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Abstract . 

In this thesis, we present a system partitioning technique that employs C/C++ as 

input specification language for hardware/software co-design. The proposed 

algorithm is able to explore a number of partitioning solutions as compared to other 

partitioning research. This benefit is obtained by processing data dependency and 

precedence dependency simultaneously in a new representation called Directed Acyclic 

Data .dependency Graph with Precedence (DADGP). DADGP is an extension of 

Directed Acyclic Graph (DAG) structure frequently used in the past for partitioning. 

The DADGP based partitioning algorithm minimizes communication overhead, 

overall system execution time as well as system cost in terms of hardware area. The 

algorithm analyzes the DADGP and tries to expose parallelism between processing 

elements and repeated tasks. The benefits of exposing parallelism with minimum 

inter PE communication overhead are shown in the experimental results. However, 

such benefits come with increase in cost due to additional hardware units and their inter­

connections. DADGP-based partitioning technique is also employed to implement 

block matching and SOBEL edge detection techniques. Overall, the proposed system 

partitioning algorithm is fast and powerful enough to handle complicated and large 

system designs. 
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Chapter 1 

Introduction 

1.1 Overview 

There are many embedded systems surrounding us that we do not even realize 

their presence. Video game units, DVD players, televisions, microwaves, scanners, 

cellular phones, and many more contain some sort of embedded processor(s). Using 

embedded computers in devices that previously relied on analog circuitry such as digital 

cameras, camcorders, Internet radios, and telephones provide revolutionary performance 

and functionality that any analog design improvement can not achieve. Most of the 

embedded computer systems are designed for just one particular application, and it 

generally provides cost effective solution by employing specialized architecture rather 

than using a general purpose computing system. 

Until now the embedded system design has taken brute force approach. 

Hardware and software were designed separately where correctness and comparability 

of the two domains were left to integrati?n stage. If problems arise during the 

integration stage, the design cycle spin begins and it results in a frequent struggle to 
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make a sub optimal architecture. Sometimes even the overall project is delayed or 

even terminated. 

Designing of embedded systems today requires working with several million 

gates of logic and millions of lines of software code. In order to efficiently design 

these systems. it is desirable to move to higher levels of abstraction for system design 

automation. Furthermore. rapid improvements in microprocessors performance are 

changing the balance between embedded software and hardware. What use to be the 

efficient and cost effective hardware solution can now be transferred into software. due 

to high performance microprocessors. In this environment. it is necessary to adapt the 

system design tools that encompass these fast microprocesso~s rather than to compete 

with them. 

The current hardware/software design methodologies do not effectively handle 

the massive software-hardware integration necessary [1]. Waiting until a system 

implementation before understanding the hardware-software interactions is no longer an 

option. To meet the current market demand. designers now need to produce more 

) complex computing architecture in a shorter period of time. The previous approach of 
)') 

Ii c¥ 
~'f ", .. 
~ 
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I 
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independent hardware and software development methodology is not acceptable. 

Hardware software tradeoff must be analyzed early in the system design to reduce the 

iterative design cycle. 

The main question is "how can we design with several hundred million 

transistors effectively and quickly?" Hardware software co-design is said to provide 

the answer for designing such large systems [2, 3, 4, 5]. Hardware software co-design 

is a wide area of research consisting of specification, simulation and estimation, 

validation, synthesis, and other components. Hardware software co-design concept 

has been proposed, and being researched for a number of years. Many EDA vendors 

and researchers have employed dedicated efforts to develop viable hardware software 

co-design methodologies and tools, yet no standards has been adapted to streamline and 

coordinate their design efforts. 

The main objective of hardware software co-design are to shorten the 

development cycle, minimize bugs, manage cost, and to produce competitive embedded 

computing systems that meet today's requir:,ements. Figure 1.1 shows a generalized 

design methodology for hardware/software co-design. Most of the past and recent 

3 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

:l 

It 

J 

research and development has been built around this model. Hardware/software co-

design problem is broken into three major components given below. 

• 

• 

• 

System specification design for describing the system level behavior. 

Hardware/software co-simulation and analysis (validation). 

Rapid hardware software integration by co-synthesis. 

Initial 

Architecture 

Specification 

Partitioning 

System 
Integration 

System 

constraints 

Figure 1; 1: Hardware-Software Co-design Methodology 

Specification design for describing the systein level behavior is a aifficult and 

challenging problem as it needs high level of abstraction as well as fine details to reduce 

ambiguities during co-synthesis. 
• f 

It is very Important to capture the system 

specification correctly early in the design cycle. Many research projects have been 

conducted to cre~te a unified co-design environment by proposing a system 

4 
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specification language [6, 7]. The idea is to capture the specification with more 

details by augmenting the HDL (Hardware Descriptive Language) and other 

programming languages like C to describe the entire system. MSC, SOL, PMSC and 

SystemC are the main examples of such languages. 

Design specification language concept has lead to co-synthesis that involves 

automation of hardware and software architecture synthesis. The function of co-

synthesis is to take a system specification language as input and generate competitive 

hardware and software architecture. A number of co-synthesis systems are under 

research, where PICO [8] (program in chipout), C<>rsair [9], Polis [1] are examples of 

some of these systems. 

Hardware/software partitioning is a sub problem of co-synthesis, which is also very 

difficult due to many conflicting factors affecting the outcome of partitioning decision. 

Generally speaking, hardware and software are interchangeable in terms of their 

functionality. To correctly partition the system, expertise of both hardware and software 

design communities must communicate with the help of diverse tools that can evaluate 

the trade offs of using hardware or software. 

5 
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In this thesis, complete hardware software co-design methodology is proposed 

including: specification, analysis, partitioning and scheduling (co-synthesis) leading to 

final system implementation is presented by using a Rapid Prototyping Platform. The 

proposed methodology includes system-partitioning technique with a system 

specification based on C/C++. The proposed technique also processes data and 

precedence dependency simultaneously by employing a new structure, Directed Acyclic 

Data dependency Graph with Precedence (DADGP) that is an extension of Directed 

Acyclic Graph (DAG). The DADGP based partitioning technique minimizes the 

communication overhead as weU as overall system execution time. Furthermore, the 

partitioning algorithm minimizes the system cost in terms of hardware area. The 

partitioning algorithm presented in this thesis analyzes the DADGP and tries to expose 
• 

parallelism between tasks and repeated tasks. The benefits of exposing parallelism 

and considering inter processing element (PE) communication overhead are also 

explained in this thesis. However, these benefits come with an increase in price due to 

additional hardware modules and their inter-connection structure. The proposed 

partitioning algorithm is powerful enough to handle complex designs, and is easily 

extendable for future requirements as explained in the future work section. The 

partitioning technique provides promising system partitioning solution as compared to 

6 
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previous methods in terms of efficiency of the over all system design. However, 

before we get to the proposed methodology, it is important to overview each 

components of hardware software Co-design process and their advancements until today. 

1.2 Motivation 

The current hardware software design flow has hard time meeting today's 

market demand. The separate design of hardware and software results in an error 

prone integration that leads to a design cycle spins delaying the final product In order 

to design these hardware and software systems more efficiently, a proper partitioned 

hardware software module must be decided before implementation. Currently there 

are no commercially available tools to help designers with the partitioning of complex 

hardware software embedded systems. 

1.3 Original Contributions 

This thesis proposes a new design methodology for designing hardware and 

software systems for embedded and System on Chip (SoC) application. In particularly, 

7 
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computationally intensive embedded systems which require multiple hardware and 

software are considered. A full hardware software co-design methodology is 

presented with implementation results, which shows the validity of the new DADGP 

partitioning algorithm. The publication of the proposed research can be found in [10]. 

The Major contributions for the thesi's are summarized as follows: 

s • Development of software profiling tool for ARM? processor running under a 

Ir ~ Rapid Prototyping System has been developed 

!r • Design of a new hardware software interaction representation graph called . , 

~d Directed Acyclic Data dependence Graph with Precedence (DADGP) 

re • Development of new DADGP partitioning algori~ that includes iterative 

!x mapping and scheduling method has been implemented 

• In-depth comparative analyses of DADGP algorithm with other system 

partitioning methods. 

md 

rrly, 
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1.4 Thesis Organization 

This thesis consists of six chapters and it is organized as follows: 

In chapter I, we provide a brief overview of current issues of embedded system design 

and their solutions (hardware software co-design). In chapter two, a more detailed 

design of hardware software co-design methodology is presented. The chapter will 

help readers to understand the basic idea behind the notion of designing hardware 

software systems. 

Chapter 3 will survey previous works related to hardware software partitioning. 

Partitioning research presented in this chapter is implemented and compared to DADGP 

partitioning algorithm in later chapter. This chapter also serves to present introductory 

knowledge for readers who are interested in different partitioning algorithms. 

Chapter 4 describes the newly proposed DADGP based hardware software co-

design methodology in . depth from specifications to partitioning. This chapter 

discusses the proposed system specification~, a formal definition of DADGP and a 

detailed explanation of mapping and scheduling process using DADGP. 
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Chapter 5 presents the experimental results of the proposed DADGP 

partitioning algorithm. In this chapter, two other system partitioning algorithms are 

presented in detail for comparison purposes to DADGP based partitioning algorithm. 

The software comparison result is also presented with many randomly generated task 

graphs, and their performance is recorded. Furthermore, two computationally 

intensive multimedia application has been implemented using Rapid Prototyping 

Platform (RPP) and their results are presented. Some details of the RPP design flow is 

also presented. 

In chapter 6, the thesis is summarized and the directi?ns of future research are 

proposed. 

10 
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Chapter 2 

Hardware Software Co-design 

In a Hardware software co-design problem, the hardware and software must be 

designed together to make sure that the target system not only functions properly but 

also meets perfonnance, cost and reliability goals. While a great deal of research has 

addressed the individual design methods for software and hardware, not much is known 

about the joint design of these two domains. Due to advancement in VLSI technology, 

high perfonnance microprocessors are cheap enough to be used in consumer products, 

and have stimulated research in embedded system co-design. To be able to make use 

of high perfonnance CPUs, we must develop new des~gn methodologies that allow 

designers to predict implementation costs, refine an embedded system incrementally 

over multiple levels of abstraction, and create a working implementation. The current 

Hardware Software Co-design process involves solving sub-problems of: 

specifications, validation, and synthesis. Although hardware software co-design 

problem cannot be entirely separated, it is divided into three separate sections for the 

purpose of discussion. 

2.1 System Specifications 

The system design specifications that describe system level behavior is a 

difficult and challenging problem because it needs high abstraction yet requires fine 

details to reduce ambiguities during synthesis. Traditionally, these specifications were 

11 

I 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

i 
t 

s 

y,' 

" 
e 

y 

It 

f: 

n 

e 

a 

Ie 

~e 

written in plain English describing the system constraints and functionalities. The 

problem with English as a specification language is that very often, designers can 

misinterpret the meaning of intended idea. These ambiguities and misinterpretation 

can occur more frequently when different people with different professional background 

consult the specification to start hardware and software design. It is very important to 

capture the specification correctly early in the design cycle to reduce the Non Recurring 

Expenses (NRE) [8]. Many research works have been done to create a unified co-

design environment by proposing a design specification language. The idea is to 

capture the specification with more details by augmenting the HDL and programming 

language like C. Such a method is known as homogeneous modeling, where hardware 

and software is represented by a common unified language [11]. 

System-level specification languages may not always be textual. Visual or 

combination of visual and textual languages can be used to organize the overall system 

architecture. After all, humans do work and process images better than just plain 

textual description. SDL (Specification and Description Languages) is one of the 

common languages of choice in this area, and PARSE process graph is another 

interesting approach to describe both hardware and software [12]. However, as more 

and more details are added, graphical representations might not be suitable, and textual 

languages become mandatory to express system details completely. Nevertheless, , 

graphical representation is always good to have early in the design cycle for high 

abstraction and easy visualization for the overall structure of an entire or its sub systems. 

12 
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The exchange of system-level intellectual property (IP) models for creating 

executable specifications has become a key strategic element for efficient system to 

silicon design flows. As CtC++ is the dominant language used by chip architects, 

system and software engineers prefer C-based approach to hardware modeling [11]. 

This demand has lead to a much popular homogeneous modeling open source system 

language known as SystemC [7]. The goal of SystemC is to facilitate the co­

verification of hardware-software systems by supplying a single language framework, 

where designer describes both hardware and software completely. An immediate 

advantage of having homogeneous modeling is that, it eliminates the need for complex 

programming language interfaces (PUs) or remote procedure calls (RPCs) interfaces, 

which will speed up the co-simulation process. SystemC also allows the user to 

successively refine models without translating it to an .HDL representation. When 

sufficient implementation details are available, the design can be handed to synthesis 

tools for circuit generation [3]. SystemC synthesis tools are still under development 

by Synopsys Inc. and many other EDA vendors. 

Heterogeneous modeling is another approach that can be used to model 

hardware and software early in the design cycle. The hardware and software are 

modeled using two different languages such as VHDL and etC++. These 

representations can then be ported to CAD tools, which allow hardware-software co­

simulation for mixed language descriptions. Seamless, Eaglei, Co Ware N2C are 

examples of such tools [13, 14]. Appendix A contains Seamless tutorials to get started 

in co-simulation environment using C and Verilog. 

13 
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2.2 Validation and Co-simulation 

Validation loosely refers to the process of determining the correctness of a 

design. Simulation remains the main tool to validate a model; however the importance 

of formal verification is growing especially for safety-critical embedded systems [15] . 

Formal verification is the process of mathematically checking the behavior of a system 

described by a formal model to satisfy a given property. Simulating embedded 

systems is challenging because they are heterogeneous. In part~cular, these simulations 

contain both software and hardware components that must be simulated concurrently. 

This simulation challenge is known as the co-simulation problem. The basic co-

simulation problem is to reconcile two apparently conflicting requirements: 

• To execute the·software as fast as possible, often on a host machine that 

may be faster than the final embedded processor and certainly very 

different from it. 

• To keep the hardware and software simulations synchronized, so that 

they interact just as they will in the actual target system. 

In hardware-software co-simulation, software· execution is simulated as being 

executed on the target hardware. Since gate and register transfer level hardware 

simulations are too slow for practical purposes, a more abstract execution model -is 

needed [16]. Moreover, as systems become complex, validation is necessary to insure 

that correct functionality and required performance levels are achieved in the 

implementation of a system model. Different models can be employed with a tradeoff 

between accuracy and performance. 

14 
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• Gate-level models are viable only for small validation problems, where 

either the processor is a simple one or very little code needs to be 

executed, or both. 

• Instruction-set architecture (ISA) models augmented with hardware 

interfaces. An ISA model is a standard processor simulator (often 

written in C) augmented with hardware interface infonnation for 

coupling to a logic simulator. 

• Bus-functional models are only hardware models of the processor 

interface that cannot run any software. Instead, they are configured 

(programmed) to make the interface appear as if software is running on 

the processor. A stochastic model of the processor and the program can 

be used to detennine the mix of bus transactions. 

• Translation-based models convert the target CPU code into a code that 

can be executed natively on the computer system executing the 

simulation. Preserving timing infonnation and coupling the 

translated code to a hardware simulator are the major challenges. 

When more accuracy is required and acceptable simulation perfonnance is not 

achievable on standard computers, designers sometimes resort to emulation. In this 

case, configurable hardware can emulate the behavior of the system being designed. 

There are two types of validation during co-simulation of heterogeneous models: 

functional verification and perfonnance evaluation. During functional verification, 

software part is executed on the host processor that communicates with the hardware 

part through HDL functional model of the system processor bus. In such simulation 

15 
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e I 
If 
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environments, the simulation time is very fast because software executes independent to 

e I 
I 

the hardware simulator. To evaluate the performance of a system, VHDL model of a 

" i 
I 

generic instruction set simulator that executes the software part on a functional model of 

e t 
I 

the particu!ar microprocessor bus can be implemented. However, the simulation is 

n f 
i somewhat slower because software and hardware are synchronized to evaluate the 
~ 

Ir ~ 
; 
~ 

correct timing of system operation. A more detailed discussion in functional 
t 
~ 

I verification and performance evaluation and their simulation results can be found else 

~ 
Ir .. ; where [17] . 

d 
, 
I 

n I 
~ , One popular commercial co-simulation tool is Seamless CVS by Mentor 
~ 

n I • Graphics, which uses instruction set simulator, adapted memory, bus models and a 

I 
i target processor model to create virtual hardware environment [13]. The co-
~ 

I 
~ simulation environment of Seamless is well modeled and gives accurate results in terms 

t of timing and functionality of the entire system. Seamless tool has also brought new 
fi 

optimization algorithm during co-simulation to allow faster mstruction Set Simulation 
~ 

~ 
(ISS). The basic idea of faster ISS optimization scheme is that once a certain part of 

the system has been verified, the simulation can bypassed the verified components to 

)t validate other parts of the system (Le. instruction fetch, memory reads and ~rite cycles 

,s etc). Another similar co-simulating tool is called CoWare's N2C and the methodology 

l. of N2C can be found in [18]. In VIrtual Component Co-design (VCC) by Cadence, 
• 

~ 

i: the system behavior is verified separately from the system architecture. 
t 

Once system 

I, behavior is verified, each functional block is mapped to the system architecture. 

'e Depending on the choice of partitioning (mapping function), the VCC system calculates 

n the overall performance, and refines the architecture [19]. 
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These simulation environments rely heavily on the availability of a library 

containing processor or co-processor, communication, interface and memory models 

that may not be available. To avoid such problems, a more abstract approach is used 

by Eaglei tool to simulate only functional behavior of the system. In this case, the 

simulation is more flexible and efficient at the cost of higher abstraction and fewer 

information details (such as timing and performance). Such simulation environment is 

called Link Processor Model,. where the software runs on the host computer and 

communicates with another hardware simulating software. 

Rapid prototyping is another approach taken to design time dominated systems 

that require more than just functional verification. FPGA prototyping allows 

validating a target system yet to be manufactured. ~uch validating environment 

provides design engineers with a more realistic data on correctness and performance 

than the system level simulation. The simulation now has a physical hardware 

prototype in the loop, emulating the physical behavior of a system, which is 

implemented using FPGA technology for fast synthesis (e.g. Corsair) [9]. The only 

downside of FPGA based prototyping is its limited flexibility during co-simulation. 

Unlike system level simulation environment, FPGA prototyping does not allow single 

stepping, register value checks or break points in the middle of operations. However, 

the Rapid Prototyping Platform used by us solves this problem with the help of ARMs 

Integrator board and Multi-ICE technology. A more detail description of this 

technology is described in Chapter 5 RPP section. 
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, 2.3 Synthesis 

:I 

I 
Synthesis can be broadly described as a stage in the design refinement where a 

high level 'Specification is translated into a less abstract specification. For embedded 

r 
systems, synthesis combines the manual and automatic processes, and it is often divided 

s 
into three stages: 

:l 
• Mapping to architecture, in which the general structure of an 

implementation is chosen. 

• Partitioning, in which the sections of a specification are bound to 

s 
the architectural units. 

s 
• Hardware and software synthesis, where the details of the units are 

It 

e I 
filled. 

I 
e I 

I Mapping from specification to architectural design is one of the key aspects of ,. 
~ .s i 
I embedded system design. Supporting a designer to choose the right mix of 

y I 
I 
~ 

components and implementation technologies is essential for the success of a final 

1. ~ 

~ 

~ 
product. Generally speaking, the mapping problem takes functional specification as 

e --)I 

~ 

~ 

input and produces system architecture as an output and assignment of functions to 

r, .;g 

i 
architectural units. Architecture is generally composed of the following components. 

[s -~ 

Partitioning determines which parts of the specification will be implemented on the 
,;.~ 

is '] 

~ above components, and their actual implementation will be created by software and 

~ 
-;0 

hardware synthesis tool. 
..::c;:-

~ 
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• Hardware components (e.g. microprocessors, microcontrollers, 

memories, 110 devices, ASIC's and FPGA's). 

• Software components (e.g. operating system, device drivers. 

procedures. and concurrent programs). 

• Interconnection media (e.g. abstract channels. busses. and shared 

memories). 

The cost function optimized by the mapping process includes a mixture of time. 

hardware area and power consumption. where the relative importance depends heavily 

on the application type. Cost of time may be measured either as execution time for an 

algorithm or as missed deadlines for a soft real-time system. Hardware area cost may 

be measured as chip, board, or memory size. The components of the cost function 

may take the form of a hard constraint or a quantity to be minimized. Current 

synthesis-based methods almost invariably impose some restrictions on the target 

architecture in order to make the mapping problem manageable. For example. the 

architecture may be limited to a library of pre-defined components due to vendor 

restrictions or interfacing constraints. 

There are several types of architectural models, which use both processors and 

ASICs. Models included a processor with an ASIC, single processor with several 

ASICs. several processors with several ASICs. All systems that automatically 

synthesize circuits based on these models include an estimation system and a 

partitioning system. The estimation system allows the quick evaluation of alternative 

partitioning solutions in the design space. System partitioning allows the total task to 

19 
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be optimally shared by processors and ASICs, according to a given set of criteria 

including speed, cost or power. 

System partitioning is required for any system design using more than one 

component It is a particularly interesting problem in embedded systems design 

because of their heterogeneous hardware and software unit mixtures. Furthermore, as 

we rapidly move towards an era of low cost high-speed processors and their cores, the 

boundary between software and hardware changes rapidly. What someone would 

have said with certainty should have been implemented in hardware just a year ago, is 

probably implemented today in software for a fraction of the cost without sacrificing 

perfonnance. 

Estimation tools have been notoriously ineffective in the past Three of the 

most widely used estimation tools have been profiling, hardware area estimation and 

execution time estimation. Profiling tools are a necessity to get information on how 

long a particular segment of code takes to execute and how many times a loop is 

executed. Area estimation tools are used to assess the probable size of the hardware 

(ASIC) when it is implemented. Lastly, executi.on time estimation e~timates the 

execution time of hardware (ASIC). The tools used to estimate the size of area can be 

extremely error prone, particularly since it is difficult to estimate the interconnection 
. . 

area. The estimation error can be costly as the cost of chips (ASICS) is a step 

functional rather than linear. This situation is improved as more and more pre-

fabricated cores are used in the design, which would then reduce the total amount of 

unknown interconnection area. The time taken for a particular ASIC to execute is 
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difficult to estimate without the final layout, since the clock frequency cannot be 

predicted. Often predictions are based on the number of cycles, but this is almost 

useless without the clock cycle information. 

Exploring the most common partitioning algorithms includes greedy heuristics, 

clustering methods, iterative improvement, and mathematical programming [16, 11]. 

These partitioning algorithms are usually effective and fast. However, there seems to 

be no clear winners among theses partitioning methods. This is due to early research 

efforts in this area and the intrinsic complexity of the problem, which seems to preclude 

an exact formulation with realistic cost functions. Furthermore, these partitioning 

techniques depend on estimation and profiling tools to produce optimal partitions that 

make it quite unreliable if the estimation tools themselves .are not accurate. 

After partitioning and sometimes before partitioning in order to provide cost 

estimates, the hardware and software components of the embedded system must be 

implemented. This process is also known· as co-synthesis because ,it involves 

synthesizing both hardware and software. Generally speaking, the constraints and 

optimization criteria for co-synthesis step are the same as those used during partitioning. 

Area and code size must be traded off against performance, which often dominates due 

to the real-time characteristics of many embedded systems. Cost considerations 

generally suggest the use of software running on off-the shelf processors, whenever 

possible. This choice, among other things, allows one to separate the software from the 

hardware during the synthesis process, relying on some form of pre-designed or 

customized interfacing mechanism. However, commercial tools for system synthesis 
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are not as mature as modeling and analysis tools. Yet, because of its continuous 

demand, EDA industry and researchers are working together to meet today's market 

demand. 
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Chapter 3 

System Partitioning Overview 

3.1 Introduction 

The key phase in the discipline of hardware-software co-design is the 

partitioning of system specifications into hardware and software modules for 

implementation, while keeping the system cost at the minimum. In other words, the 

end goal of system partitioning is to minimize the hardware area, subjected to 

architectural and performance constraints such as memory size, timing constraints, 

power, etc. It is also known that such partitioning problem is NP complete, and many 

algorithms and heuristics have been developed to solve this problem. This chapter 

will discuss partitioning algorithms and heuristics that have been proposed by many 

researchers around the world to familiarize the reader in many methods and problems 

with the current co-synthesis approach. 
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3.2 Survey 

A great deal of research work has addressed the co-synthesis and partitioning of 

system with one-CPU and ASIC hardware engine architecture [20, 21]. Given such 

constraint, Potkonjak and Wolf [20] have addressed the problem of combining several 

: I concurrent tasks onto a single ASIC instead of designing a separate ASIC for each task. 

Ie They discussed an iterative algorithm that combines tasks for a single ASIC 

)r implementation based on the bit-width requirements, register counts, source and 

Ie destination locations of the task. The application-specific instruction processor 

to synthesis problem is to design a domain-specific processor by selecting the optimal . 
:s , "instruction set" for a class of applications. Typically, the class of applications is 

ly analyzed to find the most commonly used instructions, and a data path and controller for 
• 

er that instruction set is designed. Several bodies of research have addressed this 

ly problem. For instance, the optimal instruction set selection problem is formulated as 

ns an integer linear program described by Ngoc and others [22]. 

Edwards and Forrest addressed the hardware-software partitioning for 

performance enhancement by finding the bottleneck in the software and moving that 

critical region to hardware [5]. Given a C code and taking the "performance profiler" 
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of it, the hot spots of the source code can be captured. It then tries to accelerate the 

software execution by implementing the hot spots to hardware components. However, 

before such transformation, one must calculate the performance gain versus the cost 

factor. If the solution is feasible (a good performance gain), new hardware and 

modified software are generated and simulated. However, because the algorithm I 
t 

never takes the transfer of parameters and data from memory or to other hardware into 

consideration, the overall improvement has not been as great as originally expected. 

In some hardware software systems (when software is exchanged to hardware), data 

transfer times accounts for almost 50% of the HW/SW execution time. 

Another interesting solution was presented where formation of genetics was 

used to model the HW/SW partitioning procedure [23]. The algorithm takes the 

control data flow graph where nodes represent functional elements and the edges 

represent control or data flow dependencies. First the HW/SW partitioning program is 

mapped to a constraint satisfaction problem. Then the genetic algorithm is mapped to 

the constraint satisfaction problem by using a fitness function to generate successive 

chromosomes. In genetic hardware-softw~e partitioning, three types of constraints 

were used and they are cost, timing, and concurrency. The genetic algorithm uses the 
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fitness function to generate the next generation of chromosomes. Selecting two 

parents by performing crossover and mutations according to a given probability 

produces each generation. Such chromosomes are decoded to calculate their fitness. 

The main idea of genetic partitioning is that as the algorithm progresses, more stronger 

chromosomes will survive and their, children will also have higher probability of being 

fitter. The fitness functions are: 

Fitness= (FIT - coscpenalty) I FIT 

(if time_penalty=False and Concurrency _penalty=False) 

Fitness=(FIT - coscpenalty) I (FIT x Time_pen_wt) 

(if time_penalty=True and Concurrency _penalty=False) 

Fitness=(FIT - coscpenalty) I (FIT x Con_pen_ wt) 

(if time_penalty=False and Concurrency _penalty=True) 

Fitness=(FIT - coscpenalty) I (FIT x Time_pen_ wt x Con_pen_ wt) 

(if time_penalty=True and Concurrency _penalty= True) 

where 

• 
• 

• 

FIT= Maximum of the coscpenalties in a population 

Time_pen_wt and Con_pen_wt are the weight values put to emphasize the 

violation of time and concurrency constraints. 

CosCpenalty is the sum of all the devices being used as Hardware. 

The method shows improvement of the average cost improving (decreasing) as 

time progresses. It is also concluded that as the search space (design space) increases, 

the genetic algorithm performs better as compared to other greedy and forward search 

approaches. However, as of yet the algorithm does not take into account the overhead 
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of the hardware interface and inter process communication. 

Mapping and Implementation-Bin Selection (MmS) is another way of solving 

the hardware-software partitioning problem by heuristics [24]. The MmS partitioning 

also work with a graph similar to control flow graph known as DAG where nodes 

represent computations and arcs represent the data and control precedence between 

nodes. The general structure of Mms is described in Figure 3.1. The GCLP 

(Global CriticalitylLocal Phase) algorithm first traverses the DAG and maps each node 

to either hardware or software. such that an objective function is minimized. The two 

objective functions of GCLP algorithm are; 

• 

• 

Minimize finish time of the node (execution time) . 

Minimize the percentage of resource consumed by the nodes (HW area and 

SW size). 

Fixed 
Nodes 

IBS 

GCLP 
Free 
Nodes 

Figure 3.1; MmS algorithm flow chart 
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However, the above objective functions contradict each other as if one would 

like to optimize the completion time, it will require more hardware and then the 

percentage of resources consumed will not be optimum. Therefore, the GCLP 

algorithm selects an appropriate optimization objective at each step. For example, if 

time is more critical factor then the objective function with the minimum completion 

time is selected; otherwise the one that minimizes the hardware area is selected. After 

the completion of GCLP, all the nodes in the graph are selected as hardware and 

software. Then the Implementation-Bin Selection (lBS) further selects the type of 

implementation for each node. . .To select an appropriate implementation for the tagged 

node T, Bin Fraction Curve (BFC) is constructed for that tagged node. BFC is the 

curve obtained by calculating the bin fraction (BF) for each implementation is: 
• 

BF = No. of free nodes to L bin to meet time constraint / No. of free node 

Free nodes are the nodes that have not yet been mapped to either hardware or 

software, therefore for such nodes the algorithm tries to map them to H bin for 

minimizing the hardware area as long as the timing constraints are satisfactory. L bin 

are the implementation of hardware-software which takes a lot of area/size but shorter 

computation time, and H bin are the implementation of hardware/software that takes 

little area/size but longer time to compute. The free node that is not mapped to H bin 
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belongs to L bin as long as the hardware area constraints are satisfied. The main idea 

of BFC is to find the most variation in the BFC curve and selects that variable limit 

point for implementation that will result in the largest reduction in the area of free nodes. 

The MmS algorithm does not consider the communication overhead when calculating 

the objective function to minimize the completion time. Implementing nodes to L 

bins of hardware at first seems to minimize the completion time; however, introduction 

t 

I 
of more hardware to the system can increase the communication overhead that 

degenerates the completion time for the overall system. 

Another similar partitioning algorithm is ·proposed by Ondghiri and others, 

where the difference lies in the search technique [25]. Instead of using objective 

functions to map nodes to hardware and software for a particular solution, the 

hierarchical design space is explored to provide various solutions. The hierarchical 

design space search is done by varying its granularity level. Variation in granularity. 

allows the designer to start with an input behavior at the process level. If the 

performance constraints are not satisfied, finer granularity is selected to increase the 

number of basic blocks. This operation is performed gradually by accessing 

successive levels in the hierarchy of the input system. The most complex model of the 
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a input system (operation level) is used only when the performance constraints are not 

it satisfied by the higher complex model. Granularity feature in a co-design tool 

:s. provides an enlargement of the design space and avoids the use of a detailed and 

g complex model unless the required performance is not reached by using simpler models. 

L The analysis of this algorithm showed that too abstract or complex model did not 

In provide an optimal balanced solution in general, and there exist an optimal solution at 

at some level between the two extreme levels. 

Most of the partitioning .algorithm worked first from the software side and tried 

rs, I 
I 

to move the critical region of the software to the hardware component. The next 

t 
! ve ? ; partitioning algorithm introduced by Togawa and others tries to do the opposite [26]. 

• 
:1 

he 
i 
i Given an input assembly code generated by the compiler, the hardware-software 

J 
::al 

~ 
1 
~ 

partitioning algorithm first determines the types and number of required hardware units 

'l 
ity as an initial resource allocation for a processor core (such as multiple functional units, 

the hardware loop units, and particular addressing units). Then the hardware units 

! 

the determined at initial resource allocation are reduced one by one while the assembly 

ing code meets a given timing constraint. The execution time of the assembly code 

the becomes longer but the hardware cost for a processor core to execute it becomes smaller. 
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Finally, it outputs an optimized assembly code and a processor configuration. In this 

partitioning environment, the solution will produce an optimal processor core for a 

particular assembly code and only for that assembly code. Hence, the processor's 

performance is limited to one particular type of application. 

It is clear now that hardware-software partitioning can be considered as a 

process that can be performed by means of different algorithms. like adaptation of 

classical circuit partitioning algorithms [21, 27], standard optimization methods of 

simulated annealing [28] and Tabu search [12]. The constraint-driven system 

partitioning algorithm presented by Lopez-VallejO" and others however suggest the use 

of a powerful cost function to consider system constraints in the hardware-software 

partitioning process [29]. This is performed by formul~ting different cost functions 

that will drive the partitioning process. The use of complex cost function allows the 

algorithm to capture more aspects of the design. Another strong point of the proposed 

cost function is its generality and therefore, it does not depend on the problem and can 

be easily extended for considering new design constraints. The cost matrix function 

described by Lopez-Vallejo is general enough to be used in any partitioning algorithm 

that considers partitioning as a constraint satisfying problem [29]. 
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is 

a The other researchers have also considered the hardware-software partitioning 

's problem as constraint satisfying problem. The partitioning method by Hardt is based 

on design specification analysis under the restriction of defined architecture and 

interface in order to make hardware-software partitioning problem feasible [4]. This 

restriction is acceptable as there are many systems built from a standard architecture for 

general purpose computations. During specification analysis, a design is thought of as 

a set of interacting modules. The suitability of each module for hardware 

implementation is examined during the four phases . . 
• The analysis phases take static aspects (SA) 

• Dynamic runtime characteristics (DA) 

• Parameter transportation costs (PA) 

• Main memory access (MA). 

These specification analysis phases result in a cost vector 'I'=(SA,DA,PA,MA) in which 

the partitioning algorithm tries to minimize '1'. 
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3.3 Summary 

From all the partitioning technique discussed, most of the methods take static 

aspect fonn of the constraint satisfying problem by optimizing certain cost matrix 

function. Furthennore, most of the partitioning algorithms would take either 

dependency graph or execution graph as an input to generate a new set of partitioned 

graph of hardware and software. The solutions presented, however, only seems to 

work in ideal cases, as the hardware-software partitioning problem is still too 

complicated to deal with the actual implementation issues such as delays, 

communication overhead, interface overhead, etc. Hence, for a commercial product to 

exist, hardware-software partitioning solution must deal with the implementation issues. 

The DADGP algorithm presented in this thesis verifies the perfonnance of the 

algorithm in simulation, and also in actual implementation to fully validate the proposed 

approach. 
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DADGP-BASED HW/SW PARTITONING 

4.1 System Specifications 

We use textual representation for specification and graphical representation for 

system partitioning and scheduling to incorporate the possibility of ever-changing 

demand. ac++ is used as the initial system specification language, and through 

profiling, the system specification is converted into DADGP representation for 

partitioning. SystemC can also be easily incorporated into our approach for future 

improvements. The high lev61 system specification is translated into ac++ in the 

form of modules so that each module can be evaluated and mapped to the process space 

during profiling (similar to SystemC). The translation levels of specification to 

modules are also referred to as granularity level. Every system is made up of small 

and large modules, and in order to partition a system, the level of system modules must 

be decided. For example, during the block matching step of MPEG, sum-of-absolute-

differences are calculated to measure the similarity between the macroblock and image 

search area. If one is to develop an IP block to calculate the sum-of-absolute-

differences, equation 4.1 is first translated into C/C++ specification, where the 
• 

granularity level is selected as sub, abs and sum modules. The partitioner will then use 

the information provided in Figures 4.1a and 4.1b to generate the initial DADGP as 

shown is Figure 4.1c (initial DADGP solution). Other granularity level can be 

selected to gain different sub optimal partitioning results. 
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I IIM(i,j)-S(ix,jy)1 
IS; jSn sum-of-absolute-differences 

Figure 4.1a: Data table 
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Figure 4.1 b: C specification of blocl\ matching algorithm 
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I' 
4.2 DADGP Graph Representation 

Graphs are discrete structures consisting of vertices and edges that connect 

these vertices. There are several different types of graphs that differ in terms of type 

and number of edges that connect pairs of vertices. Problems related to most of the 

disciplines can be solved using graph models. We show in this thesis how a DADGP 

graph is used to solve a hardware software partitioning problem. First of all, we 

introduce a formal definition of DADGP to understand the structure of this graph. 

4.2.1 Formal Definition 

A graph G is a pair (y, E), wher.e V is a set of vertices, and E is a set of edges between 

the vertices such that: 

E ~ {(u,v) I u, v ev}. 

There are also two types of edges E, directed edge (D and undirected edge (U) 

Where: 

D= {dl ... dn }, and the other non-directed precedence edge 

u= {UI ••• Um } to connect vertex V. 

The graph G is connected with a directed edge if and only if the two vertices . 
have producer consumer relationship. For example if vertex VI produces data that 'is 

required by V2 then VI and V2 are connected by a directed edge dl. The graph vertices 

are connected with undirected precedence dependency edge if and only if the two 

vertices are independent of each other in terms of data generation and consumption. 
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For example, if vertex VI produces data and V3 does not require such data to compute its 

own, then vertex VI and V3 are said to be independent. 

The vertex and edge of a graph G can also be weighted. Vertices are weighted 

in terms of their execution time. Furthermore, a vertex can represent either software 

functional node or some hardware functional node (ASIC), and its appropriate execution 

time values are assigned to each vertex. Every edge is also weighted to model the 

communication between two vertices. For example, if vertex VI produces 32 bits of 

data that is required by V2 then the weighted value of edge d l (that connects VI and V2) is 

32 divided by the data transfer rate. Undirected edges will have weighted value of 

zero since there is no data transfer required between vertices that are connected with 

undirected precedence edge U. 

Finally, the graph G can not have any circuits or circular path. For example, 

from any vertex of G, there can not be any path that has the same starting vertex and 

ending vertex (starting vertex is a node where· the path begins, and ending vertex is a 

node where no more edges exists). Where path, P = {PI ... Pz}, and p is a set of distinct 

vertices and edges that are connected to each other with edges D or U. The graph that 

follows these definitions can be called Directed Acyclic data Dependency Graph with 

Precedence (DADGP). A more detailed operation· that can be performed with 

DADGP will be discussed in the following chapter. 
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4.3 Hardware-Software Partitioning Algorithm 

System partitioning algorithm described in this section can be divided into three 

major components. 

• Profiling of C++ 

• LD path search (Longest Delay) 

• Mapping of LD path and Scheduling 

The last two steps are repeated until an adequate solution is reached. A more detailed 

explanation of LD path search method is provided in this section. The proposed 

partitioning system flow chart is also shown in Figure 4.2 with the following 

assumptions: 

• Initial target architecture of one processor core. 

• Every node is executable with at least one PE. 

• All nodes can be implemented as either a hardware or a software 

module. 

• Inter PE communication is measured by the amount of data transferred, 

where transfer rate is same for all nodes. Communication' overhead is 

zero for nodes that are executed by the same PE. 

• The partitioner has all the necessary information including execution 

time of each node on different PEs, cost of adding PE, inter PE 

communication between all PEs, and initial system constraints (required 

system execution time and maximum hardware area). 
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Profiling 

Figure 4.2: DADGP design flow 

4.3.1 Profiling 

Profiling is performed by executing C++ based system specification on the 

target processor. The software profiling is a useful step as we must check whether an 

all software solution is acceptable. If we translate the system specification into 

software that can fulfill the deadline requirements on the target platform then system 
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partitioning will not be necessary. However, in most of the cases, all software solution 

may not be possible for high performance real-time embedded systems and hardware 

software partitioning step needs to be performed. It is also vital to execute the C++ 

based system specification on the actual target platform to accurately collect the 

profiling data. This method also naturally considers SW -SW cominunication 

overhead between two software tasks, and is included as part of the module execution 

time. 

The profiler translates each module of C++ system specification into nodes with the 

following information: 

• Execution time of each module 

• Start and end tiine of each module 

• Amount of data transfer 

• The caller(s) of the module 

• The child(s) of the module 

• Module identification 

• Execution order 

The profiler uses the above information to generate the DADGP. The unique 

characteristics of DADGP is that it contains two types of edges to represent the system. 

• Data dependency edge 

• Precedence dependency edge 

The data dependency edge is represented with an arrow symbol as shown in Figure 4.1c. 
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Two nodes are connected with data dependency edge when they have a producer­

consumer relationship. The precedence dependency edge is represented by a normal 

line to connect two independent nodes. The precedence dependency captures the 

order of execution between nodes and such nodes can be executed in parallel if desired. 

A more detailed discussion on DADGP is provided as part of mapping and scheduling. 

4.3.2 Mapping and Scheduling 

DADGP is a super set of Directed Acyclic Graph (DAG). with the only 

difference of having two types of connecting edges. Our contribution to DAG is the 

introduction of precedence dependency edges to explicitly represent the independence 

and the execution orders between nodes. The I?AG representation is not 

algorithmically friendly to capture non-parallel ex~utions of independent nodes for 

hardware-software partitioning. Exposing the independence and introducing 

parallelism between independent nodes are not always the best decision when 

optimizing the execution time of a system due to inter PE communication overheads. 

The incorporation of DADGP to our partitioning method has allowed us to only expose 

the necessary parallelism for capturing wide rage of solutions. 

The Longest Delay path (LD_path) represents the longest execution route in a DADGP. 

LD _path is not just determined by the number of node hops. but it also depends on the 

execution time of each node and corresponding inter PE communication overhead as 

seen in equation 4.2. • 
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(4.2) 

where node niE {nl ... nN } and they must be connected with any type of edges ejE E 

(all edges D or U). 

p={ ni ••• nN, ej ••• eN-I} is a path from one root to any ending node. 

P=( PI ... PM } is a collection of all paths from one root to any ending node. 

M is the total number of paths in a given graph. 

LD_path can be found with the following equation. 

LD Path= Max [LD time (Pi)] 

where k varies from 1 to M. 

(4.3) 

Finding an LD_path in a DADGP is similar to finding a bottleneck in the 

system. The LD _paths are used to improve the overall execution time by mapping 

one of the 'LD _path nodes to hardware. A repeated searching and mapping of 

DADGP reduces the search space and improves the convergence rate for an optimal 

solution. 

The LD_path searching algorithm is given below. 

L = { II ... IN}; IIset of all leaf nodes in a DADGP 
for ( i = 1; i++; i <= N ) lIN is the total # of leaf nodes 

P = Find_path(li); l!Finds all unique path from Ii to root(s) 
II now set P has all the paths from leaf to root 

max =0; 
for ( i = 1; i++; i <= M ) 11M is the total # of path{ 

temp = LD_time( Pi); 
if ( temp> max ) then{ 

max = temp; 
path = Pi; 

} 
} II After checking all path maximum delay path is found 
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4.3.3 Mapping and Scheduling of DADGP 

This is the most sophisticated and important step of our partitioning algorithm. After 

finding the LD_path, one of the nodes in the path is mapped to the optimal hardware. 

However, to make such critical decision, following factors must be taken into 

consideration. 

• Parallelism in DADGP nodes 

• PE resource limitation 

• PE Execution time of nodes 

• Inter PE communication 

• Hardware area (cost) 

The PE can be a dedicated hardware unit or -a software task being executed on a 

processor. The algorithm starts by finding the LD_path from a given DADGP and the 

execution time of LD...:.path is also calculated. All the nodes in the LD_path are 

mapped to appropriate hardware, one at a time and scheduled to calculate the overall 

system execution time. A node that allows maximum improvement of system 

execution time is finally mapped as hardware and the DADGP is updated according to 

the final mapping decision. This process is repeated for all the LD -paths as explained 

in the partitioning algorithm given below. 
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LD _path = { n1 ••• n A ' e1 ••• e B } II A is the total number of node, and 
lIB is the total number of edges 

Previous_system_EXE = 00; II highest allowable value by the system 
while « System_EXE > Required_EXE) AND (CurrencHW _area> 
Required_HW _area)) 
{ 

LD_path = Find_LD_path (graph); llfind the LD_path from a given graph 
LD_path_EXE = LD_time (LD_path); IIcalculated the execution time of 
LD_path 
Min_EXE = 00; II highest allowable value by the system 
for ( i = 1 ; i++ ; i <= A ) { 

G = map (DADGP, n j ); 

IIwhere G is a new DADGP with the node njE LD_path nodes mapped 
lias HW. 

(EXE, S, G_prime) = schedule (G); 

II G_prime = updated G 
II S = schedule of G 
II EXE execution time of G 
II schedule details are given in the schedule algorithm below 

if ( EXE < Min_EXE ) then { 

Min_EXE = EXE;llsave the current optimal execution solution 

graph = G_pnme;ll save the current partitioned DADGP 

Final_S = S;llsave the current schedule result after a valid IImapping 

} 

} II successfully found a node to be implemented as h3fdware 

if ( previous_system_EXE < Min_EXE ) then 

return (graph); IIreturn current partitioned graph 

IIsystem could not be improved any further, and it could IInot satisfy 
the given constraints. 

previous_system_EXE = Min_EXE; II save previous solution 

} II now the solution is found and the algorithm is terminated normally 
return (G, FinaCS); II return currently partitioned graph with its scheduling 
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The scheduling function "schedule (G)" is summarized as: 

a) Start scheduling from the root of DADGP. 

b) Traverse down the tree and schedule the earliest starting time node. 

c) If a node is connected with precedence dependency edge, check to see 

whether exposing parallelism can eliminate that edge. If a precedence 

dependency edge is eliminated, the structure of the DADGP may change and 

some nodes can be disconnected from the original graph resulting in two 

separate DADGP. In this case, the new root of the disconnected DADGP 

must be combined to make one DADGP by connecting it self and the 

original root to a new dummy node called "start". 

d) If multiple descendents (or roots) exist, force schedule all descendents (or 

e) 

roots) by adding necessary PE if required. 

Update PE resource library and generate the total execution time by using • 

the following equation: 

where, nj _exe = execution time of a node that is currently in interest, 

HW _exe = HW execution ,time of node nj • 

IPC = Communication value introduced by mapping node n, to 

additional HW, hidden_node_EXE = smaller execution time value between 

two parallel modules. 
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4.3.4 Complexity of the Algorithm 

One measure of efficiency of an algorithm is the time used by a computer to 

solve a problem by using the algorithm for a specified input value. A second measure 

is the amount of memory required to implement the algorithm when input values are of 

a specified size. An analysis of the time required to solve a problem of a particular 

size determine the time complexity while analysis of the computer memory required 

involves the space complexity of the algorithm. The time and space complexity 

analysis of an algorithm is essential for its implementation. It is obviously important 

to know whether an algorithm will produce the answer in microseconds, minutes, or 

years. Likewise, the required memory must be available to solve the problem. 

Considerations of space complexity are tied with the data structures used to implement 

the algorithm. We assume that enough memory resources are available as the 

proposed partitioning algorithm has already been implemented and executed without a 

memory deficiency. Hence, space complexity will not be' considered and we will 

restrict our attention to time complexity. 

Time complexity is described in terms of number of operations required instead 

of actual computer time because of the difference in time needed for different computers. 

Moreover, it is quite complicated to break down all the operations to the basic computer , 

operations. Furthermore, . the fastest computers in existence can perform basic bit 

operations (for instance add, mUltiply, compare, or exchanging) in nano seconds but 

personal computers may require micro seconds that takes 1000 times longer to perform 

the same operation. 
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For simplicity, assume that there are n=2k paths in the DADGP graph where k is 

a nonnegative integer and k=log(n). If n is the number of paths in the graph and it is 

not a power of 2, then the graph can be considered as part of a larger graph with 2k+l 

paths where 2k<n<2k+l where 2k+l is the smallest power of 2 larger than n. Therefore, 

at maximum the algorithm will take log(n) times to find the LD_Path. Mapping 

procedure only considers nodes in the LD_path and therefore the complexity of 

mapping algorithm is just the number of vertices in the LD _path, and this is bounded by 

N, which is the total number of nodes in the DADGP graph. 

Scheduling algorithm also traverses down the DADGP and schedules the entire vertices 

(nodes) according to the resource availab~lity and verte~ start time. Therefore, the 

complexity of the scheduling algorithm is also bounded by N because it can not 

consider more vertices than what is in the DADGP. In such cases, the complexity of 

the entire algorithm from LD_path search to mapping and scheduling is N X N X 10g(N) 

because LD path search, mapping and scheduling is iterative process of the partitioning 

algorithm. 
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Chapter 5 

Experimental Results 

Heterogeneous system architectures are commonly found in high performance 

embedded systems. They are application specific systems that contain hardware 

and/or software tailored for a particular application. General and special purpose 

processors, digital signal processors, and ASICs are among the many components of 

these systems. In these systems, heterogeneous processors are tightly coupled with 

low inter-process communication (IPC) overhead but with heavy resource constraints. 

Therefore, the schedulers for such heterogeneous systems need to account for IPC 

overhead and processor heterogeneity where a task has different execution times on 

different processors. Task scheduling for homogeneous multi-processors has been a 

difficult problem in the past while scheduling problem for heterogeneous processors is 

much more difficult. 

In this chapter we present experimental results showing the validity of DADGP 

based partitioning algorithm. First of all, we begin with a brief overview of two 

simple yet well known partitioning and scheduling algorithms: General Dynamic 

Level [18] and Simulated Annealing technique [12]. Secondly, these two techniques 
. 

are implemented and a performance comparison of these algorithms with DADGP 

technique is presented by using randomly generated graphs as their input. Lastly, the 

results from two application implementations to the actual hardware-software system 

are shown to compare the simulated partitioned results. Block matching and SOBEL 
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edge detection applications are partitioned using the DADGP technique. They are 

implemented using a Rapid Prototyping Platform (RPP) containing an ARM7 processor 

and Xilinx FPGA for custom hardware. 

5.1 GDL Scheduling Technique 

·The GDL scheduling takes a standard DAG as an input task graph. A DAG 

node represents a task to be executed on a processor and a directed edge indicates the 

data dependency between two nodes. Each edge is associated with a number that 

specifies the amount of IPC overhead. The algorithm assumes that the execution time 

of a node Nj on a processor Pj, E(Nj,Pj), is known at compile-time for each processing 

element If node Nj (task) cannot be executed on proce~sor Pj, the value of E(Ni,Pj) is 

infinite (a very high number). This occurs when processor Pj has no resource or 

instruction for node Nj. The algorithm also assumes that the target architecture has a 

dedicated hardware for IPC so that inter-processor communication time can be 

overlapped with computation time in a schedule. An example DAG and its node 

execution-time table is shown in Figure 5.1. 

PEO PEl PE2 

Cost=: 20 Cost=:40 Cost=:50 

A 3 6 3 

B 2 7 9 

C 5 5 1000 

D 1 2 1 

E 10 2 1000 

Figure 5.1: An example of DAG and its node execution time table 
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The scheduling objective of GDL is to minimize the scheduling length of the 

input DAG. The scheduling problem is NP-hard in the strong sense and therefore it 

relies on heuristics. GDL algorithm is one of the existing scheduling heuristics for 

heterogeneous scheduling problem and it is based on the list scheduling idea [18]. 

Each node is assigned a priority and GDL calls a node runnable when its ancestor nodes 

have been already scheduled. The list scheduling schedules the runnable nodes in the 

decreasing order of priority. The variants of list scheduling techniques differ in terms 

of how to assign priorities to the nodes and on which processor a selected node is to be 

scheduled. 

The schedule length can not be less than the maximum length (or critical path 

length) of a node to the terminal node. Therefore, to minimize the schedule length, it 

is intuitive to assign the highest priority to a node from the longest critical path length. 

The critical path length of a node is the sum of execution time of nodes on the critical 

path and the IPC overheads incurred if these nodes are assigned to different processors. 

The IPC overheads are not known before the descendant nodes are scheduled, therefore 

a typical list scheduling technique considers only the' sum of execution times on the 

critical path to determine the priority of a node. We call it the static level SL(Ni) of a 

node. The static level of a node becomes the critical path length if all nodes on the 

critical path are scheduled to the same processor. In a heterogeneous system, however, . 
a node has different execution times on different processors. If we choose the smallest 

execution time of a node in the static level computation, it may not be possible to assign 

the node to the same processor as its ancestor. In this case, ignoring the IPC overhead 

is problematic for heterogeneous systems. Therefore, the GDL scheduler defines the 
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assumed execution time of node Nj, denoted by E*CNj), as the median execution time of 

node Ni over all the processors.· If the median execution time is infinite, the largest 

finite execution time is substituted. 

The GDL scheduler considers the effects of IPC overhead by adjusting the 

priority level when the node becomes runnable. DACNj,Pj) is defined to be the earliest 

time that all data required by node Ni are available at Processor Pj, where IPC overhead 

is accounted for. TF{Pj) is further defined as the time that the last node assigned to the 

jth processor finishes its execution. The node Ni can not be scheduled before TCNi,Pj), 

which is the maximum of DACNi,Pj) and TF{Pj) for processor Pj. To account for the 

varying processing speeds, they also defined ~CNi,Pj) = E*CNi) - E(Ni,Pj). A large 

positive ~(Nj.Pj) indicates that processor Pj executes node. Ni more rapidly than most of 

the other processors, while negative value of ~(Ni,Pj) indicates the opposite. By 

incorporating these terms, they first extended the static priority level to the dynamic 

priority level DLICNi,Pj) as given below: 

DLICNj,Pj) level gives a higher priority to a node with regard to processor Pj. 

Higher static level means that it can be scheduled earlier or the it can be executed faster. 

Although DLI CNi,Pj) indicates how well node Ni is matched with processor Pj, but it 

fails to consider how well the descendants of Ni are matched with Pj. If a descendant 

node of Nj can not be scheduled on Pj due to resource constraints, the IPC overhead 

between node Ni and its descendant should be considered to estimate the cost of 

assigning Nj to processor Pj. From this observation, GDL scheduler selects a 
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descendant of a node with the largest IPC overhead D(Nj) and another function 

F[Nj,D(Ni),Pj] is defined to indicate how quickly D(Ni) can be completed on any other 

processor if Nj is executed on Pj. Then, the effects of descendants on the level of node 

DC(Nj,Pj) roughly indicates how well the "most expensive" descendant of node 

Ni matches with processor Pj, if Ni is scheduled on Pj- Incorporating the descendant 

consideration term modifies the level of a node on processor Pj as: 

In addition to the descendant consideration effect, a heterogeneous processing 

environment also introduces a cost associated with a node if it is unable to be executed 

on a certain processor. To characterize this resource scarcity cost, they selected an 

optimal processor Pj* on the second best processor to maximize DL2(Ni,Pj). Then 

the "generalized" dynamic level is defined as: GDL (Ni,P) ~ DL2(Ni, Pj*) + C(Ni). 

The second term indicates an increase in the dynamic level if the node is forced 

to be scheduled on the second optimal processor. Now GDL scheduling technique 

selects the runnable node of highest priority or highest GDL value. Figure 5.2 shows 

the overall flow of GDL algorithm. 
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NO 

System Functionality 

Profiling 

DAG 

Calculate Priority with GDL 

Schedule highest priority 

YES 

c::::> Finish 

Figure 5.2: GDL algorithm flow chart 

5.2 Simulated Annealing Based Partitioning 

The idea of simulated annealing originated from metal processing. Annealing 

in metal processing is how a liquid becomes progressively more organized into a solid 

as the temperature falls slowly. Metropolis formalized this into an algorithm shown in 

Figure 5.3 [30]. Simulated annealing is similar to the well-known greedy algorithm 

[31] except for two key differences. Both incorporate the concept of neighbor (nodes), 
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which is created by making some changes to the current solution. However, the 

greedy algorithm always follows the neighbor with the largest gain, whereas simulated 

annealing picks random neighbors. In addition, the greedy algorithm will never 

accept a neighbor with a higher cost. On the other hand, simulated annealing may 

accept a neighbor with higher cost, depending on the gain, temperature, or a randomly 

generated value. These differences have important implications; while the greedy 

algorithm will always find the local minimum, simulated annealing attempts to find the 

global minimum. The other implication is that simulated annealing depends on 

random numbers that makes it probabilistic in nature. As simulated annealing can be 

adapted to a multitude of problems, one has to adapt the algorithm for system 

partitioning. Our basic implementation of the simulated annealing algorithm is fairly 

straightforward as shown in Figpre 5.3. 

Main course of Simulated Annealing events can be summarized in 4 steps: 

i. Starts with an initial partition and an initial simulated temperature 

ii. The temperature is slowly decreased 

iii. For each temperature, random moves are generated 

iv. Any cost-improving move is accepted. Otherwise, it may still accept the move, 

but acceptance becomes less likely at lower temperatures as given below 

• Accept( ~cost, temp ) returns 1 if the move should be accepted, otherwise it 

returns a value in the range of [0,1] 

• Decrease Temp (temp) is often defined as 

temp_new = a x temp_old; where 0 < a<l 

• Equilibrium can be approximated as no improvements for some number of 

iterations 
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temp= initial temperature, cost=Objfct(P) 

while not Frozen loop 

while not Equilibrium loop 

P_tentative = RandomMove(P) 

cost_tentative = Objfct(P_tentative) 

~cost = cost tentative - cost 

if( Accept(~cost,temp) ) > Random(O,l) ) then 

P = P_tentativecost 

cost cost tentative 

end if 

end loop 

temp=DecreaseTemp(temp) 

end loop 

where: Accept( dCOSt, temp) = min( I, e-(~ost/temp») 

Objfct(p) returns a cost value of current partition P, and cost represents systems 

execution time and hardware area 

Figure 5.3: The basic simulated annealing algorithm. 

5.3 Software Simulation 

To compare ~e perfonnance of our DADGP based partitioning algorithm, we 

have implemented GDL and Simula~d Annealing algorithms. Each partitioning 

algorithm have been given the same set of randomly generated DAG ranging from size 

3,9, 100,250, 500 to 1000, and their results are presented here. The DADGP based 

partitioning algorithm has also been given the same set of graphs except that the DAG 

graph is first converted into DADGP (refer to Chapter 4.2 for detail). 
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The experimental results for DAG graph of size 3 is shown in Figure 5.4, which 

demonstrates the ability of DADGP partitioning algorithm that considers mUltiple 

descendants indirectly without the added complexity of their calculations. 

Considering GDL algorithm [18] and its complexity, the scheduling inherits the 

traditional weakness of conventional list scheduling where global effect of scheduling 

decision is not measured properly. The GDL scheduler improved on list scheduling 

by quantifying the scheduling effects on the descendants of a node. However, 

considering just the first descendants is not enough to measure the global effect. 

Consider DAG graph of Figure 5.4 .and its corresponding parameters for GDL algorithm 

whose scheduler results are presented in Figur~ 5.5 in the form of Gantt chart. After 

scheduling node A, the GDL fails to consider the effect of processor selection for node 

C. GDL algorithm can only Jook up to node B (first descendent) as it schedules node 

A on processing element PEO hoping that it will also assign node B to PEO in the next 

iteration. However, the final scheduling result suffers from a large inter-PE 

communication overhead between A and B as node B is scheduled to processor PEl 

considering node C's execution time on processor PEO in the next iteration. 

Tasks PEO PEl 
Cost=20 Cost= 50 

A 1 .2 

B 2 2 , 

C 20 1 

Figure 5.4: DADGP without Precedence 
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PEO A 

PEl 
B c 

11 13 

Figure 5.5: GDL Scheduled Results 

The DADGP initial graph is obtained in Figure 5.6 which is exactly the same as 

the DAG of Figure 5.4 because the graph does not have any precedence dependency 

edges and hence no parallel execution is possible. Obtaining the LD-path is also 

simple because there is only one path. DADGP then tries to find a node that can 

improve the overall system execution by mapping tasks to another PE (Processing 

Element) assuming that PEO is the target processor (soft,,:are) and PEl is the additional 

PE (ASIC, Processor, etc). Then the initial DADGP is given in Figure 5.6 our 

algorithm assumes that all nodes are initially executed as software (on PEO). The 

partitioner will first move node C to PEl to reduce the total execution time (C is the 

Min[EXED. In the next iteration, node B is moved to PEl to reduce inter PE 

communication overhead between Band C. In the third iteration, node A is finally 

moved to PEl to reduce the inter PE communication overhead, and the optimal 

scheduling is obtained as shown in figure 5.7. 

Figure 5.6: Initial all software DADGP solution 
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PEl 

B c 
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Figure 5.7: DADGP Solution 

Simulated Annealing algorithm also arrives to the optimal solution by assigning 

and scheduling the entire task to processor Pl. However, due to the selection of 

random neighbors in simulated annealing, execution of simula~ion mUltiple times with 

the same data has given different results. But only the best results have been recorded. 

The experimental results for bigger sized graph have been recorded and are shown in 

Table 5.1. The perfonnance gain is defined as the ratio of non-optimized execution 

time over optimized execution time of DADGP. Cost is the amount of hardware 

required, and simulated time is the time it takes for completion of simulation, and 

execution time is the target system execution time based on the partitioned results. 

The random DADGP graph generated for 9 nodes can be seen in Figure 5.8a. The 

optimal solution obtained with DADGP based partitioning algorithm is shown in Figure 

5.8b. 

In comparing the perfonnance gain of these three algorithms, DADGP has 

shown outstanding results as shown in Figure 5.9. For smaller size graphs, all three 

algorithm have shown similar results in tenns of performance gain ratio. This is 

expected because the solution space for such a small graph is limited. The difference 

appeared when the graph size is increased to 9 or more nodes. In fact, GDL algorithm 

has shown lower perfonnance gain with the increase in graph size. These results 

. ,"" :~; -----
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show that GDL is suffering from wrong decision making as it can not consider multiple 

levels of descendants. Simulated Annealing has shown almost constant performance 

gain across different sized graphs. DADGP, however, shows increase in performance 

gain as number of nodes are increased. This characteristic is very desirable because 

increase in graph size means that there are more opportunities for improvements, and 

DADGP algorithm is exposing various solution spaces. 

1 

2 
(b) Optimal Solution 

(a) Initial DADGP 

Figure 5,8: Randomly generated Graph (9 nodes) 

59 

J 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table 5.1: Software Simulated Comparison Experiment Results 

DADGP flofNodes Cost Exe Time Simulated Time Performance Gain Ratio 

3 50 5 0.2s 4.4 

9 195 18 0.43s 5.5 

100 400 7350 15.4s 9.9 

250 350 12250 71.3s 14.86 

500 600 19015 271.25s 19.14 

1000 550 29400 486.1s 24.76 

GDL 

3 70 14 0.6s 1.57 

9 125 38 2.01s 2.63 

100 220 20472 237.16s 3.56 

250 320 60142 601.2s 3.03 

500 370 205422 1363.67s 1.77 

1000 570 314721 3954.64s 2.31 

SA 

3 70 5 0.72s 4.4 

9 95 34 0.89s 2.94 

100 200 . 18021 20.1s 4.04 

250 360 40124 100.5s 4.53 

500 550 80804 324.4s 4.5 

1000 770 80984 501.4s 8.99 

Where Exe Time is execution time of partitioned system when scheduled. 

Simulation time is the time it takes for an algorithm to partition a given system. 

Performance gain ratio is Exe Time of all software solution over partitioned solution.: 
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PRam 

100 250 500 

Nodes 

aDADGP DSA 

Figure 5.9: Perfonnance gains 

The next important result is the simulated time. DADGP algorithm shows 

improvement on all graphs, but it is also important that the algorithm is executed in a 

reasonable time. Figure 5.10 shows the simulated time for all three techniques vs. 

graph size, where· DADGP method again indicated its superiority. The GDL 

algorithm indicated slower simulation time due to its O(N3) complexity. As the 

number of nodes increases in the graph, the simulated time increases exponentially. 

The runtime of DADGP and Simulated Annealing provide good results through out the 

experiment, keeping the simulated time below 10 minutes for a Pentium m 600Mhz 

processor under the worse case scenario. 
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Fi~re 5.10: Simulated time 

It is important to note that performance gain must come with a reasonable price, 

and this is evident in Figure 5.11 that shows the performance gain for DADGP 

algorithm. On average, DADGP solution is always expensive than GDL, however, 

increase in performance gain can compensate for its cost. The DADGP algorithm 

explored parallelism in the system to increase the performance; therefore, there must be 

additional components in the system to accommodate tasks concurrently. The 

difficulty is to explore those parallelisms in the order of maximum performance gain 

with minimum cost. GDL algorithm seems to show the inverse relationship to maximize . 
performance gain. It provides improvements to the system, but with more hardware 

components than necessary. Combining the results of Figures 5.9 and 5.11, we can 

derive another important hardware to performance ratio as shown in Figure 5.12. The 

hardware cost to performance ratio indicates the performance gain of the system by 
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adding more gates to the system. The results indicate that as system becomes more 

complicated (bigger), it is more difficult to increase its performance by adding extra 

hardware as shown with SA and GDL algorithms. However, DADGP algorithm has 

shown increase in this ratio indicating that the algorithm can add necessary hardware to 

increase the performance. The results are also related to maximum performance 

bound as addition of more hardware after curtain performance boundary will only 

degenerate the system. 

No.of 
gates 

9 

1'1 DADGP 

100 250 500 

Nodes 

Figure 5.11: Hardware area cost 
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Figure 5.12: Hardware cost - Performance ratio 

5.4 Rapid Prototyping Platform 

Rapid-Prototyping Platform (RPP) consists of an ARM7 CPU and FPGA based 

hardware components to enable the prototyping and design of embedded systems. 

The RPP features two or more daughter cards, housed on a motherboard (ARM's 

Integrator/ AP board) that are: 

• The ARM7TDMI core 

• A re-programmable hardware module, featuring a Xilinx Virtex-2000E 

FPGA. 

The Integrator board allows stacking multiple cores (e.g. ARM7, ARM9) and logic 

modules (Xilinx or Altera) as shown in Figure 5.13. RPP provides a software-

'I programmable processor ,as well as hardware modules. The design flow for the RPP 
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involves both software and hardware design tools. Figure 5.14 demonstrates the flow 

from specification to integration of hardware and software designs on the RPP. 

Chip capacity continues to increase at an exponential rate and designs increase 

in size and complexity (e.g. embedded processors, third-party IP, mixed-signal 

components), design verification and proof of concept have become significant 

bottlenecks. The Rapid Prototyping Platform by ARM makes use of several key system­

on-chip (SOC) concepts to enable researchers to prototype their designs quickly and 

with higher confidence. In the past. simulation was often sufficient means to verify 

the proof of concept. However, with increase in chip complexity, simulation of large 

designs require many millions of clock cycles. The incorporation of embedded 

processors on a chip amplifies the problem of simulating embedded software on 

mUltiple processors. To address these problems, rapid prototyping systems with high­

capacity FPGAs and embedded processors are challenging the role of simulation for 

system-level verification. What may take days to simulate at cycle level accuracy can be 

reduced to several hours through the hardware-assisted simulation of hardware-software 

system. 

Figure 5.13: RPP (source CMC website) 
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In the research community, ASIC implementation has often been used to 

demonstrate the proof of concept. A design that can be implemented on an ASIC may 

be ported quickly to an FPGA-based rapid prototyping system, and what is lost in 

design performance can be regained in engineering time. Assuming first-pass success of 

the design, ASIC implementation of a typical industry-capacity design requires longer 

engineering time, while FPGA implementation requires much shorter time. Furthermore, 

with almost 40% likelihood of a design re-spin, implementing to FPGA again saves 

engineering time, as each re-spin adds approximately 20% more engineering time to the 

entire design cycle [9]. 

To accelerate the process of achieving proof of concept, rapid prototyping 

systems effectively utilize the concept of reuse, which is the driving force behind the 

SOC revolution. In SOC context, re-use takes two forms: software re-use and hardware 

re-use. Both of these are achievable with the rapid prototyping platform and both are 

presented in RPP design flow in the form of Intellectual Property (IP) libraries (see 

Figure 5.14). Rapid prototyping system is based on an ARM AMBA bus to support 

the re-use of hardware. A user needs to customize the rapid prototyping system to meet 

specific design requirements, and may require custom IP to execute some of the design 

functionality. A library of bus-independent IP is also available through Xilinx's 

LogiCORE system, in addition to the blocks already present in the system. Designers . 
can also create a hardware block and later incorporate the block to an intellectual 

property library for re-use in other designs. The RPP design flow supports the use of 

Seamless, a co-design tool from Mentor Graphics for hardware/software co-verification. 

Furthermore, developers targeting the RPP environment can use C/C++ language to 
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program embedded software. Programming at such an abstract level opens the door for 

software re-use, as related standards evolve in the SOC community. 

5.5 RPP Design Flow 

Designing system with RPP is simple with the help from many EDA design 

tools. . The RPP design environment is flexible as one can incorporate many different 

design tools to program and synthesize the ARM7 processor and its programmable logic 

device. The platform also supports JTAG and Multi-ICE tools for debugging. This 

section will introduce the RPP system environment and its capabilities. A detailed 

diagram of RPP design flow is given in Figure 5.14. 

5.5.1 Design Specifications 

The design flow starts with a set of design requirements and system 

specifications, detailing the function of the system as well as constraints such as clock 

rate, power and operating conditions. These design specifications are usually set out on 

a written document or spreadsheet. This specification is used to derive design 

constraints, which guide the designer (and design tools) and provide a basis for 

evaluating the quality of the design throughout the flow. 
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Figure 5.14: RPP Design Flow 

5.5.2 Algorithmic Design and Analysis 

In the next step of the process, the system designer translates the specifications 

into a high-level algorithmic description of the system. This algorithmic design and 

analysis step is usually implemented in C/C++ or in the case of DSP systems, tools like 
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Cadence SPW or Matlab can be used. The algorithmic description allows the designer 

to fully understand the system function before architectural details are developed. For 

example, in designing an audio filtering system using a finite-impulse response (FIR) 

digital filter, the designer can do the following steps before committing to 

implementation: 

• Optimize the number of filter coefficients. 

, • Experiment with different windowing techniques to improve the filter 

response. 

• Even test the effects of fixed-point arithmetic (e.g, overflows) versus 

floating-point. 

A Cadence's SPW tool specifies the syste~ as a set of connected, 

parameterized blocks (e.g, a FIR filter would be one block). A block diagram (filter 

block, signal sources and sinks, channel models, etc.) can be simulated many times 

using different parameter settings to investigate the algorithm and determine the 

optimum system. 

5.5.3 System Architecture Design (HW/SW Partitioning) 

Once the designer has thoroughly exercised and optimized the algorithm at this 

high level, the implementation process can begin. The first step is the system 

architecture design, where functional units are mapped to various architectural units. 

Traditionally this has been a manual process for relatively simple systems. However, 

as system-on-chip (SOC) designs become more and more complex and incorporate 
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more and more processing elements (e.g. embedded processors, DSPs, etc.), the design 

process requires tools like Cadence's Virtual Component Co-design (VCC). VCC 

allows system designers to specify the system function at a high level of abstraction 

(using C/C++ functional models). In a parallel activity, designers can model the 

system architecture (microprocessor, bus architecture, memory, ASIC components, 

RTOS, etc.) with appropriate estimates on timing, power and cost. The system 

designer can then map functional units onto architectural units and run a performance 

simulation to see if the function/architecture mapping is appropriate. 

The designer can make changes to the system as well as mapping and re-

simulate to further explore the system design space. For a large system, this kind of 

activity would be cumbersl;>me and slow, if not impossible. Once this 

hardware/software partitioning stage is complete, the design is handed over to the 

hardware and software design teams. The system designer must create a specification 

for the hardware and software design teams (again stating constraints such as clock 

speed and power to guide the design processes). 

5.5.4 HDL Hardware Coding 

The hardware design flow uses a hardware description language, VHDL or . 
Verilog, to create that portion of the system design. HDL coding can be done by hand 

(Le. using a text editing program to write the code), or by using HDL design tools such 

as HDL Designer (formerly known as Renoir) from Mentor Graphics. HDL Designer 

allows the complete hardware sub-system to be specified as individual blocks, 
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interconnected by wireslbuses. Design blocks can be regular RTL code, state diagrams, 

flow charts, truth tables or hierarchical block diagrams. HDL Designer can also create 

block diagrams from existing code, create testbenches and link to simulation and 

synthesis flow tools. 

The HDL design process can be enhanced by the use of a hardware IP library. 

For example, Xilinx has a library of free IP cores in its LogiCORE product line. One of 

these cores is a parameterizable FIR filter core that designers can instantiate in their 

source code. The core comes with a simulation model and works in most commercial 

synthesis flows (e.g. Synopsys FPGA Compiler n). The LogiCORE library includes 

memory, DSP and mathematical functions. 

5.5.5 Functional Simulation 

Once the HDL is coded, it is verified through functional simulation (using a 

simulator such as Synopsys VSS or Cadence NC-Sim). The test bench is usually 

created alongside the HDL, but can also be derived earlier in the process (for example, 

reusing test data from the algorithmic design phase). This simulation is technology-

independent and it does not contain timing or power data. The HDL code is modified 

and re-simulated until the function is verified. Some extra steps in this process (not 

shown in Figure 5.14) could include HDL linting (checking the code for compliance 

with coding standards), and test coverage. Test coverage involves evaluating how 

much of the actual code is tested by the test bench and thus the completeness of the 

verification strategy. 
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5.5.6 Synthesis 

After functional simulation, synthesis process maps the RTL code to logic gates. 

Tools like FPGA Compiler II from Synopsys perform this task by using the constraints 

on timing to optimize the design. Designers can perform back-annotated timing 

simulation by using gate-level delays. Re-using the functional testbench step confirms 

that synthesis has not altered the design's functionality. This simulation also contains 

accurate timing information to confirm the operation of actual design within constraints 

5.5.7 Place and Route 

After synthesis, the de,signer performs place and route using the Xilinx design 

tools (e.g. Alliance 3.li). This step maps the logic gates from synthesis to functional 

units on the FPGA. The output of this step is a bitstream file that is a complete map of 

the design, configured for a particular Xilinx part (e.g. Virtex 2000E-PQ540-6). This 

file can be downloaded to the corresponding Xilinx FPGA for operation. 

5.5.7 Application Software 

Occurring parallel to hardware design flow is the software development desi¥" 

flow that creates the code for execution on the processor in the system (in the case 'of 

RPP, this is an ARM7TDMI processor). Software development can involve several 

tools, including a real-time operating system (RTOS), instruction-set simulator (ISS) 

and code development tools (C/C++ compiler, linker, and assembler). An example of 
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an RTOS would be VRTX from Mentor Graphics. ARM has its own suite of code 

development tools called ARM Developer Suite (ADS). As in the hardware domain, 

pre-designed routines from a software IP library can speed up the design process. 

5.5.8 HW ISW Integration 

During the design of hardware and software, it is important to make sure that 

the hardware and software portions of the design will work together. They may be 

thoroughly tested separately by hardware and software simulation, but if the interfaces 

between software and hardware are not well-designed, the system may not function 

properly. Testing the interfaces can be left to the final stage that is the actual HW/SW 

integration on the rapid-prototyping platform. However,. this can also be done earlier 

using a HW/SW co-verification tool like Seamless. This tool links a hardware 

simulation (e.g. NC-Sim) with simulation of the software on an ISS, this can verify the 

system earlier. Errors due to interactions between the HW and SW components can 

be caught early in the design cycle and save time and effort for both the hardware and 

software designers. Mter integration, the design is confirmed to be working. 

Experiments on the design that can execute in real-time with real-time data (e.g. audio 

data coming from a PC sound card) can fine-tune the design. Changes to hardware or 

software can be made, implemented and tested very quickly. At this stage, the design 

can be introduced into an ASIC design flow if desired, or simply stand as a proof-of-

concept design where fabrication is not needed or perhaps not affordable. 
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5.6 Block Matching Implementation 

. 
5.6.1 Introduction to Block Matching 

The block matching is an important computational part of MPEG video coding. 

MPEG has been by far the most popularly utilized motion estimation technique in video 

coding. It is interesting to note that even nowadays; with the tremendous 

advancements in multimedia object and/or content-based manipulation of audio-visual 

information is very demanding particularly for multimedia data storage, retrieval, and 

distribution. The application of arbitrarily sh~ped objects has attracted significant 

research attention, and has been included in the MPEG activities. 

Difficulties encountered in motion estimation and compensation with arbitrarily 

shaped blocks are enormous and to avoid these difficulties, the block matching 

technique was proposed by Jain and Jain [32]. An image is partitioned into a set of 

non-overlapped, equally spaced, fixed size, small rectangular blocks assuming a 

uniform translation motion within each block. This simple model considers 

translation motion while other types of motions such as rotation and zooming of large 
. 

objects, may be closely approximated by piecewise translation of these small blocks 

provided that these blocks are small. As a compromise, a size of 16 X 16 is considered 

to be a good choice, (as specified in international video coding standards H.261, H.263, 

MPEG-l and MPEG-2) while for finer estimation sometimes a block size of 8 x 8 is 
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also used. Displacement vectors for these blocks are estimated by finding their best 

matched counterparts in the previous frame. In this manner, motion estimation is 

significantly easier than that for arbitrarily shaped blocks. Furthermore, the rectangular 

shape information is known to both the encoder and the decoder, and hence does not 

need to be encoded, which saves both computation load and side information. 

We use Figure 5.15 to illustrate the block matching technique. An image 

frame at moment tn is segmented into non~overlapped p x q (block where) p = q = 16 are 

often used (Figure 5. 15(a». Consider one of the blocks centered at (x,y), it is assumed 

that the block is translated as a whole. Consequently, only one displacement vector 

needs to be estimated for this block. Figure 5. 15(b) shows the previous frame at time 

tn-I. In order to estimate the displacement vector, a rectangular search window is 

formed in frame tn-I arId centered at the pixel (x,y). Consider a pixel in the search 

window, a rectangular correlation window of the same size p x q is opened with the 

pixel located in its center and a similarity measure (correlation) is calculated. Mter 

the matching process completes for all candidate pixels in the search window, the 

correlation window corresponding to the largest similarity measure becomes the best 

match of the block under consideration in frame tn. The relative position between 

these two blocks (the block and its best match) gives the displacement vector as shown 

in Figure 5. 15(b). 

I 
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An original block Figure 5.15: Block matching 

The size of the search window is determined by the size of correlation window 

and the maximum possible displacement along four directions: up, down, right, and left. 

In Figure 5.16 these four quaritities are assumed to be the same and are denoted by d, 

which is estimated from a priori knowledge about the translation motion. Translation 

motion includes the largest possible motion speed and the temporal interval between 

two consecutive frames (tn _ tn-I). 
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Figure 5.16: Search window and correlation windows 

Block matching 'belongs to image matching and can be viewed from a wider 

perspective. In many image processing tasks, we need to examine two images or two 

portions of images on pixel-by-pixel basis. Thes~ two image regions can be selected 

either from a spatial image sequence (from two frames taken at the same time with two 

different sensors aiming at the same object), or from a temporal image sequences (from 

two frames taken at two different moments by the same sensor). The purpose is to 

determine the similarity between the two images or two portions of images. Therefore, 

the similarity measure is a key element in the matching process. However, instead of 

finding the maximum similarity, an equivalent but yet more computationally efficient 

way of block matching is to find the minimum dissimilarity or matching error. The 

dissimilarity D(s,t) (sometimes referred to as the error, distortion or distance) between 

two images tn and tn-I is defined as: 

1 p q • 

D(s,t)= -LLM(fn(j,k)./n-1(j +s,k +t» 
1m j=1 «=1 

(5.1) 

where M(u,v) is a metric that measures the dissimilarity between u and v. 
r 
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The D(s,t) is also referred as the matching criterion or the D values. Mean square 

error (MSE) is most commonly used matching criterion where dissimilarity metric 

M(u, v) is defined as 

M(u,v) = (U_v)2 (5.2) 

The searching strategy is another important issue to deal with in block matching. 

Figure 5.16 shows a search window, a correlation window and their sizes. In 

searching for the best match, the correlation window is moved to each candidate 

position within the search window. In this way, there are a total of (2d+l) x (2d+l) 

positions that need to be examined. The minimum dissimilarity gives the best match. 

Apparently, this full search procedure is brute force in nature. While the full search 

delivers good accuracy in searching for the best match, a large amount of computation 

is involved. We choose a full search method for implementation to increase the 

complexity of the system to make the problem more challenging. In the next section, 

we are familiarizing the readers to the Rapid Prototyping Pla(fonn (RPP) we employed 

for implementing the partitioned block matching system. 

5.6.2 Specification 

The most computationally intensive part of block matching is to calculate the 

matching criterion function as presented in Equation 5.1. After calculating the 

matching criterion of an image, a match is found and motion vector is calculated. The 

image size and the search space of our system is 256 x 256. Instead of reducing the 

search space to near by micro block of previous image as it is usually done to reduce the 
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computation, we have implemented a full search method for the whole 256 x 256 image. 

Micro block size is selected at 8 x 8 to increase the computation complexity. To find a 

matching 8 x 8 micro block, there are (256 - 8) rows and (256 - 8) columns in the image 

that requires 961 comparison operations. Furthermore, each comparison operation 

calculates the matching criterion function that requires 64 additions, subtractions, 

multiplications and one division operation. However, to take the advantage of burst 

transfer mode, each operation (addition, subtraction etc.) is performed for the whole 

image instead of per comparison. The bus speed is 20 MHz and the maximum bus 

transfer rate for an AMBA (AHB) system is 128 bits in burst mode. This means that 

instead of sending only 2048 bits (8 x 8 x 32 bits) per block matching with 961 separate 

bus transactions. There will be 961 block matching comparison operation for 256 x 

256 image, we can send 1968128 (2048 x 961) bits in one bus transaction as a burst 

mode. This method has significantly reduced the. communication overhead between 

different functional blocks. 

Each image pixel represents a gray scale value from 0 to 255. The granularity 

level of block matching is chosen as operation level of subtraction, square, summation 

and division to calculate the matching criterion function. Each block has been created 

in both software and hardware to create library information for the partitioning 

algorithm (Figure 5.17). The execution time of each block is also measured using the 

hardware/software timer module developed in house. This tool allows execution time 

measurements of hardware and software components for the RPP system components. 

The hardware/software timer is an essenti.al part of the partitioning process for an 

accurate simulation. I 
r 
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SW HW Area (gates) 

Sub 4.133s 0.5s 100 

Square 6.1s Lis 500 

Sum 4.133s 0.5s 100 

Div 2.34 0.9s 700 

Figu~e 5.17: Initial Block matching solution with library info 

5.6.3 Software Simulation 

The simulation results of block matching algorithm with various constraints are 

recorded and drawn in Figure 5.18. Each node in the graph represents an 

improvement to system execution time with the addition, of one more hardware, 

components. This simulated result shows that with the current granularity level and 

by employing hardware-software library of Figure 5.17, the system performance is 

within 18.23s -+ 5.284s as shown in Figure 5.18. However, if the system 

specification requires better performance (faster than 5.284s), a different granularity 

level must be selected with its corresponding hardware-software library. The change 

• 
in hardware/software library will allow partitioning algorithm to explore different lev,el 

of solution space. If the system specification is bounded in the region of 18.23s -+ 

5.284, the hardware-software partitioned results generated by DADGP partitioning 

algorithm will give the estimated performance when implemented. 
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To verify the results of simulated solution of partitioning, we have implemented the 

hardware software partitioned system using RPP and measured the actual execution 

time of the system and compared it to the simulated results. The measurements of the 

two domains are similar that proves the accuracy of simulated results and verifies the 

partitioned hardware-software system as a valid solution. A more detailed comparison 

of the experiments is presented in a later section. 
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Figure 5.18: Simulated Performance Improvement Curve Block Matching 

5.6.4 Overall Architecture 

The overall system architecture of a partitioning solution is presented here for 

simplicity because the system architecture of other solutions are similar. The system 
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is implemented using RPP as incorporation of extra hardware modules is equivalent to 

loading the hardware component to the FPGA AHB bus system as shown in Figure 5.19. 

System uses the AHB (AMBA) bus system to connect ARM7 processor to FPGA. 

Therefore, all the sub components or the hardware blocks implemented in FPGA 

requires AHB bridge connection to communicate with other devices. 

-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.~ 

APB = Advanced peripheral Bus I 

AHB =Advanced High performance Bus 

SSRAM Address 
Controller. Decoder 

1 Reg. I II II AHB AHB ARM7 
AHB APB 

Ji I Interrupt I r'---'-'-'-"--- "-'--'--'----, Controller 
; 

Xilinx FPGA , I Multiplier I I 
I I I i I I 

Block matching core YI 
i ICrr:::rO 

i.-._._. _______ .. _._ .. 
t_._._._._._._._._._._._._._._.~._._._._._._._._._._ 

Figure 5.19: Overall system implementation 

The simulated partitioning suggests that the very first solution to Block Matching 

DADGP shown in Figure 5.17 is to map the square operation to dedicated hardware. 

This partitioning result gives the most performance gain of 2.9 as compared to previous 

solution. The multiplier implemented for this operation is shown in Figure 5.20 that.is 

a parallel 32 bit multiplier. The parallel 32-bit multiplier is an unsigned multiplier 

using a carry save adder structure. A partial schematic of the multiplier is also shown in 

82 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 5.21. This multiplier takes two 32 bit numbers and multiply them in parallel to 

generate a 64-bits result. 

X "00000000" 
a 32 32 

b(O) 

b(l) 

b(2) 

b(31 

prod(31) prod(O) 
prod(63 downto 32) 

Figure 5.20: 32 bit parallel multiplier 

a X "00000000" 

b 

Sum_io(31 downto 0) 

cio(31 downto 0) 

sum_out(31 dowoto 0) 

cout(31 downto 0) 

Figure 5.21: 32 bit carry save adder 
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l 
I 5.6.5 Simulation vs. Actual Implementation 

The implementation of mapping square function to the hardware unit has shown 

similar results to software simulation. The implemented system takes 13.7133 

seconds to. complete, where as the software simulation estimated 13.49 seconds for 

completion. The results indicate a margin of error of 1.66 %. The rest of the 

implementation vs. the software simulation comparison is shown in Table 5.2. The 

results show that the margin of error of all the partitioned solutions is within 2%. 

The difference between the simulated hardware area and the actual hardware 

area indicated a very small margin of error as shown in Table 5.3. The main sources 

of errors are due to ignoring the routing and interconnections area between the 

components. Furthermore, as more hardware is added to the system, the margin of 

error increases. These results show that a different scheme of estimating the hardware 

area is required to accurately model the addition of mUltiple hardware units. 

Table 5.2: Execution time comparison result 

Iteration Software simulation RPP Actual 

measurements 

1st run 18.23s 18.94s 

2nd run 13.49s 13.7133s 

3rd run 9.85s lO.55s . 
4th run 6.74s 7.21s t 

5th run 5.384s 5.88s 
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Table 5.3: Hardware area comparison result 

Iteration Software simulation area RPP Actual area 

measurements 

1st run 0 N/A 

2nd run 500 512 

3rd run 600 634 

4th run 700 755 

5th run 1400 1490 

5.7 SOBEL Edge Detection Implementation 

5.7.1 Introduction to SOBEL edge detection 

The Sobel operator perfonns a 2-D spatial gradient measurement on an image. 

Typically this is used to find the approximate absolute gradient magnitude at each point 

in an input grayscale image. The Sobel edge detector uses a pair of 3x3 convolution 

masks, one estimating the gradient in the x-direction and the othe"r estimating the 

gradient in the y-direction. A convolution mask is usually much smaller than the 

actual image. As a result, the mask is convolved and sled over the image, 

manipulating a square of pixels at a time. The actual Sobel masks are shown in Figure 

5.22. 
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Figure 5.22: SOBEL masks 

The magnitude of the gradient is then calculated using the formula: 

(5.3) 

An approximate magnitude can be calculated using: 

I G I = I Gx I + I Gy I (5.4) 

The mask is convolved over an area of the input image and then shifts one pixel 

to the right and continues to the right until it reaches the end of a row. It then starts at 

the beginning of the next row. The example in Figure 5.23 shows the mask being 

convolved over the top left portion of the input image represented by the thick black , 

box. The formula shows how a particular pixel in the output image would be 

calculated. The center of the mask is placed over the pixel you are manipulating in the 

image. It is important to notice that pixels in the first and last rows, as well as the first 

and last columns cannot be manipulated by a 3x3 mask. This is because when placing 
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the center of the mask over a pixel in the first row (for example), the mask will be 

outside the image boundaries. 

Input Image Mask Output Image 

all a '2 au mll m'2 mu b ll b 12 b u 

a 2l a 22 a 2l m2l m22 m2l 
b 2l b 22 b2l 

all a '2 a" mll m'2 mll b ll b '2 b 33 

Figure 5.23: SOBEL example 

The Gx mask highlights the edges in the horizontal direction while the Gy mask 

highlights the edges in the vertical direction. After taking the magnitude of both, the 

resulting output detects edges in both directions. A SOBEL edge detection algorithm 

is given below. 
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Sobel Edge Detection Algorithm 

#define 
#define 
#define 
main () 

ROWS 512 
COLS 512 
Threshold 100 

{ 
unsigned char·image in [ROWS] [COLS]; 
unsIgned char image-out [ROWS] [COLS]; 
int r, c; /* row and column array counters */ 
int pixel; /* temporary value of pixel */ 
for (r=O; r<ROWS; r++) /*initialize output image 

array*/ 
. for (c=O; c<COLS; c++) 

image out [r] [c] = 0; 
/*filter the image and-store result in output array */ 

for (r=l; r<ROWS-1; r++) 

} 

for (c=l; c<COLS-1; c++) { 
/* Apply Sobel operator. */ 

pixel = image in [r-1] [c+1] -image in [r-1] [c-1] 
+ 2*image in[r] [c+1] - 2*image in[r] [c-1] 

+ image in [r+1] [c+1] - image in [r+1] [c-1] ; 
/* Normalize and take absolute value */ 

pixel = abs(pixel/4); /* Check magnitude */ 
if (pixel > Threshold) 

pixel= 255;'/*EDGE VALUE;*/ 
/* Store in output array */ 
image out[r] [c] = (unsigned char) pixel; 
} -

5.7.2 Specification 

The input to SOBEL edge detector system is 256 x 256 gray scale images. 

The most computationally intensive part of SOBEL edge detection is to calculate the 

gradients in x and y direction by using 3x3 convolution masks. The system's granularity 

level is chosen as operation level of square (SqX, SqY) and summation (add) . . 
However, for the calculation of gradient in x and y directions, two smaller operations 

have been encapsulated (multiplication and addition, Gx, Gy). Dividing the system in 

this fashion has allowed identical amount of data transfer for all blocks (256 x 256 x 32 

bits). Therefore, the communication time between any blocks remains constant. 
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Each block has been created in both software and hardware to create the library 

information for our partitioning algorithm as shown in (Figure 5.24). The interesting 

part of this system compare to block matching system is that, its initial DADGP graph 

contains precedence dependence edges. This means that with the environment, the 

partitioning algorithm will be able to explore parallelism that will result in modification 

of the DADGP representation as shown in the next section. 

SW HW Area (gates) 

GxJGy 9.4s l.4s 1200 
0.1 

SqX/SqY 5.2s 0.9s 500 

Add 3.88s 0.3s 100 
0.1 

0.1 

Figure 5.24: Initial SOBEL solution with library info 

5.7.3 Software simulation 

The simulation results of SOBEL edge detection is drawn in Figure 5.25. 

Each node in the graph represents an impr?vement in overall execution time by the 

addition of one more hardware component. The simulated result shows that with the 

current granularity level and hardware/software library, the system performance is 
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within range 33.8s -l- 2.8s. However, a different granularity level must be selected for 

a faster system. One possible solution of improving the system is to combine two or 

more functional units into one hardware unit to improve the execution time and to 

reduce inter PE communication. The change in granularity level and hardware/software 

library will allow DADGP-based partitioning to explore different local minimum 

solution. 

40 
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0 20 u 
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0 1200 2400 2900 3400 3500 

HWarea 

Figure 5.25: Simulated Performance Improvement Curve (SOBEL) 

Figure 5.26 shows how the initial DADGP structure changes by the proposed 

DADGP based partitioning. The dotted circle node represents a hardware mapped 

modules, while dotted line enclosing several nodes represent an LD Path. This 

simulation is executed by allowing the partitioning algorithm to explore the solution 
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space based on a large hardware constraint. In this way, the partitioning algorithm 

will make the best move according to the execution time. It is observed that the 

Longest Delay path changes as DADGP changes and the improvement ratio of the 

solution decreases. This shows that the DADGP partitioning algorithm always make 

the best performance improvement moves. However, if the hardware area constraint 

is considered such that the best performance improvement can not be chosen due to 

hardware area violation, then the next best performance improving solution is chosen 

without violating the hardware area constraint. For example, in Figure 5.26 (a), the 

best performance improvement move is to choose Gx node as hardware, however if the 

hardware constraints is less than 1200 gates, the partitioning algorithm chooses the next 

best move by mapping SqX node to hardware. Therefore, depending on the hardware 

area constraint, the partitioning algorithm suggests various .sub optimal solutions. 

Similar to block matching, to verify the result of the simulation result as shown 

in Figure 5.25, we have implemented the partitioned system using RPP and measured 

the execution time of the system and compared it to the software simulated results. 

The measurements of the two domains are very close to each other which prove the 

accuracy and validity of simulated results. A more detailed comparison of this 

experiment is presented in the next section. 
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5.7.4 Simulation vs. Actual Implementation 

All of the solution space explored by the software simulation and hardware 

implementation are shown in Tables 5.4 and 5.5. The measured results of 

implementation as well as the software simulation comparison are presented in Table 

5.4. The results of simulated vs. actual measurements show small margin of errors, 

indicating that the software simulation accurately models the hardware-software 

interactions. The difference between the simulated hardware area and the actual 

hardware area showed some margin of errors (Table 5.5). As mentioned previously, 

the main source of error is due to area required for routing and interconnections between 

hardware components that has not been taken into account by our algorithm . 

. 
Table 5.4: Execution time comparison result 

Iteration Software simulation Actual measurements 

1st run 33.08s 33.88s 

2nd run 23.68s 24.05s 

3rd run 15.88s 16.225 

4th run 10.68s 1O.96s 

5th run 6.385 6.82s 

6th run 2.85 2.92s 

Table 5.5: Hardware area comparison result 

Iteration Software simulation area Actual area measurements 
1 sl run 0 N/A 

2nd run 1200 1215 

3rd run 2400 2455 
4th run 2900 2997 

5th run 3400 3525 

6th run 3500 3700 
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Chapter 6 

Conclusions and Future Work 

6.1 Summary and Conclusions 

We have introduced the concept of hardware-software co-design methodology. 

Various hardware software portioning methods are presented and compared to the 

DADGP-based system partitioning algorithm. The thesis presents a full design flow 

from specification to implementation; using C/C++ language as system specification, 

DADGP based partitioning algorithm as design simulation tool, and partitioned system 

implementation on a rapid prototyping platform consisting of ARM? CPU and Xilinx 

FPGA. 

Directed Acyclic data Dependence Graph with Precedence (DADGP) is an 

extension of DAG. DADGP-based partitioning algorithm can also work with DAG by 
• 

converting DAG to DADGP. This characteristic has allowed us to compare the 

performance of DADGP-based partitioning with other partitioning methods that use 

DAG as an input graph. The results demonstrate superior performance of DADGP as 

compared to GDL and Simulated Annealing methods in terms of simulation time and 

quality of the partitioned solutions. The DADGP partitioning algorithm not only 

produces an optimal partitioned solution for a given initial graph, but it also gives otlier 
. , 

partitioned solution between initial and optimal solution. This characteristic is very 

important because various sub optimal solutions give more choices to the designer in 

terms of system cost and performance gain. 
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We demonstrated the verification of our DADGP partitioning technique. Two 

computationally intensive algorithms namely Block Matching and SOBEL edge 

detection have been designed and implemented using the DADGP design flow. The 

results indicate that the performance gain for software simulated solution is very close 

to the actual system performance measured for both applications. However, the 

hardware area estimation measurement is not accurate as our partitioning method does 

not consider the interconnection hardware area between multiple hardware units. 

Overall, the DADGP partitioning algorithm showed promising results. The 

incorporation of DADGP partitioning algorithm, etC++ profiling, and rapid prototyping 

to the hardware-software co-design methodology has significantly reduced the design 

complexity of embedded systems. 

6.2 Future Work 

Followings are some of the directions of future research on hardware software 

partitionin~ using DADGP algorithm: 

• More accurate measure of estimating hardware area and its interconnection 

is required. 

• A more diverse and dynamic sets of hardware and software library need to 

be developed. This improvement will allow DADGP partitioning 

algorithm to generate profound hardware software partitioning. 

• An automated approach to granularity selection is necessary to explore 

broader solution space. Currently, the granularity level of system is 

selected manually by the designer from experience. 

95 
:it 

f ( 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

• An automated hardware software synthesis system is required to fully 

automate the design of hardware software systems. Currently, when the 

partitions are decided, the system is manually integrated with the required 

glue logic to connect hardware and software components. Similar gluing 

systems are available from some FPGA vendors. 

• Finally, a uniform design environment is necessary to simplify the use of 

DADGP-based partitioning solution. 
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f 

Appendix A: Block Matching 
Implementation Code 

Software Components 
I· 

• bmTools.h 
• DEFINITION 
* Definitions common to all of the block 

matcher implementaitons 

·1 
#ifndef BM_TOOLS_H 
#define BM_TOOLS_H 
#include "dpramSemaphore.h" 
#include "cveUtils.h" 
1* Pointers to the different important 

areas in memory *1 
#define PATTERNl «unsigned 
long*)Ox8000l000) 1* Pattern bank 1 *1 
#define IMAGEl «unsigned 
long*)Ox8000ll00) 
#define RESULT 
long*)Ox80003000) 
#define PATTERN2 
long*)Ox80002000) 
#define IMAGE2 
long·)Ox80002l00) 
#define MBR 
long*)OX80000004) 

#define MBL 
long*)OX80000000) 

I· 

1* 

1* 

1* 

I· 

1* 

Image bank 1 

( (unsigned 
Result area 
( (unsigned 
Pattern bank 
«unsigned ' 
Image bank 2 
( (unsigned 
Right mailbox 
( (unsigned 

Left mailbox 

*1 

*1 

2 *1 

*1 

*1 

·1 
#define INTl (volatile unsigned 

long*)Ox20000000 1* Interrupt Pin 1 *1 
#define INT2 
long*)Ox2000000l 
#define INT3 
long*)Ox20000002 
#define INT4 
long*)Ox20000003 
#define INTMASKl 

long*)Ox20000004 
#define INTMASK2 
long*)Ox20000004 
#define INTMASK3 
long·)Ox20000004 
#define INTMASK4 
long*)Ox20000004 
#define SEM_BASE 
long*)OxEOOOOOOO) 

1* 

I· 
#define CVE_SCREEN 

(volatile unsigned 

(volatile unsigned 

(volatile unsigned 

(volatile unsigned 

Interupt Mask *1 
(volatile unsigned 

(volatile unsigned 

(volatile unsigned 

«unsigned 
Semaphore area ·1 
( (unsigned 

char·)OxCOOOOOOO) 1* Seamless "Console" *1 
#define EVENTl «unsigned 
long*)Ox40000000) 1* Event generator *1 
1* Pattern and image sizes ·1 

#define BM_PATTERN_WIDTH 8 
#define BM_lMAGE_WIDTH 16 

1* Map the processor and coprocessor 
mailboxes to left and right *1 
1* respectively 

*1 
#define PROC_MB MBL 
#define COPRO_MB MBR 

1* Definition of the pattern structure *1 
typedef struct pattern_type 

{ 
unsigned long xPosition; 1* x Position 

of pattern in image *1 
unsigned long yPosition; 1* y Position 

of pattern in image *1 
unsigned long bitmap; /* bit map of 

1 scan line of the pattern *1 
} pattern; 

1* Extern declarations for modules 
including this file *1 
extern pattern banklPattern[3); 
extern pattern bank2Pattern[3); 

1* Function prototypes *1 
void init(void); 
void write-9attern(pattern pat, unsigned 
long* image, unsigned long* block); 
int check_result (pattern pat); 

#endif 

1* bmTools.C 
* BM TOOLS block matcher test functions 

library 
* DEFINITION : 

* These functions are common to all of 
the block matcher implementations.*1 
#include "bmTools.h" 
1* Test data receptacles *1 
pattern banklPattern[3]; 
pattern bank2Pattern[3); 
/**************************************-** 

write-9attern () 
This function is a quick and easy way to 

generate test data. It 
copies a pattern into a memory bank and 

the generates an image 
with the given pattern at the coordinates 

given by the pat parameter 
INPUT: 
pattern pat: A struct containing the 
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coords and the bitmap of the pattern in 

the image 
unsigned long* image : Pointer to memory 
for the image containing the pattern 
unsigned long* block : Pointer to memory 
that will contain the desired pattern 

OUTPUT: 

none 
*****************************************/ 

void write-pattern(pattern pat, unsigned 

long* image, unsigned long* block) 

int x,y; 

1* Ini~ialize the image *1 
for '(y=0;y<16;y++) 

for (x=0;x<16;x++) 

image [16*y+x] =0; 

1* Copy the pattern into BLOCK and at 
the desired position in *1 

1* the image 

*1 
for (y=0;y<8;y++) 

for (x=0;x<8;x++) 

block[8*y+x]=pat.bitmap; 
image[16*(y + pat.yPosition) + 

x+pat.xPosition] = pat.bitmap; 

/***************************************** 

check_result() 

Verifies if the coprocaeesor found the 

pattern at the right place. 
INPUT: 

pattern pat: stuct containing the 
coordinates in the image that the pattern 
was written to. 

OUTPUT: 
true (nonzero) if the coprocessor returned 
the right coordinates. false otherwise 
*****************************************/ 

int check_result(pattern pat) 

int position; 

position = 
16*pat.yPosition+pat.xPosition; 

return (RESULT [0] =- (unsigned 
long)position); 

/***************************************** 

init () 
Generates a set of test data. 

INPUT: 
none 

OUTPUT: 
none 

*****************************************/ 

void init(void) 

bank1Pattern[0] .xposition • 8; 
bank1Pattern[O] .yPosition • 8; 
bank1Pattern[0] .bitmap = OxAAAAAAAA; 

bank1Pattern[1] .xPosition - 2; 
bank1Pattern[1] .yPosition - 1; 
bank1Pattern[l] .bitmap - OxBBBBBBBB; 

bank1Pattern[2] .xPosition - 8; 
bank1Pattern[2] .yPosition - 9; 

bank1Pattern[2] .bitmap - OxCCCCCCCC; 

bank2Pattern[0] .xPosition - 0; 
bank2Pattern[0] .yPosition - 0; 

bank2Pattern[0] .bitmap - OxDDDDDDDD; 

bank2Pattern[1] .xPosition - 8; 

bank2Pattern[1] .yPosition - 9; 

bank2Pattern[1] .bitmap - OxEEEEEEEE; 

bank2Pattern[2] .xPosition • 2; 
bank2Pattern[2] .yPosition - 2; 
bank2Pattern[2] .bitmap - OxABCDABCD; 

1* bm_int.C 
* -- Block Matcher with Synchronization 

Via Interrupts --
* DEFINITION : 
* This program writes images in memory 

and notifies the 
* coprocessor by generating a direct into 

to INTREG 

*1 

#include <stdio.h> 
#include <stdlib.h> 
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#include "bmTools.h" 

#define IMAGE1_DONE Ox01 
#define IMAGE2_DONE Ox02 

II Function prototypes 
extern nc"{ 

void ir~handlerFunc(void); 

int imagebank; 

int image1loop; 

int image2loop; 

int ready1; 
int ready2; 

/********* ••• ****************************\ 

void maine) 
Need we say more? 
INPUT 

none 
OUTPUT 

none 
,************************************* •• */ 
int main(void) 

, 
1* Indicate that we can write to both 

banks *1 
ready1 = 1; 
ready2 - 1; 

1* some init *1 
imagebank - 1; II we start in image bank 

#1 
image1loop = 0; 
image2loop • 0; 
init () ; 

1* Welcome message -- The output window 
sould pop to display this 

message *1 
out_string("INTERRUPTIONS - EPM CIRCUS 

DEMO 2001\n\n") ; 

1* setting interrupt #1 mask *1 
*INTMASK1 • 1; 

1/ embedded softwares have no limit! 
that's infinite baby! 

fore;;) 

while(ready1 == 0); 1* wait until 
memory bank 1 is free *1 

1* Write the pattern, then send "mail" 
to the coprocessor *1 

write-pattern(bank1pattern[image1loopl, 
IMAGE1, PATTERN1); 

ready1 ,. 0; 
*EVENT1 ,. 1; 

while(ready2 == 0); 1* wait until 
memory bank 2 is free *1 

1* Write the pattern, then send "mail" 
to the coprocessor *1 

write-pattern(bank2Pattern[image2loop], 
IMAGE2, PATTERN2); 

ready2 ,. 0; 
*EVENT1 ,. 2; 

/ ••• *************************************/ 

void ir~handlerFunc() 
Function called by the low-level 

interrupt handler. 
INPUT 

none 

OUTPUT 
none 

\********************** •• **********.*****/ 

void ir~handlerFunc() 
{ 

unsigned long reg; 

if (reg= (*(INT1» -= 1) II look for 
int #1 

{ 
*(INT1) ,. reg; II clear int by 

writing it back 

switch (imagebank) 

case IMAGE1_DONE: 

if(check_result(bank1Pattern[image1loopl» 
out_string ("1: Image 

found\n"); 
else 

out_string ("1: Image not, 
found\n"); 

image1loop++; 
if (image1loop >= J) 

imagelloop ,. 0; 

ready1 = 1; 
imagebank++; II switch to next 

image bank 
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break; 

case IMAGE2_DONE: 

if(check_result(bank2Pattern[image2loopl» 
out_string ("2: Image 

found\n"); 
else 

out_string ("2: Image not 

found\n"); 
image2loop++; 
if (image2loop >= 3) 

image2loop = 0; 
ready2 = 1; 
imagebank--; II switch to next 

image ·bank 
break; 

default: 
out_string ("Invalid 

interruptionll\n"); 
break; 

else 

out_string("Invalid 
interruption!l\n"); 
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VHDL Components 

--Add32 
-- add32.vhdl entity add32 and 
behavioral architecture 

library IEEE; 

use IEEE.std_Iogic_1164.all; 
entity add32 is 

port (a : in std_Iogic_vector(31 
downto 0) ; 

b in std_logic_vector(31 
downto 0) ; 

cin in std_Iogic; 
sum out std_logic_vector(31 

downto 0) ; 
cout : out std_Iogic); 

end entity add32; 

library IEEE; 
use IEEE.std_Iogic_arith.all; -- defines 
"+" on unsigned 
architecture behavior of add32 is 

signal temp std_Iogic_vector(32 downto 
0) ; 

signal vcin : std_Iogic_vector'32 downto 
0) :~ X"OOOOOOOO""'O'; 

signal va : std_Iogic_vector(32 down to 
0) := X"OOOOOOOO""'O'; 

signal vb : std_Iogic_vector(32 downto 

0) :- X"OOOOOOOO""'O', 
-- 33 bits (32 downto 0) needed to 

compute cout 
begin -- circuits of add32 

vcin(O) <= cin; 
va(31 downto 0) <= a; 
vb(31 downto 0) <= b; 
temp <= unsigned(va) + unsigned(vb) + 

unsigned (vcin) ; 
cout <= temp(32) after 10 
sum <= temp(31 downto 0) 

end architecture behavior; 

--Divider 

PSI 
after 10 PSI 

-- of add32 

-- div_ser.vhdl division implemented as 
serial adds (one 32 bit adder) 

needs component add32 
non restoring division (remainder may 

need correction - in this case 
add divisor, 

because remainder not same sign 
as dividend.) 

entity div_ser is -- test bench for 

divide serial 

library IEEE; 
use IEEE.std_Iogic_1164.all; 
use IEEE.std_Iogic_textio.all; 
use IEEE.std_Iogic_arith.all; 
use STD.textio.all; 

architecture schematic of div_ser is 
subtype word is std_Iogic_vector(31 

downto 0), 

85 / 7 = 12 with remainder 1 
(FFFFFFFA + 00000007 = 00000001) 

signal md : word := x"00000007", 
- multiplier or divisor 

signal hi word := X"OOOOOOOO"; 
- top of dividend (final remainder) 

signal 10 word := x"OOOOOOss"; 
- bottom of dividend 

signal cout 

- adder carry out 
signal divs 

- adder sum 
word := x"OOOOOOOO"; 

signal diva : word :- x"OOOOOOOO"; 
- shifted dividend 

signal divb : word :- x"OOOOOOOO"; 
- multiplexor output 

signal quo std_Iogic := '0', 
- quotient bit 

signal sub_add: std_Iogic := '1', 
- subtract first (also cin) 

signal clk 

system clock 
signal divenb 

- divide enable 
signal divclk 

- run division 
signal cntr : std_Iogic_vector(s 

downto 0) :- "000000"; counter 
begin .-- schematic 

clk <= not clk after 5 ns; -- 10 ns 
period 

cntr <= 
unsigned(cntr)+unsigned' ("000001") when 
clk'event and clk.'l'; 

-- cntr statement is equivalent 
to six bit adder and clocked register 

divenb <= '0' when cntr="10000l"; 
stop divide 

divclk <= clk and divenb after 50 pSI 

-- divider structure, not a component! 
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diva <= hi(30 downto 0) & 10(31) 

after 50 PSi -- shift 
divb <= not md when sub_add='l' else 

md after SO pSi -- subtract or add 
adder:entity WORK.add32 port map (diva. 

divb, sub_add. divs, cout); 

quo <- not divs(31) after SO PSi --

quotient bit 

hi <= divs when divclk'event and 

divclk='l'; 
10 <= 10(30 downto 0) & quo when 

divclk'event and divclk='l'; 

sub_ad~ <- quo 
divclk'event and divclk='l'; 

printout: postponed process(clk) 
just to see values 

when 

variable my_line LINE; -- not part of 

entity add32csa is -- one stage of carry 
save adder for multiplier 

port ( 
b in std_logic; 

-- a multiplier bit 

a 
downto 0); -- multiplicand 

sum_in : in std_logic_vector(31 
downto 0); -- sums from previous stage 

cin : in std_logic_vector(31 
downto 0); -- carrys from previous stage 

sum_out : out std_logic_vector(31 

downto 0); -- sums to next stage 

cout 
downto 0»; 

: out std_logic_vector(31 
carrys to next stage 

end add32csa; 

architecture circuits of add32csa is 
signal zero : std_logic_vector(31 downto 

working circuit 0) :z X"OOOOOOOO"; 
begin signal aa : std_logic_vector(31 downto 

if clkz'O' then -- quiet time. falling 
clock 

if cntr."OOOOOO" then 
write (my_line, 

string' ("divisor-"»; 
write (my_line. md); 
writeline(output, my_line); 

end if; 
write (my_line. string' ("at count D»~; 

write (my_line. cntr); 
write (my_line. string' (" diva~"»; 

hwrite(my_line. diva); 
write (my_line. string' (" divb="»; 
hwrite(my_line. divb); 
write (my_line. string' (" hi="»; 
hwrite(my_line, hi); 
write (my_line. string' (" 10="»; 
hwrite(my_line. 10); 
write (my_line. string' (" quo="»; 
write (my_line, quo); 
writeline(output, my_line); 
end if; 

end process printout; 
end schematic; 

--Square function 

mu132c.vhdl parallel multiply 32 bit x 
32 bit to get 64 bit unsigned product 

uses add32 component and fadd component, 

library IEEE; 
use IEEE.std_logic_1164.all; 

0) :_ X"OOOOOOOO"; 

90mponent fadd -- duplicates entity 

port 
port (a in std_logic; 

b . in std_logic; 
cin in std_logic; 

s out std_logic; 

cout out std_logic); 

end component fadd; 
begin circuits of add32csa 

aa <- a when b-'l' else zero after 1 ns; 
stage: for I in 0 to 31 generate 

sta: fadd port map(aa(I), sum_in (I) , 
cin(I) • sum_out(I), cout(I»; 

end generate stage; 
end architecture circuits; -- of add32csa 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity mu132c is -- 32 x 32 = 64 bit 
unsigned product multiplier 

port (a : in std_logic_vector(31 

downto 0); -- multiplicand 
b : in std_logic_vector(31 

downto 0); -- multiplier 
prod: out std_logic_vector(63 

downto 0»; -- product 
end mu132c; 

architecture circuits of mu132c is 
signal zero: std_logic_vector(31 downto 

i • 

J 

1 

I 
I 

I 
I; 
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0) := X"OOOOOOOO"; 
signal nc1 : std_logic; 
type arr32 is array(O to 31) of 

std_logic_vector(31 downto 0); 
signal s 
signal c 
signal ss 

arr32; 
arr32; 
arr32; 

partial sums 
partial carries 

shifted sums 

componen~ add32csa is -- duplicate 

entity port 
port(b:in std_logic; 

a:in std_logic_vector(31 downto 

0); sum_in:in std_logic_vector(31 downto 
0) ; 

cin:in std_logic_vector(31 downto 0); 
sum_out:out std_logic_vector(31 downto 0); 

cout:out std_logic_vector(31 downto 0»; 
end component add32csa; 
component add32 -- duplicate entity port 
port(a:in std_logic_vector(31 downto 0); 

b:in std_logic_vector(31 downto 
0) ; 

cin in std_logic; 
sum:out std_logic_vector(31 downto 0); 
cout : out std_logic); 

end component add32; 

begin -- circuits of mu132c 
stO: add32csa port map(b(O), a; zero, 

zero, s(O), c(O»; CSA stage 
ss(O) <~ 'O'&s(O) (31 downto 1) after 1 

ns; 
prod(O) <2 s(O) (0) after 1 ns; 
stage: for I in 1 to 31 generate 

st: add32csa port map(b(I), a, ss(I-
1) , c(I-1), s(I), c(I»; -- CSA stage 

ss(I) <= 'O'&S(I) (31 downto 1) after 1 

nSi 

prod(I) <= sCI) (0) afte~ 1 ns; 
end generate stage; 
add: add32 port map (ss (31), c (31), '0' • 

prod(63 downto 32), nc1); adder 

end architecture circuits; -- of mu132c 

--Memory FSM 

LIBRARY ieee ; 
USE ieee.std_logic_1164.all; 
USE ieee.numeric_std.a11; 

ENTITY memory_signal_fsm IS 
PORT ( 

a_unit 
(31 DOWNTO 0) 

clk 

IN 

IN 

dout_unit IN std_logic_vector 
(31 DOWNTO 0) ; 

nrd_unit IN std_logic 
nreset IN std_logic 
nwe_unit IN std_logic 
a_mem OUT std_logic_vector 

(31 downto 0) 
din_unit OUT std_logic_vector 

(31 DOWNTO 0) ; 

nack_mem OUT std_logic 
ncs_mem OUT std_logic 
nrd_mem OUT std_logic 
nwe_mem OUT std_logic 
d_mem INOUT std_logic_vector 

(31 DOWNTO 0) 
) ; 

Declarations 

LIBRARY ieee ; 
USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 

ARCHITECTURE memory_signal_fsm OF 
memory_signal_fsm IS 

-- Architecture Declarations 
TYPE STATE_TYPE IS ( 

) ; 

idle. 
wrJlropagate, 
rdJlropagate, 
rd_8ck, 

wr_hold. 
wr_ack 

-- State vector declaration 
ATTRIBUTE state_vector : string; 
ATTRIBUTE state_vector OF 

memory_signal_fsm : ARCHITECTURE IS 
"current_state" 

Declare current and next state 
signals 

SIGNAL current_state : STATE_TYPE 
SIGNAL next_state STATE_TYPE 

BEGIN 

clocked: PROCESS ( 

clk. 
nreset 
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BEGIN 
IF (nreset = 'O') THEN 

current_state <~ idle; 
Reset Values 

ELSIF (clk' EVENT AND clk = 'l') THEN 

current_state <= next_state; 
-- Default Assignment To 

Internals 
END IF; 

END PROCESS clocked; 
nextstate: PROCESS ( 
current_state. nrd_unit.nwe_unit) 

BEGIN 
CASE current_state IS 
WHEN idle => 

IF (nwe_unit = 'O') THEN 
next_state <= wr-propagate; 

ELSIF (nrd_unit - 'O') THEN 
next_state <= rd-propagate; 

ELSE 
next_state <- idle; 

END IF; 
WHEN wr-propagate => 

next -state <- wr_hold; 
WHEN rd-propagate -> 

next -state <- rd_ack; 
WHEN rd_ack => 

next -state <= idle; 
WHEN wr_hold -> 

next -state <- wr_ack; 
WHEN wr_ack => 

next -state <- idle; 
WHEN OTHERS => 

next_state ~- idle; 
END CASE; 

END PROCESS nextstate; 

output : PROCESS 

a_unit. 
current_state. 
d_mem. 
dout_unit 

BEGIN 
Default Assignment 

a_mem <= (others => 'Z'); 
nack_mem <= '1'; 
ncs_mem <= 111; 

nrd_mem <= '1'; 

nwe_mem <= '1'; 

-- Default Assignment To Internals 

-- State Actions 
CASE current_state IS 

WHEN idle => 

d_mem <- (others => 'Z'); 

din_ unit <- (others => 'Z'}; 

nwe_mem <- 'l.' ; 

nrd_mem <- '1' ; 

ncs _mem <- '11 ; 

a_mem <- (others => 'Z'); 

nack_mem <- '1'; 

WHEN wr-propagate -> 

if (current_state'event) then 
d_mem <- dout_unit; 

end if; 

din_unit <- (others -> 'Z'); 
nwe_mem <- '0'; 

nrd_mem <- '1'; 

ncs_mem <- • 0' ; 

a_mem <- a_unit; 
nack_mem <_ 11'; 

WHEN rd-propagate => 

d_mem <- (others => 'Z'); 

din_unit <- (others -> 'Z'); 
nwe_mem <- '1' ; 

nrd_mem <- '0' ; 

ncs _mem <- 10 1 ; 

a_mem <- a_unit; 
mem nack_ <- 10' ; 

WHEN rd_ack -> 

if (current_state 'event} then 
din_unit <_ d_mem; 

end if; 

d_mem <- (others -> 'Z') ; 

nwe_mem <- '11 ; 

nrd_mem <- '1' ; 

ncs _mem <- '1' ; 

a_mem <- (others oo> 'Z') ; 

nack_mem <- '1' ; 

WHEN wr_hold -> 

if (current_state 'event} then 
d_mem <- dout_unit; 

end if; 

din_unit <- (others -> 'Z'); 

nwe_mem <- Ill; 

mem nrd_ <- '1' ; 

ncs _mem <- '0' ; 
a_mem <- a_unit; 
nack_mem <oo '0,' ; 

'.' I,l.' i ]'i-

n 
)~ 
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----------

WHEN wr_ack ~> 

d_mem <~ (others =>. 'Z'); 

din_unit <= (others ~> 'Z'); 

nwe_mem <= '1'; 
nrd_mem <= 11'; 

ncs_mem <= 11'; 

a_mem <= (others => 'Z'); 

nack_mem <= '1'; 

WHEN "'THERS => 

NULL; 
END CASE; 

END PROCESS output; 

-- Concurrent Statements 

--DataPath 

library ieee; 

USE ieee.numeric_std.all; 

use ieee.std_logic_arith.a1l; 

USE ieee.std_logic_1164.all; 

ENTITY DataPath IS 

PORT ( 

clk 

std_logic 

done 

std_logic 

nlocal_rst 

std_logic 

nstart 

std_logic 

address 

IN 

IN 

IN 

IN 

: OUT 

std_logic_vector (31 downto 0) 

index OUT 

ieee.numeric_std.unsigned (7 DOWNTO 0) 

nread OUT 

std_logic 

nwrite OUT 

std_1ogic 

match OUT 

std_1ogic 

loadpix in 

std_logic 

get pix in 

std_logic 

data_out: OUT 

(31 downto 0) ; 

pattern loaded IN 

std_1ogic 

image_loaded 

std_1ogic 

data_in 

IN 

: IN 

std_logic_vector (31 downto 0); 

doneinit : out 

std_1ogic 

) ; 

Declarations 

END DataPath 

architecture datapath of DataPath is 

constant pattern_address 

,integer : = 16#001000#; 

constant image_address 

integer := 16#001100#; 

constant pattern_address2 

integer := 16#002000#; 

constant image_address2 

:= 16#002100#; 

constant result_address 

integer := 16#003000#; 

integer 

signal pattern: std_logic_vector(O to 

2047); -- pattern strip 

signal image: std_logic_vector(O to 

3839); image strip 

BEGIN 

datapath_mainJlr~cess:' process (c1k, nstart, 

nloca1_rst, loadpix, getpix, 

pattern_loaded, image_loaded, done) 

variable internal_index : 

ieee.numeric_std.unsigned (7 downto 0); 

variable pattern_address_toconvert 

integer := pattern_address; 

variable image_address_toconvert 

integer := image_address; 

variable compare : boolean := true; 

- true tells we may proceed compare 

variable imageset : integer :- 1; 

which set is currently used to compare • 

image 

begin 

-- PROCESSING RESET or START 

if (n1ocal_rst = '0') then 

match <= '0'; 

nread <= '1'; 
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then 

nwrite <= '1'; 

internal_index := "00000000"; 

index <= internal_index; 
address <= (others => 'z'); 

data_out <= (others => 'Z'); 

doneinit <= '0'; 
compare :- true; 

end if; 

if (nstart'event and nstart '0 ') 

reset common ports 

internal_index := "00000000"; 

data_out <= (others => 'Z'); 

index <= internal_index; 
match <= '0' ; 
nread <- 11' ; 

nwrite <= '1' ; 

compare :- true; 

-- set the memory image bank, we 

start with 1st image. then 2nd, -

-and 1st . 

if (imageset - 0) then 
imageset := 1; 

else 
imageset :- 0; 

end if; 

if (imageset = 0) then 
image_address_toconvert := 

image_address; 
pattern_address_toconvert := 

pattern_address; 

else 

image_address_toconvert :­
image_address2; 

pattern~address_toconvert :­
pattern_address2; 

end if; 
end if; 

-- PROLOGUE WHEN RESETING index TO 0 

------------------------------ if 
«pattern_loaded'event and pattern_loaded 

= '1') or (image_loaded'event and 
image_loaded = '1'» then 

internal_index := "00000000"; 
index<=internal_index; 

end if; 

-- COMPARING IMAGE TO PATTERN WHEN IN 

COMPARE STATE 

------------------------------ if 

(image_loaded = '1') then 

when image is found. terminate 

if (compare = true and 
(image(O to 255) & image(512 

to 767) & image(1024 to 1279) & 
image(1536 to 1791) & 

image(2048 to 2303) & image(2560 to 2815) 

& 

image (3072 to 3327) & 
image(3584 to 3839» - pattern) then 

match <= '1'; 
pattern found in image! 

nread < .. '1'; 

don't read anymore 
compare :- false; 

don't compare anymore 

-- write position to memory 

according to image set 
-- function will extend the 

sign to a negative value since 

-- data_out is a logic vector. 

We keep the 8 LSB. 
if (imageset .. 0) then 

data_out <­

"00000000000000000000000011111111- and 

conv_atd_logic_vector«image_address_tocon 

vert-image_address)/4-120.32); 

else 
data_out <­

"00000000000000000000000011111111" and 
conv_std_logic_vector«image_address_tocon 

vert-image_address2)/4-120,32); 

end if; 
no match, we load next pixel 

and disable compare 

else 
if (internal_index < 

"10000111") then 

135) then 

compare :- false; 
compare on next pixel only 

else --if (internal_index >= 

compare :- true; 
end if; 

end if; 
end if; 

PROCESSING MAIN LOOP WHEN LOADING 

PIXEL 

I 

! 
I 
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if «loadpix = '1' and loadpix'event) 
or (getpix='l' and getpix'event) or 
(image_loaded = '1' and 
image_loaded'event» then 

-- PRELOADING PATTERN 

if~(pattern_loaded = '0') then 

generate next pixel and address to load 
next pixel 

if (loadpix ~ '1') then 
-- ask interface to read pixel 
address <= 

conv_std_logic_vector(pattern_address_toco 
nvert,32) ; 

nread <= '0'; 

pattern_address_toconvert := 

pattern_address_toconvert + 4; 
end if; 

-- get pixel on the line 

2015); 

+ 1; 

if (getpix = '1') then 
nread <= '1'; 
-- shift image 
pattern <= data_in & pattern(O to 

index <= internal_index; 
update index 

end if; 

-- PRELOADING IMAGE 

elsif (image_loaded = '0" and 
pattern loaded = '1') then 

if (loadpix = '1') then 
address <= 

conv_std_logic_vector(image_address_toconv 
ert,32); 

nread <= '0'; 

image_address_toconvert := 

image_address_toconvert + 4; 
end if; 

if (getpix = '1') then 
nread <= '1'; 

-- get information on the line 
image <= data_in & image(O to 

3807); -- shift image 

internal_index := internal_index 
+ 1; 

index <= internal_index 

end if; 

-- LOADING PIXEL AND SHIFT 

elsif (image_loaded = '1') then 

if (loadpix = '1') then 

-- load next pixel from image 
address <= 

conv_std_logic_vector(image_address_toconv 
ert,32); 

nread <= '0'; 

image_address_toconvert := 

image_address_toconvert + 4; 
end if; 
if (getpix = '1') then 

nread <= • 11 ; 

image <= data_in & 
image(O to 3807); -- this shifts image 

internal_index :~ internal_index 
+ 1; 

index <= internal_index; 
update index 
compare := true; 

end if; 

end if.; 
• ------------------------------

-- DONE HAS BEEN DETECTED AND WE 
TERMINATE 

elsif (done = '1' and done'event) then 
address <= 

conv_std_logic_vector(result_address,32); 
nwrite <= '0'; 

elsif (done = '0' and done'event) then 

nwrite <= '1'; 

end if; 
end process datapath_main-process; 
end datapath; 
--Controller 

LIBRARY ieee 
USE ieee.std_logic_1164.all; 
USE ieee.numeric_std.all; 

ENTITY controller IS 
PORT ( 

clk IN 
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doneinit IN 

index IN 
DOWNTO 0) ; 

match IN 
nack_mem IN 
nlocal rst IN -
nstart IN 
done OUT 
getpix OUT 
image_loaded OUT 
loadpix OUT 
pattern loaded OUT 

) ; 

Decla:t:ations 

END controller 

LIBRARY ieee ; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 

std_logic 
unsigned 

std_logic 
std_logic 
std_logic 
std_logic 
std_logic 
std_logic 
std_logic 
std_logic 
std_logic 

ARCHITECTURE fsm OF controller IS 

-- Architecture Declarations 
TYPE STATE_TYPE IS ( 

) ; 

pp2. 
pi2. 
pil. 

PP1. 
preload_image. 
preload-pattern. 

init. 
idle. 
compare. 
save_result. 

c1. 
c2 

-- State vector declaration 
ATTRIBUTE state_vector : string; 
ATTRIBUTE state_vector OF fsm : 

ARCHITECTURE IS "current_state" 

-- Declare current and next state 
signals 

SIGNAL 
SIGNAL 

BEGIN 

(7 

clocked: PROCESS ( 

clk. 
nlocal_rst 

BEGIN 
IF (nlocal_rst = '0') THEN 

current_state <- idle; 
Reset Values 

ELSIF (clk' EVENT AND clk ~ '1') THEN 
current_state <- next_state; 
-- Default Assignment To 

Internals 
END IF; 

END PROCESS clocked; 

next state : PROCESS 
current_state. 
index. 
match, 
nack_mem. 
nstart 

BEGIN 
CASE current_state IS 
WHEN pp2 => 

next_state <- preload-pattern; 

WHEN pi2 -> 

next_state <- preload_image; 

WHEN pi1 -> 

IF (nack_mem - '0') THEN 
next_state <- pi2; 

ELSE 
next_state <- pi1; 

END IF; 
WHEN pp1 -> 

IF (nack_mem - '0') THEN 
next_state <- pp2; 

ELSE 
next_state <_ pp1; 

END IF; 
WHEN preload_image -> 

IF (index >- 120) THEN 
next_state <_ compare; 

ELSIF (index < 120) THEN 
next_state <- pili 

ELSE 
next_state <- preload_image; 

END IF; 
WHEN preload-pattern => 
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IF (index >= 64) THEN 
next_state <= preload_image; 

ELSIF (index < 64) THEN 
next_state <= ppl; 

END IF; 
WHEN init -> 

next_state <= preload-pattern; 
WHEN idle => 

IIL (nstart =. '0') THEN 
next_state <= init; 

ELSE 
next_state <= idle; 

END IF; 
WHEN compare -> 

IF «index> 255-120) OR match -
'1') THEN 

next_state <= save_result; 
ELSIF (index < 256-120) THEN 

next_state <= cl; 
ELSE 

next_state <= compare; 
END IF; 

WHEN save_result => 
IF (nack_mem = '0') THEN 

next_state <= idle; 
ELSE 

next_state <= save_result; 
END IF; 

WHEN cl -> 
IF (nack_mem = '0') THEN 

next_state <= c2; 
ELSE 

next_state <= cl; 
END IF; 

WHEN c2 => 
next_state <= compare; 

WHEN OTHERS => 
next_state <= idle; 

END CASE; 

END PROCESS nextstate; 

output : PROCESS 
current_state 

BEGIN 
Default Assignment 

done <= '0'; 
getpix <= '0'; 
image_loaded <= '0'; 
loadpix <= '0'; 
pattern_loaded <= '0'; 

-- Default Assignment To Internals 

-- State Actions 
CASE current_state IS 
WHEN pp2 => 

getpix <= '1'; 
loadpix <s '0'; 

WHEN pi2 => 
getpix <= '1'; 

loadpix <= '0'; 
pattern loaded <= '1'; 

WHEN pil => 
loadpix <= '1'; 

pattern_loaded <= '1'; 

WHEN ppl => 
loadpix <= '1'; 

WHEN preload_image => 
image_loaded <= '0'; 
pattern loaded <= '1'; 
loadpix <= '0'; 

getpix <= '0'; 
WHEN preload-pattern => 

getpix <= '0'; 

loadpix <= '0'; 
pattern loaded <= '0'; 

image_loaded <= '0'; 

WHEN idle => 
done <= 'Oli 

image_loaded <= '0'; 
pattern loaded<= '0'; 

loadpix <= '0'; 

getpix <= '0'; 

WHEN compare -> 
image_loaded <- '1'; 

pattern_loaded <= '1'; 

loadpix <= '0'; 
getpix <= '0'; 

WHEN save_result => 
done <= '1'; 
image_loaded <= '1'; 
pattern_loaded <= 'l~; 

WHEN cl => 
loadpix <= '1'; 
image_loaded <- '1'; 
pattern loaded <= '1'; 

WHEN c2 => 
getpix <= '1'; 
loadpix <= '0'; 
image_loaded <= '1'; 
pattern_loaded <- '1'; 

WHEN OTHERS => 
NULL; 

END CASE; 
END PROCESS output; 
-- Concurrent Statements 
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END fsm; 

--Block matching coprocessor 
LIBRARY ieee ; 
USE ieee.std_logic_1164.all; 
USE ieee.numeric_std.all; 

ENTITY co-processeur IS 
PORT ( 

clk 
data_in 

IN 
IN 

std_logic 
std_logic_vector 

(31 DOWNTO 0) 
nack_mem 
nlocal_rst 
nstart 
·address 

IN 
IN 
IN 

OUT 

std_logic 
std_logic 
std_logic 

std_logic_vector 

(31 DOWNTO 0) 
data_out 

(31 downto 0) 
nread 
nwrite 

) ; 

Declarations 
END co-processeur 

LIBRARY ieee ; 

OUT 

OUT 
OUT 

std_logic 
std_logic 

USE ieee.std_logic_1l64.ALL; 
USE ieee.numeric_std.ALL; 

LIBRARY copro; 
ARCHITECTURE struct OF co-processeur IS 

-- Architecture declarations 
-- Internal signal 
SIGNAL done 
SIGNAL doneinit 
SIGNAL getpix 
SIGNAL image_loaded 
SIGNAL index 

DOWNTO 0); 

SIGNAL loadpix 
SIGNAL match 

declarations 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
unsigned (7 , 

SIGNAL pattern loaded 

std_logic; 
std_logic; 
std_logic; 

-- Component Declarations 
COMPONENT controller 
PORT ( 

clk IN 
doneinit IN 
index IN 

DOWNTO 0); 
match IN 
nack_mem IN 
nlocal rst IN -

std_logic 
std_logic 
unsigned 

std_logic 
std_logic 
std_logic 

; 

; 

(7 

) ; 

nstart 
done 
getpix 
image_loaded 
loadpix 
pattern_loaded 

END COMPONENT; 
COMPONENT datapath 

PORT ( 
index 

DOWNTO 0); 
done 
match 
image_loaded 
pattern_loaded 
getpix 
loadpix 
clk 
address 

IN std_logic 

OUT std_logic 

OUT std_logic 

OUT std_logic 

OUT std_logic 

OUT std_logic 

OUT unsigned 

IN std_logic 

OUT std_logic 
IN std_logic 
IN std_logic 

IN std_logic 
IN std_logic 

IN std_logic 

OUT 
std_logic_vector (31 DOWNTO 0) ; 

nread : OUT st'd _logic 

data_out : OUT 
std_logic_vector (31 downto 0) ; 

nwrite : OUT std_logic 

data in : IN -
std_logic_vector (31 DOWNTO 0) ; 

nstart ' . IN std_logic 

'nlocal -rst IN std_logic 

doneinit OUT ,std_logic 
) ; 

END COMPONENT; 
-- Optional embedded configurations 
-- pragma synthesis_off 
FOR ALL : controller USE ENTITY 

copro.controller; 
FOR ALL : data path USE ENTITY 

copro.datapath; 
-- pragma synthesis_on 

BEGIN 
Instance port mappings. 

12 : controller 
PORT MAP ( 

clk => clk, 

doneinit "',. doneinit, 
index =,. index, 

match "'> match, 
nack_mem => nack_mem, 
nlocal -rst => nlocal _rst, 

nstart => nstart, 

done ~> done, 

getpix => getpix, 

image_ loaded => image_ loaded, 

(7 

I 
1 
t 
I 
I 
I 
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loadpix 
pattern_loaded 

) ; 

Il : datapath 
PORT MAP ( 

index 
done 
match 
illliige_loaded 
pattern_loaded 
getpix 
loadpix 
clk 
address 
nread 
data _out 
nwrite 
data in -
nstart 
nlocal rst -
doneinit 

) ; 

END struct; 

--Memory interface 
LIBRARY ieee ; 

=> loadpix, 
=> pattern loaded 

=> index, 
=> done, 
=> match, 
z> image_ loaded, 

=> pattern_loaded, 

=> getpix, 
=> loadpix, 
z> clk, 

-> address, 
-> nread, 

-> data _out, 

-> nwrite, 
-> data _in, 
-> nstart, 

-> nlocal rst, -
-> doneinit 

USE ieee.std_logic_1164.all; 
USE ieee.numeric_std.all; 

ENTITY bm_mem_interface_int IS 
PORT ( 

a_bm IN std_logic_vector 
(31 DOWNTO 0) 

clk IN std_logic 
dout_bm IN std_logic_vector 

(31 DOWNTO 0) 
event_sig IN std_logic 
nrd_bm IN std_logic 
nreset IN std_logic 
nwe_bm IN std_logic 
a_dpram OUT std_logic_vector 

(31 downto 0) 
din_bm OUT std_logic_vector 

(31 DOWNTO 0) 
irq OUT std_logic 
nack_mem OUT std_logic 
ncs_dpram OUT std_logic 
nrd_dpram OUT std_logic 
nstart_bm OUT std_logic 
nwe_dpram OUT std_logic 
d_dpram INOUT std_logic_vector 

(31 DOWNTO 0) 
) ; 

-- Declarations 
END bm_mem_interface_int 
LIBRARY ieee ; 
USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 

LIBRARY copro; 
ARCHITECTURE struct OF 
bm_mem_interface_int IS 
-- Architecture declarations 
-- Non hierarchical state machine 
declarations 
TYPE MACHINE3_STATE_TYPE IS ( 

idle, 
go, 
wait_done, 
send_irq 

) ; 

-- Declare current and next state signals 
SIGNAL machine3_current_state 
MACHINE3_STATE_TYPE ; 
SIGNAL machine3_next_state 
MACHINE3_STATE_TYPE ; 

(31 

(31 

(31 

(31 

(31 

-- Internal signal declarations 
SIGNAL count integer; 
SIGNAL nack_mem_bm std_logic; 
SIGNAL nrst_cnt 

Component Declarations 
COMPONENT memory_signal_fsm 
PORT ( 

a_unit IN std_logic_vector 
DOWNTO 0) ; 

elk IN std_logic ; 

dout_unit IN std_logic_vector 
DOWNTO 0); 

nrd_unit IN std_logic 
nreset IN std_logic 
nwe_unit IN std_logic 
a_mem OUT std_logic_vector 

downto 0); 
din_unit OUT std_logic_vecDor 

DOWNTO 0); 
naek_mem OUT std_logic 
ncs_mem OUT std_logic 
nrd_mem OUT std_logic 
nwe_mem OUT std_logic 
d_mem INOUT std_logic_vector 

DOWNTO 0) 
) ; 

END COMPONENT; 
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-- Optional embedded configurations 
-- pragma synthesis_off 
FOR ALL : memory_signal_fsm USE ENTITY 

copro.memory_signal_fsm; 

-- pragma synthesis_on 

BEGIN 
Architecture concurrent statements 
HDL Embedded Block 3 comm_int 

Non hierarchical state machine 

machine3_clocked : PROCESS ( 

clk. 

nr~set 

BEGIN 

IF (nreset - '0') THEN 
machine3_current_state <= idle; 
- - Reset Values 

ELSIF (clk'EVENT AND clk c '1') THEN 
machine3_current_state <c 

machine3_next_state; 
Default Assignment To 

Internals 

END IF; 

END PROCESS machine3_clocked; 

machine3_nextstate : PROCESS ( 
count. 
event_sig. 
machine3_current_state. 
nack_mem_bm. 
nwe_bm 

BEGIN 

CASE machine3_current_state IS 
WHEN idle "'> 

IF (event_sig = '1') THEN 
machine3_next_state <= go; 

ELSE 
machine3_next_state <= idle; 

END IF; 
WHEN go => 

IF <nwe_bm .. '0') THEN 
machine3_next_state <= 

wait_done; 
ELSE 

machine3_next state <= go; 

END IF; 
WHEN wait_done => 

IF (nack_mem_bm .. '0') THEN 
machine3_next_state <-

ELSE 
machine3_next state <'" 

wait_done; 
END IF; 

WHEN send_irq => 

IF (count .. 4) THEN 
machine3_next_state <- idle; 

ELSE 
machine3_next_state <c 

send_irq; 
END IF; 

WHEN OTHERS => 

machine3_next_state <- idle; 

END CASE; 

END PROCESS machine3_nextstate; 

machine3_output : PROCESS 
machine3_current_state 

--------.--~-------------------
BEGIN 

~- Default Assignment 

irq <- '0'; 
nrst_cnt <- '0'; 
nstart_bm <- '1'; 

Default Assignment To Internals 

-- State Actions 
CASE machine3_current_state IS 
WHEN idle -> 

nstart_bm <- '1'; 
irq <- '0'; 
nrst_cnt <- '0'; 

WHEN go => 

nstart_bm <- '0'; 
irq <- '0'; 

nrst_cnt <- '0'; 
WHEN wait_done => 

nstart_bm <- '1'; 
irq <_ '0 1 ; 

nrst_cnt <c '0'; 
WHEN send_irq => 

nstart_bm <- '1'; 
irq <- '1'; 
nrst_cnt <= '1'; 

WHEN OTHERS => 

NULL; 

-_._-_. ~-----------------

, 
t 
i 
I 
, 
1 
; 
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END CASE; 

END PROCESS machine3_output; 

Concurrent Statements 
HDL Embedded Text Block 4 chgname 
chgname 3 

nack_mem <= nack_mem_bm; 

HDL Embedded Text Block 5 counter 
counter 3 

process (nrst_cnt. clk) 
begin 

if (nreset = '0') then 

count <= 0; 
elsif(nrst_cnt - '0') then 

count <= 0; 
elsif (clk'event and clk = '1') then 

if (count = 200) then 
count <= 0; 

else 
count <= count + 1; 

end if; 
end if; 

end process; 

-- Instance port mappings. 
bm_msfsm : memory_signal_fsm 

PORT MAP ( 

) ; 

a_unit -> a_bm. 
elk _> clk. 

dout_unit -> dout_bm. 
nrd_unit -> nrd_bm. 
nreset -> nreset. 
nwe_unit => nwe_bm. 
a_mem -> a_dpram. 
din_unit => din_bm. 
nack_mem => nack mem_bm. 
ncs_mem => ncs_dpram. 
nrd_mem -> nrd_dpram. 
nwe_mem => nwe_dpram. 

d_mem => d_dpram 

END struct; 

--Interrupt Main function 
LIBRARY ieee ; 
USE ieee.std_Iogic_1164.all; 
USE ieee.numeric_std.all; 

ENTITY main_int IS 
-- Declarations 

LIBRARY ieee 
USE ieee.std_Iogic_1164.ALL; 
USE ieee.numeric_std.ALL; 

LIBRARY basicarm; 
LIBRARY copro; 

ARCHITECTURE struct OF main_int IS 

Architecture declarations 

-- Internal signal declarations 
SIGNAL Intr_data_out : 

std_Iogic_vector(31 DOWNTO 0); 
SIGNAL a 

std_Iogic_vector(31 DOWNTO 0) ; 

SIGNAL a_dpram 
std_Iogic_vector(31 downto 0) ; 

SIGNAL address 
std_Iogic_vector(31 

SIGNAL be 
std_Iogic_vector(3 

SIGNAL busyl 
SIGNAL busyr 
SIGNAL clk 

DOWNTO 0) ; 

DOWNTO 0); 
std_Iogic; 
std_Iogic; 
std_Iogic; 

SIGNAL copro_O_add 
std_Iogic_vector(17 DOWNTO 0); 

SIGNAL copro_O_d 
std_Iogic_vector(31 DOWNTO 0); 

SIGNAL cs : std_Iogic; 
SIGNAL data_out 

std_Iogic_vector(31 DOWNTO 0); 
SIGNAL din 

std_Iogic_vector(31 DOWNTO 0); 
SIGNAL din_bm 

std_Iogic_vector(31 DOWNTO 0); 
SIGNAL dout 

std_Iogic_vector(31 downto 0);. 
SIGNAL dout_bm 

std_Iogic_vector(31 DOWNTO 0); 

SIGNAL dpram_O_cs 
SIGNAL dpram_O_d 

std_Iogic_vector(31 DOWNTO 0); 
SIGNAL eV_b std_Iogic; 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 
SIGNAL 

ev_c 
ev_d 
event_cs 
event_sig 
irq 
mas 

std_Iogic; 
std_Iogic; 
std_Iogic; 
std_Iogic; 
std_Iogic; 

std_Iogic_vector(l DOWNTO 0); 
SIGNAL nWAIT std_Iogic; 
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SIGNAL nack_mem_bm 
SIGNAL ncopro_O_be 

std_logic_vector(3 DOWNTO 
SIGNAL ncopro_O_cs 
SIGNAL ncopro_O_oe 
SIGNAL ncopro_O~we 
SIGNAL nirq 

0) ; 

std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 
std_logic; 

SIGNAL nmreq 
SIGNAL nread 
SIGNAL nrst 
SIGNAL nrw 
SIGNAL nscreen_cs 
SIGNAL nsram_cs 
SIGNAL nstart_bm 
SIGNAL nwe_bm 
SIGNAL oe 
SIGNAL screen_d 

std_logic_vector(31 DOWNTO 0); 
SIGNAL seml std_logic; 
SIGNAL semr 
SIGNAL sram_d 

std_logic_vector(3l DOWNTO 0); 
SIGNAL we 

-- Component Declarations 
COMPONENT ARM_CORE 
PORT ( 

din IN std_logic_vector 
downto 0); 

mclk IN std_logic 
nWAIT IN std_logic 
nirq IN std_logic 
nreset IN std_logic 
a OUT std_logic_vector 

downto 0); 
dout OUT std_logic_vector 

downto 0); 
mas OUT std_logic_vector 

downto 0); 
nmreq OUT std_logic 
nrw OUT std_logic 

) ; 

END COMPONENT; 
COMPONENT CONTROLLER_MEM 
PORT ( 

Intr_data - in IN 
std_logic_vector (31 DOWNTO 0) ; 

a : IN 
std_logic_vector (31 DOWNTO 0) ; 

clk : IN std~logic 

dout : IN 
std_logic_vector (31 DOWNTO 0) ; 

mas : IN 
std_logic_vector (1 downto 0) ; 

(31 

(31 

(31 

(1 

nmreq IN std_logic 

nrw IN std_logic 
reset IN std_logic 
Intr_data_out OUT 

std_logic_vector (31 DOWNTO 0) ; 

be : OUT 
std_logic_vector (3 downto 0) ; 

din : OUT 
std_logic_vector (31 DOWNTO 0) ; 

nWAIT OUT std_logic 
ndpram_O_cs OUT std_logic 
nevent_cs OUT std_logic 

nintr_cs OUT std_logic 
nscreen_cs OUT std_logic 
nsem_cs OUT std_logic 
nsram_cs OUT std_logic 
oe OUT std_logic 
screen_d OUT 

std_logic_vector (31 DOWNTO 0) ; 
we : OUT std_logic 
dpram_O : INOUT 

std_logic_vector (31 DOWNTO 0) ; 
sram_d : INOUT 

std_logic_vector (31 DOWNTO 0) 
) ; 

END COMPONENT; 
COMPON~DPRAM_MEM 

PORT ( 

copro_add IN std_logic_vector 

t (17 DOWNTO 0); 
dpram_add IN std_logic_vector 

f (31 DOWNTO 0); 
ncopro_be IN std_logic_vector 

1 (3 DOWNTO 0); 
ncopro_cs IN std_logic 

I ncopro_oe IN std_logic 
ncopro_we IN std_logic 

I ndpram_be IN std_logic_vector 
(3 DOWNTO 0); I ndpram_cs IN std_logic 

ndpram_oe IN std_logic j 

ndpram_we IN -std_logic I seml IN std_logic 
l semr IN std_logic j 

intl OUT std_logic 

I intr OUT std_logic 
busyl INOUT std_logic 
busyr INOUT std_logic i copro_d INOUT std_logic_vector 

(31 downto 0) ; I d INOUT std_logic_vector 
(31 downto 0) 

) ; 

END COMPONENT; 
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\ 
COMPONENT EVENT_DEC 
PORT ( 

event_add IN 
(31 DOWNTO 0); 

event_cs IN 
event_we IN 
event_a OUT 
event_b OUT 
evenG._c OUT 
event_d OUT 

) ; 

END COMPONENT; 

COMPONENT INTERRUPT 
PORT ( 

a IN 
(31 DOWNTO 0) ; 

clk IN 
cs IN 
data in IN -

(31 DOWNTO 0) ; 

(31 

ev_a IN 
ev_b IN 
ev_c IN 
ev_d IN 
nrst IN 
oe IN 
we IN 
data_out OUT 

DOWNTO 0) ; 
nirq : OUT 

) ; 

END COMPONENT; 
COMPONENT SCREEN_MEM 
PORT ( 

std_1ogic 
std_logic 
std_logic 
std_logic 
std_logic 
std_logic 

std_logic_vector 

std_logic 
std_logic 
std_logic_vector 

std_logic 
std_logic 
std_logic 
std_logic 
std_1ogic 
std_logic . 
std_logic 
std_logic_vector 

std_logic 

data_screen : IN 
std_logic_vector (31 DOWNTO 0); 

) ; 

nscreen_cs 
nscreen_we 

IN 
IN 

END COMPONENT; 
COMPONENT SRAM_MEM 

PORT ( 
nsram_be 

(3 DOWNTO 0); 

nsram_cs 
nsram_oe 
nsram_we 
sram_add 

(31 DOWNTO 0); 

d 

(31 downto 0) 
) ; 

END COMPONENT; 

IN 

IN 
IN 
IN 

std_logic 
std_logic 

std_logic 
std_logic 
std_logic 

COMPONENT bm mem_interface_int 

PORT ( 

a_bm IN std_logic_vector 
(31 DOWNTO 0) ; 

clk IN std_logic ; 

dout_bm IN std_logic_vector 
(31 DOWNTO 0); 

event_sig IN std_1ogic 
nrd_bm IN std_logic 
nreset IN std_logic 
nwe_bm IN std_logic 
a_dpram OUT std_logic_vector 

(31 downto 0); 

din_bm OUT std_logic_vector 
(31 DOWNTO 0) ; 

irq OUT std_logic 
nack_mem OUT std_1ogic 
ncs_dpram OUT std_logic 
nrd_dpram OUT std_logic 
nstart_bm OUT std_logic 
nwe_dpram OUT std_logic 
d_dpram INOUT std_logic_vector 

(31 DOWNTO 0) 
) : 
END COMPONENT; 
COMPONENT clock_generator 
PORT ( 

clk 
nrst 

OUT 
OUT 

std_logic 
std_logic 

) : 
END COMPONENT; 
COMPONENT co-processeur 
PORT ( 

clk IN std_logic ; 

data_in IN std_logic_vector 
(31 DOWNTO 0); 

nack_mem IN std_logic 
nlocal - rst IN std_logic 
nstart IN std_logic 
address OUT std_logic_vector 

(31 DOWNTO 0); 

data_out OUT std_logic_vector 
(31 downto 0): 

nread OUT std_logic 
nwrite OUT std_logic 

) : 
END COMPONENT; 

-- Optional embedded configurations 
-- pragma synthesis_off 
FOR ALL : ARM_CORE USE ENTITY 

basicarm.ARM_CORE; 

FOR ALL : CONTROLLER_MEM USE ENTITY 
basicarm.CONTROLLER_MEM; 

FOR ALL : DPRAM_MEM USE ENTITY 
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basicarm.DPRAM_MEM; 
FOR ALL : EVENT_DEC USE ENTITY 

basicarm.EVENT_DEC; 
FOR ALL : INTERRUPT USE ENTITY 

basicarm.INTERRUPT; 
FOR ALL : SCREEN_MEM USE ENTITY 

basicarm.SCREEN_MEM; 
FOR ALL : SRAM_MEM USE ENTITY 

basicarm.SRAM_MEM; 
FOR ALL : bm mem_interface_int USE 

ENTITY copro.bm_mem_interface_int; 
FOR ALL : clock_generator USE ENTITY 

basicarm.clock-generator; 
FOR ALL : co-processeur USE ENTITY 

copro.co-processeur; 
-- pragma synthesis_on 

BEGIN 
Architecture concurrent statements 
HDL Embedded Text Block 2 addrcnvl 
ebl 1 

copro_O_add <= a_dpram(17 downto 0); 
ncopro_O_be <= "0000"; 

HDL Embedded Text Block 4 eb3 
eb2 3 

semr CIK '11; 

seml <_ '11; 

Instance port mappings. 
12 : ARM_CORE 

PORT MAP ( 

din &> din, 
mclk -> clk, 
nWAIT &> nWAIT, 

nirq => nirq, 
nreset => nrst, 

a => a, 
dout => dout, 
mas z> mas, 

nmreq => nmreq, 
nrw => nrw 

) ;. 

IS : CONTROLLER_MEM 
PORT MAP ( 

Intr_data - in => data_out, 
a => a, 
clk -> clk, 
dout => dout, 
mas => mas, 

nmreq => nmreq, 
nrw => nrw, 
reset => nrst, 
Intr_data -out => Intr_data_out, 

) ; 

be 
din 
nWAIT 
ndpram_O_cs 
nevent_cs 
nintr_cs 
nscreen_cs 
nsem_cs 
nsram_cs 
oe 
screen_d 
we 

=> be, 

=> din, 
=> nWAIT, 
=> dpram_O_cs, 
=> event_cs, 
~> ca, 

=> nscreen_cs, 
=> OPEN, 
-> nsram_cs, 

-> oe , 

-> we, 

-> dpram_O_d, 
,,> sram_d 

DPRAM_l DPRAM_MEM 
PORT MAP ( 

copro_add -> copro_O_add, 
dpram_add => a, 
ncopro_be -> ncopro_O_be, 
ncopro_cs -> ncopro_O_cs, 
ncopro_oe => ncopro_O_oe, 
ncopro_we => ncopro_O_we, 
ndpram_be -> be, 
ndpram_cs -> dpram_O_cs, 
ndpram_oe -> oe, 
ndpram_we -> we, 
semI -> semI, . semr -> semr, 
intI -> OPEN, 
intr -> OPEN, 
busyl -> busyl, 
busyr -> busyr, 
copro_d -> copro_O_d, 
d -> dpram_O_d 

) ; 

17 : EVENT_DEC 
PORT MAP ( 

event _add => a, 
event _cs -> event -cs, 
event_we -> we, 
event_a z> event_sig, 
event b => OPEN, 
event c => OPEN, -
event _d -> OPEN 

) ; 

16 : INTERRUPT 
PORT MAP 

a => a, 
clk => clk, 
cs => cs, 
data - in -> Intr_data_out, 
ev_a => irq, 
ev_b a> ev_b, 
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I 
1 

) ; 

=:> ev_c, 
=> ev_d, 

=> nrst, 
=> oe, 

we => we, 

nirq => nirq 

I4 : SCaEEN_MEM 
PORT MAP ( 

) ; 

data_screen => screen_d. 
nscreen_cs -> nscreen_cs. 
nscreen_we => we 

I3 : SRAM_MEM 
PORT MAP ( 

) ; 

nsram_be => be. 
nsram_cs => nsram_cs. 
nsram_oe -> oe. 
nsram_we -> we, 

sram_add .. > a. 
d 

10 : bm_mem interface_int 
PORT MAP 

) ; 

a_bm -> address. 
elk => clk. 
dout_bm ._> dout_bm. 
event_sig => event_sig. 
nrd_bm c> nread. 
nreset => nrst. 
nwe_bm _> nwe_bm. 
a_dpram -> a_dpram. 
din_bm -> din_bm. 
irq -> irq. 
nack_mem -> nack_mem_bm. 
ncs_dpram => ncopro_O_cs. 
nrd_dpram => neopro_O_oe. 
nstart_bm => nstart_bm. 
nwe_dpram => ncopro_O_we. 
d_dpram -> eopro_O_d 

11 : clock_generator 
PORT MAP ( 

) ; 

clk => elk. 
nrst => nrst 

I9 : co_processeur 
PORT MAP 

elk => 

data in -> -
nack_mem -> 

nlocal rst => -
nstart => 

clk. 
din_bm. 
nack_mem_bm. 
nrst. 
nstart _bm. 

address => address. 
data _out => dout_bm. 
riread .. > nread. 
nwrite => nwe bm 

) ; 

END struct; 
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Appendix B: SOBEL Edge 
Defection Implementation Code 

Software Components 

#ifndef INCLUDE_IMAGE_H 

#define INCLUDE_IMAGE_H 

#inc1ude <stdio.h> 

#define max (a, b) « (a) > (b) )? (a) : (b» 
#define min (a, b) « (a) < (b»? (a) : (b» 

const double PI = 3.1415926535; 

typedef int ImageDatum; 
#define dataToDoub1e(a) (double (a) 1255.0) 

#define doub1eToData(b) 
(ImageDatum(b*255.0» 

union Pixel { 

struct RGB_Pixe1 { 
ImageDatum 
ImageDatum 
ImageDatum 

} rgb; 

struct HSI _Pixel { 
ImageDatum 
ImageDatum 
ImageDatum 

} hsi; 
} ; 
enum ImageMode 

Mode_RGB, 
Mode_HSI 

} ; 

enum ImageChanne1 
ch_Red, 
ch_B1ue, 
ch_Green, 
ch_Hue, 
ch_Saturation, 
ch_Intensity 

} ; 

class ImageDisp1ayer; 

class Image { 
public: 

Image (int, int); 
Image(char*); 

r; 
g; 
b; 

h; 
S; 

i; 

Image (Image&) ; 

-Image (); 
boo110ad(char*); 
boo1 save(char*); 
void disp1ay(char*); 
void annotate(char*, char*); 
ImageDatum getVa1ue(ImageChanne1, 

int, intI; 
void setValue(ImageChanne1, int, 

int, ImageDatum); 
boo1 isB1ack(int, intI; 
boo1 isWhite(int, intI; 
ImageDatum getGrey(int, intI; 
void settoB1ack(int, intI; 
void settoWhite(int, intI; 
void setGrey(int, int, 

ImageDatum) ; 
int height(); 

int width(); 
void RGBtoHSI(); 
void swap(Image* that); 

II for internal use - not for the 
faint of heart 

void write_to_fp(FILE*); 
void read_from_fp(FILE*); 

static boo1 showGUI; 
• static long memReq; 

protected: 

} ; 

#endif 

void init(int, intI; 
int h, w; 
ImageMode mode; 

Pixe1* p; 
Pixe1* get Pixel (int, intI; 

void openGUI(); 
void 10adRGB(char*,int,int); 
void saveRGB(char*); 
static FILE* guiRead; 
static FILE* guiwrite; 

/******************************** 

*** image.cpp 

*** simple image manipulation 
functions: 
*** loading, saving, reading and 
chaging intensity values 

*** 
\*******************************/ 

I·' 
1 ,., 
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#include "image.h" 

#include <assert.h> 
#include <iostream.h> 
#include <fstream.h> 
# include <unistd.h> II fork() 

#include <math.h> II atan() sqrt() 
# include <stdio.h> II sscanf () 

#include <stdlib.h> II system() 
# include <sys/types.h> II socketpair () 
#include <sys/socket.h> II socketpair () 

#include <unistd.h> II fcntl () 

#include <fcnt1.h> II fcntl () 

II QT Stuff 
#include <qapp.h> 
#include <qwidget.h> 
#include <qpainter.h> 
#include <qsocketnotifier.h> 
#include <qmessagebox.h> 

#include <qlistbox.h> 
#include <qpixmap.h> 
#include <qlabel.h> 

const int IbWidth=200; 
const int pad=S; 
const int maxPanes=lOO; 

static long Image::memReq = 0; 
II ImageDisplayer and ImageGallery should 

only be used from within the Image 
II class. Client coders should probably 
just call Image::display. 
class ImageDisplayer : public QFrame { 

Q_OBJECT; 

public: 
ImageDisplayer(QWidget* parent, 

Image *image) : QFrame(parent) 

{ construct_ImageDisplayer(image) 
} ; 

-ImageDisplayer(); 

protected: 
void 

construct_ImageDisplayer(Image *image); 

virtual void 
resizeEvent(QResizeEvent* ); 

QPixmap* pm; 
QLabel* Ibl; 

} ; 

class ImageGallery 
Q_OBJECT; 

public QWidget { 

public: 

ImageGallery(int); 
void addPane(QFrame*. char*); 

protected: 
int fd; 
QListBox* Ib; 

int maxHeight; 
int maxWidth; 

QWidget* panes[maxPanes]; 
virtual void 

resizeEvent(QResizeEvent*); 

protected slots: 

} ; 

void dataReceived(int); 
void choo~elmage(int); 

//************************** •• **/ 

Image::lmage(int h_in. int w_in) 
init(h_in. w_in); 

Image::Image(char*fileName) 
II constructs an image and loads 

the specified file 
load (fileName) ; 

Image::lmage(Image& i) { 
init(i.width(). i.height()); 
mode = i.mode; 
memcpy(p. i.p. 

width()*height()*sizeof(Pixel)) ; 
} 

void Image::init(int w_in. int h_in) 
h h in· - . 
w w_ini 
p = new Pixel[h*w]; 
mode s MOde_RGB; 

memReq += h*w; 

bool Image::showGUI = true; 
Image::-Image() { 

if(p) delete[] p; 
p = 0; 

mode = Mode_RGB; 
memReq += h*w; 
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bool Image::load(char* fileName) 
int x, y; 
int w_in, h_in; 
unsigned char c; 
Pixel *cp; 

if(lstrstr(fileName, ".rgb n » 

II not an rgb file --

convert it 
char *p; 
FILE* fp; 
char cmd[l2B] i 

II get the dimensions 
p = tmpnam(O); 
sprintf(cmd, "imdim ts 

> ts n , fileName, pI; 
if(system(cmd» { 

II a non-zero 
return value from imdim 

with this. 

II bad news. 
II TODO: deal 

fp • fopen(p, "r"); 
if (fscanf (fp, "'d 'd", 

&w_in, &h_in) 1= 2) { 
II couldn't scan 

two numbers from the file 

news. 

with this 

II this is bad 

II TODO: deal 

fclose(fp); 
unlink(p) ; 

II convert the file 

p - tmpnam(O); 
sprintf(cmd, "convert ts 

rgb:ts", fileName, pI; 

with error 

if(system(cmd» 

II TODO: Deal 

II load the file 
init(w_in, h_in); 
loadRGB(p, w, h)i 
unlink(p) ; 

} else { 
II already rgb -- no 

conversion needed. 
char *p; 

p - fileName; 

II extract the image's 

dimensions from the filename 
while(*p && *p I- '-') 

p++; p++; 

loadRGB(fileName, w_in, 

return true; 

bool Image::save(char *fileName) { 

char* Pi 

if(lstrstr(fileName, ".rgb"» 
II not an rgb file 

in rgb format: 
II create temporary file 

p - tmpnam(O); 
saveRGB(p); 

char cmd[lOO]i 
sprintf(cmd, "convert -

size tdxtd rgb:ts ts", w, h, p, fileName); 
if(system(cmd» { 

with error 

} else { 

Ii TODO: Deal 

unlink (pI ; 

I I rgb file 
saveRGB(fileName); 

return true; 

void Image::loadRGB(char* fileName, int 
w_in, int h_in) { 

init(w_in, h_in); 
ifstream in(fileName)i 

int x, y; 
Pixel *CPi 
unsigned char c; 

t 

Ii 
I 

j 

f 

i 
I 

~ 

if 

~ 

I 
I 
/
' 

; t 
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I 
I 

~ 

for(y=Oiy<hiY++) { 
for(x=O;x<w;x++) 

if (I in) return; 
cp ,. getPixel(x, 

y) ; 

in.get(c); cp->rgb.r 
in.get(c); cp->rgb.g 
in.get(c);-cp->rgb.b 

min(255, C)i 

min(255, C)i 

min(255, c); 

void Image::saveRGB(char* fileName) { 
int x, y; 
Pixel *cp; 
of stream out(fileName); 

for(y=O;y<h;y++) ( 
for (x=O;X<WiX++) 

cp - getPixel(x, 
y); 

out « (unsigned 
char) cp->rgb.r; 

out « (unsigned 
char) cp->rgb.g; 

out « (unsigned . 
char) cp->rgb.b; 

Pixel* Image::getPixel(int x, int y) 
if«x<w)&&(y<h» IISorry J, I just 

couldn't let this go. -A. :) 
return(p + x + y*w); 

else 
return(NULL); 

lmageDatum Image::getValue(ImageChannel ch, 
int x, int y) 

Pixel *cp - getPixel(x, y); 

switch(ch) ( 
case ch_Red return cp-

>rgb.r; 
case ch_Green: return cp-

>rgb.g; 
case ch_Blue return cp-

>rgb.b; 

case ch_Hue 
return cp->hsi.h; 

case ch_Saturation 
return cp->hsi.s; 

case ch_Intensity 
return cp->hsi.i; 

Ilshould never get here 
return 0; 

void Image::setValue(ImageChannel ch, int 
x, int y, ImageDatum i) ( 

Pixel *cp • getP1xel(x, y); 

switch (ch) ( 
case ch_Red cp->rgb.r 

,. i; break; 
case ch_Green: cp->rgb.g . i; break; 
case ch_Blue cp->rgb.b 

,. i; break; 

case ch_Hue 
>hsLh ,. i; break; 

case ch_Saturation 
>hsi.s ,. i; break; 

case ch_Intensity 
>hsLi ,. i; break; 

bool Image::isBlack(int x, int y) ( 
Pixel *cp ,. getPixel(x,y); 
return«cp->rgb.r=.O) 

&&(cp->rg~.g.-O) 

&&(cp->rgb.b.-O»; III I (cp­
>hsi.lntensity==O»; 

bool Image::isWhite(int x, int y) ( 
Pixel *cp ,. getPixel(x,y); 
return«cp->rgb.r •• 255) 

&&(cp->rgb.g==255) 
&&(cp->rgb.b=-255»; 

cp-

cp-

cp-

lmageDatum Image::getGrey(int x, int y~ 
int sum,. 0; 
sum += getValue(ch_Red,x,y); 
sum += getValue(ch_Blue,x,y); 
sum += getValue(ch_Green,x,y); 
return(sum /= 3); 

void Image::settoBlack(int x, int y) ( 
Pixel *cp ,. get Pixel (x,y) ; 
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cp->rgb.r=O; 
cp->rgb.g=O; 
cp->rgb.b=O; 

void Image::settoWhite(int x. int y) ( 
Pixel *cp .. getPixel(x.y); 

cp->rgb.r=255; 
cp->rgb.g=255; 
cp->rgb.b=255; 

void Image::setGrey(int x. int y. 

ImageDatum grey) { 
Pixel ~cp - getPixel(x.y); 
cp->rgb.r .. grey; 
cp->rgb.g • grey; 

cp->rgb.b - grey; 

int Image::height() 
return h; 

int Image::width() 
return w; 

void Image::swap(Image* that) 
assert (this->height () 

>height(»; 

that-

assert (this->width() -- that­

>width(» ; 

Pixel *t; 
t • this->p; 
this->p .. that->p; 
that->p .. t; 

void Image::RGBtoHSI() ( 
Pixel *cp; 
mode - Mode_HSI; 

double rt3 • sqrt(3); 

int x. y; 
for(x=O;x<w;x++) 

for(y=O;y<h;y++) 

cp - getPixel(x. y); 
double r 

dataToDouble(cp->rgb.r); 
double 9 

dataToDouble(cp->rgb.g); 
double b 

dataToDouble(cp->rgb.b); 
double e .. max(g. b); 
double f .. max(g. b); 

cp->hsLh -
doubleToData(PI/2 - atan«2*r-e-f)/rt3*(e­

f» I (2*PI»; 
cp->hsLs -

doubleToData(l - min(r. min(g. b»); 
cp->hsLi • 

doubleToData«r+g+b)/3.0); 
Ilcout « cp->hsi.h « " 

" « cp->hsi.s « • " « cp->hsi.i « 

endl; 
Ilcout « "(" « w « 

« h « "). « endl; 

void 
lmageDisplayer::construct_ImageDisplayer(I 

mage *i) { 
II start with the right size 
setGeometry(x(). y(). i->width(). 

i->height () ; 
II draw the image on and internal 

canvas 
pm ~ new QPixmap(i->width(). i­

>height(»; 
• QPainter* p • new QPainter; 

p->begin(pm); 

int x. y; 

for(y.O;y<i->height();y++) 
for(x-O;x<i->width();x++) 

p->setPen(QColor( 

max(O. min(255. i­
>getValue(ch_Red. x. y»). 

max(O. min(255. i­
>getValue(ch_Green. x. y»). 

max(O. min(255, i­
>getValue(ch_Blue. x. y») 

»; 
p->drawPoint(x. y); 

p->end() ; 
II create a label to show the pixmap 

Ibl - new QLabel(this ••• ); 

lbl->setPixmap(*pm); 

I 
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-ic 

ImageDisplayer::-ImageDisplayer() 
if(pm) delete[] pm; 

void 
lmageDisplayer::resizeEvent(QResizeEvent* 
) { 

lbl->setGeometry(O,O,width(), 
height () ); _ 

} 

FILE* Image::guiWrite • 0; 
FILE* Image::guiRead .. 0; 

void Image::openGUI() { 

needed. 
II Create child process, if 

if (lguiWrite) { 
int fd[2]; 

socketpair(AF_UNIX, 
SOCK_STREAM, 0, fd); 

if (fork () { 
II in parent process 
II open a file stream for writing to the 
gui window. 

guiWrite - fdopen(fd[O]', ·w"); 
guiRead. fdopen(fd[O], Or"); 

} else { 
II in child process 
II create and display the lmageGallery 
window. 

int n - 0; char **c • 0; 

QApplication* app • new 
QApplication(n, c); 

ImageGallery *ig • new 
lmageGallery(fd[l]); 

ig->show() ; 

II when the window is closed, end this 
process 

app->setMainWidget(ig); 
exit(app->exec(»; 

void Image::display(char* caption) { 
if(lshowGUI) return; 
II make sure a window is opened 
openGUI(); 

II send the image 
fprintf(guiWrite, "itd td tsl", w, 

h, caption); 
write_to_fp(guiWrite); 
fflush(guiWrite); 

II wait for a confirmation 
char dev_null; 
fscanf(guiRead, "tc", &dev_null); 

void Image::annotate(char* caption, char* 
rtf) { 

if(lshowGUI) return; 

II make sure a window is opened 
openGUI(); 

II send t'he text 
fprintf(guiWrite, ·t td td\n", 

strlen(caption), strlen(rtf»; 
fwrite(caption, sizeof(char), 

strlen(caption) +1, guiWrite); 
fwrite(rtf, sizeof(char), 

strlen(rtf) +1, guiWrite); 
fflush(guiWrite); 

II wait for a confirmation 
char dev_null; 
fscanf(guiRead, ·tc·, &dev_null); 

void Image::write_to_fp(FILE* fp) { 
fwrite(p, sizeof(Pixel), h*w, 

fp); 

void Image::read_from_fp(FILE* fp) { 
fread(p, sizeof(Pixel), h*w, fp); 

ImageGallery::lmageGallery(int fd_in) 
II remember the handle to the 

socket to from which to read 
fd .. fd_in; 

IIThis was in the example code. 
I'm not quite sure what it's for. -O'K 

II fcntl(fd, O_NONBLOCK); 

II Arrange to be notified when 
new data arrives. 

QSocketNotifier *sn .. new 
QSocketNotifier(fd, QSocketNotifier::Read, 
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this); 
OObject::connect(sn, 

SIGNAL(activated(int», this, 
SLOT(dataReceived(int»); 

II Create a list box show the 
available images. 

Ib • new OListBox(this); 
lb- >show () ; 
connect (lb, 

SIGNAL(highlighted(int», this, 
SLOT(chooselmage(int»); 

II Start with no images 
maxHeight .. 0; 
maxWidth • 0; 

void ImageGallery::addPane(OFrame* w, 
char* caption) 

II add it the internal and 
visible lists 

Ib->insertltem(caption); 
panes[lb->count()-ll • w; 

II place and stylize the new 
widget 

w->move(lbWidth+pad, pad); 
Ilw->setFrameStyle(OFrame::Box 

OFrame::Sunken); 

II manage the size of our window 
maxHeight • max(maxHeight, w­

>height(»; 
setMinimumHeight(maxHeight+pad+pa 

d); 

maxWidth - max(maxWidth, w­
>width(»; 

setMinimumWidth(maxWidth+lbWidth+ 
pad+pad) ; 

II TOOO: Look inot why this 
doesn't work. 

II 
1* 

special case: initial size 

if(lb->count() •• 1) 
set Geometry (x(), y(), 

maxWidth+lbWidth+pad+pad. 
maxHeight+pad+pad); 

*1 

void ImageGallery::dataReceived(int 

socket) 

"rn) ; 

awol ; 

char caption[80l; 
int h, w; 
Image* img; 
OFrame* id; 
setCUrsor(waitCUrsor); 
FILE* fpRead • fdopen(socket, 

FILE* fpwrite - fdopen(socket, 

II determine what kind of pane this is 
char t • fgetc(fpRead); 

if(t •• 'i') { 
II get the image'S name, height and width 
fscanf(fpRead, ·td td t[Allsl", &w, &h, 
caption) ; 
fgetc(fpRead); 'II not sure why we need to 
do this - O'X 

img • new Image(w, h); 

II read the image data directly into 
memory 
img->read_from_fp(fpRead); 

I I creil,te it widget to display the image 
id • new 

ImageDisplayer(this, img); 
} else if (t •• 't') 

char rtf[4096l; 
int ~apLen, rtf Len; 

fscanf(fpRead, ·td td·, 

&capLen, &rtfLen); 
fgetc(fpRead); 

fread(caption, 
sizeof(char) , capLen+1, fpRead); 

fread(rtf, sizeof(char) , 

rtfLen+1, fpRead); 

OLabel* 1 • new 

OLabel(rtf, this); 
1-

>setAlignment(AlignTop); 
1-

>setMinimumWidth(lbWidth+200); 
1->setMinimumHeight(300); 
id • 1; 

} else 

• 
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return/ 
II add it to the list of images 
addPane(id, caption)/ 

fprintf(fpWrite, "'c", t)/ 
fflush(fpWrite)/ 
setCUrsor(arrowCUrsor)/ 

void 

ImageGallery::resizeEvent(QResizeEvent*) 

lb->setFixedWidth(lbWidth); 
Ib->move(O, 0); 
Ib->setGeometry(O, pad, lbWidth, 

height()-2*pad); 
} 
void ImageGallery::chooseImage(int index) 

unsigned i; 
unsigned dex '" unsigned(index); 
for(i-O;i<lb->count();i++) 

(i==dex) ? 

(panes[i]->show(» 
: (panes[i]->hide(»; 

#include "image.h" 
#include <iostream.h> 

const int Joe[) [3] -
{ { -1, -2, -1}. 

{ 0, 0, O}. 
{ 1, 2, 1}}; 

const int ky[] [3] -
{ { -1, 0, 1}. 

{ -2, 0, 2} , 
{ -1, 0, 1}} ; 

int convolve(Image *img, int x, int y, int 
k [] [3] ) 

int xx, yy, r-O; 
for (xx=-l;xx<-l;xx++) 

for (yY=-l;yy<=l;yy++) 
r+= img­

>getGrey (x+xx, y+yy) * k[xx+1] [yy+l]; 

return r; 

int main(int argc, char** argyl { 
int thresh; 

if(argc 1= 3) 
cerr « "performs Sobel 

edge detection" « endl; 

cerr «" usage:"« 

argv[O] « " <threshold> <filename>" « 
endl; 

exit(l); 

thresh'" atoi(argv[l]); 
Image* src '" new Image(argv[2]); 
Image* dest '" new Image(src-

>width(), src->height(»; 

src->display("original")/ 
int x, y, sx, sy/ 

for(x-O/x<src->width()/x++) 
for(y=O/y<src->height();y++) 
src->setGrey(x, y, 

(src->getValue(ch_Red, x, y) 

y» 13) / 

+ src->getValue(ch_Green, x, y) 
+ src->getValue(ch_Blue, x, 

for(x-l/x<src->width()-l;x++) 
for (y=l;y<src->height ()-l;y++) 

sx'" convolve(src, x, y, Joe); 

sy'" convo1ve(src, x, y, ky); 

if(sqrt(sx*sx+sy*sy»thresh) 
dest->settoBlack(x, y); 

else 
dest->settoWhite(x, y); 

dest->display("after Sobel edge 
detection"); 

dest->save("done.rgb"); 

#include "image.cpp.moc" 
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VHDL Components 

--Gx, Gy calculater (matrix multiplier) 

**** ••• **********************************/ 

3x3matrix.v - 3X3 Matrix Multiply 
Implementation using basic equations 

Author: Matthew 
Date: Aug 2, 2003 

Other modules instanced in this design: 

MULT18X18 

--BRIEF DESCRIPTION 
--This code describes using a technique 
called time multiplexing to 
--leverage a fast hardware multiply in a 
relatively slow operation, 
--thereby increasing the efficiency of the 
implementation. 
--The operation being shown is a 3X3 
matrix of constants times a 3 
--component vector. The equations look 
like: 
--KA1 * A + KA2 * A + KA3 * A .. X 
--KB1 * A + KB2 * A + KB3 * A • X 
--KC1 * A + KC2 * A + KC3 * A • X 

--The hardware to accomplish this task 
consists of a multiplier fed by 3 
--input registers and an accumulator to 
compute the three terms in each 
--line above. 
--DETAILED DESCRIPTION: . 
--The multiplier output is fed into the 
adder A input. It takes 3 clk 
--cycles for the first valid mutiplier' 
output reach the adder input A. The 
--B input of the adder can be a zero or 
the adder's accumulating register. 
--By selecting a zero on the B input the 
adder just passes the input A 
--through to the accumulating register. By 
selecting the accumulating 
--register, the contents of the previous 
add can be added to the output of 
--the multiplier. 
--The repeating flow for the accumlating 
register will be for the 1st clk, 
--the mux output is '0', so we always pass 
the first argument through to 
--the accumulator register. For the 2nd 

and 3rd elks, the accumulator 
--register is fed back and added to the 
output of the multiply. This is 
--made possible by using the cntr3 outputs 

as the select lines. 
--The following text describes the 
condition of the internal nodes after 
--consecutive clocks. The state of the 
nodes assumes the clock has 
--occured and data is stable. 
--clock multiplier adder 
adder 
--number 
output 

output output 

register 
register 

--rst X 

0 

--1 X 
0 
--2 X 

0 
--3 KA1*A 
0 
--4 1tB1*B 
KA1*A 
--5 KC1*C 
KA1*A+KB1*B+KC1*C 
--6 KA2*A 
KA1*A+KB1*B+KC1 
--7 

KA2*A 
--.8 

KB2*B 

KC2*C 
KA2*A+KB2*B+KC2*C 
--9 KA3*A 
KA2*A+KB2*B+KC2*C 
--10 
KA3*A 
--11 

KB3*B 

KC3*C 

X 

x 

X 

KA1*A 

KA1*A+KB1*B 

KAl*A+KB1*B 
KA2*A 

answer 1 
KA2*A+KB2*B 

KA2*A+KB2*B 
KA3*A 

answer 2 
KA3*A+KB3*B 

KA3*A+KB3*B+KC3*C KA3*A+KB3*B 
--12 next KA1*A next KA1*A 
KA3*A+KB3*B+KC3*C answer 3 

--*/ 

/***************************************** 

-******************************/ 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_Iogic_arith.all; 
use IEEE.std_logic_unsigned.all; 

--library virtex; 
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--use virtex.components.all; 
--library synplify; 
--use synplify.attributes.all; 
library unisims_ver; -- include this for 
modelsim simulation 
-- when using multl9xl9 
entity matrix3x3 is 

port ( A, B, C: in 
std_logic_vector(ll downto 0); 

eLK, RST: in std_logic; 
CWEL: in std_logic_vector(l downto 0); 
KA, KB, KC: in std_logic_vector(9 

downto 0); 
x, Y, Z: out std_logic_vector(11 

downto 0»; 
end matrix3x3 ; 
architecture model of matrix3x3 is 

signal A_reg, B_reg, C_reg: 
std_logic_vector (11 downto 0); 
signal A_regl, B_regl, C_regl: 
std_logic_vector (11 downto 0); 
signal CWEL_reg,i_wait: std_logic_vector(l 
downto 0); 
signal cnt9_wait: std_logic_vector (2 
downto 0); 

signal ain, bin: std_logic_vector (17 
downto 0); 
signal KA1, KB1, KC1, KA2, KB2, KC2, KA3, 
KB3, KC3: std_logic_vector (9 downto 0); 

signal data_mux: std_logic_vector (11 
downto 0); 
signal coeff_mux: std_logic_vector (9 
downto 0); 
signal cntr9, cntr9_out : std_logic_vector 
(3 downto 0); 
signal P1_reg,adder_mux,sum: 
std_logic_vector (35 downto '0); 
signal Pl, P2, P3: std_logic_vector (35 
downto 0) ; 
signal cntr3 : std_logic_vector (1 downto 
0) ; 

signal j : integer range 0 to 7; 
signal indexi : integer range 0 to 9; 
signal i : integer range 0 to 3; 

component MULT19X19 
port ( 
A,B: in std_logic_vector (17 downto 0); 
P: out std_logic_vector (35 downto 0»; 
end component; 

begin 

--/* ----------DATA INPUT SECTION------*/ 
--/* In the 3:1 data mux. To match the 
pipeline of the 
--Data inputs with the coeeficient inputs, 
the data values are registered first 
--At the input of the 3:1 mux and then 
again at the output of the 3:1 mux. 
--To make sure that the inputs don't 
change in the middle of a set of vector 
--summation, the inputs are held constant 
for 9 clks. This will ensure that 
--the input values seen by the 3x3 vector 
is the same for the first set of 
--answers. */ 

--/* cntr) to count 0-1-2-3-1-2-3 */ 
process (CLK,RST) begin 

if (RST:'1') then 
cntr3' <= ·00·; 

elsif (rising_edge (CLK» then 
if (cntr3 - W11W) 'then 

cntr3 <_ wOlw; 

else cntr3 <- cntr3 + 1; 
end if; 

end if; 
end process; 

--/* inputs registered twice to match the 
pipe length of the coefficients */ 

process (CLK,RST) 
begin 
if (RST - '1 ,) then 

A_reg1 <- (others=>'O'); 
B_regl <= (others->'O'); C_reg1 <= 
(others=>'O'); 

elsif (rising_edge (clk» then 
if (j - 0) then 

A_regl <- A; B_reg1 <= B; C_reg1 
<z C; 

end if; 
end if; 

end process; 

process (CLK,RST) 
begin 
if (RST - '1') then 

A_reg <= (others->'O'); B_reg 
<= (others=>'O'); C_reg <- (others=>'O'); 

elsif (rising_edge (clk» then 
A_reg <= A_reg1; B_reg <= B_reg1; 

C_reg <= C_reg1; 
end if; 

end process; 
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process (CLK,RST) 
begin 
if (RST z '1') then 

j <- 0 ; 
elsif (rising_edge (elk» then 

if ( j < 8) then j <_ j + 1; 
else j <- 0; 

end if; 
end if; 

end process; 

--1* ----------MODE SELECT SECTION-----*I 
--1* mode select should be constant for 3 
clk cycles to complete one set . 
--of coefficients. So modeselect is 
updated every 3rd clk *1 
--1* cntr3 used to hold CWEL constant for 
3 clocks. *1 
process (CLK,RST) 

begin 
if (RST - '1') then 

CWEL_reg <- "00"; i <- 0; 
elsif (rising_edge (clk» then 

CWEL_reg <- CWEL; 
end if; 
if ( i < 4) then i <- i + 1; 

else i <- 0; 
end if; 
--end if; 

end process; 

--1* coefficient register update. The 
register shd hold the 
--value for 3 elks to get the right output. 

*1 
process (clk,rst) 

begin 
if (rst - '1') then 

KA1 <- "0000000000"; KB1 <­

"0000000000"; KC1 <- "0000000000"; 
KA2 <- "0000000000"; KB2 <­

"0000000000"; KC2 <- "0000000000"; 
KA3 <- "0000000000"; KB3 <­

"0000000000"; KC3 <- ·0000000000·; 
elsif (rising_edge (c1k» then 

case CWEL_reg is 
when "01" => KA1 <- KA; 

KB; KC1 <- KC; 
when "10" => KA2 <- KA; 

KB; KC2 <- KC; 
when "11" => KA3 < .. KA; 

KB; KC3 <- KC; 
when others => null; 

KB1 <= 

KB2 <-

KB3 <-

end case; 
end if; 

end process; 

--1* ----------COEFFIECIENT MUX SECTION-*I 
--I*cntr9 to count 0-1-2-3-4-5-6-7-8-9-1 

*1 

process (CLK,RST) begin 
if (RST-'l') then 

cntr9 <- "0000"; 
elsif (rising_edge (CLK» then 

if (cntr9 - "1001") then 
cntr9 <- "0001"; 

else cntr9 <- cntr9 + 1; 
end if; 

end if ; 
end process; 

process (clk,rst) 
begin 
if (rst - '1') then 

coeff_mux <- "0000000000"; data_mux 
<- (others -> '0'); 

elsif (rising_edge (elk» then 
case indexi is 

when 0 -> coeff_mux <- KA1; 
data_mux <- A_reg; 

• when 1 -> coeff_mux <- KB1; 
data_mux <- B_reg; 

when 2 -> coeff_mux <- KC1; 
data_mux <- C_reg; 

when 3 -> coeff_mux <- KA2; 
data_mux <_ A_reg; 

when 4 -> coeff_mux <- KB2; 
data_mux <- B_reg; 

when 5 -> coeff_mux <- XC2; 
data_mux <- C_reg; 

when 6 -> coeff_mux <- KA3; 
data_mux <- A_reg; 

when 7 -> coeff_mux <- KB3; 
data_mux <- B_reg; 

when 8 -> coeff_mux <- XC3; 
data_mux <_ C_reg; 

when others -> null; 
end case; 

end if; 
end process; 

process(CLK,RST) begin 
if (RST-'l') then 

i_wait <- "01"; 
elsif (rising_edge (CLK» then 

if (i_wait> ·00") then 

I 
I , 
I 
J 
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I 

I 
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i_wait <= i_wait - '1'; 
else i_wait <- i_wait; 

end if; 
end if ; 
end process; 

process (CLK,RST) begin 
if (RST-'l') then 

inde~i <- 8; 
elsif (rising_edge (CLK» then 

if (i_wait. "oon) then 
if (indexi = 8) then 

indexi <= 0; 
else indexi <= indexi + 1; 
end if; 

end if; 
end if ; 
end process; 

--1* ----------MULTIPLIER SECTION-------*I 

--1* 9x pumped multiplier; P3 registered 
twice to match the pipelining 

of the first adder *1 
ain <- "00000000· k coeff_mux; bin <­
"000000· k data_mux; 
MULT1: MULT18X18 port map( A =>'ain, B => 
bin, P -> P1); 

-- registering multiplier outputs -­
process (CLK,RST) 

begin 

if (RST - '1') then 
P1_reg <= (others -> '0'); 

elsif (rising_edge (clk» then 
P1_reg <- P1; 

end if; 
end process; 

--1* ----------ADDER SECTION------------­

*1 

--1* Adder mux. Inputs a '0' every 3rd clk 

*1 

process (cntr3(1) , cntr3(0) , sum) 
begin 
if (cntr3 - ·01") then 
adder_mux <= (others => '0'); 
else adder_mux <= sum; 
end if; 
end process; 

-- Final adder -

process (CLK,RST) 
begin 
if (RST = '1') then 

sum <- (others => '0'); 
elsif (rising_edge (clk» then 
sum <= P1_reg + adder_mux 
end if; 
end process; 

--1* ----------OUTPUT SECTION------------­
*1 

--1* At the output of the adder, the first 
valid X values appears at the 6th clk 
--after reset. After this, at every 3rd 
clk, a valid output values are obtained 
for 
--y ,Z, X, Y, Z and so on. This function 
is realised using- a enable cntr. The cntr 
--after reset, counts upto 3 at which 
point another output counter is enabled. 
The 
--output of the enable counter holds its 
value of 3 as long as it is not reset. *1 

--1* output cntr starts after 4 clk to 
match the initial pipe 
--delays of inputs/coeeficients *1 

process (CLK,RST) 
begin 
if (RST - '1') then 

cnt9_wait <- "ioo"; 
elsif (rising_edge (~lk» then 

if (cnt9_wait > ·000·) then 
cnt9_wait <- cnt9_wait - '1'; 

else cnt9_wait <= cnt9_wait; 
end if; 

end if; 
end-process; 

--I*cntr9_out to count 0-1-2-3-4-5-6-7-8-
9-1-2- *1 

process (CLK,RST) 
begin 
if (RST = '1') then 

cntr9_out <= "oooon; 
elsif (rising_edge (clk» then 

if (cnt9_wait = "DOD·) then 
if (cntr9_out - ·1001 n ) then 

cntr9_out-<= "0001"; 
else cntr9_out <= cntr9_out + 1; 
end if; 

end if; 
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end if; 
end process; 

__ /* adder output assigned to X.Y and Z */ 

process (clk.rst) 
begin 
if (rst - '1') then 

X <- "000000000000"; Y <~ 
"000000000000"; Z <- ·000000000000"; 

elsif (rising_edge (elk» then 

case cntr9 _out is 
--when "0001" -> X <- X; Y 

Y; Z <- Z; 
--when "0010" -> X <- X; Y 

y; Z <- Z; 

when "0011" -> X <- sum(ll 
downto 0); --Y <- Y; Z <- Z; 

<-

<-

--when "0100" -> X <- X; Y <-

Y; Z <- Z; 
--when "0101" -> X <- X; y <-

Y; Z <- Z; 
when "0110" -> Y <- sum(ll 

downto 0); --X <- X; Z <- Z; 
--when "0111" -> X <- X; Y <-

Y; Z <- Z; 
--when "1000" -> X <- X; Y <-

Y; Z <- Z; 
when 

downto 0) ; --X 

when 
end case; 

end if; 

end process; 
end model; 

"1001" -> Z <- sum(ll 

<- Xi y <'" Y; 

others -> null; 

I , 
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