
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2003

Hardware software partitioning using directed
acyclic data dependence graph with precedence
Matthew Jin
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Jin, Matthew, "Hardware software partitioning using directed acyclic data dependence graph with precedence" (2003). Theses and
dissertations. Paper 203.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/203?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware Software Partitioning Using

Directed Acyclic Data Dependence Graph

with Precedence

By

,Matthew Jin
BASc. University of Toronto

2001

A thesis presented to Ryerson University in partial fulfillment to the
requirements for the degree of
Master of Applied Science

in the Program of
Electrical and Computer Engineering.

Toronto, Ontario, Canada, 2003-09-10
Copyright Matthew Jin, 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC52888

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform EC52888

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract .

In this thesis, we present a system partitioning technique that employs C/C++ as

input specification language for hardware/software co-design. The proposed

algorithm is able to explore a number of partitioning solutions as compared to other

partitioning research. This benefit is obtained by processing data dependency and

precedence dependency simultaneously in a new representation called Directed Acyclic

Data .dependency Graph with Precedence (DADGP). DADGP is an extension of

Directed Acyclic Graph (DAG) structure frequently used in the past for partitioning.

The DADGP based partitioning algorithm minimizes communication overhead,

overall system execution time as well as system cost in terms of hardware area. The

algorithm analyzes the DADGP and tries to expose parallelism between processing

elements and repeated tasks. The benefits of exposing parallelism with minimum

inter PE communication overhead are shown in the experimental results. However,

such benefits come with increase in cost due to additional hardware units and their inter­

connections. DADGP-based partitioning technique is also employed to implement

block matching and SOBEL edge detection techniques. Overall, the proposed system

partitioning algorithm is fast and powerful enough to handle complicated and large

system designs.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to acknowledge and give many thanks to Professor G. N. Khan for

his patience and support. Without him I could not have accomplished this work.

His constant guidance and professionalism has been the driving force of my research.

I would also like to acknowledge the financial support from the NSERC research

discovery grant awarded to my supervisor, and Canadian Microelectronic Corporation

(CMC) for providing Rapid Prototyping Platfonn as well as co-design tools.

My special thanks to the professors and the department for their feedback and

participation before and during my thesis defense. I am also grateful to the School of

Graduate Studies and the Department of Electrical and Computer Engineering of

Ryerson University for their support financially and academically.

I would also like to thank my family and friends who have supported and

encouraged me. Especially to my parents who have been always there for me to give

courage and motivation during my times of doubt.

Finally, my deepest thanks to my girlfriend Christina for her encouragement,

patience and understanding. I could not have been where I am today without her .
support and love.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents
1 Introduction 1

1.1 Overview 1

1.2 Motivation 7

1.3 Original Contributions 7

1.4 Thesis Organization 9

2 Hardware software co-design 11

2.1" System specifications 11

2.2 Validation and co-simulation 14

2.3 Synthesis 18

3 System Partitioning Overview 23

3.1 Introduction 23

3.2 Survey 24

3.3 Summary 33

4 DADGP HW/SW co-design methodology 34

4.1 Sy~tem specifications 34

4.2 DADGP graph repre~entation 36

4.2.1 Formal definition

36

4.3 Hardware-software partitioning algorithm 38

4.3.1 Profiling

39

4.3.2 Mapping and Scheduling 41

4.3.3 Mapping and Scheduling of DADGP 43

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~

4.3.4 Complexity of algorithm 46

5 Experimental results 48

5.1 GDL scheduling technique 49

5.2 Simulated annealing based partitioning 53

5.3 Software simulation 55

5.4 Rapid prototyping platform 64

5.5 Rapid prototyping platform design flow 67

5.5.1 Design specification 67

5.5.2 Algorithmic design and analysis 68

5.5.3 System architecture design (partitioning) 69

5.5.4 Hardware HDL coding 70

5.5.5 Functiqnal simulation 71

5.5.6 Synthesis

72

5.5.7 Place and route 72

5.5.8 Applicaiion software 72

5.5.9 HWISW integration 73

5.6 Block matching implementation 74

5.6.1 Introduction to Block Matching 74

5.6.2 Specification 78

5.6.3 Software simulation 80

5.6.4 Overall architecture 81

5.6.5 Simulation vs. actual implementation 84

5.7 SOBEL edge detection implementation 85

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.1 Introduction to SOBEL edge detection 85

5.7.2 Specification 88

5.7.3 Software simulation 89

5.7.4 Simulation vs. actual implementation 93

6 Conclusions and future work 94

6.1 Summary and conclusion 94

6.2 Future work 95

References 97

Appendix A: Block Matching Implementation Code

Appendix B: SOBEL Edge Detection Implementation Code

viii

I ,
i

1 • I

I
I
!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Hardware-software co-design methodology 4

-
3.1 Mms algorithm flow chart 27

4.1a Data table 35

4.lb Specification of block matching algorithm 35

4.1c Initial DADGP 35

4.2 DADGP design flow 39

5.1 Example of DAG and its node execution time table 49

5.2 GDL algorithm flow chart 53

5.3 Basic simulated annealing algorithm 55

5.4 DADGP without precedence 56

5.5 GDL scheduled results 57

5.6 Initial all software DADGP solution 57

5.7 DADGP result 58

5.8 Randomly generated graph (9 nodes) 59

5.9 Performance gain 61

5.10 Simulated time 62

5.11 Hardware area cost 63

5.12 Hardware cost-performance ratio 64~

5.13 RPP (source CMC website) 65

5.14 RPP design flow 68

5.15 Block matching 76

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.16 Search window and correlation window 77

5.17 Initial block matching solution with library info 80

5.18 Simulated perfonnance improvement curve (block matching) 81

5.19 Overall system implementation 82

5.20 32 bit parallel multiplier 83

5.21 32 bit carry save adder 83
4

5.22 SOBEL masks 86 4

5.23 SOBEL example 87

5.24 Initial SOBEL solution with library info 89

5.25 Simulated perfonnance improvement curve (SOBEL) 90

5.26 SOBEL DADGP solution set 92

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables and Equations

5.1 Software simulated comparison experiment result 60

5.2 Execution time comparison result (block matching) 84

5.3 Hardware area comparison result (block matching) 85

5.4 Execution time comparison result (SOBEL) 93

5.5 Hardware area comparison result (SOBEL) 93

4.1 Sum of absolute differences equation 35

4.2 Longest delay time equation 42

4.3 Longest delay path equation 42

5.1 Dissimilarity equation 77

5.2 MSE matching criterion 78

5.3 Magnitude of gradient 86

5.4 Approximate equation 86

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Overview

There are many embedded systems surrounding us that we do not even realize

their presence. Video game units, DVD players, televisions, microwaves, scanners,

cellular phones, and many more contain some sort of embedded processor(s). Using

embedded computers in devices that previously relied on analog circuitry such as digital

cameras, camcorders, Internet radios, and telephones provide revolutionary performance

and functionality that any analog design improvement can not achieve. Most of the

embedded computer systems are designed for just one particular application, and it

generally provides cost effective solution by employing specialized architecture rather

than using a general purpose computing system.

Until now the embedded system design has taken brute force approach.

Hardware and software were designed separately where correctness and comparability

of the two domains were left to integrati?n stage. If problems arise during the

integration stage, the design cycle spin begins and it results in a frequent struggle to

1

I
I
I

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make a sub optimal architecture. Sometimes even the overall project is delayed or

even terminated.

Designing of embedded systems today requires working with several million

gates of logic and millions of lines of software code. In order to efficiently design

these systems. it is desirable to move to higher levels of abstraction for system design

automation. Furthermore. rapid improvements in microprocessors performance are

changing the balance between embedded software and hardware. What use to be the

efficient and cost effective hardware solution can now be transferred into software. due

to high performance microprocessors. In this environment. it is necessary to adapt the

system design tools that encompass these fast microprocesso~s rather than to compete

with them.

The current hardware/software design methodologies do not effectively handle

the massive software-hardware integration necessary [1]. Waiting until a system

implementation before understanding the hardware-software interactions is no longer an

option. To meet the current market demand. designers now need to produce more

) complex computing architecture in a shorter period of time. The previous approach of
)')

Ii c¥
~'f ", ..
~
i 2
I

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

independent hardware and software development methodology is not acceptable.

Hardware software tradeoff must be analyzed early in the system design to reduce the

iterative design cycle.

The main question is "how can we design with several hundred million

transistors effectively and quickly?" Hardware software co-design is said to provide

the answer for designing such large systems [2, 3, 4, 5]. Hardware software co-design

is a wide area of research consisting of specification, simulation and estimation,

validation, synthesis, and other components. Hardware software co-design concept

has been proposed, and being researched for a number of years. Many EDA vendors

and researchers have employed dedicated efforts to develop viable hardware software

co-design methodologies and tools, yet no standards has been adapted to streamline and

coordinate their design efforts.

The main objective of hardware software co-design are to shorten the

development cycle, minimize bugs, manage cost, and to produce competitive embedded

computing systems that meet today's requir:,ements. Figure 1.1 shows a generalized

design methodology for hardware/software co-design. Most of the past and recent

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:l

It

J

research and development has been built around this model. Hardware/software co-

design problem is broken into three major components given below.

•

•

•

System specification design for describing the system level behavior.

Hardware/software co-simulation and analysis (validation).

Rapid hardware software integration by co-synthesis.

Initial

Architecture

Specification

Partitioning

System
Integration

System

constraints

Figure 1; 1: Hardware-Software Co-design Methodology

Specification design for describing the systein level behavior is a aifficult and

challenging problem as it needs high level of abstraction as well as fine details to reduce

ambiguities during co-synthesis.
• f

It is very Important to capture the system

specification correctly early in the design cycle. Many research projects have been

conducted to cre~te a unified co-design environment by proposing a system

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specification language [6, 7]. The idea is to capture the specification with more

details by augmenting the HDL (Hardware Descriptive Language) and other

programming languages like C to describe the entire system. MSC, SOL, PMSC and

SystemC are the main examples of such languages.

Design specification language concept has lead to co-synthesis that involves

automation of hardware and software architecture synthesis. The function of co-

synthesis is to take a system specification language as input and generate competitive

hardware and software architecture. A number of co-synthesis systems are under

research, where PICO [8] (program in chipout), C<>rsair [9], Polis [1] are examples of

some of these systems.

Hardware/software partitioning is a sub problem of co-synthesis, which is also very

difficult due to many conflicting factors affecting the outcome of partitioning decision.

Generally speaking, hardware and software are interchangeable in terms of their

functionality. To correctly partition the system, expertise of both hardware and software

design communities must communicate with the help of diverse tools that can evaluate

the trade offs of using hardware or software.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this thesis, complete hardware software co-design methodology is proposed

including: specification, analysis, partitioning and scheduling (co-synthesis) leading to

final system implementation is presented by using a Rapid Prototyping Platform. The

proposed methodology includes system-partitioning technique with a system

specification based on C/C++. The proposed technique also processes data and

precedence dependency simultaneously by employing a new structure, Directed Acyclic

Data dependency Graph with Precedence (DADGP) that is an extension of Directed

Acyclic Graph (DAG). The DADGP based partitioning technique minimizes the

communication overhead as weU as overall system execution time. Furthermore, the

partitioning algorithm minimizes the system cost in terms of hardware area. The

partitioning algorithm presented in this thesis analyzes the DADGP and tries to expose
•

parallelism between tasks and repeated tasks. The benefits of exposing parallelism

and considering inter processing element (PE) communication overhead are also

explained in this thesis. However, these benefits come with an increase in price due to

additional hardware modules and their inter-connection structure. The proposed

partitioning algorithm is powerful enough to handle complex designs, and is easily

extendable for future requirements as explained in the future work section. The

partitioning technique provides promising system partitioning solution as compared to

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

previous methods in terms of efficiency of the over all system design. However,

before we get to the proposed methodology, it is important to overview each

components of hardware software Co-design process and their advancements until today.

1.2 Motivation

The current hardware software design flow has hard time meeting today's

market demand. The separate design of hardware and software results in an error

prone integration that leads to a design cycle spins delaying the final product In order

to design these hardware and software systems more efficiently, a proper partitioned

hardware software module must be decided before implementation. Currently there

are no commercially available tools to help designers with the partitioning of complex

hardware software embedded systems.

1.3 Original Contributions

This thesis proposes a new design methodology for designing hardware and

software systems for embedded and System on Chip (SoC) application. In particularly,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T.

l
I
I
i ,
~

I

computationally intensive embedded systems which require multiple hardware and

software are considered. A full hardware software co-design methodology is

presented with implementation results, which shows the validity of the new DADGP

partitioning algorithm. The publication of the proposed research can be found in [10].

The Major contributions for the thesi's are summarized as follows:

s • Development of software profiling tool for ARM? processor running under a

Ir ~ Rapid Prototyping System has been developed

!r • Design of a new hardware software interaction representation graph called . ,

~d Directed Acyclic Data dependence Graph with Precedence (DADGP)

re • Development of new DADGP partitioning algori~ that includes iterative

!x mapping and scheduling method has been implemented

• In-depth comparative analyses of DADGP algorithm with other system

partitioning methods.

md

rrly,

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Thesis Organization

This thesis consists of six chapters and it is organized as follows:

In chapter I, we provide a brief overview of current issues of embedded system design

and their solutions (hardware software co-design). In chapter two, a more detailed

design of hardware software co-design methodology is presented. The chapter will

help readers to understand the basic idea behind the notion of designing hardware

software systems.

Chapter 3 will survey previous works related to hardware software partitioning.

Partitioning research presented in this chapter is implemented and compared to DADGP

partitioning algorithm in later chapter. This chapter also serves to present introductory

knowledge for readers who are interested in different partitioning algorithms.

Chapter 4 describes the newly proposed DADGP based hardware software co-

design methodology in . depth from specifications to partitioning. This chapter

discusses the proposed system specification~, a formal definition of DADGP and a

detailed explanation of mapping and scheduling process using DADGP.

9

t

j
,

I

i
t
~

I
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r

a

I
I
!

Chapter 5 presents the experimental results of the proposed DADGP

partitioning algorithm. In this chapter, two other system partitioning algorithms are

presented in detail for comparison purposes to DADGP based partitioning algorithm.

The software comparison result is also presented with many randomly generated task

graphs, and their performance is recorded. Furthermore, two computationally

intensive multimedia application has been implemented using Rapid Prototyping

Platform (RPP) and their results are presented. Some details of the RPP design flow is

also presented.

In chapter 6, the thesis is summarized and the directi?ns of future research are

proposed.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Hardware Software Co-design

In a Hardware software co-design problem, the hardware and software must be

designed together to make sure that the target system not only functions properly but

also meets perfonnance, cost and reliability goals. While a great deal of research has

addressed the individual design methods for software and hardware, not much is known

about the joint design of these two domains. Due to advancement in VLSI technology,

high perfonnance microprocessors are cheap enough to be used in consumer products,

and have stimulated research in embedded system co-design. To be able to make use

of high perfonnance CPUs, we must develop new des~gn methodologies that allow

designers to predict implementation costs, refine an embedded system incrementally

over multiple levels of abstraction, and create a working implementation. The current

Hardware Software Co-design process involves solving sub-problems of:

specifications, validation, and synthesis. Although hardware software co-design

problem cannot be entirely separated, it is divided into three separate sections for the

purpose of discussion.

2.1 System Specifications

The system design specifications that describe system level behavior is a

difficult and challenging problem because it needs high abstraction yet requires fine

details to reduce ambiguities during synthesis. Traditionally, these specifications were

11

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
t

s

y,'

"
e

y

It

f:

n

e

a

Ie

~e

written in plain English describing the system constraints and functionalities. The

problem with English as a specification language is that very often, designers can

misinterpret the meaning of intended idea. These ambiguities and misinterpretation

can occur more frequently when different people with different professional background

consult the specification to start hardware and software design. It is very important to

capture the specification correctly early in the design cycle to reduce the Non Recurring

Expenses (NRE) [8]. Many research works have been done to create a unified co-

design environment by proposing a design specification language. The idea is to

capture the specification with more details by augmenting the HDL and programming

language like C. Such a method is known as homogeneous modeling, where hardware

and software is represented by a common unified language [11].

System-level specification languages may not always be textual. Visual or

combination of visual and textual languages can be used to organize the overall system

architecture. After all, humans do work and process images better than just plain

textual description. SDL (Specification and Description Languages) is one of the

common languages of choice in this area, and PARSE process graph is another

interesting approach to describe both hardware and software [12]. However, as more

and more details are added, graphical representations might not be suitable, and textual

languages become mandatory to express system details completely. Nevertheless, ,

graphical representation is always good to have early in the design cycle for high

abstraction and easy visualization for the overall structure of an entire or its sub systems.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The exchange of system-level intellectual property (IP) models for creating

executable specifications has become a key strategic element for efficient system to

silicon design flows. As CtC++ is the dominant language used by chip architects,

system and software engineers prefer C-based approach to hardware modeling [11].

This demand has lead to a much popular homogeneous modeling open source system

language known as SystemC [7]. The goal of SystemC is to facilitate the co­

verification of hardware-software systems by supplying a single language framework,

where designer describes both hardware and software completely. An immediate

advantage of having homogeneous modeling is that, it eliminates the need for complex

programming language interfaces (PUs) or remote procedure calls (RPCs) interfaces,

which will speed up the co-simulation process. SystemC also allows the user to

successively refine models without translating it to an .HDL representation. When

sufficient implementation details are available, the design can be handed to synthesis

tools for circuit generation [3]. SystemC synthesis tools are still under development

by Synopsys Inc. and many other EDA vendors.

Heterogeneous modeling is another approach that can be used to model

hardware and software early in the design cycle. The hardware and software are

modeled using two different languages such as VHDL and etC++. These

representations can then be ported to CAD tools, which allow hardware-software co­

simulation for mixed language descriptions. Seamless, Eaglei, Co Ware N2C are

examples of such tools [13, 14]. Appendix A contains Seamless tutorials to get started

in co-simulation environment using C and Verilog.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
I
I

g 1
~

'"
0 I

I i,

i
J. I

~

n f ..
I- t

I c
c, i
e ~ ;
x 1

J
• 'I, ~
j
i

0 I
I

n I
j

I
IS I

~

~
It

;~

:g:

" &

~l

-e

,e
~

)-

·e

d

2.2 Validation and Co-simulation

Validation loosely refers to the process of determining the correctness of a

design. Simulation remains the main tool to validate a model; however the importance

of formal verification is growing especially for safety-critical embedded systems [15] .

Formal verification is the process of mathematically checking the behavior of a system

described by a formal model to satisfy a given property. Simulating embedded

systems is challenging because they are heterogeneous. In part~cular, these simulations

contain both software and hardware components that must be simulated concurrently.

This simulation challenge is known as the co-simulation problem. The basic co-

simulation problem is to reconcile two apparently conflicting requirements:

• To execute the·software as fast as possible, often on a host machine that

may be faster than the final embedded processor and certainly very

different from it.

• To keep the hardware and software simulations synchronized, so that

they interact just as they will in the actual target system.

In hardware-software co-simulation, software· execution is simulated as being

executed on the target hardware. Since gate and register transfer level hardware

simulations are too slow for practical purposes, a more abstract execution model -is

needed [16]. Moreover, as systems become complex, validation is necessary to insure

that correct functionality and required performance levels are achieved in the

implementation of a system model. Different models can be employed with a tradeoff

between accuracy and performance.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Gate-level models are viable only for small validation problems, where

either the processor is a simple one or very little code needs to be

executed, or both.

• Instruction-set architecture (ISA) models augmented with hardware

interfaces. An ISA model is a standard processor simulator (often

written in C) augmented with hardware interface infonnation for

coupling to a logic simulator.

• Bus-functional models are only hardware models of the processor

interface that cannot run any software. Instead, they are configured

(programmed) to make the interface appear as if software is running on

the processor. A stochastic model of the processor and the program can

be used to detennine the mix of bus transactions.

• Translation-based models convert the target CPU code into a code that

can be executed natively on the computer system executing the

simulation. Preserving timing infonnation and coupling the

translated code to a hardware simulator are the major challenges.

When more accuracy is required and acceptable simulation perfonnance is not

achievable on standard computers, designers sometimes resort to emulation. In this

case, configurable hardware can emulate the behavior of the system being designed.

There are two types of validation during co-simulation of heterogeneous models:

functional verification and perfonnance evaluation. During functional verification,

software part is executed on the host processor that communicates with the hardware

part through HDL functional model of the system processor bus. In such simulation

15

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e I
If
I

environments, the simulation time is very fast because software executes independent to

e I
I

the hardware simulator. To evaluate the performance of a system, VHDL model of a

" i
I

generic instruction set simulator that executes the software part on a functional model of

e t
I

the particu!ar microprocessor bus can be implemented. However, the simulation is

n f
i somewhat slower because software and hardware are synchronized to evaluate the
~

Ir ~
;
~

correct timing of system operation. A more detailed discussion in functional
t
~

I verification and performance evaluation and their simulation results can be found else

~
Ir .. ; where [17] .

d
,
I

n I
~ , One popular commercial co-simulation tool is Seamless CVS by Mentor
~

n I • Graphics, which uses instruction set simulator, adapted memory, bus models and a

I
i target processor model to create virtual hardware environment [13]. The co-
~

I
~ simulation environment of Seamless is well modeled and gives accurate results in terms

t of timing and functionality of the entire system. Seamless tool has also brought new
fi

optimization algorithm during co-simulation to allow faster mstruction Set Simulation
~

~
(ISS). The basic idea of faster ISS optimization scheme is that once a certain part of

the system has been verified, the simulation can bypassed the verified components to

)t validate other parts of the system (Le. instruction fetch, memory reads and ~rite cycles

,s etc). Another similar co-simulating tool is called CoWare's N2C and the methodology

l. of N2C can be found in [18]. In VIrtual Component Co-design (VCC) by Cadence,
•

~

i: the system behavior is verified separately from the system architecture.
t

Once system

I, behavior is verified, each functional block is mapped to the system architecture.

'e Depending on the choice of partitioning (mapping function), the VCC system calculates

n the overall performance, and refines the architecture [19].

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These simulation environments rely heavily on the availability of a library

containing processor or co-processor, communication, interface and memory models

that may not be available. To avoid such problems, a more abstract approach is used

by Eaglei tool to simulate only functional behavior of the system. In this case, the

simulation is more flexible and efficient at the cost of higher abstraction and fewer

information details (such as timing and performance). Such simulation environment is

called Link Processor Model,. where the software runs on the host computer and

communicates with another hardware simulating software.

Rapid prototyping is another approach taken to design time dominated systems

that require more than just functional verification. FPGA prototyping allows

validating a target system yet to be manufactured. ~uch validating environment

provides design engineers with a more realistic data on correctness and performance

than the system level simulation. The simulation now has a physical hardware

prototype in the loop, emulating the physical behavior of a system, which is

implemented using FPGA technology for fast synthesis (e.g. Corsair) [9]. The only

downside of FPGA based prototyping is its limited flexibility during co-simulation.

Unlike system level simulation environment, FPGA prototyping does not allow single

stepping, register value checks or break points in the middle of operations. However,

the Rapid Prototyping Platform used by us solves this problem with the help of ARMs

Integrator board and Multi-ICE technology. A more detail description of this

technology is described in Chapter 5 RPP section.

17

I
I
~

I
1

1
I
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, 2.3 Synthesis

:I

I
Synthesis can be broadly described as a stage in the design refinement where a

high level 'Specification is translated into a less abstract specification. For embedded

r
systems, synthesis combines the manual and automatic processes, and it is often divided

s
into three stages:

:l
• Mapping to architecture, in which the general structure of an

implementation is chosen.

• Partitioning, in which the sections of a specification are bound to

s
the architectural units.

s
• Hardware and software synthesis, where the details of the units are

It

e I
filled.

I
e I

I Mapping from specification to architectural design is one of the key aspects of ,.
~ .s i
I embedded system design. Supporting a designer to choose the right mix of

y I
I
~

components and implementation technologies is essential for the success of a final

1. ~

~

~
product. Generally speaking, the mapping problem takes functional specification as

e --)I

~

~

input and produces system architecture as an output and assignment of functions to

r, .;g

i
architectural units. Architecture is generally composed of the following components.

[s -~

Partitioning determines which parts of the specification will be implemented on the
,;.~

is ']

~ above components, and their actual implementation will be created by software and

~
-;0

hardware synthesis tool.
..::c;:-

~

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Hardware components (e.g. microprocessors, microcontrollers,

memories, 110 devices, ASIC's and FPGA's).

• Software components (e.g. operating system, device drivers.

procedures. and concurrent programs).

• Interconnection media (e.g. abstract channels. busses. and shared

memories).

The cost function optimized by the mapping process includes a mixture of time.

hardware area and power consumption. where the relative importance depends heavily

on the application type. Cost of time may be measured either as execution time for an

algorithm or as missed deadlines for a soft real-time system. Hardware area cost may

be measured as chip, board, or memory size. The components of the cost function

may take the form of a hard constraint or a quantity to be minimized. Current

synthesis-based methods almost invariably impose some restrictions on the target

architecture in order to make the mapping problem manageable. For example. the

architecture may be limited to a library of pre-defined components due to vendor

restrictions or interfacing constraints.

There are several types of architectural models, which use both processors and

ASICs. Models included a processor with an ASIC, single processor with several

ASICs. several processors with several ASICs. All systems that automatically

synthesize circuits based on these models include an estimation system and a

partitioning system. The estimation system allows the quick evaluation of alternative

partitioning solutions in the design space. System partitioning allows the total task to

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

1

1

.t

:t

e

d

y

a

e

.0

I

I
I
I ;
I
I
E
I"
t
jO;

r
I
I
I
I
If!
I
I

i
~

I
I
I

i

I

be optimally shared by processors and ASICs, according to a given set of criteria

including speed, cost or power.

System partitioning is required for any system design using more than one

component It is a particularly interesting problem in embedded systems design

because of their heterogeneous hardware and software unit mixtures. Furthermore, as

we rapidly move towards an era of low cost high-speed processors and their cores, the

boundary between software and hardware changes rapidly. What someone would

have said with certainty should have been implemented in hardware just a year ago, is

probably implemented today in software for a fraction of the cost without sacrificing

perfonnance.

Estimation tools have been notoriously ineffective in the past Three of the

most widely used estimation tools have been profiling, hardware area estimation and

execution time estimation. Profiling tools are a necessity to get information on how

long a particular segment of code takes to execute and how many times a loop is

executed. Area estimation tools are used to assess the probable size of the hardware

(ASIC) when it is implemented. Lastly, executi.on time estimation e~timates the

execution time of hardware (ASIC). The tools used to estimate the size of area can be

extremely error prone, particularly since it is difficult to estimate the interconnection
. .

area. The estimation error can be costly as the cost of chips (ASICS) is a step

functional rather than linear. This situation is improved as more and more pre-

fabricated cores are used in the design, which would then reduce the total amount of

unknown interconnection area. The time taken for a particular ASIC to execute is

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difficult to estimate without the final layout, since the clock frequency cannot be

predicted. Often predictions are based on the number of cycles, but this is almost

useless without the clock cycle information.

Exploring the most common partitioning algorithms includes greedy heuristics,

clustering methods, iterative improvement, and mathematical programming [16, 11].

These partitioning algorithms are usually effective and fast. However, there seems to

be no clear winners among theses partitioning methods. This is due to early research

efforts in this area and the intrinsic complexity of the problem, which seems to preclude

an exact formulation with realistic cost functions. Furthermore, these partitioning

techniques depend on estimation and profiling tools to produce optimal partitions that

make it quite unreliable if the estimation tools themselves .are not accurate.

After partitioning and sometimes before partitioning in order to provide cost

estimates, the hardware and software components of the embedded system must be

implemented. This process is also known· as co-synthesis because ,it involves

synthesizing both hardware and software. Generally speaking, the constraints and

optimization criteria for co-synthesis step are the same as those used during partitioning.

Area and code size must be traded off against performance, which often dominates due

to the real-time characteristics of many embedded systems. Cost considerations

generally suggest the use of software running on off-the shelf processors, whenever

possible. This choice, among other things, allows one to separate the software from the

hardware during the synthesis process, relying on some form of pre-designed or

customized interfacing mechanism. However, commercial tools for system synthesis

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I ,

I

are not as mature as modeling and analysis tools. Yet, because of its continuous

demand, EDA industry and researchers are working together to meet today's market

demand.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

System Partitioning Overview

3.1 Introduction

The key phase in the discipline of hardware-software co-design is the

partitioning of system specifications into hardware and software modules for

implementation, while keeping the system cost at the minimum. In other words, the

end goal of system partitioning is to minimize the hardware area, subjected to

architectural and performance constraints such as memory size, timing constraints,

power, etc. It is also known that such partitioning problem is NP complete, and many

algorithms and heuristics have been developed to solve this problem. This chapter

will discuss partitioning algorithms and heuristics that have been proposed by many

researchers around the world to familiarize the reader in many methods and problems

with the current co-synthesis approach.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Survey

A great deal of research work has addressed the co-synthesis and partitioning of

system with one-CPU and ASIC hardware engine architecture [20, 21]. Given such

constraint, Potkonjak and Wolf [20] have addressed the problem of combining several

: I concurrent tasks onto a single ASIC instead of designing a separate ASIC for each task.

Ie They discussed an iterative algorithm that combines tasks for a single ASIC

)r implementation based on the bit-width requirements, register counts, source and

Ie destination locations of the task. The application-specific instruction processor

to synthesis problem is to design a domain-specific processor by selecting the optimal .
:s , "instruction set" for a class of applications. Typically, the class of applications is

ly analyzed to find the most commonly used instructions, and a data path and controller for
•

er that instruction set is designed. Several bodies of research have addressed this

ly problem. For instance, the optimal instruction set selection problem is formulated as

ns an integer linear program described by Ngoc and others [22].

Edwards and Forrest addressed the hardware-software partitioning for

performance enhancement by finding the bottleneck in the software and moving that

critical region to hardware [5]. Given a C code and taking the "performance profiler"

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of it, the hot spots of the source code can be captured. It then tries to accelerate the

software execution by implementing the hot spots to hardware components. However,

before such transformation, one must calculate the performance gain versus the cost

factor. If the solution is feasible (a good performance gain), new hardware and

modified software are generated and simulated. However, because the algorithm I
t

never takes the transfer of parameters and data from memory or to other hardware into

consideration, the overall improvement has not been as great as originally expected.

In some hardware software systems (when software is exchanged to hardware), data

transfer times accounts for almost 50% of the HW/SW execution time.

Another interesting solution was presented where formation of genetics was

used to model the HW/SW partitioning procedure [23]. The algorithm takes the

control data flow graph where nodes represent functional elements and the edges

represent control or data flow dependencies. First the HW/SW partitioning program is

mapped to a constraint satisfaction problem. Then the genetic algorithm is mapped to

the constraint satisfaction problem by using a fitness function to generate successive

chromosomes. In genetic hardware-softw~e partitioning, three types of constraints

were used and they are cost, timing, and concurrency. The genetic algorithm uses the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ie

r,

• it

i d
•

n I
10
iJ

0 I
l. I

iii

a I
I
i

s I
I ,.,
i

e t
~
Il
~

s t
ill
I
%-

'" S ~
~ ..
't; •) ~

I
~
~

"
i

~

!
~

S
i
i
~
~

f
~

~

~

!
t
,I
~

i

I
J

fitness function to generate the next generation of chromosomes. Selecting two

parents by performing crossover and mutations according to a given probability

produces each generation. Such chromosomes are decoded to calculate their fitness.

The main idea of genetic partitioning is that as the algorithm progresses, more stronger

chromosomes will survive and their, children will also have higher probability of being

fitter. The fitness functions are:

Fitness= (FIT - coscpenalty) I FIT

(if time_penalty=False and Concurrency _penalty=False)

Fitness=(FIT - coscpenalty) I (FIT x Time_pen_wt)

(if time_penalty=True and Concurrency _penalty=False)

Fitness=(FIT - coscpenalty) I (FIT x Con_pen_ wt)

(if time_penalty=False and Concurrency _penalty=True)

Fitness=(FIT - coscpenalty) I (FIT x Time_pen_ wt x Con_pen_ wt)

(if time_penalty=True and Concurrency _penalty= True)

where

•
•

•

FIT= Maximum of the coscpenalties in a population

Time_pen_wt and Con_pen_wt are the weight values put to emphasize the

violation of time and concurrency constraints.

CosCpenalty is the sum of all the devices being used as Hardware.

The method shows improvement of the average cost improving (decreasing) as

time progresses. It is also concluded that as the search space (design space) increases,

the genetic algorithm performs better as compared to other greedy and forward search

approaches. However, as of yet the algorithm does not take into account the overhead

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the hardware interface and inter process communication.

Mapping and Implementation-Bin Selection (MmS) is another way of solving

the hardware-software partitioning problem by heuristics [24]. The MmS partitioning

also work with a graph similar to control flow graph known as DAG where nodes

represent computations and arcs represent the data and control precedence between

nodes. The general structure of Mms is described in Figure 3.1. The GCLP

(Global CriticalitylLocal Phase) algorithm first traverses the DAG and maps each node

to either hardware or software. such that an objective function is minimized. The two

objective functions of GCLP algorithm are;

•

•

Minimize finish time of the node (execution time) .

Minimize the percentage of resource consumed by the nodes (HW area and

SW size).

Fixed
Nodes

IBS

GCLP
Free
Nodes

Figure 3.1; MmS algorithm flow chart

27

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

)

:l

I
I

I .,

I ..
J
I
I g ,.
i
tr
;§

t
i
~

J ,.
.a.
II
I
III

i
i!
I
I

i
"" I
I
iI

I

However, the above objective functions contradict each other as if one would

like to optimize the completion time, it will require more hardware and then the

percentage of resources consumed will not be optimum. Therefore, the GCLP

algorithm selects an appropriate optimization objective at each step. For example, if

time is more critical factor then the objective function with the minimum completion

time is selected; otherwise the one that minimizes the hardware area is selected. After

the completion of GCLP, all the nodes in the graph are selected as hardware and

software. Then the Implementation-Bin Selection (lBS) further selects the type of

implementation for each node. . .To select an appropriate implementation for the tagged

node T, Bin Fraction Curve (BFC) is constructed for that tagged node. BFC is the

curve obtained by calculating the bin fraction (BF) for each implementation is:
•

BF = No. of free nodes to L bin to meet time constraint / No. of free node

Free nodes are the nodes that have not yet been mapped to either hardware or

software, therefore for such nodes the algorithm tries to map them to H bin for

minimizing the hardware area as long as the timing constraints are satisfactory. L bin

are the implementation of hardware-software which takes a lot of area/size but shorter

computation time, and H bin are the implementation of hardware/software that takes

little area/size but longer time to compute. The free node that is not mapped to H bin

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

belongs to L bin as long as the hardware area constraints are satisfied. The main idea

of BFC is to find the most variation in the BFC curve and selects that variable limit

point for implementation that will result in the largest reduction in the area of free nodes.

The MmS algorithm does not consider the communication overhead when calculating

the objective function to minimize the completion time. Implementing nodes to L

bins of hardware at first seems to minimize the completion time; however, introduction

t

I
of more hardware to the system can increase the communication overhead that

degenerates the completion time for the overall system.

Another similar partitioning algorithm is ·proposed by Ondghiri and others,

where the difference lies in the search technique [25]. Instead of using objective

functions to map nodes to hardware and software for a particular solution, the

hierarchical design space is explored to provide various solutions. The hierarchical

design space search is done by varying its granularity level. Variation in granularity.

allows the designer to start with an input behavior at the process level. If the

performance constraints are not satisfied, finer granularity is selected to increase the

number of basic blocks. This operation is performed gradually by accessing

successive levels in the hierarchy of the input system. The most complex model of the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a input system (operation level) is used only when the performance constraints are not

it satisfied by the higher complex model. Granularity feature in a co-design tool

:s. provides an enlargement of the design space and avoids the use of a detailed and

g complex model unless the required performance is not reached by using simpler models.

L The analysis of this algorithm showed that too abstract or complex model did not

In provide an optimal balanced solution in general, and there exist an optimal solution at

at some level between the two extreme levels.

Most of the partitioning .algorithm worked first from the software side and tried

rs, I
I

to move the critical region of the software to the hardware component. The next

t
! ve ? ; partitioning algorithm introduced by Togawa and others tries to do the opposite [26].

•
:1

he
i
i Given an input assembly code generated by the compiler, the hardware-software

J
::al

~
1
~

partitioning algorithm first determines the types and number of required hardware units

'l
ity as an initial resource allocation for a processor core (such as multiple functional units,

the hardware loop units, and particular addressing units). Then the hardware units

!

the determined at initial resource allocation are reduced one by one while the assembly

ing code meets a given timing constraint. The execution time of the assembly code

the becomes longer but the hardware cost for a processor core to execute it becomes smaller.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, it outputs an optimized assembly code and a processor configuration. In this

partitioning environment, the solution will produce an optimal processor core for a

particular assembly code and only for that assembly code. Hence, the processor's

performance is limited to one particular type of application.

It is clear now that hardware-software partitioning can be considered as a

process that can be performed by means of different algorithms. like adaptation of

classical circuit partitioning algorithms [21, 27], standard optimization methods of

simulated annealing [28] and Tabu search [12]. The constraint-driven system

partitioning algorithm presented by Lopez-VallejO" and others however suggest the use

of a powerful cost function to consider system constraints in the hardware-software

partitioning process [29]. This is performed by formul~ting different cost functions

that will drive the partitioning process. The use of complex cost function allows the

algorithm to capture more aspects of the design. Another strong point of the proposed

cost function is its generality and therefore, it does not depend on the problem and can

be easily extended for considering new design constraints. The cost matrix function

described by Lopez-Vallejo is general enough to be used in any partitioning algorithm

that considers partitioning as a constraint satisfying problem [29].

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is

a The other researchers have also considered the hardware-software partitioning

's problem as constraint satisfying problem. The partitioning method by Hardt is based

on design specification analysis under the restriction of defined architecture and

interface in order to make hardware-software partitioning problem feasible [4]. This

restriction is acceptable as there are many systems built from a standard architecture for

general purpose computations. During specification analysis, a design is thought of as

a set of interacting modules. The suitability of each module for hardware

implementation is examined during the four phases . .
• The analysis phases take static aspects (SA)

• Dynamic runtime characteristics (DA)

• Parameter transportation costs (PA)

• Main memory access (MA).

These specification analysis phases result in a cost vector 'I'=(SA,DA,PA,MA) in which

the partitioning algorithm tries to minimize '1'.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Summary

From all the partitioning technique discussed, most of the methods take static

aspect fonn of the constraint satisfying problem by optimizing certain cost matrix

function. Furthennore, most of the partitioning algorithms would take either

dependency graph or execution graph as an input to generate a new set of partitioned

graph of hardware and software. The solutions presented, however, only seems to

work in ideal cases, as the hardware-software partitioning problem is still too

complicated to deal with the actual implementation issues such as delays,

communication overhead, interface overhead, etc. Hence, for a commercial product to

exist, hardware-software partitioning solution must deal with the implementation issues.

The DADGP algorithm presented in this thesis verifies the perfonnance of the

algorithm in simulation, and also in actual implementation to fully validate the proposed

approach.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F

I{

r

:l

)

)

)

f

I
\f

I

I
I

Cbapter4

DADGP-BASED HW/SW PARTITONING

4.1 System Specifications

We use textual representation for specification and graphical representation for

system partitioning and scheduling to incorporate the possibility of ever-changing

demand. ac++ is used as the initial system specification language, and through

profiling, the system specification is converted into DADGP representation for

partitioning. SystemC can also be easily incorporated into our approach for future

improvements. The high lev61 system specification is translated into ac++ in the

form of modules so that each module can be evaluated and mapped to the process space

during profiling (similar to SystemC). The translation levels of specification to

modules are also referred to as granularity level. Every system is made up of small

and large modules, and in order to partition a system, the level of system modules must

be decided. For example, during the block matching step of MPEG, sum-of-absolute-

differences are calculated to measure the similarity between the macroblock and image

search area. If one is to develop an IP block to calculate the sum-of-absolute-

differences, equation 4.1 is first translated into C/C++ specification, where the
•

granularity level is selected as sub, abs and sum modules. The partitioner will then use

the information provided in Figures 4.1a and 4.1b to generate the initial DADGP as

shown is Figure 4.1c (initial DADGP solution). Other granularity level can be

selected to gain different sub optimal partitioning results.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I IIM(i,j)-S(ix,jy)1
IS; jSn sum-of-absolute-differences

Figure 4.1a: Data table

Processing

Elements (PEl

component

sub

ahs

sum

for
(i=O;i<=16;i++)
{

for G=O;j<=16;j++)
{

}

temp=sub (M(ij),S(i,j»;
~emp 1 =abs(temp);
result=sum(result,temp 1);

PEO

6

4

3

PEl

5

8

2

} /I M(ij) is the object matrix, S(ij) is the search space matrix

Figure 4.1 b: C specification of blocl\ matching algorithm

One

Execution

Precedence edge

Data dependency

Figure 4.1c: Initial BADGP

(4.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I'
4.2 DADGP Graph Representation

Graphs are discrete structures consisting of vertices and edges that connect

these vertices. There are several different types of graphs that differ in terms of type

and number of edges that connect pairs of vertices. Problems related to most of the

disciplines can be solved using graph models. We show in this thesis how a DADGP

graph is used to solve a hardware software partitioning problem. First of all, we

introduce a formal definition of DADGP to understand the structure of this graph.

4.2.1 Formal Definition

A graph G is a pair (y, E), wher.e V is a set of vertices, and E is a set of edges between

the vertices such that:

E ~ {(u,v) I u, v ev}.

There are also two types of edges E, directed edge (D and undirected edge (U)

Where:

D= {dl ... dn }, and the other non-directed precedence edge

u= {UI ••• Um } to connect vertex V.

The graph G is connected with a directed edge if and only if the two vertices .
have producer consumer relationship. For example if vertex VI produces data that 'is

required by V2 then VI and V2 are connected by a directed edge dl. The graph vertices

are connected with undirected precedence dependency edge if and only if the two

vertices are independent of each other in terms of data generation and consumption.

36

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, if vertex VI produces data and V3 does not require such data to compute its

own, then vertex VI and V3 are said to be independent.

The vertex and edge of a graph G can also be weighted. Vertices are weighted

in terms of their execution time. Furthermore, a vertex can represent either software

functional node or some hardware functional node (ASIC), and its appropriate execution

time values are assigned to each vertex. Every edge is also weighted to model the

communication between two vertices. For example, if vertex VI produces 32 bits of

data that is required by V2 then the weighted value of edge d l (that connects VI and V2) is

32 divided by the data transfer rate. Undirected edges will have weighted value of

zero since there is no data transfer required between vertices that are connected with

undirected precedence edge U.

Finally, the graph G can not have any circuits or circular path. For example,

from any vertex of G, there can not be any path that has the same starting vertex and

ending vertex (starting vertex is a node where· the path begins, and ending vertex is a

node where no more edges exists). Where path, P = {PI ... Pz}, and p is a set of distinct

vertices and edges that are connected to each other with edges D or U. The graph that

follows these definitions can be called Directed Acyclic data Dependency Graph with

Precedence (DADGP). A more detailed operation· that can be performed with

DADGP will be discussed in the following chapter.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Hardware-Software Partitioning Algorithm

System partitioning algorithm described in this section can be divided into three

major components.

• Profiling of C++

• LD path search (Longest Delay)

• Mapping of LD path and Scheduling

The last two steps are repeated until an adequate solution is reached. A more detailed

explanation of LD path search method is provided in this section. The proposed

partitioning system flow chart is also shown in Figure 4.2 with the following

assumptions:

• Initial target architecture of one processor core.

• Every node is executable with at least one PE.

• All nodes can be implemented as either a hardware or a software

module.

• Inter PE communication is measured by the amount of data transferred,

where transfer rate is same for all nodes. Communication' overhead is

zero for nodes that are executed by the same PE.

• The partitioner has all the necessary information including execution

time of each node on different PEs, cost of adding PE, inter PE

communication between all PEs, and initial system constraints (required

system execution time and maximum hardware area).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Profiling

Figure 4.2: DADGP design flow

4.3.1 Profiling

Profiling is performed by executing C++ based system specification on the

target processor. The software profiling is a useful step as we must check whether an

all software solution is acceptable. If we translate the system specification into

software that can fulfill the deadline requirements on the target platform then system

39

-------- ----------------------

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

partitioning will not be necessary. However, in most of the cases, all software solution

may not be possible for high performance real-time embedded systems and hardware

software partitioning step needs to be performed. It is also vital to execute the C++

based system specification on the actual target platform to accurately collect the

profiling data. This method also naturally considers SW -SW cominunication

overhead between two software tasks, and is included as part of the module execution

time.

The profiler translates each module of C++ system specification into nodes with the

following information:

• Execution time of each module

• Start and end tiine of each module

• Amount of data transfer

• The caller(s) of the module

• The child(s) of the module

• Module identification

• Execution order

The profiler uses the above information to generate the DADGP. The unique

characteristics of DADGP is that it contains two types of edges to represent the system.

• Data dependency edge

• Precedence dependency edge

The data dependency edge is represented with an arrow symbol as shown in Figure 4.1c.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two nodes are connected with data dependency edge when they have a producer­

consumer relationship. The precedence dependency edge is represented by a normal

line to connect two independent nodes. The precedence dependency captures the

order of execution between nodes and such nodes can be executed in parallel if desired.

A more detailed discussion on DADGP is provided as part of mapping and scheduling.

4.3.2 Mapping and Scheduling

DADGP is a super set of Directed Acyclic Graph (DAG). with the only

difference of having two types of connecting edges. Our contribution to DAG is the

introduction of precedence dependency edges to explicitly represent the independence

and the execution orders between nodes. The I?AG representation is not

algorithmically friendly to capture non-parallel ex~utions of independent nodes for

hardware-software partitioning. Exposing the independence and introducing

parallelism between independent nodes are not always the best decision when

optimizing the execution time of a system due to inter PE communication overheads.

The incorporation of DADGP to our partitioning method has allowed us to only expose

the necessary parallelism for capturing wide rage of solutions.

The Longest Delay path (LD_path) represents the longest execution route in a DADGP.

LD _path is not just determined by the number of node hops. but it also depends on the

execution time of each node and corresponding inter PE communication overhead as

seen in equation 4.2. •

41

'. '

. <

! •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.2)

where node niE {nl ... nN } and they must be connected with any type of edges ejE E

(all edges D or U).

p={ ni ••• nN, ej ••• eN-I} is a path from one root to any ending node.

P=(PI ... PM } is a collection of all paths from one root to any ending node.

M is the total number of paths in a given graph.

LD_path can be found with the following equation.

LD Path= Max [LD time (Pi)]

where k varies from 1 to M.

(4.3)

Finding an LD_path in a DADGP is similar to finding a bottleneck in the

system. The LD _paths are used to improve the overall execution time by mapping

one of the 'LD _path nodes to hardware. A repeated searching and mapping of

DADGP reduces the search space and improves the convergence rate for an optimal

solution.

The LD_path searching algorithm is given below.

L = { II ... IN}; IIset of all leaf nodes in a DADGP
for (i = 1; i++; i <= N) lIN is the total # of leaf nodes

P = Find_path(li); l!Finds all unique path from Ii to root(s)
II now set P has all the paths from leaf to root

max =0;
for (i = 1; i++; i <= M) 11M is the total # of path{

temp = LD_time(Pi);
if (temp> max) then{

max = temp;
path = Pi;

}
} II After checking all path maximum delay path is found

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Mapping and Scheduling of DADGP

This is the most sophisticated and important step of our partitioning algorithm. After

finding the LD_path, one of the nodes in the path is mapped to the optimal hardware.

However, to make such critical decision, following factors must be taken into

consideration.

• Parallelism in DADGP nodes

• PE resource limitation

• PE Execution time of nodes

• Inter PE communication

• Hardware area (cost)

The PE can be a dedicated hardware unit or -a software task being executed on a

processor. The algorithm starts by finding the LD_path from a given DADGP and the

execution time of LD...:.path is also calculated. All the nodes in the LD_path are

mapped to appropriate hardware, one at a time and scheduled to calculate the overall

system execution time. A node that allows maximum improvement of system

execution time is finally mapped as hardware and the DADGP is updated according to

the final mapping decision. This process is repeated for all the LD -paths as explained

in the partitioning algorithm given below.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
,I,

LD _path = { n1 ••• n A ' e1 ••• e B } II A is the total number of node, and
lIB is the total number of edges

Previous_system_EXE = 00; II highest allowable value by the system
while « System_EXE > Required_EXE) AND (CurrencHW _area>
Required_HW _area))
{

LD_path = Find_LD_path (graph); llfind the LD_path from a given graph
LD_path_EXE = LD_time (LD_path); IIcalculated the execution time of
LD_path
Min_EXE = 00; II highest allowable value by the system
for (i = 1 ; i++ ; i <= A) {

G = map (DADGP, n j);

IIwhere G is a new DADGP with the node njE LD_path nodes mapped
lias HW.

(EXE, S, G_prime) = schedule (G);

II G_prime = updated G
II S = schedule of G
II EXE execution time of G
II schedule details are given in the schedule algorithm below

if (EXE < Min_EXE) then {

Min_EXE = EXE;llsave the current optimal execution solution

graph = G_pnme;ll save the current partitioned DADGP

Final_S = S;llsave the current schedule result after a valid IImapping

}

} II successfully found a node to be implemented as h3fdware

if (previous_system_EXE < Min_EXE) then

return (graph); IIreturn current partitioned graph

IIsystem could not be improved any further, and it could IInot satisfy
the given constraints.

previous_system_EXE = Min_EXE; II save previous solution

} II now the solution is found and the algorithm is terminated normally
return (G, FinaCS); II return currently partitioned graph with its scheduling

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The scheduling function "schedule (G)" is summarized as:

a) Start scheduling from the root of DADGP.

b) Traverse down the tree and schedule the earliest starting time node.

c) If a node is connected with precedence dependency edge, check to see

whether exposing parallelism can eliminate that edge. If a precedence

dependency edge is eliminated, the structure of the DADGP may change and

some nodes can be disconnected from the original graph resulting in two

separate DADGP. In this case, the new root of the disconnected DADGP

must be combined to make one DADGP by connecting it self and the

original root to a new dummy node called "start".

d) If multiple descendents (or roots) exist, force schedule all descendents (or

e)

roots) by adding necessary PE if required.

Update PE resource library and generate the total execution time by using •

the following equation:

where, nj _exe = execution time of a node that is currently in interest,

HW _exe = HW execution ,time of node nj •

IPC = Communication value introduced by mapping node n, to

additional HW, hidden_node_EXE = smaller execution time value between

two parallel modules.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
I

4.3.4 Complexity of the Algorithm

One measure of efficiency of an algorithm is the time used by a computer to

solve a problem by using the algorithm for a specified input value. A second measure

is the amount of memory required to implement the algorithm when input values are of

a specified size. An analysis of the time required to solve a problem of a particular

size determine the time complexity while analysis of the computer memory required

involves the space complexity of the algorithm. The time and space complexity

analysis of an algorithm is essential for its implementation. It is obviously important

to know whether an algorithm will produce the answer in microseconds, minutes, or

years. Likewise, the required memory must be available to solve the problem.

Considerations of space complexity are tied with the data structures used to implement

the algorithm. We assume that enough memory resources are available as the

proposed partitioning algorithm has already been implemented and executed without a

memory deficiency. Hence, space complexity will not be' considered and we will

restrict our attention to time complexity.

Time complexity is described in terms of number of operations required instead

of actual computer time because of the difference in time needed for different computers.

Moreover, it is quite complicated to break down all the operations to the basic computer ,

operations. Furthermore, . the fastest computers in existence can perform basic bit

operations (for instance add, mUltiply, compare, or exchanging) in nano seconds but

personal computers may require micro seconds that takes 1000 times longer to perform

the same operation.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For simplicity, assume that there are n=2k paths in the DADGP graph where k is

a nonnegative integer and k=log(n). If n is the number of paths in the graph and it is

not a power of 2, then the graph can be considered as part of a larger graph with 2k+l

paths where 2k<n<2k+l where 2k+l is the smallest power of 2 larger than n. Therefore,

at maximum the algorithm will take log(n) times to find the LD_Path. Mapping

procedure only considers nodes in the LD_path and therefore the complexity of

mapping algorithm is just the number of vertices in the LD _path, and this is bounded by

N, which is the total number of nodes in the DADGP graph.

Scheduling algorithm also traverses down the DADGP and schedules the entire vertices

(nodes) according to the resource availab~lity and verte~ start time. Therefore, the

complexity of the scheduling algorithm is also bounded by N because it can not

consider more vertices than what is in the DADGP. In such cases, the complexity of

the entire algorithm from LD_path search to mapping and scheduling is N X N X 10g(N)

because LD path search, mapping and scheduling is iterative process of the partitioning

algorithm.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experimental Results

Heterogeneous system architectures are commonly found in high performance

embedded systems. They are application specific systems that contain hardware

and/or software tailored for a particular application. General and special purpose

processors, digital signal processors, and ASICs are among the many components of

these systems. In these systems, heterogeneous processors are tightly coupled with

low inter-process communication (IPC) overhead but with heavy resource constraints.

Therefore, the schedulers for such heterogeneous systems need to account for IPC

overhead and processor heterogeneity where a task has different execution times on

different processors. Task scheduling for homogeneous multi-processors has been a

difficult problem in the past while scheduling problem for heterogeneous processors is

much more difficult.

In this chapter we present experimental results showing the validity of DADGP

based partitioning algorithm. First of all, we begin with a brief overview of two

simple yet well known partitioning and scheduling algorithms: General Dynamic

Level [18] and Simulated Annealing technique [12]. Secondly, these two techniques
.

are implemented and a performance comparison of these algorithms with DADGP

technique is presented by using randomly generated graphs as their input. Lastly, the

results from two application implementations to the actual hardware-software system

are shown to compare the simulated partitioned results. Block matching and SOBEL

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

edge detection applications are partitioned using the DADGP technique. They are

implemented using a Rapid Prototyping Platform (RPP) containing an ARM7 processor

and Xilinx FPGA for custom hardware.

5.1 GDL Scheduling Technique

·The GDL scheduling takes a standard DAG as an input task graph. A DAG

node represents a task to be executed on a processor and a directed edge indicates the

data dependency between two nodes. Each edge is associated with a number that

specifies the amount of IPC overhead. The algorithm assumes that the execution time

of a node Nj on a processor Pj, E(Nj,Pj), is known at compile-time for each processing

element If node Nj (task) cannot be executed on proce~sor Pj, the value of E(Ni,Pj) is

infinite (a very high number). This occurs when processor Pj has no resource or

instruction for node Nj. The algorithm also assumes that the target architecture has a

dedicated hardware for IPC so that inter-processor communication time can be

overlapped with computation time in a schedule. An example DAG and its node

execution-time table is shown in Figure 5.1.

PEO PEl PE2

Cost=: 20 Cost=:40 Cost=:50

A 3 6 3

B 2 7 9

C 5 5 1000

D 1 2 1

E 10 2 1000

Figure 5.1: An example of DAG and its node execution time table

49

------~---------

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The scheduling objective of GDL is to minimize the scheduling length of the

input DAG. The scheduling problem is NP-hard in the strong sense and therefore it

relies on heuristics. GDL algorithm is one of the existing scheduling heuristics for

heterogeneous scheduling problem and it is based on the list scheduling idea [18].

Each node is assigned a priority and GDL calls a node runnable when its ancestor nodes

have been already scheduled. The list scheduling schedules the runnable nodes in the

decreasing order of priority. The variants of list scheduling techniques differ in terms

of how to assign priorities to the nodes and on which processor a selected node is to be

scheduled.

The schedule length can not be less than the maximum length (or critical path

length) of a node to the terminal node. Therefore, to minimize the schedule length, it

is intuitive to assign the highest priority to a node from the longest critical path length.

The critical path length of a node is the sum of execution time of nodes on the critical

path and the IPC overheads incurred if these nodes are assigned to different processors.

The IPC overheads are not known before the descendant nodes are scheduled, therefore

a typical list scheduling technique considers only the' sum of execution times on the

critical path to determine the priority of a node. We call it the static level SL(Ni) of a

node. The static level of a node becomes the critical path length if all nodes on the

critical path are scheduled to the same processor. In a heterogeneous system, however, .
a node has different execution times on different processors. If we choose the smallest

execution time of a node in the static level computation, it may not be possible to assign

the node to the same processor as its ancestor. In this case, ignoring the IPC overhead

is problematic for heterogeneous systems. Therefore, the GDL scheduler defines the

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumed execution time of node Nj, denoted by E*CNj), as the median execution time of

node Ni over all the processors.· If the median execution time is infinite, the largest

finite execution time is substituted.

The GDL scheduler considers the effects of IPC overhead by adjusting the

priority level when the node becomes runnable. DACNj,Pj) is defined to be the earliest

time that all data required by node Ni are available at Processor Pj, where IPC overhead

is accounted for. TF{Pj) is further defined as the time that the last node assigned to the

jth processor finishes its execution. The node Ni can not be scheduled before TCNi,Pj),

which is the maximum of DACNi,Pj) and TF{Pj) for processor Pj. To account for the

varying processing speeds, they also defined ~CNi,Pj) = E*CNi) - E(Ni,Pj). A large

positive ~(Nj.Pj) indicates that processor Pj executes node. Ni more rapidly than most of

the other processors, while negative value of ~(Ni,Pj) indicates the opposite. By

incorporating these terms, they first extended the static priority level to the dynamic

priority level DLICNi,Pj) as given below:

DLICNj,Pj) level gives a higher priority to a node with regard to processor Pj.

Higher static level means that it can be scheduled earlier or the it can be executed faster.

Although DLI CNi,Pj) indicates how well node Ni is matched with processor Pj, but it

fails to consider how well the descendants of Ni are matched with Pj. If a descendant

node of Nj can not be scheduled on Pj due to resource constraints, the IPC overhead

between node Ni and its descendant should be considered to estimate the cost of

assigning Nj to processor Pj. From this observation, GDL scheduler selects a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

descendant of a node with the largest IPC overhead D(Nj) and another function

F[Nj,D(Ni),Pj] is defined to indicate how quickly D(Ni) can be completed on any other

processor if Nj is executed on Pj. Then, the effects of descendants on the level of node

DC(Nj,Pj) roughly indicates how well the "most expensive" descendant of node

Ni matches with processor Pj, if Ni is scheduled on Pj- Incorporating the descendant

consideration term modifies the level of a node on processor Pj as:

In addition to the descendant consideration effect, a heterogeneous processing

environment also introduces a cost associated with a node if it is unable to be executed

on a certain processor. To characterize this resource scarcity cost, they selected an

optimal processor Pj* on the second best processor to maximize DL2(Ni,Pj). Then

the "generalized" dynamic level is defined as: GDL (Ni,P) ~ DL2(Ni, Pj*) + C(Ni).

The second term indicates an increase in the dynamic level if the node is forced

to be scheduled on the second optimal processor. Now GDL scheduling technique

selects the runnable node of highest priority or highest GDL value. Figure 5.2 shows

the overall flow of GDL algorithm.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NO

System Functionality

Profiling

DAG

Calculate Priority with GDL

Schedule highest priority

YES

c::::> Finish

Figure 5.2: GDL algorithm flow chart

5.2 Simulated Annealing Based Partitioning

The idea of simulated annealing originated from metal processing. Annealing

in metal processing is how a liquid becomes progressively more organized into a solid

as the temperature falls slowly. Metropolis formalized this into an algorithm shown in

Figure 5.3 [30]. Simulated annealing is similar to the well-known greedy algorithm

[31] except for two key differences. Both incorporate the concept of neighbor (nodes),

53)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J

il ,

which is created by making some changes to the current solution. However, the

greedy algorithm always follows the neighbor with the largest gain, whereas simulated

annealing picks random neighbors. In addition, the greedy algorithm will never

accept a neighbor with a higher cost. On the other hand, simulated annealing may

accept a neighbor with higher cost, depending on the gain, temperature, or a randomly

generated value. These differences have important implications; while the greedy

algorithm will always find the local minimum, simulated annealing attempts to find the

global minimum. The other implication is that simulated annealing depends on

random numbers that makes it probabilistic in nature. As simulated annealing can be

adapted to a multitude of problems, one has to adapt the algorithm for system

partitioning. Our basic implementation of the simulated annealing algorithm is fairly

straightforward as shown in Figpre 5.3.

Main course of Simulated Annealing events can be summarized in 4 steps:

i. Starts with an initial partition and an initial simulated temperature

ii. The temperature is slowly decreased

iii. For each temperature, random moves are generated

iv. Any cost-improving move is accepted. Otherwise, it may still accept the move,

but acceptance becomes less likely at lower temperatures as given below

• Accept(~cost, temp) returns 1 if the move should be accepted, otherwise it

returns a value in the range of [0,1]

• Decrease Temp (temp) is often defined as

temp_new = a x temp_old; where 0 < a<l

• Equilibrium can be approximated as no improvements for some number of

iterations

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temp= initial temperature, cost=Objfct(P)

while not Frozen loop

while not Equilibrium loop

P_tentative = RandomMove(P)

cost_tentative = Objfct(P_tentative)

~cost = cost tentative - cost

if(Accept(~cost,temp)) > Random(O,l)) then

P = P_tentativecost

cost cost tentative

end if

end loop

temp=DecreaseTemp(temp)

end loop

where: Accept(dCOSt, temp) = min(I, e-(~ost/temp»)

Objfct(p) returns a cost value of current partition P, and cost represents systems

execution time and hardware area

Figure 5.3: The basic simulated annealing algorithm.

5.3 Software Simulation

To compare ~e perfonnance of our DADGP based partitioning algorithm, we

have implemented GDL and Simula~d Annealing algorithms. Each partitioning

algorithm have been given the same set of randomly generated DAG ranging from size

3,9, 100,250, 500 to 1000, and their results are presented here. The DADGP based

partitioning algorithm has also been given the same set of graphs except that the DAG

graph is first converted into DADGP (refer to Chapter 4.2 for detail).

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The experimental results for DAG graph of size 3 is shown in Figure 5.4, which

demonstrates the ability of DADGP partitioning algorithm that considers mUltiple

descendants indirectly without the added complexity of their calculations.

Considering GDL algorithm [18] and its complexity, the scheduling inherits the

traditional weakness of conventional list scheduling where global effect of scheduling

decision is not measured properly. The GDL scheduler improved on list scheduling

by quantifying the scheduling effects on the descendants of a node. However,

considering just the first descendants is not enough to measure the global effect.

Consider DAG graph of Figure 5.4 .and its corresponding parameters for GDL algorithm

whose scheduler results are presented in Figur~ 5.5 in the form of Gantt chart. After

scheduling node A, the GDL fails to consider the effect of processor selection for node

C. GDL algorithm can only Jook up to node B (first descendent) as it schedules node

A on processing element PEO hoping that it will also assign node B to PEO in the next

iteration. However, the final scheduling result suffers from a large inter-PE

communication overhead between A and B as node B is scheduled to processor PEl

considering node C's execution time on processor PEO in the next iteration.

Tasks PEO PEl
Cost=20 Cost= 50

A 1 .2

B 2 2 ,

C 20 1

Figure 5.4: DADGP without Precedence

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PEO A

PEl
B c

11 13

Figure 5.5: GDL Scheduled Results

The DADGP initial graph is obtained in Figure 5.6 which is exactly the same as

the DAG of Figure 5.4 because the graph does not have any precedence dependency

edges and hence no parallel execution is possible. Obtaining the LD-path is also

simple because there is only one path. DADGP then tries to find a node that can

improve the overall system execution by mapping tasks to another PE (Processing

Element) assuming that PEO is the target processor (soft,,:are) and PEl is the additional

PE (ASIC, Processor, etc). Then the initial DADGP is given in Figure 5.6 our

algorithm assumes that all nodes are initially executed as software (on PEO). The

partitioner will first move node C to PEl to reduce the total execution time (C is the

Min[EXED. In the next iteration, node B is moved to PEl to reduce inter PE

communication overhead between Band C. In the third iteration, node A is finally

moved to PEl to reduce the inter PE communication overhead, and the optimal

scheduling is obtained as shown in figure 5.7.

Figure 5.6: Initial all software DADGP solution

57

j ~-,

).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(,
'f
i

II
PEO

A
PEl

B c

2 4 5

Figure 5.7: DADGP Solution

Simulated Annealing algorithm also arrives to the optimal solution by assigning

and scheduling the entire task to processor Pl. However, due to the selection of

random neighbors in simulated annealing, execution of simula~ion mUltiple times with

the same data has given different results. But only the best results have been recorded.

The experimental results for bigger sized graph have been recorded and are shown in

Table 5.1. The perfonnance gain is defined as the ratio of non-optimized execution

time over optimized execution time of DADGP. Cost is the amount of hardware

required, and simulated time is the time it takes for completion of simulation, and

execution time is the target system execution time based on the partitioned results.

The random DADGP graph generated for 9 nodes can be seen in Figure 5.8a. The

optimal solution obtained with DADGP based partitioning algorithm is shown in Figure

5.8b.

In comparing the perfonnance gain of these three algorithms, DADGP has

shown outstanding results as shown in Figure 5.9. For smaller size graphs, all three

algorithm have shown similar results in tenns of performance gain ratio. This is

expected because the solution space for such a small graph is limited. The difference

appeared when the graph size is increased to 9 or more nodes. In fact, GDL algorithm

has shown lower perfonnance gain with the increase in graph size. These results

. ,"" :~; -----
58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show that GDL is suffering from wrong decision making as it can not consider multiple

levels of descendants. Simulated Annealing has shown almost constant performance

gain across different sized graphs. DADGP, however, shows increase in performance

gain as number of nodes are increased. This characteristic is very desirable because

increase in graph size means that there are more opportunities for improvements, and

DADGP algorithm is exposing various solution spaces.

1

2
(b) Optimal Solution

(a) Initial DADGP

Figure 5,8: Randomly generated Graph (9 nodes)

59

J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Software Simulated Comparison Experiment Results

DADGP flofNodes Cost Exe Time Simulated Time Performance Gain Ratio

3 50 5 0.2s 4.4

9 195 18 0.43s 5.5

100 400 7350 15.4s 9.9

250 350 12250 71.3s 14.86

500 600 19015 271.25s 19.14

1000 550 29400 486.1s 24.76

GDL

3 70 14 0.6s 1.57

9 125 38 2.01s 2.63

100 220 20472 237.16s 3.56

250 320 60142 601.2s 3.03

500 370 205422 1363.67s 1.77

1000 570 314721 3954.64s 2.31

SA

3 70 5 0.72s 4.4

9 95 34 0.89s 2.94

100 200 . 18021 20.1s 4.04

250 360 40124 100.5s 4.53

500 550 80804 324.4s 4.5

1000 770 80984 501.4s 8.99

Where Exe Time is execution time of partitioned system when scheduled.

Simulation time is the time it takes for an algorithm to partition a given system.

Performance gain ratio is Exe Time of all software solution over partitioned solution.:

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRam

100 250 500

Nodes

aDADGP DSA

Figure 5.9: Perfonnance gains

The next important result is the simulated time. DADGP algorithm shows

improvement on all graphs, but it is also important that the algorithm is executed in a

reasonable time. Figure 5.10 shows the simulated time for all three techniques vs.

graph size, where· DADGP method again indicated its superiority. The GDL

algorithm indicated slower simulation time due to its O(N3) complexity. As the

number of nodes increases in the graph, the simulated time increases exponentially.

The runtime of DADGP and Simulated Annealing provide good results through out the

experiment, keeping the simulated time below 10 minutes for a Pentium m 600Mhz

processor under the worse case scenario.

61

f
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I ,

4000

3500

3000

2500

Second 2000

1500

1000

500

0
3 9 100 250 500 1000

Nodes

II DADGP DSA

Fi~re 5.10: Simulated time

It is important to note that performance gain must come with a reasonable price,

and this is evident in Figure 5.11 that shows the performance gain for DADGP

algorithm. On average, DADGP solution is always expensive than GDL, however,

increase in performance gain can compensate for its cost. The DADGP algorithm

explored parallelism in the system to increase the performance; therefore, there must be

additional components in the system to accommodate tasks concurrently. The

difficulty is to explore those parallelisms in the order of maximum performance gain

with minimum cost. GDL algorithm seems to show the inverse relationship to maximize .
performance gain. It provides improvements to the system, but with more hardware

components than necessary. Combining the results of Figures 5.9 and 5.11, we can

derive another important hardware to performance ratio as shown in Figure 5.12. The

hardware cost to performance ratio indicates the performance gain of the system by

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adding more gates to the system. The results indicate that as system becomes more

complicated (bigger), it is more difficult to increase its performance by adding extra

hardware as shown with SA and GDL algorithms. However, DADGP algorithm has

shown increase in this ratio indicating that the algorithm can add necessary hardware to

increase the performance. The results are also related to maximum performance

bound as addition of more hardware after curtain performance boundary will only

degenerate the system.

No.of
gates

9

1'1 DADGP

100 250 500

Nodes

Figure 5.11: Hardware area cost

63

DSA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.09

0.08

0.07

o .Q6

0.05

0.04

0.03

0.02

0.01

0
3 9 100 250 500 1000

Nodes

II DADGP OSA

Figure 5.12: Hardware cost - Performance ratio

5.4 Rapid Prototyping Platform

Rapid-Prototyping Platform (RPP) consists of an ARM7 CPU and FPGA based

hardware components to enable the prototyping and design of embedded systems.

The RPP features two or more daughter cards, housed on a motherboard (ARM's

Integrator/ AP board) that are:

• The ARM7TDMI core

• A re-programmable hardware module, featuring a Xilinx Virtex-2000E

FPGA.

The Integrator board allows stacking multiple cores (e.g. ARM7, ARM9) and logic

modules (Xilinx or Altera) as shown in Figure 5.13. RPP provides a software-

'I programmable processor ,as well as hardware modules. The design flow for the RPP

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involves both software and hardware design tools. Figure 5.14 demonstrates the flow

from specification to integration of hardware and software designs on the RPP.

Chip capacity continues to increase at an exponential rate and designs increase

in size and complexity (e.g. embedded processors, third-party IP, mixed-signal

components), design verification and proof of concept have become significant

bottlenecks. The Rapid Prototyping Platform by ARM makes use of several key system­

on-chip (SOC) concepts to enable researchers to prototype their designs quickly and

with higher confidence. In the past. simulation was often sufficient means to verify

the proof of concept. However, with increase in chip complexity, simulation of large

designs require many millions of clock cycles. The incorporation of embedded

processors on a chip amplifies the problem of simulating embedded software on

mUltiple processors. To address these problems, rapid prototyping systems with high­

capacity FPGAs and embedded processors are challenging the role of simulation for

system-level verification. What may take days to simulate at cycle level accuracy can be

reduced to several hours through the hardware-assisted simulation of hardware-software

system.

Figure 5.13: RPP (source CMC website)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
,

I

In the research community, ASIC implementation has often been used to

demonstrate the proof of concept. A design that can be implemented on an ASIC may

be ported quickly to an FPGA-based rapid prototyping system, and what is lost in

design performance can be regained in engineering time. Assuming first-pass success of

the design, ASIC implementation of a typical industry-capacity design requires longer

engineering time, while FPGA implementation requires much shorter time. Furthermore,

with almost 40% likelihood of a design re-spin, implementing to FPGA again saves

engineering time, as each re-spin adds approximately 20% more engineering time to the

entire design cycle [9].

To accelerate the process of achieving proof of concept, rapid prototyping

systems effectively utilize the concept of reuse, which is the driving force behind the

SOC revolution. In SOC context, re-use takes two forms: software re-use and hardware

re-use. Both of these are achievable with the rapid prototyping platform and both are

presented in RPP design flow in the form of Intellectual Property (IP) libraries (see

Figure 5.14). Rapid prototyping system is based on an ARM AMBA bus to support

the re-use of hardware. A user needs to customize the rapid prototyping system to meet

specific design requirements, and may require custom IP to execute some of the design

functionality. A library of bus-independent IP is also available through Xilinx's

LogiCORE system, in addition to the blocks already present in the system. Designers .
can also create a hardware block and later incorporate the block to an intellectual

property library for re-use in other designs. The RPP design flow supports the use of

Seamless, a co-design tool from Mentor Graphics for hardware/software co-verification.

Furthermore, developers targeting the RPP environment can use C/C++ language to

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program embedded software. Programming at such an abstract level opens the door for

software re-use, as related standards evolve in the SOC community.

5.5 RPP Design Flow

Designing system with RPP is simple with the help from many EDA design

tools. . The RPP design environment is flexible as one can incorporate many different

design tools to program and synthesize the ARM7 processor and its programmable logic

device. The platform also supports JTAG and Multi-ICE tools for debugging. This

section will introduce the RPP system environment and its capabilities. A detailed

diagram of RPP design flow is given in Figure 5.14.

5.5.1 Design Specifications

The design flow starts with a set of design requirements and system

specifications, detailing the function of the system as well as constraints such as clock

rate, power and operating conditions. These design specifications are usually set out on

a written document or spreadsheet. This specification is used to derive design

constraints, which guide the designer (and design tools) and provide a basis for

evaluating the quality of the design throughout the flow.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HWIP

Library

Feedback

... '
... ' ... ' , ,

... ' , ,
L__ I_~~

I I
I I
I I
: I I ,-----------1
I I
I I
I I
I I 1 ______ -----______ 1

System/Block Specification

Algorithm Design! Analysis

HW/SW Partitioning

Functional

Simulation

Synthesis

Place/Route

Timing

Simulation

Software

Design

HW/SW Integration

Rapid Prototyping Platform

Figure 5.14: RPP Design Flow

5.5.2 Algorithmic Design and Analysis

In the next step of the process, the system designer translates the specifications

into a high-level algorithmic description of the system. This algorithmic design and

analysis step is usually implemented in C/C++ or in the case of DSP systems, tools like

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cadence SPW or Matlab can be used. The algorithmic description allows the designer

to fully understand the system function before architectural details are developed. For

example, in designing an audio filtering system using a finite-impulse response (FIR)

digital filter, the designer can do the following steps before committing to

implementation:

• Optimize the number of filter coefficients.

, • Experiment with different windowing techniques to improve the filter

response.

• Even test the effects of fixed-point arithmetic (e.g, overflows) versus

floating-point.

A Cadence's SPW tool specifies the syste~ as a set of connected,

parameterized blocks (e.g, a FIR filter would be one block). A block diagram (filter

block, signal sources and sinks, channel models, etc.) can be simulated many times

using different parameter settings to investigate the algorithm and determine the

optimum system.

5.5.3 System Architecture Design (HW/SW Partitioning)

Once the designer has thoroughly exercised and optimized the algorithm at this

high level, the implementation process can begin. The first step is the system

architecture design, where functional units are mapped to various architectural units.

Traditionally this has been a manual process for relatively simple systems. However,

as system-on-chip (SOC) designs become more and more complex and incorporate

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more and more processing elements (e.g. embedded processors, DSPs, etc.), the design

process requires tools like Cadence's Virtual Component Co-design (VCC). VCC

allows system designers to specify the system function at a high level of abstraction

(using C/C++ functional models). In a parallel activity, designers can model the

system architecture (microprocessor, bus architecture, memory, ASIC components,

RTOS, etc.) with appropriate estimates on timing, power and cost. The system

designer can then map functional units onto architectural units and run a performance

simulation to see if the function/architecture mapping is appropriate.

The designer can make changes to the system as well as mapping and re-

simulate to further explore the system design space. For a large system, this kind of

activity would be cumbersl;>me and slow, if not impossible. Once this

hardware/software partitioning stage is complete, the design is handed over to the

hardware and software design teams. The system designer must create a specification

for the hardware and software design teams (again stating constraints such as clock

speed and power to guide the design processes).

5.5.4 HDL Hardware Coding

The hardware design flow uses a hardware description language, VHDL or .
Verilog, to create that portion of the system design. HDL coding can be done by hand

(Le. using a text editing program to write the code), or by using HDL design tools such

as HDL Designer (formerly known as Renoir) from Mentor Graphics. HDL Designer

allows the complete hardware sub-system to be specified as individual blocks,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interconnected by wireslbuses. Design blocks can be regular RTL code, state diagrams,

flow charts, truth tables or hierarchical block diagrams. HDL Designer can also create

block diagrams from existing code, create testbenches and link to simulation and

synthesis flow tools.

The HDL design process can be enhanced by the use of a hardware IP library.

For example, Xilinx has a library of free IP cores in its LogiCORE product line. One of

these cores is a parameterizable FIR filter core that designers can instantiate in their

source code. The core comes with a simulation model and works in most commercial

synthesis flows (e.g. Synopsys FPGA Compiler n). The LogiCORE library includes

memory, DSP and mathematical functions.

5.5.5 Functional Simulation

Once the HDL is coded, it is verified through functional simulation (using a

simulator such as Synopsys VSS or Cadence NC-Sim). The test bench is usually

created alongside the HDL, but can also be derived earlier in the process (for example,

reusing test data from the algorithmic design phase). This simulation is technology-

independent and it does not contain timing or power data. The HDL code is modified

and re-simulated until the function is verified. Some extra steps in this process (not

shown in Figure 5.14) could include HDL linting (checking the code for compliance

with coding standards), and test coverage. Test coverage involves evaluating how

much of the actual code is tested by the test bench and thus the completeness of the

verification strategy.

r
I

71
,

/ ' .. \
" l'o,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.6 Synthesis

After functional simulation, synthesis process maps the RTL code to logic gates.

Tools like FPGA Compiler II from Synopsys perform this task by using the constraints

on timing to optimize the design. Designers can perform back-annotated timing

simulation by using gate-level delays. Re-using the functional testbench step confirms

that synthesis has not altered the design's functionality. This simulation also contains

accurate timing information to confirm the operation of actual design within constraints

5.5.7 Place and Route

After synthesis, the de,signer performs place and route using the Xilinx design

tools (e.g. Alliance 3.li). This step maps the logic gates from synthesis to functional

units on the FPGA. The output of this step is a bitstream file that is a complete map of

the design, configured for a particular Xilinx part (e.g. Virtex 2000E-PQ540-6). This

file can be downloaded to the corresponding Xilinx FPGA for operation.

5.5.7 Application Software

Occurring parallel to hardware design flow is the software development desi¥"

flow that creates the code for execution on the processor in the system (in the case 'of

RPP, this is an ARM7TDMI processor). Software development can involve several

tools, including a real-time operating system (RTOS), instruction-set simulator (ISS)

and code development tools (C/C++ compiler, linker, and assembler). An example of

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an RTOS would be VRTX from Mentor Graphics. ARM has its own suite of code

development tools called ARM Developer Suite (ADS). As in the hardware domain,

pre-designed routines from a software IP library can speed up the design process.

5.5.8 HW ISW Integration

During the design of hardware and software, it is important to make sure that

the hardware and software portions of the design will work together. They may be

thoroughly tested separately by hardware and software simulation, but if the interfaces

between software and hardware are not well-designed, the system may not function

properly. Testing the interfaces can be left to the final stage that is the actual HW/SW

integration on the rapid-prototyping platform. However,. this can also be done earlier

using a HW/SW co-verification tool like Seamless. This tool links a hardware

simulation (e.g. NC-Sim) with simulation of the software on an ISS, this can verify the

system earlier. Errors due to interactions between the HW and SW components can

be caught early in the design cycle and save time and effort for both the hardware and

software designers. Mter integration, the design is confirmed to be working.

Experiments on the design that can execute in real-time with real-time data (e.g. audio

data coming from a PC sound card) can fine-tune the design. Changes to hardware or

software can be made, implemented and tested very quickly. At this stage, the design

can be introduced into an ASIC design flow if desired, or simply stand as a proof-of-

concept design where fabrication is not needed or perhaps not affordable.

73

f
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Block Matching Implementation

.
5.6.1 Introduction to Block Matching

The block matching is an important computational part of MPEG video coding.

MPEG has been by far the most popularly utilized motion estimation technique in video

coding. It is interesting to note that even nowadays; with the tremendous

advancements in multimedia object and/or content-based manipulation of audio-visual

information is very demanding particularly for multimedia data storage, retrieval, and

distribution. The application of arbitrarily sh~ped objects has attracted significant

research attention, and has been included in the MPEG activities.

Difficulties encountered in motion estimation and compensation with arbitrarily

shaped blocks are enormous and to avoid these difficulties, the block matching

technique was proposed by Jain and Jain [32]. An image is partitioned into a set of

non-overlapped, equally spaced, fixed size, small rectangular blocks assuming a

uniform translation motion within each block. This simple model considers

translation motion while other types of motions such as rotation and zooming of large
.

objects, may be closely approximated by piecewise translation of these small blocks

provided that these blocks are small. As a compromise, a size of 16 X 16 is considered

to be a good choice, (as specified in international video coding standards H.261, H.263,

MPEG-l and MPEG-2) while for finer estimation sometimes a block size of 8 x 8 is

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also used. Displacement vectors for these blocks are estimated by finding their best

matched counterparts in the previous frame. In this manner, motion estimation is

significantly easier than that for arbitrarily shaped blocks. Furthermore, the rectangular

shape information is known to both the encoder and the decoder, and hence does not

need to be encoded, which saves both computation load and side information.

We use Figure 5.15 to illustrate the block matching technique. An image

frame at moment tn is segmented into non~overlapped p x q (block where) p = q = 16 are

often used (Figure 5. 15(a». Consider one of the blocks centered at (x,y), it is assumed

that the block is translated as a whole. Consequently, only one displacement vector

needs to be estimated for this block. Figure 5. 15(b) shows the previous frame at time

tn-I. In order to estimate the displacement vector, a rectangular search window is

formed in frame tn-I arId centered at the pixel (x,y). Consider a pixel in the search

window, a rectangular correlation window of the same size p x q is opened with the

pixel located in its center and a similarity measure (correlation) is calculated. Mter

the matching process completes for all candidate pixels in the search window, the

correlation window corresponding to the largest similarity measure becomes the best

match of the block under consideration in frame tn. The relative position between

these two blocks (the block and its best match) gives the displacement vector as shown

in Figure 5. 15(b).

I
f

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I • H
(~,yo) • .J'~o)

r ..
(x,y) (x,y)

, •) I

I 6cv,)
I / I

.~
._._._.-

I (.. ~ I
~.-.-.-.-.-.-.-.-.-.-.-.-.-.-

(a) tn frame (b) tn-l frame

An original block Figure 5.15: Block matching

The size of the search window is determined by the size of correlation window

and the maximum possible displacement along four directions: up, down, right, and left.

In Figure 5.16 these four quaritities are assumed to be the same and are denoted by d,

which is estimated from a priori knowledge about the translation motion. Translation

motion includes the largest possible motion speed and the temporal interval between

two consecutive frames (tn _ tn-I).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q+2d

II>

d
q

P+2d
p.

... ... d
d

~

d

,Ir

Figure 5.16: Search window and correlation windows

Block matching 'belongs to image matching and can be viewed from a wider

perspective. In many image processing tasks, we need to examine two images or two

portions of images on pixel-by-pixel basis. Thes~ two image regions can be selected

either from a spatial image sequence (from two frames taken at the same time with two

different sensors aiming at the same object), or from a temporal image sequences (from

two frames taken at two different moments by the same sensor). The purpose is to

determine the similarity between the two images or two portions of images. Therefore,

the similarity measure is a key element in the matching process. However, instead of

finding the maximum similarity, an equivalent but yet more computationally efficient

way of block matching is to find the minimum dissimilarity or matching error. The

dissimilarity D(s,t) (sometimes referred to as the error, distortion or distance) between

two images tn and tn-I is defined as:

1 p q •

D(s,t)= -LLM(fn(j,k)./n-1(j +s,k +t»
1m j=1 «=1

(5.1)

where M(u,v) is a metric that measures the dissimilarity between u and v.
r

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The D(s,t) is also referred as the matching criterion or the D values. Mean square

error (MSE) is most commonly used matching criterion where dissimilarity metric

M(u, v) is defined as

M(u,v) = (U_v)2 (5.2)

The searching strategy is another important issue to deal with in block matching.

Figure 5.16 shows a search window, a correlation window and their sizes. In

searching for the best match, the correlation window is moved to each candidate

position within the search window. In this way, there are a total of (2d+l) x (2d+l)

positions that need to be examined. The minimum dissimilarity gives the best match.

Apparently, this full search procedure is brute force in nature. While the full search

delivers good accuracy in searching for the best match, a large amount of computation

is involved. We choose a full search method for implementation to increase the

complexity of the system to make the problem more challenging. In the next section,

we are familiarizing the readers to the Rapid Prototyping Pla(fonn (RPP) we employed

for implementing the partitioned block matching system.

5.6.2 Specification

The most computationally intensive part of block matching is to calculate the

matching criterion function as presented in Equation 5.1. After calculating the

matching criterion of an image, a match is found and motion vector is calculated. The

image size and the search space of our system is 256 x 256. Instead of reducing the

search space to near by micro block of previous image as it is usually done to reduce the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computation, we have implemented a full search method for the whole 256 x 256 image.

Micro block size is selected at 8 x 8 to increase the computation complexity. To find a

matching 8 x 8 micro block, there are (256 - 8) rows and (256 - 8) columns in the image

that requires 961 comparison operations. Furthermore, each comparison operation

calculates the matching criterion function that requires 64 additions, subtractions,

multiplications and one division operation. However, to take the advantage of burst

transfer mode, each operation (addition, subtraction etc.) is performed for the whole

image instead of per comparison. The bus speed is 20 MHz and the maximum bus

transfer rate for an AMBA (AHB) system is 128 bits in burst mode. This means that

instead of sending only 2048 bits (8 x 8 x 32 bits) per block matching with 961 separate

bus transactions. There will be 961 block matching comparison operation for 256 x

256 image, we can send 1968128 (2048 x 961) bits in one bus transaction as a burst

mode. This method has significantly reduced the. communication overhead between

different functional blocks.

Each image pixel represents a gray scale value from 0 to 255. The granularity

level of block matching is chosen as operation level of subtraction, square, summation

and division to calculate the matching criterion function. Each block has been created

in both software and hardware to create library information for the partitioning

algorithm (Figure 5.17). The execution time of each block is also measured using the

hardware/software timer module developed in house. This tool allows execution time

measurements of hardware and software components for the RPP system components.

The hardware/software timer is an essenti.al part of the partitioning process for an

accurate simulation. I
r

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SW HW Area (gates)

Sub 4.133s 0.5s 100

Square 6.1s Lis 500

Sum 4.133s 0.5s 100

Div 2.34 0.9s 700

Figu~e 5.17: Initial Block matching solution with library info

5.6.3 Software Simulation

The simulation results of block matching algorithm with various constraints are

recorded and drawn in Figure 5.18. Each node in the graph represents an

improvement to system execution time with the addition, of one more hardware,

components. This simulated result shows that with the current granularity level and

by employing hardware-software library of Figure 5.17, the system performance is

within 18.23s -+ 5.284s as shown in Figure 5.18. However, if the system

specification requires better performance (faster than 5.284s), a different granularity

level must be selected with its corresponding hardware-software library. The change

•
in hardware/software library will allow partitioning algorithm to explore different lev,el

of solution space. If the system specification is bounded in the region of 18.23s -+

5.284, the hardware-software partitioned results generated by DADGP partitioning

algorithm will give the estimated performance when implemented.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To verify the results of simulated solution of partitioning, we have implemented the

hardware software partitioned system using RPP and measured the actual execution

time of the system and compared it to the simulated results. The measurements of the

two domains are similar that proves the accuracy of simulated results and verifies the

partitioned hardware-software system as a valid solution. A more detailed comparison

of the experiments is presented in a later section.

20

18

16

14

'" 12
"0
t:
0 10 u
~

en 8

6

4

2

0

0 500 600 700 1400

HWarea

Figure 5.18: Simulated Performance Improvement Curve Block Matching

5.6.4 Overall Architecture

The overall system architecture of a partitioning solution is presented here for

simplicity because the system architecture of other solutions are similar. The system

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is implemented using RPP as incorporation of extra hardware modules is equivalent to

loading the hardware component to the FPGA AHB bus system as shown in Figure 5.19.

System uses the AHB (AMBA) bus system to connect ARM7 processor to FPGA.

Therefore, all the sub components or the hardware blocks implemented in FPGA

requires AHB bridge connection to communicate with other devices.

-.~

APB = Advanced peripheral Bus I

AHB =Advanced High performance Bus

SSRAM Address
Controller. Decoder

1 Reg. I II II AHB AHB ARM7
AHB APB

Ji I Interrupt I r'---'-'-'-"--- "-'--'--'----, Controller
;

Xilinx FPGA , I Multiplier I I
I I I i I I

Block matching core YI
i ICrr:::rO

i.-._._. _______ .. _._ ..
t_._._._._._._._._._._._._._._.~._._._._._._._._._._

Figure 5.19: Overall system implementation

The simulated partitioning suggests that the very first solution to Block Matching

DADGP shown in Figure 5.17 is to map the square operation to dedicated hardware.

This partitioning result gives the most performance gain of 2.9 as compared to previous

solution. The multiplier implemented for this operation is shown in Figure 5.20 that.is

a parallel 32 bit multiplier. The parallel 32-bit multiplier is an unsigned multiplier

using a carry save adder structure. A partial schematic of the multiplier is also shown in

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.21. This multiplier takes two 32 bit numbers and multiply them in parallel to

generate a 64-bits result.

X "00000000"
a 32 32

b(O)

b(l)

b(2)

b(31

prod(31) prod(O)
prod(63 downto 32)

Figure 5.20: 32 bit parallel multiplier

a X "00000000"

b

Sum_io(31 downto 0)

cio(31 downto 0)

sum_out(31 dowoto 0)

cout(31 downto 0)

Figure 5.21: 32 bit carry save adder

83

I
f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l
I 5.6.5 Simulation vs. Actual Implementation

The implementation of mapping square function to the hardware unit has shown

similar results to software simulation. The implemented system takes 13.7133

seconds to. complete, where as the software simulation estimated 13.49 seconds for

completion. The results indicate a margin of error of 1.66 %. The rest of the

implementation vs. the software simulation comparison is shown in Table 5.2. The

results show that the margin of error of all the partitioned solutions is within 2%.

The difference between the simulated hardware area and the actual hardware

area indicated a very small margin of error as shown in Table 5.3. The main sources

of errors are due to ignoring the routing and interconnections area between the

components. Furthermore, as more hardware is added to the system, the margin of

error increases. These results show that a different scheme of estimating the hardware

area is required to accurately model the addition of mUltiple hardware units.

Table 5.2: Execution time comparison result

Iteration Software simulation RPP Actual

measurements

1st run 18.23s 18.94s

2nd run 13.49s 13.7133s

3rd run 9.85s lO.55s .
4th run 6.74s 7.21s t

5th run 5.384s 5.88s

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3: Hardware area comparison result

Iteration Software simulation area RPP Actual area

measurements

1st run 0 N/A

2nd run 500 512

3rd run 600 634

4th run 700 755

5th run 1400 1490

5.7 SOBEL Edge Detection Implementation

5.7.1 Introduction to SOBEL edge detection

The Sobel operator perfonns a 2-D spatial gradient measurement on an image.

Typically this is used to find the approximate absolute gradient magnitude at each point

in an input grayscale image. The Sobel edge detector uses a pair of 3x3 convolution

masks, one estimating the gradient in the x-direction and the othe"r estimating the

gradient in the y-direction. A convolution mask is usually much smaller than the

actual image. As a result, the mask is convolved and sled over the image,

manipulating a square of pixels at a time. The actual Sobel masks are shown in Figure

5.22.

"

I
I
f

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1 0 +1
+1 +2 +1

-2 0 +2 0 0 0

.

-1 0 +1 -1 -2 -1

Gx Gy

Figure 5.22: SOBEL masks

The magnitude of the gradient is then calculated using the formula:

(5.3)

An approximate magnitude can be calculated using:

I G I = I Gx I + I Gy I (5.4)

The mask is convolved over an area of the input image and then shifts one pixel

to the right and continues to the right until it reaches the end of a row. It then starts at

the beginning of the next row. The example in Figure 5.23 shows the mask being

convolved over the top left portion of the input image represented by the thick black ,

box. The formula shows how a particular pixel in the output image would be

calculated. The center of the mask is placed over the pixel you are manipulating in the

image. It is important to notice that pixels in the first and last rows, as well as the first

and last columns cannot be manipulated by a 3x3 mask. This is because when placing

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the center of the mask over a pixel in the first row (for example), the mask will be

outside the image boundaries.

Input Image Mask Output Image

all a '2 au mll m'2 mu b ll b 12 b u

a 2l a 22 a 2l m2l m22 m2l
b 2l b 22 b2l

all a '2 a" mll m'2 mll b ll b '2 b 33

Figure 5.23: SOBEL example

The Gx mask highlights the edges in the horizontal direction while the Gy mask

highlights the edges in the vertical direction. After taking the magnitude of both, the

resulting output detects edges in both directions. A SOBEL edge detection algorithm

is given below.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sobel Edge Detection Algorithm

#define
#define
#define
main ()

ROWS 512
COLS 512
Threshold 100

{
unsigned char·image in [ROWS] [COLS];
unsIgned char image-out [ROWS] [COLS];
int r, c; /* row and column array counters */
int pixel; /* temporary value of pixel */
for (r=O; r<ROWS; r++) /*initialize output image

array*/
. for (c=O; c<COLS; c++)

image out [r] [c] = 0;
/*filter the image and-store result in output array */

for (r=l; r<ROWS-1; r++)

}

for (c=l; c<COLS-1; c++) {
/* Apply Sobel operator. */

pixel = image in [r-1] [c+1] -image in [r-1] [c-1]
+ 2*image in[r] [c+1] - 2*image in[r] [c-1]

+ image in [r+1] [c+1] - image in [r+1] [c-1] ;
/* Normalize and take absolute value */

pixel = abs(pixel/4); /* Check magnitude */
if (pixel > Threshold)

pixel= 255;'/*EDGE VALUE;*/
/* Store in output array */
image out[r] [c] = (unsigned char) pixel;
} -

5.7.2 Specification

The input to SOBEL edge detector system is 256 x 256 gray scale images.

The most computationally intensive part of SOBEL edge detection is to calculate the

gradients in x and y direction by using 3x3 convolution masks. The system's granularity

level is chosen as operation level of square (SqX, SqY) and summation (add) . .
However, for the calculation of gradient in x and y directions, two smaller operations

have been encapsulated (multiplication and addition, Gx, Gy). Dividing the system in

this fashion has allowed identical amount of data transfer for all blocks (256 x 256 x 32

bits). Therefore, the communication time between any blocks remains constant.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each block has been created in both software and hardware to create the library

information for our partitioning algorithm as shown in (Figure 5.24). The interesting

part of this system compare to block matching system is that, its initial DADGP graph

contains precedence dependence edges. This means that with the environment, the

partitioning algorithm will be able to explore parallelism that will result in modification

of the DADGP representation as shown in the next section.

SW HW Area (gates)

GxJGy 9.4s l.4s 1200
0.1

SqX/SqY 5.2s 0.9s 500

Add 3.88s 0.3s 100
0.1

0.1

Figure 5.24: Initial SOBEL solution with library info

5.7.3 Software simulation

The simulation results of SOBEL edge detection is drawn in Figure 5.25.

Each node in the graph represents an impr?vement in overall execution time by the

addition of one more hardware component. The simulated result shows that with the

current granularity level and hardware/software library, the system performance is

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

within range 33.8s -l- 2.8s. However, a different granularity level must be selected for

a faster system. One possible solution of improving the system is to combine two or

more functional units into one hardware unit to improve the execution time and to

reduce inter PE communication. The change in granularity level and hardware/software

library will allow DADGP-based partitioning to explore different local minimum

solution.

40

35

30

25
rJl

"0
c::
0 20 u
0

en

15

10

5

0

0 1200 2400 2900 3400 3500

HWarea

Figure 5.25: Simulated Performance Improvement Curve (SOBEL)

Figure 5.26 shows how the initial DADGP structure changes by the proposed

DADGP based partitioning. The dotted circle node represents a hardware mapped

modules, while dotted line enclosing several nodes represent an LD Path. This

simulation is executed by allowing the partitioning algorithm to explore the solution

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space based on a large hardware constraint. In this way, the partitioning algorithm

will make the best move according to the execution time. It is observed that the

Longest Delay path changes as DADGP changes and the improvement ratio of the

solution decreases. This shows that the DADGP partitioning algorithm always make

the best performance improvement moves. However, if the hardware area constraint

is considered such that the best performance improvement can not be chosen due to

hardware area violation, then the next best performance improving solution is chosen

without violating the hardware area constraint. For example, in Figure 5.26 (a), the

best performance improvement move is to choose Gx node as hardware, however if the

hardware constraints is less than 1200 gates, the partitioning algorithm chooses the next

best move by mapping SqX node to hardware. Therefore, depending on the hardware

area constraint, the partitioning algorithm suggests various .sub optimal solutions.

Similar to block matching, to verify the result of the simulation result as shown

in Figure 5.25, we have implemented the partitioned system using RPP and measured

the execution time of the system and compared it to the software simulated results.

The measurements of the two domains are very close to each other which prove the

accuracy and validity of simulated results. A more detailed comparison of this

experiment is presented in the next section.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.1

0.1

(b)

(d)

92

0.1

,--, , ,
I \ ,

Gx ,
I ,

.... _-,"

0.1

(c)

.-
,,.--, I""~,-",,,,, ~

, , I "
I \ U \ 0.1 '

Gx , \, Gy '\.

, " \',,' " _-,' \. -I" \
\.- _--... \ \

".... \ _... I
~' "\ 1,' ' i

I , \ I

SqX : = SqY !
" t, , / ,'.. i ' /
/ / .. - /

/
0.1./

//
...... ".

.. ,-.--.........

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.4 Simulation vs. Actual Implementation

All of the solution space explored by the software simulation and hardware

implementation are shown in Tables 5.4 and 5.5. The measured results of

implementation as well as the software simulation comparison are presented in Table

5.4. The results of simulated vs. actual measurements show small margin of errors,

indicating that the software simulation accurately models the hardware-software

interactions. The difference between the simulated hardware area and the actual

hardware area showed some margin of errors (Table 5.5). As mentioned previously,

the main source of error is due to area required for routing and interconnections between

hardware components that has not been taken into account by our algorithm .

.
Table 5.4: Execution time comparison result

Iteration Software simulation Actual measurements

1st run 33.08s 33.88s

2nd run 23.68s 24.05s

3rd run 15.88s 16.225

4th run 10.68s 1O.96s

5th run 6.385 6.82s

6th run 2.85 2.92s

Table 5.5: Hardware area comparison result

Iteration Software simulation area Actual area measurements
1 sl run 0 N/A

2nd run 1200 1215

3rd run 2400 2455
4th run 2900 2997

5th run 3400 3525

6th run 3500 3700

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

We have introduced the concept of hardware-software co-design methodology.

Various hardware software portioning methods are presented and compared to the

DADGP-based system partitioning algorithm. The thesis presents a full design flow

from specification to implementation; using C/C++ language as system specification,

DADGP based partitioning algorithm as design simulation tool, and partitioned system

implementation on a rapid prototyping platform consisting of ARM? CPU and Xilinx

FPGA.

Directed Acyclic data Dependence Graph with Precedence (DADGP) is an

extension of DAG. DADGP-based partitioning algorithm can also work with DAG by
•

converting DAG to DADGP. This characteristic has allowed us to compare the

performance of DADGP-based partitioning with other partitioning methods that use

DAG as an input graph. The results demonstrate superior performance of DADGP as

compared to GDL and Simulated Annealing methods in terms of simulation time and

quality of the partitioned solutions. The DADGP partitioning algorithm not only

produces an optimal partitioned solution for a given initial graph, but it also gives otlier
. ,

partitioned solution between initial and optimal solution. This characteristic is very

important because various sub optimal solutions give more choices to the designer in

terms of system cost and performance gain.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We demonstrated the verification of our DADGP partitioning technique. Two

computationally intensive algorithms namely Block Matching and SOBEL edge

detection have been designed and implemented using the DADGP design flow. The

results indicate that the performance gain for software simulated solution is very close

to the actual system performance measured for both applications. However, the

hardware area estimation measurement is not accurate as our partitioning method does

not consider the interconnection hardware area between multiple hardware units.

Overall, the DADGP partitioning algorithm showed promising results. The

incorporation of DADGP partitioning algorithm, etC++ profiling, and rapid prototyping

to the hardware-software co-design methodology has significantly reduced the design

complexity of embedded systems.

6.2 Future Work

Followings are some of the directions of future research on hardware software

partitionin~ using DADGP algorithm:

• More accurate measure of estimating hardware area and its interconnection

is required.

• A more diverse and dynamic sets of hardware and software library need to

be developed. This improvement will allow DADGP partitioning

algorithm to generate profound hardware software partitioning.

• An automated approach to granularity selection is necessary to explore

broader solution space. Currently, the granularity level of system is

selected manually by the designer from experience.

95
:it

f (

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• An automated hardware software synthesis system is required to fully

automate the design of hardware software systems. Currently, when the

partitions are decided, the system is manually integrated with the required

glue logic to connect hardware and software components. Similar gluing

systems are available from some FPGA vendors.

• Finally, a uniform design environment is necessary to simplify the use of

DADGP-based partitioning solution.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

1) Lee Garber and David Sims, "In pursuit of Hardware-Software Codesign", IEEE

Computer, Vo1.31, No.6, pp. 12-14, June 1998.

2) M. Eisenring, L. Thiele and E. Zitzler, "Conflicting Criteria in Embedded System

Design", IEEE Design & Test of Computers, Vol. 17, No.2, pp. 51-59, April-June,

2000.

3) Stan Y. Liao, "Towards a New Standard for System-level Design", in Proc. of the

~ighth Int. Workshop on Hardware/Software Codesign, pp.2-6, 2000.

4) W. Hardt, "An automated approach to HW/SW-codesign [Hardware/software

partitioning]", lEE Colloquium, on partitioning in Hru:dware Software Codesign

pp. 411-4111,Feb 1995.

5) M. D. Edwards and J. Forrest, "Hardware/software partitioning for performance

enhancement", in Proc. of lEE Colloquium on Partitioning in Hardware Software

Codesign, pp. 211-215, February 1995.

6) D.R. Sadler, D.W. Lloyd and I.E. Jelly, "Object-based Hardware-Software Co­

design", in Proc. of the IEEE 15 Annual Int. Compuie~s and Communications pp.

282-288, March, 1996.

7) SystemC Inc. http://www.systemc.com

8) R. B. Ramakrishna and M. S. Schlansker, "Embedded Computer Architecture and

Automation", IEEE Computer, Vo1.34, No.4, pp. 75-83, April 2001.

9) F. Slomka, M. Dorfel, R. Munzenberger and R. Hofmann, "Hardware/Software

Codesign and Rapid Prototyping of Embedded Systems", IEEE Design & Test of

Computers, Vol. 17, No.2, pp. 28-38, April-June 2000.

10) M. Jin and G.N. Khan, "Heterogeneous haradware-software system partitioning

using extended directed acyclic graph", Parallel and distributed computing

systems, in Proc. of the ISCA 16 Int. Conf. pp. 181-187, Reno Aug. 2003.

11) G.D. Micheli and R.K. Gupta, "Hardware/Software Co-design", in Proc. of the

IEEE, Vol. 85, No.3, pp. 349-365, March 1997.

12) P. Eles, Z. Peng, K. Kuchcinski and A. Doboli. "System Level Hardware/Software

Partitioning based on Simulated Annealing and Tabu Search.", Design Automation

for Embedded Systems, Vo1.2, No.1, pp. 5-32, January 1997.

13) Mentor Graphics Corp. Seamless Co-verification.

http://www.mentorgraphics.comlseamless

14) Synopsys Inc. Eaglei tools. http://www.synopsys.comleagle

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15) R.P. Kurshan, Automata-Theoretic Verification of Coordinating Processes.

Princeton, NJ, Princeton Univ. Press, 1994.

16) Rolf Ernst, "Codesign of Embedded Systems: Status and Trends", IEEE Design &

Test of Computers, Vol. 15, No.2, pp. 45-53, April-June.

17) K. Pramataris, G. Lykakis and G. Stassinopoulos, "Hardware/Software co­

simulation methodology based on two alternative approaches", in Proc. of the 6th

IEEE Int. Conf. on, Vol.1, pp. 63-66,1999.

18) G.C. Sih and E.A. Lee, "A compile-Time Scheduling Heuristic for

Interconnection-Constrained Heterogeneous Processor Architectures", IEEE Trans.

Parallel and Distributed Systems, Vol. 4, No.2, pp. 175-187, February 1993.

19) F. Schirrmeister and AS. Vincentelli, "VIrtual Component Co-design - Applying

function architecture co-design to automotive applications", Vehicle Electronics,

in Proc. of the IEEE Int, Conf., pp. 221-226, Sept. 2001.

20) M. Potkonjak and W. Wolf, "Cost optimization in ASIC implementation of

periodic hard-real time systems using behavioral synthesis techniques,"

Computer-Aided Design, in Proc. of the IEEE Int Conf. ICCAD, pp 446-451, Nov.

1995.

21) M.L. Lopez Vallejo, C.Caireras, J.C. Lopez, and L. Sanchez, "Coarse Grain

Partitioning for Hardware-Software Co-design". In Proc. of the 22nd Euromicro

Conf., pp 161-167, Sep 1996.

22) AN. Ngoc, M. Imai, A Shiomi, and N. Hikichi, "A hardware/software

partitioning algorithm for designing pipelined ASIP's with least gate counts," in

Proc. of the 33rd DAC, pp. 527-532, June 1996.

23) Saha, D. Mitra, and R.S. Basu, "Hardware software partitioning using genetic

algorithm" in Proc of the Tenth Int. Conf. VLSI Design, pp. 155-160, 1997.

24) E.A Lee and A. Kalavade "The extended partitioning problem: hardware/software

mapping and implementation-bin selection", in Proc. of the Sixth IEEE Int.

Workshop on Rapid System Prototyping, pp. 12-18, 1995.

25) H. Ondghiri, B. Kaminska and J. Rajski, "A hardware/software partitioning

technique with hierarchical design space exploration", in Proc. of the IEEE Conf.

on Custom Integrated Circuits, pp. 95-98, 1997.

26) N. Togawa, T. Sakurai, M. Yanagisawa and T. Ohtsuki, "A hardware/software

partitioning algorithm for processor cores of digital signal processing", in Proc. of

the Asia and South Pacific Design Automation Conf., the ASP-DAC '99, Vol. 1,

pp.335-338, 1999.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27) F. Vahid. "Modifying Min-Cut for Hardware and Software Functional

Partitioning". In Proc. of the Workshop on HW/SW Co-Design

CODES/CASHE'97, pp. 43, Mar 1997.

28) R. Ernst, J. Henkel, and T. Benner, "Hardware-Software Cosynthesis for

Microcontrollers". IEEE Design & Test of Computers, pp 64-75, Dec. 1993.

29) M.L. Lopez-Vallejo, J Grajal and J.C. Lopez, "Constraint-driven system

partitioning", in Proc. of the Design, Auto and Test in Europe Conf., pp. 411-416,

2000,

30) D.F. Wong, H.W. Leong and C.L. Lin, SimulatedAnnealingfor VLSI Design.

Norwell: Kluwer Academic Publishers, 1988.

31) T. Cormen, C. Leirserson and R. Rivest, Introduction to Algorithms. Cambridge:

MIT Press, 1990.

32) J.R. Jain and A.K.Jain, "Displacement measurement and its application in

interframe image coding", IEEE Trans. Commun., Vol. 29,No.12, pp.1799-1808,

Dec. 1981.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f

Appendix A: Block Matching
Implementation Code

Software Components
I·

• bmTools.h
• DEFINITION
* Definitions common to all of the block

matcher implementaitons

·1
#ifndef BM_TOOLS_H
#define BM_TOOLS_H
#include "dpramSemaphore.h"
#include "cveUtils.h"
1* Pointers to the different important

areas in memory *1
#define PATTERNl «unsigned
long*)Ox8000l000) 1* Pattern bank 1 *1
#define IMAGEl «unsigned
long*)Ox8000ll00)
#define RESULT
long*)Ox80003000)
#define PATTERN2
long*)Ox80002000)
#define IMAGE2
long·)Ox80002l00)
#define MBR
long*)OX80000004)

#define MBL
long*)OX80000000)

I·

1*

1*

1*

I·

1*

Image bank 1

((unsigned
Result area
((unsigned
Pattern bank
«unsigned '
Image bank 2
((unsigned
Right mailbox
((unsigned

Left mailbox

*1

*1

2 *1

*1

*1

·1
#define INTl (volatile unsigned

long*)Ox20000000 1* Interrupt Pin 1 *1
#define INT2
long*)Ox2000000l
#define INT3
long*)Ox20000002
#define INT4
long*)Ox20000003
#define INTMASKl

long*)Ox20000004
#define INTMASK2
long*)Ox20000004
#define INTMASK3
long·)Ox20000004
#define INTMASK4
long*)Ox20000004
#define SEM_BASE
long*)OxEOOOOOOO)

1*

I·
#define CVE_SCREEN

(volatile unsigned

(volatile unsigned

(volatile unsigned

(volatile unsigned

Interupt Mask *1
(volatile unsigned

(volatile unsigned

(volatile unsigned

«unsigned
Semaphore area ·1
((unsigned

char·)OxCOOOOOOO) 1* Seamless "Console" *1
#define EVENTl «unsigned
long*)Ox40000000) 1* Event generator *1
1* Pattern and image sizes ·1

#define BM_PATTERN_WIDTH 8
#define BM_lMAGE_WIDTH 16

1* Map the processor and coprocessor
mailboxes to left and right *1
1* respectively

*1
#define PROC_MB MBL
#define COPRO_MB MBR

1* Definition of the pattern structure *1
typedef struct pattern_type

{
unsigned long xPosition; 1* x Position

of pattern in image *1
unsigned long yPosition; 1* y Position

of pattern in image *1
unsigned long bitmap; /* bit map of

1 scan line of the pattern *1
} pattern;

1* Extern declarations for modules
including this file *1
extern pattern banklPattern[3);
extern pattern bank2Pattern[3);

1* Function prototypes *1
void init(void);
void write-9attern(pattern pat, unsigned
long* image, unsigned long* block);
int check_result (pattern pat);

#endif

1* bmTools.C
* BM TOOLS block matcher test functions

library
* DEFINITION :

* These functions are common to all of
the block matcher implementations.*1
#include "bmTools.h"
1* Test data receptacles *1
pattern banklPattern[3];
pattern bank2Pattern[3);
/**************************************-**

write-9attern ()
This function is a quick and easy way to

generate test data. It
copies a pattern into a memory bank and

the generates an image
with the given pattern at the coordinates

given by the pat parameter
INPUT:
pattern pat: A struct containing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coords and the bitmap of the pattern in

the image
unsigned long* image : Pointer to memory
for the image containing the pattern
unsigned long* block : Pointer to memory
that will contain the desired pattern

OUTPUT:

none
***/

void write-pattern(pattern pat, unsigned

long* image, unsigned long* block)

int x,y;

1* Ini~ialize the image *1
for '(y=0;y<16;y++)

for (x=0;x<16;x++)

image [16*y+x] =0;

1* Copy the pattern into BLOCK and at
the desired position in *1

1* the image

*1
for (y=0;y<8;y++)

for (x=0;x<8;x++)

block[8*y+x]=pat.bitmap;
image[16*(y + pat.yPosition) +

x+pat.xPosition] = pat.bitmap;

/***

check_result()

Verifies if the coprocaeesor found the

pattern at the right place.
INPUT:

pattern pat: stuct containing the
coordinates in the image that the pattern
was written to.

OUTPUT:
true (nonzero) if the coprocessor returned
the right coordinates. false otherwise
***/

int check_result(pattern pat)

int position;

position =
16*pat.yPosition+pat.xPosition;

return (RESULT [0] =- (unsigned
long)position);

/***

init ()
Generates a set of test data.

INPUT:
none

OUTPUT:
none

***/

void init(void)

bank1Pattern[0] .xposition • 8;
bank1Pattern[O] .yPosition • 8;
bank1Pattern[0] .bitmap = OxAAAAAAAA;

bank1Pattern[1] .xPosition - 2;
bank1Pattern[1] .yPosition - 1;
bank1Pattern[l] .bitmap - OxBBBBBBBB;

bank1Pattern[2] .xPosition - 8;
bank1Pattern[2] .yPosition - 9;

bank1Pattern[2] .bitmap - OxCCCCCCCC;

bank2Pattern[0] .xPosition - 0;
bank2Pattern[0] .yPosition - 0;

bank2Pattern[0] .bitmap - OxDDDDDDDD;

bank2Pattern[1] .xPosition - 8;

bank2Pattern[1] .yPosition - 9;

bank2Pattern[1] .bitmap - OxEEEEEEEE;

bank2Pattern[2] .xPosition • 2;
bank2Pattern[2] .yPosition - 2;
bank2Pattern[2] .bitmap - OxABCDABCD;

1* bm_int.C
* -- Block Matcher with Synchronization

Via Interrupts --
* DEFINITION :
* This program writes images in memory

and notifies the
* coprocessor by generating a direct into

to INTREG

*1

#include <stdio.h>
#include <stdlib.h>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#include "bmTools.h"

#define IMAGE1_DONE Ox01
#define IMAGE2_DONE Ox02

II Function prototypes
extern nc"{

void ir~handlerFunc(void);

int imagebank;

int image1loop;

int image2loop;

int ready1;
int ready2;

/********* ••• ****************************\

void maine)
Need we say more?
INPUT

none
OUTPUT

none
,************************************* •• */
int main(void)

,
1* Indicate that we can write to both

banks *1
ready1 = 1;
ready2 - 1;

1* some init *1
imagebank - 1; II we start in image bank

#1
image1loop = 0;
image2loop • 0;
init () ;

1* Welcome message -- The output window
sould pop to display this

message *1
out_string("INTERRUPTIONS - EPM CIRCUS

DEMO 2001\n\n") ;

1* setting interrupt #1 mask *1
*INTMASK1 • 1;

1/ embedded softwares have no limit!
that's infinite baby!

fore;;)

while(ready1 == 0); 1* wait until
memory bank 1 is free *1

1* Write the pattern, then send "mail"
to the coprocessor *1

write-pattern(bank1pattern[image1loopl,
IMAGE1, PATTERN1);

ready1 ,. 0;
*EVENT1 ,. 1;

while(ready2 == 0); 1* wait until
memory bank 2 is free *1

1* Write the pattern, then send "mail"
to the coprocessor *1

write-pattern(bank2Pattern[image2loop],
IMAGE2, PATTERN2);

ready2 ,. 0;
*EVENT1 ,. 2;

/ ••• *************************************/

void ir~handlerFunc()
Function called by the low-level

interrupt handler.
INPUT

none

OUTPUT
none

********************** •• **********.*****/

void ir~handlerFunc()
{

unsigned long reg;

if (reg= (*(INT1» -= 1) II look for
int #1

{
*(INT1) ,. reg; II clear int by

writing it back

switch (imagebank)

case IMAGE1_DONE:

if(check_result(bank1Pattern[image1loopl»
out_string ("1: Image

found\n");
else

out_string ("1: Image not,
found\n");

image1loop++;
if (image1loop >= J)

imagelloop ,. 0;

ready1 = 1;
imagebank++; II switch to next

image bank

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

break;

case IMAGE2_DONE:

if(check_result(bank2Pattern[image2loopl»
out_string ("2: Image

found\n");
else

out_string ("2: Image not

found\n");
image2loop++;
if (image2loop >= 3)

image2loop = 0;
ready2 = 1;
imagebank--; II switch to next

image ·bank
break;

default:
out_string ("Invalid

interruptionll\n");
break;

else

out_string("Invalid
interruption!l\n");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VHDL Components

--Add32
-- add32.vhdl entity add32 and
behavioral architecture

library IEEE;

use IEEE.std_Iogic_1164.all;
entity add32 is

port (a : in std_Iogic_vector(31
downto 0) ;

b in std_logic_vector(31
downto 0) ;

cin in std_Iogic;
sum out std_logic_vector(31

downto 0) ;
cout : out std_Iogic);

end entity add32;

library IEEE;
use IEEE.std_Iogic_arith.all; -- defines
"+" on unsigned
architecture behavior of add32 is

signal temp std_Iogic_vector(32 downto
0) ;

signal vcin : std_Iogic_vector'32 downto
0) :~ X"OOOOOOOO""'O';

signal va : std_Iogic_vector(32 down to
0) := X"OOOOOOOO""'O';

signal vb : std_Iogic_vector(32 downto

0) :- X"OOOOOOOO""'O',
-- 33 bits (32 downto 0) needed to

compute cout
begin -- circuits of add32

vcin(O) <= cin;
va(31 downto 0) <= a;
vb(31 downto 0) <= b;
temp <= unsigned(va) + unsigned(vb) +

unsigned (vcin) ;
cout <= temp(32) after 10
sum <= temp(31 downto 0)

end architecture behavior;

--Divider

PSI
after 10 PSI

-- of add32

-- div_ser.vhdl division implemented as
serial adds (one 32 bit adder)

needs component add32
non restoring division (remainder may

need correction - in this case
add divisor,

because remainder not same sign
as dividend.)

entity div_ser is -- test bench for

divide serial

library IEEE;
use IEEE.std_Iogic_1164.all;
use IEEE.std_Iogic_textio.all;
use IEEE.std_Iogic_arith.all;
use STD.textio.all;

architecture schematic of div_ser is
subtype word is std_Iogic_vector(31

downto 0),

85 / 7 = 12 with remainder 1
(FFFFFFFA + 00000007 = 00000001)

signal md : word := x"00000007",
- multiplier or divisor

signal hi word := X"OOOOOOOO";
- top of dividend (final remainder)

signal 10 word := x"OOOOOOss";
- bottom of dividend

signal cout

- adder carry out
signal divs

- adder sum
word := x"OOOOOOOO";

signal diva : word :- x"OOOOOOOO";
- shifted dividend

signal divb : word :- x"OOOOOOOO";
- multiplexor output

signal quo std_Iogic := '0',
- quotient bit

signal sub_add: std_Iogic := '1',
- subtract first (also cin)

signal clk

system clock
signal divenb

- divide enable
signal divclk

- run division
signal cntr : std_Iogic_vector(s

downto 0) :- "000000"; counter
begin .-- schematic

clk <= not clk after 5 ns; -- 10 ns
period

cntr <=
unsigned(cntr)+unsigned' ("000001") when
clk'event and clk.'l';

-- cntr statement is equivalent
to six bit adder and clocked register

divenb <= '0' when cntr="10000l";
stop divide

divclk <= clk and divenb after 50 pSI

-- divider structure, not a component!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diva <= hi(30 downto 0) & 10(31)

after 50 PSi -- shift
divb <= not md when sub_add='l' else

md after SO pSi -- subtract or add
adder:entity WORK.add32 port map (diva.

divb, sub_add. divs, cout);

quo <- not divs(31) after SO PSi --

quotient bit

hi <= divs when divclk'event and

divclk='l';
10 <= 10(30 downto 0) & quo when

divclk'event and divclk='l';

sub_ad~ <- quo
divclk'event and divclk='l';

printout: postponed process(clk)
just to see values

when

variable my_line LINE; -- not part of

entity add32csa is -- one stage of carry
save adder for multiplier

port (
b in std_logic;

-- a multiplier bit

a
downto 0); -- multiplicand

sum_in : in std_logic_vector(31
downto 0); -- sums from previous stage

cin : in std_logic_vector(31
downto 0); -- carrys from previous stage

sum_out : out std_logic_vector(31

downto 0); -- sums to next stage

cout
downto 0»;

: out std_logic_vector(31
carrys to next stage

end add32csa;

architecture circuits of add32csa is
signal zero : std_logic_vector(31 downto

working circuit 0) :z X"OOOOOOOO";
begin signal aa : std_logic_vector(31 downto

if clkz'O' then -- quiet time. falling
clock

if cntr."OOOOOO" then
write (my_line,

string' ("divisor-"»;
write (my_line. md);
writeline(output, my_line);

end if;
write (my_line. string' ("at count D»~;

write (my_line. cntr);
write (my_line. string' (" diva~"»;

hwrite(my_line. diva);
write (my_line. string' (" divb="»;
hwrite(my_line. divb);
write (my_line. string' (" hi="»;
hwrite(my_line, hi);
write (my_line. string' (" 10="»;
hwrite(my_line. 10);
write (my_line. string' (" quo="»;
write (my_line, quo);
writeline(output, my_line);
end if;

end process printout;
end schematic;

--Square function

mu132c.vhdl parallel multiply 32 bit x
32 bit to get 64 bit unsigned product

uses add32 component and fadd component,

library IEEE;
use IEEE.std_logic_1164.all;

0) :_ X"OOOOOOOO";

90mponent fadd -- duplicates entity

port
port (a in std_logic;

b . in std_logic;
cin in std_logic;

s out std_logic;

cout out std_logic);

end component fadd;
begin circuits of add32csa

aa <- a when b-'l' else zero after 1 ns;
stage: for I in 0 to 31 generate

sta: fadd port map(aa(I), sum_in (I) ,
cin(I) • sum_out(I), cout(I»;

end generate stage;
end architecture circuits; -- of add32csa

library IEEE;
use IEEE.std_logic_1164.all;

entity mu132c is -- 32 x 32 = 64 bit
unsigned product multiplier

port (a : in std_logic_vector(31

downto 0); -- multiplicand
b : in std_logic_vector(31

downto 0); -- multiplier
prod: out std_logic_vector(63

downto 0»; -- product
end mu132c;

architecture circuits of mu132c is
signal zero: std_logic_vector(31 downto

i •

J

1

I
I

I
I;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0) := X"OOOOOOOO";
signal nc1 : std_logic;
type arr32 is array(O to 31) of

std_logic_vector(31 downto 0);
signal s
signal c
signal ss

arr32;
arr32;
arr32;

partial sums
partial carries

shifted sums

componen~ add32csa is -- duplicate

entity port
port(b:in std_logic;

a:in std_logic_vector(31 downto

0); sum_in:in std_logic_vector(31 downto
0) ;

cin:in std_logic_vector(31 downto 0);
sum_out:out std_logic_vector(31 downto 0);

cout:out std_logic_vector(31 downto 0»;
end component add32csa;
component add32 -- duplicate entity port
port(a:in std_logic_vector(31 downto 0);

b:in std_logic_vector(31 downto
0) ;

cin in std_logic;
sum:out std_logic_vector(31 downto 0);
cout : out std_logic);

end component add32;

begin -- circuits of mu132c
stO: add32csa port map(b(O), a; zero,

zero, s(O), c(O»; CSA stage
ss(O) <~ 'O'&s(O) (31 downto 1) after 1

ns;
prod(O) <2 s(O) (0) after 1 ns;
stage: for I in 1 to 31 generate

st: add32csa port map(b(I), a, ss(I-
1) , c(I-1), s(I), c(I»; -- CSA stage

ss(I) <= 'O'&S(I) (31 downto 1) after 1

nSi

prod(I) <= sCI) (0) afte~ 1 ns;
end generate stage;
add: add32 port map (ss (31), c (31), '0' •

prod(63 downto 32), nc1); adder

end architecture circuits; -- of mu132c

--Memory FSM

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.a11;

ENTITY memory_signal_fsm IS
PORT (

a_unit
(31 DOWNTO 0)

clk

IN

IN

dout_unit IN std_logic_vector
(31 DOWNTO 0) ;

nrd_unit IN std_logic
nreset IN std_logic
nwe_unit IN std_logic
a_mem OUT std_logic_vector

(31 downto 0)
din_unit OUT std_logic_vector

(31 DOWNTO 0) ;

nack_mem OUT std_logic
ncs_mem OUT std_logic
nrd_mem OUT std_logic
nwe_mem OUT std_logic
d_mem INOUT std_logic_vector

(31 DOWNTO 0)
) ;

Declarations

LIBRARY ieee ;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ARCHITECTURE memory_signal_fsm OF
memory_signal_fsm IS

-- Architecture Declarations
TYPE STATE_TYPE IS (

) ;

idle.
wrJlropagate,
rdJlropagate,
rd_8ck,

wr_hold.
wr_ack

-- State vector declaration
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF

memory_signal_fsm : ARCHITECTURE IS
"current_state"

Declare current and next state
signals

SIGNAL current_state : STATE_TYPE
SIGNAL next_state STATE_TYPE

BEGIN

clocked: PROCESS (

clk.
nreset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN
IF (nreset = 'O') THEN

current_state <~ idle;
Reset Values

ELSIF (clk' EVENT AND clk = 'l') THEN

current_state <= next_state;
-- Default Assignment To

Internals
END IF;

END PROCESS clocked;
nextstate: PROCESS (
current_state. nrd_unit.nwe_unit)

BEGIN
CASE current_state IS
WHEN idle =>

IF (nwe_unit = 'O') THEN
next_state <= wr-propagate;

ELSIF (nrd_unit - 'O') THEN
next_state <= rd-propagate;

ELSE
next_state <- idle;

END IF;
WHEN wr-propagate =>

next -state <- wr_hold;
WHEN rd-propagate ->

next -state <- rd_ack;
WHEN rd_ack =>

next -state <= idle;
WHEN wr_hold ->

next -state <- wr_ack;
WHEN wr_ack =>

next -state <- idle;
WHEN OTHERS =>

next_state ~- idle;
END CASE;

END PROCESS nextstate;

output : PROCESS

a_unit.
current_state.
d_mem.
dout_unit

BEGIN
Default Assignment

a_mem <= (others => 'Z');
nack_mem <= '1';
ncs_mem <= 111;

nrd_mem <= '1';

nwe_mem <= '1';

-- Default Assignment To Internals

-- State Actions
CASE current_state IS

WHEN idle =>

d_mem <- (others => 'Z');

din_ unit <- (others => 'Z'};

nwe_mem <- 'l.' ;

nrd_mem <- '1' ;

ncs _mem <- '11 ;

a_mem <- (others => 'Z');

nack_mem <- '1';

WHEN wr-propagate ->

if (current_state'event) then
d_mem <- dout_unit;

end if;

din_unit <- (others -> 'Z');
nwe_mem <- '0';

nrd_mem <- '1';

ncs_mem <- • 0' ;

a_mem <- a_unit;
nack_mem <_ 11';

WHEN rd-propagate =>

d_mem <- (others => 'Z');

din_unit <- (others -> 'Z');
nwe_mem <- '1' ;

nrd_mem <- '0' ;

ncs _mem <- 10 1 ;

a_mem <- a_unit;
mem nack_ <- 10' ;

WHEN rd_ack ->

if (current_state 'event} then
din_unit <_ d_mem;

end if;

d_mem <- (others -> 'Z') ;

nwe_mem <- '11 ;

nrd_mem <- '1' ;

ncs _mem <- '1' ;

a_mem <- (others oo> 'Z') ;

nack_mem <- '1' ;

WHEN wr_hold ->

if (current_state 'event} then
d_mem <- dout_unit;

end if;

din_unit <- (others -> 'Z');

nwe_mem <- Ill;

mem nrd_ <- '1' ;

ncs _mem <- '0' ;
a_mem <- a_unit;
nack_mem <oo '0,' ;

'.' I,l.' i]'i-

n
)~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
!

1-

WHEN wr_ack ~>

d_mem <~ (others =>. 'Z');

din_unit <= (others ~> 'Z');

nwe_mem <= '1';
nrd_mem <= 11';

ncs_mem <= 11';

a_mem <= (others => 'Z');

nack_mem <= '1';

WHEN "'THERS =>

NULL;
END CASE;

END PROCESS output;

-- Concurrent Statements

--DataPath

library ieee;

USE ieee.numeric_std.all;

use ieee.std_logic_arith.a1l;

USE ieee.std_logic_1164.all;

ENTITY DataPath IS

PORT (

clk

std_logic

done

std_logic

nlocal_rst

std_logic

nstart

std_logic

address

IN

IN

IN

IN

: OUT

std_logic_vector (31 downto 0)

index OUT

ieee.numeric_std.unsigned (7 DOWNTO 0)

nread OUT

std_logic

nwrite OUT

std_1ogic

match OUT

std_1ogic

loadpix in

std_logic

get pix in

std_logic

data_out: OUT

(31 downto 0) ;

pattern loaded IN

std_1ogic

image_loaded

std_1ogic

data_in

IN

: IN

std_logic_vector (31 downto 0);

doneinit : out

std_1ogic

) ;

Declarations

END DataPath

architecture datapath of DataPath is

constant pattern_address

,integer : = 16#001000#;

constant image_address

integer := 16#001100#;

constant pattern_address2

integer := 16#002000#;

constant image_address2

:= 16#002100#;

constant result_address

integer := 16#003000#;

integer

signal pattern: std_logic_vector(O to

2047); -- pattern strip

signal image: std_logic_vector(O to

3839); image strip

BEGIN

datapath_mainJlr~cess:' process (c1k, nstart,

nloca1_rst, loadpix, getpix,

pattern_loaded, image_loaded, done)

variable internal_index :

ieee.numeric_std.unsigned (7 downto 0);

variable pattern_address_toconvert

integer := pattern_address;

variable image_address_toconvert

integer := image_address;

variable compare : boolean := true;

- true tells we may proceed compare

variable imageset : integer :- 1;

which set is currently used to compare •

image

begin

-- PROCESSING RESET or START

if (n1ocal_rst = '0') then

match <= '0';

nread <= '1';

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then

nwrite <= '1';

internal_index := "00000000";

index <= internal_index;
address <= (others => 'z');

data_out <= (others => 'Z');

doneinit <= '0';
compare :- true;

end if;

if (nstart'event and nstart '0 ')

reset common ports

internal_index := "00000000";

data_out <= (others => 'Z');

index <= internal_index;
match <= '0' ;
nread <- 11' ;

nwrite <= '1' ;

compare :- true;

-- set the memory image bank, we

start with 1st image. then 2nd, -

-and 1st .

if (imageset - 0) then
imageset := 1;

else
imageset :- 0;

end if;

if (imageset = 0) then
image_address_toconvert :=

image_address;
pattern_address_toconvert :=

pattern_address;

else

image_address_toconvert :­
image_address2;

pattern~address_toconvert :­
pattern_address2;

end if;
end if;

-- PROLOGUE WHEN RESETING index TO 0

------------------------------ if
«pattern_loaded'event and pattern_loaded

= '1') or (image_loaded'event and
image_loaded = '1'» then

internal_index := "00000000";
index<=internal_index;

end if;

-- COMPARING IMAGE TO PATTERN WHEN IN

COMPARE STATE

------------------------------ if

(image_loaded = '1') then

when image is found. terminate

if (compare = true and
(image(O to 255) & image(512

to 767) & image(1024 to 1279) &
image(1536 to 1791) &

image(2048 to 2303) & image(2560 to 2815)

&

image (3072 to 3327) &
image(3584 to 3839» - pattern) then

match <= '1';
pattern found in image!

nread < .. '1';

don't read anymore
compare :- false;

don't compare anymore

-- write position to memory

according to image set
-- function will extend the

sign to a negative value since

-- data_out is a logic vector.

We keep the 8 LSB.
if (imageset .. 0) then

data_out <­

"00000000000000000000000011111111- and

conv_atd_logic_vector«image_address_tocon

vert-image_address)/4-120.32);

else
data_out <­

"00000000000000000000000011111111" and
conv_std_logic_vector«image_address_tocon

vert-image_address2)/4-120,32);

end if;
no match, we load next pixel

and disable compare

else
if (internal_index <

"10000111") then

135) then

compare :- false;
compare on next pixel only

else --if (internal_index >=

compare :- true;
end if;

end if;
end if;

PROCESSING MAIN LOOP WHEN LOADING

PIXEL

I

!
I
!

I

I
I
j

I
j'l"-

:1', ! f

it
I

k

Ii
J'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if «loadpix = '1' and loadpix'event)
or (getpix='l' and getpix'event) or
(image_loaded = '1' and
image_loaded'event» then

-- PRELOADING PATTERN

if~(pattern_loaded = '0') then

generate next pixel and address to load
next pixel

if (loadpix ~ '1') then
-- ask interface to read pixel
address <=

conv_std_logic_vector(pattern_address_toco
nvert,32) ;

nread <= '0';

pattern_address_toconvert :=

pattern_address_toconvert + 4;
end if;

-- get pixel on the line

2015);

+ 1;

if (getpix = '1') then
nread <= '1';
-- shift image
pattern <= data_in & pattern(O to

index <= internal_index;
update index

end if;

-- PRELOADING IMAGE

elsif (image_loaded = '0" and
pattern loaded = '1') then

if (loadpix = '1') then
address <=

conv_std_logic_vector(image_address_toconv
ert,32);

nread <= '0';

image_address_toconvert :=

image_address_toconvert + 4;
end if;

if (getpix = '1') then
nread <= '1';

-- get information on the line
image <= data_in & image(O to

3807); -- shift image

internal_index := internal_index
+ 1;

index <= internal_index

end if;

-- LOADING PIXEL AND SHIFT

elsif (image_loaded = '1') then

if (loadpix = '1') then

-- load next pixel from image
address <=

conv_std_logic_vector(image_address_toconv
ert,32);

nread <= '0';

image_address_toconvert :=

image_address_toconvert + 4;
end if;
if (getpix = '1') then

nread <= • 11 ;

image <= data_in &
image(O to 3807); -- this shifts image

internal_index :~ internal_index
+ 1;

index <= internal_index;
update index
compare := true;

end if;

end if.;
• ------------------------------

-- DONE HAS BEEN DETECTED AND WE
TERMINATE

elsif (done = '1' and done'event) then
address <=

conv_std_logic_vector(result_address,32);
nwrite <= '0';

elsif (done = '0' and done'event) then

nwrite <= '1';

end if;
end process datapath_main-process;
end datapath;
--Controller

LIBRARY ieee
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY controller IS
PORT (

clk IN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

doneinit IN

index IN
DOWNTO 0) ;

match IN
nack_mem IN
nlocal rst IN -
nstart IN
done OUT
getpix OUT
image_loaded OUT
loadpix OUT
pattern loaded OUT

) ;

Decla:t:ations

END controller

LIBRARY ieee ;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

std_logic
unsigned

std_logic
std_logic
std_logic
std_logic
std_logic
std_logic
std_logic
std_logic
std_logic

ARCHITECTURE fsm OF controller IS

-- Architecture Declarations
TYPE STATE_TYPE IS (

) ;

pp2.
pi2.
pil.

PP1.
preload_image.
preload-pattern.

init.
idle.
compare.
save_result.

c1.
c2

-- State vector declaration
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF fsm :

ARCHITECTURE IS "current_state"

-- Declare current and next state
signals

SIGNAL
SIGNAL

BEGIN

(7

clocked: PROCESS (

clk.
nlocal_rst

BEGIN
IF (nlocal_rst = '0') THEN

current_state <- idle;
Reset Values

ELSIF (clk' EVENT AND clk ~ '1') THEN
current_state <- next_state;
-- Default Assignment To

Internals
END IF;

END PROCESS clocked;

next state : PROCESS
current_state.
index.
match,
nack_mem.
nstart

BEGIN
CASE current_state IS
WHEN pp2 =>

next_state <- preload-pattern;

WHEN pi2 ->

next_state <- preload_image;

WHEN pi1 ->

IF (nack_mem - '0') THEN
next_state <- pi2;

ELSE
next_state <- pi1;

END IF;
WHEN pp1 ->

IF (nack_mem - '0') THEN
next_state <- pp2;

ELSE
next_state <_ pp1;

END IF;
WHEN preload_image ->

IF (index >- 120) THEN
next_state <_ compare;

ELSIF (index < 120) THEN
next_state <- pili

ELSE
next_state <- preload_image;

END IF;
WHEN preload-pattern =>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
1
I

IF (index >= 64) THEN
next_state <= preload_image;

ELSIF (index < 64) THEN
next_state <= ppl;

END IF;
WHEN init ->

next_state <= preload-pattern;
WHEN idle =>

IIL (nstart =. '0') THEN
next_state <= init;

ELSE
next_state <= idle;

END IF;
WHEN compare ->

IF «index> 255-120) OR match -
'1') THEN

next_state <= save_result;
ELSIF (index < 256-120) THEN

next_state <= cl;
ELSE

next_state <= compare;
END IF;

WHEN save_result =>
IF (nack_mem = '0') THEN

next_state <= idle;
ELSE

next_state <= save_result;
END IF;

WHEN cl ->
IF (nack_mem = '0') THEN

next_state <= c2;
ELSE

next_state <= cl;
END IF;

WHEN c2 =>
next_state <= compare;

WHEN OTHERS =>
next_state <= idle;

END CASE;

END PROCESS nextstate;

output : PROCESS
current_state

BEGIN
Default Assignment

done <= '0';
getpix <= '0';
image_loaded <= '0';
loadpix <= '0';
pattern_loaded <= '0';

-- Default Assignment To Internals

-- State Actions
CASE current_state IS
WHEN pp2 =>

getpix <= '1';
loadpix <s '0';

WHEN pi2 =>
getpix <= '1';

loadpix <= '0';
pattern loaded <= '1';

WHEN pil =>
loadpix <= '1';

pattern_loaded <= '1';

WHEN ppl =>
loadpix <= '1';

WHEN preload_image =>
image_loaded <= '0';
pattern loaded <= '1';
loadpix <= '0';

getpix <= '0';
WHEN preload-pattern =>

getpix <= '0';

loadpix <= '0';
pattern loaded <= '0';

image_loaded <= '0';

WHEN idle =>
done <= 'Oli

image_loaded <= '0';
pattern loaded<= '0';

loadpix <= '0';

getpix <= '0';

WHEN compare ->
image_loaded <- '1';

pattern_loaded <= '1';

loadpix <= '0';
getpix <= '0';

WHEN save_result =>
done <= '1';
image_loaded <= '1';
pattern_loaded <= 'l~;

WHEN cl =>
loadpix <= '1';
image_loaded <- '1';
pattern loaded <= '1';

WHEN c2 =>
getpix <= '1';
loadpix <= '0';
image_loaded <= '1';
pattern_loaded <- '1';

WHEN OTHERS =>
NULL;

END CASE;
END PROCESS output;
-- Concurrent Statements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END fsm;

--Block matching coprocessor
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY co-processeur IS
PORT (

clk
data_in

IN
IN

std_logic
std_logic_vector

(31 DOWNTO 0)
nack_mem
nlocal_rst
nstart
·address

IN
IN
IN

OUT

std_logic
std_logic
std_logic

std_logic_vector

(31 DOWNTO 0)
data_out

(31 downto 0)
nread
nwrite

) ;

Declarations
END co-processeur

LIBRARY ieee ;

OUT

OUT
OUT

std_logic
std_logic

USE ieee.std_logic_1l64.ALL;
USE ieee.numeric_std.ALL;

LIBRARY copro;
ARCHITECTURE struct OF co-processeur IS

-- Architecture declarations
-- Internal signal
SIGNAL done
SIGNAL doneinit
SIGNAL getpix
SIGNAL image_loaded
SIGNAL index

DOWNTO 0);

SIGNAL loadpix
SIGNAL match

declarations
std_logic;
std_logic;
std_logic;
std_logic;
unsigned (7 ,

SIGNAL pattern loaded

std_logic;
std_logic;
std_logic;

-- Component Declarations
COMPONENT controller
PORT (

clk IN
doneinit IN
index IN

DOWNTO 0);
match IN
nack_mem IN
nlocal rst IN -

std_logic
std_logic
unsigned

std_logic
std_logic
std_logic

;

;

(7

) ;

nstart
done
getpix
image_loaded
loadpix
pattern_loaded

END COMPONENT;
COMPONENT datapath

PORT (
index

DOWNTO 0);
done
match
image_loaded
pattern_loaded
getpix
loadpix
clk
address

IN std_logic

OUT std_logic

OUT std_logic

OUT std_logic

OUT std_logic

OUT std_logic

OUT unsigned

IN std_logic

OUT std_logic
IN std_logic
IN std_logic

IN std_logic
IN std_logic

IN std_logic

OUT
std_logic_vector (31 DOWNTO 0) ;

nread : OUT st'd _logic

data_out : OUT
std_logic_vector (31 downto 0) ;

nwrite : OUT std_logic

data in : IN -
std_logic_vector (31 DOWNTO 0) ;

nstart ' . IN std_logic

'nlocal -rst IN std_logic

doneinit OUT ,std_logic
) ;

END COMPONENT;
-- Optional embedded configurations
-- pragma synthesis_off
FOR ALL : controller USE ENTITY

copro.controller;
FOR ALL : data path USE ENTITY

copro.datapath;
-- pragma synthesis_on

BEGIN
Instance port mappings.

12 : controller
PORT MAP (

clk => clk,

doneinit "',. doneinit,
index =,. index,

match "'> match,
nack_mem => nack_mem,
nlocal -rst => nlocal _rst,

nstart => nstart,

done ~> done,

getpix => getpix,

image_ loaded => image_ loaded,

(7

I
1
t
I
I
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loadpix
pattern_loaded

) ;

Il : datapath
PORT MAP (

index
done
match
illliige_loaded
pattern_loaded
getpix
loadpix
clk
address
nread
data _out
nwrite
data in -
nstart
nlocal rst -
doneinit

) ;

END struct;

--Memory interface
LIBRARY ieee ;

=> loadpix,
=> pattern loaded

=> index,
=> done,
=> match,
z> image_ loaded,

=> pattern_loaded,

=> getpix,
=> loadpix,
z> clk,

-> address,
-> nread,

-> data _out,

-> nwrite,
-> data _in,
-> nstart,

-> nlocal rst, -
-> doneinit

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY bm_mem_interface_int IS
PORT (

a_bm IN std_logic_vector
(31 DOWNTO 0)

clk IN std_logic
dout_bm IN std_logic_vector

(31 DOWNTO 0)
event_sig IN std_logic
nrd_bm IN std_logic
nreset IN std_logic
nwe_bm IN std_logic
a_dpram OUT std_logic_vector

(31 downto 0)
din_bm OUT std_logic_vector

(31 DOWNTO 0)
irq OUT std_logic
nack_mem OUT std_logic
ncs_dpram OUT std_logic
nrd_dpram OUT std_logic
nstart_bm OUT std_logic
nwe_dpram OUT std_logic
d_dpram INOUT std_logic_vector

(31 DOWNTO 0)
) ;

-- Declarations
END bm_mem_interface_int
LIBRARY ieee ;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

LIBRARY copro;
ARCHITECTURE struct OF
bm_mem_interface_int IS
-- Architecture declarations
-- Non hierarchical state machine
declarations
TYPE MACHINE3_STATE_TYPE IS (

idle,
go,
wait_done,
send_irq

) ;

-- Declare current and next state signals
SIGNAL machine3_current_state
MACHINE3_STATE_TYPE ;
SIGNAL machine3_next_state
MACHINE3_STATE_TYPE ;

(31

(31

(31

(31

(31

-- Internal signal declarations
SIGNAL count integer;
SIGNAL nack_mem_bm std_logic;
SIGNAL nrst_cnt

Component Declarations
COMPONENT memory_signal_fsm
PORT (

a_unit IN std_logic_vector
DOWNTO 0) ;

elk IN std_logic ;

dout_unit IN std_logic_vector
DOWNTO 0);

nrd_unit IN std_logic
nreset IN std_logic
nwe_unit IN std_logic
a_mem OUT std_logic_vector

downto 0);
din_unit OUT std_logic_vecDor

DOWNTO 0);
naek_mem OUT std_logic
ncs_mem OUT std_logic
nrd_mem OUT std_logic
nwe_mem OUT std_logic
d_mem INOUT std_logic_vector

DOWNTO 0)
) ;

END COMPONENT;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-- Optional embedded configurations
-- pragma synthesis_off
FOR ALL : memory_signal_fsm USE ENTITY

copro.memory_signal_fsm;

-- pragma synthesis_on

BEGIN
Architecture concurrent statements
HDL Embedded Block 3 comm_int

Non hierarchical state machine

machine3_clocked : PROCESS (

clk.

nr~set

BEGIN

IF (nreset - '0') THEN
machine3_current_state <= idle;
- - Reset Values

ELSIF (clk'EVENT AND clk c '1') THEN
machine3_current_state <c

machine3_next_state;
Default Assignment To

Internals

END IF;

END PROCESS machine3_clocked;

machine3_nextstate : PROCESS (
count.
event_sig.
machine3_current_state.
nack_mem_bm.
nwe_bm

BEGIN

CASE machine3_current_state IS
WHEN idle "'>

IF (event_sig = '1') THEN
machine3_next_state <= go;

ELSE
machine3_next_state <= idle;

END IF;
WHEN go =>

IF <nwe_bm .. '0') THEN
machine3_next_state <=

wait_done;
ELSE

machine3_next state <= go;

END IF;
WHEN wait_done =>

IF (nack_mem_bm .. '0') THEN
machine3_next_state <-

ELSE
machine3_next state <'"

wait_done;
END IF;

WHEN send_irq =>

IF (count .. 4) THEN
machine3_next_state <- idle;

ELSE
machine3_next_state <c

send_irq;
END IF;

WHEN OTHERS =>

machine3_next_state <- idle;

END CASE;

END PROCESS machine3_nextstate;

machine3_output : PROCESS
machine3_current_state

--------.--~-------------------
BEGIN

~- Default Assignment

irq <- '0';
nrst_cnt <- '0';
nstart_bm <- '1';

Default Assignment To Internals

-- State Actions
CASE machine3_current_state IS
WHEN idle ->

nstart_bm <- '1';
irq <- '0';
nrst_cnt <- '0';

WHEN go =>

nstart_bm <- '0';
irq <- '0';

nrst_cnt <- '0';
WHEN wait_done =>

nstart_bm <- '1';
irq <_ '0 1 ;

nrst_cnt <c '0';
WHEN send_irq =>

nstart_bm <- '1';
irq <- '1';
nrst_cnt <= '1';

WHEN OTHERS =>

NULL;

-_._-_. ~-----------------

,
t
i
I
,
1
;

I

t
(
·1.: ...•. , .

., . :~

)'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~,

1

I

J
i ~~

END CASE;

END PROCESS machine3_output;

Concurrent Statements
HDL Embedded Text Block 4 chgname
chgname 3

nack_mem <= nack_mem_bm;

HDL Embedded Text Block 5 counter
counter 3

process (nrst_cnt. clk)
begin

if (nreset = '0') then

count <= 0;
elsif(nrst_cnt - '0') then

count <= 0;
elsif (clk'event and clk = '1') then

if (count = 200) then
count <= 0;

else
count <= count + 1;

end if;
end if;

end process;

-- Instance port mappings.
bm_msfsm : memory_signal_fsm

PORT MAP (

) ;

a_unit -> a_bm.
elk _> clk.

dout_unit -> dout_bm.
nrd_unit -> nrd_bm.
nreset -> nreset.
nwe_unit => nwe_bm.
a_mem -> a_dpram.
din_unit => din_bm.
nack_mem => nack mem_bm.
ncs_mem => ncs_dpram.
nrd_mem -> nrd_dpram.
nwe_mem => nwe_dpram.

d_mem => d_dpram

END struct;

--Interrupt Main function
LIBRARY ieee ;
USE ieee.std_Iogic_1164.all;
USE ieee.numeric_std.all;

ENTITY main_int IS
-- Declarations

LIBRARY ieee
USE ieee.std_Iogic_1164.ALL;
USE ieee.numeric_std.ALL;

LIBRARY basicarm;
LIBRARY copro;

ARCHITECTURE struct OF main_int IS

Architecture declarations

-- Internal signal declarations
SIGNAL Intr_data_out :

std_Iogic_vector(31 DOWNTO 0);
SIGNAL a

std_Iogic_vector(31 DOWNTO 0) ;

SIGNAL a_dpram
std_Iogic_vector(31 downto 0) ;

SIGNAL address
std_Iogic_vector(31

SIGNAL be
std_Iogic_vector(3

SIGNAL busyl
SIGNAL busyr
SIGNAL clk

DOWNTO 0) ;

DOWNTO 0);
std_Iogic;
std_Iogic;
std_Iogic;

SIGNAL copro_O_add
std_Iogic_vector(17 DOWNTO 0);

SIGNAL copro_O_d
std_Iogic_vector(31 DOWNTO 0);

SIGNAL cs : std_Iogic;
SIGNAL data_out

std_Iogic_vector(31 DOWNTO 0);
SIGNAL din

std_Iogic_vector(31 DOWNTO 0);
SIGNAL din_bm

std_Iogic_vector(31 DOWNTO 0);
SIGNAL dout

std_Iogic_vector(31 downto 0);.
SIGNAL dout_bm

std_Iogic_vector(31 DOWNTO 0);

SIGNAL dpram_O_cs
SIGNAL dpram_O_d

std_Iogic_vector(31 DOWNTO 0);
SIGNAL eV_b std_Iogic;
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

ev_c
ev_d
event_cs
event_sig
irq
mas

std_Iogic;
std_Iogic;
std_Iogic;
std_Iogic;
std_Iogic;

std_Iogic_vector(l DOWNTO 0);
SIGNAL nWAIT std_Iogic;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SIGNAL nack_mem_bm
SIGNAL ncopro_O_be

std_logic_vector(3 DOWNTO
SIGNAL ncopro_O_cs
SIGNAL ncopro_O_oe
SIGNAL ncopro_O~we
SIGNAL nirq

0) ;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

SIGNAL nmreq
SIGNAL nread
SIGNAL nrst
SIGNAL nrw
SIGNAL nscreen_cs
SIGNAL nsram_cs
SIGNAL nstart_bm
SIGNAL nwe_bm
SIGNAL oe
SIGNAL screen_d

std_logic_vector(31 DOWNTO 0);
SIGNAL seml std_logic;
SIGNAL semr
SIGNAL sram_d

std_logic_vector(3l DOWNTO 0);
SIGNAL we

-- Component Declarations
COMPONENT ARM_CORE
PORT (

din IN std_logic_vector
downto 0);

mclk IN std_logic
nWAIT IN std_logic
nirq IN std_logic
nreset IN std_logic
a OUT std_logic_vector

downto 0);
dout OUT std_logic_vector

downto 0);
mas OUT std_logic_vector

downto 0);
nmreq OUT std_logic
nrw OUT std_logic

) ;

END COMPONENT;
COMPONENT CONTROLLER_MEM
PORT (

Intr_data - in IN
std_logic_vector (31 DOWNTO 0) ;

a : IN
std_logic_vector (31 DOWNTO 0) ;

clk : IN std~logic

dout : IN
std_logic_vector (31 DOWNTO 0) ;

mas : IN
std_logic_vector (1 downto 0) ;

(31

(31

(31

(1

nmreq IN std_logic

nrw IN std_logic
reset IN std_logic
Intr_data_out OUT

std_logic_vector (31 DOWNTO 0) ;

be : OUT
std_logic_vector (3 downto 0) ;

din : OUT
std_logic_vector (31 DOWNTO 0) ;

nWAIT OUT std_logic
ndpram_O_cs OUT std_logic
nevent_cs OUT std_logic

nintr_cs OUT std_logic
nscreen_cs OUT std_logic
nsem_cs OUT std_logic
nsram_cs OUT std_logic
oe OUT std_logic
screen_d OUT

std_logic_vector (31 DOWNTO 0) ;
we : OUT std_logic
dpram_O : INOUT

std_logic_vector (31 DOWNTO 0) ;
sram_d : INOUT

std_logic_vector (31 DOWNTO 0)
) ;

END COMPONENT;
COMPON~DPRAM_MEM

PORT (

copro_add IN std_logic_vector

t (17 DOWNTO 0);
dpram_add IN std_logic_vector

f (31 DOWNTO 0);
ncopro_be IN std_logic_vector

1 (3 DOWNTO 0);
ncopro_cs IN std_logic

I ncopro_oe IN std_logic
ncopro_we IN std_logic

I ndpram_be IN std_logic_vector
(3 DOWNTO 0); I ndpram_cs IN std_logic

ndpram_oe IN std_logic j

ndpram_we IN -std_logic I seml IN std_logic
l semr IN std_logic j

intl OUT std_logic

I intr OUT std_logic
busyl INOUT std_logic
busyr INOUT std_logic i copro_d INOUT std_logic_vector

(31 downto 0) ; I d INOUT std_logic_vector
(31 downto 0)

) ;

END COMPONENT;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\
COMPONENT EVENT_DEC
PORT (

event_add IN
(31 DOWNTO 0);

event_cs IN
event_we IN
event_a OUT
event_b OUT
evenG._c OUT
event_d OUT

) ;

END COMPONENT;

COMPONENT INTERRUPT
PORT (

a IN
(31 DOWNTO 0) ;

clk IN
cs IN
data in IN -

(31 DOWNTO 0) ;

(31

ev_a IN
ev_b IN
ev_c IN
ev_d IN
nrst IN
oe IN
we IN
data_out OUT

DOWNTO 0) ;
nirq : OUT

) ;

END COMPONENT;
COMPONENT SCREEN_MEM
PORT (

std_1ogic
std_logic
std_logic
std_logic
std_logic
std_logic

std_logic_vector

std_logic
std_logic
std_logic_vector

std_logic
std_logic
std_logic
std_logic
std_1ogic
std_logic .
std_logic
std_logic_vector

std_logic

data_screen : IN
std_logic_vector (31 DOWNTO 0);

) ;

nscreen_cs
nscreen_we

IN
IN

END COMPONENT;
COMPONENT SRAM_MEM

PORT (
nsram_be

(3 DOWNTO 0);

nsram_cs
nsram_oe
nsram_we
sram_add

(31 DOWNTO 0);

d

(31 downto 0)
) ;

END COMPONENT;

IN

IN
IN
IN

std_logic
std_logic

std_logic
std_logic
std_logic

COMPONENT bm mem_interface_int

PORT (

a_bm IN std_logic_vector
(31 DOWNTO 0) ;

clk IN std_logic ;

dout_bm IN std_logic_vector
(31 DOWNTO 0);

event_sig IN std_1ogic
nrd_bm IN std_logic
nreset IN std_logic
nwe_bm IN std_logic
a_dpram OUT std_logic_vector

(31 downto 0);

din_bm OUT std_logic_vector
(31 DOWNTO 0) ;

irq OUT std_logic
nack_mem OUT std_1ogic
ncs_dpram OUT std_logic
nrd_dpram OUT std_logic
nstart_bm OUT std_logic
nwe_dpram OUT std_logic
d_dpram INOUT std_logic_vector

(31 DOWNTO 0)
) :
END COMPONENT;
COMPONENT clock_generator
PORT (

clk
nrst

OUT
OUT

std_logic
std_logic

) :
END COMPONENT;
COMPONENT co-processeur
PORT (

clk IN std_logic ;

data_in IN std_logic_vector
(31 DOWNTO 0);

nack_mem IN std_logic
nlocal - rst IN std_logic
nstart IN std_logic
address OUT std_logic_vector

(31 DOWNTO 0);

data_out OUT std_logic_vector
(31 downto 0):

nread OUT std_logic
nwrite OUT std_logic

) :
END COMPONENT;

-- Optional embedded configurations
-- pragma synthesis_off
FOR ALL : ARM_CORE USE ENTITY

basicarm.ARM_CORE;

FOR ALL : CONTROLLER_MEM USE ENTITY
basicarm.CONTROLLER_MEM;

FOR ALL : DPRAM_MEM USE ENTITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

basicarm.DPRAM_MEM;
FOR ALL : EVENT_DEC USE ENTITY

basicarm.EVENT_DEC;
FOR ALL : INTERRUPT USE ENTITY

basicarm.INTERRUPT;
FOR ALL : SCREEN_MEM USE ENTITY

basicarm.SCREEN_MEM;
FOR ALL : SRAM_MEM USE ENTITY

basicarm.SRAM_MEM;
FOR ALL : bm mem_interface_int USE

ENTITY copro.bm_mem_interface_int;
FOR ALL : clock_generator USE ENTITY

basicarm.clock-generator;
FOR ALL : co-processeur USE ENTITY

copro.co-processeur;
-- pragma synthesis_on

BEGIN
Architecture concurrent statements
HDL Embedded Text Block 2 addrcnvl
ebl 1

copro_O_add <= a_dpram(17 downto 0);
ncopro_O_be <= "0000";

HDL Embedded Text Block 4 eb3
eb2 3

semr CIK '11;

seml <_ '11;

Instance port mappings.
12 : ARM_CORE

PORT MAP (

din &> din,
mclk -> clk,
nWAIT &> nWAIT,

nirq => nirq,
nreset => nrst,

a => a,
dout => dout,
mas z> mas,

nmreq => nmreq,
nrw => nrw

) ;.

IS : CONTROLLER_MEM
PORT MAP (

Intr_data - in => data_out,
a => a,
clk -> clk,
dout => dout,
mas => mas,

nmreq => nmreq,
nrw => nrw,
reset => nrst,
Intr_data -out => Intr_data_out,

) ;

be
din
nWAIT
ndpram_O_cs
nevent_cs
nintr_cs
nscreen_cs
nsem_cs
nsram_cs
oe
screen_d
we

=> be,

=> din,
=> nWAIT,
=> dpram_O_cs,
=> event_cs,
~> ca,

=> nscreen_cs,
=> OPEN,
-> nsram_cs,

-> oe ,

-> we,

-> dpram_O_d,
,,> sram_d

DPRAM_l DPRAM_MEM
PORT MAP (

copro_add -> copro_O_add,
dpram_add => a,
ncopro_be -> ncopro_O_be,
ncopro_cs -> ncopro_O_cs,
ncopro_oe => ncopro_O_oe,
ncopro_we => ncopro_O_we,
ndpram_be -> be,
ndpram_cs -> dpram_O_cs,
ndpram_oe -> oe,
ndpram_we -> we,
semI -> semI, . semr -> semr,
intI -> OPEN,
intr -> OPEN,
busyl -> busyl,
busyr -> busyr,
copro_d -> copro_O_d,
d -> dpram_O_d

) ;

17 : EVENT_DEC
PORT MAP (

event _add => a,
event _cs -> event -cs,
event_we -> we,
event_a z> event_sig,
event b => OPEN,
event c => OPEN, -
event _d -> OPEN

) ;

16 : INTERRUPT
PORT MAP

a => a,
clk => clk,
cs => cs,
data - in -> Intr_data_out,
ev_a => irq,
ev_b a> ev_b,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
1

) ;

=:> ev_c,
=> ev_d,

=> nrst,
=> oe,

we => we,

nirq => nirq

I4 : SCaEEN_MEM
PORT MAP (

) ;

data_screen => screen_d.
nscreen_cs -> nscreen_cs.
nscreen_we => we

I3 : SRAM_MEM
PORT MAP (

) ;

nsram_be => be.
nsram_cs => nsram_cs.
nsram_oe -> oe.
nsram_we -> we,

sram_add .. > a.
d

10 : bm_mem interface_int
PORT MAP

) ;

a_bm -> address.
elk => clk.
dout_bm ._> dout_bm.
event_sig => event_sig.
nrd_bm c> nread.
nreset => nrst.
nwe_bm _> nwe_bm.
a_dpram -> a_dpram.
din_bm -> din_bm.
irq -> irq.
nack_mem -> nack_mem_bm.
ncs_dpram => ncopro_O_cs.
nrd_dpram => neopro_O_oe.
nstart_bm => nstart_bm.
nwe_dpram => ncopro_O_we.
d_dpram -> eopro_O_d

11 : clock_generator
PORT MAP (

) ;

clk => elk.
nrst => nrst

I9 : co_processeur
PORT MAP

elk =>

data in -> -
nack_mem ->

nlocal rst => -
nstart =>

clk.
din_bm.
nack_mem_bm.
nrst.
nstart _bm.

address => address.
data _out => dout_bm.
riread .. > nread.
nwrite => nwe bm

) ;

END struct;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: SOBEL Edge
Defection Implementation Code

Software Components

#ifndef INCLUDE_IMAGE_H

#define INCLUDE_IMAGE_H

#inc1ude <stdio.h>

#define max (a, b) « (a) > (b))? (a) : (b»
#define min (a, b) « (a) < (b»? (a) : (b»

const double PI = 3.1415926535;

typedef int ImageDatum;
#define dataToDoub1e(a) (double (a) 1255.0)

#define doub1eToData(b)
(ImageDatum(b*255.0»

union Pixel {

struct RGB_Pixe1 {
ImageDatum
ImageDatum
ImageDatum

} rgb;

struct HSI _Pixel {
ImageDatum
ImageDatum
ImageDatum

} hsi;
} ;
enum ImageMode

Mode_RGB,
Mode_HSI

} ;

enum ImageChanne1
ch_Red,
ch_B1ue,
ch_Green,
ch_Hue,
ch_Saturation,
ch_Intensity

} ;

class ImageDisp1ayer;

class Image {
public:

Image (int, int);
Image(char*);

r;
g;
b;

h;
S;

i;

Image (Image&) ;

-Image ();
boo110ad(char*);
boo1 save(char*);
void disp1ay(char*);
void annotate(char*, char*);
ImageDatum getVa1ue(ImageChanne1,

int, intI;
void setValue(ImageChanne1, int,

int, ImageDatum);
boo1 isB1ack(int, intI;
boo1 isWhite(int, intI;
ImageDatum getGrey(int, intI;
void settoB1ack(int, intI;
void settoWhite(int, intI;
void setGrey(int, int,

ImageDatum) ;
int height();

int width();
void RGBtoHSI();
void swap(Image* that);

II for internal use - not for the
faint of heart

void write_to_fp(FILE*);
void read_from_fp(FILE*);

static boo1 showGUI;
• static long memReq;

protected:

} ;

#endif

void init(int, intI;
int h, w;
ImageMode mode;

Pixe1* p;
Pixe1* get Pixel (int, intI;

void openGUI();
void 10adRGB(char*,int,int);
void saveRGB(char*);
static FILE* guiRead;
static FILE* guiwrite;

/********************************

*** image.cpp

*** simple image manipulation
functions:
*** loading, saving, reading and
chaging intensity values

*******************************/

I·'
1 ,.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#include "image.h"

#include <assert.h>
#include <iostream.h>
#include <fstream.h>
include <unistd.h> II fork()

#include <math.h> II atan() sqrt()
include <stdio.h> II sscanf ()

#include <stdlib.h> II system()
include <sys/types.h> II socketpair ()
#include <sys/socket.h> II socketpair ()

#include <unistd.h> II fcntl ()

#include <fcnt1.h> II fcntl ()

II QT Stuff
#include <qapp.h>
#include <qwidget.h>
#include <qpainter.h>
#include <qsocketnotifier.h>
#include <qmessagebox.h>

#include <qlistbox.h>
#include <qpixmap.h>
#include <qlabel.h>

const int IbWidth=200;
const int pad=S;
const int maxPanes=lOO;

static long Image::memReq = 0;
II ImageDisplayer and ImageGallery should

only be used from within the Image
II class. Client coders should probably
just call Image::display.
class ImageDisplayer : public QFrame {

Q_OBJECT;

public:
ImageDisplayer(QWidget* parent,

Image *image) : QFrame(parent)

{ construct_ImageDisplayer(image)
} ;

-ImageDisplayer();

protected:
void

construct_ImageDisplayer(Image *image);

virtual void
resizeEvent(QResizeEvent*);

QPixmap* pm;
QLabel* Ibl;

} ;

class ImageGallery
Q_OBJECT;

public QWidget {

public:

ImageGallery(int);
void addPane(QFrame*. char*);

protected:
int fd;
QListBox* Ib;

int maxHeight;
int maxWidth;

QWidget* panes[maxPanes];
virtual void

resizeEvent(QResizeEvent*);

protected slots:

} ;

void dataReceived(int);
void choo~elmage(int);

//************************** •• **/

Image::lmage(int h_in. int w_in)
init(h_in. w_in);

Image::Image(char*fileName)
II constructs an image and loads

the specified file
load (fileName) ;

Image::lmage(Image& i) {
init(i.width(). i.height());
mode = i.mode;
memcpy(p. i.p.

width()*height()*sizeof(Pixel)) ;
}

void Image::init(int w_in. int h_in)
h h in· - .
w w_ini
p = new Pixel[h*w];
mode s MOde_RGB;

memReq += h*w;

bool Image::showGUI = true;
Image::-Image() {

if(p) delete[] p;
p = 0;

mode = Mode_RGB;
memReq += h*w;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bool Image::load(char* fileName)
int x, y;
int w_in, h_in;
unsigned char c;
Pixel *cp;

if(lstrstr(fileName, ".rgb n »

II not an rgb file --

convert it
char *p;
FILE* fp;
char cmd[l2B] i

II get the dimensions
p = tmpnam(O);
sprintf(cmd, "imdim ts

> ts n , fileName, pI;
if(system(cmd» {

II a non-zero
return value from imdim

with this.

II bad news.
II TODO: deal

fp • fopen(p, "r");
if (fscanf (fp, "'d 'd",

&w_in, &h_in) 1= 2) {
II couldn't scan

two numbers from the file

news.

with this

II this is bad

II TODO: deal

fclose(fp);
unlink(p) ;

II convert the file

p - tmpnam(O);
sprintf(cmd, "convert ts

rgb:ts", fileName, pI;

with error

if(system(cmd»

II TODO: Deal

II load the file
init(w_in, h_in);
loadRGB(p, w, h)i
unlink(p) ;

} else {
II already rgb -- no

conversion needed.
char *p;

p - fileName;

II extract the image's

dimensions from the filename
while(*p && *p I- '-')

p++; p++;

loadRGB(fileName, w_in,

return true;

bool Image::save(char *fileName) {

char* Pi

if(lstrstr(fileName, ".rgb"»
II not an rgb file

in rgb format:
II create temporary file

p - tmpnam(O);
saveRGB(p);

char cmd[lOO]i
sprintf(cmd, "convert -

size tdxtd rgb:ts ts", w, h, p, fileName);
if(system(cmd» {

with error

} else {

Ii TODO: Deal

unlink (pI ;

I I rgb file
saveRGB(fileName);

return true;

void Image::loadRGB(char* fileName, int
w_in, int h_in) {

init(w_in, h_in);
ifstream in(fileName)i

int x, y;
Pixel *CPi
unsigned char c;

t

Ii
I

j

f

i
I

~

if

~

I
I
/
'

; t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
I

~

for(y=Oiy<hiY++) {
for(x=O;x<w;x++)

if (I in) return;
cp ,. getPixel(x,

y) ;

in.get(c); cp->rgb.r
in.get(c); cp->rgb.g
in.get(c);-cp->rgb.b

min(255, C)i

min(255, C)i

min(255, c);

void Image::saveRGB(char* fileName) {
int x, y;
Pixel *cp;
of stream out(fileName);

for(y=O;y<h;y++) (
for (x=O;X<WiX++)

cp - getPixel(x,
y);

out « (unsigned
char) cp->rgb.r;

out « (unsigned
char) cp->rgb.g;

out « (unsigned .
char) cp->rgb.b;

Pixel* Image::getPixel(int x, int y)
if«x<w)&&(y<h» IISorry J, I just

couldn't let this go. -A. :)
return(p + x + y*w);

else
return(NULL);

lmageDatum Image::getValue(ImageChannel ch,
int x, int y)

Pixel *cp - getPixel(x, y);

switch(ch) (
case ch_Red return cp-

>rgb.r;
case ch_Green: return cp-

>rgb.g;
case ch_Blue return cp-

>rgb.b;

case ch_Hue
return cp->hsi.h;

case ch_Saturation
return cp->hsi.s;

case ch_Intensity
return cp->hsi.i;

Ilshould never get here
return 0;

void Image::setValue(ImageChannel ch, int
x, int y, ImageDatum i) (

Pixel *cp • getP1xel(x, y);

switch (ch) (
case ch_Red cp->rgb.r

,. i; break;
case ch_Green: cp->rgb.g . i; break;
case ch_Blue cp->rgb.b

,. i; break;

case ch_Hue
>hsLh ,. i; break;

case ch_Saturation
>hsi.s ,. i; break;

case ch_Intensity
>hsLi ,. i; break;

bool Image::isBlack(int x, int y) (
Pixel *cp ,. getPixel(x,y);
return«cp->rgb.r=.O)

&&(cp->rg~.g.-O)

&&(cp->rgb.b.-O»; III I (cp­
>hsi.lntensity==O»;

bool Image::isWhite(int x, int y) (
Pixel *cp ,. getPixel(x,y);
return«cp->rgb.r •• 255)

&&(cp->rgb.g==255)
&&(cp->rgb.b=-255»;

cp-

cp-

cp-

lmageDatum Image::getGrey(int x, int y~
int sum,. 0;
sum += getValue(ch_Red,x,y);
sum += getValue(ch_Blue,x,y);
sum += getValue(ch_Green,x,y);
return(sum /= 3);

void Image::settoBlack(int x, int y) (
Pixel *cp ,. get Pixel (x,y) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cp->rgb.r=O;
cp->rgb.g=O;
cp->rgb.b=O;

void Image::settoWhite(int x. int y) (
Pixel *cp .. getPixel(x.y);

cp->rgb.r=255;
cp->rgb.g=255;
cp->rgb.b=255;

void Image::setGrey(int x. int y.

ImageDatum grey) {
Pixel ~cp - getPixel(x.y);
cp->rgb.r .. grey;
cp->rgb.g • grey;

cp->rgb.b - grey;

int Image::height()
return h;

int Image::width()
return w;

void Image::swap(Image* that)
assert (this->height ()

>height(»;

that-

assert (this->width() -- that­

>width(» ;

Pixel *t;
t • this->p;
this->p .. that->p;
that->p .. t;

void Image::RGBtoHSI() (
Pixel *cp;
mode - Mode_HSI;

double rt3 • sqrt(3);

int x. y;
for(x=O;x<w;x++)

for(y=O;y<h;y++)

cp - getPixel(x. y);
double r

dataToDouble(cp->rgb.r);
double 9

dataToDouble(cp->rgb.g);
double b

dataToDouble(cp->rgb.b);
double e .. max(g. b);
double f .. max(g. b);

cp->hsLh -
doubleToData(PI/2 - atan«2*r-e-f)/rt3*(e­

f» I (2*PI»;
cp->hsLs -

doubleToData(l - min(r. min(g. b»);
cp->hsLi •

doubleToData«r+g+b)/3.0);
Ilcout « cp->hsi.h « "

" « cp->hsi.s « • " « cp->hsi.i «

endl;
Ilcout « "(" « w «

« h « "). « endl;

void
lmageDisplayer::construct_ImageDisplayer(I

mage *i) {
II start with the right size
setGeometry(x(). y(). i->width().

i->height () ;
II draw the image on and internal

canvas
pm ~ new QPixmap(i->width(). i­

>height(»;
• QPainter* p • new QPainter;

p->begin(pm);

int x. y;

for(y.O;y<i->height();y++)
for(x-O;x<i->width();x++)

p->setPen(QColor(

max(O. min(255. i­
>getValue(ch_Red. x. y»).

max(O. min(255. i­
>getValue(ch_Green. x. y»).

max(O. min(255, i­
>getValue(ch_Blue. x. y»)

»;
p->drawPoint(x. y);

p->end() ;
II create a label to show the pixmap

Ibl - new QLabel(this •••);

lbl->setPixmap(*pm);

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-ic

ImageDisplayer::-ImageDisplayer()
if(pm) delete[] pm;

void
lmageDisplayer::resizeEvent(QResizeEvent*
) {

lbl->setGeometry(O,O,width(),
height ()); _

}

FILE* Image::guiWrite • 0;
FILE* Image::guiRead .. 0;

void Image::openGUI() {

needed.
II Create child process, if

if (lguiWrite) {
int fd[2];

socketpair(AF_UNIX,
SOCK_STREAM, 0, fd);

if (fork () {
II in parent process
II open a file stream for writing to the
gui window.

guiWrite - fdopen(fd[O]', ·w");
guiRead. fdopen(fd[O], Or");

} else {
II in child process
II create and display the lmageGallery
window.

int n - 0; char **c • 0;

QApplication* app • new
QApplication(n, c);

ImageGallery *ig • new
lmageGallery(fd[l]);

ig->show() ;

II when the window is closed, end this
process

app->setMainWidget(ig);
exit(app->exec(»;

void Image::display(char* caption) {
if(lshowGUI) return;
II make sure a window is opened
openGUI();

II send the image
fprintf(guiWrite, "itd td tsl", w,

h, caption);
write_to_fp(guiWrite);
fflush(guiWrite);

II wait for a confirmation
char dev_null;
fscanf(guiRead, "tc", &dev_null);

void Image::annotate(char* caption, char*
rtf) {

if(lshowGUI) return;

II make sure a window is opened
openGUI();

II send t'he text
fprintf(guiWrite, ·t td td\n",

strlen(caption), strlen(rtf»;
fwrite(caption, sizeof(char),

strlen(caption) +1, guiWrite);
fwrite(rtf, sizeof(char),

strlen(rtf) +1, guiWrite);
fflush(guiWrite);

II wait for a confirmation
char dev_null;
fscanf(guiRead, ·tc·, &dev_null);

void Image::write_to_fp(FILE* fp) {
fwrite(p, sizeof(Pixel), h*w,

fp);

void Image::read_from_fp(FILE* fp) {
fread(p, sizeof(Pixel), h*w, fp);

ImageGallery::lmageGallery(int fd_in)
II remember the handle to the

socket to from which to read
fd .. fd_in;

IIThis was in the example code.
I'm not quite sure what it's for. -O'K

II fcntl(fd, O_NONBLOCK);

II Arrange to be notified when
new data arrives.

QSocketNotifier *sn .. new
QSocketNotifier(fd, QSocketNotifier::Read,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this);
OObject::connect(sn,

SIGNAL(activated(int», this,
SLOT(dataReceived(int»);

II Create a list box show the
available images.

Ib • new OListBox(this);
lb- >show () ;
connect (lb,

SIGNAL(highlighted(int», this,
SLOT(chooselmage(int»);

II Start with no images
maxHeight .. 0;
maxWidth • 0;

void ImageGallery::addPane(OFrame* w,
char* caption)

II add it the internal and
visible lists

Ib->insertltem(caption);
panes[lb->count()-ll • w;

II place and stylize the new
widget

w->move(lbWidth+pad, pad);
Ilw->setFrameStyle(OFrame::Box

OFrame::Sunken);

II manage the size of our window
maxHeight • max(maxHeight, w­

>height(»;
setMinimumHeight(maxHeight+pad+pa

d);

maxWidth - max(maxWidth, w­
>width(»;

setMinimumWidth(maxWidth+lbWidth+
pad+pad) ;

II TOOO: Look inot why this
doesn't work.

II
1*

special case: initial size

if(lb->count() •• 1)
set Geometry (x(), y(),

maxWidth+lbWidth+pad+pad.
maxHeight+pad+pad);

*1

void ImageGallery::dataReceived(int

socket)

"rn) ;

awol ;

char caption[80l;
int h, w;
Image* img;
OFrame* id;
setCUrsor(waitCUrsor);
FILE* fpRead • fdopen(socket,

FILE* fpwrite - fdopen(socket,

II determine what kind of pane this is
char t • fgetc(fpRead);

if(t •• 'i') {
II get the image'S name, height and width
fscanf(fpRead, ·td td t[Allsl", &w, &h,
caption) ;
fgetc(fpRead); 'II not sure why we need to
do this - O'X

img • new Image(w, h);

II read the image data directly into
memory
img->read_from_fp(fpRead);

I I creil,te it widget to display the image
id • new

ImageDisplayer(this, img);
} else if (t •• 't')

char rtf[4096l;
int ~apLen, rtf Len;

fscanf(fpRead, ·td td·,

&capLen, &rtfLen);
fgetc(fpRead);

fread(caption,
sizeof(char) , capLen+1, fpRead);

fread(rtf, sizeof(char) ,

rtfLen+1, fpRead);

OLabel* 1 • new

OLabel(rtf, this);
1-

>setAlignment(AlignTop);
1-

>setMinimumWidth(lbWidth+200);
1->setMinimumHeight(300);
id • 1;

} else

•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return/
II add it to the list of images
addPane(id, caption)/

fprintf(fpWrite, "'c", t)/
fflush(fpWrite)/
setCUrsor(arrowCUrsor)/

void

ImageGallery::resizeEvent(QResizeEvent*)

lb->setFixedWidth(lbWidth);
Ib->move(O, 0);
Ib->setGeometry(O, pad, lbWidth,

height()-2*pad);
}
void ImageGallery::chooseImage(int index)

unsigned i;
unsigned dex '" unsigned(index);
for(i-O;i<lb->count();i++)

(i==dex) ?

(panes[i]->show(»
: (panes[i]->hide(»;

#include "image.h"
#include <iostream.h>

const int Joe[) [3] -
{ { -1, -2, -1}.

{ 0, 0, O}.
{ 1, 2, 1}};

const int ky[] [3] -
{ { -1, 0, 1}.

{ -2, 0, 2} ,
{ -1, 0, 1}} ;

int convolve(Image *img, int x, int y, int
k [] [3])

int xx, yy, r-O;
for (xx=-l;xx<-l;xx++)

for (yY=-l;yy<=l;yy++)
r+= img­

>getGrey (x+xx, y+yy) * k[xx+1] [yy+l];

return r;

int main(int argc, char** argyl {
int thresh;

if(argc 1= 3)
cerr « "performs Sobel

edge detection" « endl;

cerr «" usage:"«

argv[O] « " <threshold> <filename>" «
endl;

exit(l);

thresh'" atoi(argv[l]);
Image* src '" new Image(argv[2]);
Image* dest '" new Image(src-

>width(), src->height(»;

src->display("original")/
int x, y, sx, sy/

for(x-O/x<src->width()/x++)
for(y=O/y<src->height();y++)
src->setGrey(x, y,

(src->getValue(ch_Red, x, y)

y» 13) /

+ src->getValue(ch_Green, x, y)
+ src->getValue(ch_Blue, x,

for(x-l/x<src->width()-l;x++)
for (y=l;y<src->height ()-l;y++)

sx'" convolve(src, x, y, Joe);

sy'" convo1ve(src, x, y, ky);

if(sqrt(sx*sx+sy*sy»thresh)
dest->settoBlack(x, y);

else
dest->settoWhite(x, y);

dest->display("after Sobel edge
detection");

dest->save("done.rgb");

#include "image.cpp.moc"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VHDL Components

--Gx, Gy calculater (matrix multiplier)

**** ••• **********************************/

3x3matrix.v - 3X3 Matrix Multiply
Implementation using basic equations

Author: Matthew
Date: Aug 2, 2003

Other modules instanced in this design:

MULT18X18

--BRIEF DESCRIPTION
--This code describes using a technique
called time multiplexing to
--leverage a fast hardware multiply in a
relatively slow operation,
--thereby increasing the efficiency of the
implementation.
--The operation being shown is a 3X3
matrix of constants times a 3
--component vector. The equations look
like:
--KA1 * A + KA2 * A + KA3 * A .. X
--KB1 * A + KB2 * A + KB3 * A • X
--KC1 * A + KC2 * A + KC3 * A • X

--The hardware to accomplish this task
consists of a multiplier fed by 3
--input registers and an accumulator to
compute the three terms in each
--line above.
--DETAILED DESCRIPTION: .
--The multiplier output is fed into the
adder A input. It takes 3 clk
--cycles for the first valid mutiplier'
output reach the adder input A. The
--B input of the adder can be a zero or
the adder's accumulating register.
--By selecting a zero on the B input the
adder just passes the input A
--through to the accumulating register. By
selecting the accumulating
--register, the contents of the previous
add can be added to the output of
--the multiplier.
--The repeating flow for the accumlating
register will be for the 1st clk,
--the mux output is '0', so we always pass
the first argument through to
--the accumulator register. For the 2nd

and 3rd elks, the accumulator
--register is fed back and added to the
output of the multiply. This is
--made possible by using the cntr3 outputs

as the select lines.
--The following text describes the
condition of the internal nodes after
--consecutive clocks. The state of the
nodes assumes the clock has
--occured and data is stable.
--clock multiplier adder
adder
--number
output

output output

register
register

--rst X

0

--1 X
0
--2 X

0
--3 KA1*A
0
--4 1tB1*B
KA1*A
--5 KC1*C
KA1*A+KB1*B+KC1*C
--6 KA2*A
KA1*A+KB1*B+KC1
--7

KA2*A
--.8

KB2*B

KC2*C
KA2*A+KB2*B+KC2*C
--9 KA3*A
KA2*A+KB2*B+KC2*C
--10
KA3*A
--11

KB3*B

KC3*C

X

x

X

KA1*A

KA1*A+KB1*B

KAl*A+KB1*B
KA2*A

answer 1
KA2*A+KB2*B

KA2*A+KB2*B
KA3*A

answer 2
KA3*A+KB3*B

KA3*A+KB3*B+KC3*C KA3*A+KB3*B
--12 next KA1*A next KA1*A
KA3*A+KB3*B+KC3*C answer 3

--*/

/***

-******************************/

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_Iogic_arith.all;
use IEEE.std_logic_unsigned.all;

--library virtex;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

--use virtex.components.all;
--library synplify;
--use synplify.attributes.all;
library unisims_ver; -- include this for
modelsim simulation
-- when using multl9xl9
entity matrix3x3 is

port (A, B, C: in
std_logic_vector(ll downto 0);

eLK, RST: in std_logic;
CWEL: in std_logic_vector(l downto 0);
KA, KB, KC: in std_logic_vector(9

downto 0);
x, Y, Z: out std_logic_vector(11

downto 0»;
end matrix3x3 ;
architecture model of matrix3x3 is

signal A_reg, B_reg, C_reg:
std_logic_vector (11 downto 0);
signal A_regl, B_regl, C_regl:
std_logic_vector (11 downto 0);
signal CWEL_reg,i_wait: std_logic_vector(l
downto 0);
signal cnt9_wait: std_logic_vector (2
downto 0);

signal ain, bin: std_logic_vector (17
downto 0);
signal KA1, KB1, KC1, KA2, KB2, KC2, KA3,
KB3, KC3: std_logic_vector (9 downto 0);

signal data_mux: std_logic_vector (11
downto 0);
signal coeff_mux: std_logic_vector (9
downto 0);
signal cntr9, cntr9_out : std_logic_vector
(3 downto 0);
signal P1_reg,adder_mux,sum:
std_logic_vector (35 downto '0);
signal Pl, P2, P3: std_logic_vector (35
downto 0) ;
signal cntr3 : std_logic_vector (1 downto
0) ;

signal j : integer range 0 to 7;
signal indexi : integer range 0 to 9;
signal i : integer range 0 to 3;

component MULT19X19
port (
A,B: in std_logic_vector (17 downto 0);
P: out std_logic_vector (35 downto 0»;
end component;

begin

--/* ----------DATA INPUT SECTION------*/
--/* In the 3:1 data mux. To match the
pipeline of the
--Data inputs with the coeeficient inputs,
the data values are registered first
--At the input of the 3:1 mux and then
again at the output of the 3:1 mux.
--To make sure that the inputs don't
change in the middle of a set of vector
--summation, the inputs are held constant
for 9 clks. This will ensure that
--the input values seen by the 3x3 vector
is the same for the first set of
--answers. */

--/* cntr) to count 0-1-2-3-1-2-3 */
process (CLK,RST) begin

if (RST:'1') then
cntr3' <= ·00·;

elsif (rising_edge (CLK» then
if (cntr3 - W11W) 'then

cntr3 <_ wOlw;

else cntr3 <- cntr3 + 1;
end if;

end if;
end process;

--/* inputs registered twice to match the
pipe length of the coefficients */

process (CLK,RST)
begin
if (RST - '1 ,) then

A_reg1 <- (others=>'O');
B_regl <= (others->'O'); C_reg1 <=
(others=>'O');

elsif (rising_edge (clk» then
if (j - 0) then

A_regl <- A; B_reg1 <= B; C_reg1
<z C;

end if;
end if;

end process;

process (CLK,RST)
begin
if (RST - '1') then

A_reg <= (others->'O'); B_reg
<= (others=>'O'); C_reg <- (others=>'O');

elsif (rising_edge (clk» then
A_reg <= A_reg1; B_reg <= B_reg1;

C_reg <= C_reg1;
end if;

end process;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process (CLK,RST)
begin
if (RST z '1') then

j <- 0 ;
elsif (rising_edge (elk» then

if (j < 8) then j <_ j + 1;
else j <- 0;

end if;
end if;

end process;

--1* ----------MODE SELECT SECTION-----*I
--1* mode select should be constant for 3
clk cycles to complete one set .
--of coefficients. So modeselect is
updated every 3rd clk *1
--1* cntr3 used to hold CWEL constant for
3 clocks. *1
process (CLK,RST)

begin
if (RST - '1') then

CWEL_reg <- "00"; i <- 0;
elsif (rising_edge (clk» then

CWEL_reg <- CWEL;
end if;
if (i < 4) then i <- i + 1;

else i <- 0;
end if;
--end if;

end process;

--1* coefficient register update. The
register shd hold the
--value for 3 elks to get the right output.

*1
process (clk,rst)

begin
if (rst - '1') then

KA1 <- "0000000000"; KB1 <­

"0000000000"; KC1 <- "0000000000";
KA2 <- "0000000000"; KB2 <­

"0000000000"; KC2 <- "0000000000";
KA3 <- "0000000000"; KB3 <­

"0000000000"; KC3 <- ·0000000000·;
elsif (rising_edge (c1k» then

case CWEL_reg is
when "01" => KA1 <- KA;

KB; KC1 <- KC;
when "10" => KA2 <- KA;

KB; KC2 <- KC;
when "11" => KA3 < .. KA;

KB; KC3 <- KC;
when others => null;

KB1 <=

KB2 <-

KB3 <-

end case;
end if;

end process;

--1* ----------COEFFIECIENT MUX SECTION-*I
--I*cntr9 to count 0-1-2-3-4-5-6-7-8-9-1

*1

process (CLK,RST) begin
if (RST-'l') then

cntr9 <- "0000";
elsif (rising_edge (CLK» then

if (cntr9 - "1001") then
cntr9 <- "0001";

else cntr9 <- cntr9 + 1;
end if;

end if ;
end process;

process (clk,rst)
begin
if (rst - '1') then

coeff_mux <- "0000000000"; data_mux
<- (others -> '0');

elsif (rising_edge (elk» then
case indexi is

when 0 -> coeff_mux <- KA1;
data_mux <- A_reg;

• when 1 -> coeff_mux <- KB1;
data_mux <- B_reg;

when 2 -> coeff_mux <- KC1;
data_mux <- C_reg;

when 3 -> coeff_mux <- KA2;
data_mux <_ A_reg;

when 4 -> coeff_mux <- KB2;
data_mux <- B_reg;

when 5 -> coeff_mux <- XC2;
data_mux <- C_reg;

when 6 -> coeff_mux <- KA3;
data_mux <- A_reg;

when 7 -> coeff_mux <- KB3;
data_mux <- B_reg;

when 8 -> coeff_mux <- XC3;
data_mux <_ C_reg;

when others -> null;
end case;

end if;
end process;

process(CLK,RST) begin
if (RST-'l') then

i_wait <- "01";
elsif (rising_edge (CLK» then

if (i_wait> ·00") then

I
I ,
I
J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

I

I

i_wait <= i_wait - '1';
else i_wait <- i_wait;

end if;
end if ;
end process;

process (CLK,RST) begin
if (RST-'l') then

inde~i <- 8;
elsif (rising_edge (CLK» then

if (i_wait. "oon) then
if (indexi = 8) then

indexi <= 0;
else indexi <= indexi + 1;
end if;

end if;
end if ;
end process;

--1* ----------MULTIPLIER SECTION-------*I

--1* 9x pumped multiplier; P3 registered
twice to match the pipelining

of the first adder *1
ain <- "00000000· k coeff_mux; bin <­
"000000· k data_mux;
MULT1: MULT18X18 port map(A =>'ain, B =>
bin, P -> P1);

-- registering multiplier outputs -­
process (CLK,RST)

begin

if (RST - '1') then
P1_reg <= (others -> '0');

elsif (rising_edge (clk» then
P1_reg <- P1;

end if;
end process;

--1* ----------ADDER SECTION------------­

*1

--1* Adder mux. Inputs a '0' every 3rd clk

*1

process (cntr3(1) , cntr3(0) , sum)
begin
if (cntr3 - ·01") then
adder_mux <= (others => '0');
else adder_mux <= sum;
end if;
end process;

-- Final adder -

process (CLK,RST)
begin
if (RST = '1') then

sum <- (others => '0');
elsif (rising_edge (clk» then
sum <= P1_reg + adder_mux
end if;
end process;

--1* ----------OUTPUT SECTION------------­
*1

--1* At the output of the adder, the first
valid X values appears at the 6th clk
--after reset. After this, at every 3rd
clk, a valid output values are obtained
for
--y ,Z, X, Y, Z and so on. This function
is realised using- a enable cntr. The cntr
--after reset, counts upto 3 at which
point another output counter is enabled.
The
--output of the enable counter holds its
value of 3 as long as it is not reset. *1

--1* output cntr starts after 4 clk to
match the initial pipe
--delays of inputs/coeeficients *1

process (CLK,RST)
begin
if (RST - '1') then

cnt9_wait <- "ioo";
elsif (rising_edge (~lk» then

if (cnt9_wait > ·000·) then
cnt9_wait <- cnt9_wait - '1';

else cnt9_wait <= cnt9_wait;
end if;

end if;
end-process;

--I*cntr9_out to count 0-1-2-3-4-5-6-7-8-
9-1-2- *1

process (CLK,RST)
begin
if (RST = '1') then

cntr9_out <= "oooon;
elsif (rising_edge (clk» then

if (cnt9_wait = "DOD·) then
if (cntr9_out - ·1001 n) then

cntr9_out-<= "0001";
else cntr9_out <= cntr9_out + 1;
end if;

end if;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if;
end process;

__ /* adder output assigned to X.Y and Z */

process (clk.rst)
begin
if (rst - '1') then

X <- "000000000000"; Y <~
"000000000000"; Z <- ·000000000000";

elsif (rising_edge (elk» then

case cntr9 _out is
--when "0001" -> X <- X; Y

Y; Z <- Z;
--when "0010" -> X <- X; Y

y; Z <- Z;

when "0011" -> X <- sum(ll
downto 0); --Y <- Y; Z <- Z;

<-

<-

--when "0100" -> X <- X; Y <-

Y; Z <- Z;
--when "0101" -> X <- X; y <-

Y; Z <- Z;
when "0110" -> Y <- sum(ll

downto 0); --X <- X; Z <- Z;
--when "0111" -> X <- X; Y <-

Y; Z <- Z;
--when "1000" -> X <- X; Y <-

Y; Z <- Z;
when

downto 0) ; --X

when
end case;

end if;

end process;
end model;

"1001" -> Z <- sum(ll

<- Xi y <'" Y;

others -> null;

I ,

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2003

	Hardware software partitioning using directed acyclic data dependence graph with precedence
	Matthew Jin
	Recommended Citation

