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Abstract: 

Reverse Logistics is the flow and management of products, packaging, components, 

and information from the point of consumption (i.e., the market) to the point of origin (i.e., 

manufacturers and suppliers). It is a collection of practices similar to those of supply chain 

management, but in the opposite direction, from downstream to upstream. Reverse logistics 

is a valuable solution to the hazards jeopardizing the environment, and it involves activities 

such as reuse, repair, remanufacture, refurbish, reclaim and recycle.  

Reverse logistics became an established line of research, covering several areas, 

including inventory control; though, several research gaps still exist, such as: ignoring 

switching costs between production and remanufacturing processes and learning effects, the 

assumption that production and remanufacturing processes are of perfect quality, 

remanufactured products are assumed to be as-good-as new, the assumption that returned 

products are treated as whole products while ignoring disassembly, collection rate of used 

items is independent of price and quality, and the assumption that pure remanufacturing and 

production policies are optimal. These research gaps are addressed in mathematical models 

to bring reverse logistics optimization closer to reality. Deterministic and stochastic 

components are considered here with numerical examples and results discussed. The key 

conclusions are as follows: 

The inclusion of the first time interval where no remanufacturing/repair exists, results 

in preventing the overestimation of inventory holding costs in the repairable stock. Assuming 
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production and remanufacturing processes to be perfect, or ignoring learning effects in these 

processes, might not capture the benefits that product recovery programs are supposed to 

bring. Although works in the literature assumed pure remanufacturing is mathematically 

attainable but not feasible, this study shows that the pure remanufacturing case is not valid 

mathematically, which proves it to be infeasible. It is favourable to compensate customers to 

settle for remanufactured products instead of new ones. Considering disassembly of returns 

in the modelling of reverse logistics is proven beneficial. Finally, mixed production and 

remanufacturing policies are optimal rather than pure ones; and the inclusion of price and 

quality to determine return and collection rates is crucial. 
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CHAPTER 1: INTRODUCTION 

1.1. Supply Chain Management 

Firms have been developing business relationships to overcome challenges in 

distribution or marketing channels since the early days of the industrial revolution. Earliest 

distribution channels lacked efficient information on demand and customers’ consumption 

behaviours, which resulted in these channels having conflicting goals and lengthy and 

unpredictable time to deliver products to customers. These channels were also characterised 

by being costly due to overstocking of inventory, which was the common practice to counter 

any kind of disorganisation (e.g., variation in a shipment delivery time, quantity and quality, 

machine breakdown…etc). 

The introduction of the Internet as a business technology in the 1990s, with its 

inexpensive information transformation capabilities, revolutionized business transactions 

through Business-to-Business (B2B) connectivity. Coordination between members of a 

distribution channel had risen to new competitive levels as a result of this technology, where 

adjacent members in a supply chain became able to match supply and demand that resulted in 

reducing inventory levels and costs. The B2B connectivity gave birth to Supply Chain in the 

business terminology. 

A Supply Chain is a network over which raw material complements semi-finished 

products and finished products flow forward to the customer while information and cash flow 

backward. The complexities in structure and the management of these networks are 

documented in the literature. Supply Chain Management is synonymous with network 

sourcing, supply pipeline management, value chain management, and value stream 

management (Croom et al., 2000).  

Perhaps one of the reasons for a lack of a universal definition of Supply Chain 

Management is the multidisciplinary nature and the continuous evolution of the concept. The 

Council of Supply Chain Management Professionals provided the following definition:  

Supply Chain Management encompasses the planning and management of all 

activities involved in sourcing and procurement, conversion, and all logistics 
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management activities. Importantly, it also includes coordination and 

collaboration with channel partners, which can be suppliers, intermediaries, 

third party service providers, and customers. In essence, Supply Chain 

Management integrates supply and demand management within and across 

companies.  

Several other definitions are found in Lee & Billington (1992), Pohlen & Theodore 

Farris II (1992), Berry et al. (1994), Kroon & Vrijens (1995), Hicks (1997), Tan et al. (1998), 

Dowlatshahi (2000), Ritchie et al. (2000), Fleischmann (2001a) and Lambert (2008). Despite 

some variations in these definitions, the main objective has always been to maximize the 

supply chain profitability where there is only one source of revenue, the customer purchase. 

Profits, or savings, generated from the supply chain operations are usually shared amongst 

the players in a chain.  

Supply chain management is managing all the processes, functions, activities, and 

relationships along which products, services, information and monetary transactions move in 

and among enterprises. Managing the supply chain is a very challenging task (Lambert 

2008); in particular, the flow of inventories from sources of supply to end-users (Ellram, 

1991). As part of supply chain management, logistics includes all activities to move products 

and information to, from, and among members of a supply chain. The popular 

implementation of Enterprise Resource Planning (ERP) presented homogenous and 

transactional databases that facilitated the integration of supply chain activities (Shapiro, 

2001).   

Supply chain management expanded the borders of competition and elevated 

customers’ expectations to higher levels. Today, products are manufactured to exact 

specifications and are rapidly delivered to customers at locations throughout the globe in 

hours, with their orders delivered to customers in the desired assortment, quantity, quality, 

location, time, condition, and price. What once was the exception became the expectation.  

Modern markets characterized by product customization and fierce competition exerted 

pressures on companies to deliver their best products and services while reducing their costs. 

This elevated competition to new heights, i.e., from a company versus company to a supply 

chain versus supply chain (Cottrill, 1997). Bowersox et al. (2002) discussed the main forces 
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driving supply chain management. These forces are information technology, integrative 

management, responsiveness, financial sophistication, and globalization. 

The supply chain provides the framework for businesses and their suppliers that join to 

bring goods, services, and information efficiently and effectively to customers (Bowersox et 

al., 2002). The value chain of any company starts by new product development, then 

marketing & sales, then operations, then distribution and services. Thus, a company must 

have a new product development strategy, a marketing strategy, together with a supply chain 

strategy, which covers procurement, transportation, manufacturing, inventory, distribution, 

and follow-up services. However, for the customer, a competitive strategy defines the set of 

customer needs to be satisfied.  To optimize the supply chain performance, a strategic fit 

between the competitive strategy and the supply chain strategy has to be attained. This fit is 

achieved through supply chain coordination (Chopra & Meindl, 2001).  

The supply chain is coordinated when all the supply chain stages optimize their 

decisions jointly to maximize the total supply chain profits. When there is no coordination, 

each stage in a supply chain assumes to maximize its local profits independently from other 

stages in the chain. This approach impedes supply chain profitability. Optimizing a supply 

chain requires making decisions at the strategic, tactical and operational levels (Chopra & 

Meindl, 2001). The strategic level includes decisions related to location, capacities of 

production and warehousing facilities, network design, products to be manufactured or stored 

at various locations, modes of transportation, and the type of information sharing system to 

be utilized. The tactical level includes decisions related to forecasting of demand in different 

markets, subcontracting of manufacturing, replenishment and inventory policies, backlogging 

policies in case of stock-out, aggregate planning, and timing as well as size of marketing 

policies. The operational, the third and the last level includes decisions related to allocating 

individual orders to inventory or production, assigning dates for orders filling, setting 

schedules of trucks, deciding orders sizes, and timing replenishment orders. 

 Although the objective of supply chain management is to integrate the firms in this 

chain into a single entity, research on coordinating supply chain management at the inter-

organizational level is limited (Sachan & Datta, 2005). The complexity of relationships 

within a supply chain and the number of factors that need to be understood and managed in 
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order to improve overall effectiveness is a significant challenge (Sohal et al., 2002). 

Integrating supply chains results in enhancing customer service levels where higher levels of 

coordination are associated with mutually fulfilled expectations of different supply chain 

members (Ellinger et al., 1997). 

Coupled with the surplus inventory and excessive lead-time, it has been long known 

that the dynamics of supply chain systems create particular problems for trading partners as 

stand-alone entities (Sohal et al., 2002). Forrester (1961) identified the need for organizations 

to understand the potential for distortion as demand patterns are transferred backward along 

the chain. This came to be known as the Bullwhip Effect, a term first coined by the logistics 

executives of Procter & Gamble (Lee et al., 1997, 2004), which is one of the main challenges 

facing supply chain management. The Bull-Whip Effect represents the behaviour where the 

steady demand at the consumer’s side at the end of the supply chain translates into amplified 

variability in orders as this demand moves upstream along the chain. The Bull-Whip Effect 

captured the attention of many researchers, e.g., Sterman (1989), de Kok & Graves (2003), 

Towill (1997), Paik & Bagchi (2007), and Huang et al. (2009). 

The growing popularity of supply chain management in the 1990’s coupled with 

environmental concerns led to the evolution of Closed Loop Supply Chains and Reverse 

Logistics. This is explained in the following section. 

1.2. From Recycling to Reverse Logistics 

Recycling is a natural phenomenon that has been a human practice for centuries 

especially during periods when resources were scarce. Recycling is collecting used products, 

disassembling them (when necessary), sorting them into categories of like components 

and/or materials for processing (Beamon, 1999). The main driver for recycling is the 

conservation of natural resources and the economic advantage of obtaining recycled stock 

instead of acquiring new virgin material. Resource shortages caused by wars encouraged 

recycling, where metallic parts were collected to be melted and reused for their high value 

(Steven, 2004). For example, in World War II, European governments carried out campaigns 

to entice their citizens to donate metals as a matter of significant patriotic importance. Like 

recycling, remanufacturing was performed in the past for economic reasons.  
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Calls to reduce waste to preserve natural resources and to protect the environment were 

not profound before the 1950’s. The outstanding book of Vance Packard in 1960 “The Waste 

Makers” (Packard, 1960) is one of the pioneering calls to warn of the problem of waste and 

its effects on the environment. Packard (1960) showed how marketing men across the USA 

realised that the country’s capacity to produce outstripped the country’s capacity to consume. 

Accordingly, they innovated various ways and excuses to market and change the behaviour 

of the American citizen to create a “super customer”. As a result, the average citizen in 1960 

was consuming twice what an average citizen was consuming before World War II. Packard 

(1960) emphasised how companies produced unwanted, prettier, fashionable products to 

boom sales, and the author highlighted Eisenhower’s National Advice to combat the 1958’s 

recession by saying, “Buy… buy anything”. This over-consumption behaviour resulted in 

tremendous amounts of waste, and yet, companies tried and succeeded in innovating new 

ways to encourage consumers of dumping their products, so that customers will buy more 

(Packard, 1960). 

 Companies reduced quality and designed a “planned obsolescence”, where a durable 

product is the one that can survive the last instalment payment. As a result, Americans 

consumed resources in 40 years (1920~1960) more than the peoples of the world have used 

in 4000 years of recorded history. The fall of communism in 1990 and the emergence and 

escalation of capitalism as the dominant economic system resulted in an enormous increase 

in consumption behaviour and the subsequent rapid depletion of natural resources (e.g., 

Dijkgraaf & Vollebergh, 2004; Inderfurth & Langella, 2008). Shorter product life cycles and 

changes in customers’ consumption behaviours resulted in faster product flows and 

subsequently faster generation of waste and depletion of natural resources (e.g., Cairncross, 

1992; Prendergast, 1995; van Hoek, 1999; Blackburn et al., 2004). Beamon (1999) reported 

that the amount of environmental waste generated to be huge and equivalent to 10 pounds per 

person per day. Other calls to protect our planet, to reduce consumption and reduce the 

hazardous emissions are documented in recent history (e.g., the incident of the Three Mile 

Island in 1979 and the disaster of Chernobyl in 1986) (Gupta & Lambert 2008). Today’s 

customers are more educated and demanding for less tolerance to products that damage the 

environment (Krikke et al., 2004).  



 6 

One of the solutions to protect the environment alongside with repair, refurbishing and 

remanufacturing is the adoption of recycling (e.g., King et al., 2006). Recycling became a 

popular resolution in the 1950’s where environmental concerns encouraged manufacturers to 

do more recycling, reuse and reconditioning. However, studies that considered the 

management of recycling activities started in the 1970s, in particular, with the beginning of 

the world energy crisis.  

Zikmund & Stanton (1971) are believed to be the first to discuss the management of 

recycling introducing the term “reverse-distribution”. The authors described recycling as 

finding new ways of using previously discarded materials to provide a sound solution to 

cleaning up the cluttered environment. Although recycling requires innovative scientific and 

technological solutions, it is as well a marketing and distribution challenge because major 

recycling costs are attributed to collection, sorting, and transportation processes. The authors 

concluded that customer awareness and government role are major factors in making 

recycling programs successful. 

Fisk (1973) warned business leaders of the uniqueness of the environmental crisis and 

its implications on their marketing decisions. He further cautioned business leaders of the 

risks that they might face if they ignore responsible consumption for their companies. El-

Ansary (1974) discussed the Marketing Mix concept, differentiated between controllable 

(price/promotion) and uncontrollable (ecological/environment) variables, and highlighted the 

importance of a marketing shift from reducing costs to enhancing social and production 

factors. To achieve a successful shift, the author suggested that it is necessary to manage the 

reverse distribution channels as a marketing function.      

Reverse distribution channels for recycling within the United States were discussed by 

Guiltinan & Nwokoye (1975) with the key reverse distribution functions, primary factors and 

functional performance measures of these distribution channels identified. The authors 

advocated for better physical distribution and marketing programmes, stricter legislations and 

more joint venture resource-recovery centres to improve reverse distribution channels. For 

example, the Belgian Ecotax law improved industry’s awareness and concern for the 

environment (de Clercq, 1996). The lagging on the part of industries to adopt recycling in 

their operations is due to legislative and economical reasons. For example, Syring (1976) 



 7 

recorded that product recovery rates were decreasing in the previous two decades because of 

the decrease in prices of virgin materials, the inappropriate tax legislations that were applied 

on secondary materials, and unintentionally, the favouring of virgin materials. In order to 

make recycling favourable to industries, Syring (1976) recommended a redesign of product 

return networks of secondary materials and revising governmental procurement policies.  

“Reverse Marketing Channels” was the term used by Fuller (1978) to represent the 

mechanism to maintain adequate flow of secondary materials from consumers to 

manufacturers. The author identified recycling as a special case of reverse marketing 

channels with several potentials. Along the same line of research, Ginter & Starling (1978) 

showed that as the amount of solid household waste in the USA had quadrupled in 50 years. 

New governmental policies were introduced to entice manufacturers to implement recycling, 

while meeting marketing strategies with new challenges. The authors advised implementing 

reverse channels of distribution to consider consumers not only as potential buyers, but also 

as suppliers. 

Barnes (1982) was the first to coin the term “Reverse Logistics”. The author considered 

recycling as a problem in “Retrologistics” (Backwards Logistics or Reverse Logistics). The 

author emphasised the fact that although technology offered several solutions for 

implementing recycling, marketing failed to provide sound answers to implement recycling 

successfully and that marketing plays a critical role in the future of recycling. Barnes (1982) 

was one of the first researchers to show that, besides transportation, inventory of secondary 

materials is another challenge facing successful implementation of reverse logistics and that 

one of the benefits of implementing reverse logistics is enhancing a firm’s image. 

As products move faster along supply chains, waste is generated faster. Environmental 

and sustainability concerns hindered the implementation of product and material recovery 

programs that later took more complex forms of networks in the reverse flow. In the 1990s, 

the network, which captivated the interest of business and researchers, became to be known 

by the term “Reverse Logistics”. In the following sections, a broader view of reverse 

logistics is presented. 
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1.3. Understanding Reverse Logistics 

For a variety of economic, environmental, or legislative reasons, product disposal may 

no longer be the consumer’s responsibility as products come to be recycled or 

remanufactured by their manufacturers. Figure 1.1 illustrates the forward (Supply Chain) and 

backward (Reverse Logistics) flows of products.  

 
Figure 1.1. Forward and reverse logistics system 

For the conventional forward logistics systems, the flow starts upstream (suppliers) as 

raw materials, later as manufactured parts and components to be assembled and continues 

downstream to reach customers as final products to be disposed once they reach their 

economic or useful lives.  

In reverse logistics, the disposed products are pushed upstream to be repaired, 

remanufactured, refurbished, disassembled into components to be reused, or as raw material 

to be recycled for later use. Besides, by-products (hazardous and non-hazardous waste, 

packaging, etc) and information are also generated (Kroon & Vrijens, 1995).  

Reverse Logistics provides companies with cost and strategic advantages. Companies 

that remanufacture may save up to 60 % of the estimated cost of a completely new product 

(Dowlatshahi, 2000). Reverse Logistics promotes alternative uses of resources that can be 

cost effective and ecologically correct by extending a product’s life cycle. Having an 

ecological image benefits the organization as customers may be willing to pay more for 

products that do not harm the environment. The importance of reverse logistics practices led 
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many manufacturers to design–for–disassembly and remanufacturing as part of a sustainable 

development initiative (Grenchus et al., 2001; Min et al., 2006).   

Similar to supply chains, there are three decision-making phases in reverse logistics 

systems, which are the Design, Planning and Operational phases. The Design phase (also 

called strategic planning, or network design, or location allocation), is a long-term, decision-

making process (more than a year) where decisions are very expensive to alter. This phase 

involves decision related to determining the  locations of manufacturing facilities, 

distribution and collection centers, the products to be manufactured/remanufactured, the 

transportation routes and modes, collection (returns) policies, marketing strategies, selection 

of second hand markets, and supply chain performance measures (Pochampally et al., 2009). 

In the planning phase (also called tactical planning), medium-term decisions (six months to a 

year) are made regarding policies affecting manufacturing, remanufacturing, inventory, 

uncertainty in demand, exchange rates, etc. In the Operational, the third and final phase, 

decisions relating to  short-term periods (less than six months) are made, which involve daily 

operations such as filling customer orders, tracking inventory levels, short-term scheduling, 

job rotation, etc.  

Like supply chains, coordination in reverse logistics results in reducing costs and 

enhancing customer service (e.g., Ellinger et al., 1997; Ben-Daya et al., 2008). Some of the 

definitions of the term “reverse logistics” are presented in the following section. 

1.4. Reverse Logistics Definitions 

Reverse Logistics, or Reverse Supply Chains, is more than a backward flow (Shapiro, 

2001). It involves activities such as the management of transportation, warehousing and 

inventory activities. Some of the available definitions in the literature of the term “Reverse 

Logistics” are: 

 “Reverse (distribution) Logistics is the movement of goods from a consumer 

(back) towards a producer in a channel of distribution.” (Murphy, 1986; 

Pohlen & Theodore Farris II, 1992). 

“Reverse Logistics refers to the logistics management skills and activities 

involved in reducing, managing and disposing of hazardous and non-
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hazardous waste from packaging and products. It includes reverse 

distribution, which causes goods and information to flow in the opposite 

direction from normal logistic activities.” (Kroon & Vrijens, 1995).  

“The process of planning, implementing, and controlling the efficient, cost 

effective flow of raw materials, in-process inventory, finished goods and 

related information from the point of consumption to the point of origin for 

the purpose of recapturing value or proper disposal.” (Rogers & Tibben-

Lembke, 1998). 

“A process in which a manufacturer accepts previously shipped products or 

parts from the point of consumption for possible recycling, remanufacturing 

or disposal.” (Dowlatshahi, 2000). 

 “Reverse Logistics is the process of planning, implementing and controlling 

the efficient, effective inbound flow and storage of secondary goods and 

related information opposite to the traditional supply chain direction for the 

purpose of recovering value or proper disposal.” (Fleischmann, 2001a). 

“Reverse logistics comprises all activities involved in managing, processing, 

reducing and disposing of hazardous or non-hazardous waste from 

production, packaging and use of products, including the processes of reverse 

distribution.”  (Steven, 2004) 

Murphy (1986) and Pohlen & Theodore Farris (1992) emphasized the direction of 

materials from the consumer back to the producers. Kroon & Vrijens (1995) extended the 

definition of reverse logistics to include the skills and activities required, types of materials 

(hazardous and/or non-hazardous), and the flow of information. The definition provided by 

Rogers & Tibben-Lembke (1998) is the most common one and it described reverse logistics 

as a combination of three actions: plan, implement, and control, where the definition 

emphasised the importance of recapturing product value and properly disposing waste. The 

definition introduced by Dowlatshahi (2000) expressed the case of Original Equipment 

Manufacturers and excluded third party logistics companies and introduced the function of 

remanufacturing as a possible reverse logistics activity. Fleischmann (2001) provided a 

similar definition with one difference; he emphasized the role of secondary goods rather than 
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finished goods. Steven (2004) added a green perspective to the definition of reverse logistics 

by focusing on reducing the disposal of hazardous or non-hazardous waste (e.g., reducing use 

and consumption). 

 One should not confuse the term “Reverse Logistics” with terms like “Waste 

Management” or “Green Supply Chain”. Waste management deals with waste collecting and 

processing. Waste implies that it has legal consequences (de Brito & Dekker, 2003, 2004). 

However, reverse logistics deals with all kinds of returns including obsolete unused products, 

product recalls, and end-of lease items. Reverse logistics focuses on recapturing value 

besides reducing waste. Green logistics refers to practices within the supply chain that aim to 

reduce energy, materials and waste, through measuring environmental impact of logistics and 

ISO 14000 certification. However, these green activities are not necessarily related to reverse 

logistics. For example, choosing an environmentally friendly transportation means for the 

forward supply chain (e.g., an electric-gasoline hybrid vehicle) is a green logistics 

alternative, but it has no reverse logistics perspective. Reverse logistics is sometimes seen as 

a part of a bigger picture: “Green supply chain management” (Srivastava, 2007). This term, 

however, is rarely used. 

Reverse logistics is sometimes defined as an extension from Reverse Distribution. 

Carter & Ellram (1998) defined Reverse Distribution as the return movement of a good or 

material resulting from reuse, recycling, or disposal. This upstream movement can be 

associated with environmental as well as quality and wear-dating issues, and, it is often 

performed auxiliary channel members. The authors later refined their definition of reverse 

logistics by including resource reduction that should result in more efficient forward and 

reverse distribution processes.   

Reverse logistics is sometimes considered as a subset of Closed Loop Supply Chains 

(CLSC). CLSC is the integration of both the Forward Supply Chain and Backward Logistics, 

where it is usually organised and managed by an Original Equipment Manufacturer (OEM) 

that supports its own product line (Blumberg, 2005). Some researchers refer to the term 

reverse logistics to mean CLSC. 
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1.5. Benefits and Objectives of Reverse Logistics 

Implementing Reverse Logistics has numerous benefits. These benefits (or objectives) 

are economical, environmental, marketing image, market share and exposure, asset 

protection, and reducing bullwhip effect. 

Economical motives:  

The main motive behind reverse logistics is economical (minimizing cost and 

increasing profits). Reverse logistics provides alternative economical sources of materials 

that are substitutes for virgin ones, thus saving natural resources, effort, and energy. Reverse 

logistics is a chance to recapture value from returned products through recovery/reuse/repair 

options. The dollar size of reverse logistics is enormous. Logistics accounts for 9.9 percent of 

the whole economy in the USA, equivalent to $1.3 trillion in 2006 (Wilson, 2007). Although, 

reverse logistics is not developed enough to be estimated, Rogers and Tibben-Lembke (1998) 

provided a rough figure of $35 billion in 1997, reaching $56 billion in 2007, which is 

equivalent to 4 percent of total logistics costs of the USA alone (Beltran, 2002; Bowersox et 

al., 2002; Schatteman, 2003; Lambert, 2008). Remanufacturing may have the advantage of 

shortening the lead-time, where the demand of spare parts is supplied by remanufacturing 

returned parts instead of initiating a resupply with a substantial lead-time (Minner, 2003). For 

example, at IBM, lease & take back programs substantially reduced the uncertainty in the 

reverse flow (Fleischmann, 2001a).  

Environmental motives:  

The presence of hazardous toxic materials such as hexavalent chromium, 

polybrominated diphenyl ether, mercury and lead in electronic discarded components, 

represents a serious threat to the environment (Pochampally et al., 2009). In the USA, 29 

States have ten years or more of landfill capacity left, fifteen States have between five and 

ten years, and six States have less than five years (Michael Knemeyer et al., 2002). Reverse 

logistics reduces the amount of waste disposed into the environment (materials are reused 

instead of consuming new resources), thus, reducing the reliance on landfills and energy. 

Saving energy is another valuable environmental motive. For example, an aluminum 

recycling process requires only 5% as much energy as the processing of the same amount of 

aluminum stock from virgin ore (Fuller, 1978). Costs of directing unwanted materials to 
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landfills continue to increase, which encouraged organizations and firms to explore other 

economically viable alternatives for disposal (Johnson, 1998). Besides, many products can 

no longer be disposed in landfill sites because of environmental regulations (Rogers & 

Tibben-Lembke, 1998). By implementing reverse logistics, companies save money, reduce 

energy usage, emit less pollutants into air and water, save natural resources, reduce disposal, 

and avoid landfill options. Some of reverse logistics models consider financial and 

environmental multi-objective functions to enhance the environmental performance of these 

models (Bras & McIntosh, 1999).    

Marketing image motives:  

Many companies today want to appeal to their customers as being “environmentally 

responsible”, a part of their marketing image. This has become more pressing as customers 

became selective of green and/or environmentally friendly products. Companies in the last 

two decades have been spending efforts in building green profiles, especially in markets 

dominated by environmentally conscious customers. In addition, companies are liable to their 

suppliers’ environmental performance, since customers and stakeholders do not distinguish 

between companies and their suppliers (Sarkis, 2006). For example, in 2005, Dell increased 

its recovery rate of used computers collected from their customers by 72 percent over 2004 

through recycling events and seminars that involve suppliers and customers (Kulwiec, 2006). 

Public environmental concern, coupled with sustainable development, has created 

opportunities for organizations to differentiate their products from their competitors’ by 

being “greener” (Johnson, 1998).  

Market share & exposure motives:  

Besides reducing cost, many organizations take back their competitors’ products in 

addition to theirs as a strategy to increase their market share. Some companies offer to collect 

all brands of a certain product in exchange for a price discount for the company’s own brand. 

For example, Dell accepts and picks up all computer brands and accessories (e.g., key board, 

mouse, monitor, or printer) from the consumer's home for a fee, and offers this service free of 

charge with the purchase of a new Dell computer (Kulwiec, 2006). 
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Asset protection motives:  

High-tech companies entice their customers to return their product fearing that 

sensitive technological knowledge would leak to competitors, and to avoid competing with 

secondary markets selling used products of these companies (Fleischmann, 2001a). IBM, for 

example,  applies reverse logistics by recovering valuable parts from retired products so as to 

avoid brokers and third party recyclers doing that themselves (de Brito & Dekker, 2003).  

Reducing bullwhip effect motives:  

In the traditional forward supply chain, the bullwhip effect is the amplification of order 

variance in a supply chain from a downstream stage to an upstream stage. Zhou et al. (2004) 

and Zhou & Disney (2006) are perhaps the only studies that discussed the bullwhip effect in 

a reverse logistics context. The authors showed that the returned products can reduce the 

bullwhip effect, experienced by absorbing demand fluctuations in the forward chain, to the 

extent that reverse logistics is more cost efficient than a traditional one, even if variable costs 

of recovery are higher than that of producing a new product. 

1.6. Reverse Logistics Actors 

Guiltinan & Nwokoye (1975) divided the actors in reverse logistics into four types: 

“traditional middle man” (e.g., retailers collecting reusable bottles), “secondary materials 

dealers” (e.g., scrap metals collectors), “resource recovery centers” (e.g., municipal waste 

centres) and “manufacturer controlled recycling centers” (e.g., a company remanufacturing 

its own products). A similar classification was also presented by Fuller (1978). Fleischmann 

et al. (1997) divided actors into two main categories: forward supply chain members (i.e., 

manufacturers, suppliers, wholesalers and retailers), and reverse (or backward) logistics 

actors (i.e., recycling specialists, municipal waste collectors). de Brito & Dekker (2003) 

presented a reverse logistics framework where the authors divided the actors into three main 

groups: forward supply chain actors, (e.g., supplier, manufacturer, distributer and retailer), 

specialized reverse chain players (e.g., jobbers, recycling specialists, etc.) and, opportunistic 

players (e.g., charity organization).  

The structure of the reverse logistics network defines the roles of actors in the 

distribution network, which is either an open or a closed loop. An open loop network is a 



 15 

network where the forward and the reverse flows are managed separately involving more 

than one actor. It is characterized by the existence of a secondary market for products after 

the end of their lifetimes. Apple, Inc., is an example of an open loop network where the 

company is not involved in the recycling process of its products. However, Apple considered 

designing and manufacturing their products to support further disassembly and recycling 

(Sweatman et al., 2000). In addition, Apple encourages its customers to make Apple’s 

products available for any recovery/remanufacturing option after the end of the lifetime of 

these products. A closed loop network is a coordinated and integrated network of forward 

and reverse logistics. Examples of closed loop supply chains are Xerox and BMW, where 

these companies are involved in the recycling of their products while considering recovery 

processes as integral parts of their networks. 

Supply chains are either centralized (i.e., one actor will be the decision maker) or 

decentralized. The centralized decision making results in reducing costs for the whole 

network through coordination between the different actors of the supply chain (e.g., El 

Saadany & Jaber, 2008a). The same holds for reverse logistics. If cost efficiency is the 

objective, then reverse logistics should be centralised and better coordination will be 

achieved. On the other hand, if responsiveness is the objective, then decentralized evaluation 

activity is more suited to minimize time delays in processing returns (Blackburn et al., 2004).  

Buyers’ expectations regarding customer service have increased dramatically in recent 

years. Ellinger et al. (1997) studied how well firms are doing in responding to customers’ 

requests and if there is a link between integrated logistics and customer service efficiency. 

The authors found that centralized companies are accommodating service requests better than 

decentralized ones, especially in handling returned goods requests.  

1.7. Reverse Logistics Functions and Recovery Options 

This section presents functions to manage and execute reverse logistics, and explains 

and discusses various product recovery options. Guiltinan & Nwokoye (1975) investigated 

collection and sorting, storage and logistics, and vendor/buyers relationships as reverse 

logistics functions. Pohlen & Theodore Farris II (1992) expanded the functions to include 

compacting or shredding, communications with buyers, processing, and retromanufacturing.  



 16 

Giuntini & Andel (1995) discussed in depth the management and implementation of 

reverse logistics. The authors listed six steps (six R's) for a successful execution of reverse 

logistics. The six R’s are: Recognition (recognizing returns and information sharing between 

different actors); Recovery (setting policies regarding management of returns); Review (vary 

from physical inspection to financial decisions of returned items); Renewal (directing the 

returned item to the appropriate recovery option); Removal (directing returns to resale, repair 

or disposal); and, Re-engineering (improving the whole supply chain). Reverse logistics 

activities are widely applicable for products with non-consumable cores where a “core” is the 

main component of a product that retains the value of that product (Parkinson & Thompson, 

2003). For products of consumable cores, reverse logistics activities can be applied, e.g., 

packaging (Kodak, 2009).  

There are many options and routes for collected products along a reverse chain. Thierry 

et al. (1995) differentiated among product recovery options (which are: repair, refurbishing, 

remanufacturing, cannibalization, and recycling) by showing the level of disassembly 

involved in each option. Repair involves disassembly at the product level, refurbishing at the 

module level, remanufacturing at the component level, retrieval or cannibalisation at parts’ 

level, recycling at material level, and incineration at energy level. These recovery processes 

involve product disassembly, which is a systematic method of separating a product into its 

constituent parts, components, subassemblies, or other groupings (Gupta & Taleb, 1994). 

Rework is not a recovery process, because it is an activity performed before the selling of a 

product or an item. Gungor & Gupta (1999) categorized the recovery process into material 

recovery (recycling) and product recovery (remanufacturing/refurbishing/reclaim).  

Carter & Ellram (1998) stressed that resource reduction should be the ultimate goal of 

reverse logistics and should be prioritized over recycling. The authors introduced a hierarchy 

where the resource reduction option should be exhausted before reuse, then recycling, then 

disposal with energy recovery, and finally, disposal in landfill as the last resort.  van der 

Lann et al. (2004) differentiated between push (autonomous) recovery, where customers push 

returns as in the case of mail-order companies, and pull (managed) recovery, where the OEM 

manages and entices customers to return their products after the end of its lifetime to recover 

it. Other recovery options are available in the literature (Pohlen & Theodore Farris II, 1992; 

Fleischmann et al., 1997; Bras & McIntosh, 1999; de Brito & Dekker, 2003; Steven, 2004).  
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Carter & Ellram (1998) and Steven (2004) introduced a hierarchy of recovery options. 

Recovery options proposed in the literature are listed, starting from the most environmentally 

friendly option, and are shown in an advanced hierarchy in Figure 1.2.  

 
Figure 1.2. Hierarchy of recovery options 

Resources reduction is a global call to reduce the inevitable increase in consumption. 

Consumer awareness and governmental legislations are crucial for its success. For example, 

the use of reusable bags in grocery shops instead of plastic bags is one useful example, where 

consumer awareness initiated the call to reduce the use of plastic bags. Municipal laws in 

some cities (e.g., Toronto, ON) and counties (e.g., Ireland) compel consumers to pay for 

plastic shopping bags based on this initiative (Convery et al., 2007). 

Reuse or resale is using the unit in its “as-is” condition for the same or different 

purpose though it is not always feasible (de Brito & Dekker, 2003). It is the best possible 

option as it involves the least energy use and no wastage of material. This option is most 
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common in catalogue retailing where a high rate of product returns is experienced. Returned 

products usually require minimal activities (e.g., cleaning, repackaging) to bring them back 

to their initial quality. Examples are refrigerator shelves, returnable packaging and, 

returnable bottling systems. There is another recovery option that could be considered as 

reuse, which is reconfiguring where a returned product is considered for another lower grade 

function (e.g., using a computer’s component as a toy’s component) (Giuntini & Andel, 

1995). 

Repair is defined as the process of returning a used product to its original working 

condition through fixing or replacing broken parts. It involves limited disassembly and 

reassembly. Repaired items are usually perceived by customers to be less than the quality of 

new ones unless the quality of repaired items is claimed and guaranteed by the manufacturer 

to be “as-good-as-new”. Corporate-owned transportation systems, such as Wal-Mart, or 

third-party logistics companies, such as Consolidated Freight Inc., return a product to the 

original supplier or send it to a liquidation centers or a secondary market outlet (Krumwiede 

& Sheu, 2002). 

Remanufacturing and refurbishing are better options than recycling, because 

remanufacturing (or refurbishing) reclaims a larger share of value than recycling. 

Remanufacturing reclaims material and value of parts while recycling reclaims materials 

only. Unless an Original Equipment Manufacturer (OEM) is involved, there will be little 

incentive to design products for remanufacturability or refurbishability.  

Remanufacturing brings the quality of returned used items up to the quality standards 

of the new similar items and provides products at lower cost, and is an additional source of 

replacement parts (Bras & McIntosh, 1999). Remanufacturing involves the removal and 

replacement of all high wear-and-tear parts to extend the life span of these products. It 

requires high level of disassembly, sorted, inspected and classified as either good or 

defective. Defective subassemblies are repaired, machined, or substituted with approved 

quality ones. Remanufacturing can be associated with features upgrading. Volvo offers its 

dealers to buy remanufactured spare parts instead of buying new spare parts and guarantees 

the remanufactured units to have the same quality and performance and offer the dealers the 

same warranty. Olovsson & Khalil (2008) estimated that Volvo offers the remanufacturing 
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components to dealers around the world for 70 % of the cost of a new part, and that 17 % of 

Volvo’s aftermarket sales of spare parts are remanufactured products. BMW has also been 

remanufacturing engines and applying strict quality standards to bring them to “as-good-as-

new” state (Thierry et al., 1995). Bosch sells remanufactured power hand tools (Glenn 

Richey et al., 2004). 

Refurbishing is similar to remanufacturing, though it brings used products quality up to 

a specific level, less than the level of new “virgin” products. Refurbishing is very common in 

aircraft and military industry. NASA saved 40-60 percent in building spacecrafts by applying 

remanufacturing and refurbishing (Beltran, 2002). Dell’s customers can refurbish existing 

computers or buy new parts (Ravi et al., 2005). Thomson Consumer Electronics ships 

recoverable items from the US to Mexico for refurbishing through a third-party distributor, 

Genco, to facilitate returns. The company chooses the best option between refurbishing to the 

Mexican market or disposal in the USA (Dhanda & Hill, 2005). Refurbished products are 

sometimes used to fill warranty pools of sold products, with the remaining refurbished units 

sold in secondary markets (Krikke et al., 2004). 

Reclaim or cannibalization, is unlike the previous options, where it uses a small 

proportion of parts of the returned unit in the recovery process. Reclaim is the process of 

extracting parts from returned products, testing them, then the good ones are reused in new 

products. The remaining subassemblies of the returned product are either recycled or 

disposed. This practice is common in the automotive and the electronics industry. For 

example, memory boards used in obsolete computers are reclaimed for use in other electronic 

products. Aurora, a US company, reclaims integrated circuit boards of computers and sells 

them as separate chips (Thierry et al., 1995). In Germany, the plastic parts in park benches 

are reclaimed (Steven, 2004).  

Not all rework activities are reverse logistics activities. Flapper et al. (2002) defined 

rework as all activities required to transform products that have not been produced or 

packaged according to preset qualifications into products that are. When rework is performed 

before products being distributed to customers, it is not considered as a reverse logistics 

activity, because the reworked product did not leave the production floor. However, when a 

defective unit of a product makes it to the customer, and later returned by the customer 



 20 

because of faulty conditions, then the defective unit is pushed backward to the manufacturer 

to be reworked, in this case, rework is considered a reverse logistics activity.  

Recycling is the process of turning material back to its original configuration from used 

and non-functioning products. Unlike the previous recovery options, the identity and 

functionality of products and parts are lost. The retrieved material can be used either in the 

production of similar products or in different lower grade products. The success and 

effectiveness of recycling programs depend on the willingness of customers, their 

communities, and governmental legislations (Alter, 1993). 

Disposal with energy recovery makes use of the caloric value in the disposed products 

and reduces its volume to reduce space consumed of the landfill. Direct disposal in the 

landfill, is the last and most undesirable harmful option. 

The sources of returned items are numerous, for example:  

1) End-of-life returns: consumers return products after excessive use and the products are 

no longer functioning; 

2) End-of-use returns: the product is technology obsolete (e.g., computers) or outdated 

(e.g., carpets and garments). The returned product is sold in a secondary market; 

3) Failure: products that functionally failed but can be recovered or repaired; 

4) Commercial returns: end-of-shelf-life returns, obsolete products, unsold items, or 

wrong/damaged deliveries; 

5) Warranty returns and lease returns; 

6) Production scrap; 

7) Stock adjustments; 

8) Packaging: for example returnable containers; 

9) Commercial returns: reimbursement guarantees; 

10) Service returns: for example repairs and spare-parts; 

11) Recalled products; 

12) Used repair parts: for example parts used for service or maintenance; 

13) Asset returns: for example oil drilling equipment, returnable containers; 

14) Environmental returns: returns due to environmental legislations (ex: cathode ray tube 

monitors). 
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The options and sources of returns are opportunities for reverse logistics. The factors 

required for successful implementation of reverse logistics are accompanied with challenges 

that face managers and executives. These factors and challenges are discussed in the 

following section. 

1.8. Reverse Logistics Factors and Challenges 

This section highlights the factors that are essential for a successful implementation of 

reverse logistics and presents some of the challenges facing this implementation. There are 

few research works in the literature that address these factors and challenges, which makes 

investigating them attractive to researchers in the field. Some researchers listed several 

factors. Almost a unanimous agreement exists amongst them that customer awareness and 

legislations are the main factors for a successful implementation of reverse logistics. 

Consumer awareness forms legislations, which in turn lead to changing consumers’ 

behaviour. When both of these factors are targeting a certain goal, better and faster results are 

achieved. According to Ginter & Starling (1978), legislations had taken a broader view of the 

environment in the late 1960’s.  

In the USA, the National Environmental Policy Act of 1969 had its effect on major 

waste disposal and materials recovery projects, by requiring them to assess the environmental 

impacts of their projects through which many solid waste disposal and resources recycling 

planning projects were initiated. One of the earliest legislations is a bill introduced in the US 

Congress in 1972 calling for tax deductions for production and packaging companies that use 

recycled materials (Guiltinan & Nwokoye, 1975). A good example can be seen in the 

beverage industry, where a large sector of consumers of the 1970’s were unwilling to give up 

the convenience of the throw-away metal containers versus using refillable bottles which is 

cost attractive for producers and distributers. In 1985, it was estimated that 80% of packaged 

soft drinks were sold as one-way bottles or cans in the USA. However, environmental 

concerns pushed for stringent legislations as one of the few available ways, if not the only 

one, to change this behaviour. Guiltinan & Nwokoye (1975) recommended that encouraging 

these legislations would not only provide a change in consumer behaviour, but also the drive 

for faster development of biodegradable packaging containers by manufacturers. By the 

1990’s, consumer behaviour in this industry had changed due to the rising public concerns 
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against the littering of these containers. This change, coupled with the beverage container 

deposit legislation which allowed customers to return empty beverage containers in return for 

a deposit, diverted a large amount of solid waste from landfills (Alter, 1993). In some other 

cases, retailers are responsible for collecting empty beverage containers for the sake of 

mandatory recycling. Michigan beverage distributors and retailers have been mandated by 

law to collect empty beverage containers for recycling purposes (Goldsby & Closs, 2000). 

Hence, since the 1990’s, consumer awareness became one of the main valuable drivers to 

preserving the environment by implementing packaging return programs. 

In Europe, legislations have been suited to have better environmentally friendly designs 

and processes. Besides, several countries (e.g., Germany, Denmark, and the Netherlands) 

introduced pollution taxes and waste management regulations (Gungor & Gupta, 1999) 

where the public pushed for several environmentally friendly legislations. In 1986, the 

German Waste Management Act emphasised the importance of waste reduction and required 

manufacturers to seek novel techniques and products that minimize waste and promote the 

reuse of non-avoidable wastes. Several countries followed Germany’s steps in issuing 

legislations for the same purpose (Guide Jr. et al., 2000).  Cairncross (1992) discussed how 

European companies were required to redesign their products and their networks to comply 

with governmental environmental legislations and regulations.  

The European Union Waste Electrical and Electronic Equipment Directive (WEEE) is 

a legislation that has been in force since February 2003. The WEEE restricts the use of 

hazardous substances in electrical and electric equipment and promotes the collection and 

recycling of such equipment. Original Equipment Manufacturers are required to take back 

their products after the end of its life cycle. Prendergast (1995) discussed the European 

Community (EC) involvement in environmental issues and focused on the proposed EC 

Directive on Packaging and Packaging Waste. Although the directive focused on recycling, 

yet it encouraged package reduction and reuse as valuable approaches to deal with the 

packaging problem. In 1991, the German Packaging Ordinance compelled industries to take 

back all packaging materials of their sales and imposed a minimum percentage recycling 

(Fleischmann et al., 1997). 
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The environmental performance of a company is a function linked to the effectiveness 

and efficiency of product recovery processes (Vachon et al., 2000). Companies do not have 

to have necessary expertise in Reverse Logistics to implement complex green marketing 

tactics and strategies. Therefore, environmental groups can be a valuable source in helping 

other firms in understanding environmental issues, develop appropriate solutions, and 

implement associated strategies and tactics, which is known as “Green Alliances” (Polonsky 

& Rosenberger III, 2001). 

Customers’ behaviour and its relation to the type of product have huge effects on 

returns rate. For example, in the catalogue retail industry, there is a huge deviation between 

clothing catalogues and electronics catalogues. Many of the customers of clothing catalogues 

consider trying out the products and, accordingly, the return rate is 18 to 35 % of the 

delivered goods, while in the electronics catalogues, the return rate is 4 to 5 % of the 

delivered goods (Emmett, 2005). 

Removing a returned item from a Reverse Logistics system can be through resale of the 

unit to a secondary market or through disposal. Disposal may incur additional extra costs 

when disposing hazardous materials. These costs are associated with transporting, storing, 

ownership, and liability of hazardous material. All contributors to waste liable for any future 

clean-ups of dumpsites (Giuntini & Andel, 1995). A summary of the essential factors for a 

successful reverse logistics system are: 

Design and production level: 

1) Product design at early development stages must consider recovery options after the 

end of lifetime of the product;   

2) Redesigning manufacturing processes if necessary; 

3) Remanufacturing operations must be compatible with current manufacturing processes; 

4) An improved or restructured Bill of Materials is essential; 

5) Packaging used in reverse logistics should reduce materials, costs and transportation 

requirements. 
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Operations management level: 

1) Transportation modes and networks must be well integrated with current transportation 

system; 

2) Reduce uncertainties in the delivery time and size of a shipment of returned items; this 

factor is the most endorsed in literature, and the concern about it is massive;   

3) Collect and analyse information for effective monitoring and control of the reverse 

logistics process; 

4) Prediction and control of supply of used products; 

5) Ensure the flexibility of management policies and procedures; 

6) Develop appropriate performance measures to monitor reverse logistics efficiency 

through information collection and analysis. 

Quality and Organisational level: 

1) Consumers expect consistent quality from the manufacturer regardless of the nature of 

the product, either new or remanufactured, or the company has to state its level of 

quality performance; 

2) Managers should believe in the importance of reverse logistics;  

3) Create a sense of ownership among the staff; 

4) Effective managerial and organizational procedures for dealing with reverse logistics 

must be in place; 

5) Successfully develop and implement ethical standards. 

Financial & Marketing level: 

1) Capital investments and long-term commitment are important for recovery programs. 

Recovery options require investments, and investments require vision and commitment; 

2) Marketing plans to present company’s efforts in being environmentally responsible and 

its commitment of going green;  

3) Educating programs to all the actors involved in the reverse logistics process including 

customers (Helms & Hervani, 2006); 

4) Although many companies guarantee the quality of remanufactured items to be the 

same to that of newly produced items, not all customers generally perceive 
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remanufactured and new items to be the same. A price differential is offered to 

customers to entice customers to purchase remanufactured products.  

Table 1.1 presents a comparison between recoverable manufacturing systems and 

traditional manufacturing systems (Guide Jr. et al., 2000; Jayaraman & Luo, 2007). 

Table 1.1. Differences between recoverable and traditional manufacturing systems 

Factor Traditional manufacturing 
environment 

Recoverable manufacturing 
environment 

1 Environmental 
effect 

Focus is on pre-production Pollution  
prevention-remediation 
Reduce use 

Seeks to prevent postproduction 
waste 

2 Logistics Open forward flow 
Demand-driven flows 
No returns 

Forward and reverse flows 
Supply-driven flows 
Uncertain in quantity and timing of 
returns 

3 Production 
planning and 
control 

No need to balance demand with 
returns 
Manufacturing systems are 
fabrication and assembly 

Need to balance demand with 
returns 
Manufacturing systems are 
disassembly, testing 
remanufacturing and reassembly 

4 Forecasting Forecast only end products 
Standard Purchasing 

Forecast core and end products 
Need to forecast part requirements 

5 Purchasing Materials requirements are 
deterministic 

Uncertain materials requirements 
due to uncertain recovery rates 

6 Inventory control Raw materials, new parts and 
components 

Cores, remanufactured, new parts, 
remanufactured substitute parts, and 
original manufactured  

7 Design Focus in on environmentally 
conscious design, fabrication and 
assembly. 

Design for disassembly is crucial 
and costly 
Pay-off will occur after the first life 
cycle 

8 “Low Fashion” Novelty is a key marketing issue. 
Fashion and trendiness are very 
important is several industries 

Remanufacturing is used for 
functional and technical industrial 
applications where performance is 
more important than looks. 

Reverse Supply Chains are complex, and managing it is a challenge (Vachon et al., 

2000). Challenges that face managers and executives of reverse logistics are numerous and 

are summarized as follows: 

− Unknown conditions of returns until these returns are disassembled and inspected; 

− Part matching problem (i.e., different parts and different serial numbers); 
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− The complex structure of the remanufacturing shop adds to the difficulty of integrating 

remanufactured products with newly manufactured ones;  

− Imperfect correlation among flows of new and returned products; 

− Quality of a remanufactured item is usually perceived as an inferior one; 

− Forecasting forward demand and reverse flows where seasonality appears in both 

forward and reverse flows (Aylen & Albertson, 2006); 

− Delay between forward demand and returns: demand is satisfied in the early stage of its 

life cycle without any returns, while at the end of the life cycle, there are more returns 

than demand; 

− Managing transportation and storage is complex. Transportation is the most visible cost 

in any reverse logistics network (Barnes, 1982); 

− Reverse logistics is fairly a new subject, and many research gaps have to be addressed 

(ex: Learning curve effects, effect of reworking defectives on other production and 

remanufacturing processes, imperfect production and remanufacturing processes, etc).  

Areas and fields that are popular environments for successful implementation of 

reverse logistics are introduced in the following section. 

1.9.  Areas of Reverse Logistics 

This section presents examples of reverse logistics gathered from different industries. 

Some companies publish their green profiles as part of enhancing their ecological images. 

The application of reverse logistics is in various fields, including, and not exclusive to 

metals, sand, carpet industry, online and catalogue retailers, electronics, photocopiers, 

photography, automotive industry, pharmaceutical industry and returnable containers. 

Steel: In the steel industry, reverse logistics systems are operated by ferrous scrap 

processing companies to collect scrap generated by metal working companies (Vachon et al., 

2000). The reverse logistics of scrap metals is a complicated network. In North America, the 

ferrous scrap industry is composed of steel mills and foundries, metalworking companies and 

around one thousand brokers and processors, who collect, reprocess, transport, and resell 

scrap (Johnson, 1998). The global ferrous scrap market is the world’s biggest and oldest 
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recycling market, and it was about 406 million tons in 2003, which represents 40% of ferrous 

materials world consumption for steelmaking (Aylen & Albertson, 2006). 

Aluminum: Being a major producer of primary aluminum and beverage cans, Reynolds 

Metals Company began the development of manufacturer controlled recycling centers in 

1967, to create another steady source of Aluminum supply than the virgin core, for the 

company’s smelting and can manufacturing operations. In 1975, Reynolds managed to 

redeem 24 million pounds of aluminum included in 495 million all-aluminum containers, an 

amount equivalent to 60% of the Reynolds manufactured cans market (Fuller, 1978).  

Sand: In the Netherlands, 14 millions tons of waste products are produced per year 

from the construction industry, of which 1 million tons is sand. The construction waste is 

sieved and separated into components on construction sites or in a separate facility. The 

system successfully reused 80% of the construction waste, 40% of which is reused as clean 

sand, with the remaining 40% is reused in certain construction operations as half-clean sand 

(Barros et al., 1998).  

Carpet industry:  Louwers et al. (1999) modelled the reverse logistics problem of re-

using carpet waste generated in Western Europe; estimated to be 1.6 million tons in 1996. 

Helms & Hervani (2006) explored the challenges of reverse logistics through the success 

story of carpet recycling that resulted in reducing water consumption by 46%, energy usage 

by 70%, and waste by 2.88 billion kilograms per year. 

Online & catalogue retailers: Processing returns cost web merchants $3.2 billion in 

year 2001 (Jayaraman & Luo, 2007). According to a Reverse Logistics Executive Council 

study, 12% of all goods ordered online during the holiday season were going to be returned. 

Sales returns take various forms (Anonymous, 2000); refund (59%), exchanges (27%) and 

credit (11%). The leading products returned were clothing (27%), computer software (20%), 

and books (15%).  In the online retail, returns are about 11% of all revenues (Grewal et al., 

2004). Hallmark Cards representatives collected and destroyed out-of-season merchandise in 

the early to mid-1990s. By the 2000’s, Hallmark used a third-party logistics company to 

collect excess seasonal inventory and repackage it for sale, in secondary markets (Autry et 

al., 2001). Wehkam, a large mail order company in the Netherlands, has some 10,000 items 

per day, 28% of its total sales, as product returns (van Nunen & Zuidwijk, 2004). On 
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average, 20% of the products sold by e-retailers are returned and this figure could be as high 

as 35% for certain products such as clothing (Trebilcock, 2002). 

Electronics industry: One of the most popular areas of reverse logistics is the 

electronics industry. The electronics industry characterises with high market volume, short 

product life cycles, and technical feasibility due to absence of wear and tear in most of the 

components compared to mechanical products, making these parts easier to be recovered. 

The total value of products returned by consumers in the U.S. was estimated at $100 billion 

annually with the computer industry being a main contributor (Blackburn et al., 2004); over 

12 million computers are disposed every year in the USA alone (Ravi et al., 2005). IBM 

incorporated reverse logistics by making it easier for the customers to refurbish existing 

computers or buy new parts (Kumar & Craig, 2007). Dell considered each phase of the life of 

a product, from design to disposal, as an environmentally sensitive phase. Dell started a 

Design for the Environment (DfE) program to minimize environmental consequences of 

actions taken in each phase of the product life cycle. Dell follows a reduce, reuse, and recycle 

(R3) policy that achieved  recycling and reuse of 77,000 tons of material, and diverted over 

80 percent of non-hazardous solid wastes away from landfills (Kulwiec, 2006). Sun 

Microsystems remanufactures and refurbishes spare parts, through collecting, refurbishing, 

and then restocking for reuse at a central distribution point, to be later reused for repairs 

(Rogers & Tibben-Lembke, 1998).  

Photocopiers: Xerox estimated its total cost savings due to recoverable manufacturing 

operations to over $20 million per year (Guide Jr. et al., 2000). Xerox considered partnership 

with its suppliers of its products to foster the design of environmentally friendly products. It 

continued investing in new technologies for its colour printers that produced up to 90% less 

waste than conventional office color printers did. Xerox achieved 98% reuse/recycling of 

equipment and supplies (Xerox, 2008). Canon implemented a “Return-Service Programs” 

that manages returns and enhances customer loyalty, and ultimately, to increases sales. The 

recovery program deals with returns through receiving and inspection, followed by credit 

authorization and issuance. The company considers repair, refurbishing, or remanufacturing 

before proper determination of product disposition (Canon, 2009). 
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Photography: Kodak considered reclaiming parts from its one-time-use cameras, and 

achieved a level of 77% to 90% (by weight) of the product that could be reused or 

remanufactured, and the rest is recycled (i.e., nothing is sent to landfills). The result is a 

recycling rate greater than 75%, corresponding to more than 1 billion one-time-use cameras 

recycled, including those of Kodak’s competitors (Kodak, 2009).  

Automotive: The Automotive manufacturers paid many efforts to consider design for 

disassembly and to include recyclable materials in its products, and recovering as many 

components as possible (Anonymous, 1991). Bigness (1995) stated that the automobile is 

one of the most recycled products in USA, where 20% of glass, 30% of paper products and 

61% of aluminum cans are recycled, 95% of the 10 million cars and trucks that retire every 

year go are directed to recyclers of which 75% by weight is recovered for reuse. Chrysler, 

Ford, Volkswagen, Toyota and General Motors researchers are improving the ability to 

disassemble their automobiles to integrate “ease of destruction” with “ease of construction” 

into consideration (Gungor & Gupta, 1999; van der Laan et al., 2004; Marsillac, 2008).  

BMW's strategic goal is to design a fully reclaimable automobile in the 21st century, 

where reusable packaging is preferred over disposable packaging, and recyclable materials 

are used in its newly produced vehicles, with about 15% of the total plastic components are 

previously disassembled components. The company promotes the culture of reducing waste 

by preventing it. (Dowlatshahi, 2000; BMW, 2007a, b). 

Pharmaceutical: Schering AG is a pharmaceutical company that considers recycling of 

by-products obtained from the stages of production processes because they contain valuable 

materials. The company also reuses and recycles impure solvents. The implementation and 

planning of a reverse logistics system to support these activities resulted in annual savings of 

approximately DM 25 million, about 8.5 % of the total production cost (Teunter et al., 2003). 

Similar findings were reported in Ritchie et al. (2000). 

Returnable containers & Packaging:  Kroon & Vrijens (1995) studied the application 

of reverse logistics in the area of secondary packaging material, which are materials used for 

packaging products during transportation. In these systems, a service fee is paid for the use of 

collapsible containers in a reverse logistics framework, instead of using one-way cardboard 

boxes. Herman Miller Inc. saved over $600,000 in two years using returnable packaging 
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material for steel shelves. Other companies that successfully adopted the use of returnable 

containers are IBM and Ford, General Motors and Toyota. Another example is a shared 

returnable containers system adopted by Canada Post, which resulted in significant time-

savings in handling mailing orders (Duhaime et al., 2001). John Deere has invested $20 

million in a returnable container program with its suppliers of assembly parts (van Nunen & 

Zuidwijk, 2004). In addition, there exists a huge market for third party providers where third 

party providers in several industries (Blumberg, 2005) run about 30% of reverse logistics 

businesses.  

Several other examples including, but not limited to, paper, batteries, toner cartridges, 

lubrication oils, shoes, tires, monitors, dairy products, books, glass, power tools, aircrafts, 

and office equipment (see Rogers & Tibben-Lembke, 1998; Dowlatshahi, 2000;  Bloemhof-

Ruwaard et al., 2001; de Brito et al., 2002; González-Torre et al., 2004; de la Fuente et al., 

2008; Krikke et al., 1999a, b). 

Reverse logistics opportunities are not limited to the western world. Although, most of 

the case studies and examples in the literature on reverse logistics are in North America and 

Europe, there are some cases in China and India. Srivastava (2008) argued that most 

organizations mistakenly assume that poor markets do not have any reverse logistics 

opportunities. 

Given these premises, a review of the research work related to reverse logistics is 

presented in the next chapter. The review is later narrowed to focus on inventory 

management research issues in reverse logistics, which will be the theme of this dissertation. 

An exhaustive review of the literature will identify the research gaps that relate to inventory 

management in reverse logistics. Some of these gaps are addressed in this dissertation, while 

other gaps are left for future research. Addressing the research gaps of interest led to the 

development of several mathematical models, which are analysed. Numerical examples and 

discussion of results are presented. Each chapter, which may contain more than one model, 

has a concluding section that highlights the main findings and brings forth some managerial 

insights. The last chapter provides a summary of the dissertation, the conclusions attained in 

this work, the managerial implications in these models, the limitations of the work presented 

herein, and some recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW OF REVERSE LOGISTICS  

In this Chapter, a literature overview of the research related to reverse logistics is 

presented. This overview is then followed by an extensive literature review of inventory 

management issues in reverse logistics. The survey classifies surveyed research works to 

reverse logistics exposition, qualitative models and qualitative models. Reverse logistics 

exposition is a collection of research works that introduced and established general 

frameworks of reverse logistics. Qualitative models are explanatory models and are not based 

on mathematical laws and formulas. These models portray systems in terms of causal, 

fundamental, compositional, or arranged relationships among objects and events (Clancey, 

1989). Quantitative models are models that depend largely on mathematical laws and logic 

equations to represent ideas, find and optimize solutions. Quantitative models can be in the 

form of mathematical equations or algorithms. Simulation models are models used to mimic 

and imitate a system or other mathematical models, and because these models usually 

contain mathematical relationships, the author considered simulation models as a subset of 

quantitative models. Quantitative models are divided into production planning models, 

network design models and inventory models.  

2.1. Reverse Logistics Exposition 

Several researchers examined, surveyed, and analysed reverse logistics and presented 

general concepts, definitions, factors, actors, benefits and challenges of reverse logistics from 

real life situations. In this section, research works in the literature are discussed, including 

early research work that recognized reverse logistics and later review papers that established 

reverse logistics as a separate line of research. 

The introduction of reverse distribution networks was the transitional phase of research 

work describing recycling activities to research work of environmentally friendly supply 

chain management. Marketing strategies merged with public concern and developed a new 

opportunity and solution: reverse logistics. Research started by experienced researchers in 

marketing and logistics, who were trying to find better solutions and efficient methods to 

manage recycling. 
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The term “Reverse-distribution” was first introduced by Zikmund & Stanton (1971). 

The authors discussed management of recycling activities, and examined alternative methods 

in handling material waste generated by consumers. These alternatives are backward 

channels with a typical intermediary (i.e., without a middleman), backward channels with 

traditional middleman, and indirect backward channels using trash-collection specialists. The 

author highlighted consumer motivation and channel conflict and cooperation are crucial 

factors for successful recycling. The authors recommended new thinking, new packaging and 

design, new governmental roles, and considering recycling as part of marketing strategy for a 

recycling friendly future.  

The work of Guiltinan & Nwokoye (1975) discussed the reverse channel concept and 

identified key dimensions for reverse distribution improvement, such as identifying potential 

markets, customer awareness, expanding capacities to maintain economies of scale, 

transportation flexibility, and collection incentives. Fuller (1978) discussed market 

opportunities for companies considering reverse distribution channels and changes in 

marketing strategies caused by higher energy costs, depletion of resources, increase of 

disposal costs, and legislations. These changes developed recycling as a marketing 

alternative opposed to the direct disposal of waste. The author identified three kinds of 

reverse marketing channels; traditional middleman channels, manufacturer controlled 

resource recovery channels, public resource recovery channels. Other researcher continued 

along this line of research, such as Fisk (1973), El-Ansary (1974), Syring (1976), and Ginter 

& Starling (1978). 

Barnes (1982) was the first to use the term “Reverse Logistics”. The author listed the 

benefits of recycling by providing a second source of supply of raw materials, saving energy, 

and enhancing firm’s image. The author further examined factors affecting logistics of waste 

prepared to be recycled, e.g., the size of the shipment should be economical to recycle, the 

dispersion of this size should be less (i.e., collecting a mass from one place is easier than 

collecting the same mass from different places), and the less contamination and the higher 

homogeneity the better. The author recommended a better understanding of logistics and 

marketing for a better future of recycling. 
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Despite the interest for recycling in the late 1960’s and 1970’s, research in the 1980s 

focused on recycling technologies rather than managing the logistics of recycling.  

Murphy (1986), who used the term “reverse distribution”, noted that the topic had 

received limited attention. Murphy recognized that all the research in the area of reverse 

distribution was recycling driven, and introduced what believed to be the first work on 

product recalls; traffic and distribution aspects of a product recalls. For example, the recall of 

milk by Gatorade and the Tylenol recall in 1982 which cost $100 million.  

Following a slowdown, the research on reverse logistics picked up in the 1990’s.  

Rubio et al. (2008) surveyed reverse logistics and believed that the years 1995-2005 

represented the first decade in which reverse logistics research started evolving as a field of 

its own. This started with the work of Muller (1991), who discussed greening the logistics, 

and advocated for environmentally friendly transportation, warehousing, and packaging. 

Pohlen & Theodore Farris II (1992) examined recycling of plastics, and showed that the need 

for efficient reverse logistics network became evident and the reverse logistics membership, 

functions, issues and future directions have remained relatively unnoticed. The authors 

illustrated differences between forward and reverse logistics, and showed that recyclables do 

not necessarily flow in the reverse direction along the same channel, and recyclable materials 

do not follow a clear defined path.  

Cairncross (1992) discussed how European countries redesigned their products and 

their networks to obey the new environmental regulations that resulted in recovering 80% of 

collected packaging materials. Wu & Dunn (1995) examined logistics issues relative to the 

environment, and discussed measures that could assist in designing an environmentally 

accountable logistics system. The authors introduced the environmental movement that 

affects the activities of a firm. The authors also defined the environmental logistics system 

and discussed how logistics executives can make environmentally responsible decisions. 

Thierry et al. (1995) showed that adopting Product Recovery Management (PRM) policies 

are economically and ecologically sound.  

Jahre (1995) was concerned about household waste collection and its disposition. The 

author surveyed several collection schemes and classified these reverse channels into 

distribution levels (vertical dimension), and each level to a number of points (horizontal 
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dimension). The author also studied the relation between the design of the reverse 

distribution channels and the principle of postponement, where postponing some operations 

in the supply and logistics chain enhances efficiency.   

Giuntini & Andel (1995) discussed the management of reverse logistics and considered 

“renewal” as a vital managerial task to extend returns life span. They categorized renewal 

into two main life span extensions, which are product and material. Product life span 

extension includes remanufacturing, repair and reuse, while material life span extensions 

include recycling, reclaiming, and reconfiguring. Prendergast (1995) discussed the relation 

between government legislation and reverse logistics actions to reduce packaging and 

subsequently the waste it generates. Managers and executives of reverse logistics should act 

so that their objectives are to reduce costs and to reduce the impact of waste on the 

environment (e.g., reducing landfill sites). 

Fleischmann et al. (1997), in one of the most popular review papers of reverse 

logistics. The authors surveyed quantitative studies that had operational research perspective 

and presented a general framework for reverse logistics and divided quantitative models of 

reverse logistics into three groups: distribution planning, inventory control and production 

planning, and the authors noted that one of the main challenges facing reverse logistics is the 

uncertainty in systems involved in reuse/remanufacturing. 

Rogers & Tibben-Lembke (1998) provided insights on how to manage reverse 

logistics. They authors noted the main difference between reverse logistics and green supply 

chain and wrote (p. 3): “If no goods or materials are being sent backward, the activity 

probably is not a reverse logistics activity”. They advocated that reverse logistics is a 

strategic weapon to face several business risks and a competitive tool in a growing market 

and observed a challenge to managers of reverse logistics operations, which is the pricing of 

returns. In the forward logistics, brand managers and marketing specialists often set prices; 

however, in reverse logistics it often includes a bargaining stage, where the value of returns 

is negotiated without pricing guidelines and a specialized third party member usually handles 

these negotiations. 

Design is another essential factor in the implementation of waste management 

programs, which enables manufacturers to produce environmentally friendly products. 
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Gungor & Gupta (1999) discussed that environmentally friendly designs and life cycle 

analysis, driven by the escalating deterioration of the environment, and are conducted over 

the development, manufacturing, use and disposal stages of the product. They examined 

reverse logistics recovery options and reviewed some inventory models pertaining to these 

options.  

For a successful implementation of reverse logistics, the integration of reverse with 

forward flow is crucial. Van Hoek (1999) discussed the challenges of lowering the “ecologic 

footprint” of supply chains by improving the impact of business practices on the 

environment. Reverse logistics studies are not enough, and the focus should be on 

understanding the entire supply chain. He explained the differences between reverse logistics 

and green supply chain and recommended marketing “green” as a selling technique for 

environmentally conscious customers. 

Ritchie et al. (2000) studied a reverse logistics system within Manchester Royal 

Infirmary, to evaluate and improve the recycling and disposing of pharmaceutical products. 

The research involved the analysis of returned stock from 28 hospital units. The authors 

concluded that factors of development and implementing reverse logistics are the collection 

and analysis of data, redesign of reverse logistics process to be integrated in the original 

system, and developing a sense of ownership among staff. Advantages from implementing 

reverse logistics are increasing profit, reducing impact of wastes on environment, and 

strengthening relations with customers. 

Goldsby & Closs (2000) applied Activity Based Costing (ABC) as a different way of 

calculating costs to reverse logistics activities performed across any supply chain 

organization, and they applied their analysis on a beverage containers reverse logistics 

system in Michigan. Their analysis identified the costs associated with reverse flow, and 

showed that co-operation efforts among supply chain firms resulted insignificant cost 

savings. 

Autry et al. (2001) discussed how reverse logistics performance, satisfaction and 

services are influenced by industry, firm size/sales volume, and assignment of responsibility 

for disposition (arrangement). They examined an example of an electronics catalogue retailer 

and found that the performance of reverse logistics is significantly impacted by sales volume 
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while the environmental profile significantly affects clients’ satisfaction. Neither 

performance nor satisfaction was influenced by assignment of responsibility of disposition. 

Dowlatshahi (2000) discussed strategic and operational factors that are essential for the 

successful implementation of reverse logistics systems. The author introduced a holistic view 

of reverse logistics and considered cost, quality, customer service, environmental concerns, 

and legislations as strategic factors, as well as cost-and-benefits structure, transportation, 

inventory, design for remanufacturing, manufacturing-remanufacturing integration, and 

packaging as operational factors. 

Guide Jr. et al. (2000) discussed supply chain management for recoverable 

manufacturing systems, and emphasized the uncertainties that affect reverse logistic 

activities. The authors discussed complicating characteristics that increase the uncertainty in 

the timing and quantity of returns, and advocated actions to reduce uncertainty, balance 

return rates with demand rates, and make material recovery more predictable. The authors 

recommended the use of information systems with innovative production planning and 

control techniques to increase the predictability of these tasks. 

De Koster et al. (2001) discussed the factors contributing to the decision of combining 

versus separating inbound and outbound logistics in the return handling process. A 

comparative analysis of operations in nine retail warehouses identified the challenges 

obstructing return handling. The authors showed that quantity, quality, lead-time, and 

diversity of products are relevant sources of uncertainty in the reverse flow, and 

recommended integrating forward and reversing flows for transportation and storage 

activities.  

Tibben-Lembke (2002) found that it is important to re-think reverse logistics in terms 

of the product life cycle, and to consider how reverse logistics is impacted by it. He further 

studied the needs of reverse logistics over three different forms of product life cycle: the 

product model, the product form, and the product class; concluding that it is important to 

know which stage the product occupies in order to prepare for the logistics challenges it will 

face before moving to the next phase. 

De Brito & Dekker (2003) proposed a reverse logistics framework and identified the 

driving forces and return reasons, types of products streaming in the reverse flow, modes and 
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options of recovery, and who is executing and managing reverse logistics operations. The 

driving forces identified were economical, legislations, and corporate citizenship reasons. 

The author grouped types of returns into manufacturing returns, customers’ returns, and 

distribution returns, and listed recovery options and emphasised the idea of considering reuse 

as favoured to remanufacturing and recycling is the least preferred recovery option. 

Rubio et al. (2008) evaluated the first decade of research on reverse logistics (1995-

2005) and observed what has been done and how, where and by whom it has been carried 

out. The authors described and analysed the main characteristics of published articles on 

reverse logistics, developed reverse logistics concepts, outlined some directions of future 

research.  

Several publications and monographs have appeared in the literature reflecting the 

growing interest of both the academic and practitioners in reverse logistics (e.g., Willits & 

Giuntini, 1994; Bloemhof-Ruwaard et al., 1995; Wu & Dunn, 1995; Shrivastava, 1995; 

Spengler et al., 1997; Tibben-Lembke, 1998; Fleischmann, 2001; Dekker et al., 2004; 

Dyckhoff et al., 2004a; Blumberg, 2005; Kleber, 2006; Pochampally et al., 2009). As 

researchers introduced definitions and established frameworks, reverse logistics became a 

viable business opportunity and a useful environmental solution. However, as practitioners 

realised the benefits, they encountered several challenges in executing their projects and 

realised that there are numerous unanswered questions. This raised the interest of more 

researchers and caught the attention of academics and practitioners to join the field to try 

bringing reverse logistics closer to reality, to attempt covering several research gaps, and to 

explore distant frontiers of the new research area. These attempts resulted in developing 

qualitative and quantitative models. Surveys of qualitative and quantitative models are 

presented in the next two sections.  

2.2. Qualitative Reverse Logistics Models 

Qualitative, or non-mathematical, models render systems through schemes that 

describe connections and relations among internal and external factors. Examples of these 

models are models that address issues relating to information technology and management, 

life cycle, decision-making processes, network complexity, etc. 
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Information technology usage in reverse logistics is limited due to the little available 

software developed for reverse logistics (Dhanda & Hill, 2005). Such software requires 

extensive customization and IT companies rarely consider reverse logistics as a priority 

(Beltran, 2002).  

Although information technology has been one of the driving forces that led to the 

rapid expansion of supply chain networks and the development of partnerships (Bowersox et 

al., 2002), reverse logistics has not evolved in the same manner. Kokkinaki et al. (2000) 

presented a reverse logistics network focusing on the dual relation between reverse logistics 

activities and e-commerce. In light of the reverse logistics context, e-commerce is examined 

in terms of technologies and emerging services, which are used to improve trading of used 

products and parts, including marketing, purchasing, sales and post sales. In a following 

paper, Kokkinaki et al. (2001) explained how world-wide-web technologies improved 

business models particularly in a reverse logistics context. In a follow-up paper, Kokkinaki et 

al. (2002) identified key factors for reverse logistics competitive advantage and discussed 

opportunities for e-business reverse logistics models and how these models may thrive and 

advance. 

Chouinard et al. (2005) considered a better control and management of the integration 

of reverse logistics activities within an organization, and presented a framework that 

describes how an information system can integrate the organizational structure of reverse 

logistics activities with the original organization structure. While organizations usually do 

not possess a complete set of data for successful decision-making at each stage of the 

products life cycle, an information system should ensure the effectiveness and efficiency of 

the recovery process. The authors applied the system to the case of a rehabilitation institute 

in Quebec, Canada, that distributes and collects mobility aids. They proposed two ‘‘push–

pull’’ approaches to coordinate the demand, with the supply of returns. Similar works are 

those of Glenn Richey et al. (2004, 2005), Ketzenberg et al. (2004), Daugherty et al. (2005), 

and Wu & Liu (2008). 

The introduction of life cycle design concept in a reverse logistics environment has 

grown in the past decade. Ferguson & Browne (2001) examined the information 

requirements for a better end-of-life decision making within the extended enterprise. The 
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extended enterprise is a term used to reflect the high level of interdependence that exists 

among organizations conducting business while considering the customer. The authors noted 

that Enterprise Resources Planning (ERP) systems provided enterprise level visibility. It did 

capture, however, the information flow among partners in the value chain. The authors also 

developed a decision support system (DSS) for dismantling End-of-Life Vehicles (ELV) 

where the system uses information on quality, sales history and removal costs to support 

recovery processes. 

Some other qualitative reverse logistics models are for decision-making purposes. 

Meade & Sarkis (2002) considered the problem of choosing third party logistics providers 

and analysed a reverse logistics network using a multiattribute decision-making model. They 

reported that K-mart saved $6 million per $1 billion in sales by outsourcing reverse logistics. 

Krumwiede & Sheu (2002) presented a reverse logistics strategic decision-making 

model to guide the process of examining the feasibility of implementing reverse logistics in 

third-party providers, such as logistics companies, to help them pursue reverse logistics as a 

new market. Another decision making model is that of Karagiannidis & Moussiopoulos 

(1997) which discussed how to manage the household waste of Greater Athens Area. The 

authors used a multi-criteria analysis method considering social, political, environmental, 

financial, technological, and resource conversation criteria.  

Dyckhoff et al. (2004b) discussed expanding supply chains to closed loop supply 

chains. The authors introduced strategic problems that might face managers and executives, 

and recommended solutions to integrate the forward and the reverse logistics, by introducing 

a two-layer closed loop model as an orientation framework with applications in the 

automotive industry. The authors also highlighted the fact that different components and 

materials (of size, shape and quality) that are recovered from products’ waste complicate the 

material flow, responsibility assignments, and processes to close the loop. Besides the 

uncertainty of the quantity of returns. 

Vachon et al. (2000) discussed complexities in reverse logistics operations. A complex 

system is the one when a large number of its elements interact with one another, with 

complexity having one of two dimensions: tangibility and uncertainty. Tangibility relates to 

materials and information, and uncertainty relates to how deterministic or stochastic the 
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system parameters are. The authors introduced two examples from the electronics and the 

steel industries and suggested integrating the forward and the reverse flows to minimize the 

negative effects of complexity.  

The majority of qualitative reverse logistics models consider the bigger picture, the 

long-term plans, which make these models very useful for the design of reverse logistics on 

the strategic level. When it comes for the tactical and operational levels, the importance and 

popularity of quantitative models are evident, with these models discussed in the next 

section.   

2.3. Quantitative Reverse Logistics Models 

Reverse logistics became more of a business opportunity, with economic benefits being 

considered the most important and attractive motive for reverse logistics. Reverse logistics is 

not only an effective environmental solution, but also a profit option. Accordingly, the 

majority of the models’ parameters are cost parameters, and therefore, the majority of reverse 

logistics models are quantitative models.  

Like supply chains, reverse logistics performance measures are responsiveness, 

efficiency, and delivery reliability. Efficiency relates to cost while responsiveness is the 

ability of a chain in responding to changes in customers’ specifications, handling 

uncertainties, and, in the effectiveness of services they provide. Delivery reliability is the 

ratio of the number of orders delivered by their due-dates to the total number of orders made 

(Pochampally et al., 2009). Accordingly, reverse logistics performance is measured in 

economic terms where the objective function is either minimizing costs or maximizing 

profits. However, the challenges that face a successful implementation of reverse logistics 

add much complexity to these models. A survey of the works that developed quantitative 

models is presented below. 

The supply chain management literature addressed problems relating to production 

planning, inventory management models, network design (i.e., facility location allocation), 

and demand forecasting, with the common research methodologies being simulation and/or 

mathematical modelling (Sachan & Datta, 2005). The same problems were addressed in the 

reverse logistics literature (Thierry et al., 1995; Fleischmann et al., 1997; Dowlatshahi, 2000; 
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de Brito & Dekker, 2003; Rubio et al., 2008). Besides, some quantitative studies discussed 

different aspects of reverse logistics, such as decision-making, bullwhip effect, competition 

in reverse logistics, and forecasting.     

 Sarkis (2003) developed a decision-making framework related to the relationships 

among organizations and considering components and elements of green supply chain 

management. The author modelled a dynamic non-linear multiattribute decision model to 

optimize partnership options, technology adopted, and type of organizational practice to 

execute. Repoussis et al. (2009) presented a web-based decision support system for 

managing the collection and regeneration of waste from used lubricants. The model enabled 

schedulers to achieve a considerable increase in the amounts of waste collected amounts and 

a decrease in transportation costs by up to 30 percent.   

The bullwhip effect is rarely discussed in a reverse logistics context. It is a popular 

term in the forward supply chain, and it represents the increasing amplification of orders’ 

variances occurring within a supply chain the more one moves upstream (Forrester, 1961; 

Sterman, 1989; Lee et al., 2004).  Zhou et al. (2004) investigated the bullwhip effect in a 

dynamic model of a hybrid manufacturing/remanufacturing. The authors showed that the 

larger the return rate of used items, the less the bullwhip effect encountered in the forward 

logistics, and that the returned products in the reverse logistics reduce the bullwhip effect 

experienced by the manufacturer, compared to a manufacturer in a forward supply chain 

without reverse logistics. The model of Zhou et al. (2004) was extended by Zhou & Disney 

(2006) who concluded that, although, the length of the lead-time in the reverse logistics has 

little effect on total costs, shorter remanufacturing lead-time slightly reduced the bullwhip 

effect. However, they concluded that reverse logistics is efficient despite remanufacturing 

being more expensive than production.  

Competition in reverse logistics is another interesting topic that received little attention. 

Majumder & Groenevelt (2001) presented a two-period competition model. In their model, a 

manufacturer, who may also remanufacture, competes with a local remanufacturer on who 

can provide lower recovery costs. The authors also found that reducing the cost for the 

manufacturer is beneficial for both competitors as it induces the manufacturer to produce 
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more, and eventually, increase the total number of products, including the products sold to 

the local remanufacturer.    

Forecasting the volume of used items that are returned for recovery received little 

attention too. Kelle & Silver (1989a) discussed forecasting procedures for returnable 

containers issued, returned or reissued. They suggested using a data aggregation method to 

predict the number of returned containers. Beril Toktay et al. (2004) discussed ways of 

influencing returns’ flow and reviewed forecasting methods for flow in the reverse direction. 

Reverse logistics quantitative models are classified into three groups: network 

optimization, production planning, and inventory management models. These groups are 

discussed in the following sections respectively. 

2.4. Network Design Models 

Network design deals with location allocation, strategic planning or distribution 

planning problems. Optimising such networks helps determine which products should be 

processed, in what amounts, where to be stored, and how they are transported (Pochampally 

et al., 2009). Networks have arcs connecting nodes together to display the structure of a 

reverse logistics system, with decision variables are for allocation (i.e., amounts to be 

processed), transportation, and facility locations. Solving such problems requires building 

complex mathematical models, such as Mixed Integer Linear Programming (MILP), which 

has been proven to be a powerful tool (Akinc & Khumawala, 1977; Baker, 1982).  

Although it was recognized in the 1970s that network design is an important issue for 

reverse distribution networks (Fuller 1978), research in this area did not materialise until the 

late 1990’s. Madu (1988) presented a closed queuing maintenance network of parts flowing 

in a reverse direction, which is an allocation decision problem with two fixed locations. 

Bloemhof-Ruwaard et al. (1996) used environmental impact data to optimize a reverse 

logistics network in the pulp and paper industry. The authors used the network model to 

analyse different scenarios of different recycling strategies in order to choose the best 

economic and ecological network. The authors found their model to be a useful tool for 

evaluating environmental policies. The authors were the first to investigate the effect of price 

on the market share and the return rate.  
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Spengler et al. (1997) investigated available operations research models, e.g., MILP, 

for production planning and network design (i.e., location allocation) problems for recycling 

steel by-products in Germany. The authors recommended a centralized national recycling 

network connecting all steel companies to reach a more cost-effective and fully utilized 

recycling system. Return Plant Location Problem (RPLP) is a similar problem to that of 

Spengler et al. (1997) and was investigated by Marin & Pelegrin (1998).  

Barros et al. (1998) considered a case study of recycling sand in the Netherlands where 

sieved sand is collected from construction works and is moved to regional depots for sorting 

into three types. The problem is to determine the number of treatment facilities or regional 

depots, where they should be located, and what capacity of sand these facilities can process. 

A heuristics solution procedure was considered to decrease the computational time, and the 

quality of the obtained feasible solutions was assessed by means of linear relaxation.  

Krikke et al. (1999a) considered a business case at Oće copier manufacturer, where 

network re-design for copiers was developed to collect process and recover used products. 

The study considered the choice between three locations and the method of processing 

returned products. The problem was modelled as a MILP model, which minimizes the sum of 

all costs (setup, processing, recycling, distribution, and inventory costs). The solution 

recommended in this case is centralizing the preparation and re-assembly processes. 

Along the same line of research, Jayaraman et al. (1999) analyzed the logistics network 

of an electronic equipment remanufacturing company and recommended designing a multi-

period model and studying the managerial actions to reduce uncertainty in product returns. 

Louwers et al. (1999) described the reverse logistics problem of re-using carpet waste. The 

developed model minimized the cost of transportation, storage, processing and disposal 

processes. Krikke et al. (2001, 2003) presented a case study of a refrigerator with the 

objective to integrate product design concepts and logistics management together (i.e., a 

model to support optimal design structure of a product, modularity, reparability, 

recyclability, and location allocation). Their solution recommended a centralized supply 

chain network rather than a decentralized one. Fleischmann (2001a, b), Fleishmann et al. 

(2001) and Fleischmann & van Nunen (2003) studied the decision making pertaining to plant 

location-allocation in reverse logistics, and recommended accounting for inventories and 
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batch transportation and the integration of the forward and reverse flow to better optimize 

production and recycling activities.   

The particularity of a reverse logistic network must first be considered before 

implementing a general solution. Schultmann et al. (2004) discussed a large size real life 

problem that combines facility location planning and vehicle routing and solved the problem 

using a heuristics method (Tabu search). Spengler et al. (2004) used an activity-based 

analysis to model a real life problem and showed that information sharing is important to 

enhance the collaborative partnership among producers and recovery companies. Steven 

(2004) addressed networks in reverse logistics and differentiated between voluntarily and 

compulsory recycling networks. Voluntarily recycling networks are networks operated by the 

Original Equipment Manufacturers (OEM) because of the economic profit generated, and, 

compulsory recycling networks are networks imposed by legislations.   

El Saadany & El-Kharbotly (2004) reviewed location allocation models and proposed a 

location allocation model to study the effect of the batch size on the network design. The 

authors recommended that multi-period stochastic programming might be the appropriate 

tool to solve network design problems. El-Sayed et al.  (2009) extended the work of El 

Saadany & El-Kharbotly (2004) to a multi-period multi-echelon stochastic model. Lieckens 

& Vandaele (2007) also presented a stochastic model for reverse logistics where they 

considered dynamic aspects, like stochastic lead-time and inventory, and developed a mixed 

integer nonlinear program model (MINLP) with queuing characteristics for a single product-

single-level case. The model was solved using differential evolution technique.   

Srivastava (2008) developed a conceptual multi-period location-allocation model and 

tried to combine descriptive modeling with optimization techniques. The author assumed two 

types of facilities in the reverse direction: repair facilities and refurbishing/remanufacturing 

facilities; where candidate facilities’ locations are at several collection centres.  

Similar works along the same line of research were presented by Ammons et al. (1999), 

Canan Savaskan & Van Wassenhove (2006) and Lu & Bostel (2007). 
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2.5. Production Planning Models 

Production planning is a short to medium term planning task that coordinates different 

activities (e.g., manufacturing, purchasing, transportation, etc.) to satisfy demand and to 

control the resultant flow of goods and materials (Van Dierdonck & Miller, 1980). In reverse 

logistics, production planning is the planning of all the processes associated with the 

production/remanufacturing environment, including manufacturing, packaging, collection, 

disassembly, sorting, disposal, reassembly, reuse, remanufacturing, repackaging, etc. 

Production planning decisions usually fall under tactical and operational levels of reverse 

logistics. The uncertainty in the quality, quantity, shapes, and features of returns complicates 

the planning of reverse logistics. In comparison to the traditional forward logistics, there 

hardly exists a well-determined sequence of remanufacturing steps in reverse logistics; which 

complicates the recovery process and develops additional problems like capacity problems 

(Fleischmann et al., 1997). Managers and operators of reverse logistics face a huge variety of 

recovery options once a returned item is disassembled. In this section, a review of efforts in 

reverse logistics production planning is presented. The surveyed models tend to integrate 

design of the product with the feasibility of disassembling the product after the end of its 

lifetime. 

Driven by environmental calls, Chen et al. (1993) discussed the product design for 

disassembly concept and presented a cost-benefit analysis model to assess the feasibility of 

designing for recyclability, where the potential of recyclability of a product is determined at 

the design stage. It was found that it was not feasible to disassemble and recycle the whole 

product, as with material recycling technology and market prices, costs outweighed revenues. 

However, the model suggested that partial recovery might be a valuable solution. 

Hentschel (1994) introduced a predictive and reactive planning approach for recycling 

processes of discarded complex products where recycling planning involves recovery and 

treatment processes for cathode ray tubes form discarded monitors. It was shown that the 

deviations in returned product conditions lead to the need for more flexibility in designing 

recovery plans. 

Johnson & Wang (1995) discussed disassembly for material recovery opportunities and 

its relation to product design and life-cycle design. An economic model was presented which 
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focused on improving the efficiency of disassembly planning through optimizing the 

disassembly sequence for a 3.5” computer diskette. Criteria to evaluate marginal benefits of 

subassemblies were developed. The authors included total processing/upgrading costs, 

disposal state, availability of recovery, and disposal fees.  

Kroon & Vrijens (1995) considered the reuse of secondary packaging material, used 

for packaging products while shipping it from a sender to a recipient. They suggested that 

after delivering a shipment, the container (i.e., the returnable secondary packaging material) 

has to be transported from the recipient to the next sender, who may or may not be the first 

sender.  

Penev & de Ron (1996) believed that starting with a disassembly and recycling strategy 

is important, where the structure of the product to be disassembled is to be considered as a 

tree. The feasibility of any disassembly activity has to be linked to its economic feasibility, 

i.e., the disassembly is not the reverse actions of production. The authors applied their model 

to the case of a roller bearing to maximize the difference between revenues generated from 

selling disassembled parts and the costs of disassembling and recycling. 

Krikke et al. (1998) presented a model to optimize product recovery and disposal 

strategy for a product by constructing its disassembly tree. This tree is composed of levels of 

assemblies and subassemblies, which are sorted and screened.   If the assembly is to be 

disposed (recovered), then all its subassemblies are to be disposed (recovered). In a later 

paper, Krikke et al. (1999b) discussed a copier manufacturer who redesigned its copiers to 

streamline its reverse logistics operations, such as take back, processing and recovery of 

discarded products. The authors argued that savings from a recovered product could reach 

40%. They argued, however, that better forecasting of the return flows could enhance 

savings. 

Few researchers considered forecasting of returns. Kelle & Silver (1989b) examined 

four methods to forecast returns in a returnable containers system, where random return and 

random demand occurs in successive periods of time. Other researchers considered applying 

Materials Requirement Planning (MRP) in reverse logistics. The MRP approach uses the 

product demand to determine the optimum disassembly strategy and delivers a schedule of 

the disassembly process. Panisset (1988) applied MRP II for production planning in the 
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repair/refurbish industries where a workshop they investigated had 80% of its activities as 

recovery activities. The author cautioned that MRPs were not designed for reverse activities, 

such as disassembly and that returned products might have several disassembly routs 

according to the quality of that product. Gupta & Taleb (1994) corroborated the findings of 

Panisset (1988).  

On a larger scale, Spengler et al. (1997) discussed recovering material from demolition 

building and recommended increasing the disposal fees to increase the percentage of 

recovery and recycling of demolished buildings making the recovery program successful. 

Teunter (2001a) proposed a method for valuing new, recoverable, and recovered assemblies 

in production systems with reverse logistics. The author emphasized that values of 

assemblies influence their opportunity holding cost rates and are essential for comparing 

inventory strategies, making the accurate estimation of the holding cost essential for the 

success of recovery programs. 

For the case of industrial waste, Hu et al. (2002) developed a cost minimization model 

to determine the amount of raw materials associated with hazardous waste to be collected, 

stored, treated and distributed. The authors reported that 1.47 million tons of hazardous waste 

materials are produced in Taiwan every year. The authors recommended that the 

public/government and the companies must identify the relationship between costs and 

benefits associated with any hazardous-waste reverse logistics system before applying it. 

In a business case, Teunter et al. (2003) discussed two main reverse logistics processes 

at the pharmaceutical company, Schering. First, by-products are reused because they contain 

valuable materials. Second, impure solvents are recycled or thermally utilized. This reverse 

logistics production planning problem introduced closed cycles in the Bill-of-Materials 

(BOM) and the Materials Requirements Plan (MRP). This complicated the BOM and MRP, 

as the BOM and MRP do not allow cyclic structures. The sum of holding and setup costs 

were optimized in a mixed integer linear programming (MILP) model. 

Fleischmann & van Nunen (2003) discussed the integration of closed loop supply chain 

at IBM through a project considering product returns as a source of spare parts. The model 

was designed to determine the dismantling channel, to choose parts to be recovered from a 

returned machine, and to coordinate disassembly output with spare parts’ demand. The 
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authors compared two channel alternatives: a pull channel, where the company builds up 

inventory of disassembled parts but not recovered (i.e., not ready as a spare part); and a push 

channel, where the company adds recovered parts to the serviceable stock. The authors 

recommended gathering more information regarding return rates to reduce total costs; and, 

companies should allocate their returns carefully to benefit from any reverse logistics’ 

recovery option. 

For the case of reworking defects, Flapper & Teunter (2004) discussed a type of 

production planning problems: reworks of production rejects. The authors considered a 

single product that uses the same facilities for production and rework, where reworkable 

defectives deteriorate over time. The authors analysed two polices: full disposal policy, 

which is used when processing costs are more than material costs; and, full rework policy, 

which is used when processing costs are less than material costs.  

Production planning is a complex process, especially if the situation involves more 

than one part/product to recover. Kim et al. (2006) considered the case of a manufacturer 

with two sources of supply: ordering parts from an external suppliers or recovering parts 

from returned products to “as-good-as-new” condition. There are several different parts to be 

assembled together to form the final product, and, there is a remanufacturing facility for each 

part. The model maximized savings from remanufacturing and the utilization of the different 

remanufacturing facilities (i.e., remanufacturing costs includes set-up, operation cost, and 

idle cost). Their results showed that, for each facility, there is an optimal remanufacturing 

capacity to maximize cost savings. 

Inderfurth & Langella (2008) examined the planning for disassembly problem and 

introduced the disassembled-to-order system. The authors formulated the problem twice: as a 

deterministic linear program, and, as a stochastic model where disassembling a core of 

uncertain quality results in releasing of several parts with an uncertain input-output 

relationship. They concluded that the solution of real life problems requires a very long 

solution time; therefore, a heuristic solution was proposed to solve the problem. The authors 

relaxed the assumption of deterministic demand to examine its uncertainty, and suggested 

including disassembly labour capacity limits as possible future work. 
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Scheduling is a subset of production planning. However, boundaries between lot sizing 

and scheduling are fading (Jans & Degraeve, 2008) and an interesting future line of research 

is the integration of lot sizing, sequencing and loading in a reverse logistics context.   

Similar works along the same line of research were presented by Hentschel et al. 

(1995); Zussman (1995), Ferrer (1997), Guide Jr. (2000), Guide Jr. & Van Wassenhove 

(2001), and Guide Jr. et al. (2003). 

2.6. Inventory Management Models 

Companies consider inventory to create buffers, to overcome uncertainties in supply 

and demand, to take advantage of economies of scale associated with production of products 

in batches, to build reserves, or to facilitate the flow of products from one point to another in 

a supply chain (Shapiro, 2001). The efficiency of inventory policies is one of the main 

methods to judge the performance of any manufacturing or retail company. About 56% of the 

research done in the area of reverse logistics addressed production planning and inventory 

management problems (Rubio et al., 2008). Silver (1981) stressed that it is better for analysts 

to formulate accurate, but simple, models and to obtain good solutions, rather than 

formulating complex and unrealistically accurate models.   

The evolution of supply chain management in the 1990s resulted in the establishment 

of reverse logistics as a separate line of research. Reverse logistics is all about the reverse 

flow of materials, and falls under closed loop supply chain and includes all aspects of 

managing a business, including inventory. Schrady (1967) and Sherbrooke (1968) reported 

that repaired/recovered items accounted for more than 50% of the dollars invested in 

inventory. Inventories represent about one-third of all assets of a typical company (Diaz & 

Fu, 1997).  

Reverse logistics inventory models share several features including the double supply 

feature: the newly produced products (i.e., virgin production supply) and returns that are 

repaired/remanufactured (i.e., repairable stock supply), where the later usually offers a cost 

advantage (Minner, 2003). As demand can be met from the two sources, reverse logistics 

complicates the supply chain as it gives another challenge, i.e., from where to order (van der 

Laan et al., 2004). Managing inventory in reverse logistics has been stressed in several 
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studies (e.g., Dowlatshahi, 2000; Krumwiede & Sheu, 2002), as it represents a clear 

challenge to successful implementation of reverse logistics (Dawe, 1995). In this section, a 

review of inventory models developed for reverse logistics operations is presented. 

Inventory models fall into two main categories: deterministic and stochastic 

(Fleischmann et al., 1997; Guide Jr. & Srivastava, 1997; Dong et al., 2005). Deterministic 

models are models where the input parameters such as demand are deterministic. Stochastic 

models capture the variation in these input parameters. Deterministic models are developed 

for benchmarking purposes and to deliver managerial insights. Stochastic models provide 

better understanding of an inventory system as they have better description of real-life 

situations. 

2.6.1. Deterministic models: 

Research on reverse logistics grew in the late twentieth century, including inventory of 

reverse logistics. Inventory research started in the beginning of the same century. Harris 

(1913) was the first to study the economic quantity of parts, which can be manufactured at 

one time. The author developed the foundation of inventory: the Economic Order Quantity 

(EOQ). His model optimised ordering costs and holding costs and developed a closed form 

solution. The EOQ model has been so popular amongst academicians and practitioners (e.g., 

Osteryoung et al., 1986). Roach (2005) argued that although Harris (1913) was the first to 

consider inventory equation and introduced the EOQ, he did not develop the mathematics 

himself but used the mathematics of Kelvin’s Law of electrical engineering, which was 

developed in 1881. Wilson (1934) developed a similar formula and named it the “ordering 

amount”. Although many refer Wilson to be the first to introduce the famous formula, 

Erlenkotter (1989) illustrated that Harris, who was referenced with a mistake in a published 

work in 1931, was the first to develop the basic inventory equation, the EOQ. 

The EOQ is considered to be the simplest model of cycle stocks where repeated cycles 

in which inventory is built up then depleted in a deterministic fashion (Porteus, 2002). It 

answers the basic two questions to control inventory: how much should be ordered, and, 

when to order (Zipkin, 2000). The EOQ is popular because of its practicality and easiness. 

Yet there are several other non-classical methods to evaluate inventory, such as information 
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theory and entropy approaches (Jaber et al., 2004). All deterministic inventory models in 

supply chain and reverse logistics management are modified or extended versions on the 

EOQ formula. 

Research in inventory grew as world business flourished (Hadley & Whitin, 1963; 

Silver et al., 1998). Recycling popularity advocated for a new line of research, which is the 

inventory management of recycling/repair activities. Initial attempts to address the inventory 

of repaired items or products dates back to the 1960s, with Schrady (1967) being the first to 

investigate a repair-inventory system. He developed a deterministic EOQ model for repaired 

items, and assumed that the manufacturing and recovery rates are instantaneous, with no 

disposal cost, a single manufacturing cycle, multiple repair cycles, no backorders and fixed 

return rate as a function of demand. Inventory stock is in two separable stock points: the 

ready for issue point, that contains the repaired items ready to satisfy demand, and, the non-

ready for issue point: where items to be repaired are collected. Schrady made assumed that 

repairable items are presumably more economical than replacing it with new items. The 

model of Schrady (1967) was extended by Nahmias & Rivera (1979) to allow for a finite 

repair rate with the assumption of limited storage in the repair and production shops. The 

authors explained the interactions between procurement and repair functions and named the 

two inventory stock points as “supply depot” and “repair depot”.  

Along the same line of research, Mabini et al. (1992) presented two models. The first is 

a model similar to that of Schrady’s (1967) which considers shortages. The second is for 

multiple items that share a common and limited repair capacity without shortages. The 

objective was to determine the optimum production (or purchase) and repair quantities. 

Similar to Schrady (1967), the authors assumed one cycle of purchased “new” items and 

several repair cycles per interval, with fixed return rate as a function of demand. 

The popularity of supply chain in the 1990s enriched this line of research. Richter 

(1996a) investigated the case of stationary demand being satisfied by repaired used products 

and by newly produced ones. The author assumed multiple production and multiple repair 

cycles within some collection time interval. Similar to Schrady (1967), there are two shops: 

the “first shop”, serviceable stock, is for stocking produced and repaired units, while the 

“second shop”, repairable stock, is for collecting used/returned items and not yet been 
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repaired. Richter (1996b) extended Richter (1996a) to draw additional economic conclusions. 

The author found that as the model’s interval length tends to be very large as the return rate 

approached the extreme values (i.e., 0 or 1). In a follow up paper, Richter (1997) extended 

the cost analysis of his earlier works (Richter 1996a and 1996b) and showed that a pure 

bang-bang policy of either no waste disposal (total repair) or no repair (total waste disposal) 

is the dominant strategy.  The results from this study showed that although there are bounds 

on the sizes of repair and manufacturing lots, the numbers of these lots per interval are 

unlimited. Richter & Dobos (1999) extended Richter (1997) to determine the characteristics 

of these optimal solutions and confirmed that the pure strategies are the optimum strategies. 

However, excluding the pure strategies for feasibility reasons, a mixed strategy is the optimal 

and its characteristics are far from the pure strategies. 

Like Richter, Teunter (2001b) extended the work of Schrady (1967) and considered the 

case of one manufacturing cycle and multiple repair cycles. The author compared it with the 

case of one repair cycle and multiple manufacturing cycles and distinguished between the 

holding costs for manufactured and recovered items. The author addressed the same question 

of Richter’s (1997) of whether the pure (either production or recycling) or mixed strategies 

are optimal. The author proved that having both numbers of repair and manufacturing lots 

even is never optimal, and reached the same conclusion: pure strategies are the optimal 

policies (return rate is equal to “0” or “1”). 

Dobos & Richter (2003) extended Richter’s (1997) work by considering finite 

production and repair rates instead of instantaneous (infinite) rates as in the works of Schrady 

(1967) and Richter (1996a, 1996b, 1997). The author assumed a single production and a 

single repair cycles per time interval. Dobos & Richter (2004) generalized their earlier model 

(Dobos & Richter, 2003) to consider the case of multiple cycles per interval, and compared 

their results to those of Schrady’s (1967) model, Richter’s (1996a) model and Teunter’s 

(2001b). They concluded that the pure bang-bang policies continue to prevail although not 

practically feasible. To generalise the model, the authors recommended either applying an 

upper bound on the reverse flow, or considering the quality of returned items.  

Dobos & Richter (2006) extended Dobos & Richter (2004) and assumed that the 

quality of collected used/returned items is not suitable for further recycling and some are 
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disposed. The authors limited the return rate to an upper bound. The authors assumed that the 

return rate is a product of marginal and variable return and use rates; however, their product 

is fixed. The authors believed that the mixed strategy could be the optimal strategy, because 

the extreme cases have changed: instead of “0” and “1”, to “0” and the “upper bound”. 

Minner & Lindner (2004) confirmed the results of Schrady (1967), Richter (1997) and 

Teunter (2001b) where it is optimum to have a single remanufacturing cycle followed by 

several production cycles or to have several remanufacturing cycles followed by a single 

production cycle. The authors extended models in literature to the case of non-equal lot sizes 

and proved that the final remanufacturing batch is smaller than the previous ones. The reason 

for that returned items have to be stored over the production interval until the next 

remanufacturing resumes, thus it is better to store less remanufactured items in the non-

serviceable stock. 

The above mentioned deterministic inventory models assumed: (1) there is no 

difference between newly produced and recycled items, and the authors applied the ‘‘as-good 

as-new’’ principle; (2) the return rate is fixed; (3) the recovery cost is less than the cost of 

producing/ordering a new item. 

Dynamic lot sizing formulation is used to represent problems of varying parameters 

over time. Lot sizing problems, at large, are challenging because these problems are hard to 

solve (Jans & Degraeve, 2008). Dynamic lot sizing programming was introduced 

simultaneously by Manne (1958) and Wagner & Whitin (1958). Wagner & Whitin (1958) 

extended the single item EOQ model to allow demands, holding costs and setup costs to vary 

over a finite number of intervals of time. The authors proposed an algorithm that resulted in 

more efficient results than the EOQ model. Silver & Meal (1973) extended the Wagner & 

Whitin (1958) model by developing a heuristics to deal with the case of deterministic time-

varying demand that is replenished at the beginning of discrete time periods. The presented 

heuristic is simpler and more generic than the Wagner-Whiten approach. 

Kelle & Silver (1989a) presented a returnable containers inventory system with a 

stochastic issue-to-return time. Some containers might be lost and a new batch had to be 

issued to substitute them. A stochastic model was formulated to optimize the ordering policy 

for periods of finite time intervals by minimizing inventory and purchasing costs. Under a 
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service level constraint, this model was reduced to a deterministic dynamic lot-sizing 

problem with the possibility of returns being greater than the demand.  

Jans & Degraeve (2008) reviewed deterministic single-level dynamic lot sizing 

problems and found that there have been few dynamic lot sizing models proposed for the 

reverse logistics inventory problem. Richter & Sombrutzki (2000) presented a reverse 

version of Wagner & Whitin’s (1958) model and used an algorithm to determine when to 

repair and when to produce new products. The authors discussed the stability of their model 

using the Silver & Meal (1973) heuristics and proved that their model is efficient for certain 

cases. Richter & Weber (2001) extended Richter & Sombrutzki (2000) to the case of variable 

unit manufacturing and remanufacturing costs and the possibility of disposal of some of the 

returned products. 

Minner & Kleber (2001) optimized a production, remanufacturing, and disposal 

strategy to represent seasonal behaviour and life cycle patterns in product demands and 

returns. The authors presented a dynamic lot size inventory reverse logistics model with 

linear costs, defined optimality conditions, outlined a solution algorithm, and provided 

managerial insights for different scenarios. The authors also recommended the inclusion of 

interest rate based opportunity cost of capital and out-of-pocket holding cost in a discounted 

cost/cash flow approach for future research work. Kleber (2006) extended the work of 

Minner & Kleber (2001) by including an anticipation stock for out-of-stock periods to reduce 

overall costs and examined the effect of rigid production and remanufacturing capacity 

constraints on the production-remanufacturing policies. 

Beltran & Krass (2002) proposed a dynamic lot sizing algorithm for positive and 

negative demands (i.e., demand and returns) where the holding cost is a concave function, 

with procurement and disposal costs. The authors explained the advantage of dynamic 

programming over stochastic modeling, especially in the case of modeling catalogue 

retailing. Golany et al. (2001) studied dynamic lot size problem and showed conditions of 

NP-hardness. Yang et al. (2005) extended the work of Golany et al. (2001) by considering 

concave cost functions that was solved as a heuristics NP-hard problem. Teunter et al. (2006) 

surveyed the dynamic lot sizing problems in reverse logistics, compared different heuristics, 
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and noted the difficulties that might arise when, for a certain period, returns are more than 

demand. 

2.6.2. Stochastic Models: 

The attention to recycling in the 1960’s initiated the integration of research on 

inventory with repair/recycling systems. One of the efforts to bring reverse logistics models 

to reality is through representing randomness, which is a real life attribute. In stochastic 

models, demand and return rates follow a distribution that represents randomness. The first 

stochastic investigation started for repairable inventory models, which are systems with 

demand satisfied with repaired items. Inventory research was then expanded to cover all 

kinds of product recovery management. In this section, stochastic models are divided into 

“periodic review” and “continuous review” models. 

Periodic review models: 

Simpson (1978) was the first to use the two terms: “serviceable” and “repairable”. The 

“serviceable stock” is the ready to issue stock, containing newly ordered/manufactured units 

and recovered items. The “repairable stock” is the ready for repair stock, containing collected 

and returned units. The author presented a dynamic repairable inventory model where the 

serviceable stock is replenished by repairing units available in the repairable stock, and only 

repairable units are returned. Simpson’s model is a multi-period, periodic review, where 

unsatisfied demand is backlogged at a cost; and, cost function is differentiable and convex. 

Cohen et al. (1980) introduced a stochastic periodic review inventory model and 

considered recycling as another recovery option in addition to repair. Demand is normally 

distributed random variable with the amount returned being a fixed proportion of demand. 

Returned units followed a lead-time with shortage costs considered. 

Inderfurth (1997) considered a periodic review inventory model with stochastic 

demand and return rates, fixed deterministic lead-times, with no fixed costs and unsatisfied 

demand backordered. The authors recommended heuristics approach to determine the 

optimal policies, especially when there are variations in the lead times of demand and supply. 
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Kiesmüller & van der Laan (2001) considered the case of dependent returns and 

demands, which is common in the case of rented or leased products or in the case when the 

original manufacturer manages the reverse flow to collect its own products. The authors 

considered a periodic review single-echelon inventory system with lead-times, finite 

planning horizon, and a Markov-chain approach to determine the optimal full-up  order 

policy (i.e. (s, S) policy). The authors showed that neglecting the dependency of the returns 

on demands might lead to poor order policy performance.  

Kiesmüller & Minner (2003) considered a periodic review, single echelon inventory 

model to determine the produce-up-to level and the remanufacture-up-to level; and 

considered identical and non-identical lead times for production and remanufacturing. The 

authors believed that assuming no setup costs simplified the calculations and the presented 

solution heuristics produced near optimal solutions.  

Continuous review models  

Sherbrooke (1968) is believed to be the first to present a stochastic inventory in a 

repair/recycling context. The author reported the importance of recoverable items system and 

developed a mathematical model of a two-echelon supply system in which demand follows a 

Poisson distribution. Items returned for repair with a fixed probability to undergo a fixed 

repair time. The objective is to minimize the expected number of backorders. Graves (1985) 

extended the work of Sherbrooke (1968) to consider the case of multiple echelons. Later, 

Moinzadeh & Lee (1986) presented an approximation technique for an effective solution of a 

similar multi-echelon model. 

In a similar work, Allen & D'Esopo (1968) introduced a repairable inventory system, 

and considered a system of identical items in use, and items are subject to failure according 

to a Poisson distribution. Like Sherbrooke (1968), the authors assumed a fixed probability of 

repair and fixed repair time. The objective is to minimize inventory, shortage and ordering 

costs. Simpson (1970) was the first to present a simulation model to study repairable 

inventory systems. The author assumed both demand and repair rates to follow the normal 

distribution, but independent, with unfilled demand backlogged. Two mathematical models 

were presented; the first optimizes the system subject to a service level constraint while the 

second minimizes the inventory and shortage costs.   
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Heyman (1977) showed the difficulty of having returns more than demand, which 

might result in having too many units in stock. Recovery in this case is not economical 

because the cost of repair and inventory is more than the savings from recovery. The author 

modeled a two-echelon inventory system with no fixed costs, and showed that the problem is 

equivalent to a single-server queue model. If the demand and return rates are Poisson 

distributed, an optimal solution can be determined. An approximate solution was found for 

general form distributions. In a follow-up work, Heyman (1978) developed a stochastic 

model of a single storage facility where used items are returned to a central warehouse, with 

demand and returns rates and lead times being independent but identically distributed.  

Muckstadt & Isaac (1981) considered a single echelon continuous review model and 

expanded it to the two-echelon case. The single type of item model assumed zero lead time, 

returns and demand follow the Poisson distribution, and the inventory policy is a continuous 

review (Q, s) policy. When inventory drops to s, order or remanufacture Q, with a constant 

lead time. Optimal values of s and Q were determined by an approximation procedure based 

on the distribution of net inventory. The two-echelon case consisted of a warehouse, which 

had repair and storage facilities. For the two-echelon case, the optimal policy was (S−1, S).  

van der Laan et al. (1996a) developed a single review, single echelon, continuous 

review inventory model and considered three inventory control policies where demand and 

returns follow the Poisson process. In a follow-up work, van der Laan et al. (1996b) 

presented a single item, single location (s, Q) inventory model and compared it with models 

in literature. The authors extended their model with the option of disposal because returns 

can be larger than required and assumed demands and returns follow the Poisson distribution 

with a fixed lead-time. A heuristics procedure was presented to reduce the required 

computational effort. Along the same line of research, van der Laan & Salomon (1997) 

extended their previous work to two stocking points and studied Push and Pull disposal 

strategies, and showed the conditions for profitable planned disposals with some product life 

cycle insights. The authors concluded that the Push policy is favoured over the Pull policy, 

unless when repairable inventory is sufficiently lower than serviceable one, then the Pull 

policy is favoured. However, both policies require revaluation if fluctuations occur during 

the life cycle of the product.  
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van der Laan et al. (1999a, b) compared Push and Pull inventory strategies to derive 

managerial insights for manufacturing firms. They considered dependent repair and demand 

rates with returns less than demand, and all returns are repairable. The authors recommended 

not to remanufacture all returned items, even if the return rate is less than demand rate, and 

stressed the importance of lead-time in solving these problems. 

Teunter et al. (2000) compared different methods for setting the holding cost rates of 

returned items and showed the differences between forward and reverse logistics when 

calculating these rates. The authors proposed five methods and developed a finite horizon 

inventory model to compare these methods. They also considered the return rate to be less 

than the demand rate.  It was shown that for returned items, opportunity costs should be 

charged to represent inventory in an average cost inventory approach. Along the same line of 

research, Teunter & Vlachos (2002) examined the trade-off of including a disposal option for 

returned items that results in cost reduction and additional modeling complexity. The authors 

concluded that, in general, it is not recommended to include a disposal option, except for 

items with remanufacturing cost is as expensive as manufacturing.  

Teunter (2002) extended his earlier work (Teunter, 2001b) by considering a discounted 

cost inventory system with stochastic demand and return rates where the lead-times for 

manufacturing and remanufacturing are negligible. He proposed a pair of simple economic 

order quantity formulae for calculating the manufacturing order quantity and the 

remanufacturing order quantity. Using simulation, Teunter (2002) showed that these 

formulae provided near-optimal solutions. Fleischmann et al. (2002) presented an inventory 

model with returns and compared their model with classical (s, Q) inventory models, and 

found that these classical policies remain optimal when introducing Poisson return flows. 

Reverse logistics inventory models assume that returns are non-perishable products. In 

some cases, selling price of remanufactured products drops over time, turning the 

remanufactured items as perishable items. However, none of the models in literature 

considered the case when returns are perishable. For a review of perishable inventory 

problems, see Nahmias (1982). 

The prices for forward and retuned products were ignored in most of the above 

surveyed models. Some researchers suggested their inclusion when analysing reverse 
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logistics systems. For example, in their study about carpet recycling, Helms & Hervani 

(2006) noted that the estimation of price elasticity is essential for successful reclamation of 

resources.  

2.7. Research Gaps and Questions 

The purpose of scientific research is to explain and explore the world around us, and to 

try to understand how any field, mechanism and industry work and operate. Research is a 

systematic and precise process, employed to find new theories, to test theories, to gain 

solutions to problems, or to interpret new facts and relationships in order to contribute to the 

human knowledge (Wilson, 1990; Waltz & Bausell, 1981). Reverse logistics is one of the 

venues to protect our environment. It is a field that has started not long ago and has many 

questions that need to be answered. Inventory management research in reverse logistics 

context has several gaps. 

The above survey of the literature shows that there are several research gaps in 

inventory management of reverse logistics. The survey is summarized in Table 2.1, where a 

grey cell means that the corresponding research issue has been addressed in the literature, 

whereas a white cell means that a corresponding research issue has not been addressed yet 

and, therefore, it represents a research gap. 

Table 2.1 shows that addressing inventory management in a reverse logistics context is 

a fertile research area. Table 2.1 shows, that switching costs, imperfect production, learning, 

quality of remanufactured products compared to new products, disassembly effects, and the 

effect of price and quality on the flow of returns in the reverse direction have not been 

adequately addressed in the reverse logistics research.  Addressing these research issues give 

rise to the following questions: 

• How does switching from production processes to remanufacturing processes affect 

the inventory policies? 

• How do imperfect repair and production processes affect inventory policies? And 

how should they be addressed?  

• How does the learning in production and remanufacturing phenomena affect 

inventory policies? 
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Table 2.1. Comparison between several works in the literature 
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2 Nahimas, 1979              

3 Richter, 1996a, b              

4 Dobos & Richter, 
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5 Dobos & Richter, 
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6 Dobos & Richter, 
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7 Teunter, 2001b              
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• In the literature, recovered units are assumed to be as-good-as new. How is the 

inventory policy affected when they are not? 

• In the literature, used items, that are either returned or collected, are recovered as 

whole units, i.e., no considerations are given when these units are disassembled to 

recover components/parts.  How is the inventory policy affected when inventories of 

disassembled components are considered part of the inventory? 
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• The returns (used items) are treated in the literature as a percentage of the demand 

rate without any consideration to their quality and corresponding price. How is the 

inventory policy affected when the rate of returned items is price and quality 

dependent? 

• While addressing the above research questions, the demand rate is assumed constant 

over time. How does including a stochastic component (e.g., demand) affect the 

results of any of the previous research topics?  

Therefore, there is a need to fill these gaps, and the author exercised a significant 

effort, following solid principles of integrity, in addressing these research gaps. To answer 

the abovementioned questions, several models are developed and investigated, and the 

effects of different input parameters on the performance of the developed models are 

examined. Models are optimized using suitable optimization methods such as, linear and 

non-linear programming, and differential calculus. Simulation is used to verify some of the 

developed models. Theorems explaining the behaviour of the presented models are also 

developed. The research presented herein is as follows: 

In Chapter 3: A modified production remanufacturing EOQ model is presented. Costs 

due to switching between production and remanufacturing processes are 

introduced in a reverse logistics context. It also corrects a flaw in the work of 

Richter (1996a, b), where Richter’s method to calculate the holding cost for the 

repairable stock results in an overestimation error. In this chapter, imperfect 

production, learning, lost sales, subassemblies and price/quality considerations are 

not addressed. 

In Chapter 4: In the literature, production and remanufacturing processes are assumed 

defect free, which is hardly true. This chapter addresses imperfect quality of 

production and remanufacturing processes in two directions: (1) defects are 

screened, inspected and removed from the system by the end of the inspection 

period; and, (2) defects are reworked while production and remanufacturing 

process are interrupted to restore quality. In this chapter, switching, learning, lost 

sales, subassemblies and price/quality considerations are not addressed. 
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In Chapter 5: Learning is a human attribute that is represented by the learning curve. 

Although this phenomenon was observed in the reverse logistics literature, it has 

never been addressed in the context presented herein. The effects of learning in 

production and remanufacturing on the inventory policy are investigated. In this 

chapter, switching, imperfect production, lost sales, subassemblies and 

price/quality considerations are not addressed. 

In Chapter 6: In the literature, researchers have assumed that remanufactured items are 

of the same quality as newly produced ones. Many studies cautioned that, in some 

cases, customers do not perceive remanufactured products to be “as-good-as-new”. 

In this chapter, the assumption of “as-good-as-new” is relaxed, which results in the 

case of lost sales. The production, remanufacture and waste disposal model is 

investigated in this context. In this chapter, switching, imperfect production, 

learning, subassemblies and price/quality considerations are not addressed. 

In Chapter 7: The studies that investigated the production, remanufacture and waste 

disposal model assumed that a returned unit is recovered as a whole unit without 

consideration to some of its components that may not be salvageable. In this 

chapter, returns are assumed to be disassembled and the subassemblies are 

considered part of the inventory. In this chapter, switching, imperfect production, 

learning, lost sales and price/quality considerations are not addressed. 

In Chapter 8: A common observation in material flow is that demand increases as price 

decreases or as quality increases. This reality is not considered in the reverse 

logistics literature. In this chapter, the return rate of used items is assumed price 

and quality dependent. In this chapter, switching, imperfect production, learning, 

lost sales, and subassemblies considerations are not addressed. 

 At the end, Chapter 9 outlines final reflections and presents directions and 

recommendations for future research work.  

The models developed in this dissertation assume: (1) unlimited storage capacity is 

available; (2) an infinite planning horizon; and, (3) a single product case. For the sake of 

simplicity, the term “remanufacturing” will be used to refer to remanufacturing, refurbishing, 
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repair, reclamation, cannibalization, reuse or recycling, and this referral was adopted in some 

works (e.g., King et al., 2006). 
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CHAPTER 3: REVERSE LOGISTICS WITH SWITCHING COSTS 

AND HOLDING COSTS CONSIDERATIONS 

3.1. Introduction 

This chapter addresses the problem of determining the optimal lot sizes for production 

and recovery in an EOQ (economic order/production quantity) repair and waste disposal 

model context. There are two stock points, a serviceable stock (i.e., first shop), which is used 

to store new produced products as well as repaired ones, and the repairable stock, (i.e., 

second shop), which is used to store returned used products. If the used products are not 

repaired, these products are disposed outside the system.  

Richter (1996a, b, 1997) studied the EOQ model in several works and his works has 

limitations, and two of these limitations are addressed in this chapter. First, this chapter 

modifies the method that Richter (1996a, b, 1997) considered for calculating the holding 

costs in the repairable stock, where they assumed that collected items are transferred from 

serviceable stock to repairable stock in m cycles to be repaired at the start of each time 

interval. He considered a general time interval and ignored the effect of the first time 

interval. The first time interval has production without repair because there is nothing 

manufactured before that to be repaired. This assumption resulted in a residual inventory and 

thus overestimates the holding cost. Second, this chapter accounts for switching costs (e.g., 

production loss, deterioration in quality, additional labour) when alternating between 

production and recovery cycles. When shifting a task (production) to another (repair) in the 

same facility, the facility may incur additional costs referred to as switching costs (e.g., 

Glazebrook, 1980; Paul et al., 1980; Kella, 1991; Yan & Zhang, 1997; Teunter & Flapper, 

2003; Hajji et al., 2004; Song et al., 2004; Khouja & Mehrez, 2005). An additional 

classification by reference of different types of switching (changeover) costs is provided in 

section 3.4 of this chapter.  

The remainder of this chapter is organized as follows. In the next section, Section 3.2, a 

brief background to the models of Richter (1996a, b, 1997) is presented and the correction of 

the holding cost expression is shown, followed by a numerical example in section 3.3. In 

section 3.4, the extension and the corrected model to account for switching costs is presented, 
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followed by numerical examples in Section 3.5. Finally, a summary and conclusions are 

presented in Section 3.6. This chapter assumes: (1) infinite manufacturing and recovery rates, 

(2) repaired items are as-good-as new, (3) demand is known, constant and independent, (4) 

lead time is zero and (5) no shortages are allowed.  

3.2. Considering The First Time Interval 

The presented model in this chapter considers the production and remanufacturing 

system, as shown in Figure 3.1, where a manufacturing environment (production, 

remanufacturing and collection of used items) consists of two stocks. The serviceable stock 

stores new products and remanufactured/repaired ones, where demand d is satisfied from this 

stock. From the market, (α + β) percentage of the demand is collected in the repairable stock, 

where sorting and disassembly operations are performed. α percentage of the collected 

products is disposed, and the rest of these products (i.e., βd) are remanufactured/repaired, are 

as shown in Figure 3.1. 

 

Figure 3.1. Material flow for a production and remanufacturing system 

Richter (1996a, b, 1997) introduced in his model demand to be satisfied by 

manufacturing “new” and repairing/recovering “used” items of a certain product. There are n 

cycles of newly produced items and m cycles of repair/recovery items in some collection 

time interval T, with x the demand size per interval. Richter (1996a, b, 1997) assumed 

instantaneous production and repair rates, repaired/recovered items are as-good-as-new and 
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that each time interval T starts with repair cycles, which are followed by production cycles, 

as shown in Figure 3.1.  

            

            
 

Figure 3.2. The behaviour of inventory for produced and remanufactured products as 
suggested by Richter (m = 2 and n = 5) 

Figure 3.2 is different than the one presented in Richter (1996a, b, 1997) as the 

inventory in repairable stock is shown inverted and the figure is demonstrated for the case of 

more than one repair cycle per interval. Note that Richter presented his model starting at time 

0 and assumed that repair occurs starting from the first time interval, although, for the first 

interval, pure production should not be accompanied with repair, as there are no returns to be 

repaired. The inventory in the serviceable and the repairable stocks for Richter’s (1996a, b, 

1997) general case (i.e., starting at any time T), is shown in Figure 3.3. 

Richter’s model tried to minimize the holding costs; however, his model overestimated 

the holding costs of the repairable stock by accounting for unnecessary amount of residual 

inventory, i.e., level c. This residual inventory is depicted by the shaded area in Figure 3.4.  

The cost function per interval in Richter (1996a, b, 1997) is expressed as 
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where T = x/d, Sr and Sp are respectively the repair and manufacturing setup costs, h1 and hu

      

      

      

      

 

are respectively the unit holding costs of a recovered/manufactured and a collected used item. 

Repair (production) cycles are of length equal to βT/m (T(1-β)/n) and of inventory level equal 

to xβ/m (x(1-β)/n). 

 

Figure 3.3. The behaviour of inventory for produced, repaired, and collected items as 
suggested by Richter (m = 2 and n = 5) starting at any time “T” 

            

 

Figure 3.4. The residual inventory accumulated in repairable stock 

As shown in Figures 3.2, 3.3 and 3.4, the level of inventory in the repairable stock does not 

fall below level c, which represents the amount of the residual inventory causing an 

overestimation in the holding costs of the repairable stock. Accordingly, the level of 

inventory at point c = 
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Therefore, as long as (m > 1) in Richter’s model, there will be an overestimation of the 

holding costs in the repairable stock. The cost per unit time is given by dividing the above 

expression by T as (subscript R = Richter’s model) 
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The cost function given in Equation (3.3) is convex and differentiable in x, i.e., 
22 xKR ∂∂ > 0 for every x > 0. Therefore, and for given values of m, n and β, Equation (3.3) 

has a unique minimum value, and is derived by setting its first derivative equals to zero, 

0=∂∂ xKR , to get 
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Substituting Equation (3.4) in Equation (3.3) reduces Equation (3.3) to 
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Richter’s model did not recognize the difference between the first time interval, T1, and 

of subsequent time intervals T, which resulted in accumulating an unavoidable residual 

inventory. Subsequently, the holding cost expressions in Richter’s model must be changed.  

In the presented model, it is assumed that demand is supplied by m repair/recovery 

cycles and n newly produced cycles per time interval T. For the first time interval [0, T1

The first time interval T

], 

production with no repair will take place in the serviceable stock, while in the repairable 

stock, accumulation of used items takes place to be repaired in the second time interval. After 

the first time interval, m repair cycles will precede n newly produced cycles. The used 

collected items are repaired and delivered to the serviceable stock for repair/recovery once 

the last produced cycle is depleted. 

1 was not accounted for in Richter’s work, as well as other 

studies in the literature, perhaps because it is usually assumed that there is an infinite 

planning horizon. However, the exclusion of the first time interval results in a residual 
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inventory in the repairable stock that overestimates the holding costs. Logically, the first time 

interval should be shorter than the subsequent time intervals allowing the inventory in the 

repairable stock to reach zero as shown in Figure 3.5. 

T1

        

         
Figure 3.5. The modified behaviour of inventory in the serviceable and the repairable stocks 
(m = 2 and n = 5) showing the difference between the first time interval “T1” and the general 

time interval “T” 

Modelling the holding cost expressions for the repairable and serviceable stocks and 

considering the effect of the first time interval, T1
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where the terms pr nSmS + , h1((1-β)2x2/n  + β2x2/m)/ 2d, and ( )( ) dmmxhu 2112 −− ββ in 

Equation (3.6) represent the total setup costs, the total holding costs in the serviceable stock 

and the repairable stock respectively. A detailed derivation of Equation (3.6) is shown in 

Appendix 1.  
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Demand is satisfied by repairing dTx ββ =  units in m cycles of size βx/m each, and by 

producing (1−β)x units in n cycles of size (1-β)x/n  units each. Since T1
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m
TT

m
TT ββββ 111

 is shorter than T, then  

       (3.7) 

where for m =1, ( )TT ββ +−= 11 = T. For this case, the suggested model in Equation (3.6) 

and that of Richter given in Equation (3.3) are indifferent. The behaviour of inventory in the 

case of general time interval T is shown in Figure 3.6. 

        

        

 

Figure 3.6. The modified behaviour of inventory in the serviceable and the repairable stocks 
(m = 2 and n = 5) in the case of general time interval “T” 

The unit-time cost function is given by dividing Equation (3.6) by the cycle length, T = x/d, 

as   
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Equation (3.8) is convex and differentiable in x, i.e., 22 xK ∂∂ > 0 for every x > 0. 

Therefore, and for given values of m, n and β, Equation (3.8) has a unique minimum and is 

derived by setting its first derivative equal to zero, i.e., 0=∂∂ xK , to get 
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Substituting Equation (3.9) in Equation (3.8), yields 

( ) ( ) ( )( ) ( )( )( )mhmnhnSmSdnmK upr 11112,, 22
1 −−++−+= βββββ   (3.10) 

The expression )(βK  is determined from Equation (3.10) by minimizing it subject to 

{ },...2,1, ∈nm . 

 The difference between Richter’s model, Equation (3.3), and the one suggested 

herein, Equation (3.8), is the term ( ) mmxhu 2122 −β ≥ 0 in Equation (3.8) which is 

subtracted rather than added, and this term represents the residual overestimated inventory. 

Subtracting this term in Equation (3.8) resulted in reducing the holding costs, and this is 

achieved by considering the length of the first time interval. To illustrate, let us take the ratio 

of Equation (3.5) to Equation (3.10) to get 
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Equation (3.11) suggests that KKR > , 1>∀m . For the case of m = 1, KKR / = 1 

making the presented model and that of Richter (1996a, b, 1997) indifferent from one 

another. Richter’s model accidentally included the residual inventory by showing the proof 

when m = 1. 

Note that a case may occur where it is not feasible to repair. For such a case, the model 

described above reduces to the classical EOQ whose unit time cost function is 

21hxxdSK pEOQ += , where 1/2 hdSx p=  and ( ) 120 hdSmK pEOQ == . 

The two-dimensional nonlinear integer optimization problem ( )β,, nmK  in Equation 

(3.10) is minimized as  

( )( ){ } ββ ,,,2,0,min,, 1 nmxhdSnmnmKMin p ∀>∀→∈    (3.12) 

This model is also compared to ( ) 120 hdSmK pEOQ == .  

THEOREM 1: A policy ( )β,, nmK  with both m and n being even integers can never be 

optimal, since the average total cost rate associated with policy ( )β,2/,2/ nmK  is smaller. 
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PROOF: The inventories of manufactured and repaired items associated with 

policies ( )β,, nmK , Case a, and ( )β,2/,2/ nmK , Case b, are shown in Figure 3.7.  

        

        

    

    

 
Figure 3.7. Inventory stocks for Case a: K (m, n, β) and Case b: K (m/2, n/2, β) 

The parameters d, m, n, r, s, h, β and u in “Case a” correspond respectively to the 

parameters d, m/2, n/2, r, s, h, β, and u in “Case b”. For “Case a”, the unit time cost function 

is 
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The difference in the square of unit time cost functions is given as  
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Note that for given n and β, the cost function given in Equation (3.8) is convex and 

differentiable in m, i.e., 22 / mK ∂∂ > 0 for every m > 0. Setting 0/ =∂∂ mK  and solving for m 

gives 
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Similarly, the cost function Equation (3.8) is convex and differentiable in n, i.e., 22 / nK ∂∂ > 

0 for every n > 0. Setting 0/ =∂∂ nK  and solving for n gives 

( )
pdS

hxn
2

1 1β−=          (3.14) 

Dividing Equation (3.13) by Equation (3.14) gives  
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Equation (3.15) indicates that the factors affecting the ratio of m to n, are β, h1, hu, Sp, and Sr. 

To increase m with respect to n, β and hr should be increased, and Sp should be increased 

with respect to Sr.   

3.3. Numerical Examples I 

Example 3.1 

Consider a case with the parameters d = 10000, h1 = 5, hu = 2, Sr = 3, Sp = 9, β = 0.7. The 

total cost K in Equation (3.10) is calculated for various m and n values. The results are 

plotted in Figure 3.8. 

Figure 3.8 shows that for a given value of m, the total cost increases as n increases. 

Whereas, for a given value of n, the total cost has a minimum value at some m value. From 

Figure 3.8, the optimal policy occurs at n = 1 and m = 3, corresponding to an optimal lot size 

of 422.86 units, i.e., x(3, 1, 0.7) = 422.86 computed from Equation (3.9), and a cost of 
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851.35, K (3, 1, 0.7)= 851.35, computed from Equation (3.10). Comparing the cost value of 

the optimal policy to other cost values in Figure 3.8, e.g., K (6, 2, 0.7) = 935.95 and K (3, 1, 

0.7) = 851.35, which confirms Theorem 1.  
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Figure 3.8. Total Cost function plotted for different values of recovery (m) and 

manufacturing (n) cycles, in an interval of length “T” 

The numerical examples in Figure 3.8 were repeated using the model of Richter, 

provided in Equation (3.5), with results plotted in Figure 3.9 to compare Richter’s results 

against those from the suggested model. 
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Figure 3.9. Total Cost values for the suggested (solid lines) and Richter’s (dashed lines) 

models plotted for different recovery (m) and manufacturing (n) cycles 
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As shown in Figure 3.9, the suggested model and that of Richter produced identical 

results when m = 1; however, the suggested model produced better results than that of 

Richter for m > 1. For example, the global optimum solution for the suggested model 

produced a lower cost, K (3, 1, 0.7) = 851.35, than that of Richter’s, KR

( ) 120 hdSmK pEOQ ==

(1, 1, 0.7) = 1015.87, 

by 16.19% ((1015.87− 851.35)/1015.87 = 0.1619). It is worth noting that shall a situation 

occur where it is not feasible to repair used items, then the suggested model and Richter’s 

model reduce to the classical EOQ model whose cost is 948.68 ( = 

59100002 ××× = 948.68). By comparing Richter’s optimal policy to that of the EOQ 

model, one may notice that Richter’s model suggests that it is not feasible to repair used 

items since KR ( )0=mKEOQ(1, 1, 0.7) = 1015.87 > = 948.68. Whereas, for the suggested 

model it was found that it is always feasible (m > 1) to repair used items where K (m, n, β) < 

( )0=mKEOQ .  

3.4. Considering Switching (Changeover) Costs  

As indicated before, it might be necessary to account for an additional cost when 

switching among products or jobs in a manufacturing facility. Switching costs to shift from 

producing product A to producing product B, is different from the switching costs to shift 

from product B to product A (e.g., Paul et al., 1980; Teunter & Flapper, 2003). Sethi & Sethi 

(1990) considered switching costs from one action in a manufacturing period to another and 

discussed its effect on manufacturing flexibility. Gascon & Leachman (1988) differentiated 

between setup and changeover costs and identified setup cost of an item as the cost incurred 

every time production of the item is started, and the changeover cost is the cost incurred 

when production is switched to that item. There are no switching costs for stopping and 

resuming any manufacturing process.  

Changeover cost is defined as the cost incurred whenever two consecutive jobs do not 

share the same feature (Lahmar et al., 2003). Switching (changeover) costs may include 

cleaning cost, machine adjustment/fine tuning cost, changing tools, changing product family, 

changing production supplies, equipment start-up/shutdown, etc. A classification by 

reference of the possible types of switching (changeover) cost is provided in Table 3.1.  
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Table 3.1. A list of possible types of switching costs 
Types of switching costs References 

Additional setup cost to 
switch between 
workstations, jobs, or 
products.  

Galvin (1987), Gascon & Leachman (1988), Sethi & 
Sethi (1990), Yan & Zhang (1997), Wolsey (1997), Kim 
& Van Oyen (1998), Inman (1999), Tsubone & 
Horikawa (1999), Robinson & Sahin (2001), Lahmar & 
Ergan (2001), Lahmar et al. (2003), Han et al. (2003), 
Hur et al. (2003), de Matta & Miller (2004), Hajji et al. 
(2004), Wu et al. (2004), Brahimi et al. (2006) 

Switching the production 
rate 

Hall (1988); Kim & Han (2001), Kamrad & Ernst 
(2001); Larsen (2005) 

Machine Start-up/shutdown Pattloch & Schmidt (1996); Liaee & Emmons (1997); 
Kim & Han (2001); Khouja (2005); Sim et al. (2006) 

Machine cleaning  Kumar (1995); Wolsey (1997); Olson & Schniederjans 
(2001); Robinson & Sahin (2001); de Matta & Miller 
(2004); Brahimi et al. (2006)  

Production loss Watkins (1957); Paul et al. (1980); Weber (2006) 
Tooling Kumar (1995); Sim et al. (2006); Brahimi et al. (2006) 
Deterioration in quality  Paul et al. (1980); Khouja (2005) 
Machine adjustment Koulamas (1993); Robinson & Sahin (2001); de Matta & 

Miller (2004); Khouja (2005) 
Additional Labour  Watkins (1957); Paul et al. (1980); Kumar (1995); 

Robinson & Sahin (2001); Weber (2006) 
Wastage of material Watkins (1957); Kumar (1995) 

In this chapter, switching costs are considered when a process shifts from repair to 

production, or vice versa. Now, denote 
1rS  as 

1
pS as the setup and switching costs of the first 

repair and the first production cycles. That is, += rr SS
1

“switching costs” from production 

to repair, and += pp SS
1

“switching” costs from repair to production. When there are more 

than one repair cycle per interval, the setup cost per cycle is denoted as rS  except for the first 

cycle. When there are more than one production cycle per interval, the setup costs per cycle 

is denoted as pS  except for the first cycle. The process incurs )(
1 rr SS −  and )(

1
pp SS − costs 

when switching from repair to production and from production to repair, respectively. The 

total setup-switching cost for m repair and n production cycles per interval of length T, is 

computed as ( ) ( )
11

11. pprrnm SSnSSmS +−++−= . For the case of a single repair cycle (m = 
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1) and a single production cycle (n = 1), the total setup and switching costs in an interval of 

length T are equal to 
11 pr SS + . 

As indicated in Equation (3.7), ( ) ( ) ( )mTTmTT ββββ +−=+−= 111 , where T1
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T. Therefore, Equations (3.6) and (3.8) are altered to account for switching costs and are 

rewritten as (subscript S = including switching costs) 
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Note that for given x, n and β, the cost function given in (3.17) is convex and 

differentiable in x, i.e., 22 / xKS ∂∂ > 0 for every x > 0. Equation (3.17) has a unique 

minimum and is derived by setting its first derivative equals to zero, 0=∂∂ xKS , to get 
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Substitute Equation (3.18) in Equation (3.17) reduces it to  
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The two-dimensional nonlinear integer optimization problem ( )β,, nmKS in Equation (3.19) 

is minimized as  

( )( ){ } ββ ,,,2,0,min,, 1 nmxhdSnmnmKMin pS ∀>∀→∈    (3.20) 

Where ( ) 120 hdSmK pEOQ ==  and { },...2,1, ∈nm . 

When there is no switching, i.e., rprr SSSS ==
11

, , Equations (3.16-3.20) reduce to 

Equations (3.6, 3.8-3.11). 
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THEOREM 2: When switching costs are accounted for, an optimal policy ( )β,, nmKS with 

both m and n being even integers is valid when 
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policy ( )β,, nmKS  with both m and n being even integers cannot be optimal when   
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this case, the average total cost rate associated with policy ( )β,2/,2/ nmKS is smaller. 

PROOF: The inventories of manufactured and repaired items associated with 

policies ( )β,, nmKS , Case a, and ( )β,2/,2/ nmKS , Case b, are shown in Figure 3.10. 

        

        

    

    

  
Figure 3.10. Inventory stocks for Case a: KS,a (m, n, β) and Case b: KS,b

The parameters d, m, n, Sr, Sp, h1, β and hu in “Case a” correspond respectively to the 

parameters d, m/2, n/2, Sr, Sp, h1, β, and hu in “Case b”. For “Case a”, the unit time cost 

function is 
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For “Case b”, the unit time cost function is 
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The difference in the square of the unit time cost functions is given as  
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The average total cost rate associated with policy ( )β,2/,2/ nmKS  is less than  
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In addition, an optimal policy ( )β,,, nmxKS with both m and n being even integers has less 
associated costs than a policy ( )β,2/,2/ nmKS   when  
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3.5. Numerical Examples II 

Example 3.2 

 Consider the input parameters from numerical example 3.1, where  d = 10000, h1 = 5, 

hu = 2, Sr = 3, Sp

1rS

 = 9, β = 0.7. In addition to these inputs, consider two additional input 

parameters which are  = 4 and 
1

pS = 11. The total cost KS is computed for various m and 

n values and plotted in Figure 3.11.  
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The same behaviour as Figure 3.8 (no switching costs) is established. Switching costs 

push the solution for longer cycles as shown in Figure 3.11. This results from an increase in 

holding and setup costs. The optimal solution of 910.6 cost units was attained for n = 1 and m 

= 4, for a demand size per interval x = 527.1 units. In the case of n = 2 and m = 8, total costs 

are 983 cost units, and the demand size per interval x = 915.5 units. The optimum solution  

was not attained at m and n even numbers. The term                                                                        
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confirms Theorem 2. 
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Figure 3.11. Total Cost function plotted for different values of recovery (m) and 

manufacturing (n) cycles in an interval of length “T” 

Example 3.3  

Consider a case with the parameters d = 10000, h1 = 5, hu rS = 2,  = 30, pS = 90, 
1rS  = 

50 and 
1

pS = 150, β = 0.3.  

An optimal solution of 3541.7 cost units was attained for n = 2 and m = 2 (n, m even 

numbers), for a demand size per interval x = 1807 units. In the case of n = 1 and m = 1, total 

costs are 3741 cost units, and the demand size per interval x = 1069 units. The optimum 

solution was attained at m and n even numbers. The term  
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confirms Theorem 2. 

3.6. Summary and Conclusions 

In this chapter, a modification and an extension of the EOQ production, repair and 

waste disposal model (Richter, 1996a, b, 1997) is presented. First, and unlike the work 

available in the literature, this chapter includes the very first time interval where no repair 

occurs, to avoid unnecessary residual inventory and consequently avoid an overestimation of 

the holding costs in the repairable stock. Second, in this chapter, the work of Richter (1996a, 

b, 1997) was extended to consider switching costs when alternating between production and 

repair cycles. 

The presented model showed that a policy with even numbers of production and repair 

cycles is never optimal, which was also found by (Teunter, 2001b). However, when 

accounting for switching costs, there are conditions to be met for the validity of this policy.  

In this chapter, imperfect production and remanufacturing processes were not 

considered. The next chapter presents these considerations in a reverse logistics context. 



 82 

CHAPTER 4: REVERSE LOGISTICS WITH IMPERFECT QUALITY 

AND PRODUCTION INTERRUPTIONS CONSIDERATIONS 

4.1 Introduction 

The EOQ/EPQ model has been widely used by practitioners and researchers and has 

been subjected to several extensions (e.g., supply chain and reverse logistics). However, the 

EOQ/EPQ model has been criticised because its assumptions are rarely met (e.g., Woolsey, 

1990; Jones, 1991; Jaber et al., 2004). One of these assumptions is that production processes 

are perfect and defect free and that all items ordered/produced conform to quality. This 

assumption is not realistic (e.g., Gopalan & Kannan, 1995; Buzacott, 1999). Production and 

remanufacturing processes are not perfect and result in defective products that require 

reworking, that result in additional efforts and costs which should be eliminated (e.g., 

Wacker, 1987;  Lee, 1992; Tang & Lo, 1993; Agnihothri & Kenett, 1995).  

Rework is defined as all activities required transforming products that have not been 

produced or packaged according to preset qualifications into products that are (Flapper et al., 

2002). Rework is the transformation of production rejects into re-usable products of the same 

or lower quality and could be defined as doing something at least one extra time (Love et al., 

1999; Bohn & Terwiesch, 1999; Flapper & Teunter, 2004). Therefore, the reworked product 

does not have to be exactly as it was initially meant to be produced. This agrees with the Just 

in Time (JIT) approach, which cuts manufacturing costs by reducing production cycles to 

improve production quality by faster identification of defects, besides; inventory is a blanket 

that covers problems in production and quality (Reid, 1995; Waters, 2003). This encouraged 

manufacturers to reduce lot sizes to reduce defective units, and accordingly, reduce reworks.  

Porteus (1986) and Rosenblatt & Lee (1986) are believed to be the first to capture the 

negative relationship between lot size and quality by extending the EOQ/EPQ models by 

considering that production processes are not defect free. Although both works approached 

the deterioration of the production process differently, they resulted in similar conclusions 

(Urban, 1998). Porteus (1986) assumed that while producing a lot, there is a possibility that 

the process goes out of control and once it does so, the process produces defective units until 

the end of the production lot. With similar assumptions, Rosenblatt & Lee (1986) compared 
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between continuous and periodic inspection strategies and the system incurs additional costs 

because of these defectives. Both works realized that there is an incentive to produce smaller 

lots, to reduce the number of defective units. Other research works considered defective 

items are scrapped (e.g., Yano & Lee, 1995; Mohan & Ritzman, 1998).  

Lee (1992) extended the work of Rosenblatt & Lee (1986) and assumed the time to 

detect the out-of-control process is a random process. Flapper et al. (2002) reviewed 

production planning works in the literature that considered rework processes, and identified 

the characteristics of the process industries that usually include rework in its production 

processes. Teunter & Flapper (2003) and Flapper & Teunter (2004) presented a single 

product production planning model that uses the same facilities for production and rework, 

assumed production rejects deteriorate while waiting to be reworked (e.g., food industry), 

and further assumed that the entire demand can never be satisfied. Inderfurth et al. (2005) 

extended it to the case of satisfying the entire demand by reworking all the defects, which 

their state deteriorates by time, and their rework cost increase by time. However, the authors 

restricted their model to the deterministic case. Teunter and Flapper (2006) presented a case 

study of lot sizing problem with planning and control of rework, and with the existence of 

storage space restrictions. Buscher & Lindner (2007) considered a production-rework lot 

sizing problem with each changeover from production to rework causes a fixed set-up cost. 

The works of Porteus (1986) and Rosenblatt & Lee (1986) caught the attention of many 

researchers. Salameh & Jaber (2000) showed that although EOQ/EPQ inventory control 

model is widely used, it has some weaknesses, of which is the assumption of perfect 

production. The authors proposed a lot sizing and inspection policy assuming instantaneous 

replenishment and a random percentage of units replenished are defective. Salameh & Jaber 

(2000) was extended by Jaber (2006a) to the case where learning effects reduces the rate of 

generating defects and was later extended by Maddah & Jaber (2008) to address additional 

managerial insights. 

In another line of research, Khouja (2005) addressed the non-perfect production 

assumption, however, the author assumed that production minor interruptions are allowed to 

adjust quality and to bring the production process to “in control” state. The author assumed 
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non-instantaneous replenishment and derived closed-form formulas for the optimal number 

of minor adjustments and optimal lot sizes per cycle.  

In reverse logistics literature, it has been assumed that production and 

remanufacturing/repair processes are perfect. This chapter investigates the imperfect 

production and remanufacturing processes in a reverse logistics context. Two models are 

developed; Model I integrates the work of Richter (1996a, b, 1997) with the works of 

Salameh & Jaber (2000) and Maddah & Jaber (2008). Model II, integrates the work of Dobos 

& Richter (2003, 2004) with the work of Khouja (2005).  

4.2 Model I: A Production/Remanufacturing Model for Items with Imperfect 

Quality 

Salameh & Jaber (2000) argued that although the EOQ/EPQ is widely used, the 

assumption of defect free replenishment is not true. In an instantaneous replenishment model, 

the authors presented a lot sizing and inspection policy, given a random percentage of units 

replenished is defective (i.e., electronics industry). Inspection is assumed an expensive 

process and there is a financial penalty for uninspected defectives. There is a cost to rework 

defective items, and the rework takes place instantaneously. 

The model of Salameh & Jaber (2000) has been receiving the attention of researchers 

and was extended in several works (e.g., Goyal & Cárdenas-Barrón (2002); Papachristos & 

Konstantaras (2006); Wee et al. (2007); Eroglua & Ozdemir (2007); Chang, 2004; Wang et 

al., 2007. The model was investigated in an integrated vendor–buyer inventory context 

(Huang, 2002, 2004; Goyal et al., 2003; Chung & Huang, 2006; Ouyang et al., 2006). 

Maddah & Jaber (2008) corrected a flaw in the work of Salameh & Jaber (2000) and 

analyzed screening speed and variability of the supply process on the optimal order quantity. 

The authors presented simpler expressions for the order quantity and expected annual profit 

and found that the optimal order quantity is larger than the classical EOQ even when 

considering the variability of the fraction of imperfect items to be reasonably low. The 

models of Salameh & Jaber (2000), and Maddah & Jaber (2008) have never been 

investigated in a reverse logistics context. 
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Model I is presented with demand being satisfied from newly produced and 

remanufactures units. From the market, returns are collected in the repairable stock, and 

screened into two groups: acceptable items that are remanufactured and non-acceptable items 

that are disposed-off at a cost. Each production (remanufacturing) cycle x(y) contains a 

percentage of imperfect quality items, ρ (λ), that are screened at a rate Rs. It is also assumed 

that the screening rate is faster than the demand rate, and it takes time t (t’) to screen y(x), 

where Rs > d/(1-ρ) and Rs > d/(1-λ), and therefore, no shortages occur. The nonconforming 

items are sold as a single cycle ρx (λy), where t and t’ are respectively the times it take to 

screen x and y units respectively. vp (vr) is the unit selling price of a defective produced 

(remanufactured) item, kp (kr) unit selling price of a good produced (remanufactured item (k 

> v), and replenishment rates are assumed to be instantaneous. Q is the lot size quantity in an 

interval of length T, where Q = my + nx, where y (x) is the remanufacturing (production) 

cycle size 

Model I considers the production and remanufacturing with imperfect quality 

considerations, where the flow of materials and products is similar to the production and 

remanufacturing system shown in Figure 3.1.  

Collected returns composed of repairable returns and non-repairable items that are 

disposed at a cost. Collected returns are expressed as a percentage of the forward demand, 

and is equal to (α+β)d. For further illustration, assume that the production system collects 

80% of d in used items to be remanufactured or repaired. Suppose 70% of these used items 

are repairable, then β = 0.8x0.7 =0.56 or 56% of d are remanufactured/repaired. While, α = 

0.8×0.3 = 0.24 or 24% of d are disposed outside the system at a cost.  

In Model I, the remanufactured items are assumed as-good-as-new, demand is known, 

constant and independent, and lead time is zero with no shortages are allowed. The behaviour 

of inventory is illustrated in Figure 4.1. Profit maximization is adopted rather than cost 

minimization. The total profit per interval T is the sum of revenues from the remanufacturing 

and production process minus the total associated cost in all processes including inventory 

costs in the serviceable stock. The total revenue (TR) and total cost (TC) per a production 

cycle are computed respectively as 
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Figure 4.1. Inventory in serviceable and repairable stocks for m = 2, n = 2 

The total profit (TP) per a production cycle is computed from (4.1) and (4.2) as 
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The revenue and cost per a remanufacturing cycle are determined similar to (4.1) and (4.2), 

and are given respectively as  

Remanufacturing 
cycles 

Production cycles 

λy 
ρx 

λy 
t t 

t’ t’ 

y 

y 

y(1-λ)/d x(1-ρ)/d 

−d −d 

βd 
βd 

y 
x 

Time 

Se
rv

ic
ea

bl
e 

st
oc

k 
R

ep
ai

ra
bl

e 
st

oc
k 

T 
 

Time 



 87 

λλ yvykyTR rrr +−= )1()(          (4.4) 

( ) 







+−+++=

s
rsrrr R

y
d

yhyCyCSyTC
2

2
2

1
2

)( λλ      (4.5) 

The total profit per a remanufacturing cycle is computed from (4.4) and (4.5) as 
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The decision variables are n, m, Q, and β, and the percentages of imperfect quality 

items, ρ and λ, are stochastic, as these percentages vary from cycle to cycle over T, which 

requires calculation the expected values of ρ and λ. Accordingly, and from Figure 3.1, 

[ ]( ) [ ]( )ρλ EnxEmydTQ −+−== 11 , and the number of used units collected from the 

market over T that are remanufacturable is [ ] myTdE =β . Since [ ] dmyTTE β== , 

therefore,  
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Note that for random variables [ ] [ ]( )xExE −=− 11  and [ ] [ ]( )22 11 xExE −≠−  (Ross, 1980). 

The holding cost of collected used items (returns) in repairable stock over T is computed 

from Figure 4.1 as 
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In their MILP model to optimize a municipal solid waste management system, Baetz & 

Neebe (1994) suggested expressions to estimate waste disposal either by incineration or by 

landfill. In the case of incineration, the (unit incineration cost) = (collection cost) + (waste-

to-energy processing cost) – (energy revenue) + (residue factor) × (transport cost). In the case 

of landfill, the landfill disposal cost = compaction density (tons) × cost ($/ton) + unit 

collection cost ($/ton) + transport cost ($/ton). One may deduce that a waste disposal cost 

function per unit of time could be presented as  
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where w is the disposal cost per ton ($/ton) of returns that are not suitable for 

remanufacturing, N is the number of units per ton (units/ton) of waste, and NwCw =  is the 

unit disposal cost ($/unit). Several studies suggest a direct relationship similar to the one 

presented in (4.10).   

Substituting (4.8) in (4.3), (4.6), (4.9) and (4.10) to calculate total profit for m 

remanufacturing cycles and n production cycles in an interval T, 
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This total unit time profit function (ψ) of the production and remanufacturing system, 

where dQT = , is given as 

T
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To determine the optimum Q, (4.12) is differentiated with respect to Q.  
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Substitute (4.13) in (4.12), then (4.12) could be expressed as 
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The cases when 0=β and 1=β are the extreme ones representing the pure production and 

the pure remanufacturing policies respectively. The pure production policy (i.e., 0=β ) is 

represented as 
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where 0=β , ∞→= nm ,0 ; representing the EOQ model for items with imperfect quality. 

The pure remanufacturing policy is similar to (4.14) while β = 1 and the optimum solution is 

given from (4.14) and (4.15) as 

Min ( ){ }Pmn ψβψ ,,,          (4.16)  

Solution Procedure 

STEP 1: For the set of input parameters d, Sp, Sr, hs, hr, hu, Rs, λ, ρ, kp, kr, vp, vr, Cp, Cr, Cw, 

Cs [ ]),1,1( βψE, and α. Set m = 1 and i = 1 (i.e., n = 1), and optimize using (4.16), 

where [ ]),1,1( *
1,1βψE is the optimal profit for i = n = 1, m =1 and *

1,1ββ = . 

STEP 2: Repeat STEP 1 for m = 2 and record [ ]),2,1( *
2,1βψE . Compare [ ]),1,1( *

1,1βψE  and 

[ ]),2,1( *
2,1βψE . If [ ]),1,1( *

1,1βψE > [ ]),2,1( *
2,1βψE , terminate the search for (n = 1) 

and record the value of [ ]),1,1( *
1,1βψE . If [ ]),1,1( *

1,1βψE < [ ]),2,1( *
2,1βψE , repeat for (m 

= 3), (m = 4), etc. Terminate once [ ]),1,1( *
1,1

*
1 *

1 −
− mmE βψ < [ ]),,1( *

,1
*
1 *

1mmE βψ > 

[ ]),1,1( *
1,1

*
1 *

1 +
+ mmE βψ , where *

1m  is the optimal value for the number of 

remanufacturing cycles when there is 1 production cycle. Record the values of 

[ ]),,1( *
,1

*
1 *

1mmE βψ , *
1m , and *

,1 *
1mβ . 

STEP 3: Repeat STEPS 1 and 2 for i = n = 2. Compare [ ]),,1( *
,1

*
1 *

1mmE βψ  and 

[ ]),,2( *
,2

*
2 *
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then drop the value of [ ]),,1( *
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*
1 *

1mmE βψ  and repeat steps 1 and 2 for i = n = 3, 4, 

5,…, etc.  

STEP 4: Terminate the search once [ ]),,1( *
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1−−−−
imiimiE βψ < [ ]),,( *

,
*

*
imiimiE βψ  
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imiimiE βψ , where i is the optimal value for the number of production 

cycles when there are *
im  remanufacturing cycles at a profit [ ]),,( *

,
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*
imiimiE βψ  with 

an optimal *
, *

imiβ . 
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4.3 Numerical Examples I 

Several numerical examples are solved to facilitate understanding the behaviour of the 

mathematical models developed and to draw some conclusions. Examples 4.1, 4.2 and 4.3 

has similar input data to an example in Salameh & Jaber (2000), and these three examples 

highlight the main features of Model I. Example 4.4 has similar input data to an example in 

Dobos & Richter (2004) to show the similarities and differences features between Model I 

and that of Dobos & Richter (2004). 

Example 4.1 

This example is similar to those in Salameh & Jaber (2000) and Maddah & Jaber 

(2008). The fraction of imperfect quality items for production and remanufacturing are 

assumed to be uniformly distributed random variables over (a, b), where 0 < a < b < 1, i.e., 

λ~U(a, b). Therefore  

[ ] 2baE +=λ , ( )[ ] ( ) bababaE −−+++=− 131 222λ , 

( )[ ] ( ) 







−−+

++
+++−=−− bababaabE 1

3
21)1(1

22
22 βββλβ , 

[ ]
3

22
2 babaE ++

=λ , 

ab
baE

−
−−−

=







−

)1ln()1ln(
1(

1
λ

, 

)1)(1(
1

)1(
1

2 ba
E

−−
=








− λ

, 

The same applies to ρ. In this example, the demand rate is d = 50,000 units/year, the 

setup costs are Sp = Sr = 100/cycle,the holding costs are hp = hr = hu = 5/unit/year, the 

screening rate is Rs = 175,200 units/year, the screening cost is Cs = 0.5/unit, the production 

and remanufacturing costs are Cp = Cr = 25/unit, the selling price of good quality items are 

kp = kr =50/unit, the selling price of imperfect quality items, vp = vr = 20/unit, the disposal 

cost Cw

The model is optimized using the presented solution procedure for maximum profit 

(ψ), and the optimum order quantity is found to be equal to Q

 = 0, and λ~U(a, b) and ρ~U(a, b), where a = 0, b = 0.04.  

*= 1405, and optimum profit is 

ψ*=1,121,274 that corresponds to total costs TC = 7,113, where β* = 0. In this example, the 
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input cost parameters for remanufacturing were higher than those of production, with the 

optimal solution favouring a policy of pure production. The numerical results from this 

example conforms to those of Salameh & Jaber (2000) and Maddah & Jaber (2008). As β = 

0, the model represents the forward case, without any remanufacturing (no returns). The 

model was investigated for varying values of β∈(0, 1) while optimizing for the total profit 

and the total costs independently. The results are shown in Figure 4.2. 
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Figure 4.2. The behaviour of Total Profit and Total Cost of Example 4.1 for varying values 
of “β” 

Figure 4.2 shows that as β increases the percentage of returns increases, and 

subsequently increasing the remanufacturing costs. The results show that for the total profit 

curve and total costs curve are mirror images of one another, where the maximum profit and 

minimum costs corresponds to the same β* = 0. 

Example 4.2 

This example considers input parameters similar to those in Example 4.1, except for 

the  production holding cost hp = 12 > hr = 5. The model is optimized for maximum profit 

(ψ), and the optimum order quantity is found to be equal to Q*= 10088, β* = 1 (i.e., pure 

production), and optimum profit is ψ* *TC= 1,208,484 that corresponds to total costs = 

10903.7, n* =1, m* =10. Similar to Example 4.1, the model was also investigated for varying 

values of β ∈(0, 1) while optimizing the total profit and total costs independently. The results 

are shown in Figure 4.3.  

To
ta

l C
os

t  

To
ta

l P
ro

fit
  



 93 

 

10800

11000

11200

11400

11600

11800

12000

12200

12400

12600

1206800

1207000

1207200

1207400

1207600

1207800

1208000

1208200

1208400

1208600

0 0.2 0.4 0.6 0.8 1

β Profit Cost  
Figure 4.3. The behaviour of Total Profit and Total Cost of Example 4.2 for varying values 

of “β” with the solutions for the extreme cases (β = 0, 1) are circled 

The results in Figure 4.3 show that the pure remanufacturing policy is more profitable 

than the pure production policy, and the optimum solution is attained at β = 1. In this 

example, at β = 0, the solution represents the forward case, where only the production setup 

cost is included in the total cost function. As β increases, a mixture of production and 

remanufacturing occurs, where multiple production and remanufacturing setup costs are 

added to the total cost. This explains the rapid increase in the total cost as β increases beyond 

0. As β continues to increase approaching the value 1, the percentage of returns increases, 

decreasing the remanufacturing costs to a level less than those of production, resulting in a 

reduction of total costs. This result suggests that the bang-bang policy (Richter, 1997; Dobos 

& Richter, 2003; 2004) of pure production or pure remanufacturing is optimal when 

imperfect production and remanufacturing is accounted for. Note that the irregularity of the 

trend in the range of (β = 0.2) to (β = 0.8) is due to the integer nature of m and n.  

The total profit is composed of the sum of revenues from production and 

remanufacturing minus the some of the total costs for both processes. When the input 

parameter of revenues and total costs for remanufacturing and production are equal, then the 

optimum solution obtained from either optimizing the profit function or the total cost 

function is the same. This is a special case, and the same may not hold when the input 

parameters for revenues and costs are not equal. This will be investigated in the Example 4.3.  
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Example 4.3 

Input parameters used are similar to those of Example 4.2, except for kp = 50.01 (in 

example 4.2, kp

 

 = 50). The model is investigated for varying values of β ∈(0, 1) while 

optimizing for total profit and total costs independently. The results are shown in Figure 4.4. 
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Figure 4.4. The behaviour of Total Profit and Total Cost of Example 4.3 for varying values 
of “β” with the solutions for the extreme cases (β = 0, 1) are circled 

The optimum profit (i.e., optimum solution) is attained at β* = 0, where the policy is 

pure production, however, the least cost is at pure remanufacturing (β*

The input parameters for this numerical example are adopted from Dobos & Richter 

(2004, example 5, pp.321), and the fraction of imperfect quality is considered uniformly 

distributed over (a, b), 0 < a < b < 1 for both remanufacturing and production. Demand rate 

is d = 1000 units/year, the setup cost are S

 = 1). One may notice 

that in this example, the optimal solution obtained from optimizing the total profit does not 

coincide with that obtained from optimizing the total costs. This suggests that a cost 

minimization approach (e.g., Richter, 1996a, b) may not always guarantee the best solution, 

and therefore, a profit approach is more appropriate.   

Example 4.4 

p = 1960/cycle and Sr = 440/cycle, the serviceable 

holding costs are hp = hr = 850/unit/year, the repairable holding cost is hu = 80/unit/year, 

screening rate is Rs = 5000 units/year, a = 0 and b = 0.45. In this example, a cost 

minimization approach is adopted. 
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 The optimum solution occurs at Q*= 63.4 where TC* = 40591, β* = 1, m*= 7, and n*

 

=1. 

The solution conforms to the solution of Dobos & Richter (2004), where the savings from 

remanufacturing favours a pure remanufacturing policy. The model was also investigated for 

varying β∈(0, 1), while optimizing the total costs. The results are shown in Figure 4.5. 
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Figure 4.5. The behaviour of Total Cost of Example 4.4 for varying values of “β” 

Figure 4.5 shows that the total cost decreases linearly from pure production to pure 

manufacturing with the optimum solution obtained at the extreme case β = 1. This is a similar 

behaviour to that produced by Dobos & Richter (2004), which brings us to their conclusion, 

that the pure bang-bang policy still dominates the production repair lot sizing problem. 

However, solution of Model I is not equal to that of Dobos & Richter (2004). The pure 

remanufacturing case (i.e., β = 1) in Richter (1996a, b, 1997) and Dobos & Richter (2003, 

2004) means that only remanufacturing occurs without any production. 

In Model I, the (β = 1) case represents near remanufacturing solution, where a portion 

of the remanufactured lots is defective, which is substituted by newly produced units. Hence, 

the pure remanufacturing case is still a mixture of remanufacturing and production. This is 

explained by the existence of surge of costs at the (β = 0) point and not at the (β = 1) case. At 

the (β = 0), production setup cost only exists, and remanufacturing setup cost is added once β 

exceeds 0, which makes it a pure production case. However, both setup costs exist at the (β 

=1) case, which proves that the existence of pure remanufacturing case is technically 

impossible.  
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4.4 Model II: Production/Remanufacturing Corrective Interruptions to 

Improve Quality in a Reverse Logistics Environment 

Classical inventory models, mostly EOQ models, assume production results in no 

defective items; however, production (and remanufacturing) processes are not perfect. 

Defective items generated from imperfect production and remanufacturing processes are 

reworked. Model II presents reworking as a method to correct defectives, in a reverse 

logistics inventory context. 

Dobos & Richter (2003, 2004) addressed reverse logistics in a production 

remanufacturing lot sizing model that consists of two inventory stocks, serviceable and 

repairable stocks. In reverse logistics literature, it has always been assumed that production 

and remanufacturing/repair processes are defect free. Production, as well as remanufacturing, 

processes are not defect-free. These processes result in items that require reworking (Wein, 

1992). Rework is defined as doing something at least one extra time due to a non-

conformance (e.g., Love et al., 1999).  

Khouja (2005) extended the work of Porteus (1986) and showed that reworks are 

reduced by interrupting the production process to bring it to “in-control” state. Interrupting 

the production process is a common practice in JIT manufacturing environments where line 

workers  have the authority to stop the line to bring production quality to “in control” state 

(Inman & Brandon, 1992). Khouja (2005) showed that interrupting the production process 

reduces the number of defectives, and subsequently the total system costs. The model 

developed by Khouja (2005) has never been investigated in a reverse logistics context. 

Model II introduces the imperfect production and remanufacturing concept in a reverse 

logistics context by integrating the works of Richter (2003, 2004) and Khouja (2005). Model 

II assumes that the quality of the production and remanufacturing processes are interrupted to 

be restored to in-control state, in a production/remanufacturing environment that consists of 

two stocks; the serviceable stock (newly produced and remanufactured items), and the 

repairable stock (collecting returned items for repair). In Model II, the decision variables are 

β, m, n, λm, λn, and Y. Y is the remanufacturing lot size quantity for used units that are 

collected in an interval of length T, and λm (λn) is the number of minor setups in the 

remanufacturing (production) cycle following an interruption to restore the process. X 
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represents the production lot size quantity for newly produced units, where X is dependent on 

Y and β, and therefore it is not a decision variable. There are Y remanufactured and X newly 

produced units in time interval T. 

Model II considers the production and remanufacture model described in Figure 3.1, 

where a manufacturing environment consists of two stocks. The serviceable stock stores 

remanufactured used and newly produced units of a product. The used units (returns) are 

collected in the repairable stock. In each interval of length T, there are m remanufacturing 

cycles of repairable items and n production cycles for newly produced items. 

Market demand of rate d is satisfied by remanufacturing and production cycles. 

Returns are collected in the repairable stock , sorting and filtering is performed to dispose a 

quantity of αd units, and the remaining amount (βd) is remanufactured. Accordingly, the 

remanufactured amount satisfy part of market demand equivalent to (βd), and the rest 

((1−β)d) is satisfied by newly produced items. The ratio between the remanufactured amount 

Y per cycle for m cycles and the newly produced amount X per cycle for n cycles is equal to 

the ratio of βdT/(1−β)dT. Therefore,  

( ) Y
n

mYX
β
ββ )1(, −

=         (4.17) 

In Model II, shortages are not allowed, and it is assumed that lead-time is zero, 

repairable items are as good as new and defective units are reworked at a fixed cost per unit, 

no defective units are scrapped, and that the production and recoverable repair processes are 

always in control. Figure 4.6 illustrates the behaviour of inventory over a cycle of length T. 

For each interval T, inventory starts to build up by remanufacturing a lot at a rate Rr

rτ

 

and at the same time inventory is depleted at a rate d. Interruption as a minor setup takes 

place for a period of to restore the remanufacturing process quality and to bring it to “in 

control” state. This interruption occurs at time = ( )1+mrRY λ  and during which inventory 

depletes. Afterwards, the remanufacturing process resumes for another period of length 

( )1+mrRY λ  and is interrupted for another ( mλ − 1) minor setups, until inventory reaches a 

maximum level at ( ) dRdY rmr τλ−−1  at time ( ) rmrRY τλ+ .  
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Figure 4.6. Inventory in serviceable stock and repairable stock for m = 2, n = 1 

Afterwards, remanufacturing ceases and the maximum accumulated inventory of 

remanufactured units start to deplete at a rate d, until it reaches the zero level. The same 

behaviour is repeated for (m−1) remanufacturing cycles that are performed in Tr. The 

production cycle commences at time Tr, and the inventory of newly produced items start to 

build at a rate Pr ( )1+nrPX λ−D. The production ceases for a minor setup at  for a pτ  period 

of time. Similar to the remanufacturing cycle, the accumulated inventory of newly produced 

items reaches its maximum level at ( ) dPdX pnr τλ−−1 , and then depletes at a rate d until it 

reaches the zero level. The same behaviour is repeated for (n−1) production cycles that are 

performed in pT .  

At the start of each interval T, the inventory level in the repairable stock is at its 

maximum level, which is the total amount of used items collected from the previous time 

interval. Inventory starts to deplete by repairing Rr

τr 

 units and at the same time starts to 

increase by collecting used items at a rate of βd. The remanufacturing process is interrupted 
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after ( )1+mrRY λ units of time to restore quality through a minor setup. During the minor 

setup, inventory builds up at a rate βd for a period of length rτ , then, remanufacturing 

resumes for another period of length ( )1+mrRY λ  while being interrupted for ( mmλ −1) 

minor setups, until the inventory reach its minimum zero level at time 

( )( ) ( ) rmrRYdYm τλ++−1 . Accordingly, remanufacturing process halts, and inventory 

increases by receiving returned collected items to reach the maximum level 

( ) ( )( ) dRdmY rmr βτλββ −−+−= 11 , at the end of the production/repair interval of length T. 

Porteus (1986) suggested that smaller lot sizes improves the output quality, and 

estimated the number of defective units in a lot of size Y’ that needs reworking to be j, where 

( ) ( )( ) qqqYj Y '111' −−−−=  and q is the probability of the process going out-of-control. For 

small values of q, the expected percentage of defectives in a lot of size Y’ could be 

approximated to 2'qY . If the production process is interrupted to be restored to an in-

control state, the percentage of defects generated is reduced to ( )( )12' +λqY , where λ is the 

number of interruptions (Khouja, 2005). This concept is introduced in a reverse logistics 

context where the total cost is the summation of the setup costs, holding costs, and rework 

costs for the serviceable and repairable stocks. 

Inventory is calculated for the repairable and the serviceable stocks. For the serviceable 

stock, the average inventory of remanufacturing and production cycles is 

( )( ) 21 dRdY rmr τλ−−  and ( )( ) 21 dPdX pnr τλ−−  respectively. For the repairable stock, 

holding costs are represented by two components: the inventory of remanufactured units 

provided from the repairable to the serviceable stock and the inventory of used items 

collected to form the repairable stock, shown in Figures 4.7-a and 4.7-b respectively. The 

result of adding the areas in Figures 4.7-a and 4.7-b is shown in Figure 4.7-c, where the 

residual inventory from this addition (rectangle E) should be eliminated to produce Figure 

4.7-d, otherwise, the maximum inventory will be overestimated to be Z′ instead of Z. 

The very first time interval where no repairs are performed is usually ignored in 

literature, because a general time interval is assumed, which results in an overestimation of 

the average inventory level and, subsequently, of an overestimation of the holding costs, i.e., 
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area E in Figure 4.7-c. A similar approach was taken by Minner & Lindner (2004), who 

showed that an overestimation of inventory in the serviceable stock resulted in having the 

last remanufacturing lot in the time interval smaller than the other lots.  

 
Figure 4.7. Breakdown of inventory in the repairable stock 

The length of the first time interval consists of production and no repair lots is determined as 
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The average inventory of the repairable stock is equal to 

( ) ( )( )( ) 2/11 dRdmY rmr βτλββ −−+− . Note that time interval T could be represented as a 

function of m, n, and Y; i.e., as dmYdnXdmYTT pr β=+=+ . Therefore, the unit time 

cost function can then be written as  
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where Crr (Crp) is the cost of reworking one defective unit as a result of remanufacturing 

(production) process, and qr (qp) is the probability of the remanufacturing (production) 

process going out-of-control.  

Equation (4.19) is convex overY , ( ) =∂∂ 22 ,.., YYψ  ( ) 32 YsS
m
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0 ∀Y > 0. Setting the first derivative of (4.19) equal to zero and solving for Y  to get 
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Substituting (4.20) in (4.19), reduces (4.19) to 
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( ) 2rmupnprmr hhhd βτλτλτλ ++−        (4.21) 

The objective is to minimize the total cost per unit time (4.30), as 

Minimize ( )βλλψ ,,,, mnmn        (4.22a) 

Subject to:  

10 << β         (4.22b) 

( )
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r
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{ }1,0,,, ∈mnmn λλ        (4.22e) 

Constraints (4.22c) and (4.22d) prevent stock-outs from occurring in the serviceable stock.   

The extreme cases of 0=β and 1=β  represent, respectively, the policies of pure 

production and the pure remanufacturing. Therefore, the unit time cost for a pure production 

policy is given as 
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where 0=β , ∞→= nm ,0 ; representing the EOQ model with minor setups to improve 

product quality. The unit time cost for a pure remanufacturing policy is given as 
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where 1=β , and the optimum solution is given from (4.22a-4.22e), (4.23) and (4.24) as 

Min ( ) ( ) ( ){ }mRnpmnmn λψλψβλλψ ,,,,,,       (4.25)  
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4.5 Numerical Examples II 

This section provides numerical examples to illustrate the different behaviours of the 

presented model and to draw some conclusions. 

Example 4.5 

Let d = 60 units/day, Rr = 80 units/day, Pr = 100 units/day , Sp = 100 $/lot, Sr = 80 

$/lot, sp = 20 $/setup, sr = 20 $/setup, hp = 0.6 $/unit/day, hr = 0.5 $/unit/day, hu = 0.1 

$/unit/day, Crp = 0.3 $/unit, Crr = 0.2 $/unit, qp = 0.01, qr = 0.01, τp = 0.001 day, τr = 0.001 

day. Substituting the values determined above in Equation (4.25), the optimum cost is ψ* = 

50.18, where Y* = 239, λm= 1, and β*

 

 = 1 (pure remanufacturing). In this example, pure 

remanufacturing is the optimum solution because costs associated with remanufacturing are 

less than those of production. The model was investigated for varying values of β ∈(0, 1) 

while optimizing for the total cost, the results are shown in Figure 4.8. 
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Figure 4.8. The behaviour of Total Cost of Example 4.5 for varying values of “β” 

The total cost decreases as β increases, because total costs associated with 

remanufacturing are less than total costs associated with production. There is a surge in total 

cost as the return rate deviates from the extreme cases (i.e., β = 0 or 1).  

For the same input parameters, except for Sr = 150 and hr = 0.8, and by optimizing 

Equation (4.25), the optimum solution shifts to β∗ = 0, where ψ* = 70.99, λn = 0 and X* = 

208.8 (pure production). In this case, pure production is the optimum solution because costs 
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associated with remanufacturing is more than that of production. The model was investigated 

for varying values of β ∈(0, 1) while optimizing for the total costs, the results are shown in 

Figure 4.9. 
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Figure 4.9. The behaviour of Total Cost of Example 4.5 (Sr = 150, hr = 0.8) for varying 
values of “β” 

Figure 4.8 and Figure 4.9 show that the total cost drops sharply when β = 0 and β = 1, 

since only one type of setup cost is included, i.e., either Sp or Sr

10 << β

. Whereas, for the case 

when , which represents a mixed policy of production and remanufacturing, both 

types of setup costs are added to the total cost. This explains the surge in the total cost when 

β shifts from 0 or 1, and brings us to the finding of Richter & Dobos (1997), where either a 

pure production or a pure remanufacturing policy (bang-bang) is always optimum 

(designated by circles in Figure 4.9 and Figure 4.9). The unevenness found in Figure 4.9 

especially in the range of 0.2 ≤ β ≤ 0.9, is due to the integer nature of λm and λn, where the 

number of minor setups changes at β = 0.4, 0.5, 0.6, 0.75 and 0.85. However, the optimum 

solution behaviour remains consistent with the bang-bang policy.  

Example 4.6 

For the same input parameters as in Example 4.5, the model was investigated for 

varying values of hr ∈(0.4, 1.8) while optimizing for the total costs, the results are shown in 

Figure 4.10. 
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Figure 4.10. The behaviour of Total Cost and “β” of Example 4.6 for varying values of “hr

3.1≤rh

” 

For , the total associated costs with remanufacturing is less than that of 

production, and the solution in this case favours remanufacturing, where β is equal to 1. As 

hr

3.1>rh

 increases, remanufacturing associated costs increases to a limit that remanufacturing is not 

favoured, and pure production is the optimum policy for . 

For the same input parameters as Example 4.5 except for Sr = 200, and investigating 

the model for varying values of hp
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 ∈(0, 1.3) while optimizing for the total costs, a similar 

behaviour is observed as shown in Figure 4.11.  

 
Figure 4.11. The behaviour of Total Cost and “β” of Example 4.6 (Sr = 200) for varying 

values of “hp
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For hp ≤ 0.6, the total associated costs with remanufacturing are more than that of 

production, and the solution in this case favours pure production, where β is equal to zero. As 

hp increases, production associated costs increases to a limit that remanufacturing is 

favoured, and pure remanufacturing is the optimum policy for hp > 0.6. 

Example 4.7 

For the same values of the input parameters in Example 4.5, Equation (4.25) was 

optimized by varying τr over the range (0−4). The optima values of ψ* and the corresponding 

values of λm
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 are plotted in Figure 4.12. 

 
Figure 4.12. The behaviour of Total Cost and “λm” of Example 4.7 for varying values of “τr” 

The optimum solution occurs at τr = 1.9, where ψ* = 15.9 and λm = 1. There is an 

optimum τr value where average holding costs and ordering and minor setup costs are 

minimized (marked by an arrow). This finding suggests that quality managers should 

consider the effect of the length of minor setup on the robustness of the solution, especially 

when the time required to perform a minor setup (i.e., due to technological reasons) is larger 

than τr optimum. Note that the fluctuations in the minimum cost occur due to the integer 

nature of λm. A similar behaviour is observed for varying τp.  
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4.6 Summary and Conclusions  

Model I presented a production and remanufacturing lot sizing model with imperfect 

production and remanufacturing processes by incorporating the works of Salameh & Jaber 

(2000), and Maddah & Jaber (2008) into that of Richter (1996a, b, 1997). Model I assumed 

that there are multiple production cycles and multiple remanufacturing cycles per time 

interval. Items of imperfect quality were utilized in another production/inventory situation, 

and for each cycle, these items were withdrawn from inventory and sold at a discounted price 

as a single batch by the end of the 100% screening process. In Model II, the imperfect 

production and reworking concept was introduced in a reverse logistics context by extending 

the work of Dobos & Richter (2003, 2004). Minor setups are performed to restore quality of 

imperfect production and remanufacturing processes. The length of the first time interval in a 

mathematical model of multiple remanufacturing and multiple production cycles was 

considered to avoid overestimating the holding costs in the repairable stock. 

The results suggested that assuming production and remanufacturing processes to be 

perfect, may not capture the benefits that product recovery programs are supposed to bring. It 

is shown that the optimum system policy switches between two extreme cases; either pure 

production or pure remanufacturing, which brings us to the bang-bang policy of either no 

waste disposal (total remanufacturing) or no remanufacturing (pure production and total 

disposal) discussed in Dobos & Richter (2003, 2004). However, there are two limitations. 

First, different optimal policies are reached if the profit or the cost functions are 

independently optimized, which suggests that a profit maximization approach produces better 

solutions than what is commonly practiced in literature; i.e., minimizing costs. Second, the 

case of pure remanufacturing is not mathematically attainable, as there have to be a minimal 

amount of newly produced units replenished to the system. This conforms to the findings of 

Dobos & Richter (2004), where although the authors showed that the pure policy dominates 

the production remanufacturing lot-sizing problems, the authors believed that it is 

technologically infeasible. For fixed price and quality, the competition between production 

and remanufacturing associated costs determine the optimal solution. Therefore, unless 

quality and price of returns (collected used items) are considered, the “bang-bang” rule 

prevails. Investigating the effects of minor setup showed that there is an optimal length for 

the minor setup, where average holding costs, ordering and rework costs are minimized.  
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In this chapter, learning phenomena was not considered. The next chapter presents 

learning and its effect on inventory in a reverse logistics context. 
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CHAPTER 5: LEARNING EFFECTS WITH INVESTMENT IN A 

REVERSE LOGISTICS CONTEXT 

5.1 Introduction 

Performance of an individual, a group of workers, or an organization can be described 

by the learning curve. The learning curve predicts improvements in the performance of an 

individual or a system as this individual or system executes its tasks. Technological progress 

is a kind of learning. The learning curve represents the increasing skill of an individual by 

repetition of a simple operation, and describes the output of more complex organism − the 

collective efforts of many people (Jaber, 2006b). The learning curve received more attention 

during World War II, as contractors searched for ways to predict costs and time requirements 

to build military equipment (Yelle, 1979).  

Reverse logistics is all the logistics management activities involved in managing the 

flow of materials and information from consumers back to producers, including inventory 

management, which has been receiving much attention in recent years. Richter (1996a, b, 

1997) developed an inventory repair/disposal model assuming demand is satisfied by newly 

produced and repaired items as well,  and analyzed the extreme waste disposal rates showing 

that pure strategies dominate the repair and waste disposal strategies. Along the same line of 

research, Dobos & Richter (2003, 2004, 2006) reached similar conclusions and developed 

inventory models with finite production and repair/remanufacturing rates. The investigation 

of learning curve effects in a production/remanufacturing environment is very important for 

industries with expensive labour and learning costs so that management can use learning 

models to improve the utilization of resources and to coordinate and manage the supply chain 

(Macher & Mowery, 2003). 

Learning phenomenon is clear and obvious in production and manufacturing 

environments (Levitt & March, 1988). Wright (1936) is believed to be the first to study the 

learning effect, where the author developed the learning curve theory after observing that as 

the quantity of units manufactured doubles, the time it takes to produce an individual unit 

decreases at a uniform rate. Hirsch (1952) examined the case of a large manufacturing 

company, and found that learning caused dynamic cost aspects and irreversible changes in 
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technology that resulted in remarkable progress in production processes. Keachie & Fontana 

(1966) questioned the assumption of fixed manufacturing costs and its effect on the optimum 

production quantity and the authors were the first to address the effect of learning on lot 

sizing problems. Majd & Pindyck (1989) modeled production leaning with uncertain future 

prices and found that uncertainty reduces the effect of learning, and accordingly reduces the 

incentive to invest in learning. Dorroh et al. (1994) illustrated the importance of investment 

in learning and assumed a producer that chooses to invest in learning of a production process 

with a decreasing rate of investment over time. Jaber & Bonney (1999) surveyed works in 

literature that deals with the effect of learning on the lot sizing problems and showed the 

possibility of including the Just in Time (JIT) concept in these works, which  requires smaller 

set up costs and times and an initial capital investment to result in a more flexible production. 

One of the ways to achieve lower set up costs is through learning (Jans & Degraeve, 2008). 

Reverse logistics activities usually include activities that involve manual skills such as 

disassembly and sorting, where the effects of learning on lot size are more obvious. Johnson 

& Wang (1998) emphasised the importance of considering the learning curve effects in 

calculating the time of disassembly activities, which are usually manual tasks. Similar works 

that incorporated the learning curve into the lot sizing problem are those of Ben-Daya & 

Hariga (2003), Chiu & Chen (2005), Alamri & Balkhi (2007), Jaber & Bonney (2007), and 

Jaber & Guiffrida (2007, 2008).  

Kiesmüller et al. (2004) affirmed the importance of investigating learning in reverse 

logistics context, however, the author did not model the relation between learning and 

inventory. Kleber (2006) extended Kiesmüller et al. (2004) and showed the effect of 

knowledge acquisition in reverse logistics. However, the author accounted for learning in the 

remanufacturing process only and not in the production process. The author accounted for 

learning as a decreasing remanufacturing unit cost function, without representing the effect 

of learning on lot sizes or accounting for learning in production. The authors also studied the 

effect of learning for a special case when the level of inventory in the serviceable stock is 

zero. The effect of learning on lot size in a reverse logistic context has not been addressed in 

literature.  

In this chapter, a model is presented to investigate the works of Dobos & Richter 

(2003, 2004) for learning effects, where finite production and remanufacturing rates are 
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improved due to learning, and required capital investments are considered. It is assumed that 

learning does not transfer among time intervals; however, learning is transferable (i.e. 

accounted for) among cycles in the same time interval. Two extreme cases are presented 

which are the case of no learning and the case of maximum learning, where, in the later case, 

the model approaches the EOQ production and remanufacturing model. A description of the 

learning curve is presented in Appendix 2. 

5.2 Learning Effects with Investment: Mathematical Modeling 

In the presented model, decision variables are n, m, Q and β, where Q is the production 

lot size, and is measured in units, and Y is the remanufacturing lot size, which is dependent 

on n, m, Q and β, and therefore, is not a decision variable. The model considers production 

and remanufacturing as described in Figure 3.1, where a manufacturing environment 

(production, remanufacturing and collection of used items) consists of two stocks: the 

serviceable stock for new and remanufactured products, and the repairable stock where 

returns from the market are collected. Each interval T consists of n production lots and m 

remanufacturing that satisfy market demand at a constant rate d. A quantity αd is disposed, 

and a quantity βd is remanufactured, while βmax

( )ββ −1

 is the maximum percentage of collected used 

units that could be recovered. The ratio between the total remanufactured quantity mY and 

the newly produced quantity nQ is equal to the ratio . Therefore,  

( )
m

nQQmnY
)1(

,,,
β

ββ
−

=        (5.1) 

and the length of the time interval T is given as   

( )( )
( )d

nQ
d

mnQmnQ
d

mYnQT
β

ββ
−

=
−+

=
+

=
1

1     (5.2) 

The model assumes no shortages, zero lead-time, remanufactured (recovered/repaired) 

items are as-good-as new, and production and remanufacturing processes are always in 

control. Figure 5.1 illustrates the behaviour of inventory in the serviceable and the repairable 

stocks over an interval T.  

At the beginning of each interval (i.e., t = 0), the serviceable inventory builds up by 

remanufacturing the first lot of size Y while depletes at a constant rate d. This trend ends at 
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the maximum level of the inventory of remanufactured items, 
1pt . This maximum level is 

depleted at a constant rate d until it reaches the zero level at 
1ct >

1pt . 

3=mct

This inventory 

behaviour is repeated in the remaining remanufacturing lots (m − 1 = 2 in Figure 5.1).  The 

last remanufacturing lot ends at , where the system switches from remanufacturing to 

production, and the inventory of newly produced items starts to build up and deplete in a 

similar manner to that of remanufacturing for n consecutive production lots.  In the first 

production lot, production ceases at 
1=npt or

41=+mpt , which is followed by an inventory 

depletion period that ends at 
1=nct =

41=+mct . The nth production lot ends at
5=+mnct , and a new 

interval T commences. 

 

Figure 5.1. Inventory in the serviceable and repairable stocks for m = 3, n = 2 

The repairable stock is at its maximum level at the start of each interval T, which is the 

total amount of used items collected from the previous time interval, and is equal to 

ZtI == )0( . Inventory in the repairable stock depletes each time remanufacturing resumes, 

while at the same time inventory increases by collecting used items (returns) from the market 
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at a constant rate dβ . At time
1pt , the inventory reaches a value of 

1
)( 1 pp dtYZtI β+−= , and 

remanufacturing ceases. The inventory in the repairable stock builds as used items are 

collected reaching a peak of ( )
1ctI  = Z – Y + 

1cdtβ at time
1ct . The same behaviour is repeated 

until the inventory level reaches the zero level at time
3=mpt . At that time, inventory in the 

repairable stock builds at a constant rate dβ  reaching the maximum level of 

( ) ZtITI
mnc ==

+
)( at time T. This accumulated inventory is used in the following interval T, 

and the behaviour of inventory in the serviceable and the repairable stocks duplicates itself in 

each subsequent interval T indefinitely.  

The holding cost for a single production (remanufacturing) cycle i (j) of length pit ( rjt ) 

is given from (Jaber & Bonney, 1998) as 
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where iu ( jw ) is the equivalent number of units experienced at the beginning of production 

(remanufacturing) lot i (j), and b (a) is the learning exponent for the production 

(remanufacturing) process, where (0 ≤ b, a < 1) and a ≠ b. Costs per unit time for a cycle is 
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where ∑= −
=
1
1

i
n ni Qu with 1u = 0. Each interval T has n production cycles of length pit (i = 1, 

2,…, n) each and m remanufacturing cycles of length rjt  (j = 1, 2,…, m) each, i.e., 

∑∑ ==
+=

m

j rj
n

i pi ttT
11

. 

For m remanufacturing cycles and n production cycles, the holding cost in the 

serviceable stock is determined as 
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Without loss of generality, and for simplicity, assume that QQi =  for all lots in T, then 

iu = ( )Qi 1− or nu = ( )Qn 1− . Similarly, assume YYj =  and ( )Yjwj 1−= or mw = ( )Ym 1− , 

then Equation (5.5) is rewritten as 
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where ( )
m

nQQmnY
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1d , 

when 10 ≤≤ s . Assuming equal lot sizes is reasonable since it simplifies the mathematical 

modelling and the computations, and most importantly since the cost is insensitive to 

changes in the lot size quantity, with results confirming this insensitivity (e.g., Li & Cheng, 

1994; Jaber et al., 2008).  

Similar to the previous chapter, this model does not ignore the immediate time interval 

(or cycle) before the system starts collecting used items to be recovered, to avoid 

overestimating the holding cost (El Saadany & Jaber, 2008b).  Taking into consideration the 

last time interval prior to remanufacturing will preclude any overestimation of the holding 
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cost as shown in Figure A.3d in Appendix 3. Accordingly, the holding cost in the repairable 

stock is given as 
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where ( )β,,, QmnY  is as indicated in (5.6). Refer to Appendix 3 for the derivation of (5.7).  

The total setup cost in T is given as  

pr nSmSmnS +=),(          (5.8)  

From (Jaber & Bonney, 1998), production (remanufacturing) time tpi (tri) for a cycle of 

size Qi(Yi
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, where pt and rt  are the production time per 

lot and the remanufacturing time per lot respectively. Labour costs are determined from 

(5.9a, b), and in a similar to developing (5.6), as  
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The transfer of learning among subsequent production (remanufacturing) lots in an 

interval is allowed, as shown in Equations (5.9a) and (5.9b). The behaviour of inventory over 

T is duplicated in every subsequent interval. An argument may suggest that some of the 

learning in production (remanufacturing) is transferred from one interval to another; 

however, this model is not considering the transfer of learning between intervals and the 

mathematical modelling was restricted to a single interval case.  
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Proper investment is crucial for improvements by learning (e.g., Cohen & Levinthal, 

1990; Levinthal & March, 1993). In the literature, there are several learning investment 

functions (e.g., Killingsworth, 1982; Walter & Ritter, 1996; Moskowitz et al., 2001; Affisco 

et al., 2002; Demeester & Qi, 2005). In this model, the learning investment in production 

(remanufacturing) is accounted for as IpC ( IrC ), where IpC  ( IrC ) is convex and strictly 

increasing over b (a). Affisco et al. (2002) adopted a similar function, and considered the 

option of investing to improve the quality of the vendor’s production process. It is assumed 

that learning becomes faster (b increases) as the amount of dollars invested increases, which 

has been considered in the literature in a manner that induced learning is the result of 

deliberate (management induced) investments in production process improvements 

(Jørgensen & Kort, 2002). The learning investment function is expressed as 

IppC
oebb ∆=          (5.11a) 

where p∆ ( r∆ ) is the percent increase in b (a) per dollar and IpC ( IrC ) is the amount of 

dollars invested per process (i.e., production or remanufacturing, and it is independent of n 

and m), and ob ( oa ) is the initial learning rate for the production processes. Taking “log” of 

both sides for (13a) gives 

o
pp
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∆

−
∆

=         (5.11b) 

Similarly, the investment function for remanufacturing is  

o
rr

Ir aaC ln1ln1
∆

−
∆

=         (5.11c) 

Therefore, the total investment cost in an interval T for learning in production and 

remanufacturing is given from (5.11b) and (5.11c) as 

o
rr

o
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+
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−
∆

=       (5.12) 

The objective is to minimize the total cost per unit time , which is the summation of (5.6) + 

(5.7) + (5.8) + (5.10) + (5.12), and is expressed as  
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Minimize =),,,( βω Qmn ( ) [ ),,,(),,,(1
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Subject to:  

max0 ββ ≤≤          (5.13b) 

{ },...2,1, ∈mn          (5.13c) 

0>Q           (5.13d) 

The solution for the model in (5.13a – 5.13d) is bound by two extreme cases, which are 

the case of no learning in production and remanufacturing (CASE I: b = a = 0), and the case 

when no further improvement in learning is possible (CASE II: 1y ≈ 0, 1r  ≈ 0). These two 

cases are discussed below. 

CASE I: b = a = 0 

For this case, Equations (5.6), (5.7), and (5.10) reduce respectively to  
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and T = )1( β−dnQ  , and total cost becomes  

=),,,( βω Qmn ( )
( )

( )













−

−
+−

− vd
m

nhdh
d

nQ
nQ

d
rp 1

1
1

2
)1(

2

22

β
βγβ  

( )
( )













−

++++













 −

−−
−

+
)1(

111
12 2

22

β
β

γ
νβ

β
β

v
cc

nQnSmS
m
d

d
Qnh rp

pr
u  



 118 

Differentiating with respect to Q, total cost reduces to: 
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CASE II: 1y ≈ 0, 1r  ≈ 0. 

For this case, Equations (5.6), (5.7), and (5.10) reduce respectively to  
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where ( ) =β,,, QmnCL 0, and T = )1( β−dnQ . The total cost becomes 
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Differentiating with respect to Q, total cost reduces to: 
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5.3 Numerical Examples 

To investigate the presented model, three numerical examples are solved, two of them 

have parameters similar to examples of Dobos & Richter (2003) and Teunter (2004). Note 
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that these studies, like other studies in the literature, assumed that the production and 

remanufacturing processes are not subject to learning effects, and assumed that hp = hr. 

Accordingly, additional values for b, bo, a, ao, Δp, Δr and hr are given, and bo = ao = 0.0001, 

are set as default values in Equations (5.11b) and (5.11c). Subsequently, when there is no 

learning in production and remanufacturing, then b = a = 0 and CIp = CIr

667.001.0 max =≤≤ ββ

 = 0. The numerical 

examples were solved using Excel Solver enhanced by VBA codes. 

Example 5.1  

This example uses data similar to those of Dobos & Richter (2003, p. 44). Let d = 200, 

γ = 300 (y1 = 1/300), v = 300 (r1 = 1/300), Sp = 144, Sr = 72, hp =12, hr = 7, hu = 3, cp = 500, 

cr = 500, b = 0, a = 0, ∆p = 1 %/$, ∆r = 1 %/$, and βmax = 0.667. The model presented herein, 

and previous models, consider β is a decision variable, whereas in Dobos & Richter (2003) it 

is an input parameter, and in the presented model, a maximum value of β is adopted; i.e., 

βmax. In this numerical example, β in constraint (5.13b) was assumed not to be less than 1%, 

i.e., some collection must occur and .   

Solving (5.13a) − (5.13d), the optimal policy occurred when m* = 2, n* =1, T* = 1.247 

Q* = 83.14, Y* = 83.14, and β* = 0.667 whose cost is ω*

*
Iω

= 795.21. The optimal solution falls 

between the solutions of the two extreme cases. The values of ω for CASE I and CASE II are 

795.21 (Equation 5.17) and 697.42 (Equation 5.21) respectively (i.e., = 795.21 

> *ω > *
IIω = 697.42), and the values of Q for CASE I (Equation 5.18) and CASE II (Equation 

5.22) are 83.13 and 55.05 respectively. Example 5.1 was solved for different values of b = 

0.1, 0.2, 0.3,…, 0.8, with results summarised in Table 5.1. The values of the learning rate 

were selected in conformance with industrial evidence that learning rates for different types 

of tasks fall in the range of 95% (b = 0.074) to 60% (b = 0.734), with the majority of tasks 

have a learning rate in the range of 90-70%. (e.g., Cunningham, 1980; Dutton & Thomas, 

1984; Camm, 1985; Dar-El, 2000).  

Table 5.1 shows that investment in learning is feasible at learning rate faster than 

93.3% (b > 0.1), where the savings from learning are more than the amount invested to 

accelerate it. That is, a firm must determine its target of learning rate before investing to 

accelerate it. Table 5.1 shows that faster learning (b increases from 0 to 0.8) results in 
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lowering the collection rate of used items (β decreases from 66.67% to 65.1%). Τhis is 

because faster learning recommends shorter production cycle and subsequently smaller lot 

size and shorter time interval T. If there are governmental incentives for firms to increase the 

collection rate β, accelerating the learning process in production may not be a profitable 

choice. For each value of b, ω* *
Iω values fell between the values and *

IIω , except for b = 0.1, 

where the savings from learning are less than the amount invested to accelerate the process. 

Table 5.1. Optimal policy for varying values of the production learning rate “b” 
b T* m* n* Q* Y* β* ω* *

Iω  *
IIω  

0.0 1.247 2 1 83.14 83.14 0.667 795.21 795.21 697.42 
0.1 1.194 2 1 79.57 79.57 0.667 796.02 795.21 697.42 
0.2 1.153 2 1 76.84 76.84 0.667 793.15 795.21 697.42 
0.3 0.854 1 1 61.00 109.74 0.643 790.65 805.14 740.77 
0.4 0.844 1 1 59.38 109.46 0.648 787.28 805.44 741.92 
0.5 0.838 1 1 58.29 109.22 0.652 784.85 805.66 742.72 
0.6 0.833 1 1 57.63 108.98 0.654 783.03 805.78 743.19 
0.7 0.830 1 1 57.41 108.61 0.654 781.46 805.79 743.21 
0.8 0.829 1 1 57.92 107.82 0.651 779.62 805.57 742.40 

The numerical example in Table 5.1 was solved for learning in remanufacturing (a = 0, 

0.1,…, 0.8) and no learning in production (b = 0), with results summarised in Table 5.2. 

Table 5.2 shows that a maximum collection rate (βmax = 0.667) was attained for all 

learning rates in remanufacturing. Further, the ω∗

Table 5.2. Optimal policy for varying values of the production learning rate “a” 

 values in Table 5.2 are less than those in 

Table 5.1 suggesting that investing to accelerate learning in remanufacturing may bring more 

benefits than investing to accelerate that in production.  

a T* m* n* Q* Y* β* ω* 
0.0 1.247 2 1 83.14 83.14 0.667 795.21 
0.1 1.132 2 1 75.45 75.45 0.667 785.46 
0.2 1.069 2 1 71.26 71.26 0.667 773.08 
0.3 1.286 3 1 85.74 57.16 0.667 759.98 
0.4 1.262 3 1 84.11 56.07 0.667 750.99 
0.5 1.245 3 1 83.03 55.35 0.667 744.91 
0.6 1.235 3 1 82.32 54.88 0.667 740.86 
0.7 1.229 3 1 81.91 54.61 0.667 738.26 
0.8 1.227 3 1 81.81 54.54 0.667 736.84 
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How would labour cost affect the results? Doubling the production and 

remanufacturing labour costs; i.e., pc = rc = 1000, while keeping the other input parameters 

unchanged and solving Example 5.1 for b = 0, 0.1, 0.2,…, 0.8 (while keeping a = 0), the 

results showed that learning in production is not recommended, where the optimal policy 

shifted from m* = 2, n* =1, T* = 1.247 Q* = 83.14, Y* = 83.14, and β* = 0.667 whose cost is 

ω*= 1128.55 when b = 0.1 , to m* = 1, n* =19, T* = 8.301, Q* = 86.5, Y* = 16.61, and β* = 

0.01 whose cost is ω*

*ω

= 1051.28. These examples were solved for a = 0, 0.1, 0.2,…, 0.8 

(while keeping b = 0). The results showed that investment to accelerate learning in 

remanufacturing was recommended as the cost decreased (from = 1128.55 to 866.60) 

when leaning became faster (increased from a = 0 to 0.8). For this case, the optimal 

collection rate remained equal to the maximum of 66.67% (β* = βmax

pc

 = 0.667). These results 

show that increasing the labour cost for production (from =500 to 1000) has an adverse 

affect on the production process more than a similar increase would have on the 

remanufacturing process. This further consolidates the findings in Table 5.2 that speeding up 

the remanufacturing process would bring more savings than speeding up the production 

process. Example 5.1 was solved for a = 0, 0.1, 0.2,…, 0.8 (while keeping b = 0), pc = rc = 

1000, and ∆r

Table 5.3. Optimal policy for varying values of the production learning rate “a” (when c

 = 0.02 %/$, with results summarised in Table 5.3. 

p = 
cr = 1000 and ∆r

a 
 = 0.02 %/$) 

T* m* n* Q* Y* β * ω* 
0.0 1.247 2 1 83.14 83.14 0.667 1128.55 
0.1 12.085 1 20 119.64 24.17 0.010 1211.56 
0.2 2.840 6 2 94.67 63.11 0.667 1189.83 
0.3 2.972 7 2 99.07 56.61 0.667 1153.11 
0.4 2.942 7 2 98.07 56.04 0.667 1130.40 
0.5 2.922 7 2 97.41 55.66 0.667 1117.20 
0.6 2.911 7 2 97.03 55.45 0.667 1109.86 
0.7 2.906 7 2 96.87 55.35 0.667 1106.26 
0.8 2.908 7 2 96.93 55.39 0.667 1105.34 

Table 5.3 shows that there is a shift from m* = 2, n* =1, T* = 1.247 Q* = 83.14, Y* = 

83.14, and β* = 0.667 whose cost is ω*= 1128.55, to m* = 1, n* =20, T* = 12.085, Q* = 
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119.64, Y* = 24.17, and β* = 0.01 whose cost is ω*= 1211.56, to m* = 6, n* =2, T* = 2.840, Q* 

= 94.67, Y* = 63.11, and β* = 0.667 whose cost is ω*

9.00 ≤≤ b

= 1189.83, when learning became faster 

(increased from a = 0 to 0.1 to 0.2), where the optimal solution is at the extreme values of β. 

This behaviour brings us to the bang-bang policy of either no waste disposal (total 

remanufacturing) or no remanufacturing (pure production and total disposal) of Dobos & 

Richter (2003, 2004).  

Is there an optimal learning rate? The model in (5.13a)−(5.13d) was modified to allow 

for the learning rates to be decision variables. This required adding the following constraints 

and 9.00 ≤≤ a . Example 5.1 was optimized while considering a and b as decision 

variables, together with n, m, Q and β, and the optimal policy occurred at m* = 2, n* =1, T* = 

0.916, Q* = 61.06, Y* = 61.06, b* = 0.9, a* = 0.852, and β* = 0.667 whose cost is ω*= 718.01, 

which is lower than all the policies in Tables 5.1 and 5.2. This example showed that there 

exist optimum values for the learning rates for both production and remanufacturing. 

When should one invest in learning? The numerical examples in Table 5.1 were solved 

for ∆p = 0.1, while keeping the other input parameters unchanged, and it was found that it is 

expensive to invest in learning, e.g., when b = 0 the cost was ω*= 795.21 (m* = 2, n* =1, T* = 

0.916, Q* = 61.06, Y* = 61.06, β*= 0.667), whereas b increases to 0.1, the cost increases to 

ω*= 845.69 (m* = 2, n* =1, T* = 1.31, Q* = 87.31, Y* = 87.31, β*

 There may be a case where the initial production and remanufacturing rates are much 

higher than the demand rate, e.g., γ = 3000 (y

 = 0.667) and continue to 

increase for higher values of b. Accordingly, savings from speeding up the learning process 

are less than the required amount invested, which makes it unattractive to invest in learning. 

For further illustration, each cost term in the serviceable and repairable stocks is investigated. 

Increasing b increased the investment cost from 0 to 52.75, the serviceable stock holding cost 

from 120.09 to 155.44, the repairable sock from 110.85 to 116.41, decreased the total setup 

cost from 230.94 to 219.91, and the labour cost from 111.11 to 78.96, with a total change in 

cost of 52.75 + (155.44 − 120.09) + (116.41 − 110.85) + (219.91 – 230.94) + (78.96 

− 111.11) = 50.48 (i.e., 845.69 − 795.21 = 50.48).  

1= 1/γ =1/3000), v = 3000 (r1=1/v = 1/3000). 

Solving the numerical examples in Table 5.1 for these values of γ and v and a similar result to 

the one above was found. That is, it is best not to invest in learning when d/γ and d/v are 
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significantly low as the margin of benefit from investing in learning would be minimal. 

However, it may be possible to invest to improve the learning process, if and only if, these 

ratios are associated with high labour costs; e.g., pc = 10,000.  

Example 5.2 

 This example uses data similar to those of Teunter (2004; p.438). Let d  =1000, γ = 

5000 (y1 = 1/5000), v = 3000(r1 pS= 1/3000), = 20, rS = 5, ph =10, rh = 6, uh = 2, pc = 500, 

rc = 500, b = 0,  a = 0, ∆p = 0.1 %/$, ∆r maxβ = 0.1 %/$, and = 0.8. Solving the mathematical 

programming problem given in Equations (5.13a)−(5.13d), the optimal policy occurred when 

m* = 5, n* =1, T* = 0.261 Q* = 52.17, Y* = 41.74, and β* *ω = 0.8 whose cost is = 498.36. 

Solving for b = a = 0.1 the optimal policy occurred when m* = 20, n* =3, T* = 0.972, Q* = 

62.77, Y* = 38.86, and β* = 0.8 whose cost is ω*= 708.74. Solving for b = a = 0.3 the optimal 

policy occurred when m* = 20, n* =3, T* = 0.976, Q* = 65.04, Y* = 39.02, and β* = 0.8 whose 

cost is ω*= 693.93. These results show that learning allows for longer intervals with multiple 

remanufacturing and production runs.  

How transfer of learning among time intervals affect the inventory policy in subsequent 

intervals? In the presented model, learning does not transfer between time intervals, learning 

is transferable within cycles of an interval. However, an example is presented to illustrate the 

effects of transfer of learning on inventory policies in subsequent intervals. Salameh et al. 

(1993) suggested that the time to perform the first unit in a given cycle captures the transfer 

of learning from cycle to cycle (or from interval to interval). Although this assumption 

simplifies the mathematics, it will be used here for illustrative purposes. For example, if y1 = 

1/10, n = 2, Q = 100, and b = 0.2, then  y1,next = y1(nQ + 1)−b = 0.1×(201)−0.2 = 0.0346. Some 

of the input parameters were manipulated for the purpose of this example. Example 5.2 was 

solved for the same input parameters except for b = a = 0.05, ∆p = ∆r = 0.3 %/$.  The 

optimal solution occurs when m* = 11, n* =2, T* = 0.577, Q* = 57.71, Y* = 41.97, and β*= 0.8 

whose cost is ω*

For example, the time to remanufacture the first unit in the first remanufacturing cycle 

of the next interval is computed as y

= 596.48.  

1,next = y1(nQ + 1)−b = (1/5000) ×(2×57.71+ 1)−0.05 = 
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0.000158. . This problem was solved for 4 consecutive intervals with results summarised in 

Table 5.4.  

Table 5.4 shows that the learning process slows after the first interval and the transfer 

of learning has little effect. This explains Case II discussed above where y1,i and r1,i

Table 5.4. Optimal policies for four consecutive intervals with transfer of learning 

 become 

insignificantly low; i.e., close to zero.  This situation may be more appropriate to be 

discussed in the presence of forgetting where not all of the knowledge accumulated in one 

interval is transferred to the next interval; see for instance Jaber & Bonney (1998, 1999). 

i 1/y1,i 1/r1,i Ti mi ni Qi Yi βi ωi 
1 5000.00 3000.00 0.577 11 2 57.71 41.97 0.8 596.48 
2 6342.66 4077.42 0.584 12 2 58.39 38.92 0.8 576.39 
3 6566.83 4222.21 0.582 12 2 58.25 38.83 0.8 574.41 
4 6701.22 4308.85 0.582 12 2 58.17 38.78 0.8 573.28 

Example 5.3 

How sensitive the production/remanufacture inventory policy is to changes in the 

learning rate? Let d = 12 units/day, y1 = 0.0625 day (γ = 16 > d), r1 = 0.05 day (v = 20 > d), 

βmax = 0.6, Sp = 400 $/lot, Sr = 300 $/lot, hp = 1.5 $/unit/day, hr = 0.2 $/unit/day, hu = 0.1 

$/unit/day, cp = 700 $/day, cr = 500 $/day, a = 0, ∆p = 0.0004 %/$, ∆r = 0.0004 %/$. 

Varying b over the range of (0.08-0.72) for three values of cp (cp = 700, 800, 900), and 

optimizing the model, the optimum n, m, Q and β are determined. Results are shown in 

Figure 5.2.  

Figure 5.2 shows that as b increases, the effects of learning increase reducing total 

costs.  This reduction in total costs ceases once learning investment costs reaches its limit. 

Figure 5.2 shows that for each cp value there is an optimal b value at which total costs are 

minimum. The optimal value of b increases as the value of cp increases. For example, when 

cp
*b = 700,  = 0.4, when cp

*b = 800, = 0.48, and when cp
*b = 900, = 0.56. These results 

verifies the presented model, and shows that as labour costs increase, the importance of 

learning increase. 
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Figure 5.2. Varying “b” and its effect on Total Cost 

5.4 Summary and Conclusions  

This chapter investigated learning in a reverse logistics context. A model was presented 

as an extension to the work of Dobos & Richter (2003, 2004), and the effects of learning in 

production and remanufacturing processes were studied. Management can use established 

learning models to better utilize capacity, manage inventories and coordinate production and 

distribution throughout the chain. The presented model considered multiple production 

cycles and multiple remanufacturing cycles. The parameters of the numerical examples were 

selected from Dobos & Richter (2003) and from Teunter (2004). An extensive numerical 

analysis was carried to draw useful insights.  

The numerical results showed that there exists a threshold learning rate beyond which 

investing in learning may bring savings. That is, unless the learning process is accelerated 

beyond the threshold value then, investment in leaning may not worth it. It was also shown 

that faster learning above the optimum level lowers the collection rate of used items, 

therefore, if there is a chance to increase the collection rate (e.g., due to new legislations or 

governmental incentives), then accelerating the learning process may not be desirable. It was 

generally found that learning reduces the lot size quantity and subsequently the time interval 

over which new items are produced and used ones are remanufactured. In addition, our 
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results showed that there is an optimum learning rate to which the sum of production, 

remanufacturing, and learning investment costs is minimum. This suggests that there is a 

trade-off point between how fast an organization can go and how much that organization is 

willing to invest in its learning process. An important observation is that the system policy 

flips between two extreme policies of either pure production (β = 0) or maximum collection 

of used items (β = βmax). This behaviour is referred to as the bang-bang policy, which states 

that the mixed strategy is not optimal and the optimal strategy is either no waste disposal 

(total remanufacturing) or no remanufacturing (pure production and total disposal), as 

discussed in Richter (1997) and Dobos & Richter (2003, 2004).  

This chapter assumed that learning transfers among production (remanufacturing) lots 

in a time interval and that the time interval duplicates itself indefinitely. Although it does so, 

the model presented in this chapter provided the reader with an example to illustrate the 

effects of transfer of learning on inventory policies in subsequent intervals.  

In this chapter, remanufactured products are considered to be as-good-as new. The next 

chapter presents the case when customers perceive remanufactured products and newly 

produced products differently. 
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CHAPTER 6: PRODUCTION AND REMANUFACTURING LOT 

SIZING MODEL FOR TWO MARKETS WITH LOST SALES 

6.1 Introduction 

Reverse logistics is becoming a popular solution to environmental waste problems. 

Instead of dumping in landfills, collecting and remanufacturing used products to extend their 

useable lives and thus reducing waste and conserving natural resources is crucial to save the 

environment. Research on waste management and coordinating repair with manufacturing 

started in the 1970’s, and was established as a separate line of research by the 1990’s. 

Inventory models addressing this line of research usually assume that customers’ demand is 

satisfied from newly manufactured (produced) items and from remanufactured (repaired) 

items.  

Several researchers considered inventory models to solve repair/remanufacturing and 

waste disposal issues. Richter (1996a, b) presented a deterministic EOQ model for repaired 

items where production and repair rates are instantaneous. Richter (1997) and Richter & 

Dobos (1999) showed that a pure policy of either no waste disposal (total repair) or no repair 

(total waste disposal) is always optimal, and similar results were presented by Teunter 

(2001b). Korugan & Gupta (1998) considered a queuing inventory system with probalistic 

demands and returns, and accounted for lost sales if demand is not satisfied, however, they 

considered remanufactured items are as-good-as new. 

In all the inventory research works in the literature of reverse logistics, it is assumed 

that returns that are repaired or remanufactured have the same quality as the newly produced 

ones (i.e., returns are “as-good-as new”). This may be true in few industries, but not in other 

industries where customers do not consider “new” (“manufactured”) and “remanufactured” 

(“repaired”) items to be equal. Remanufactured goods sell at lower price points in secondary 

markets, or in different channels than new products that sell in primary markets (e.g., 

Tibben-Lembke & Rogers, 2002; Blackburn et al., 2004).  

In this chapter, the works of Richter (1996a, 1996b) are extended by assuming that 

demand for manufactured items is different from that for remanufactured (repaired) ones, 

because customers perceive the new and remanufactured products differently. Production and 
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remanufacturing processes are executed in the same facility, therefore, stock-out periods 

takes place for manufactured and remanufactured items, and accordingly, lost sales occur 

when demand can not be supplied (e.g., Hill et al., 2007), i.e., demand for newly 

manufactured items is lost during remanufacturing cycles and vice versa.  

6.2 Reverse Logistics with Lost Sales: Mathematical Modelling 

In this chapter, two models are presented for two cases: the total lost sales case and the 

partial lost sales case. The models presented herein assume: (1) infinite production and 

recovery rates, (2) remanufactured items are perceived by some customers to be of lower 

quality than newly manufactured items, (3) demand for produced and remanufactured items 

are known, constant but different, (4) constant but different collection rates for previously 

used manufactured and remanufactured items, (5) lead time is zero, (6) inventory stock-out 

occurs and unsatisfied demand (manufactured or remanufactured) is lost, (7) the collection of 

used items from previously remanufactured ones occur in the remanufacturing period, and 

used items from previously produced items occur during the production period.  

The presented models consider the production and remanufacturing (repair) situation 

similar to that described in Richter (1996a, 1996b), where there are two inventories: the 

serviceable stock for stocking manufactured new products and the repairable stock for 

collecting remanufactured used items. It is assumed that remanufactured (repaired) items are 

not perceived by customers to be of the same quality as newly produced items. Accordingly, 

two demands are to be satisfied: primary market demand for newly produced items Dp, and 

secondary market demand for remanufactured/repaired items Dr, where  Dr is not necessarily 

equal to Dp (e.g., Tibben-Lembke & Rogers, 2002; Blackburn et al., 2004), as shown in 

Figure 6.1.  

In each interval of length T, there are two sub-intervals representing m remanufacturing 

cycles and n production cycles of lengths Tr and Tp respectively. Decision variables 

considered are n, m, γp and γr, where γp (γr) is the collection percentage of available returns of 

newly produced (previously remanufactured) items (0 < γp, γr < 1), and βp (βr) is the 

percentage of available returns from the primary (secondary) market for produced 

(remanufactured) items. Note that (1− γr  βr) and (1− γp βp) are the waste disposal rates, where 

(0 < βr ≤ βp < 1). It is reasonable to assume that it is less likely to recover components from a 
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used item that was previously remanufactured than from a previously produced one, and 

therefore, this model assumes βr ≤ βp.  

 
Figure 6.1. Material flow for a production and remanufacture system satisfying two markets 

Each repair interval Tr consists of m remanufactured lots of size x2/m each, and each 

production interval Tp consists of n production lots of size x1/n, where x1 (x2) is the lot size 

quantity (in units) to be produced (remanufactured/repaired) in an interval of length T. 

Therefore, 2x  = rrTD  and 1x  = ppTD  represent the total remanufactured and production 

quantities per interval T. Used items are collected at rates rr βγ  over rT  and ppβγ  over pT  

accumulating 2x  = rrTD = rrrr TDβγ  + pppp TDβγ  units. Accordingly,  

( ) ( )pprrxx βγβγ−= 121        (6.1) 

where 21 xx is the ratio of produced to remanufactured units  

In addition, the presented models consider a general time interval and do not ignore the 

effect of the first time interval that has no remanufacturing cycles, similar to previous 

models. The rationale for this assumption is that nothing has been produced before to be 

collected and remanufactured, and ignoring this assumption results in a residual inventory 

and thus overestimates the holding cost. For the first time interval [0, T1], production with no 

remanufacturing will take place in the serviceable stock, while in the repairable stock,  the 

accumulation of used items that are collected to be remanufactured in the second time 

interval. Starting from the second time interval, m remanufacturing cycles will precede n 
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production cycles. The behaviour of inventory for remanufactured, produced, and collected 

used items over interval T is illustrated in Figure 6.2.  

 

Figure 6.2. The behaviour of inventory for remanufactured, produced and collected used 
items over interval “T” 

Two models are presented for two lost sales cases. The first model assumes that 

demand for newly manufactured (produced) items are lost over Tr, and that demand for 

remanufactured items are lost over Tp. This case is referred to as the total lost sales case. The 

second model assumes that it may be possible to entice some customers to settle for a 

remanufactured (manufactured) item at a cost, and this case is referred to as the partial lost 

sales case. 

6.3 Model I: Total Lost Sales Case 

The total cost per interval is the sum of the setup costs for remanufacturing and 

production, the holding costs for used, remanufactured, and newly produced items, and the 
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where ( )
pp

rrxx
βγ

βγ−
=

12
1  and Clp (Clr) is the cost per unit of a lost demand for a produced 

(remanufactured) item. Since T1 is shorter than T, then  
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The derivation of 1T  is provided in Appendix 4. The sum of the terms rmS and pnS in 

(6.2) represents the total setup cost in an interval of length T. In each interval T, there are m 

remanufacturing cycles each of length mTr  and of size mx2 , and n production cycles each 

of length nTp  and of size nx1 . The remanufactured (manufactured/produced) quantity of 

2x ( 1x ) units is consumed over sub-interval rT ( pT ) at a demand rate of rD ( pD ) units per 

unit of time, where  rrTDx =2  ( ppTDx =1 ). The average inventory per unit of time for 

remanufactured (manufactured/produced) items over a remanufacturing 

(manufacturing/production) sub-interval of length rT  ( pT ), is mx 22  ( nx 21 ). Therefore, the 

total holding cost for remanufactured items in (6.2) is computed as 
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p . It is assumed in the presented models that demand 

for newly produced items over rT is lost, and demand for remanufactured items over pT is 

lost too. Therefore, the total lost sales cost in an interval of length T is the sum of 

prlr TDC and rplp TDC . The holding cost for collected used items is computed as shown in 

Appendix 5. Then, the total cost per unit time function is ( ) Txmn rp γγ ,,,, 2Ψ , where T = 

rT + pT = pr DxDx 12 + , and is derived from (6.2) as  
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where ( ) ( )pprrxx βγβγ−= 121 . Now, and for the simplicity of the presentation, let,   
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Therefore, (6.4) could be presented as 
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Equation (6.4) is convex over 2x , since ( ) =∂∂ 2
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22 xnSmSA pr + > 0  ∀ 2x > 0. 

Setting the first derivative of (6.4a) equal to zero and solving for 2x  to get 
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Substitute (6.5) in (6.4), reduces (6.4) to 

( ) ( ) ( ) ( )( )ψ γ γ γ γ γ γn m A mS nS H n m Cp r r p p r pr p r, , , , , , ,= + +2    (6.6) 

The mathematical programming problem is therefore written from (6.6) as 

Minimize ( )rpmn γγψ ,,,        (6.7a) 

Subject to: 

n, m ≥ 1, are integers        (6.7b) 

1min ≤≤ pγγ         (6.7c) 

10 ≤≤ rγ         (6.7d) 

The lower bounds introduced in constraints (6.7c) and (6.7d) are justified as shown in 

Figure 6.3. Consider case (a), 0=rγ  and 0>pγ , where used items are collected only from 

the primary market at a rate 0>ppβγ  ( 0=rrβγ ). For case (b), 0>rγ  and 0=pγ , used items 

are collected only from the secondary market at a rate 0>rrβγ  ( 0=ppβγ ). 
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Figure 6.3. Material flow for a production and remanufacturing system with two extreme 

collection cases 

Case (b) is infeasible since the return flow will represent a closed loop of demand Dr 

that has a finite and reducing supply compared to demand of secondary market, and at some 

point in the future will reach a zero level; i.e., 0lim →
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secondary market must be fed by remanufacturing items collected from the primary market, 

subsequently, minγ can never equal to zero and minγγ ≥p . In addition, in many countries (e.g., 

Germany), governmental legislations compel companies to initiate product recovery 

programs (e.g., Fleischmann et al., 1997; Chung & Poon, 2001). Therefore, the presented 

models assume that some collection must occur; i.e., minγ > 0.  
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6.4 Model II: Partial Lost Sales Case 

In Model II, it is assumed that customers are enticed to settle for substitution between 

products. That is, over period  rT  a percentage of demand, rb , for newly produced items is 

substituted by remanufactured items at a cost pv . Similarly, over period pT  a percentage of 

demand pb , for remanufactured items is substituted by newly produced items at a cost rv . 

Accordingly, the demand rates for remanufactured and newly produced items are adjusted 

respectively as rpprrr DbDbDD −+=~ and rpprpp DbDbDD +−=~ . Therefore, Equations 

(6.5) and (6.6) are modified respectively as  
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The following solution procedure is applied to solve Equations (6.7a-6.7d) and (6.9). 

6.5 Solution Procedure 

Step 1:  For the set of input parameters Dp, Dr, Sp, Sr, hp, hr, hu, Clp, Clr, βp, βr, bp, br, vp and 

vr. Set n = 1 and m = 1, and optimize ( )rp γγψ ,,1,1 . Record the values of 

( )rp γγψ ,,1,1 , ( )
*

1,1pγ  and ( )
*

1,1rγ , where ( )
*

1,1pγ  and ( )
*

1,1rγ  are the optimum values of 

pγ and rγ for the case of i = n =1 and m =1. 
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Step 2:  Repeat Step 1 for m = 2 and record ( )rp γγψ ,,2,1 , ( )
*

2,1pγ  and ( )
*

2,1rγ . Compare 

( )rp γγψ ,,1,1  and ( )rp γγψ ,,2,1 . If ( )rp γγψ ,,1,1  < ( )rp γγψ ,,2,1 , terminate the search 

for (i = n = 1) and record the value of ( )rp γγψ ,,1,1 . If ( )rp γγψ ,,1,1  > ( )rp γγψ ,,2,1 , 

repeat for (m = 3), (m = 4), etc. Terminate once ( )rpm γγψ ,,1,1 *
1 −  > ( )rpm γγψ ,,,1 *

1  

< ( )rpm γγψ ,,1,1 *
1 + , where *

1m  is the optimal value for the number of 

remanufacturing cycles when there is 1 production cycle. Record the values of 

( )rpm γγψ ,,,1 *
1 , *

1m , *
*
1,1 





 mp

γ  and *
*
1,1 





 mr

γ . 

Step 3:  Repeat Steps 1 and 2 for n = 2. Compare ( )rpm γγψ ,,,1 *
1  and ( )rpm γγψ ,,,2 *

2 . If 

( )rpm γγψ ,,,1 *
1  < ( )rpm γγψ ,,,2 *

2 , terminate the search and ( )rpm γγψ ,,,1 *
1  is the 

optimum solution. If ( )rpm γγψ ,,,1 *
1  > ( )rpm γγψ ,,,2 *

2 , then drop the value of 

( )rpm γγψ ,,,1 *
1  and repeat steps 1 and 2 for i = n = 3, 4, 5, …, etc.  

Step 4:  Terminate the search once ( )rpimi γγψ ,,,1 *
1−−  ≥ ( )rpimi γγψ ,,, *  < 

( )rpimi γγψ ,,,1 *
1++ , where i is the optimal value for the number of production 

cycles when there are *
im  remanufacturing cycles at a profit ( )rpimi γγψ ,,, * . 

6.6 Numerical Examples 

In this section, several numerical examples are solved whose parameters were collected 

from the literature. Three numerical examples were selected from Dobos & Richter (2003), 

Dobos & Richter (2004), and Teunter (2004). Note that these studies, like other studies in the 

literature, assumed that the remanufactured items are as-good-as-new, i.e., d = Dp = Dr and β 

= βp = βr, hp = hr, and Clp = Clr = 0 and there is no need for substitution between products. 

Therefore, when solving the above indicated numerical examples, it is necessary to assume 

values for hr, Clp, Clr and βr. In these numerical examples, it was assumed that minγ = 0.01 (or 

1%). The reason for assuming it this low is that the model may favour an optimal solution 

closer to a pure production and no remanufacturing, where the model moves closer to an 

EPQ/EOQ model. After solving these numerical examples, a simulation study to investigate 
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the behaviour of Model I was conducted where its input parameters were randomized each 

over its range (of minimum and maximum values). These minimum/maximum values were 

determined from the above mentioned studies.  

Example 6.1 

This example illustrates Model I, by using data similar to those of Dobos & Richter 

(2003, p.44). Let Dp = Dr = 200, Sp = 144, Sr = 72, hp =12, hr = 3, hu = 3, Clp = 5, Clr = 5, and 

βp = βr = 0.667. Using the presented solution procedure, the optimal policy occurs when γr = 

1, γp = 1, m = 2, and n = 1, the cost is 1,619.68, x2 = 123.94, and x1 = 61.97. The search 

results from the solution procedure described in Section 6.5 are shown in Table 6.1.  

Table 6.1. A numerical example illustrating the solution procedure 
Trial n m γp γr Cost ( mn,ψ ) Notes 

1 1 1 1 0.995 1,1ψ = 1634.99  
2 1 2 1 1 2,1ψ = 1619.98 1,1ψ > 2,1ψ , continue 

3 1 3 1 1 3,1ψ = 1644.98 2,1ψ < 3,1ψ ,  Therefore 
m*

1 = 2, 2,1ψ = 1619.98 

4 2 1 1 0 1,2ψ  = 1695.59  
5 2 2 1 1 2,2ψ  = 1678.82 1,2ψ  > 2,2ψ  continue 

6 2 3 1 1 3,2ψ  = 1669.33 2,2ψ  > 3,2ψ  continue 

7 2 4 1 1 4,2ψ  = 1678.82 3,2ψ  < 4,2ψ  Therefore 
m*

2 = 3, 3,2ψ = 1669.33 

8      
Since 2,1ψ  < 3,2ψ , 

Terminate 

Values of Sr are increased (from 1 to 500) while keeping the other parameters fixed at 

their values to investigate the sensitivity of the Model I. The results showed that the optimal 

solution flips from γr = 1 and γp = 1 (1 ≤ Sr ≤ 225), to γr = 0 and γp = 1 (226 ≤ Sr ≤ 292), to γr 

= 0 and γp = 0.01 (293 ≤ Sr ≤ 500). This suggests that the optimal policy is to collect all 

available used items from the primary and secondary markets when Sr ≤ 225, from the 

primary market when 226 ≤ Sr ≤ 292, and collect the minimum available used items from the 

primary market when 293 ≤ Sr ≤ 500. Similarly, values of Sp are increased (from 1 to 500) 
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while keeping the other parameters fixed at their values. The results showed that the optimal 

solution flips from γr = 0 and γp = 0.01 (1  ≤ Sp ≤ 35), to γr = 0 and γp = 1 (36 ≤ Sr ≤ 46), to γr 

= 1 and γp = 1 (47 ≤ Sr ≤ 500). The above results and the corresponding values of n, m, x1, x2 

and mn,ψ  are summarised in Table 6.2. 

The sensitivity of the model was investigated by changing hr (from hr = hu = 3 to hr = 

hp =12), while keeping the other parameters fixed at their values. The optimal solution 

flipped from γr = 1 and γp = 1 to γr = 0 and γp = 1 when hr increased from 11.1 to 11.2. A 

similar behaviour to that of hr was observed when hp increased from hp = hr = 3 to 12, with a 

sudden shift from γr = 0 and γp = 0.01 to γr = 0 and γp = 1 when hp increased from 3.2 to 3.3. 

Table 6.2. Optimal policies for changing values of “Sr” and “Sp

  
” 

 M n γr γp x2 x1 mn,ψ  
 1 14 1 100% 100% 113.62 56.53 1371.44 
 225 1 1 100% 100% 96.38 48.28 1674.65 

Sr 
226 1 2 0% 100% 99.32 148.23 1830.53 
292 1 3 0% 100% 132.93 198.41 1874.03 

 293 1 35 0% 1% 16.24 2423.86 1874.23 
  500 1 45 0% 1% 20.90 3119.55 1889.05 
 1 1 205 0% 1% 7.95 1186 1092.8 
 35 1 35 0% 1% 8.01 1195.34 1431.13 

Sp 
36 1 3 0% 100% 66.28 98.93 1435.8 
46 1 2 0% 100% 55.76 83.22 1466.26 

 47 1 1 100% 100% 67.31 33.72 1471.15 
  500 3 1 100% 100% 210.49 104.72 1908.62 

The results also showed a slow increase in γr when 6.6 ≤ hp < 7 followed by a sudden 

increase from γr = 0 and γp = 1 to γr = 1 and γp = 1 for values of hp ≥ 7. The sensitivity of the 

model was investigated by changing Clr (from 0.25 to 10), while keeping the other 

parameters fixed at their values.  The results showed a gradually increase in γr from γr = 0 to 

γr =1, when 3 ≤ Clr < 3.9, with a sudden increase from γr = 0.56 to γr = 1 when Clr increased 

from 3.8 to 3.9.  On the other hand, γp suddenly increased from γp = γmin = 0.01 to γp =1 when 

Clr increased from 2.9 to 3. An opposite behaviour was recorded when the sensitivity of the 

model was investigated by changing Clp (from 0.25 to 10). The results showed a gradual 

decrease in γr from γr = 1 to γr = 0, when Clp increased from 6.1 to 7, while γp suddenly drops 
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to γp = γmin = 0.01 from γp =1 (0.25 ≤ Clp ≤ 7), when Clp > 7. The above results and the 

corresponding values of m, n, x2, x1 and mn,ψ  are summarised in Table 6.3. 

Table 6.3. Optimal policies for changing values of “hr”, “hp”, “Clr” and “Clp

 
” 

 m n γr γp x2 x1 mn,ψ  

 3 2 1 100% 100% 123.94 61.96 1619.66 

hr 
11.1 3 1 100% 100% 125.12 62.55 1767.32 
11.2 1 1 0% 100% 44.98 67.47 1768.30 

 12 1 1 0% 100% 44.57 66.85 1775.46 
 3 1 9 0% 1% 8.29 1244.22 1436.88 
 3.2 1 9 0% 1% 8.05 1206.87 1450.40 
 3.3 1 1 0% 100% 76.09 114.13 1454.23 

hp 
6.6 1 1 0% 100% 62.18 93.26 1555.85 
6.7 1 1 2% 100% 62.32 92.34 1558.63 

 6.8 1 1 7% 100% 63.37 90.54 1561.34 
 6.9 1 1 12% 100% 64.38 88.82 1563.96 
 7 2 1 100% 100% 135.76 67.88 1565.69 
 12 2 1 100% 100% 123.94 61.97 1619.68 
 0.1 1 17 0% 1% 7.86 1178.30 876.29 
 2.9 1 17 0% 1% 7.86 1178.30 1432.58 
 3 1 1 0% 100% 50.08 75.05 1450.60 
 3.1 1 1 9% 100% 52.49 73.75 1462.44 
 3.2 1 1 18% 100% 54.85 72.43 1473.97 

Clr 
3.3 1 1 26% 100% 57.17 71.09 1485.20 
3.4 1 1 33% 100% 59.44 69.73 1496.14 

 3.5 1 1 39% 100% 61.68 68.34 1506.80 
 3.6 1 1 45% 100% 63.88 66.94 1517.17 
 3.7 1 1 51% 100% 66.03 65.52 1527.27 
 3.8 1 1 56% 100% 68.15 64.08 1537.09 
 3.9 2 1 100% 100% 123.94 61.97 1546.35 
 10 2 1 100% 100% 123.94 61.97 1953.01 
 3 2 1 100% 100% 123.94 61.97 966.35 
 6.1 2 1 100% 100% 123.94 61.97 1766.35 
 6.2 1 1 56% 100% 68.15 64.08 1777.09 
 6.3 1 1 51% 100% 66.03 65.52 1787.27 
 6.4 1 1 45% 100% 63.88 66.94 1797.17 

Clp 
6.5 1 1 39% 100% 61.68 68.34 1806.80 
6.6 1 1 33% 100% 59.44 69.73 1816.14 

 6.7 1 1 26% 100% 57.17 71.09 1825.20 
 6.8 1 1 18% 100% 54.85 72.43 1833.97 
 6.9 1 1 9% 100% 52.49 73.75 1842.44 
 7 1 1 0% 100% 50.08 75.05 1850.60 
 7.1 1 17 0% 1% 7.86 1178.30 1852.58 
 10 1 17 0% 1% 7.86 1178.30 1856.42 
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The behaviour of γr and γp was also investigated for varying values of Dr (Dp) over the 

range 50 to 1000, while keeping the other parameters fixed at their values. The results were γr 

= 0 and γp = γmin = 0.01 (Dr = 50), γr = 0 and γp =1 (Dr = 100), and γr = 1 and γp = 1 (100 < Dr 

≤ 1000). Whereas for changes in Dp, the results were γr = 1 and γp = 1 (50  ≤ Dp ≤ 250), γr = 

0.13 and γp = 1 (Dp = 300), and γr = 0 and γp = 0.01 (300 < Dp ≤ 1000). 

Finally, the sensitivity of the model for changes in βp and βr was investigated. The 

results showed that the collection policy was γr = 0 and γp = 0.01 when 1% ≤ βp ≤ 7%, 

shifting to γr = 1 and γp =1 when 7% < βp ≤ 66.67%, with a sudden shift occurring when βp 

was increased from 6 to 7 percent. On the other hand, the model showed to be insensitive to 

changes in βr, where the policy was γr = 1 and γp =1 for 1% ≤ βp ≤ 66.67 percent. The above 

results suggest that there exits Sp, Sr, hp, hr, Dp, Dr, Clp and Clr values beyond which 

collection of used units from the secondary market is not optimal and remanufacturing is to 

be fed from the primary market only. The above results and the corresponding values of n, m, 

x1, x2 and mn,ψ  are summarised in Table 6.4. 

Table 6.4. Optimal policies for changing values of “Dp”, “Dr”, “βp” and “βr

 
” 

 m n γr γp x2 x1 mn,ψ  

Dr 

50 1 17 0% 1% 7.85 1177.98 1102.96 
100 1 1 0% 100% 48.00 72.00 1300.00 
150 2 1 100% 100% 116.42 58.21 1471.57 

1000 1 1 100% 100% 115.29 57.65 4927.72 

Dp 

50 1 1 100% 100% 56.57 28.28 1259.12 
250 2 1 100% 100% 132.12 66.06 1801.40 
300 1 1 13% 100% 63.69 87.40 1969.55 
350 1 17 0% 1% 10.39 1558.64 2127.35 

1000 1 17 0% 1% 17.56 2633.80 2980.89 

βp 

1% 1 140 0% 1% 0.97 9699.83 1834.24 
7% 1 53 0% 1% 2.57 3672.23 1838.58 
8% 1 2 100% 100% 33.28 138.68 1837.42 

67% 2 1 100% 100% 123.94 61.97 1619.68 

βr 
1% 1 1 100% 100% 50.42 74.87 1689.64 

67% 2 1 100% 100% 124.56 61.66 1618.65 

Example 6.2 

This example illustrates Model I by using data similar to those of Dobos & Richter 

(2004, p.321). Let Dp = Dr = 1000, Sp = 360, Sr = 440, hp =85, hr = 80, hu = 80, Clp = 50, Clr = 



 140 

50, and βp = βr = 0.2. The optimal policy occurs when γr = 0, γp = γmin =0.01, m = 1, and n = 

25, where the cost is 58,182.35, x2 = 4.61, and x1 = 2,302.80. Comparing these values with 

those in Example 6.1 (Dobos & Richter, 2003), where the policy for Example 6.1 

recommends to collect all, the optimal policy in for Example 6.2 recommends not to collect 

used items to be remanufactured from the secondary market and only collect from the 

primary market at the lowest rate possible, which is γp = γmin = 0.01. This is why it is 

economical to remanufacture once (m =1) every 25 production cycles (n =25), whereas in 

Example 6.1, it is recommended to collect all available used items in both markets. This 

extreme switch in decision falls in line with the results from sensitivity analysis performed 

on Example 6.1.   

In Example 6.2, γmin was set at 1% ( minγ =0.01), now what if the government 

legislation compel the manufacturer to accept say 20% (γmin =0.2) instead of 1% (γmin =0.01). 

In this case, the optimal policy occurs when γr = 0, γp = γmin =0.2, m = 1, and n = 6, where the 

cost is 59,171.09, x2 = 21.81, and x1 = 545.19. Whereas, in Example 6.1, the optimal policy 

was not affected by the value of γmin since γp ≥ γmin is an abundant constraint, while it is a 

binding constraint in Example 6.2. Example 6.2 was replicated for reducing values of hr and 

hp, the results showed that the optimal policy moves from γr = 0 and γp = γmin = 0.01 when hr 

= 80 and hu = 80 to γr = 1 and γp = 1 > γmin =0.01 when hr = 10 and hu = 10. This suggests that 

a firm may have to consider other storage options to lower its holding cost to be able to force 

γp ≥ γmin to be an abundant rather than a binding constraint.  

Example 6.3 

This example uses data similar to those of Teunter (2004, p.438). Let Dp = Dr = 1000, 

Sp = 20, Sr = 5, hp =10, hr = 2, hu = 2, Clp = 5, Clr = 5, and βp = βr = 0.8. The optimal policy 

occurs when γr = 1, γp = 1, m = 4, and n = 1, where the cost is 5,329.85, x2 = 194.03, and x1 = 

48.51. This result is similar to that obtained from Example 6.1.  

Example 6.4 

From Example 6.3, a reasonable range is set for the changes in the input parameters. 

These input parameters will be randomized each over its specified range tabulated below in 

Table 6.5. One thousand randomized data sets were generated form the input parameters 
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range, corresponding to 1000 numerical examples that were optimized using the solution 

procedure described in Section 6.5. Note that when generating these values, the following 

conditions were implemented, which are hu ≤ hr ≤ hp, Clr ≤ Clp, and βr ≤ βp. 

Table 6.5. Randomized input parameters 
 Sr / Sp hu / hr / hp Dr / Dp βr / βp Clr / Clp 

Maximum 500 100 1000 0.8 100 
Minimum 5 1 100 0.1 10 

The results showed that in 20.8% (208 of 1000) of the examples the optimal policy 

occurred when γr = 1 and γp = 1, in 78% (780 of 1000) of the examples the optimal policy 

occurred when γr = 0 and γp = γmin = 0.01, in 0.8% (8 of 1000) of the examples the optimal 

policy occurred when γr = 0 and γp = 1, in 0.2% (2 of 1000) of the examples the optimal 

policy occurred when 0 < γr <1 and γp = 1, and in 0.2% (2 of 1000) of the examples it 

occurred when γr = 0 and 0 < γp <1. These results suggest that the model presented in (7) 

could further be simplified by solving three special cases, which are γr = 1, γp = 1 (Case I), γr 

= 0 and γp = γmin = 0.01 (Case II), and γr = 0, γp = 1 (Case III). There is therefore 99.6% 

chance that the optimal solution will reside with one of the three cases.  

Finally, Cases I and Case II respectively suggest either no disposal (γr = 1 and γp = 1; 

total remanufacturing) or almost total disposal (γr = 0 and γp = γmin = 0.01; maximum 

production) of collected used items. These extreme cases are in line with the bang-bang 

policy of either no waste disposal (total remanufacturing) or no remanufacturing (pure 

production and total disposal) discussed in Dobos & Richter (2003, 2004). In the authors’ 

opinion, to have an optimal policy were 0 < γr <1 and 0 < γp <1 the quality and price of 

returned items must be considered. That is, the collection rate will be price and quality 

driven.  

Example 6.5 

A simulation is done using data similar to those of Example 6.2 (Dobos & Richter, 

2004; p.321). Assume that some (say 25%, br = 0.25 and bp = 0.25) of the customers 

demanding newly produced (remanufactured) items are not totally lost during a 

remanufacturing (production) period. Also assume that the system’s manager will pay 10% 
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of Clp = 50 and Clr = 50 as compensations ( pv = 5, rv = 5) for customers who will settle for a 

remanufacturing (or new) item instead. The optimal policy occurs when γr = 0, γp = 0.025, m 

= 1, and n = 16, where the cost is 46,127.18, 2x  = 7.30, and 1x = 1473.53. Now assuming 

that 25% is associated with a 20% pay of Clp = 50 and Clr = 50, the optimal policy occurs 

when γr = 0, γp = 0.04, m = 1, and n = 13, where the cost is 46,323.62, 2x  = 9.48, and 1x = 

1194.38. The model was tested for 30%, 40% and 50% pay and for different values of pb  

and rb , with the cost behaving in a similar manner as before. That is, the model slowly 

favours remanufacturing, where 2x (increases) and 1x (decreases). Furthermore, it would be 

interesting to investigate Model II where rb and pb  are dependent of rv and pv  respectively; 

i.e., )( rr vb  and )( pp vb . Although we leave this investigation for a future work, we would 

like to entice the readers by a numerical example.  

Assume ii v
ii evb α−−= 1)( , where i = r, p and iα = 0.2, and solve Example 6.2 for 

different values of rv = pv , with the result plotted in Figure 6.4. Figure 6.4 shows that there 

are optimal compensation values ( *
pv , *

rv ), corresponding to ( )*
pp vb  and ( )*

rr vb , for 

substitution between products that minimizes the total cost. 
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6.7 Summary and Conclusions 

In this chapter, two models were presented to bring reverse logistics closer to reality. 

Works in the literature assume remanufactured products to be “as good as new”, however, 

customers perceive remanufactured and new products differently. In this chapter, production/ 

remanufacturing inventory models were extended to consider remanufactured items have 

different quality and value than new ones, and accordingly, demand for newly produced 

items is different from that for remanufactured (repaired) ones. Two mathematical models 

were developed; the first model assumes that demand for remanufactured (newly produced) 

items is lost over the production (remanufacturing) cycle. The second model assumed that a 

percentage of the demand is met and therefore partial lost sales occur, and in this case, it was 

assumed that customers are enticed (e.g., providing financial incentives) to agree to substitute 

between products. 

Sensitivity analysis of the presented models showed that there exits values of the input 

parameters (e.g., setup costs, holding cost, etc) beyond which the collection of used items 

from the secondary market is not optimal and remanufacturing is to be fed from the primary 

market only. Models developed were simulated and the results showed that it is either to 

collect all available returns from primary and secondary markets (i.e., no disposal) or to 

collect from the primary market at the minimum collection rate with no collection from the 

secondary market (i.e., total disposal). These extreme cases are in line with the bang-bang 

policy (Dobos & Richter, 2003; 2004) of either no waste disposal (total remanufacturing) or 

no remanufacturing (pure production and total disposal). Having a mixed collection strategy 

that is optimal may require modelling the collection rate of used products from secondary 

and primary markets as price and quality dependent variables, which will be dealt with in 

Chapter 8. The case of partial lost sales suggested that compensating customers to minimize 

the impact of lost sales is beneficial, because a reduction in total cost occurs when 

compensation is paid to reduce the effect of lost sales. This compensation amount was shown 

to have an optimal value.  

In this chapter, disassembly processes were not considered. In the next chapter, 

products are assumed to be collected and disassembled, and the inventory of each 

subassembly is managed differently, to bring the modelling efforts closer to reality. 
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CHAPTER 7: MANAGING RETURNS’ SUBASSEMBLIES 

INVENTORY PROBLEM 

7.1. Introduction 

Environmental consciousness started to grow in the 1950’s, and waste management 

represented one of the main resolutions to save this planet. This allowed technology 

advancement in processes such as recycling, refurbishing, remanufacturing, repair and 

related activities (e.g., disassembly), giving rise to a new business term: Reverse Logistics. 

Reverse logistics and closed loop supply chain management became an established line of 

research in the late 1990’s, yet, there are many research gaps in this field. 

A usual modelling approach in these studies is to assume that products are returned 

after use at some rate and these returned units are remanufactured (or repaired). Although the 

available models in the literature imply that collected used units (or returns) are disassembled 

for recovery purposes, these models do not treat them as such. Contrary, the usual 

assumption is that returns are recovered as whole units, perhaps, for simplicity, although, it is 

a typical practice in product recovery programs, accordingly, this assumption results in 

missing the benefits reaped from product recovery programs. 

At Volkswagen, broken parts are collected and remanufactured and resold as spare 

parts, and due to fluctuations in supply and demand, sometimes demand is more than supply 

of remanufactured spare parts. In this case, recovered spare parts satisfies demand for these 

parts, and in the case of shortage, newly produced spare parts are produced (van der Laan et 

al., 2004). Disassembly can be non-destructive or destructive. Non-destructive is the process 

of removing a part from an assembly with no impairment during the process. Destructive is 

disassembly with the objective of sorting the different materials for recycling purposes 

(Pochampally et al., 2009). Disassembly can be full, or partial, where certain items are 

recovered. In the later case, disassembly is also called reclamation or cannibalization. 

Research is needed into how companies should process, sort, store and dispose returned 

goods (Tibben-Lembke, 2002). This research need was echoed in other studies too (e.g., 

Klausner & Hendrickson, 2000; Walther & Spengler, 2005; Galbreth & Blackburn, 2006).  
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This chapter, similar to previous ones, considers a production-remanufacturing 

inventory model for a single product, where constant demand is satisfied from the inventory 

of newly produced and remanufactured items. However, this chapter assumes each unit of a 

collected used item is disassembled into components, where these components are sorted into 

subassemblies, and later their inventories are managed to be fed back into the production-

remanufacturing processes. The multi-component inventory model to be presented continues 

the endeavour to bring reverse logistics closer to real life situations. Inventory policies will 

be investigated and managerial insights will be discussed.  

7.2. Managing Returns’ Subassemblies: Mathematical Modelling 

In the presented model, it is assumed the following: (1) infinite production and 

remanufacturing rates, (3) remanufactured items are considered as-good-as-new, (4) demand 

is known constant and independent, (5) lead time is zero, and (6) no shortages are allowed. 

The presented production/remanufacturing inventory model is shown in Figure 7.1. It 

illustrates the flow of remanufactured and newly produced items from the system to the 

market, and the flow of returned used items from the market to the repairable stock, where 

returns are disassembled and screened to verify their quality and those not conforming to 

remanufacturing requirements are disposed outside the system.   

 
Figure 7.1. Material flow in a production and remanufacturing system 
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In Figure 7.1, the product’s market demand d is satisfied from the serviceable stock, 

which holds the inventory of newly produced and remanufactured items. Returns are 

collected from the market according to a return percentage Rx, to be stored in the repairable 

stock, where 0 ≤ Rx ≤ 1, where Rxd is the flow rate of returns in the reverse direction. A 

single remanufacturing cycle and a single production cycle are considered for each time 

interval T.  

For the single-product case considered herein, there are u different types of 

subassemblies that compose the product, according to a single level manufacturing Bill of 

Materials (BOM). Each subassembly i consists of ki components, where i = 1, 2, 3…u. The 

term ci 1
1

≤
∑

=
=

u
i i

i
i k

kc represents the share of each subassembly i in the end product, where  

and 1
1

=∑ =

u
i ic . Figure 7.2 provides a simple illustrative diagram for a BOM of an end 

product, which consists of 3 subassemblies, i.e., u = 3, where 3.0
10
3

1
1 ==

∑
=

=
u
i i

i

k
kc , 

5.02 =c , 2.03 =c .  

 
Figure 7.2. A single level BOM for an end product 

The model’s decision variables are βx and Yi, where i = 1, 2, 3 … u. βx refers to the 

ratio of the remanufactured items to the newly produced items, accordingly, the quantity 

required to be remanufactured for each subassembly i in interval T is βxcidT. After 

disassembly, subassemblies are sorted and managed independently according to different 

usage rates, obsolescence conditions, and environmental concerns. The required quantity to 

be remanufactured (βxcidT) might be different from the available repairable quantities for 

each subassembly, i.e., βx is different from Ri. This is a common practice in the electronics 

recovery industry (Reimer et al., 2000; Smith et al., 1996). For the remanufacturing cycle, a 
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quantity of (βxdT) units is remanufactured during time Tr, where for each subassembly i a 

quantity of (βxcidT) units is either collected, or ordered, or both. For the production cycle, a 

quantity of (1−βx)dT units is produced during time interval Tp, and for each subassembly i, a 

quantity of (1−βx)cidT units is produced, where T = Tr + Tp. 

According to different usage and obsolescence rates, each subassembly i inventory 

management and disposal might be unique, and accordingly, a different quantity of Ricid 

units is ready to be remanufactured for each subassembly i. The remanufactured collected 

quantity per time interval, RicidT, may, or may not be enough to provide the required 

quantities of subassemblies for the remanufacturing cycle, βxcidT. Therefore, when Ri < βx

( ) dTcR iix −β

, 

there is a possibility of ordering an additional quantity of units for a specific 

subassembly i at cost Si. The collected and ordered subassemblies are to satisfy demand rates 

of βxd and (1−βx

                

         

)d for remanufactured and produced items respectively. The inventory 

behaviour of the serviceable stock, of a single remanufacturing cycle followed by a single 

production cycle, is presented in Figure 7.3. 

 
Figure 7.3. Inventory behaviour of the serviceable stock 

For the repairable stock, it will be divided into u different stocks for u different 
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Figure 7.4. Inventory behaviour of the repairable stock for Case 1 

For Case 1, Ri = βx, and the collected quantity is exactly equal to the required quantity 

for remanufacturing. Case 2 is shown in Figure 7.5. 

        
         

 
Figure 7.5. Inventory behaviour of the repairable stock for Case 2 
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Figure 7.6. Inventory behaviour of the repairable stock for Case 3 

From Figure 7.2, the holding cost function for the serviceable stock is determined as 
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The holding cost functions for the repairable stock for the three cases discussed in 

Figures 7.4, 7.5, and 7.6, are given respectively as 

Case 1: 22, 22
2 dTcRhdTcRhHR iiiriiixi i

=== β  

Case 2: 2, 2
2 iriiixi dTcRhHR => β  

Case 3: 2, 2
2 dTcRhHR iiixi =< β  with an additional ordering cost = Si 

To differentiate between the three cases for each subassembly i, a binary decision 

variable, Yi, is introduced, and the three cases are clustered in a single expression holding 

cost function,   
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where Yi = 0 for Case 1 and Case 2, Yi = 1 for Case 3, and
i

x
r R

TT
i

β
= . The following two 

constraints are introduced to insure that Yi is equal to 0 for Case 1 and Case 2, Yi is equal to 1 

for Case 3: 
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where M is a large positive number. The total costs per interval T, including the production 

and remanufacturing setup costs, is then given as 

Ψ = ∑
=
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The minimum (optimum) of (7.4), *ψ , is determined by solving the following model, 

=*ψ Minimize ,ψ          (7.5a) 

Subject to,  

( ) ( ) 011 ≥−+− xii RYM β         (7.5b) 

( ) 01 ≥−− xii RMY β          (7.5c) 

10 << xβ ,          (7.5d) 

{ }1,0∈iY           (7.5e) 

The extreme polices of pure production (total disposal) and pure remanufacturing (no 

disposal) occur when βx = 0 and βx = 1, respectively. The pure production policy is presented 

as 

ppp dhS2=ψ           (7.6) 

where βx = 0, 0=iY    i∀ = 1, 2, 3 … u. The pure remanufacturing policy is presented as 
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=Rψ Minimize ( )i
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Subject to:  

( ) 01 ≥−− ii RMY         (7.7b) 

{ }1,0∈iY          (7.7c) 

where βx = 1 i∀ = 1, 2, 3 … u, and the optimum solution is given from (7.5a-7.5e), (7.6) 

and    (7.7a-7.7c) as 

Minimize { }RP ψψψ ,,*         (7.8)  

7.3. Numerical Examples 

Examples to illustrate the behaviour of the developed model and to draw some 

managerial conclusions are presented in this section. Example 7.1 is to study the effect of 

varying values of input parameters, while optimizing for Yi and βx

Example 7.1 

Let d = 1000, u = 3 subassemblies, k

. The change in the values 

of subassemblies’ ordering costs is shown in Examples 7.2 and 7.3. The comparison between 

the assumption of treating returns as single units (as has been adopted in the literature) 

against the assumption adopted herein is discussed in Examples 7.4 and 7.5.    

1 =  6, k2 =  6, k3 =  8, (i.e., c1 = 0.3, c2 = 0.3, c3 = 

0.4), R1 = 0.3, R2 = 0.6, R3 = 0.85, S1 = 50, S2 = 50, S3 = 50, Sp = 40, Sr = 32, hp = 0.6, hr = 

0.12, and h1 = h2 = h3 = 0.1. Substituting these values in Equation (7.8) and optimizing for Yi 

and βx
*ψ, the optimum cost is  = 211.4 when *

xβ  = 0.6, *
1Y = 1, *

2Y = 0, and *
3Y = 0. The 

model’s behaviour is examined by varying each cost input parameter over its range, and 

optimising for Yi and βx. The cost input parameters can be divided into two groups, 

production associated costs (hp, Sp) and remanufacturing associated costs (hr, hi, Sr, Si). For 

example, varying hr over the range of (0.02-0.25) and optimizing the model for Yi and βx

As shown in Figure 7.7, total costs increase by increasing h

, the 

results are shown in Figure 7.7. 

r. Increasing hr from 0.02 

to 0.04, the pure production policy becomes more expensive than pure remanufacturing 



 152 

policy, and the optimum solution occurs at ),,,( *
3

*
2

*
1

* YYYxβ  = (1, 1, 1, 1). Increasing hr

),,,( *
3

*
2

*
1

* YYYxβ

 from 

0.04 to 0.05, increases the remanufacturing costs and makes production more economical, 

and the solution shifts from  = (1, 1, 1, 1) to ),,,( *
3

*
2

*
1

* YYYxβ  = (0.85, 1, 1, 0). 
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Figure 7.7. The behaviour of “βx” and Total Cost for varying values of “hr” 

When hr ),,,( *
3

*
2

*
1

* YYYxβ > 0.05 the solution shifts to  = (0.6, 1, 0, 0), and remains 

unchanged for values of hr in the range 0.055−0.145. A similar behaviour was observed 

when hr ),,,( *
3

*
2

*
1

* YYYxβ increases from 0.145 to 0.15, shifting the solution from  = (0.6, 1, 0, 

0) to (0.3, 0, 0, 0), where the optimum solution remains unchanged. By increasing hr

),,,( *
3

*
2

*
1

* YYYxβ

 beyond 

0.235, the solution shifts from  = (0.3, 0, 0, 0) to (0, 0, 0, 0), which is the case 

of pure remanufacturing. Note that the optimum solution plateaus at R1 = 0.3, R2 = 0.6, and 

R2 = 0.85, which are the cut-off values for the remanufacturing-production ratio βx. To 

investigate the model further, the rest of the remanufacturing input cost parameters were 

increased, and the model behaved in a similar manner to that shown in Figure 7.7. For 

example, increasing the value of hp produced a similar behaviour to total cost and βx except 

for βx being an increasing rather than a decreasing function.  
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Example 7.2 

Let d = 1000, u = 3 subassemblies, c1 = 0.25, c2 = 0.35, c3 = 0.4, R1 = 0.3, R2 = 0.6, R3 

= 0.9, S1 = 1, S2 = 1, S3 = 1, Sp = 200, Sr = 160, hp = 0.6, hr = 0.55, and h1 = h2 = h3 = 0.1. 

Substituting these values in Equation (7.8) and optimizing for Yi and βx

*ψ

, the optimum cost is 

 = 447.6 when *
xβ  = 1, *

1Y = 1, *
2Y = 1, and *

3Y = 1 (pure remanufacturing). The model is 

investigated by varying βx over the range (0−1) while optimizing for Yi and βx
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. The results 

are shown in Figure 7.8. 

 
Figure 7.8.  The behaviour of Total Cost of Example 7.2 for varying values of “βx” with the 

solutions for the extreme cases (βx = 0, 1) are circled 

The values of Si for i =1, 2, 3 in this example are reduced to eliminate their effects. The 

total cost drops sharply when βx = 0 and βx = 1 as shown in Figure 7.8. The reason for that is 

at the values of β = 0 or βx = 1, only one setup cost is included in the cost function, either Sp 

or Sr, whereas for the case when 0 < βx < 1, which represent a mixed policy of 

remanufacturing and production, the total setup cost is Sr + Sp

A minor change in the input parameter (h

. The explains the dramatic 

shift in cost when β shifts from 0 or 1.  

r
*ψ = 0.8) results in an optimum cost at  = 

489.9 when *
xβ  = 0, *

1Y = 0, *
2Y = 0, and *

3Y = 0 (pure production). A similar behaviour to that 

shown in Figure 7.8 was observed, where the total cost drops sharply when βx = 0 and 1, and 

a mixed production and remanufacturing policy is never optimum in this case, as shown in 

Figure 7.9. 
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Figure 7.9. The behaviour of Total Cost of Example 7.2 (hr = 0.8) for varying values of “βx” 

with the solutions for the extreme cases (βx

Example 7.3 

Let d = 1000, u = 3 subassemblies, c1 = 0.25, c2 = 0.35, c3 = 0.4, R1 = 0.3, R2 = 0.6, R3 

= 0.9, S1 = 80, S2 = 80, S3 = 80, Sp = 200, Sr = 160, hp = 0.6, hr = 0.2, and h1 = h2 = h3 = 0.1. 

Substituting these values in Equation (7.8) and optimizing for Y

 = 0, 1) are circled 

These results bring us to the finding of Dobos & Richter (2003, 2004), where either a 

pure production or a pure remanufacturing policy is always optimum (designated by circles) 

when compared to a mixed policy of production and remanufacturing.  

i and βx

*ψ

, the optimum 

cost is  = 432.4 when *
xβ  = 0.6, *

1Y = 1, *
2Y = 0, and *

3Y = 0 (mixed strategy of production 

and remanufacturing). Varying βx over the range of (0−1) and optimizing the model for Yi 

and βx, the results are shown in Figure 7.10. 

Values of Si for i =1, 2, 3 are increased compared to those in Example 7.2 and results 

showed that total cost surges when βx = {0, R1, R2, R3} and drops when βx = 1. At the values 

of βx = 0 or 1, setup costs are either Sp ∑+ =
u
i ir SS 1 or . The reason for these results is as βx 

increases, the return rates for different subassemblies reduce to values less than βx, where 

additional ordering costs are incurred to match the higher remanufacturing-production ratio, 

βx. These cost surges show an optimum solution other than the extreme cases of βx (i.e., βx = 

0 or 1). The optimal solution occurs when βx = 0.6.  
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Figure 7.10. The behaviour of Total Cost of Example 7.3 for varying values of “βx

*ψ

” with the 
optimal solution circled 

Changing one input parameter : R2 = 0.85, the optimum cost is found at  = 420.6 

for *
xβ  = 0.677, *

1Y = 1, *
2Y = 0, and *

3Y = 0 as shown in Figure 7.11. The model behaves in a 

similar manner to the cases in Examples 7.2 and 7.3; however the optimum solution is 

attained when 0 < βx = 0.677 < 1, which is different from any of the Ri values, where a mixed 

policy is of less cost that pure policies.  
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Figure 7.11. Varying “βx

These results suggest that a bang-bang policy of pure production or pure 

remanufacturing is not optimal when returns are disassembled for reuse. This suggests that 
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recovering returns as whole units rather than disassembled components may not capture the 

benefits that product recovery programs are supposed to bring.  

7.4. Summary and Conclusions 

In the literature of reverse logistics lot sizing problems, the assumption that returns 

are treated as a whole and not disassembled results in missing the benefits reaped from 

product recovery programs. This chapter considered a single product EOQ model assuming 

that there is a single production cycle and a single remanufacturing cycle, per time interval. 

Returns of used items of the product are collected at a rate, disassembled and sorted into 

subassemblies, which are managed differently, so that each subassembly has its own 

percentage return rate different from the remanufacturing to production ratio. Therefore, each 

subassembly has its own inventory control policy. The results suggest that modelling 

disassembly of returns brings modelling closer to reality and captures the benefits that 

product recovery programs are supposed to bring. These results showed that the bang-bang 

(Richter, 1997; Dobos & Richter, 2003; 2004) policy of pure production or pure 

remanufacturing is not optimal when returns are disassembled. 

In the literature, the return rate is assumed fixed or as a percentage of the forward 

flow. In the next chapter, the reverse flow of used products is treated as a function of price 

and quality. 
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CHAPTER 8: REVERSE LOGISTICS LOT SIZING MODEL WITH 

RETURNS’ RATE VARIED BY PRICE AND QUALITY 

8.1. Introduction 

Reverse logistics and closed loop supply chain management literature considers a 

production environment that consists of two inventories: the serviceable and the repairable 

stocks. It was illustrated in several studies that the pure bang-bang policy of either no waste 

disposal (total remanufacturing) or no remanufacturing (pure production and total disposal) is 

the optimum strategy (e.g., Richter 1996a, b; Teunter 2001b). The pure policies are optimal 

under limited conditions; when there are only two purchasing prices and one quality, i.e., the 

purchasing price of a used/returned item is different from the (collective) purchasing price of 

raw materials used to produce a new unit, while used/returned and new units have the same 

quality. Dobos & Richter (2003) extended Richter (1996a, b) by assuming non-instantaneous 

production and remanufacturing rates, while Dobos & Richter (2004) generalized (Dobos & 

Richter, 2003) to the case of multiple repair and production cycles per time interval, and 

implied that their model has limitations since pure strategies are technologically infeasible. 

The authors recommended considering quality of returned items for an improved modeling 

of reverse logistics practise. In a similar finding, van der Laan et al. (1999a) concluded that it 

is unwise to remanufacture all remanufacture-able items even if return rate is less than 

demand (i.e., pure strategies are not recommended). 

Most of the works surveyed in the literature review of Chapter 2 assumed a constant 

return rate and ignored the factors that govern this rate, which are the purchasing price of a 

collected used (returned) item with a certain quality that represent the value of the returned 

item and how useful would the production-remanufacturing process be. Remanufactured 

units are usually perceived to have a lower quality than the new products. In the tire industry, 

retreaded tires have to be marked to be distinguished from the new ones, and customers 

consider them of a lower quality (Debo et al., 2005). Several researchers discussed the 

importance of differentiating the returned units according to their quality (e.g., Bloemhof-

Ruwaard et al., 1995;  Smith et al., 1996; Reimer et al., 2000; Blackburn et al., 2004; 
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Grubbström & Tang, 2006; Behret & Korugan, 2009). However, there has not been any 

works that related the collection rate of used items with price and quality of returns.  

Logically, when returns are less expensive to acquire than raw materials required for 

producing a new item, repair with no production is a better policy, and the opposite is true; 

however, pure remanufacturing is not feasible from a practical point of view. This 

corroborates the finding of Dobos & Richter (2004) who wrote (p.322): “Probably these pure 

strategies are technologically not feasible and some used products will not return or even 

more as the sold ones will come back, some of them will be not recycled”. Practically, 

collected used/returned items are of varying price and quality. 

Dobos & Richter (2006) is one of the works that approached reverse logistics by 

considering a quality issue. The authors extended their previous work, Dobos & Richter 

(2003, 2004), by considering two strategies to manage return rate according to its quality: 

either purchase all used items and reuse only a maximal proportion of them or buyback only 

a proportion of the used items and decide how much of them to reuse. The authors assumed 

that return flow is dependent on two inter-dependant decision variables, the buyback and use 

proportions. The product of these variables (0 ≤ (buyback proportion) × (use proportion) ≤ 1) 

is the return rate = (demand rate) × (buyback proportion) × (use proportion), which is 

assumed to be fixed. That is, both of the buyback proportion and the use proportion vary, but 

their product is fixed.  

To further illustrate their limitation, let us assume a case where no ecological 

constraints are considered and decisions are only based on economical objectives, where 

recycling (i.e., recovery) is more expensive than production, then the strategy of pure 

production should be favoured (which Dobos & Richter (2006) did not consider). 

Furthermore, purchasing price of raw materials was ignored in Dobos & Richter’s (2006) 

model, and the same for purchasing price of collected used items in the backward flow 

(returns). The authors limited their investigation to a fixed return rate, however, the practice 

considers the price of returns according to their quality, and accordingly, this governs the 

collection (or return) policy of used items. 

One of the few research works that related demand with price and/or quality is Vörös 

(2002). The author presented product market demand (forward flow) as a function of price 
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and quality, i.e., forward logistics. The author proposed an exponential function where 

demand increases as price (quality) decreases (increases), where the exponential curve 

represents price-demand and quality-demand relationships better than the linear curve 

(Currim & Sarin, 1984). Vörös’s (2002) demand function relating price and quality describes 

a general and known behaviour that is well documented in the literature (e.g., Kalish, 1983; 

Smith, 1986; Teng & Thomson, 1996; Biglaisder & Ma, 2003). There has not been any 

works that addressed this concept in a reverse logistics context.  

Therefore, this chapter’s contribution is, first, the return rate of used items is variable (a 

decision variable), and second, the return rate is dependent on two decision variables, the 

purchasing price for returned items and its corresponding acceptance quality level. Vörös’ 

(2002) perception will be introduced to the reverse direction by switching the logic of the 

model presented by Vörös (2002). That is, the reverse flow is assumed to increase as offered 

price increases, and to decrease as accepted quality increases. The models presented in this 

chapter are the first to model product reverse flow as a function of the quality and the 

corresponding price of a collected used item.  

The presented models extend the models developed in Dobos & Richter (2003, 2004) 

by assuming that the collection rate is a function of purchasing price (decision variable 1) 

and the acceptance quality level (decision variable 2) of these returns. The reverse flow is 

modeled as a demand-like function, where the return rate increases as the purchasing price 

increases, and decreases as the corresponding acceptance quality level increases. In other 

words, when the purchasing price of returned items is fixed, an increase in the acceptance 

quality level of returns decreases flow in the reverse direction, allowing customers to return 

higher quality products only. Similarly, when the acceptance quality level of returns is fixed, 

an increase in the purchasing price for returns increases the flow in the reverse direction 

encouraging customers to return more products. 

 The models are decision tools that managers can use in determining the optimum 

acceptable acquisition quality level and the optimal corresponding price for used items. 

Three models are presented: Model I, a deterministic production and remanufacturing lot 

sizing model with return rate dependant on price and quality, with a singe production cycle 

and a single remanufacturing cycle per time interval. Model I is extended into two models: 
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Model II, which assumes m production cycles and n remanufacturing cycles per time 

interval, and Model III, which assumes production and remanufacturing processes satisfy a 

stochastic market demand, with backlogging allowing. 

8.2. Returns’ Rate Varied by Price and Quality: Mathematical Modelling 

Models presented herein assume finite production and remanufacturing rates to satisfy 

demand, which is known, constant and independent. Remanufactured items are as good as 

new, lead-time is zero, and no shortages are allowed. Two decision variables are considered, 

P which is the purchasing price for a single returned item as a percentage of the cost of raw 

materials required to produce a new item of the product, and q which is acceptance quality 

level of returned (collected used) items; representing the percentage of useful parts in a 

remanufacturable item.  

Returned items are usually of varying quality. Model I assumes that a returned item 

with a quality less than the acceptance (optimum) quality level q*, will be rejected. Only 

returned items of quality better than or equal to q* are accepted to flow in the reverse 

direction to be repaired. Returned items are purchased at an optimum price P*

R(P, q), or R for simplicity, is the portion of demand which is returned to the system 

for either remanufacturing or disposal, as a function of price and acceptance quality level. 

This portion of returned demand R or R(P, q) will be indicated as return rate. Accordingly, 

over an interval of length T, 

. The multi-

attribute q quality measure for a returned item may be determined using some judgmental 

and qualitative approaches, for example, ranking, rating (scaling), and paired comparison 

(e.g., Eckenrode, 1965; Hutton Barron & Barret, 1996; Jaccard et al., 1986; Ahn & Park, 

2008).  

The flow of materials and products in the forward and the reverse direction is described 

in Figure 8.1. Returns from the market to the system are screened to verify their quality and 

those not conforming to remanufacturing requirements are disposed outside the system.   

Market demand d > 0 is satisfied from the serviceable stock, which stocks newly 

produced items, and remanufactured items where dT represents the total demand in an 

interval of length T.  

TqPR ×),( (or RT for simplicity) used/returned units are 
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collected in the returned stock facility, where 0 < R/d < 1. In this facility, disassembly and 

sorting are carried out, and waste disposal amount of the returned items is decided once the 

acceptance quality level is determined, i.e., disposal increases (decreases) as the acceptance 

quality level decreases (increases), with the number of used/returned items disposed per 

interval is ( )RTq−1 . 

 
Figure 8.1. Material flow from the inventory system to the market and vice versa 

The remaining collected used/returned units, qRT , are transferred to the 

remanufacturing facility in the serviceable stock. Cr

MP

 is the cost to repair one unit (which 

includes cost components such as labour, energy, machinery, etc) excluding the cost to 

purchase a used item = nCP × , where Cn

8.3. Model I: A Single Remanufacturing Cycle and A Single Production Cycle 

 is the cost of raw materials required to produce 

a newly produced unit. The remaining serviceable stock, (d − qR)T, is replenished by newly 

produced items.  

Model I assumes a single production and a single remanufacturing cycle per time 

interval T. Vörös’ (2002) concept is modified to capture the backward flow and to relate it 

with price and acceptance quality level. A formula is presented, which is divided into two 

portions: the price factor and the quality factor. The price factor of the demand function 

is ( )P
P aef θ−−= 1 , where 0 < a <1 and θ > 1 are parameters. This price factor models the 

behaviour of returns for a fixed quality level. A similar approach was adopted by Debo et al. 

Production 

Remanufacturing 

Market 
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Repairable 
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Disposal 
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Rq 

(d - Rq) 
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(2005), where the willingness of customers to pay for a product is differentiated with a 

continuous variable. Figure 8.2 illustrates the behaviour of the price factor for the case when 

a = 0.3 and θ = 4, where Pf  is a monotonically increasing function over P since 0>dPdfP  

and 022 <dPfd P  ∀ P > 0.  
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Figure 8.2. Price factor plotted against price “P” 

The quality factor of the demand function is q
q bef ϕ−= , where 0 < b <1 and ϕ  > 1 are 

parameters. This quality factor models the behaviour of returns for a fixed price level. Figure 

8.3 illustrates the behaviour of the quality factor for the case when b = 0.9 and φ = 5, where 

Pf  is a monotonically decreasing function over q since 0<dqdfq  and 022 >dqfd q  ∀ q > 

0. Therefore, the return rate of used/returned items (demand of the reverse flow) is modeled 

as a function of price and quality factors Pf and qf , and is expressed 

as ( ) ( ) qP beaedqPRR ϕθ −−−== 1, .  

The case of (R > 0 and q = 0) is technologically infeasible since it represents that all the 

returned/used items are non-remanufacturable and would be disposed. It is valid 

mathematically, but it is costly and therefore never optimal. On the other extreme, q = 1 

means that a returned/used item must be of an identical quality to that of a newly produced 

one, for example, returns during trial periods or returns due to obsolete technology.  



 163 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

Q
ua

lit
y 

Fa
ct

or

q
 

Figure 8.3. Quality factor plotted against accepted quality “q” 

There is one remanufacturing cycle of length RT  and one production cycle of length 

PT  in the time interval T, where T = RT + PT . In the serviceable stock, inventory starts to 

build up at a rate of ( )d11 −δ units per unit of time, and remanufacturing ceases when an 

inventory level of ( ) RR dTI δ−= 11,  is attained. The production cycle commences once 1,RI  

units are depleted, as shown in Figure 8.4. 

Similarly, the inventory of newly produced items builds at a rate of ( )d11 −π  units per 

unit of time with production ceasing when an inventory level of ( ) PP dTI π−= 11,  is attained. 

Once 1,PI units are depleted, a new interval of length T is initiated.  

In the repairable stock, inventory starts from the maximum level at 

( )dqRqRTIr δ−= 11, , and remanufacturing commences and depletes the repairable stock at 

a rate of ( )δdqR − . By the end of a remanufacturing cycle, 1,rI units would have been 

depleted, bringing the inventory level to zero level, and a new collection cycle of 

used/returned items commences building up inventory at a rate of qR . It is assumed that the 

screening and sorting of collected used/returned items occur prior to storage, and items not 

conforming to quality standards are disposed, totalling ( )RTq−1  units.    
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Figure 8.4. Inventory status of serviceable and returned stocks 

Holding cost expressions 

The inventory holding costs per unit per unit of time for serviceable and returned items 

is denoted by h1 and hr PHrespectively. Also, denote , Hr and Hu

( ) dqRqR == ,λλ

 as the inventory costs for 

newly produced, remanufactured and returned items respectively. Let , 

10 << λ , to be the ratio of repairable items to total demand, where 

TdqRTTR λ== / and ( ) ( )TTdqRTP λ−=−= 11 . The inventory holding cost expressions for 

newly produced, remanufactured and returned items are given respectively as 

( ) ( )πλ −−== 11
22

2211,
11, dThT

I
hH P

p
p       (8.1) 

( )δλ −== 1
22

2211,
11, dThT

I
hH R

R
u       (8.2) 

(1/δ –1)d (1/π –1)d 

(Rq –d/δ ) 

–d –d 
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( )λδλ −=′= 1
22

21,
1, dThT

I
hH u

r
r

uu       (8.3) 

Appendix 6 illustrates the derivations of Equations (8.1), (8.2) and (8.3). Accordingly, the 

total inventory holding cost per unit of time is given as  

2
)(

1,
λψTd

T
HHH

H urp
T =

++
=       (8.4) 

where the term ψ(λ) is given as 

( ) ( ) ( )( ) ( )λδλπλδλλψ −+−−+−= 1111)( 22
1 uhh      

               ( )( ) ( )( ) ( )ππλδπδλ −+−−+−−−= 1122 111
2 hhhhh ur    (8.5) 

Lot size dependant cost expressions 

The total setup cost is denoted by S = Sr + Sp, where Sr and Sp are the remanufacturing and 

production setup costs respectively. From S and (8.5), the lot-size related total cost per unit 

time is given as 

( ) ( )
2

, λψλ Td
T
STC +=         (8.6) 

where (8.6) is convex in T, i.e., ( ) 22 , TTC ∂∂ λ > 0 ∀ T > 0. Setting the first partial derivative 

to zero and solving for T we get 

( )λψd
ST 2* =          (8.7) 

Substituting (8.7) in (8.6) to get 

( ) ( ) ( )λψλ SDCqPC 2, ==        (8.8) 

where ( ) ( ) DqPqRqR ,, =λ , and to simplify the presentation of the mathematics it will be 

referred to from this point onwards by λ. The optimal remanufacturing and production cycle 

times are given respectively from (8.7) as 

( )λψ
λλ

d
STTR

2** ==         (8.9) 

( ) ( ) ( )λψ
λλ

d
STTP

211 ** −=−=        (8.10) 
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The corresponding remanufacturing and production lot sizes are determined from (8.9) and 

(8.10) respectively as **
RR dTX =  and **

PP dTX = .  

Total cost expression 

The total cost per unit of time is the sum of the following unit time costs 

Setup cost per unit time: TSS pr )( +  = TS  

Holding costs per unit of time: 
2

)(λψTd , where )(λψ is given from (8.5) 

Disposal costs per unit of time: ( ) wRCq−1  

Remanufacturing costs per unit time: rqRC  

Production costs per unit time: ( ) pCqRd −  

Purchasing costs per unit time: ( ) nn CRqdRPC −+   

Therefore, total cost per unit of time is expressed as 

( ) ( )
nnprw CRqdRPCCqRdqRCRCqTd

T
STqPC )()()1(

2
,, −++−++−++=

λψ  

( ) ( )[ ] ( )npnwnpwr CCdPCCCCCCqRTd
T
S

++++−−−++=
2
λψ  (8.11) 

where (8.11) is convex in T, i.e., ( ) 22 ,, TTqPC ∂∂ > 0 ∀ T > 0. Setting the first partial 

derivative to zero and solving for T we get 

( )λψd
ST 2* =          (8.12) 

Substituting (8.12) in (8.11) to get 

( ) ( ) ( )[ ] ( )npnwnpwr CCdPCCCCCCqRSdqPC ++++−−−+= λψ2,  (8.13) 

where ( )λψ  is given in (8.5), and 

dqPqR /),(=λ          (8.14) 

( ) ( ) qP beaedqPRR ϕθ −−−== 1,        (8.15) 

Numerical validation was conducted to prove the convexity of the cost function (8.13), 

by randomizing all the input parameters and the Hessian matrix was computed for each 

specific data set generated. Sample examples are provided in Appendix 7. The Hessian 
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matrix held a positive value in all of these numerical examples (more than 10,000). 

Therefore, it is reasonable enough to conjecture that convexity of (8.13) holds. This approach 

was considered is several other works (e.g., Agrawal & Nahmias, 1997; Silver & Costa, 

1998).  

8.4. Model II: Multiple Remanufacturing and Production Cycles 

Model II extends Model I by considering m remanufacturing cycles and n production 

cycles in an interval of length T, where PR nTmTT += , where m ≥ 1 and n ≥ 1 are positive 

integers. Additional decision variables m, n are considered with P, q.  

Holding cost expressions 

The inventory status in the serviceable and repairable stock is shown in Figure 8.5. 

Production CyclesRemanufacturing Cycles

Serviceable stock

T

Returned stock

I r

TR TPTR TP

T  
Figure 8.5. Inventory status for the case of m = 2, n = 2 

In the serviceable stock, the maximum inventory levels attained for remanufacturing 

cycles and for production cycles are given respectively as =mRI , ( ) RdTδ−1 ( ) mdTλδ−= 1  

and nPI , ( ) PdTπ−= 1  ( ) ( ) ndT λπ −−= 11 . Similarly, the maximum inventory level of the 
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repairable inventory is given as ( )( )mmdTI mr −−+= δλλ 11, . Accordingly, the inventory 

holding cost expressions for newly produced, remanufactured and returned items are given 

respectively as 

( ) ( ) ndThT
I

hH P
nP

np πλ −−== 11
22

221,
1,       (8.16) 

( ) mdThT
I

hH R
nR

mr δλ −== 1
22

221,
1,       (8.17) 

( )( )mmdThT
I

hH unr
umu −−+== δλλ 11

22
2,

,      (8.18) 

Appendix 8 illustrates the derivations of Equations (8.16), (8.17), and (8.18). The total 

holding cost per unit of time unit is  

2
),,(.,,

,,
λψ nmTd

T
HHH

H mumrnp
nmT =

++
=       (8.19) 

( ) ( ) ( )( ) ( )( )mmhnmhnm u −−++−−+−= δλλπλδλλψ 11111),,( 22
1   (8.20) 

Lot size dependant costs 

The total setup cost for m remanufacturing and n production cycles in an interval of 

length T is denoted by Sm,n, where Sm,n = mSr  + nSp. The cost per unit of time is given from 

(8.20) as 

( ) ( )λψλ ,,
2

,,, , nmTd
T

S
TnmC nm +=        (8.21) 

where (8.21) is convex in T, i.e., ( ) 22 ,,, TTnmC ∂∂ λ > 0 ∀ T > 0. Setting the first partial 

derivative to zero and solving for T we get 

( )λψ ,,
2 ,*

, nmd
S

T nm
nm =          (8.22) 

Substituting (8.22) in (8.21) to get 

( ) ( ) ( )λψλ ,,2,,,,, , nmdSnmCqPnmC nm==      (8.23) 

The optimal remanufacturing and production cycle times are given respectively from (8.22) 

as 
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( )λψ
λλ

,,
2 ,*

,, nmd
S

mm
TT nm

nmR ==        (8.24) 

( ) ( )
( )λψ

λλ
,,

211 ,*
,, nmd

S
nn

TT nm
nmP

−
=

−
=       (8.25) 

The corresponding remanufacturing and production lot sizes are determined from (8.24) and 

(8.25) respectively as *
,,

*
,,, nmRnmR dTX =  and *

,,
*

,, nmPnmP dTX =  .     

Total cost expression 

The holding costs per unit of time and is expressed as  

( ) ( ) ( )( ) ( )( )[ ]mmhnmhTdH unmT −−++−−+−= δλλπλδλ 11111
2

22
1,,  

Therefore, and similar to (8.11), the total cost per unit of time is expressed from (8.21) as 

( ) ( )λψ ,,
2

,,,, , nmTd
T

S
TqPnmC nm +=  

( )( ) ( )npnwnpwr CCdPCCCCCCqR ++++−−−+   (8.26) 

where (8.26) is convex in T, i.e., ( ) 22 ,,, TqTPnmC ∂∂ > 0  ∀ T > 0.  

Setting the first partial derivative to zero and solving for T, the optimum interval of time is 

computed as  

( )λψ ,,
2 ,*

nmd
S

T nm=          (8.27) 

Substituting (8.27) in (8.26) to get 

( ) ( ) += λψ ,,2,,, , nmdSqPnmC nm   

( )( ) ( )npnwnpwr CCdPCCCCCCqR ++++−−−+    (8.28) 

where  

( ) ( ) ( )( ) ( )( )mmhnmhnm u −−++−−+−= δλλπλδλλψ 11111),,( 22
1  (8.29) 

while λ  and R  are given in (8.14) and (8.15), respectively. 

Theorem A.1 in Appendix 9 illustrates that a policy with both m and n being even integers is 

never optimal, and accordingly, the following solution procedure is developed, which can be 

used to optimize Equation (8.28).  
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8.5. Solution Procedure 

Step 1:  For a set of input parameters d, Cn, a, θ, b, φ, h1, hu, Cr, Cp, Cw, δ, π, Sr and Sp. Set i 

= n = 1 and minimize ( )qPnmC ,,,  for m = 1 and m = 2 using an optimization tool 

(e.g., Solver from Microsoft Excel). With ( )qPnmC ,,,  being the objective function 

subject to 10 << P and 10 << q , where P and q are decision variables. Record the 

minimum costs for the cases when m= 1 and m = 2 and their corresponding P and q 

values, where P and q are optimal for specific values of n and m. 

Step 2:  Compare ( )qPnmC ,,,  value for (m = 1) to that of (m = 2). If ( )qPC ,,,11  < 

( )qPC ,,1,2 , terminate the search for (i = n = 1) and record the value. If ( )qPC ,,1,1  

> ( )qPC ,,1,2 , repeat for (m = 3), (m = 4), etc. Terminate once  ( )qPmC ,,1,1*
1 −  > 

( )qPmC ,,1,*
1  < ( )qPmC ,,1,1*

1 + , where *
1m  is the optimal value for the number of 

remanufacturing cycles when there is 1 production cycle. Record the values of 

( )qPmC ,,1,*
1 , *

1m , P and q for n = 1. 

Step 3:  For the same set of parameters in Step 1, set i = n = 2, however, optimize 

( )qPnmC ,,,  for m = 1 and m = 3. (The case when m and n being even integers is 

never optimal. Refer to Theorem 1 in Appendix 9. 

Step 4:  Compare ( )qPnmC ,,,  values for (m = 1) to that of (m = 3). If ( )qPC ,,2,1 < 

( )qPC ,,2,3 , terminate the search for (i = n = 2) and record the value. If 

( )qPC ,,2,1 > ( )qPC ,,2,3 , repeat for (m = 5), (m = 7), etc. Terminate once 

( )qPmC ,,2,2*
2 − > ( )qPmC ,,2,*

2 < ( )qPmC ,,2,2*
2 + , where *

2m  is the optimal value 

for the number of remanufacturing cycles when there are 2 production cycles. 

Record the values of ( )qPmC ,,2,*
2 , *

2m , P and q, for n = 2. 

Step 5:  Compare ( )qPnmC ,,,  values for (i = n = 1) to that of (i = n = 2). If ( )qPmC ,,1,*
1 < 

( )qPmC ,,2,*
2 , terminate the search and ( )qPmC ,,1,*

1 is the minimum cost. If 

( )qPmC ,,1,*
1  > ( )qPmC ,,2,*

2 , then drop the value of ( )qPmC ,,1,*
1  and repeat steps 1 

and 2 for n = 3. Compare ( )qPnmC ,,,  values for (n = 2) to that of (n = 3). If 

( )qPmC ,,2,*
2 < ( )qPmC ,,3,*

3 , terminate the search and ( )qPmC ,,2,*
2 is the 
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minimum cost. If ( )qPmC ,,2,*
2  > ( )qPmC ,,3,*

3 , then drop the value of ( )qPmC ,,2,*
2  

and repeat steps 3 and 4 for n = 4.  

Step 6: Repeat steps 1 to 5. Terminate the search once ( )qPimC i ,,1,*
1 −−  > ( )qPimC i ,,,*  

< ( )qPimC i ,,1,*
1 ++ , where i = 1, 2, 3, 4, …, etc. 

For the case of Model I (m = 1, n = 1), the solution procedure will be reduced to Step 1 only. 

8.6. Model III: Stochastic Production and Remanufacturing Lot Sizing Problem 

Considering Price and Quality of Returns 

The main purpose of inventory models is to determine how much and when to order. 

Stochastic models are better to represent reality; however, assuming stochastic demand raises 

new modelling difficulties. In classical stochastic inventory models, a reorder point triggers a 

new order, and the order requires a “lead time” to replenish the inventory. An order is 

expected to arrive in a timely manner so the net inventory do not increase and the holding 

costs remain at a minimum, and to avoid  stock-out costs. However, unexpected surges in 

demand may result in stock-out periods (Zipkin, 2000). Order-point order-quantity models, 

which are known as (s, Q) models, and order-point order-up-to-level models, which are 

known as (s, S) models, are examples of popular inventory policies. There is a significant 

amount of research that addresses stochastic inventory models (e.g., Nahmias, 1982; Silver et 

al., 1998). However, few have investigated stochastic inventory models in a reverse logistics 

context (e.g., Fleischmann, et al., 2002; Teunter, 2002; Ben-Daya & Hariga, 2003; van der 

Laan et al., 2004), and there is not any model investigating price and quality in a reverse 

logistics context. Readers may refer to Chapter 2 for a concise review of stochastic inventory 

models.  

Hadley & Whitin (1963) presented a heuristics approximate treatment of Order-point, 

order-quantity model for both the backorders case and the lost sales case, which produced 

similar results to exact equations, in addition, being simple. Hadley & Whitin (1963) showed 

that the heuristics is applicable in a variety of situations and that the lost sales case differs 

very little from the backorders case. The objective was to minimize total costs and to 

determine the optimum Q, lot size quantity, and safety stock ss, where Q, ss > 0. There is 

never more than one order outstanding. In other words, at the time the reorder point is 
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reached, there are no outstanding orders. Therefore, the inventory position (the amount on 

hand + one order – backorders) is equal to the net inventory (the amount on-hand – 

backorders), given that the net inventory is the on-hand inventory minus backorders. The 

expected value of net inventory at any time is the expected value of the on hand inventory 

minus the expected value of the backorders. After an order arrives, it is sufficient to fill all 

backorders and to raise the on hand inventory level to above the reorder point.  

Define x as the lead-time demand, and g(x) is the stochastic distribution of the lead-time 

demand, then ( )∫
∞

=
0

dxxxgµ is the expected (mean) lead time demand for a fixed lead time. 

Define r as the reorder point, and ss, the safety stock, is the reorder point minus the mean 

lead-time demand. The average inventory per unit time is the average order size plus safety 

stock 





 −+=






 + µrQhssQh

22
, where h is the holding cost per unit per unit time. The 

expected number of backorders per cycle is ( ) ( ) ∫∫
∞∞

−=−=
rr

rrGdxxxgdxxgrxr )()()(η , 

where ( ) ∫
∞

=
r

dxxgrG )(  is the complementary cumulative distribution of g(x) and 

∫
∞

=
0

1)( dxxg . 

To simplify the presented model, it is assumed that the demand d, is stochastic and 

follows a normal distribution, and the lead time demand x follows the normal distribution 

g(x) with mean μ and standard deviation σ. Accordingly, and similar to Hadley & Whitin 

(1963), p. 167, the complementary cumulative distribution G(r) = 





 −

Φ
σ

µr and the average 

cost per unit time for a cycle is the summation of average setup, inventory and backorders 

costs, and is given as 

 ( ) ( ) 













 −

+





 −

Φ−+





 −++=Ψ

σ
µφσ

σ
µµµ rrr

Q
dCrQh

Q
SdrQ B 2

2
,  (8.30) 

where S is the setup cost per cycle, and CB is the backorder cost per unit backordered. The 

total cost function can be determined by using the normal tables.  
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( )rQ,Ψ is differentiable with respect to Q and r, but a closed form to optimize total 

cost is not attainable. However, the differentiation resulted in two equations that can be 

solved simultaneously through an iteration process to determine the optimum Q and r within 

a predefined error window.  

Model III presented herein extends Model I by considering a stochastic demand d to be 

satisfied by newly produced and remanufactured products. Return rate is a function of price 

P and acceptance quality level q, and after sorting and disposing, returns are collected in the 

repairable stock to be remanufactured to feed the serviceable stock, which is also replenished 

by newly produced units, as shown in Figure 8.6.  

 
Figure 8.6. Material flow in an interval of length “T” 

There is a single remanufacturing cycle and a single production cycle per time interval 

T. Production and remanufacturing rates are assumed to be infinite in line with the EOQ 

assumption, i.e., instantaneous replenishment. Additional decision variables are considered 

with P, q, which are Q, rp, rr. Q is the total demand per interval, which is equal to the 

remanufacturing lot size, Qr, plus the production lot size, Qp. rp (rr) is the reordering point 

for the production (remanufacturing) cycle, where rp (rr) triggers a remanufacturing 

(production) order. 

There is one remanufacturing cycle of length Tr and one production cycle of length Tp 

in the time interval T, where T = Tr + Tp, as shown in Figure 8.7.  
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 Figure 8.7. Inventory status of serviceable and repairable stocks 

In the serviceable stock, inventory is replenished by a remanufactured lot size Qr = 

qβTd = qβQ which is depleted by average demand d, and when the inventory level hits the 

reorder point rr, a production lot size Qp = (1−qβ)Td = (1−qβ)Q is ordered. From the time the 

production lot size is ordered (reorder point rr) until it arrives, the mean lead time demand μ 

should be equal to the net inventory minus the safety stock (reorder point rr – safety stock 

ssr). The function of the safety stock is to cover for the unexpected increase in demand 

during the lead-time, as long as this increase in demand is less than or equal to ssr., i.e., lead 

time demand is less than or equal rr. In case the demand during the lead time, μ, is greater 

than (rr), shortages occur, and this shortage is backordered at a cost, CB
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Similarly, inventory is replenished by a production lot of size Qp = (1− qβ)Td = 

(1−qβ)Q which is depleted by average demand d, and when the inventory level hits the 

reorder point rp, a remanufacturing lot size Qr is ordered. From the time the remanufacturing 

lot size is ordered (reorder point rp) until it arrives, the mean lead time demand μ should be 

equal to the net inventory minus safety stock (reorder point rp – safety stock ssp). The 

function of safety stock is to cover the unexpected increase in demand during the lead-time, 

as long as this increase in demand is less than or equal ssp., i.e., lead time demand is less than 

or equal rp. In case the demand during the lead time, μ, is greater than (rp), shortages occur, 

and this shortage is backordered at a cost, CB per unit backordered.   

In the repairable stock, used items (returns) are collected at a rate qβd, where β = β(P, 

q) is the return rate as a function of price P and acceptance quality level q, equivalent to R/d 

in Model I. 

The inventory holding costs per unit per unit of time for produced (remanufactured) 

units in the serviceable stock is hp (hr), and for the reparable stock is hu. Also, denote Hp and 

Hr as the inventory costs for newly produced and remanufactured units in the serviceable 

stock, and Hu 
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as the inventory costs for the repairable items in the repairable stock, per 

interval. The inventory holding cost expressions for newly produced, remanufactured and 

returned items per interval are calculated based on the average inventory and are given 

respectively as 

      (8.31) 
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Now, denote ηp and ηr as the backorders costs for the production and remanufacturing cycles 

per interval, and these costs are given as 
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The total setup cost is denoted by S = Sr + Sp, where Sr and Sp are the remanufacturing and 

production setup costs respectively. Additional costs are determined as follows, 

Disposal costs per unit of time: ( ) TdqCw β−1  

Remanufacturing costs per unit time: TdqCr β  

Production costs per unit time: ( )TdqCp β−1  

Purchasing costs of returns per unit time: TdPCn β   

Purchasing costs of returns per unit time: ( )TdqCn β−1   

Similar to Equations (8.11) and (8.21), total cost per unit of time is expressed as 
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where ( ) ( ) qP beaeqP ϕθββ −−−== 1, , 
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Equation (8.36) is differentiated with respect to Q, rp, rr to get 
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Equation (8.37) is a function of rp and rr, and Equation (8.38), similar to Equation (8.39), is a 

function of Q. Equations (8.37), (8.38) and (8.39) are solved simultaneously to optimize 
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( )qPrrQ rp ,,,,Ψ , using a developed solution algorithm. The solution algorithm is lengthy, 

therefore, it is shown in Appendix 10. 

8.7. Numerical Examples 

Five numerical examples are provided to illustrate the behaviours of Models I, II and 

III, and to draw some conclusions. Example 8.1 illustrates earlier works and the basic 

contribution of this chapter. Example 8.2 addresses some managerial questions and it is 

shown how earlier works and the presented models respond to these questions. Dobos & 

Richter (2006) assumed that a pure recycling/reuse strategy (pure remanufacturing) to be 

more cost effective than a pure production strategy and did not consider the opposite, and 

assumed a fixed return rate. These limitations are addressed in Example 8.3. The convexity 

of the presented models is discussed in Example 8.4. Example 8.5 is a stochastic example 

and is solved by Model III.  

Example 8.1 

A comparison between Dobos & Richter (2003) and Model I is presented. Let d = 

1000, h1 = 1.6, hu = 1.2, δ = 0.3, π = 0.6, Sp = 2400, Sr = 1600, Cr = 1.2, Cw = 0.1, Cp = 2, 

Cn

Second, the values determined above are substituted in Model I, with the parameters of 

 = 5. First, these values are substituted in the model of Dobos & Richter (2003), where the 

buyback proportion is 0.231 and the use proportion is 0.829, which is equivalent to a 

reusable proportion = (buyback proportion) × (use proportion) × d = 0.231×0.829×1000 = 

191.5 units or 19.15% of demand. In Dobos & Richter (2003), the cost for a mixed 

production and remanufacturing strategy is 9305, for a pure production strategy (buyback 

proportion = use proportion = 0) is 8752, and for a pure remanufacturing (buyback 

proportion = use proportion = 1) is 8704. This suggests that a pure remanufacturing strategy 

is the cheapest of the three strategies (8704 < 8752 < 9305).  

( ) ( ) qP beaedqPRR ϕθ −−−== 1,  adjusted to a = 0.5, b = 0.95, θ = 8, φ = 1.5, so that buyback 

proportion = 0.231 and use proportion = 0.829, where ( ) ( ) qP beaedqPR ϕθ −−−= 1/, = 0.231. 

Solving Model I, a mixed production and remanufacturing/recycling policy has the lowest 

cost of 8386 of the other two strategies, where the cost of a pure production is 8752 and the 
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cost of pure remanufacturing is 8704. The cost 8386 of a mixed production repair strategy is 

attained when P* = 0.146 and q* = 0.829. To illustrate, an optimum mixed strategy was found 

to be optimum because some of the returned items to be remanufactured/repaired are good 

quality items (q* = 0.829 or more) that are purchased at a low price (Purchasing Price = 

P*×Cn

Example 8.2 

This example illustrates Model I. Let d = 1000, h

= 0.146 × 5 = 0.73). Such a case makes a mixed strategy advantageous to the pure 

strategies of either pure production or pure remanufacturing.  

1 = 850, hu 32 = 80, γ = , β = 32 , Sp 

= 1960, Sr = 440 (Dobos & Richter, 2004). According to the calculations provided by Dobos 

& Richter (2004), the pure recycling costs 16,516 and pure production costs 33,326. 

Therefore, it is economical to recycle with the buyback and use all returned items. In reality, 

it is nearly unattainable to reach a 100% buyback and use rate (remanufacture/recycle every 

produced item), therefore, what if a decision maker cannot attain a 100% buyback and use 

rates, but he/she can only attain say 90 or 95 percent. Is such an acceptance percentage close 

to the optimal solution? Or, is it better to switch to a pure production policy?  

The pure policy means either to include the setup cost for remanufacturing or the setup 

cost for production, but not both. The mixture of remanufacturing and production means the 

inclusion of both costs leading to higher costs than in a pure strategy (either pure production 

or pure remanufacturing). Figure 8.8 illustrates the behaviour of the total cost for Dobos & 

Richter’s (2004) model when the marginal buyback and use rates are varied simultaneously 

(from 0% to 100%).  

As shown in Figure 8.8, since a 100% buyback rate and 100% use rate cannot be 

attained, values for these rates close to 100% are far from being optimal. However, a mixed 

remanufacturing and production strategy suggesting at buyback and use rates of 70 % is the 

optimal case. Dobos & Richter (2003, 2004, and 2006) did not address this issue. To 

illustrate further, and for example, if the buyback rate is 99% and the decision maker decides 

to accept all returns, then such a policy would be 38% more expensive than the solution 

attained at 70% buyback and reuse rate.  
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buyback proportion and marginal use proportion 

Substituting the same values of the parameters in Dobos & Richter (2004) example in 

Model I with a = 0.9, b = 0.9, θ = 6, φ = 2, while varying price and quality simultaneously, 

the cost and its corresponding return rate for are plotted in Figure 8.9. A mixed strategy of 

repair and production reaches its least cost (not optimal) at a price and quality of 0.6 

corresponding to a return rate of 26 percent.  
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Optimizing Model I by varying the values of purchasing price and acceptance quality 

level independently, the optimal solution was attained at a price of 0.69×Cn = 0.69× 5 and a 

quality index of 0.53 corresponding to 30.7% returns. Note that the average values produced 

from the model of Dobos & Richter (2004) are less than the average solutions produced by 

the presented model, because the calculations in Dobos & Richter (2004) example did not 

consider the purchasing price of returned items, while price of raw materials Cn is considered 

equal in both examples. The second example is presented to demonstrate the infeasibility of 

the bang-bang policy. 

Example 8.3 

This example illustrates Model II with a case when pure remanufacturing is not as cost 

effective as pure production. Let d = 1000, a = 0.9, b = 0.9, θ = 6, φ = 2, h1 = 4, hu = 4, δ = 

0.8, π = 0.5, Sp = 6, Sr = 6, Cr = 2, Cw = 0.15, Cp = 2, Cn = 0.95. Pure production costs 3105, 

while pure remanufacturing costs 3,155. Substituting the above parameters and optimizing 

Equation (8.28), the total cost is C = 3085.5, where P*= 0.21 and p*

Example 8.4 

This example illustrates Model II, and using similar data to Example 8.3, with h

= 0.87. Although the case 

of pure remanufacturing is desirable, it is technologically unattainable. Therefore, the best 

practise is to accept high quality returns with low purchasing price, which will deliver a 

better solution than either pure production or pure remanufacturing. Even in the case when 

pure remanufacturing is more expensive than pure production, a pure production strategy is 

not optimal.  

u = 3, 

Sr = 4, Cr = 0.1, Cn = 10, the total cost is C = 11160.7. The model was varied over P and q 

and is shown in Figure A.5. The total cost is convex with respect to purchasing price, P× Cn, 

and acceptance quality level, q. The Hessian matrix is positive and an optimum solution is 

obtained when m = 1, n = 2, P = 0.71 (corresponding to an optimal purchasing price = P* × 

Cn = 0.71 × 10 = 7.1) and q*

 The convexity of expression (8.28) was demonstrated for varying values of m, n, P, 

and q to investigate the behaviour of the cost function in (8.28). Several plots of the cost 

 = 0.2365. The optimal solution is obtained using the solution 

procedure described in Section 8.5. Table 8.1 illustrates this solution procedure numerically. 
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function in (8.28) were generated and showed to have almost identical behaviours to that 

shown in Figure A.5.  

Table 8.1. A numerical example illustrating the solution procedure 
Step # n m P q ( )qPnmC ,,,  Notes 

1 1 1 0.237 0.709 11166  
2 1 2 0.238 0.708 11201 1*

1 =m  and ( ) 11166,,1,*
1 =qPmC  

3 2 1 0.236 0.71 11161  
4 2 3 0.236 0.709 11202 1*

2 =m and ( ) 11161,,2,*
2 =qPmC  

5      Repeat step 1 and 2 
1 3 1 0.235 0.711 11165  
2 3 2 0.235 0.711 11182 1*

3 =m  and ( ) 11165,,3,*
3 =qPmC  

6 2 1 0.236 0.71 11161 Terminate. Optimum solution is 
attained when ( )qPnmC ,,, is 
minimum 

In addition, Example 8.4 was replicated for varying values of a, b, θ, φ, h1, hu, δ, Cr, 

Sr, Sp, Cw, π, and Cp

Example 8.5 

This example illustrates Model III. Let d = 1000, μ = 20, σ = 5, a = 0.1, b = 0.9, θ = 9.5, φ = 

1, hp = 5, hr = 2, hu = 0.5, CB = 10, Sp = 60, Sr = 30, Cr = 0.1, Cw = 0.005, Cp = 0.1, Cn = 1. 

Applying the solution algorithm in Appendix 10 and solving, the optimum cost Ψ = 1544.36, 

P = 0.05, q = 0.998, rp = 26.7, rr = 30.7, Q = 260.48, Qr = 81 and Qp = 179.48. It took the 

solver 51 seconds to reach the optimum solution with error window equal to 0.00001/269 = 

3.7 x 10-8 ≈ 0. 

, where expression (8.28) was optimized for 10,000 data sets. All of 

these data sets confirmed Theorem A.1, i.e., a solution is never optimal when m and n are 

even. Of the 10,000 replications two numerical examples generated optimal solutions when 

m > 1 and n > 1 and m and n are not even (e.g., m = 3, n = 2), with the remaining examples 

having either m or n equal to 1. To illustrate, since T is a decision variable  dependent on m, 

n, P and q, the optimal solution tends to reside with smaller values of m and n that meets a 

specific return rate while minimizing the holding costs of serviceable and repairable 

inventories.  
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8.8. Summary and Conclusions 

This chapter extended the works of Dobos & Richter (2003, 2004, and 2006) by 

assuming a variable return rate that follows a demand-like function of purchasing price and 

acceptance quality level of returns. Three mathematical models were developed. The first 

assumes a single remanufacturing cycle and a single production cycle, with the second being 

a generalized version of the first assuming multiple remanufacturing and production cycles. 

The third model extended the first model and assumed a stochastic demand with backorders 

are allowed. Two solution procedures were introduced, the first adopts an enhanced search 

technique that eliminates solution branches that do guarantee an optimal solution. This 

enhanced solution procedure was supported by a theorem, which shows that having even 

numbers of remanufacturing (m) and production (n) cycles in an interval never produces an 

optimal solution. The second solution algorithm used an iterative search technique, which is 

the golden section search method, and applied the technique in two dimensions. 

Through the numerical analysis, it was shown that the pure (bang-bang) policy of either 

no waste disposal (total repair) or no repair (total waste disposal) as advocated in Dobos & 

Richter (2003, 2004) is not optimal. Dobos & Richter (2006) considered that a pure 

remanufacturing strategy should be more cost effective than pure production strategy. 

Results showed that a mixed (production + remanufacturing) strategy is optimal, when 

compared to either a pure strategy recycling (pure remanufacturing) or a pure strategy 

production. In addition, assuming fixed price and quality of returns may not capture the 

benefits of reverse logistics inventory models, and considering the return rate as a function of 

price and acceptance quality level was examined and was proven a valuable modelling 

approach, in both deterministic and stochastic approaches. 

The stochastic model delivered similar results to that of the deterministic one, where 

the optimal solution is a mixture of produced and remanufactured products. A comparison 

between Model III and other stochastic reverse logistics inventory models in literature is 

advantageous, however, this is considered for future work. 
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 

Management of recycling grew in the 1970’s and, within two decades, it was 

established as a new filed of research, which is Reverse Logistics. Many research gaps exist 

within reverse logistics, which either hindered the chance to capture the expected benefits 

from implementing remanufacturing/repair programs or misled reverse logistics practitioners 

from achieving better results.  

In the reverse logistics inventory literature, several factors, which have significant 

effects on inventory optimization, were either ignored or forgotten. Examples are: the first 

time interval includes production activities without any remanufacturing/repair activity, costs 

due to switching between production and remanufacturing, the increase of production and 

remanufacturing rates due to learning effects, returns are disassembled and their inventories 

are managed differently, and the flow of returns in the reverse direction depends on price and 

quality.  

Other assumptions were either unnecessarily made or mistakenly proven. For example, 

the quality of production and remanufacturing processes is perfect, the quality of 

remanufactured products are perceived similar to newly produced products, and the pure 

production and remanufacturing policies are optimal.  

Given these limitations in the literature, the need to address these research gaps and to 

bring reverse logistics modelling efforts closer to reality became evident. Accordingly, in this 

dissertation, several models were developed to address these factors and assumptions in a 

production/remanufacturing context through a series of contributions, to bring research closer 

to reality and to benefit the practice of reverse logistics as it represents a valuable route 

towards a sustainable environment. The developed models assume unlimited storage 

capacity, infinite planning horizon and a single product case. 

A first contribution is a deterministic reverse logistics inventory model accounting for 

switching costs which affects the behaviour of the model and the resulted optimal solutions. 

In addition, the first time interval was considered, which represents the system just before the 

remanufacturing process and resulted in an enhanced calculation of the inventory holding 

cost in the repairable stock, and, prevented an overestimated residual inventory amount that 
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was estimated by some of the works in the literature. A publication related to this 

contribution is El Saadany & Jaber (2008b). 

A second contribution is the discussion of the fact that the quality of production and 

remanufacturing processes is not perfect. Two models were developed, the first calculated 

the expected amount of imperfect products, which resulted from imperfect production and 

remanufacturing processes. The imperfect amount is withdrawn from the system, which 

affected the expected results of other works in the literature, as it showed and proved that the 

pure remanufacturing case is mathematically and practically infeasible. The second model 

discussed reworks issue. A practical situation was formulated in a deterministic approach 

where production processes are interrupted to restore quality. It was shown that there is 

optimal production and remanufacturing interruption periods. A publication related to this 

contribution is El Saadany & Jaber (2009b). 

A third contribution is modelling inventory with learning effects in a reverse logistics 

context. Results showed that there is value for the learning rate below which investment in 

learning is not beneficial. However, a fast learning might not be optimal implying the 

existence of an optimal learning rate. A publication related to this contribution is Jaber & El 

Saadany (2008a). 

   A fourth contribution is represented in two deterministic models with newly 

produced and remanufactured products are perceived differently by customers. A production-

remanufacturing system was presented where demand is satisfied by the two types of 

products, and accordingly, lost sales occur intermittently for each type. It was shown that it is 

favourable to compensate customers to settle for different types of products. A publication 

related to this contribution is Jaber & El Saadany (2009a).  

A fifth contribution is representing the situation when returns are disassembled and the 

inventory of subassemblies is managed differently. A deterministic model considered the 

case when returns are disassembled and the subassemblies will have different collection rates 

due to usage and obsolescence factors. Results proved the invalidity of the assumption that 

pure remanufacturing and pure production policies are optimal. A mixture of production and 

remanufacturing is the optimal policy. A publication related to this contribution is El 

Saadany & Jaber (2008c). 
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A final contribution is presented in three models that consider the flow of returns in the 

reverse direction as a function of price and acceptance quality level. Two models are 

deterministic while the third considers the demand to be stochastic. Works in the literature 

are limited to the case of fixed return rate and fixed price and quality of returns. The 

presented models are the first to address return and collection rates as being variable. The 

formulated models proved that the pure policies are not optimal and presented the reverse 

flow in an applicable method which considers variable interdependent price and quality. 

Publications related to this contribution are El Saadany & Jaber (2007) and El Saadany & 

Jaber (2009a).  

The presented models address reverse logistics in several directions. However, it is 

unreasonable to address all the presented issues and costs of reverse logistics in a single 

model as it will result in a completely impractical tool. Researchers and practitioners agreed 

that mathematical models not only have to be precise, to improve business practices and, to 

solve industrial problems, but also have to maintain an acceptable level of complexity, so as 

not to lose the chance to be applied and to be useful. 

Reverse logistics is a new research area that still has many research gaps and offers 

numerous opportunities for future work. A recommended extension to the work presented 

herein, is to integrate the developed production/remanufacturing lot sizing models into a 

multistage supply chain coordination system. A second extension is to relax one of the 

assumptions of the developed models, which is assuming the case of multiple products, or 

the case of limited storage capacity, or the case of finite planning horizon. A third extension 

is to consider the relation between reverse logistics network design and any of the inventory 

models presented herein. An interesting extension is to consider modelling the 

remanufacturing of a short-life-cycle product, and to study its implications on one of the 

developed models.  
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APPENDICES 

Appendix 1 

Setup, holding and total costs are calculated for a single time interval, as shown in Figure 

A.1, as follows: 

Setup costs = m Sr + n Sp 
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Figure A.1. Details of the derivation of Equation (3.6) in the case of m = 2 and n = 5 
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Appendix 2 

The learning curve is a geometric progression that expresses the decreasing cost (or 

time) required to accomplish any repetitive task. As total quantity of units produced doubles, 

the cost per unit declines by some constant percentage (Jaber & El Saadany, 2008a). The 

learning curve is represented by  

b
x xUU −= 1          (A.1) 

where xU  is the time to produce the xth unit, 1U is the time to produce the first unit, x is the 

production count, and b the learning curve exponent. In practice, the b parameter value is 

often replaced by another index number, which is referred to as the “learning rate”. The 

learning rate occurs each time the production output is doubled, where LR = xx UU2 = 

( ) bb xUxU −−
11 2 = b−

2 and b = )2log()log(LR− . The time to produce x units by integrating 

Equation (A.1) over the proper limits is given as 

∫∑ −−

=

≅=
x bb

x

n
nnUnUxt

0 1
1

1 d)(         (A.2) 
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Appendix 3 

To calculate the holding cost in the repairable stock, the inventory components are divided 

into two parts as shown in Figure A.2a and Figure A.2b. 

 

Figures A.2a, A.2b. Depletion of repairable stock with reception of returned units  

Figure A.2a represents the behaviour of inventory for the collected used items stored in 

the repairable stock that are later transferred to the serviceable stock. Figure A.2b represents 

the behaviour of collecting the used items in the repairable stock. The addition of these two 

charts results in Figure A.2c, where the residual inventory (rectangle D) needs to be 

eliminated to produce Figure A.2d. Otherwise, the maximum inventory will be overestimated 

having a value Z′ instead of Z. The available studies in the literature assumed a general time 

interval and ignored the last time interval prior to remanufacturing where no repairs are 

performed. This assumption results in an overestimation of the average inventory level and 

subsequently the holding costs, which is represented by the area D in Figure A.2c. 
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Figures A.2c and A.2d. Breakdown of inventory in the repairable stock for m = 3 and n = 2 

To calculate the area of Figure A.2a, the area will be divided into m areas named “A”, 

and several rectangles named “B” as shown in Figure A.3. 
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Figure A.3. Breakdown of Figure A.2a to A’s and B’s 

The holding cost in the repairable stock is calculated as follows 
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Appendix 4 

From Figure 6.2, 1T is calculated as follows, ( ) ( )pppprrr
r

pp DTD
m
TTD βγβγβ +=1  

( )rrr
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D
mDD

xT βγ
β.

2
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Appendix 5 

Holding costs in the second shop for the case of (m = 3, n = 4) are presented in Figure A.4: 
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Figure A.4. The calculations of the repairable stock for the case of (m = 3, n = 4) 
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Appendix 6 

The inventory holding cost for a production/remanufacturing cycle is computed by 

multiplying the holding cost per unit per unit of time by the average inventory level over a 

production/remanufacturing cycle length. The average inventory level in a cycle (production, 

remanufacturing or returned) is half the peak of inventory multiplied by the length of cycle 

time and given as 
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Appendix 7 

To prove that the total costs function in Equation (8.13), which is a function in two variables, 

is convex, the Hessian matrix has to be computed and to be proven positive. To compute the 

Hessian matrix for a general case (without substituting values other than P and q), the 

outcome turned out to be ‘messy’.  

The convexity of (8.13) was demonstrated numerically.  More than 10,000 input parameter 

datasets were randomly generated and the Hessian matrix was computed for each dataset 

(numerical example). For all of these numerical examples, the Hessian matrix had positive 

values, suggesting that it is reasonable to conjuncture that Equation (8.13) is convex. A 

sample calculation of ten randomly selected numerical examples are represented in Table 

A.1, where a, b, θ, ϕ, h1, hu, δ, Cr, Sr, SP, Cw, π, CP and Pn are randomly generated.  

Table A.1. Sample calculations of randomly generated examples of Model I 
a b θ ϕ h1 hu δ Cr Sr Sp Cw π Cp Cn R P q Cost Hessian 

0.506 0.967 9.282 5.535 0.159 0.427 0.683 0.537 1.435 6.703 0.138 0.755 10.9 0.531 173.6 0.033 0.226 11109 293989637 

0.6 0.83 9.098 8.873 0.126 0.374 0.637 1.235 7.256 3.667 0.035 0.606 9.333 1.103 123.1 0.02 0.137 10342 208509397 

0.449 0.932 8.004 3.702 0.66 0.251 0.813 1.956 5.659 1.126 0.128 0.871 9.257 0.53 183.7 0.031 0.322 9427 113145997 

0.965 0.347 8.92 3.338 0.321 0.344 0.88 0.065 3.395 3.86 0.14 0.78 9.793 0.492 56.62 0.146 0.452 10142 13072114 

0.659 0.923 7.047 7.916 0.578 0.34 0.7 1.473 7.468 4.525 0.191 0.774 2.938 1.991 87.38 0.046 0.216 4945 8671911 

0.453 0.24 5.985 1.528 0.734 0.096 0.482 0.785 6.356 6.347 0.052 0.7 5.31 1.196 57.72 0.146 0.797 6361 1161911 

0.731 0.398 4.997 2.431 0.543 0.338 0.532 0.069 3.377 2.351 0.196 0.516 1.724 1.528 73.92 0.261 0.602 3204 484774 

0.81 0.639 3.462 9.953 0.159 0.553 0.618 1.559 3.213 4.855 0.132 0.578 1.141 1.464 13.71 0.021 0.245 2636 32177.06 

0.695 0.023 5.894 5.229 0.333 0.503 0.636 1.614 3.257 6.164 0.16 0.854 1.995 1 1.576 0.038 0.358 3024 485.7093 

0.707 0.001 8.422 3.114 0.439 0.247 0.448 0.317 7.523 5.497 0.184 0.671 1.307 0.553 0.157 0.14 0.532 1921 1.880676 

Example A.1 

Figure A.5 illustrates the behaviour of the cost function for the following input parameters: d 

= 1000, a = 0.9, b = 0.9, θ = 6, φ = 2, h1 = 4, hu = 3, δ = 0.8, π = 0.5, Sr = 4, Sp = 6, Cr = 0.1, 

Cw = 0.15, Cp = 2, Pn = 1. The total cost function is convex with respect to price, P, as well as 

quality, q, where optimal values are P = 0.370929 and q = 0.668266. 
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Figure A.5. Total Cost “C” versus price “P” and quality “q” 



 196 

Appendix 8 

The inventory holding cost for a production or manufacturing cycle is computed by 

multiplying the holding cost per unit per unit of time by the average inventory level over a 

production/remanufacturing cycle length. The average inventory level in a cycle is half the 

peak of inventory multiplied by the length of cycle time.  
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For Hu,m, the area is divided into m A triangles, B (m −1) triangles, a single C triangle and 

(m−1) D squares, as shown in Figure A.6. 
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As shown in Figure A.6, increasing m or n increases the average inventory in returned stock, 

while it has no effect on the average inventory in serviceable stock. This signifies the 

tendency of the presented models to produce optimal solutions with smaller m and n. This 

point is emphasised in Appendix 9. 
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Appendix 9 

THEOREM A.1: A policy ( )TnmC ,,, λ 1

( )2,,2,2 TnmC λ

 with both m and n being even integers can never 

be optimal, since the total cost rate associated with policy  is smaller. 

Proof: Figures A.7 and A.8 illustrate the inventories associated with policies ( )TnmC ,,, λ , 

Case a, and ( )2/,,2/,2/ TnmC λ , Case b, respectively.  

In Case a, the parameters Sr, Sp, Sm,n , d, T, m, n, R, q, h1, hu, π, δ, correspond respectively to 

parameters Sr, Sp, Sm,n/2, d, T/2, m/2, n/2, R, q, h1, hu, π, δ, in Case b. For Case a, the cost per 

unit of time unit is ( ) ( ) 2,,,,, , λψλ nmTdTSTnmC anma += , where 
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The difference in costs for Case a and Case b is given as  
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Figure A.7. The behaviour of inventory for Case a: C (m, n, λ, T) 
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Figure A.8. The behaviour of inventory for Case b: C (m/2, n/2, λ, T/2) 
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Appendix 10 

The developed solution algorithm optimizes total cost Ψ and is compromised of three 

subroutines that work together to find the optimum Q, rp, rr

( ) 618.051
2
1

=+−=

, P and q.  

The golden section search optimization technique in used in Subroutine 2 and 3. It 

finds local maxim or minima of single variable functions and does not require gradient 

information. It is based on sectioning a function along a vector (e.g., a decision variable) and 

eliminating sections according to a minimization or maximization rule until the optimum 

solution is determined within an acceptable error window (e.g., Aarts & Lenstra, 2003; 

Huyer & Neumaier, 1999; Vogt & Cottrell, 1999). The golden section value 

is .  

Subroutine 1 solves Q, rp and rr simultaneously to optimize total cost for given values 

of P and q. Subroutine 2 uses various sets of optimized Q, rp and rr values to find the 

optimum P at a given q. Each optimized set of Q, rp and rr values is determined using 

Subroutine 1. Accordingly, Subroutine 3 uses various sets of optimized Q, rp, rr and P values 

to find the optimum q. Each optimized set of Q, rp, rr

( )
( ) ( ) βββ qhqhqh

SSd
Q

urp

rp
d ++−

+
= 221

2

 and P values is determined using 

Subroutine 2. 

Similar to Hadley & Whitin (1963), a starting point is required to initiate the algorithm. 

A deterministic optimum lot size is used as a starting value for Q, which can be easily 

calculated from Equation (8.37) as 

   

In addition, initial values are used for P and q, which are chosen arbitrary at P = 0.5 

and q = 0.5. An acceptable error, e, is determined (e.g., e = ±0.0001) at the beginning of the 

algorithm. The main subroutine of the algorithm is Subroutine 3, which calls Subroutine 2 

numerous times, which in turn calls Subroutine 1 various times. The algorithm works 

successfully and solves the given examples in Chapter 8 in a mater of seconds.  
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Subroutine 1: 

1- Find the input parameters of d, μ, σ, Sp, Sr, hp, hr, hu and CB 

2- Calculate Qd 

3- Q1 = Qd 

4- Calculate ( ) ( )
dC

qhQr
rG

B

pp
p

β
σ

µ −
=







 −
Φ=

11   

5- If ( ) 0<prG  or ( ) 1>prG , then rp = rr = μ and GoTo step 15 
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13- If eQQ <− 12 , then GoTo step 15 

14- 21 QQ = , GoTo step 4 

15- 1QQ = , and rp and rr are as determined in the last execution of steps 8 and 9 and 

( )qPrrQ rp ,,,,Ψ  is determined from Equation (8.36).  

16- End 
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Subroutine 2: 

1- a1 = 0.001 

2- a2 = 0.999 

3- T1 = a2 − a1 

4- x1 = a2 − 0.618 * T1 

5- P = x1 

6- Run Subroutine 1, and z1 = cost resulted from Subroutine 1. 

7- x2 = a1 + 0.618 * T1 

8- P = x2 

9- Run Subroutine 1, and z2 = cost resulted from Subroutine 1. 

10- If z1 ≥ z2, then a1 = x1 Else GoTo step 17 

11- T1 = a2 – a1  

12- x1 = x2 and z1 = z2  

13- x2 = a1 + 0.618 * T1 

14- P = x2 

15- Run Subroutine 1, and z2 = cost resulted from Subroutine 1. 

16- GoTo step 23 

17- If z2 > z1 Then a2 = x2 

18- T1 = a2 − a1 

19- x2 = x1 and z2 = z1 

20- x1 = a2 − 0.618 * T1 

21- P = x1 

22- Run Subroutine 1, and z1 = cost resulted from Subroutine 1. 

23- If exx <− 12 , then GoTo step 25 

24- GoTo step 10 

25- End 

Subroutine 3: 

1- a3 = 0.001 

2- a4 = 0.999 

3- T3 = a4 – a3 
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4- x3 = a4 − 0.618 * T3 

5- q = x3 

6- Run Subroutine 2, and z3 = cost resulted from Subroutine 2. 

7- x4 = a3 + 0.618 * T3 

8- q = x4 

9- Run Subroutine 2, and z4 = cost resulted from Subroutine 2. 

10- If z3 ≥ z4, then a3 = x3 Else GoTo step 17 

11- T3 = a4 – a3 

12- x3 = x4 and z3 = z4  

13- x4 = a3 + 0.618 * T3 

14- q = x4 

15- Run Subroutine 2, and z4 = cost resulted from Subroutine 2. 

16- GoTo step 23 

17- If z4 > z3 Then a4 = x4 

18- T3 = a4 – a3 

19- x4 = x3 and z4 = z3 

20- x3 = a4 − 0.618 * T3 

21- q = x3 

22- Run Subroutine 2, and z3 = cost resulted from Subroutine 2. 

23- If exx <− 43 , then GoTo step 25 

24- GoTo step 10 

25- End 
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