation for example, for one period of the 

driving voltages shown below, the solid line is VS and the dash line is VN, they are generated by 

bias voltage ΔV1 and the signals are symmetry to 75V voltage line. The point I is the initial 

condition of the micromirror and all of the actuators are applied 75V at this time, the laser spot is 

located at the origin of the sensor. For the first half period of driving signal shown in Fig 2.9, the 

laser spot is driven from origin to some point P on positive Y axis by a step input ∆V. After 

holding the voltage level for enough time and the micromirror has already settled down, the test 

signal goes into the second half period and a second step input -∆V is given. The laser point will 

go back from point P to origin.            

 

 Figure 2.9 Moving direction of the laser spot 

The square transient response test signal and the reading from the PSD sensor for Y axis and 

X axis test are shown below which is captured and recorded by the oscilloscope. In Fig. 2.10 the 

showing signals from top to the bottom are X axis reading from sensor, Y axis reading from 

sensor, VN driving voltage and VS driving voltage. In Fig. 2.11 the showing signals from top to 

the end are X axis reading from sensor, Y axis reading from sensor, VW driving voltage and VE 

driving voltage. From the experiment results, the laser spot response follows the input square 
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wave change in the same frequency while has overshoot in each step. For all of the periods of 

wave captured, the laser spot responses have the same appearance which can prove that the 

transient response test is respectably and the whole system works in a stable state. The 

experiments also reveal that, when the micromirror is driving on one axis, even the driving 

voltages for the other axis are fixed, the micromirror will still have a small movement on the 

other axis. This is defined as the coupling phenomenon, the driven axis movement is called the 

main movement, and the movement of the other axis caused by the main movement is called the 

coupling movement. The coupling movement is usually much smaller than the main movement 

and can be omitted.  

 

Figure 2.10 ∆V1 =18V measurement, signal from top to the bottom is 1)signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3)signal 3 is 

South actuator driving voltage before amplified 4)signal 4 is North actuator driving voltage 

before amplified 
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Figure 2.11 ∆V2 =18V measurement, signal from top to the bottom is 1)signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3)signal 3 is West 

actuator driving voltage before amplified 4) signal 4 is East actuator driving voltage before 

amplified 

  4 dynamic specifications are measured to describe the performance of the micromirror. The 

first is the rise time, which is the time required for the system output to rise from 0% to 100%. 

The second is the settling time, which is the time required for the system response to reach and 

stay within a certain error band (2% or 5%) about the final value. It is an important measurement 

of the system. 5% is chosen to be the steady state error for the micromirror system. The shorter 

the settling time, the faster the micromirror can be driven. The third specification is the peak time 

which is the time required for the response to reach the peak of the system first time. The fourth 

specification is the percentage of overshoot, which is defined by the equation below:  

%100
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p







c
                                     (2.12) 

C(tp) is the maximum peak value of the system response, c(∞) is the system response when the 
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time approaches to infinity. The amount of the percentage of overshoot is a direct indicator of the 

system stability. The smaller the overshoot is, the more stable the system is.  

The measurement of the step response is captured by the oscilloscope firstly, and one period 

of the signal is taken out and analyzed, shown in the figure below. The rising edge and the falling 

edge are analyzed separately. The transient response specifications are listed from table 2.1 to 

table 2.4. The relationship of settling time, rise time, percentage of overshoot and peak time with 

the absolute value of bias voltage are shown in the Fig. 2.14 - Fig. 2.17Each axis test consists of 

positive side test and negative side test. For each axis side, the laser spot is tested in 2 moving 

directions, moving away from the origin and moving toward the origin. The measurements in the 

chart are labeled in the format "A_B_C". The first letter "A" is the name of the axis on which the 

test is performed. The second letter "B" is the side of the axis. The Third letter "C" is to which 

direction the laser spot moves which can be either "up" or "back". "up" indicates the laser spot 

moves away from the origin and "back" indicates the laser spot move back to the origin. In this 

case, for each bias voltage, there are 8 corresponding measurements, Y_positive_up, 

Y_positive_back, Y_negative_up, Y_negative_back, X_positive_up, X_positive_back, 

X_negative_up and X_negative_back.          
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 Figure 2.12 Step response of Y_positive_up, ∆V1 =18V 
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 Figure 2.13 Step response of Y_positive_down, ∆V1 =-18V 

 

Table 2.1 Y axis driving from origin to positive Y 

∆V1 (V) VN (V) VS (V) Settling time(ms) Overshoot (%) Rise time(ms) Peak time (ms) 

-6 81 69 0.77 9.17 0.37 0.53 

6 69 81 0.73 9.91 0.32 0.5 

-12 87 63 0.77 10.63 0.35 0.47 

12 63 87 0.75 9.30 0.35 0.47 

-18 93 57 0.73 12.39 0.32 0.43 

18 57 93 0.74 11.65 0.33 0.44 
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-24 99 51 0.72 14.45 0.3 0.42 

24 51 99 0.77 13.98 0.34 0.46 

-30 105 45 0.75 18.60 0.31 0.43 

30 45 105 0.73 16.76 0.31 0.42 

-36 111 39 0.71 20.30 0.28 0.39 

36 39 111 0.78 20.17 0.36 0.47 

 

Table 2.2 Y axis driving from origin negative Y 

∆V1 (V) VN (V) VS (V) Settling time(ms) Overshoot (%) Rise time(ms) Peak time (ms) 

-6 81 69 0.76 8.65 0.36 0.49 

6 69 81 0.74 8.86 0.35 0.47 

-12 87 63 0.77 9.86 0.37 0.49 

-18 63 87 0.75 10.75 0.34 0.45 

18 93 57 0.78 12.50 0.36 0.46 

-24 57 93 0.79 13.27 0.36 0.49 

24 99 51 0.77 15.85 0.34 0.44 

-30 51 99 0.75 14.59 0.33 0.45 

30 105 45 0.75 19.53 0.32 0.44 

-36 45 105 0.73 19.58 0.31 0.42 

36 111 39 0.74 22.53 0.31 0.43 
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-18 39 111 0.71 22.98 0.28 0.39 

 

Table 2.3 X axis driving from origin to positive X 

∆V2 (V) VE (V) VW (V) Settling time(ms) Overshoot (%) Rise time(ms) Peak time(ms) 

-6 81 69 0.75 9.94 0.34 0.46 

6 69 81 0.7 8.69 0.33 0.48 

-12 87 63 0.76 11.1 0.35 0.48 

12 63 87 0.77 10.88 0.36 0.5 

-18 93 57 0.8 14.04 0.37 0.48 

18 57 93 0.78 13.89 0.37 0.48 

-24 99 51 0.76 15.16 0.32 0.44 

24 51 99 0.77 17.29 0.34 0.44 

-30 105 45 0.73 19.03 0.3 0.41 

30 45 105 0.72 20.55 0.29 0.4 

-36 111 39 0.72 24.02 0.27 0.4 

36 39 111 0.95 21.54 0.28 0.42 

 

Table 2.4 X axis driving from origin to negative X 

∆V2 (V) VE (V) VW (V) Settling time(ms) Overshoot (%) Rise time(ms) Peak time(ms) 
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-6 81 69 0.75 9.94 0.34 0.46 

6 69 81 0.7 8.69 0.33 0.48 

-12 87 63 0.76 11.1 0.35 0.48 

12 63 87 0.77 10.88 0.36 0.5 

-18 93 57 0.8 14.04 0.37 0.48 

18 57 93 0.78 13.89 0.37 0.48 

-24 99 51 0.76 15.16 0.32 0.44 

24 51 99 0.77 17.29 0.34 0.44 

-30 105 45 0.73 19.03 0.3 0.41 

30 45 105 0.72 20.55 0.29 0.4 

-36 111 39 0.72 24.02 0.27 0.4 

36 39 111 0.95 21.54 0.28 0.42 

 

Fig. 2.14 shows the relationship between the settling time and the absolute value of the bias 

voltage. With the incensement of the bias voltage, the settling time of the system responses vary 

in a small range between 0.7ms and 0.8ms. It can be conclude that, the bias voltage only has 

insignificant effect on the settling time. The settling time of the system with 5% steady state 

error band is around 0.75ms.   
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 Figure 2.14 Settling time comparison 

Fig. 2.15 shows the relationship between the percentage of overshoot and the absolute value 

of the bias voltage. With the incensement of the bias voltage, the overshoot of the system 

responses increases from around 10% to 20%. So the bigger rotation angle of the micromirror is 

the bigger overshoot the system has. Also the changing overshoot indicates the non-linearity of 

the system. For each bias voltage, the overshoot of 8 measurements shows a symmetry 

distribution around the average value. So it can be conclude that in the current driving method 

the micromirror has a nearly symmetry behavior in the entire axis.   
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 Figure 2.15 Overshoot comparison 

Fig. 2.16 and Fig. 2.17 show the relationship between the rise time and the peak time with 

the absolute value of the bias voltage. Rise time and peak time of the system response shows the 

same trend of change. With the increase of the voltage bias, the rise time and peak time is getting 

smaller which means the micromirror will response faster when a bigger voltage change is 

applied. However, the fast response always companied with big overshoot. For the display 

purpose, overshoot and the settling time are the most important factors that should be taken into 

consideration to improve the performance of the system. A faster rise time and peak time follow 

with a bigger overshoot and unchanged settling time. However, this characteristic can be used in 

close loop to reduce the settling time and the overshoot.       
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 Figure 2.16 Rise time comparison 
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 Figure 2.17 Peak time comparison 
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2.5 Frequency response of the micromirror  

Similar to the time response test, frequency response test is performed to study the physical 

system from another aspect. Frequency response is the steady state response of a system to a 

sinusoidal input. The frequency of the input sinusoidal signal varies from low to high and the 

corresponding response of the system is recorded and studied. One advantage of the frequency 

response is that we can use the data obtained from the experiment on the physical system to have 

an estimation of the system model. Another advantage is that the frequency response test can 

given us some information of the system on frequency domain which time response test cannot 

provide us. 

The hardware setup to perform the frequency response is the same with the time response 

test. The function of the given sinusoidal input to the system is shown in Eq. (2.13). The output 

function of the system is shown in the Eq. (2.14). 

)sin( 11 tAX                                                                (2.13) 

)sin( 22 tAY                                                                (2.14) 

X and Y are the system input and output. A1 and A2 are the amplitude and ω1 and ω2 are the 

sinusoidal frequency. Same as the time response test, the frequency response is performed 

separately on X and Y axis. When the micromirror is actuated on one axis, the voltages applied 

on the other axis are fixed to 75V. The frequency of the input changes from 0.1 Hz to 4 kHz in 

different incensement. The amplitude of the input sinusoidal signal is fixed to 100V. The input 

signal and the laser spot response measured by the sensor are recorded by the oscilloscope, Fig. 

2.18-Fig. 2.21.  It can be noticed that the coupling movement exist and have the similar manner 

to the main movement. However, comparing to the main movement the coupling movement is 

small enough to be omitted. For each frequency, the amplitude ratio and the phase shift angle of 

the output and the input is calculated to obtain the Bode plot, Fig. 2.22-2.23.   
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Fig. 2.22 and Fig. 2.23 are the magnitude response and phase shift angle response of the 

system. The curves in solid line are the response for Y axis test and the curves in dashed line are 

for X axis test. The system response for X axis and Y axis almost coincide which proves the 

symmetry behavior of X and Y axis. In low frequency, the values of the magnitude response are 

almost constant; this reveals that the system is type zero. The amplitude reaches to a peak value 

namely resonant peak with the increase of the frequency. This indicates that the system order is 

at least 2. The resonant frequency is around 800Hz. The magnitude of the system drops very 

quickly with the frequency increasing in high frequency range. This indicates that working in 

high frequency the system will not have the chance to have a full response to the system input.             

 

Figure 2.18 Y axis driving f=10Hz, signal from top to the bottom 1)signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3)signal 3 is 

North actuator driving voltage before amplified 4) signal 4 is South actuator driving 

voltage before amplified 
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Figure 2.19 X axis driving f=10Hz, signal from top to the bottom 1) signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3) signal 3 is East 

actuator driving voltage before amplified 4) signal 4 is West actuator driving voltage before 

amplified 

   

Figure 2.20 Y axis driving f=800Hz, signal from top to the bottom 1)signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3)signal 3 is 

South actuator driving voltage before amplified 4)signal 4 is East actuator driving voltage 

before amplified 
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Figure 2.21 X axis driving f=800Hz, signal from top to the bottom 1)signal 1 is X axis 

measurement of the sensor 2)signal 2 is Y axis measurement of the sensor 3)signal 3 is East 

actuator driving voltage before amplified 4)signal 4 is West actuator driving voltage before 

amplified 
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 Figure 2.22 Magnitude response of Bode plot 
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 Figure 2.23 Phase angle response of Bode plot 
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Chapter 3 The open loop control algorithm 

 The critical component of the HUD is the 2D micromirror, which consists of 4 repulsive-

force electrostatic actuators and a central mirror plate as shown in Fig. 2.1. The micromirror 

operates in a non-resonant mode. Voltages applied to the four actuators determine the rotation 

angle of the micromirror. Open-loop control is used to control the micromirror. Open-loop 

control methods were selected in order to reduce the cost of the HUD because a high speed 

Position Sensing Detector (PSD) needed for implementing a closed-loop control system would 

sharply raise the cost of the system. 

The open-loop control method starts with establishing a calibration table which relates the 

driving voltages applied to the four actuators and the position of the laser spot on a 2D plane. 

Assume there is a sequence of points which form a trajectory inside the calibration area 

which is a2D plane in front of the micromirror. The corresponding driving voltages for any point 

on the trajectory can be obtained from the interpolation method. Ideally, if the driving voltages 

for each point are applied to the micromirror in a certain sequence, the laser spot will follow this 

trajectory. If the driving voltages are sent faster enough and repeatedly, namely, the micromirror 

rotates fast enough; a stable trajectory can be observed by human being because of the visual 

Residual effect.   

Desired patterns such as numbers and letters which are composed of lines are generated using 

software. A large number of points on the line patterns can be identified. For each identified 

point, the driving voltages corresponding to the four actuators are found from the calibration 

table. Applying those voltages to the micromirror in a sequence and at a certain frequency, the 

micromirror steers the laser beam on the display screen with the laser spot following a trajectory 

connecting the selected points to generate the vector line patterns. 

 

3.1 Building the calibration table 

The calibration table determines the relationship between the position of the laser spot on a 

2D plane and the driving voltages applied to the micromirror. The calibration table is also the 



44 

 

steady response of the micromirror based display system. Here micromirror and the 

magnification lens which is use to magnify the rotation angle of the micromirror is treated as a 

system.  The hardware setup is the same as the time response experiment.  

The calibration was performed using the driving method previously discussed in chapter 2, 

V0=75 V and control voltages (∆V1 and ∆V2) are varied linearly with a certain step 3V. A group 

of voltage combinations can be generated to drive the micromirror as follow. The maximum 

driving voltage for each axis which can drive the laser spot shooting on the active sensing area of 

the sensor is tested first. A driving voltage higher than the maximum driving voltage may lead to 

the laser spot shooting outside the active sensing area of the PSD. The minimum driving voltage 

is 0. For each driving actuator, the driving voltage is generated by dividing the voltage range 

from 0V to the maximum driving voltage linearly with the certain step 3V. A group of voltage 

combinations is then generated. Assume the driving voltage and the laser spot position on the 

sensor has a linear relationship (Ideally). The generated voltages will generate a bunch of 

linearly distributed laser spot on the sensor, shown in Fig. 3.1. 

 

 Figure 3.1 The ideal calibration results 

However, because of the nonlinearity of the system, the calibration result is distorted and 

only has an approximate linear relationship in small area. The actual calibration result is shown 
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in Fig. 3.2. The calibration result gives us the relationship between the designed voltages and the 

discrete distributed points on the sensor. For the control purpose, the control voltages which can 

drive the laser spot to move to any arbitrary point on the sensor have to be found out.  
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 Figure 3.2 Calibration results 

Interpolation can be used here to build a continuous model of the relationship between the 

driving voltages and the points on the sensor. Assume there is a function of the coordinate of the 

points on the sensor and the driving voltages, we can have 4 functions.  

),( yxfV NN                                                                 (3.1) 

),( yxfV SS                                                                  (3.2) 

),( yxfV WW                                                                 (3.3) 

),( yxfV EE                                                                   (3.4) 
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The figures of the above functions are 3D surfaces. Matlab surface fitting tool can be used to 

create the function model. The surface fitting tool has a GUI which can help finish the fitting 

task, shown in Fig. 3.3. In order to fit the surface, “X input” and “Y input” are x and y 

coordinates of the spatial surface. In our case, “X input” is the x coordinate of the points on the 

sensor and “Y input” is the y coordinate of the points on the sensor. “Z output” is the coordinate 

of z axis of the surface and in our case it is the driving voltages. There are 4 options for the 

interpolation method: Triangle-based linear interpolation (linear), Triangle-based cubic 

interpolation (cubic), Nearest neighbor interpolation and MATLAB 4 griddata method (v4).                            

 

 Figure 3.3 Matlab surface fitting tool GUI 

The fitting result gives the mathematical model and is saved as “sift” structure. After the 

fitting process, 4 “sift” structure are created named as “model_East”, ”model_West”, 

“model_North”, “model_South” and are saved to an independent data file. Each structure is 

treated as the mathematical model and given an arbitrary point on the sensor, the corresponding 
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driving voltages can be found using the sift structure. It should be noticed here that the voltages 

found by the interpolation model is not the accurate value of the real input. The voltage is 

calculated by the known values near it obtained from the calibration result and it is just an 

approximation. However, if we have enough points from calibration, which means the number of 

the points obtain from the calibration result is very large and the points are very close to each 

other, the accuracy of the interpolation method can be very high. In the calibration, 1369 points 

are used, and the linear step which is used to generate the calibration voltages from the FPGA 

side is 0.05, corresponding to 3V after amplify. The fitting model generated by “v4” is shown 

below.  

 

 Figure 3.4 VS model created by surface fitting 

 

3.2 Three factors to measure the display quality 

The number of points to extract from the pattern is an important problem. It is related to the 

quality of the display which is our first concern in the display system. Three factors which are 

the distortion of the display, the display frequency and the intensity of the laser distribution 

mainly affect the display quality.   

Distortion of the display is caused by the dynamic performance of the micromirror. From the 

chapter 2, the micromirror system (micromirror and the magnification lens) can be 
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approximately treated as a second order system. The micromirror is driving by many step inputs 

when displaying. The transient response of step input for a second order system has oscillation 

when the response tends to steady state. This undesired oscillation if big enough will be visible 

in the display. Overshoot may cause large distortions at sharp corners of a displayed pattern. 

Along lines of non-sharp corners, the effect of overshoot is less significant because the laser spot 

overshoots to positions which are still on the displayed pattern. The Fig. 3.5 can have a better 

explanation of this. We display the blue trajectory by moving the laser point to go through 4 

points, A, B, C and D. The dashed line is the desired laser spot trajectory; the solid line is the 

actual trajectory. B is the middle point between A and C, which means the voltage variation from 

A to B and from B to C are almost the same which will lead to an almost same overshoot. The 

overshoot from A to B is invisible because the overshoot part coincides with the line. However, 

the overshoot from B to C will be visible and will affect the image quality and sometimes will 

cause a big distortion of the whole image.  

 

 Figure 3.5 The overshoot effect on the display 

From the result of the step response of chapter 2, a bigger step input will lead to a bigger 

overshoot. Diving bigger step into several small steps is likely to help reduce the overshoot. 2 

methods are tested. One is to equally divide a big step into several small steps; the other is to 

divide the big step into non-uniform distributed points. The closer to the destination point the 

laser spot is, the smaller step the laser spot will move, see Fig. 3.7.  
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 Figure 3.6 Equally division of a big step 

 

 Figure 3.7 Unequally division of a big step 

A set of experiment has been performed to study the performance of the laser spot driven 

traveling in a straight trajectory from the origin O of the sensor to point P on Y axis of the sensor, 

see Fig.3.6 and Fig. 3.7. It has been proved from the time response experiment and the frequency 

response experiment, the micromirror has a symmetry performance and the coupling movement 

is really small. So it can be predicted that X axis will have the similar performance as Y in this 

experiment and the single driving on Y axis will result in the laser spot traveling along y axis. 

The hardware setup is the same as the experiments discussed in chapter 2. Shown in Fig. 3.6, the 

left coordinate is the sensor coordinate, the right coordinate gives the control signal. When the 

laser spot is at origin O of the sensor, the control voltage is V0 which is equal to 75V on both 

north side actuator and south side actuator. When laser spot is at position P on the sensor the 

control voltage is V1 for South side of the actuator, north side control voltage can be calculated. 
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A sequence of step signal is applied to north side actuator and South side actuator while the 

driving voltages applied to west side actuator and east side actuators are fixed to 75V. For the 

first set of experiments, the big step control voltage is equally divided into several small steps, 

each step input corresponding to a point on the Y axis of the sensor. Because of the approximate 

linear relationship with the control voltage and the position of the laser spot, the laser spot will 

move same distance for each small step driven. For the second set of experiment, the big step 

control voltage from V0 to V1 which is the same as the first set of the experiment is unequally 

divided into several small steps. The input voltage steps decrease when the laser spot 

approaching point P. For each set of experiment, different divisions and control time T are tested. 

The control voltage from 75V to 105V are divided into 5, 25, 50, 100 steps. The control time to 

increase the control voltage from 75V to 100V is set to be 200us, 400us, 600us, 800us, 1000us 

1200us and 1400us. Each step division is performed separately under the 7 different control time. 

The result of the experiment is analyzed and compared in the chart below. The labels in the chat 

are written in the form A_B. The first letter A is the division method, "exp" means the 

exponential unequally division and "equal" means equally divided. The second letter B is the 

number of the division. 

From the Fig. 3.8 and Fig. 3.9, in the vertical comparison, it can be concluded more 

division can achieve a smaller overshoot, especially when control time is bigger than 600ms. 

However, once the division number bigger than 25, the overshoot Vs, control time curve almost 

coincide which means simply increase the division number will not reduce the overshoot. The 

result of equally division and unequally division are compared in the Fig. 3.10. It can be 

concluded that if the control time is smaller than 1000us, the unequally division method has a 

larger overshoot than equally division, however, when the control time is bigger than 1000us, the 

unequally division method has a much better performance in reducing the overshoot. The settling 

time comparisons of 2 sets of experiments are shown in Fig. 3.11. It can be concluded that the 

equally division can achieve a smaller settling time; however the difference is not significant.        
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 Figure 3.8 Overshoots measurement for equally division 
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 Figure 3.9 Overshoots measurement for unequally division 
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 Figure 3.10 Overshoots measurement comparison of equally and unequally division 
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 Figure 3.11 Settling time measurement comparison of equally and unequally division 
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Another method to reduce the distortion caused by overshoot is to design desired patterns 

with smooth outline. The reason is that a smooth curve composed pattern has more tolerance of 

the distortion.   

Display frequency is required to be at least 30fps to make the display look static to the 

human eye. In addition, the frame rate must be constant. A higher frequency will result in a 

better, flicker-less pattern. The time interval of moving the laser spots, Δt, which is a constant for 

all of the points once it is chosen, the number of points that make up a display, n, and the display 

frequency f have the relation below: 

tn
f




1
                                                                 (3.5) 

 From Eq. (3.5) the number of points that make up a display and the time interval of moving the 

laser spots contribute to the display frequency together.  

 Laser intensity distribution on the display is affected by the density of the point’s distribution 

that makes up the display patterns. If the density is a constant, which means the laser spot will 

stop on each point almost the same time, laser intensity will be evenly distributed. Otherwise, 

those areas have a larger point’s density will look brighter than other places. Evenly distributed 

laser intensity gives us a more comfortable looking display.    

 

3.3 Design the scanning points 

The scanning path of the laser spot is continuous so that it can be repeated in relative high 

frequency to form a stable image to human eyes. So the scanning points consist of 2 parts, the 

points which identify the desired patterns called as pattern points and the points that transit the 

laser spot from one pattern to another called transitional points. The pattern points define the 

shape of display.  

3.3.1 Design desired patterns for display 

The desired vector image in our case is the speed information of the vehicle. It is composed 

of 2 parts, the first part consists of 3 digits which is used to display the value of the speed and the 
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second part consists of 3 letters “kmh” which is used to display the speed unit. Each digit or 

letter is called a pattern, so the desired vector image is composed of 6 patterns. The patterns are 

designed using AutoCAD software. From the calibration result, we can know that the calibration 

area is -8.3~8.3 for x axis and -7.6~7.6 for y axis. So the patterns we designed must lie in this 

area, so that we can find the corresponding driving voltages for the points on the trajectory. A 

frame is built in AutoCAD which can guarantee the designed patterns lie inside the calibration 

area, Fig. 3.12.   

 

 Figure 3.12 Frame generated in AuctoCAD  

 The range for the frame is -5~5 for x axis and -2~ 2 for y axis. A space is left between 

adjacent patterns. The frame consists of 4 blocks. From the left to right, is the block number from 

1 to 4. The content in the first 3 blocks are the digit numbers. The content in the 4
th

 block is the 

letter “kmh”. To design the patterns, the text objects of the digits from 0 to 9 and the letter 

“kmh” are created in the size which can fit the frame. Then the “txtexp” command is used on the 

text objects to convert them into polylines which can be edited. Then the shape of each pattern is 

modified for display, see Fig. 3.13. Then the points can be identified on the designed patterns for 

the display purpose.  

 

 Figure 3.13 The designed patterns 
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3.3.2 Extract patterns points from the patterns 

  From the discussion of 3 factors which affect the display quality we can conclude the method 

to extract points from the designed patterns can be concluded. Because the number of points to 

display and the time interval between each point both affect the display frequency. From the 

conclusion of overshoot effect experiments in section 3.2, which is no matter how many middle 

points the laser spot go though when it is traveling from one point to another in a certain time 

interval, the settling time will not change. Namely, more middle points will not help the laser 

spot to settle down faster. A non-uniform distributed trajectory will lead to a bad quality display. 

The place which has more points has a brighter display. When more complicated patterns are 

displayed, this phenomenon is more apparent. Because of the 2 reasons talked above, equally 

division driving method is chosen to display the patterns and the pattern points are equally 

extracted from the designed patterns with respect to the length of the patterns.    

Equally division driving method requires the points identified on the patterns are uniform 

distributed. In AutoCAD software, "list" command which can provide the length of selected 

polyline is used to obtain the length of each pattern. The length is shown in the table below: 

Table 3.1 The length of the designed patterns 

Digit Length num 

1 3.1488 35 

2 6.1548 68 

3 5.8997 65 

4 6.3743 70 

5 6.696 74 

6 7.7162 85 

7 4.3235 48 

8 9.0773 100 

9 7.9691 88 

10 6.8372 75 
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The digit "8" has the largest length, if n points are used to display digit "8". The number of 

points needed to display other patterns num can be calculated from Eq. (3.6).  

n
length

L
num                                                              (3.6) 

  "L" is the length of digit "8" and "length" is the length of other patterns. After deciding the 

number of points for each pattern, "divide" Command can be used to averagely divide each 

pattern into corresponding points. In order to map the coordinates of the identified points of a 

pattern onto the coordinate system of the sensor, the points are copied into the blocks in Fig. 3.12 

and then saved into a text file.  

3.3.3 Transitional points design 

 

 Figure 3.14 Transitional points design 

A decreasing exponential function is used to generate the transitional points. Given the start 

point of the transitional path, A (x0, y0), and the end point of the transitional path, B (x1, y1), the 

function of the line is represented as: 

00

01

01 )( yxx
xx

yy
y 




                                                   (3.7) 

Assume "n" points will be inserted from A to B. Each inserted point has a sequence number 

"k", indicating the scanning direction from A to B. "k" is an integer variable which is bigger or 

equal to 0 and smaller or equal to the total number of points inserted “n”. An exponential 
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function is used to generate the shrinking step y axis coordinates of the inserted points.  x and y 

are the coordinates of the inserted points.  

)()6exp()( 011 yy
n

k
yky  ,k=0...n-1                                    (3.8) 

The slope changing tendency of this function is studied. Assume y(t) is a continuous function 

with respect to the continuous variable t, shown is Eq. (3.9). 

)()6exp()( 011 yytyty  (0≤t≤1)                                          (3.9) 

The discreet function and the continuous function should have the same variation tendency. 

The first order derivative of y(t) implies the change of increment of the y coordinate.  

)6exp()(6
)(

01 tyy
dt

tdy
                                                        (3.10) 

From Eq. (3.10), if y1>y0, y(t) is decreasing which means when y is getting to y1, the 

increment is getting smaller. If y1<y0, y(t) is increasing which means when y is getting to y1, the 

increment is getting smaller. So we can prove that Eq. (3.6) can generate the points we need. The 

increment change of y is shown in Eq. (3.11). 

)()1( kykyy                                                             (3.11) 
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 Figure 3.15 Y axis coordinate generated using Eq. (3.7) 

dict://key.0895DFE8DB67F9409DB285590D870EDD/variation%20tendency
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 Figure 3.16 Increment change between 2 points from Eq. (3.11) 

Once the y coordinates are generated for each of the inserted transitional points, the 

corresponding x coordinates can be determined using Eq. (3.7).  

 

3.3.4 Save the scanning points 

After all of the points needed for the display are generated, they are saved as a vector in the 

Matlab data file. The dimension of the vector is N×2. The "N" rows of the vector corresponding 

to all of the points designed. Each point has 2 coordinates X and Y which are corresponding to 

the column of the vector. Each row corresponding the points are saved in the vector as 4 section 

in the sequence of "1
st
 block points", "2

nd
 block points", "3

rd
 block points", "4

th
 block points". 

Each section is composed of the points which identify 10 digits and the transitional points 

followed by each digit. The structure of the first section, "1
st
 block points" and the second section, 

"2
nd

 block points" are the same, shown in Fig. 3.17. In order to display the number from "000" to 

"999", each digit in 1
st
 block and 2bd block in the frame can be followed by 10 digits from 0 to 9. 
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So each digit in 1
st
 block and 2

nd
 block has 10 transitional points. Because the patterns in the 4

th
 

block is fixed to "kmh", for each digit in 3
rd

 block has only one group of transitional points, in 

Fig 3.18. The 4
th

 block of the frame consists of 3 fixed patterns "k", "m" and "h". The transitional 

points from "k" to "m" and from "m" to "h" are fixed, in Fig. 3.19. In order to keep the scanning 

circulating, the laser spot has to go back to the first pattern. So the transitional points which 

connect the last point of last letter “h” with the first point of first pattern are saved after the 

patterns pints “h”, shown in Fig. 3.19.          

 

 Figure 3.17 Structure of 1st block 



60 

 

 

 Figure 3.18 Structure of 3rd block 

 

 Figure 3.19 Structure of 4th block 
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Chapter 4 The implementation of calibration 

4.1 Introduction of the developing system 

4.1.1 Introduction of LabVIEW 

LabVIEW is the abbreviation of Laboratory Virtual Instrument Engineering Workbench, it is 

a core product of National Instrument Co. Ld. LabVIEW is a graphical programming 

environment which is different from the traditional programming language such as Visual basic, 

C, C++ or Java. LabVIEW use the graphical language as its programming language, which is 

also called as G language. Compared to the traditional programming language, graphical 

language has its advantages. Although the traditional programming language uses the text 

language which presents the program logic using the simplified human language, it is still 

abstract to new learners to some extent. However, the graphical language use the visual graphical 

blocks to present the program logic. Because graphics are more easily to be perceived by sense, 

G language is easy to learn. Also LabVIEW has very rich toolbox recourses about measurement, 

control and simulation, which can provide most of the functions the user need. The graphical 

blocks in the toolboxes are usually highly integrated, which will take hundreds lines of text 

language to achieve the same function. A third advantage of LabVIEW is that, it has very good 

operating system compatibility. LabVIEW development environment can be installed on 

Windows, Mac, and Linux operating system. The program can run on Microsoft Pocket PC, 

Microsoft Windows CE, Palm Os and many other embedded platforms like FPGA, DSP, ARM 

microprocessor. These four advantages of enable LabVIEW a shorter project developing process 

which is the main reason, LabVIEW is chosen to develop the micromirror control system.  
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4.1.2 Introduction of FPGA 

 

 Figure 4.1 The structure of FPGA 

An FPGA (Field Programmable Gate Arrays) is reprogrammable silicon chip which has a 

matrix of reconfigurable gate array logic circuitry on it. Xilinx and Altera are 2 major vendors 

for FPGA nowadays and their FPGA may have different structures. However, they share the 

same basic structure. Usually the FPGA is composed of 3 parts, Configurable Logic Blocks 

(CLBs, Xilinx) or Array Logic Blocks (ALBs, Altera), I/O blocks and programmable 

interconnect switches, shown in Fig. 4.1. In this paper, Xilinx is used.  With these reconfigurable 

recourses, a FPGA can be programed to achieve many user defined hardware function. CLBs are 

the core of FPGA and are composed of flip-flops and look-up tables (LUTs). This is the main 

specification for a FPGA. Flip-flop is a binary shift register that is used to store state information 

such as 0 and 1. It is used to synchronize logic and save logical states between clock cycles and 

is a fundamental building block of digital electronics systems. LUTs are memories which are 

used to define the truth table of all combinatorial logic such as ANDs, ORs, NANDs, XORs and 

so on.  

In this project, FPGA is chosen to perform control task instead of usually used 

microprocessor. There are several reasons that FPGA is superior to the microprocessor. The first 

http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Digital_electronics
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reason is that FPGA is faster than microprocessor. The FPGA logic is implemented by the 

hardware which can work in a really fast speed. The working frequency of FPGA is 40MHz, 

which means the time resolution is 25ns. However, the time resolution we can control for the 

microprocessor is in microsecond. One example of fast execution of FPGA logic is that the 

widely used proportional integral derivative (PID) control algorithm which is included in the 

LabVIEW FPGA module can execute in 300 nanoseconds. The second reason is that FPGA can 

perform real parallel execution of the control or program. The microprocessor program executes 

task in sequence, because the recourse of CPU can only be occupied by one task at one time. In 

this case, for the control proposes, a FPGA can perform multi-control task at the same time 

which may take several microprocessors to achieve.   A third reason is that the control logic of 

FPGA is run by the hardware which is more reliable than microprocessor. For microprocessor, 

there has to be an operation system to run the control logic which may bring many unstable 

factors. Because of all the reasons above, NI PCIe 7852R board is chosen to perform the control 

task.  

The NI PCIe-7852R multifunction RIO board features a user-programmable FPGA chip for 

onboard processing and flexible I/O operation. It has 8 analog inputs, each of which has 

independent sampling rate up to 750 kHz and 16-bit resolution. It has 8 analog outputs, each of 

which has independent sampling rates up to 1MHz and 16-bit resolution. The voltage range for 

the input and the output are both -10V~10V. A Virtex-5 FPGA chip is the core of the board. The 

maximum working frequency is 40MHz. It is programmable with the LabVIEW FPGA Module. 

3 DMA channels enable the 7852R board to perform high-speed data transition. The 192kB on 

board memory allows the FPGA to process large amount of data.  

 

 Figure 4.2 NI PCIe-87852R 
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4.1.3 The structure of the LabVIEW FPGA system 

NI PCIe-7852R is installed in the PCI Express slot of the mother board of the PC. The PC- 

CPU woks as a real-time microprocessor, which runs the Host program. The Host program has 

the graphical user interface (GUI) and it is used to configure, communicate with and debug the 

FPGA program. The hardware logic runs on the FPGA is also called FPGA program. The 

parameters used in the FPGA can be updated by the host program. The output of the NI PCIe-

7852R is connected to SCB-68 which is an shield I/O connector by a cable. SCB-68 is a rugged, 

very low-noise signal termination and is convenient for the I/O connection with controlled plant.  

 

 Figure 4.3 The structure of hardware developing system 

Both of the Host program and FPGA program are developed under the LabVIEW 

development environment. A LabVIEW program which is usually called Vi, is composed of 2 

parts, the front panel and the block diagram. The front panel is the user interface which imitates 

the front panel of physical instruments. The front panel includes knob, button and many other 

input and output controls. The block diagram is the real executable program which is composed 

of terminals, wires, constant and program control structures. The execution sequence of 
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LabVIEW program follows the data flow. For example, a data start from some node and follows 

the wires to the input terminal of the next node. The data is processed in this node and then send 

out from the output terminal of this node. The data follows the wires again to the next node until 

it goes into some end node. The sequence of the data flow is the sequence of the program. So 

LabVIEW program is also called the data flow driven program. The Host program after it is 

finished can directly run on the PC. Different from the Host program, the FPGA program is 

needed to compile into bit stream file and download to FPGA. Once the bit stream file is 

downloaded into FPGA the program becomes the hardware logic. Even a small modification on 

the FPGA logic needs to recompile the new FPGA file and download again. After download is 

ready, a start signal from the Host program will start the host program and the FPGA logic at the 

same time and the system begin to work. 

 

4.2 The calibration program 

The calibration program is used to find the relationship between the position of the laser spot 

on the sensor and the driving voltages of the micromirror. A set of linear voltage is generated to 

control the micromirror to scan a square area line by line. For a certain driving voltages, the 

corresponding position of the laser spot position is obtained and saved. If the driving voltages 

and the position of the laser spot have linear relationship, the distribution of the laser spots on the 

sensor should also be linear. Calibration program and the open loop control program shows a lot 

of common code, so only calibration programs is explained in detail.  

4.2.1 Calibration LabVIEW host program  

The Host program can be separated into 2 parts from their functions. The first part is to 

prepare the data and set up for FPGA program. The second part is to control the FPGA to 

perform calibration. The first part of the program is shown in the Fig. 4.4.   
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 Figure 4.4 Preparing data and setup for the FPGA program 
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This part is composed of 3 parts. The first one is shown below. Firstly, a reference to the 

FPGA target that will be used to run the specified FPGA program is set, see Fig. 4.5. This 

reference relates the Host Program with the FPGA hardware and FPGA Program.  The reset part 

is used to resets the FPGA VI on the FPGA target to the default state of the VI. This method sets 

the FPGA VI controls and indicators to their default states, sets uninitialized shift registers to 

their default values, clears FIFOs, and sets global variables to their default values. However, this 

method does not reset memory. 

 

 Figure 4.5 Set the reference  

Then the data flow goes to the next block to transfer data to FPGA.  FIFO and DMA is used 

to transfer data from host program to FPGA program. FIFO (First In First Out) is a kind of data 

buffer. The first data saved in the buffer will be firstly read out. Shown in Fig. 4.6, data 1, 2, 3 

and 4 are written into the FIFO in sequence. When reading the FIFO, the first written data,1, is 

first read out. Once 1 is read out, the pointer point to the data 2. The difference of the FIFO with 

the normal memory is that FIFO does not have the write and read address. The data stored in the 

FIFO are addressed by the inside data pointer. After one data is read out, the pointer goes to the 

next one automatically. When transfer a queue of data, FIFO structure is easier to operate 

compare to the normal memory. In FPGA, block memory, the LUT, or the flip-flops can be used 

as FIFO to store data.  A register is used to point to the latest data.  
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 Figure 4.6 FIFO working principle 

DMA (Direct Memory Access) allows external hardware to access the system memory (read 

or write) without the interruption of the CPU. Without the DMA, CPU needs to copy data from 

the external device to the buffer and then write the data from the buffer to the new space. In this 

period, CPU is used by the transferring process and cannot process other tasks at the same time. 

When the DMA technique is used, CPU just needs to initialize the data transition before the 

transition begins. In the process of transition, DMA controller is used to manage and CPU can 

deal with other tasks. DMA FIFO is used in the LabVIEW to transfer data between the host PC 

and the FPGA target. A DMA FIFO allocates memory on both the host computer and the FPGA 

target; however, the 2 FIFOs act as a single FIFO. Before use the DMA FIFO the size of the 

FIFO (also called the depth of the FIFO) should be set. The depth of the host side FIFO and the 

FPGA side FIFO are set separately from the host program and the FPGA program. The default 

value for the hose side FIFO is 10,000 elements and 1024 elements for the FPGA side FIFO. The 

size of the host side FIFO and the FPGA side FIFO does not necessary to be equal, however, 

both of them should be big enough. If the FIFO is too small, new data will not be stored into the 

FIFO and blocked which will lead to the data loss. If the depth of the FIFO is too large, it will 

cause a waste of the memory resources.      

 

 Figure 4.7 Specifies the depth of the host memory part of the DMA FIFO 
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 Figure 4.8 FPGA side FIFO property dialog 

Then the transfer direction of the DMA FIFO has to be set before using them. This is finished 

in the FPGA program, shown in Fig. 4.8."Host to target-DMA" means transfer data from host 

program to the target FPGA, vice versa. When the FIFO is set to be "Host to target-DMA", one 

or more elements can be written into the FIFO from the host program at once and only one 

element can be read out from the FPGA at once. Also the data type stored in the FIFO has to be 

set. The data type is I16 which is 16 bits integer and range from -32768 to 32767. FPGA just 

support signed and unsigned integers, Boolean and fixed point data type. Because of the 

complexity of fixed point data type, integer is the only data type used in the paper. 3 DMA FIFO 

in the calibration VI has been used. One is to transfer the driving voltages from host program to 

target FPGA, the other 2 are used to transfer the output of sensor from target FPGA to host 

program.  

The data which are going to be transferred to the FPGA side is generated from the MATLAB 

script node, shown in Fig. 4.9. MATLAB software version 6.5 or later version is required to be 

installed on the computer to run MATLAB software script server to execute scripts written in the 

MATLAB language syntax. The output "E", "W", "N", "S" are the driving voltages which are 1 

dimension array of double type and the output "initial" is the initial voltage which is also double 
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type. The double type data has to be converted into 16 bit signed integer to be accepted and 

processed by FPGA. 

 

 Figure 4.9 MATLAB script node 

  A subVI is used to convert the 1 dimension double array into 1 dimension 16 bit integer array. 

SubVI is a LabVIEW program which is used in another LabVIEW program which is similar to 

the subprogram in C language. In order to create a subVI, a connector pane and an icon should 

be built. The connector pane defines the input and output of subVI which is used to communicate 

with other nodes. The icon is the appearance of the subVI when it is used in other VIs.    

 

 Figure 4.10 Icon of subVi 

The block diagram of the subVI is shown below.  "Array" is the input to the subVI which is 

the 1 dimension integer array and "Array2" is the output which is the 1 dimension output array.   
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 Figure 4.11 Block diagram of subVI 

After the driving voltages are converted into integer, they are transferred to the FPGA. The 

DMA FIFO to perform the transition is named "EWNS". The driving voltages are stored in the 

FIFO in the sequence of VE, VW, VN, VS., shown in the Fig. 4.12 below.  

 

 Figure 4.12 Write the host side FIFO 
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 Figure 4.13 Transfer the parameters to FPGA  

The second part of the host program is to obtain data from the FPGA, save the calibration 

result and synchronize with the FPGA target, shown in the Fig. 4.14 below.  
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 Figure 4.14 Perform the calibration 
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The flow chart of this part is shown below.   

 

 Figure 4.15 Flow chart of calibration 
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This part of the program is in a big loop. In the loop, firstly the "Wait on IRQ" node is used 

to wait for the interruption request, see Fig. 4.16. It waits for the interruption request send from 

the FPGA. If it receives a request, the signal will goes to the next node; otherwise, it will wait 

until an interruption request has been received.    

 

 Figure 4.16 The "wait on IRQ" node 

Once an interruption request has been received, the Read/Write Control Function will be 

executed, Fig. 4.17. This node can read the current variables from FPGA or write new values to 

the variables in FPGA. Here the 4 current driving voltages are read out.   

 

 Figure 4.17 Read/Write Control Function 

Then x axis readings and y axis readings are transferred to host program through the FPGA 

target to host DMA FIFO. The data from FPGA are 16 bit signed integer and need to be 

converted to double. Then a mean function is used to calculate the mean of the readings to 

reduce the noise interference. After the FIFO read node, a FIFO configure node is used to empty 

the host side FIFO and the FPGA side FIFO to prepare for the next time transfer.   
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 Figure 4.18 The FIFO read and configure 

Then the current driving voltages and the corresponding sensor readings are saved into a N 

by 6 array.  N is the number of voltage combinations. The 6 columns are VE, VW, VN, VS, X and 

Y.  The program keeps loping until the voltage combinations has all be send out and the N by 6 

array is saved into a Excle file. 

4.2.2 Calibration LabVIEW FPGA program 

The FPGA program controls the analog output and analog input of the hardware. It can be 

programmed the same as the host program, however, it has to be compiled into bitstream file and 

transfer into the hardware structure on FPGA. The structure of the calibration FPGA program is 

shown in Fig. 4.19.  

 

 Figure 4.19 FPGA program structure 
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At the beginning of the program, the output voltages are initialized to the initial position 

defined in the previous chapter. Without the initialization, the output is random voltages which 

can be the value of last execution. The initialization is a precaution to protect the micromirror 

which is shown in Fig. 2.20. The nodes "North", "East", "South" and "West" are the analog 

output node which can control the analog output. The "initial voltage" is a variable which can be 

defined by the user from the host program before the execution of the program.  

 

 Figure 4.20 Initialization of the output 

Then the driving voltage combinations transferred from host program will be saved into the 

FPGA block memory. FIFO is just a temporary media memory for the data transfer and it should 

be as small as possible to save FPGA resources. Sometimes the data amount needed to transfer is 

really large and needed to transfer several times. In this case, the FIFO will be cleared after each 

transfer to prepare for the next transfer. So the FPGA memory is used to save the data for later 

use. The flow chart of saving the driving voltages from FIFO to FPGA memory is shown in Fig. 

4.21. 4 memory blocks are used to save the voltages, named as "East", "West", "north" and 

"South" and each memory block is arranged a sequence number from 1 to 4. The 4 memory 

blocks have the same storage (size) and address. The flow chat of saving the transferred data into 

the FPGA memory is shown in Fig. 4.22. 

app:ds:temporary
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 Figure 4.21 Writes the data from FIFO to FPGA memory 

There are 3 variables used, n1, n2 and size.n1 is the memory address and n2 is the sequence 

number of the memory. The Labview program is shown in Fig. 4.23.  Read FIFO node is used to 

read one data from the FIFO once it is called. Memory reference refers to the assigned memory 

block. Write memory node write the input data to the assigned address of the assigned memory 

block.  

 

 Figure 4.22 Saves data from FIFO into the FPGA memory flow chat 

app:ds:sequence
app:ds:number
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 Figure 4.23 Saves data from FIFO into the FPGA memory diagram 
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Chapter 5 Optical system of display and the prototype of 

HUD 

5.1 The optical system of display 

The display optical system is first designed in SolidWorks and then set up on the optics 

breadboard, Fig. 5.1. Laser, pin hole, lens and the micromirror are the main element of the 

optical system. Post holders and the stages are used to tuning the light path.  

 

 Figure 5.1 The SolidWorks modeling of the optical system 

 Laser 

DPGL-05S-TTL modulated green laser from World Star Tech is used, Fig 5.2. 

 

 Figure 5.2 The laser module 
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The wavelength of the laser is 532nm. The beam diameter is smaller than 1.2mm and the 

beam shape is circle. The output power is 5mW which belongs to classIIIa. Laser belongs to this 

class normally would not produce a hazard if viewed directly for only momentary periods with 

naked eye. A hazard may be caused if viewed using collecting optics. This class is suitable for 

our application because the power is strong enough to form an image. After attenuated by several 

optical elements, the laser power will drop sharply. So lower class laser will lead to a low 

contract image. A higher class laser can hurt the human eyes if directly looked into which will 

have a potential safety problem. The operating voltage of the laser is 3.3V which is suitable for 

integration. The laser can be modulated by TTL input, low (0-0.8V), high (1-3.3V) from 0Hz to 

3 kHz. In this case, when the laser spot is going along the traditional path it can be shut down. 

The laser power response to the modulation input is shown in Fig. 5.3. When TTL input is low, 

the laser is shut down and when TTL input is high, the laser has full power output.  

 

 Figure 5.3 The laser modulation [48] 

 Pin hole 

The diameter of the mirror plate of the micromirror is 1mm which is smaller than the 

diameter of the laser beam. If the laser beam shooting directly to the micromirror, the reflected 

spot may have some distortion and noise. 600um, 800um, and 900um diameter pin hole are 

tested to shrink the diameter of the laser beam, Fig 5.4. The smaller the pinhole diameter is, the 

smaller the laser spot is, and however, a smaller diameter pin hole will block more laser power. It 

has been proved that 900um pin hole has the same ability as the smaller size pin holes to reduce 

the reflected noise.          
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 Figure 5.4 Pinhole 

 Lens 

The double-concave anti-reflection lens with MgF2 coating is chosen to magnify the rotation 

angle. The anti-reflection coating performance is shown below Fig. 5.5. When shining with 

532nm laser, approximately 1.3% reflection will be generated. The anti-reflection helps to 

reduce the laser light reflected back to the micromirror which will affect the display quality.  

 

 Figure 5.5 Coating performance of the lens [49] 

The laser beam path is shown in Fig. 5.6. The laser diameter is firstly shrieked by the pin 

hole. The plane of the pin hole should be perpendicular to the laser beam and the center of the 

pin hole should be coincide with the center of the laser beam as much as possible to obtain a 
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larger output laser power. Once the laser and the pin hole are adjusted, their positions are fixed. 

Then the micromirror with the stages is positioned on the path of the laser beam. The angle 

between the micromirror and the incident laser beam is adjusted so that a smaller incident angel 

and be obtained. A large incident angle will result in a more distorted display. After the angle is 

fixed, the stage 1 is fixed on the optical breadboard. Stage 1 which adjusts the vertical position of 

the micromirror and stage 2 which adjusts the horizontal position of the micromirror are used to 

position the incident laser spot on the mirror plate. The tuning result can be observed on the 

screen which is positioned perpendicular to the reflected laser beam. If a clear circle spot is 

obtained, the position of the laser spot on the screen is marked. Then the concave lens is moved 

onto the path the emergent laser beam. The plane of the concave lens should be perpendicular to 

the laser beam and the position of the lens is adjusted so that the going through laser beam can 

shoot on the mark on the screen. Until now the position of the laser, pin hole, micromirror and 

the lens are fixed. When performing the calibration, the screen is taken place by the PSD. Stage 3 

and stage 4 are used to adjust the laser spot lies on the center of the micromirror when it is not 

driven. The optical system on the optical breadboard is shown in Fig. 5.7.   

 

 Figure 5.6 Optical system 2D view 
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 Figure 5.7 Optical system on the optical breadboard 

 

5.2 The image forming system of HUD 

As discussed in chapter 1, basically there are 2 type of image forming system. One use the 

virtual image of display and the other use the real image of the display. Both of the image 

forming system of HUD are built and tested.  

5.2.1 Virtual image HUD 

 The HUD system is composed of 2 parts; the display module and the reflective plastic glass 

(see Fig 5.9). The display module integrates the optical system discussed in section 5.1into a 

small case which is more compact.  The reflective plastic glass is a coated plastic glass from 

Defi-Link VSD X head up display module. It is used to form the virtual image. The setup of the 

virtual image HUD is shown in Fig. 5.9 and Fig 5.10. A real image is formed on a reflector fist. 

Then the real image on the reflector is mirrored by the coated plastic glass to form a virtual 

image in front of the screen. A projector is used to project a high way image on the screen as the 

background of the HUD. It is proved that the HUD can display a stable image in 40Hz. The 
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display result is shown in Fig. 5.11.   

 

 Figure 5.8 Display module and plastic glass [50] 

The test system is shown below. 

 

 Figure 5.9 The setup of virtual image HUD 
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 Figure 5.10 The side views of virtual image HUD setup 

 

 

 Figure 5.11 The display result of virtual image HUD 
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5.2.2 Real image HUD 

 A beam splitter coated glass is used for the real image display. The coating has 40% 

reflection of the visible light. A transparent Clearview film from ProDisplay is used to enhance 

the diffusion of the coated glass. The setup and the experiment result are shown below. The 

displayed real image is formed on the surface of the transparent glass.   

 

 Figure 5.12 The setup for the real image HUD 
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 Figure 5.13 The display result of real image HUD 
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Chapter 6 Summary 

6.1 Contributions 

(1)  An electrostatic micromirror based laser vector HUD has been developed. The optical 

system is designed and tested for the display. The display module is composed of micromirror, 

laser module, pinhole and concave lens. 

(2)  The time response and frequency response of the electrostatic repulsive force driven 

micromirror have been tested. The settling time for each driven axis of the micromirror is about 

800ms with 5% steady state error. When driven by step signal, the overshoot of the micromirror 

increase with the incensement of the step input. The frequency response shows that the 

micromirror has a resonant frequency about 800Hz. The measurements for time response and 

frequency response on different driving axes have similar results which prove the symmetry 

structure of the micromirror.   

 (3) An open loop control algorithm has been developed to perform the micromirror based laser 

vector display. 3 factors which affect the display quality have been come up with. Based on the 3 

factors, the open loop control algorithm has been developed. 2 driving methods which are 

equally step driving and unequally step driving are tested and compared. Because of their 

characteristics, the equally step driving method is used to drive the laser spot move along the 

designed patterns points which are visible and the unequally driving method is used to drive the 

laser spot move along the transitional points which are invisible.  

(4) The control system has been built. FPGA, because of its high speed is chosen to implement 

the control algorithm. A steady display of 40Hz can be obtained. 

(5) The setup of 2 imaging methods for the head up display which are real image HUD and 

virtual image HUD are built and tested. The developed HUD has the feature of higher brightness 

and contrast, wider angle of view, smaller size and lower cost.  
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6.2 Future work 

(1) The time response and frequency response test can only provide a rough model of the 

physical system which cannot be used for advanced control. A more accurate mathematical 

model can be built from the system identification experiments. 

(2) Close loop control algorithm can be developed which can perform a much more accurate 

laser spot position control.     

(3) The optical system virtual image HUD and real image HUD are needed to be improved to 

obtain a more clear display. A compact and easily adjustable display module is needed to be 

designed.   
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