
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2010

QoS-based semantic web service selection
Yijun Chen
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Chen, Yijun, "QoS-based semantic web service selection" (2010). Theses and dissertations. Paper 996.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/996?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

 1

QOS-BASED SEMANTIC WEB SERVICE SELECTION

by

Yijun Chen

B. Sc. of Computer Science, Ryerson University, 2006

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the Degree of

1Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2010

@Yijun Chen 2010

 2

DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Yijun Chen

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in parts, at the request of other institutions or individuals for the purpose of

scholarly research.

Yijun Chen

 3

QOS-BASED SEMANTIC WEB SERVICE SELECTION

M.Sc. Computer Science, 2010

Yijun Chen

Department of Computer Science

Ryerson University

ABSTRACT

This thesis discusses the dynamic web service selection in the semantic context with QoS

constraints. The goal of this work is to investigate the mechanism of automated QoS-based

semantic web service selection.

Semantic Web Service (SWS) aims to achieve the automation of web service tasks, such as

service discovery, selection, composition and invocation. The task of semantic web service

selection is further investigated through this thesis.

An architecture is proposed to achieve this task by considering QoS parameters. The QoS

parameters are classified into dynamic and static attributes in the architecture. The dynamic

attributes are evaluated and measured as an overall value by applying utility functions. This

overall value can be modeled in the semantic context for the purpose of service selection.

Furthermore, the architecture directly models the static QoS attributes in the semantic context for

service selection. Finally, an open SWS challenge scenario named hardware purchasing is used

in several experiments in order to evaluate the proposed architecture.

 4

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Dr. Abdolreza Abhari for his supervision and

support during my research work. Dr. Abhari not only transferred the knowledge to me, but also

guided me towards the right way to do the research work. I do appreciate Dr. Abhari’s assistance

and his hard work.

I also would like to thank Dr. Alexander Ferworn. Dr. Ferworn taught me the research method,

and guided me to choose the proper research topic.

Finally, I would like to thank my family, especially my wife Julie Ni, for their unconditional

support and encouragement.

 5

TABLE OF CONTENTS

Chapter 1

1. Introduction...1

1.1

 Motivation..2

1.2 Problem Statement…...………..4

1.3 Scope, Assumption……………..6

1.4 Contributions……….……..7

1.5 Thesis Structure...7

Chapter 2

2. Background and Related Work...9

2.1 Background Information..9

 2.1.1 Limitation of the Current Web Service Technology…...…….......………10

2.1.2 Semantic Web Service Challenge…….........…..…………….…………………..11

 6

 2.1.3 Introduction to WSMO………...…………………...…..………………..12

 2.1.3.1 WSMO Ontology………………………..…….……...………….12

2.1.3.2 WSMO Web Service……..……………………….…..….....……………13

2.1.3.3 WSMO Goal………………………..………….……..…....……….…....14

2.1.3.4 Service Grounding…………………..………….…..……..…....………..14

2.1.3.5 Logic Reasoning…………..………………….………..……......……….14

2.1.3.6 WSMO Service Discovery Mechanism………..……….…….....….……15

2.2 Related Work…………………...……………….……………...……....………..16

 2.2.1 Web Service Selection……….………..…….………………….………..16

2.2.2 QoS-based Web Service Selection……..……...............……..……….……….....17

2.2.3 Modeling QoS in WSMO…………………………….........…….….…………...19

2.2.4 Comparison between WSMO and other SWS Frameworks …..........…..…....….20

2.3

 Summary……………………...……………………….………….......…………...…….23

Chapter 3

3. Utility-based QoS Brokering Model for Semantic Web Service Selection….……....24

 7

3.1 Evaluate QoS Information with A Utility Function...25

3.1.1 Utility Function Regarding to Response Time..27

3.1.2 Utility Function Regarding to Throughput...28

3.1.3 The Overall Utility Function...30

3.2 Utility-Based QoS Brokering Architecture for Semantic Web Service Selection 31

3.3 Overview of the SWS Challenge Scenario - Hardware Purchasing………......…33

3.4 Model QoS Constraints in the WSMO Semantic Context …...………..…..….…34

3.5. Modeling Static QoS Parameters in the Proposed Architectur……………….….41

3.6 Summary……………………………………..…………………………...…..….42

Chapter 4

4. Evaluation of the Model………….………………………...43

4.1 Experiment Environment……………..…………………………………….……43

 4.1.1 Evaluation Objective…………………….………………..………..…….44

 4.1.2 Experiment Components……………………….………..………...……..44

4.2 Evaluating Utility Functions.…………...…………………..…….………..…….46

4.3 Evaluating the QoS Broker …………...………………………................………49

4.3.1 Evaluating QoS Collector ….............…..………………….……………….……49

4.3.2 Evaluating Utility Analyzer …………….........…...…….………………......…...50

 8

4.4 Evaluation of Utility-Based QoS Broker in WSMO Semantic Service Selection.51

4.4.1 Experiment Environment …….…...........……....……………………...…….…..51

4.4.2 Simulation 1: Service Selection Algorithm with a Base QoS Utility Value.........53

4.4.3 Service Selection Algorithm with the Criteria for the Service with Highest QoS

Value Selected………………………………………………………….................……55

4.5

 Summary………………………….…………………...………........……………………60

Chapter 5

5. Conclusion and Future Work...61

5.1 Conclusion………………………………………………………………….….......……61

5.2 Future Works…………………….………………………………………....….....……..63

Appendix..65

References..76

 9

LIST OF TABLES

Table 2.1 Synonyms comparison…………………………………………………………15

Table 2.2 Example list of QoS attributes from [23]………………………………………18

Table 3.1 Example of QoS information …………..………….…………………………..29

Table 3.2 Examples of the products offered by the service vendors……………………...35

Table 4.1 Result of Service Selection for Test Case one ……………………...………….54

Table 4.2 Result of Service Selection for Test Case Two…………………………………55

Table 4.3 Result of Service Selection for Test Case Three ………………………………56

Table 4.4 Service Selection Result for Three Request Sequence ………………………...59

Table A.1 Product Information Provided by All Vendors………………………………....65

Table B.1 Experiment Result: the QoS information for Service Bargainer…………….…69

Table B.2 Experiment Result: the QoS information for Service Hawker ………………...69

Table B.3 Experiment Result: the QoS information for Service Rummage………………70

Table C.1 Utility for Service Bargainer…………………………………………………...72

Table C.2 Utility for Service Hawker……………………………………………………..72

Table C.3 Utility for Service Rummage ………………………………………………….72

 10

LIST OF FIGURES

Figure 1.1 Dynamic Service Selection/Invocation Scenario ……………………………..3

Figure 2.1 Ontology toward semantic web and semantic web service……………..……….21

Figure 2.2 RDF, OWL toward WSMO semantic…………………………………………....22

Figure 3.1 Pseudo code Web Service Selection by Evaluating the QoS Information ..….....25

Figure 3.2 Algorithm to Retrieve Service Response Time ……….……………………..….28

Figure 3.3 Algorithm to retrieve service throughput………………………………..………30

Figure 3.4 The QoS broker merged with WSMO/WSMX architecture…………..………...31

Figure 3.5 The general algorithm for functional discovery……………..…………………..36

Figure 3.6 A new concept, QoSValue …………………………………………………...36

Figure 3.7 An QoSValue instance for service Bargainer……………..……………………..37

Figure 3.8 An QoSValue instance for service Hawker………………………………..…….37

Figure 3.9 An QoSValue instance for service Rummage……………………………..…….37

Figure 3.10 Description of the Goal for Notebook purchasing …………………..……..…...38

Figure 3.11 Capability for the Goal of Notebook Purchasing with QoS Selection Criteria.....39

Figure 3.12 Capability for the Goal of Notebook Purchasing with QoS Selection Criteria40

Figure 3.13 Definition For rankingcriteria Variable ……………………………...……….....41

Figure 3.14 QoSPrice Concept and its instance for Service Bargainer ...………………........41

Figure 4.1 Utility Function Vs Response Time for Service Bargainer………………….......47

Figure 4.2 Utility Function Vs Response Time for Service Rummage……………….....….47

Figure 4.3 Utility Function Vs Response Time for Service Hawker…………………….…48

Figure 4.4 Utility Function Vs Throughput for Service Bargainer………………………....48

 11

Figure 4.5 Utility Function Vs Throughput for Service Rummage……………...………...49

Figure 4.6 Utility Function Vs Throughput for Service Hawker…………………………..49

Figure 4.7 Experimental Execution Flow …………………...…………………………….53

Figure 4.8 Service Selection Sequence A in WSMO Environment………………………..57

Figure 4.9 Service Selection Sequence B in WSMO Environment.……………………….58

Figure 4.10 Service Selection Sequence C in WSMO Environment ……………...………..58

Figure 4.11 Service Selection Sequence in Semantic Environment (σ=0.005)……………..59

Figure 4.12 Service Selection Sequence in Semantic Environment (σ=0.01) ……………...60

Figure B.1 Implemented QoS response-time collector in Java……….……………………68

Figure C.1 Implementation of The utility calculator (service Bargainer) in Java ….……...71

Figure D.1 Capability Definition for Notebook Purchasing …………..…………………...74

Figure D.2 Service Selection result Shown in WSMX Message Window…….…………...75

 12

LIST OF ACRONYMS

ACRONYMS DEFINITIONS

WSDL Web Service Description Language

SOAP Simple Object Assess Protocol

UDDI Universal Description, Discovery and Integration

SOA Service Oriented Architecture

UDDI Universal Discovery, Description and Integration

WSDL Web Service Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMX Web Service Execution Environment

XML Extensible Markup Language

OWL Web Ontology Language

RDF Resource Description Framework

GUI Graphical User Interface

API Application Programming Interface

 13

CHAPTER 1

INTRODUCTION

In the last decade, web service has been the most successful and popular technology in

distributed computing [1][2]. Web service is a distributed technology that communicates based

on HyperText Transfer Protocol (HTTP). It is described using Extensible Markup Language

(XML), and transported via Simple Object Access Protocol (SOAP). Due to these characteristics,

web service has been widely adopted and applied in the IT industry.

Consequently, more and more web services have been created and published in order to achieve

users’ requirements. For example, Google provides its web service APIs to allow users to access

its resources. Amazon has its own service APIs for users to search its online bookstore. Many E-

commerce service APIs are published to achieve various functionalities. However, developers

and researchers have realized the difficulty of discovering and reusing certain web services to

fulfill their tasks in such a large scale publication of web services.

Furthermore, current web service techniques allow service consumers to discover and bind

services only at design time. Dynamic service selection during run time is still challenging [3].

This thesis discusses this challenge and proposes a potential solution based on the semantic

context. In the first chapter, background information of the thesis is presented and organized as

follows. Section 1.1 introduces the motivation of this work. Section 1.2 discussed the problem

 14

statement. Section 1.3 defines the assumption and scope. Section 1.4 states the contributions of

this work. And finally Section 1.5 presents the thesis structure.

1.1. MOTIVATION

With the boom of web service technologies, web services have been created and published in a

large-scale manor. However, this large amount of web services produces several unpredictable

issues. Many services provide similar functionalities. When developers and researchers try to

find specific services to fulfill their tasks, they could be faced a long list of web services in the

search result. It is difficult for the current web service technologies to find a suitable web service

in a list of similar web services. One of the main reasons is that current web technologies are

built upon syntactical techniques, and syntactic-based search mechanisms cannot differentiate

web services and the related QoS information.

Furthermore, in the current service oriented architecture (SOA), many tasks are still executed

manually [4]. For example, in the Java language, if a developer wants to invoke a web service,

he/she is required to know the service address in the design stage. He/she needs to initially create

a web service reference via a Web Service Description Language (WSDL) file, define an

instance of this web reference, and invoke the web service functionalities.

However, in many cases, web services need to be invoked on the fly. Figure 1.1 shows the

scenario of web service selection and invocation at the run time. At the beginning, the developer

does not know which service is selected, as services are determined by the running result of the

 15

previous service in the decision box. As we stated earlier, if the developer wishes to select and

invoke web services, he/she first has to create the corresponding web service references

manually. Even if the numbers of web services are in the hundreds, there are still countless

manual works to complete.

Figure 1.1 Dynamic Service Selection/Invocation Scenario

Evidently, it is difficult to implement such scenarios in the current SOA framework. Thus

innovative modes must be structured in order to avoid such manual works. These limitations in

the current web service technologies propel many researchers to find their solutions. In this work,

we propose a model to retrieve web services QoS information and later, based on that

information web services are automatically selected on the running time. This concept of

automatic selection -based on the QoS information - is regarded as the main source of motivation

for this thesis.

 16

1.2. PROBLEM STATEMENT

As we discussed earlier, the current web service technologies are insufficient in supporting

dynamic service selection and can not maximize the automation tasks. To achieve the automation

of web service tasks, one of the major approaches is to make web services become more

meaningful, namely by adding semantics to web services.

As the concept of Semantic Web Services (SWS) blooms, more attention is given to its related

research topics. Bachlechner in [5] discussed the technology roadmap toward SWS. The concept

of SWS is regarded as the next generation of web technology. The main goal of SWS is to

enhance the automation level of web services [4]. More specifically, the SWS aims to achieve

automation of service discovery, selection, composition and invocation. Many researchers

endeavour the study of how to implement semantic tasks to web services, and some related

solutions have been addressed including [6] and [7].

This is the major problem addressed in this thesis. To achieve dynamic service selection in the

semantic context, we need to find a way to achieve semantic-based automated tasks. Semantic-

based automated tasks involve the following issues:

o Add semantics to web services.

o Describe the consumer’s request in semantic language.

o Implement the logic, which makes the above two items understand each other.

o Execute the semantic solution and retrieve the correct results.

 17

Furthermore, we introduce the Quality of Service (QoS) constraints in our semantic solution. The

QoS information is an important factor in dynamic service selection mechanism that is

considered in [8] and [9]. Applying the QoS in service selection mechanism can greatly enhance

the accuracy of the service search results. At the early stage of web service technologies, most

researchers are concerned with the functionalities and interfaces of web services as mentioned in

[10]. However, with the maturity of web service technologies, along with an increase in provided

services, consumers are more likely to choose the better quality services.

Another problem is how to deal with QoS information in our semantic solution. The QoS may be

impacted by many factors, including network performance, the service hosting architecture, and

service performance as it was used in [10]. For example, the service availability, response time,

service charge, and service reputation are all samples of QoS parameters. So the question is: how

can we apply these QoS attributes to the dynamic service selection algorithm in the semantic

context? This problem can be separated into the following items:

o How to retrieve and evaluate these QoS attributes.

o How to model these attributes in semantic.

o How the modeled QoS information can impact the service selection.

The above issues have been hot research topics in recent years. Many researchers investigate and

endeavour to find their own solutions. It is the objective and core task of this work to find a

solution for the above three questions.

 18

1.3. SCOPE AND ASSUMPTIONS

The Semantic Web Service (SWS) is designed to minimize human intervention as much as

possible. The objective is not only to achieve all core tasks related to the web services such as

service discovery, selection, composition and execution, but also to support the automation of

these tasks. However, it is difficult to cover all the issues regarding the SWS in this work. In the

following section, we would like to introduce our research scope, assumptions of this work.

Currently, there are several approaches proposed to provide semantic support to the web services

as explained in [11], for example, Resource Description Framework (RDF) [12] and [13], Web

Ontology Language for Services (OWL-S) [14] and [15], and Web Service Modeling Ontology

(WSMO) [17]. OWL-S and WSMO are the most prominent frameworks. Efforts in the SWS

research focus mostly on the topic surrounding these two approaches as stated in [18]. In this

case, this scope is defined in the area of WSMO framework in order to achieve the semantic task.

Furthermore, we limit our solutions to the semantic tasks in the area of service selection. Thus,

other tasks such as service discovery, composition and invocation are not included. For the

purpose of evaluating our proposed solution, we make use of one of the Semantic Web Service

(SWS) Challenge scenarios available for all researchers named hardware purchasing [20], as our

experimental test case. This scenario is used to provide a QoS-base semantic solution for

dynamic web service selection. The scenario provides three web services for users to test their

semantic solutions for hardware purchasing problem.

 19

The main objective of this research is to provide a solution to achieve the task of dynamic

service selection in the semantic context based on the QoS information. To achieve this goal,

there are two basic assumptions in our approach. First, we assume the static QoS information

provided by service providers that are retrieved in our proposed architecture is trustworthy.

Second, we assume the services that are provided by the scenario of hardware purchasing test

case are always available.

1.4. CONTRIBUTIONS

In this thesis, we investigate the QoS-based semantic solution for dynamic service selection. A

simple architecture is proposed to achieve this task. Also, our experiment demonstrates this

proposed architecture to fulfill the semantic tasks. The contribution of our research can be stated

as following:

o Design a QoS brokering architecture to collect the QoS information.

o Evaluate the QoS information by applying utility functions.

o Model the QoS information in our semantic solution.

o Implement the service selection mechanism based on the QoS constraints for WSMO

environment.

1.5. THESIS STRUCTURE

For the thesis structure, the rest of the parts are organized as follows. In Chapter 2, background

and related works will be discussed. In the background information, certain limitation of the

 20

current web service technology and some core concepts in the WSMO framework are introduced.

Subsequently, other related works are also introduced. Related works including QoS-based web

service selection, semantic web services and the challenges, and some related solutions provided

by WSMO for semantic web services will be explained next. In Chapter 3, an architecture and

semantic-based model is proposed, while in Chapter 4, this architecture is evaluated based on the

test case of hardware purchasing. In Chapter 5, this thesis is concluded and our future work is

introduced.

 21

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter will discuss background information and related works. In the background

information, the limitations in the current web service technology will be presented, as well as

several basic concepts in WSMO will be introduced. In the related works, various early works in

the service selection will be reviewed first. Then, the related works in semantic context will be

introduced.

2.1 BACKGROUND INFORMATION

With the upgrade of network technology and more complicated distributing environment, the

current web service technology can not meet the users’ requirement in some areas. There are

several factors that play the roles in causing the limitation of the current technology.

Consequently, the Semantic Web Service (SWS) has been proposed to solve these shortages. In

this section, we present some background information on this work. We first discuss the

limitation of the current web service technology. Then we introduce one of the semantic

solutions, WSMO, and discuss its basic concepts and principles.

 22

2.1.1. Limitation of the Current Web Service Technology

Web service is supposed to be the outstanding middleware solution for enabling the development

of distributed software applications. Web service builds upon some standard technologies.

Service interfaces and data are described in Web Services Description Language (WSDL) [19].

The messages delivered between service providers and consumers meet the standard protocol,

Simple Object Access Protocol (SOAP) [21]. The communication is via the Hypertext Transfer

Protocol (HTTP). Also, the Universal Description Discovery and Integration (UDDI) [22]

provide a platform, which web services can register and consumers can find services by their

registry information.

By means of the above outstanding characteristics, web service is becoming very popular in

various distributed applications. One of the results is that web services are created and published

rapidly in a very large scale basis. As we discussed earlier, the huge number of web services

cause problems. For example, consumers could not find the suitable web service meeting their

requirement; also, if the interface of a web service needs to change due to any new requirements,

the consumer could not be notified immediately, thus causing the failure when invoking the web

service.

There are some reasons responsible for the above problems. The major one is that web service

has an inherent drawback. Current technology, such as UDDI (offering the service for web

service registery and discovery) and WSDL (offering the interface for service consumers

 23

accessing the web service), only provide syntactical support. Syntactical support only contains

limited information so that service consumers can’t find the exact suitable services based on their

requirement.

According to Cooney et al. [23], web service was designed in the static mode and the service

resided at the network endpoint for a long run at the beginning. When the service interface is

modified with updated business logics, the web service endpoint has to be renewed manually.

Consumers cannot be automatically notified with the modification, and they have to manually

update the service reference which points to the web service endpoint. If consumers failed to

update the reference, it could cause the invocation failure.

2.1.2. Semantic Web Service Challenge

The Semantic Web Service Challenge [20] was initially launched by Stanford University (USA)

in the year 2006. It provides a series of workshop, problem scenarios, and testbeds for

participants to do research on the topic of semantic web services. The problem scenarios are the

open problems, which serve as the basis for the examination and comparison of approaches

addressing the challenges [24].

Margaria in [25] introduces complexity in the domain of the SWS challenge. The authors

analyze the major problem in semantic web service in which there is no common standard to

compare and classify these frameworks in terms of their abilities and shortcomings. In [25], an

example is given to describe two problem scenarios: mediation and discovery.

 24

2.1.3. Introduction to WSMO

In this section, the brief explanation of WSMO is provided. We use the test case scenario of this

thesis as the example to make the definition more clear. WSMO consists of four main elements:

ontology, web service, goal, and mediator. These elements constitute the WSMO solution for

achieving semantic web service tasks. Ontology can be considered as the basic building block. It

extracts the data and models from the service providers and formulates the semantic context.

Goal and web service are based on the ontology to add the semantic. However, for the challenge

scenario of hardware purchasing, we don’t involve the mediator since all the service providers

conform to the same message format and there is no need for the data or message format

transformation by use of mediator. The following briefly discusses three elements, including a

simple introduction of some core concepts in the semantic technology.

2.1.3.1. WSMO Ontology

Originating from a philosophical terminology, ontology in computer science means a

specification of a shared conceptualization [26]. In the semantic web, ontology acts as a central

enabling technology. It provides knowledge representation and allows machine understanding of

the knowledge via the links including the terms in the ontologies.

Consequently, ontology is also the core element in WSMO. First of all, ontology in WSMO can

be regarded as data models and instances, which is responsible for all the resource description

 25

and data exchange between the WSMO elements. Secondly, ontology describes the relationship

between these data models and functions involved in the domain. Thirdly, the ontology use a

mediator to communicate with other domains through providing data mapping between domains.

Furthermore, ontology is organized hierarchically. Similar to the traditional class definition in

object-oriented design, an ontology can inherit and/or be inherited by other ontologies.

2.1.3.2. WSMO Web Service

The work [27] explained WSMO web service as a computational entity to describe all aspects of

a service, mainly including non-functional properties, functionalities, and interfaces. By invoking

this web service, users can achieve the goal they predefined. In the test case that used in this

work, there are three traditional web services provided by three different product vendors for the

hardware purchasing scenario. These three web services comprise of Bargainer, Rummage, and

Hawker. The corresponding WSMO web services need to be developed on the top of three

original web services.

There are two main elements to fulfill WSMO web services functionalities, capability and

interface. Capability describes the web service according to its functionality, and defines the

pre/post condition or status of the functionality. Interface provides the real implementation of the

web service functionality. It is mainly achieved by two operations: choreography and

orchestration. Choreography provides communication between the web service and the client,

while orchestration interacts with other web services for the purpose of achieving capability.

 26

Also, web service lists all the product instances enabling the request to find all those that

matched the given requirement. The instances can be stored in another independent ontology

2.1.3.3. WSMO Goal

The WSMO goal is derived from the consumer’s requirement. For the case of hardware

purchasing scenario, it describes the product the consumer wants to purchase. The general rule to

define this product is that it should be offered by all service providers. Thus, the QoS constraints

can be tested on the service selection.

2.1.3.4. Service Grounding

.

Service grounding acts as glue between WSMO web service and the original web service

introduced in [29]. Data models and functionalities are described by WSDL and the input/output

message formats are defined in the XML schemas, which are regarded as syntactic description of

web services. However, WSMO is a semantic solution of web service. The semantic description

is implemented by means of ontology. Ontology consists of the elements like properties,

concepts, and so on. These elements are evolved from WSDL and its XML schema when

designing the ontology. Kopeck in [29] explained that the procedure of mapping the semantic

description to the syntactic elements is defined as service grounding.

2.1.3.5. Logic Reasoning

 27

The logical reasoning behind the WSMO is based on the description logic. More accurately, the

description logic for WSMO is a subset of First-Order logic (FOL) as explained in [30] and [31].

Description logic is a family of decidable ontology language, facilitating provision of reliable

and consistent reasoning. Hodges in [31] introduced the concept of FOL and syntax as well as its

applications. Similar to the description logic in OWL, WSMO has its own DL – WSML-

Description Logic (WSML-DL). Currently, the WSML-DL logical expression is restricted to the

style of FOL. The paper [32] gave distinct principles and examples of FOL. Also, for the

purpose of a more simplified understanding of the basic elements of description logic, we

conclude a synonym comparison chart for clarification (Table 2.1). In comparison with the

traditional programming language, the concept can be mapped into class; meanwhile the role can

be mapped into property and the individual can be mapped into object.

Table 2.1 Synonyms comparison

Traditional Language (Java) Description Language WSML DL

class concept concept

property role relation

object Individual instance

2.1.3.6. WSMO Service Discovery Mechanism

WSMO presented some distinguished characteristics in the service discovery mechanism, which

is further explained in [33]. It has multiple discovery engines which can support different search

 28

levels. WSMO supports keyword discovery, functional discovery, and instance based discovery,

as this is also further explained in [34]. Keyword discovery, also refered to as non-functional

properties discovery, performs the search by the non-functional properties defined in the service

description. Toma in [16] presents how to model QoS characteristics as non-functional properties

in WSMO. Shafiq et al. describe in [33] that functional discovery plays a key role in WSMO

service discovery and selection since it is based on the descriptive logic. Finally, Shafiq et al.

conclude that different search engines can be organically applied to this complicated goal

discovery.

2.2. RELATED WORK

The SWS technology is regarded as the next generation of web technology. The topic of

semantic technology achieving dynamic web service selection attracts many researchers and

organizations. In this section, initially the similar work on current web service selection methods

are examined in close detail, along with the subsequent explanation of the research status and

related works in the semantic web service selection.

2.2.1. Web Service Selection

Web service selection in SOA environment has been a hot research topic in recent years. A few

known frameworks, such as workflow (BPEL4WS) [35], dataflow [36], and process-based [37]

have been implemented in this area.

 29

However, the above methods have their limitations, which cannot meet the complexity in

dynamic service selection. Web service selection is one of the steps in the service composition.

Guilan et al. [35] discuss a workflow model applying service composition by using the Business

Process Language for Web Services (BPEL4WS). Although the framework proposed in [35] can

achieve the automatic task to some extent, it is not designed for task automation and cannot

really solve the problem.

Furthermore, users cannot select service on demand since the flow or processes define service

selection in advance. This point also has been reported in [35] and [37]. Consequently, service

discovery and selection is static and inflexible. Moreover, a service selection method proposed

by Tsai et al. in [38] cannot promise to find suitable services in order to achieve the user’s

request. These drawbacks promote several new mechanisms for dynamic service selection

mechanisms, of which the SWS is the most prominent one.

2.2.2. QoS-based Web Service Selection

The QoS information describes the quality of web services. It is an important consideration when

the consumer makes decision on service selection. Normally, the QoS attributes can be classified

in two categories: dynamic and static - as described in [28]. Li et al. explain in [28] that dynamic

attributes could be changed in the execution time, for example response time and throughput;

static attributes are defined by service providers before service executions and are usually not

updated during the execution. Table 2.2 presents some example attributes by this classification.

 30

These static QoS attributes are relatively easy to process in the context of service selection; while

the dynamic ones are more complicated.

Table 2.2 Example list of QoS attributes from [28]

 QoS Attributes

Dynamic Availability, response time, throughput, reputation, etc.

Static Stability, capacity, accuracy, security, price, etc.

The QoS-based web service selection has been discussed for a long period of time. There are

many approaches proposed in order to achieve this target. Yu et al. in [39] introduces the QoS

brokering architecture which manages the QoS constraints in distributed services. The system

provides the main functions such as service discovery, planning, and service selection.

The work in [9] also discusses the QoS brokering system. The author introduces utility functions

to evaluate the QoS information. The broker is designed to fulfill the tasks, such as collecting

QoS information, applying the utility functions to the QoS information, and selecting the suitable

services. This work presents the preliminary idea to introduce such brokering systems into the

semantic environment.

Currently, there are some measuring techniques for evaluating the QoS information. One

solution is the QoS matrix as explained by Li et al. in [28]. In this method, a QoS matrix is

 31

formulated by applying the collected QoS values, and the overall value is measured through the

matrix calculation. Another solution is utility functions introduced by Menasce in [9]. It also first

collects all the QoS information, retrieves the utility value for each QoS parameter, and merges

all the independent values into an overall one.

Utility functions have been applied in the distributed autonomic computing system for a period

of time (see [43] for details). Utility function can achieve self-optimization, which is the most

attractive character. There are a couple of ways to get utility functions. The function could be

designed by an expert, specified in an agreement, or derived from another utility function as

described by Walsh et al. in [43]. The utility functions we used in this thesis are similar to those

presented in [9].

2.2.3. Modelling QoS in WSMO

Toma et al. in [16] introduced some basic steps of how to model QoS constraints in the WSMO

environment. They acknowledge that there are two main challenges: the first is concern with

how to model QoS information, and the second is about how to attach the QoS attributes to

WSMO services and goals. The authors also discuss other possible approaches. Essentially, [16]

suggests model QoS attributes as non-functional properties, and implements the attaching logic

by using some WSMO elements, such as relation, concept and capability. The author doesn’t

implement any of these approaches.

 32

The topic presented in article [16] is very similar to the topic of this thesis. The main difference

rests in the fact that we classify the QoS information into dynamic and static attributes in this

work. Dynamic attributes are evaluated measured as an overall value by applying utility

functions. The overall value will be modeled in the semantic context for the purpose of service

selection. Also the static QoS attributes will be directly modeled in the semantic context for

service selection. Since there are many research works in the area of Semantic Web Service

based on different SWS frameworks, in the next section, we discuss them and explain the

differences among three frameworks in details.

2.2.4. Comparison between WSMO and other SWS Frameworks

The SWS research and development have received much attention in the past few years. Many

researchers endeavour the study of how to implement the semantic tasks to web services.

Bachlechner in [5] introduced the technology roadmap toward to SWS, and he also

acknowledged that the SWS had not been adopted by industrial segments at the time he

addressed this paper in the year 2008.

Currently, several frameworks have been developed to help provide the environment of building

semantic projects. As mentioned in Chapter 1 of this thesis, Resource Description Framework

(RDF) introduced in [12] and [13], Web Ontology Language for Services (OWL-S) introduced in

[14] and [15], and Web Service Modeling Ontology (WSMO) [17] are most outstanding

frameworks. These concepts will be explained in further detail in the following paragraphs.

 33

RDF is W3C standard metadata data model. The most distinct feature of RDF is considering the

user independence. With the updating of metadata schemas in the server side, the clients do not

need to change the data usage and thus, will be kept unaffected [40]. This mechanism achieves

the independent implementation between the data providers and consumers. Also, RDF provides

a graphic view in the metadata model design. The metadata resource is represented as a graph

node. The two nodes can be linked by an edge which describes the existing relationship between

them. This feature provides users a visual explanation of the model design and can be easily

understood. The above characteristics give RDF its own set of unique advantages in the semantic

domain.

OWL Web Ontology Language is also a W3C standard language for the purpose of constructing

web ontologies [15]. Web ontology describes the entities in the web along with the relationship

among these entities. The entities contain the concepts and relations extracted from the web,

covering functionalities, along with content the web provides. Ontology could contain the

definition of properties, functionalities, classes, and instances transformed from the entities.

 Figure 2.1 Ontology toward semantic web and semantic web service

The above figure shows the OWL ontology along with its relation to the web and web service,

which uses the semantic context and produces semantic web services.

 34

The main part of the OWL ontology is Description Logic (DL) as explained by Baader et al. in

[41]. Description Logic is a knowledge representation language. It’s normally applied in the

domain of knowledge representation, which can add logical reasoning on the concept of the

knowledge base domain. Thus, domain elements can be understood, reasoned, and processed in

the computing environment. Consequently, this logic reasoning ability of DL is also applied for

OWL ontology and semantic web service by providing logical formalism.

However, by comparing the pros and cons of these frameworks, we decided to choose WSMO to

implement the proposed solution. WSMO is a combination of OWL and RDF. It takes the

metadata model design from RDF and ontology design based on description logic from OWL.

This combination makes WSMO to be the most prominent approach in the domain of semantic

web service. Figure 2.2 shows what WSMO has received from other semantic technologies.

Figure 2.2 RDF, OWL toward WSMO semantic

 35

Also, another advantage of WSMO is that it not only provides a framework, but that is also

provides an execution environment named as WSMX [42]. This environment allows for the

execution and monitoring of semantic applications.

2.3. SUMMARY

In this chapter, we discussed the background information and related works of this thesis. The

background part discussed the limitations in the current web service technology. Then, it

introduced the concept of semantic web service along with its challenges. Also, it introduced the

ontology-based semantic web service solution (i.e., WSMO), its formalism language (i.e.,

WSML), and the execution environment (i.e., WSMX). The related works reviewed various

early works in the service selection. In addition, it introduced some works in QoS-based web

service selection. It discussed WSMO semantic framework and present how to model QoS

information in this framework. Finally, it compared WSMO with other semantic frameworks.

 36

CHAPTER 3

UTILITY-BASED QOS BROKERING MODEL FOR SEMANTIC WEB

SERVICE SELECTION

In traditional service oriented architecture, the Quality of Service (QoS) attributes play an

important role in dynamic web service selection. Currently, there are many solutions to address

how the QoS information can be retrieved and applied into the algorithm of service selection. In

this section, a utility-based QoS brokering architecture will be proposed for dynamic web service

selection. This brokering system will then be further investigated for semantic environment. The

first aspect under examination would be how utility functions can evaluate the QoS information,

followed by an introduction to the brokering system and how the QoS information is conveyed.

Finally, the main part of this work is concentrated on the implementation of semantic web

service selection based on the QoS information.

The remaining part is organized as following: utility functions will be discussed with a focus on

evaluating QoS attributes in section 3.1. A utility-based QoS brokering architecture will be

presented in section 3.2, and finally, we focus on how to implement this QoS broker in the

semantic context in section 3.3.

 37

3.1. EVALUATING QOS INFORMATION WITH A UTILITY

FUNCTION

In this section, the emphasis relies heavily on the dynamic QoS attributes. The following section

presents how we evaluate the QoS attributes on service selection. The general idea to measure

the QoS information is to collect all QoS values for each service, merge them into an overall

value, and then compare the overall value to see which provided service meet the consumer’s

requirement. The algorithm is described as following:

Figure 3.1 Pseudo code of the Web Service Selection by Evaluating QoS Information

/*Algorithm: web service selection based on the QoS information */

 function FindServices()

 initialize all services in the service repository

 for each service

 for each involved QoS attribute

 retrieve its QoS value and apply its utility function

 calculate the utility value

 end For loop

 calculate the overall QoS value by overall utility function

 if the overall value meets the consumer’s requirement

 add the service to the selected list

 end for loop

 return the selected service list

 38

From the algorithm, we can see that the measuring technique is the key point. Usually these QoS

attributes are measured by using utility functions. Utility functions can reflect the real status of

the QoS information. Each QoS attribute is supposed to be measured by a function. The utility

function finally produces a utility value, which can be used as the overall values of the total QoS

attribute. The relationship between the QoS attribute and its function is either monotonically

increasing or decreasing. For example, the utility value is decreasing while the response time

increases, or the value is increasing when the throughput increases. In this thesis, we take these

two dynamic QoS parameters as examples to help validate the utility function.

Also, these two independent utility values will be later applied in the overall utility function with

their own weight for their overall value. The overall value is finally used for service selection.

The reason why we need this overall value is that the service selection cannot be based on each

single QoS attribute. For example, from the services presented in Table 3.1, it is hard for the

consumer to make the decision on which service is the best one. Also, if there are more attributes

involved, the situation becomes more complicated. Thus, the overall QoS value is introduced to

evaluate all the involved QoS information and produce the total value.

Table 3.1 Example of QoS information

Service Response Time Price Reputation

Service A Fast Expensive good

Service B Medium Not Cheap good

Service C Slow Cheap Very good

 39

Moreover, this overall utility function can be easily extended by adding with other QoS

parameters. Each QoS attribute has its weight contributed to the overall value. These issues will

be discussed in further detail. In this thesis, we’ll investigate how utility function can be

measured the QoS information and applied in the semantic context.

3.1.1. Utility Function Regarding to Response Time

As we mentioned before, we used the same utility functions as presented in [9] for this work.

The utility function should decrease when the response time increases. The function, U(r), is

defined as:

U(r) = 100*(e
-r

+e
(-r+βr)

)/(1+ e
(-r+βr)

) 3.1

The above formula is the utility function for response time from [9], where r is the response time,

which is measured by running the service. And βr is the Service Level Agreement (SLA) value

for response time. Mei and Meeuwissen in [44] explained that the SLA is a concept to get QoS

guarantees between service providers and consumers at the network level. We can regard the

SLA as a measure standard, which can be used to evaluate the service quality. If the real value is

close to this SLA value, the service can be considered in good quality. The SLA value can then

be negotiated between the service consumer and service providers. To simplify the situation, the

SLA value is defined as 1 sec in our scenarios.

The response time is defined as the time a service takes to complete its task as explained in [45].

The algorithm to retrieve the service response time is presented as following figure.

 40

Figure 3.2 Algorithm to Retrieve Service Response Time

3.1.2. Utility Function Regarding to Throughput

The utility function should increase when the throughput increases. The function, U(t) is defined

as:

U(t) = (100*(1+e
 βt

)/(e
βt

*(1+ e
(-t+βt)

)) – 100/ e
βt

 3.2

The above formula is the utility function for throughput from [9], where t is the throughput

monitored from each service. The βt is the throughput SLA. In our case, the SLA value is

defined as 1 kbyte/ses.

The throughput is defined as processing rate per service request. Zuquim et al. in [45] indicated

that measuring service throughput is very complicated since the throughput could be impacted

with many factors, such as latency, network traffic, hardware limitation, etc. Also in some cases,

set serviceStartTime = the current computer time;

start the service;

invoke the service functionalities;

get the service result;

stop the service;

set serviceStopTime = the current computer time;

serviceRespoonseTime = serviceStopTime- serviceStartTime ;

return serviceRespoonseTime;

 41

the unit of throughput is measured as transactions/second. But in most of cases, the throughput is

measured as byte per second. In our research, the later one will be used.

To simplify the situation, we simply define the throughput as following formula:

Throughput = The size of service response / response time 3.3

The above formula describes the throughput calculation. And the algorithm to retrieve service

throughput is described as the following:

Figure 3.3 Algorithm to retrieve service throughput

calculate serviceRequestBufferSize;

set serviceStartTime = the current computer time;

start the service;

invoke the service functionalities;

get the service result;

stop the service;

set serviceStopTime = the current computer time;

calculate serviceResponseBufferSize;

serviceResponseTime = serviceStopTime- serviceStartTime ;

throughput = serviceResponseBufferSize/ serviceResponseTime

return throughput;

 42

3.1.3. The Overall Utility Function

The overall utility function is presented as following:

U(o) = W(r) * U(r) + W(t) * U(t) + W(x) * U(x) 3.4

Where W(r), W(t) are the weights assigned to response time and throughput and W(x) is the

weight for any additional dynamic parameters. The relationship and requirement as defined as

following:

 W(r) , W(t), W(x) є (0,1)

W(r) + W(t) + W(x) = 1

This overall function can be extended when there are more QoS attributes added.

3.2. UTILITY-BASED QOS BROKERING ARCHITECTURE FOR

SEMANTIC WEB SERVICE SELECTION

 There are many ongoing solutions for semantic web service proposed. In this thesis, we have

chosen one of the most prominent frameworks referred to as Web Service Modelling Ontology

(WSMO). We use the same utility functions described in the previous to evaluate the QoS

information in semantic environment. The architecture is shown in Figure 3.4.

 43

Figure 3.4 The QoS broker merged with WSMO/WSMX architecture

The ultimate goal of this architecture is to achieve the QoS-based dynamic service discovery and

selection mechanism in the WSMO semantic environment. The architecture is supposed to

discover and select among WSMO web services, which have already been deployed in the

WSMO framework with semantic description.

The task of the broker is to collect the QoS information and analyze the overall utility value. The

utility value is supposed to provide to WSMO solution seamlessly. In this proposed architecture,

the utility value is packaged and published as a web service. Thus, the WSMO elements can

retrieve the value from this web service. And finally, the WSMO/WSMX architecture is

designed to achieve the task of service selection based on the overall utility value.

 44

Utility functions play an important role in evaluating the QoS information. However, simply the

function alone is not sufficient enough. A middle layer is necessary in order to convey the utility

value between the service providers and consumers. The goal of this brokering architecture is to

collect the QoS information, analyze the utility value and deliver the result to the consumers. The

general architecture consists of two main parts: QoS Collector and Utility Analyzer, as presented

in Figure 3.4.

The QoS Collector is designed to retrieve all QoS value from each web service. In this case, we

only collect the response time and throughput. The Utility Analyzer is designed to retrieve the

overall QoS value. The analyzer first receives each QoS value from the collector, and applies

them to the respective utility function. Finally, the overall value is calculated based on the

assigned weight for each QoS attribute defined in the overall function.

To validate this proposed architecture, we select one of the SWS Challenge scenarios named

hardware purchasing, as our experimental environment. The scenario has three service providers,

presenting as traditional web services. Each provider offers a few hardware products for the

consumers to purchase. Also, all the semantic tasks are implemented and executed in the

WSMO/WSMX architecture. In the test cases, the goal is defined as finding a product, which is

offered by all the services. The product and its service will be only impacted and selected by its

QoS information analyzed by the broker. Under this circumstance, the architecture can be

validated for semantic web service selection with QoS constraints that will be explained in

Chapter 4.

 45

3.3. OVERVIEW OF THE SWS CHALLENGE SCENARIO -

HARDWARE PURCHASING

The scenario of hardware purchasing in the SWS Challenge includes a series of web service

providers. It provides the participants an experimental environment to test their solutions, while

emphasizing on the topic of semantic service discovery and simple composition. Each service

provider offers its own array of products, which are identified by a unique product ID. Also, in

order to avoid complexity, we define all services to allow ordering a single product for each

transaction. The three service vendors are addressed and described as following:

1. Vendor Rummage, http://sws-challenge.org/shops/Rummage.wsdl

2. Vendor Hawker, http://sws-challenge.org/shops/Hawker.wsdl

3. Vender Bargainer, http://sws-challenge.org/shops/Bargainer.wsdl

The following table presents the examples of the product offered by the above vendors.

Table 3.2 Examples of the products offered by the service vendors

(For the detailed information, please see the Appendix A.)

Product Name Product ID Provider Description

Notebook 00000001 Rummage 13” flat screen; 1.83 GHz Intel

Core Duo;Memory : 512 MB

DDR2 – SO-DIMM;HDD : 60

GB; color : white;

price:1,099.00

http://sws-challenge.org/shops/Bargainer.wsdl

 46

Web_cam 00000011 Rummage VGA 640 x 480;price:149.00

Notebook 00000004 Bargainer 13” flat screen; 2.0 GHz Intel

Core Duo; Memory: 1GB

DDR2– SO-DIMM;HDD: 100

GB; color : white;

price:1,449.00

Docking_station 00000016 Bargainer docking station for X41

(00000008); price:269.95

Notebook 00000003 Hawker 13” flat screen;2.0 GHz Intel

Core Duo; Memory : 512 MB

DDR2– SO-DIMM; HDD: 80

GB; color: white; price:

1,349.00

Accessory 00000015 Hawker Neoprene sleeve; price: 29.95

3.4. MODELING QOS CONSTRAINTS IN THE WSMO SEMANTIC

CONTEXT

In the traditional SOA environment, the QoS information is normally registered in the UDDI

entry, and can be retrieved by the consumers or the brokering systems. Li and Zhou explained in

[28] that such mechanisms based on the UDDI have been proved inefficient due to the fact that

their discovery results always contain irrelevant and unsatisfied items. This problem is caused by

 47

the lack of semantic support. The WSMO framework has been proposed to solve this issue by its

semantic characteristic.

As we introduce the WSMO service discovery mechanism in Chapter 2, the WSMO architecture

provides both functional and non-functional service discovery and selection mechanism. The

static QoS information is defined by non-functional property discovery. In the WSMO definition,

non-functional properties are described as cost-related and charging-related properties of a web

service, such as network-related QoS, security, cost, performance, reliability, etc. The task of

processing static QoS attributes can be achieved by WSMO keyword discovery (also non-

functional properties discovery)

Dynamic Qos attributes have more impacts on the service selection. Things become more

complicated due to the characteristic of dynamic. The dynamic Qos attributes can be

implemented in WSMO functional discovery. Through out this work, we focus on the functional

discovery of dynamic QoS attributes.

We propose the functional discovery model based on the WSMO framework in order to solve the

issue revealed in Figure 3.4. In this proposed architecture, the QoS broker acts as a middle layer

between the service provider and WSMO framework. The main task is to collect the QoS

information, and to further analyze it with the utility function. The broker is published as a web

service, and the WSMO solution can retrieve the QoS value from this web service.

To achieve this functional discovery, we add the QoS logic by extending the existing semantic

 48

solution for hardware purchasing. The general algorithm of implementing this functionality is

described as following:

Figure 3.5 The general algorithm for functional discovery

First of all, we introduce a new concept, QoSValue, into the ontology, named ProductOntology.

The Concept is a WSML element, which describes the data type used in the application. The

concept is very similar to the class/interface defined in the Java language. The WSML code of

this new concept is presented as the following:

Figure 3.6 A new concept, QoSValue

The concept name is QoSValue; and it contains one data, qos_value, which is the data type in

decimal format.

Also, it is necessary to define an instance of this QoSValue concept for each service. The

instance is also a WSML element, which stands for a real value of the concept. Normally, the

instances are defined in each WSMO web service. In this case, an instance of the concept

QoSValue is added to each service as following:

concept QoSValue

 qos_value ofType _decimal

create a WSMO concept to define the overall QoS value

instantiate this concept for each service.

define a WSMO goal to implement the discovery and selection algorithm

 i

 49

Figure 3.7 An QoSValue instance for service Bargainer

Figure 3.8An QoSValue instance for service Hawker

Figure 3.9 An QoSValue instance for service Rummage

The string po# stands for the ontology of ProductOntology, which means the concept is located

in this ontology, and that this pre-string can guide the system to find the concept. Each instance

has an attribute of qos_value, which inherits from the concept, QoSValue. Also, the attribute is

assigned a decimal value. This decimal value is the overall QoS value. It is supposed to retrieve

from the QoS broker web service. To simplify the situation, we hardcode this value to make it

easy to conduct the experiments. In the real system, the QoS broker web service is providing this

value that should be automatically feed to the QoSValue instance for each service. For example,

the Java API for WSMO can be used to achieve this automation. .

A WSMO goal is defined to implement the discovery and selection algorithm. In this WSMO

instance Rummage_QoSValue memberOf po#QoSValue

po#qos_value hasValue 82.45

instance Hawker_QoSValue memberOf po#QoSValue

po#qos_value hasValue 79.50

instance Bargainer_QoSValue memberOf po#QoSValue

po#qos_value hasValue 81.29

 50

goal, we define the consumer’s requirement for the product, which is the notebook that described

in Figure 3.10.

Figure 3.10 Description of the Goal for Notebook Purchasing

The goal requirements combine with the QoS constraint. The WSML element, Capability, is

responsible for fulfilling this functionality. The capability defines the states before/after the

service execution, which are pre-condition/assumption and post-condition/effect respectively. .

In this case, we define the post-condition, which implement the logic of selection criteria.

Service consumers can identify which service can meet the selection criteria of notebook and

QoS information. Figure 3.11 shows the definition of capability for the goal. In the definition of

“nfp” (non-function property), two variables (?p and ?q) are defined respectively for concept of

Notebook and QoSValue. Also, in the definition of postcondition, the selection criteria are setup.

In this case, the QoS criteria is set to be larger than 80. So, the service selection result is

supposed to show all services meeting this requirement: Bargainer, Rummage and Hawker. An

experiment of this case will be made in the next evaluation chapter.

Product: notebook;

Size: 13”;

CPU: > 1.6 GHz;

Memory: > 512 MB;

HDD: > 60 GB;

Price: < 1500;

 51

Figure 3.11 Capability for the Goal of Notebook Purchasing

with QoS Selection Criteria

(services are selected by comparing with the base value)

Furthermore, we present another algorithm, which makes the service with higher QoS utility

value is selected. The WSMO framework provide a functionality named rankingcriteria, which

allows developer to define the criteria either high better or lower better. This functionality is

defined in the capability/nfp as well. Figure 3.12 shows the implementation of this algorithm.

capability GoalA1Capability

nfp

_"http://www.wsmo.org/goal/discovery/instancebased/mainElements" hasValue

{"?p","?q"}

endnfp

 /*goal: Product: notebook;

 Size: 13”; CPU: > 1.6 GHz;Memory: > 512 MB;

 HDD: > 60 GB；Price: < 1500;

 */

postcondition

definedBy

 (

 ?p[po#name hasValue "Mac Book 13",

 po#processorGHz hasValue ?procGhzX,

 po#price hasValue ?priceX,

 po#hddGB hasValue ?hddGBX, po#memoryMB

hasValue ?memMBX] memberOf po#Notebook

 and ?procGhzX >= 1.6

 and ?memMBX >= 512

 and ?hddGBX >= 60

 and ?price < 1500

 and

 ?q[po#qos_value hasValue ?qosValue] memberOf po#QoSValue

 and ?qosValue > 80

).

 52

Figure 3.12 Capability for the Goal of Notebook Purchasing with QoS Selection Criteria

(Service with highest QoS utility value is supposed to be selected)

In this algorithm, we keep the selection criteria defined in Figure 3.12 unchanged and add the

rankingcriteria variable to be “?qosValue-HigherBetter”. The rankingcriteria variable consists of

two parts, shown in the following figure.

capability GoalA1Capability

nfp

_"http://www.wsmo.org/goal/discovery/instancebased/mainElements" hasValue

{"?p","?q"}

_"http://www.wsmo.org/goal/discovery/instancebased/rankingcriteria" hasValue

{"?qosValue-HigherBetter")

endnfp

 /* Product: notebook;

 Size: 13”;CPU: > 1.6 GHz;Memory: > 512 MB;

 HDD: > 60 GB;Price: < 1500;

 */

postcondition

definedBy

 (

 ?p[po#name hasValue "Mac Book 13",

 po#processorGHz hasValue ?procGhzX,

 po#price hasValue ?priceX,

 po#hddGB hasValue ?hddGBX, po#memoryMB

hasValue ?memMBX] memberOf po#Notebook

 and ?procGhzX >= 1.6

 and ?memMBX >= 512

 and ?hddGBX >= 60

 and ?price < 1500

and

 ?q[po#qos_value hasValue ?qosValue] memberOf po#QoSValue

 and ?qosValue > 80

).

 53

Figure 3.13 Definition For rankingcriteria Variable

The selection result is expected with the service in the highest QoS utility value. An experiment

for this algorithm is also made in the next evaluation chapter.

3.5. Modeling Static QoS Parameters in the Proposed Architecture

The algorithm described in Section 3.4 can also be extended to apply the static QoS constraints

(e.g. service price). Same to the procedure shown in Figure 3.5, the WSMO concept of QoSPrice

should be created similar to Figure 3.6. Also, the corresponding instance of QoSPrice for each

service need to be created similar to Figure 3.7 and set in each WSMO web service. An example

is given in Figure 3.14, including the concept of QoSPrice and the corresponding instance for

service Bargainer.

Figure 3.14 QoSPrice Concept and its instance for Service Bargainer

Then, the goal can be extended by adding QoSPrice criteria, which is same as stated in the

algorithm Figure 3.16. The only difference is that the QoS price is provided by service providers,

rankingcriteria variable = ? instance_variable_name + “-HigherBetter/LowerBetter”

concept QoSPrice

 qos_price ofType _decimal

instance Bargainer_QoSPrice memberOf po# QoSPrice

po#qos_price hasValue 0.15

 54

which is published in registry and can be retrieved from that registry (i.e., UDDI), while those

dynamic QoS attributes need to be measured in the execution time and will be published by QoS

broker service as the overall utility value. When the combination of both dynamic and static QoS

parameters are needed , the algorithms of Figures 3.11 and 3.12 can simply extended with the

"and" keywords to combine all section criteria in the Goal definition.

3.6. SUMMARY

In this chapter, we introduce our proposed solution to semantic service selection by applying

utility-based on the QoS information. The utility function in evaluating the QoS attributes is first

discussed. Also the QoS brokering architecture to collect and analyze the QoS information is

presented. Then, this QoS broker in semantic environment (WSMO) is presented. Finally,

modeling QoS parameters in WSMO context is introduced and two algorithms implementing the

selection criteria are presented. In the next chapter, we’ll make a series of experiments to

evaluate the proposed architecture.

 55

CHAPTER 4

EVALUATION OF THE MODEL

In this section, we evaluate the proposed architecture presented in the previous chapter. The

evaluation is to demonstrate that the architecture can achieve the dynamic service selection by

applying utility-based QoS information. Also, the evaluation is divided into three parts:

o Evaluating utility functions regarding to the QoS attributes.

o Evaluating the QoS broker in two parts: QoS collector and utility analyzer.

o Evaluating the architecture for semantic web service election in WSMO environment.

Among these three parts, the first two evaluations on the QoS broker will be briefly presented

and the last one, the proposed architecture in WSMO environment, will be emphasized. In the

following section, the evaluation environment is introduced in Section 4.1, and the above

evaluations are conducted in Section 4.2, 4.3, and 4.4 respectively. Finally in Section 4.5, we

summarize the whole evaluation.

4.1. EVALUATION ENVIRONMENT

In this section, we discuss the evaluation environment for the utility function applied in QoS-

based dynamic service selection in WSMO environment.

 56

4.1.1. Evaluation Objective

The objective of the evaluation is to verify the following issues:

o All the QoS information can be collected.

o Utility functions can measure the value for each QoS attribute properly.

o The overall utility value can be calculated by the function.

o The suitable services can be found and selected based on the overall value in WSMO

semantic solution.

To achieve the above goals, we design a series of test cases. Also, to simplify the process and

implementation, we apply two typical dynamic QoS attributes in the experiment, response time

and throughput,

4.1.2. Experiment Components

The evaluation system involves four components, which are described as the following:

1. Service Providers: as it was introduced in the previous chapters, we have chosen one of the

scenarios in the SWS challenge, hardware purchasing, as the experimental case. Also, we

use the existing solution and extend it with QoS constraints. As mentioned before, the

scenario contains three service providers: Rummage, Hawker, and Bargainer.

2. Service Consumer: the service consumer is simulated using a java application. The

consumer application is implemented in JAX-WS 2.0 and executed in Tomcat 6.0. The

application runs in an independent machine, which can send the request to QoS broker,

 57

which the broker runs on the same machine. The service consumer also can be simulated in

SoapUI. The SoapUI is a web service simulation tool, which provides a GUI interface to

invoke web services, and the result is supposed to be presented in the SoapUI console.

3. Utility function: we introduce the utility function in chapter three. In this experiment, the

utility is supposed to apply with two QoS attributes, response time and throughput. As

mentioned before, when the response time is increasing, we expect for the utility function to

decrease. Also we expect for the utility function to be increasing with the increase of

throughput. Therefore, we measure these two dynamic attributes and pass them on as the

QoS parameters in the experiments.

The overall QoS value will be calculated by these two attributes. The formula is presented in

3.4. The overall utility value will be used in the next evaluation for service selection.

4. QoS Broker: the QoS broker is also a java application, developed in the Netbeans 6.5, and

deployed in Tomcat 6.0. The broker is represented as a web service to the consumer. The

main functionality of the broker is to receive the service request from the consumer, analyze

the QoS factors with utility function, select the service that meet the QoS constraints, and

send the selected service back to the consumer.

 58

4.2. EVALUATING UTILITY FUNCTIONS

This evaluation is to demonstrate the utility functions that have been introduced in Chapter three

can fulfill the following tasks:

 Generate the overall QoS value by measuring each network QoS attribute.

 The overall value can reflect the real QoS status in the current service execution.

The main purpose of the first experiment is to verify if the relation between service response

time and its utility function is decreasing. The utility function for response time is defined in

formula 3.1. For the reason of stability, we collect response time for each service for 50

execution times through the QoS collector. The data collected is presented in Figure 4.1 -4.3.

Utility Function Regarding to Response Time

(Service Bargainer)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Response Time (sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.1. Utility Function Vs Response Time for service Bargainer

Utility Function Regarding to Response Time

 (Service Rummage)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

Response Time (sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.2 Utility Function Vs Response Time for service Rummage

 59

Utility Function Regarding to Response Time (Service Hawker)

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Response time (sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.3 Utility Function Vs Response Time for service Hawker

As we see the results, the utility value decreases while the response time increases, which is the

same as we expected. Also, the graph shows that where the response time is close to 1 sec (since

we setup the SLA value to be 1 sec), the measured utility values converge to a small range (e.g.

80-90). While the response time is far further from 1, the utility value decreases or increases

exponentially. It is one of the advantages of utility function, which can reflect the real status of

the response time.

The purpose of the second experiment is to check if the utility value is monotonically increasing

with the increase of the throughput. The utility function for response time is defined in formula

3.1. The data collected is presented in Figure 4.4-4.6.

 60

Utility Function Regarding to Throughput (Service Bargainer)

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7

Throughput (kb/sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.4 Utility Function Vs Throughput for service Bargainer

Utility Function Regarding to Throughput (Service Rummage)

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Throughput (kb/sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.5 Utility Function Vs Throughput for service Rummage

Utility Function Regarding to Throughput (Service Hawker)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Throughput (kb/sec)

U
ti

li
ty

 V
a
lu

e

Figure 4.6 Utility Function Vs Throughput for service Hawker

 61

As we see the result, the utility value presents monotonically increasing when the throughput

increases. We can say this experiment helps achieve our expectation, and that the utility function

for throughput can reflect their relationship properly.

4.3. EVALUATING THE QOS BROKER

The QoS broker is implemented in the Netbeans with JDK 6 and AX-WS 2.0, and it’s deployed

in Tomcat 6.0. The broker is presented as a web service. Service consumers can invoke the

service by creating a web service reference. The architecture of the broker is presented in the

3.10. Also, the QoS broker and service consumer run on the same computer, which is Dell

Insprion 9200. The computer is configured with 1.8 Hz Intel Pentium processor and 1.25 GB of

RAM. The network adapter is Intel PRO/wireless LAN 2100.

The evaluation is to demonstrate that the broker can collect the QoS attributes from the service

providers, retrieve and measure the overall QoS value, and find the suitable service. Also, it

demonstrates that the result can be invoked and delivered to the consumer. The evaluation is

divided into the following two parts to fulfill the mentioned tasks.

4.3.1. Evaluating QoS Collector

The QoS collector is responsible for collecting various QoS values. This experiment collects

response time and throughput for each service, and retrieved that five times for each. Appendix

B presents the implemented algorithm and detailed experiment result.

 62

The result in Appendix B shows the response time and throughput for each service provider. In

the first execution of each service, it takes more time to get the response since the first

connecting to the service occupies more time than others. In the following executions, the

response time is stable and consistent. Also the throughput is calculated based on the response

time and the buffer size of service response.

4.3.2. Evaluating Utility Analyzer

The utility analyzer is part of the QoS Broker, which is responsible for retrieving the utility value

for each QoS attribute. The goal of the experiment is to demonstrate that the utility analyzer can

evaluate the QoS attribute from service providers and output the utility value for the service

selection. Appendix C presents the implemented algorithm and detailed experiment result.

The result in Appendix C shows that the utility analyzer can fulfill its task as we expected. The

utility value can be retrieved and reflect the real response time in service selection. The less

response time consumed, the higher utility value is calculated, and the more probability of

service is selected. The next experiment is designed to verify this assumption.

 63

4.4. EVALUATION OF UTILITY-BASED QOS BROKER IN WSMO

SEMANTIC SERVICE SELECTION

In this section, we evaluate the proposed WSMO semantic service selection architecture based

on the QoS information. A series of simulations are setup to be executed in the environment of

WSMX. The goal of these simulations is to demonstrate that the proposed solution reaches our

pre-defined objective, which is that the QoS information can be achieved in WSMO environment

and play an important role in the semantic web service selection.

This evaluation is to extend the previous experiment in service selection in the semantic

environment. In this section, the service selection mechanism will be implemented in semantic

description language. The two selection algorithms defined in Figure 3.11 and 3.12 will be

implemented and evaluated in the experiment. Also, to simplify the complexity, we only

consider the utility value of response time in the selection algorithm. Finally, we would like to

emphasize that this experiment extends the existing solution of hardware purchasing in the SWS-

challenge by applying QoS constraints.

4.4.1. Experimental Environment

The evaluation is designed to demonstrate the QoS value can affect the service selection in the

WSMO semantic environment. The experiment consists of examining four elements: service

providers, QoS broker, WSMO/WSMX architecture, and a service consumer. The architecture is

presented in Figure 3.4. There are three open source software applications need to complete this

 64

evaluation: WSMO studio, WSMX execution environment, and SoapUI simulating as a service

consumer.

First of all, the development environment WSMO studio and the semantic execution

environment should be downloaded and installed. The development environment, WSMO studio,

was first released by the WSMO research group in 2007 [46]. It is a GUI tool for developing

WSMO projects with semantic web service annotations. It is an open source project built upon

Eclipse platform, which can be extended by any third party. The studio can check the WSML

syntax while writing the code, which can help prevent the syntax errors in the editing stage.

As a semantic execution environment, WSMX provided the environment to process WSML files.

The execution environment can be accessed via a web service provided by WSMX. The

functionality, AchieveGoal, in the web service is responsible for fulfilling the execution task.

The steps involving with the evaluation are described as following:

Figure 4.7 Experimental Execution Flow

Step 1: Start QoS Broker in Netbeans/Tomcat environment.

Step2: Run the Broker and retrieve the overall QoS value.

Step3: Feed the overall QoS value to the QoSValue instance defined

 in the WSMO web service

Step4: Start the semantic execution environment – WSMX

Step5: Execute the WSMO goal.

Step 6: Analyze the result, and see if the expected service is selected.

 65

The service consumer for this evaluation is simulated in SoapUI as we stated before. It is an open

source freeware. Also, please note that we need step3 since the overall QoS utility value

retrieved in the QoS broker was not seamlessly fed to the selection algorithms in WSMO. The

overall utility value is manually updated to the semantic solution in this work.

The simple test for semantic web service solution was performed according to the above

execution flow shown in Figure 4.7 without considering any QoS constraints. The scenario and

test case result is shown in Appendix D.

4.4.2. Simulation 1: Service Selection Algorithm with a Base QoS Utility Value

For all the experiments of this section we used the goal in the way that all services meet the

requirement. In the first experiment, the algorithm presented in Figure 3.11 will be evaluated.

The goal of the experiment is to demonstrate the service selection can be impacted by the base

QoS utility value defined in the selection criteria. When the semantic solution is not configured

with QoS constraints, all the service providers meet the requirement and all the services are

supposed to be selected. However, after we add the QoS constraints, only the services which

meet the selection criteria can be selected. Therefore, we know which service selection can be

affected by the QoS constraints. We will setup three test cases to demonstrate this hypothesis.

In the first test case, a base value is setup for the selection criteria on purpose which should result

in selecting all the services. As the result of this test is shown in Table 4.1, all the services are

selected.

 66

Table 4.1 Result of Service Selection for Test Case one

 (For Selecting Service with the Utility Value Greater Than 80)

Service Providers The Overall

Utility Value

Selection Criteria Service Selected

Bargainer 87.343 > 80 selected

Hawker 83.169 > 80 selected

Rummage 88.004 > 80 selected

As we can see in Table 4.1, all services are selected based on the selection criteria. Now, in the

test case two, we change the selection criteria to be greater than 85, the services with the overall

utility value beyond this value should be selected. Table 4.2 shows the result of this test case.

The service Bargainer and Rummage are selected since they have the utility value greater than

85. The result is same as we expected.

Table 4.2 Result of Service Selection for Test Case Two

(For Selecting Services with the Utility Value Greater Than 85)

Service Providers The Overall

Utility Value

Selection Criteria Service Selected

Bargainer 87.343 > 85 Selected

Hawker 83.169 > 85 Not Selected

Rummage 88.004 > 85 Selected

 67

In the last the test case, the selection criteria is setup to be greater than 88 in order to make the

service with the highest utility value to be selected. Table 4.3 presents the result of this test case.

The service Rummage is selected since it has the highest utility value. The result meets the

expectation we made before.

Table 4.3 Result of Service Selection for Test Case Three:

 (For Selecting Services with the highest Utility Value)

Service Providers The Overall

Utility Value

Selection Criteria Service Selected

Bargainer 87.343 > 88 Not Selected

Hawker 83.169 > 88 Not Selected

Rummage 88.004 > 88 Selected

4.4.3. Simulation 2: Service Selection Algorithm with the Criteria for the Service with

Highest QoS Value Selected

In this experiment, we evaluate the second service selection algorithm in WSMO context, which

presented in Figure 3.12. The goal of this experiment is to validate this algorithm and

demonstrate the rank criteria defined in the algorithm can work for the service selection. This

algorithm is extended the algorithm in Figure 3.11 by adding the ranking criteria with highest

QoS utility value.

 68

To achieve this goal, we design three test cases by executing the selection mechanism 50 times.

In the first test case, we do not set any extra factor to impact the result of service selection, and

expect that the service selection is reflected by real utility value of the involved services. In the

second case, we introduce a selection factor (α) to the service Bargainer, which can make this

service selected more. In the third case, we adjust this selection factor so we can see if the

affected service will be selected much more than the other two services in the long run.

In the first test case, the service request sequence is executed three times. Each sequence

executes the selection 50 times. Figure 4.8-4.10 presents the selection result. This result shown in

figures reflected the real status of the utility value for each service, and it is as we expected. Also

in each execution time, the utility value of each service is different.

Figure 4.8 Service Selection Sequence A in WSMO Environment

(without extra selection factor)

 69

Figure 4.9 Service Selection Sequence B in WSMO Environment

(without extra selection factor)

Figure 4.10 Service Selection Sequence C in WSMO Environment

(without extra selection factor)

 70

In the long run the number of selection between three services is random. Table 4.4 concludes

the service selection number the above three request sequences and shows that the service

selection in the long run is random.

Table 4.4 Service Selection Result for Three Request Sequence

Service Request

Sequence

Service Rummage

Selected

Service Hawker

Selected

Service Bargainer

Selected

Sequence A 14 19 17

Sequence B 12 19 19

Sequence C 18 18 14

In the second test case, an extra selection factor α is introduced. In this case, we set α equal 1.005,

and only add the factor to the service Baigainer. For the each execution, the utility value of

service Bargainer multiplies with the value of α. Thus the service Bargainer is expected to be

selected more than the others. Figure 4.11 presents the result of this test case. The result shows

that the service Rummage is selected 13 times, the service Hawker is selected 16 times, and the

service Bargainer is selected 21 times. This result meets our expectation.

 71

Figure 4.11 Service Selection Sequence in WSMO Environment

(with extra selection factor α =1.005)

In the third test case, this extra factor α is adjusted. The value of α is increased to be 1.01. Also

similar to the second test case, only the service Bargainer is impacted with this factor. Thus, in

this case, we expect the service Bargainer will be selected much more than others. Figure 4.12

shows the result that the service Rummage is selected 7 times, the service Hawker is selected 19

times, and the service Bargainer is selected 24 times. The result is same as we expected.

 72

Figure 4.12 Service Selection Sequence in WSMO Environment

(with extra selection factor α =1.01)

4.5. SUMMARY

In this section, several experiments are conducted in order to evaluate our proposed architecture

for QoS-based dynamic service selection. The utility functions regarding to the QoS information

was first evaluated. The experiments demonstrate the utility functions can measure the QoS

information for the service selection properly. Also, the service selection in the WSMO semantic

environment was evaluated. Two experiments were conducted to demonstrate feasibility and

efficiency of the semantic-based selection algorithms proposed in Chapter three. By analyzing

the experiment results, we can verify that the proposed architecture can achieve the tasks of

dynamic service selection based on the QoS parameters in the semantic context.

 73

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter provides a conclusion for this work, and discusses some future works.

5.1. CONCLUSION

The topic of Semantic Web Service (SWS) has drawn great interest from both academia and the

IT industry in recent years. There are several SWS challenges proposed by organizations who

conduct the research on SWS. These organizations offer a series of SWS challenge scenarios to

attract the researchers who will help contribute to their solutions.

This thesis discussed the topic of utility-based QoS for dynamic web service selection in the

semantic context and proposed the architecture to achieve this task. It introduced utility functions

to measure the QoS information. It also implemented a QoS broker to collect the QoS

information and analyze its overall utility value. It applied this QoS broker into the WSMO

environment to achieve the semantic service selection task based on the retrieved QoS value.

The proposed architecture with utility functions is designed to employ more QoS parameters.

The dynamic parameters (i.e. response time and throughput) are used and tested in this work.

 74

However, the other dynamic QoS attributes (e.g. availability, reputation) can be retrieved and

merged into the overall utility function by considering the appropriate weight.

Moreover, a series of experiments were designed to evaluate this proposed architecture. The

experiments were conducted based on the research on dynamic service selection in the semantic

environment. The QoS information was successfully collected in the experiments, and the utility

value of the QoS attributes was measured by applying the proposed functions properly.

Finally, the proposed model of dynamic service selection based on the QoS constraints was

verified successfully in the WSMO semantic architecture. Two algorithms for semantic service

selection were implemented and tested in the evaluation experiments. In summary, the

experiments demonstrate the architecture can achieve the predefined tasks as expected. Also, the

method proposed for modeling QoS parameters can be simply extended to capture more static

and dynamic QoS parameters and use them for dynamic web service selection in the semantic

context.

5.2. FUTURE WORK

There are still many challenges in SWS. In our future work, we would like to conduct our

research in two main directions. One is the service composition in the semantic environment.

Another is addressing the interoperability problem in the heterogeneous environment of SWS.

We’ll investigate how the SWS can solve these problems.

 75

Web service composition in SOA has gained much interest in recent years. A single web service

sometimes is incapable of performing some complex task. There should be a possibility to find a

combination of existing web services that could fulfill such tasks. Web service composition is

such a mechanism for creating this service combination to achieve the requester’s goal [47]. It

requires identifying a set of suitable services that constitute a composite service.

There are some approaches to achieve the service composition in the traditional SOA framework.

These approaches are designed static service resources. The services are already known to the

consumers and the service execution flow is predefined. However, the problem is complicated

by the fact that the services may be uncertain and dynamic. When compositing services for the

purpose of achieving some goal, services could be discovered and bound during the running time.

These current approaches can’t achieve such tasks due to the lack of automation.

The SWS can solve such problems, since it aims to achieve automatic tasks by providing

semantic information. Therefore, another one of our future works is to investigate how the SWS

can achieve dynamic service composition.

Furthermore, the distributed software systems are becoming increasingly complicated because of

more complicated business environments. These systems present the characteristic of

heterogeneity, which means incompatibilities in various different categories (platform, software,

message format, etc.). One of the challenges in the heterogeneous systems is the interoperability.

 76

Interoperability is a process to make heterogeneous systems be able to understand and

communicate each other. The purpose of interoperability is to solve the incompatibilities in the

heterogeneous systems. For example, to achieve the efficient communication between two

different applications, it requires the message delivery. Nevertheless, the message format could

not be interpreted by any other applications. Thus, the developers need to compromise a message

format mapping between two applications, which only convey syntactical information

description. The current web service technology can easily achieve this task. However, if there

are more than two heterogeneous systems intertwined, the complexity raises sharply, which is

much more than the notion of one plus one equals two. Obviously, the technologies only with

syntactical support are reluctant to fulfill this task.

Thus SWS aims to solve such interoperability issues. This is another topic of our future work.

 77

APPENDIX A

SERVICE VENDERS

*Note that the GTIN provides a (fictious) global unique product identifier!

Table A.1 Product Information Provided by All Vendors

Rummage

Product

name

Mac

Book 13”

Mac

Book 13”
HP NX6325 IBM X41 iSight

Creative

NX Ultra

Web cam

HP-Docking

Station

Categor

y
Notebook Notebook Notebook Notebook

Web_ca

m
Web_cam

Docking_statio

n

Product

specs

13” flat

screen

1.83 GHz

Intel Core

Duo

Memory :

512 MB

DDR2 –

SO-

DIMM

HDD : 60

GB

color :

white

13” flat

screen

2.0 GHz

Intel Core

Duo

Memory :

1 GB

DDR2–

SO-

DIMM

HDD:

100GB

color :

black

15,0" / XGA

(1024 x 768)

Pixel

AMD Turion

64 X2, 1600

MHz

512 MB

DDR2-RAM

80 GB HDD

Double Layer

DVD+/-

RW/DVD-

ROM

ATI Radeon

Xpress 1150

Ethernet

10/100/1000B

-TX

56K Modem

WLAN

802.11a

WLAN

802.11b

12,1"

XGA TFT

Intel

Pentium

M 758 1,5

GHz

1 GB

DDR2-

SDRAM

40 GB

HDD

DVD/

CD-RW

56K V.92

Modem

Integrated

Intel PRO

1000

Gigabit

Ethernet

IBM

11b/g

Wireless

VGA 640

x 480

No

specificatio

n

for NX9XXXX

series

(00000009,

00000007)

 78

WLAN

802.11g

Bluetooth

Windows XP

Professional

GTIN 00000001 00000002 00000005 00000008 00000011 00000014 00000017

Price
$ 1,099.0

0

$ 1,699.0

0
$ 1,057.00

$ 1,999.9

9
$ 149,00 $ 82,99 $ 239,00

Hawker

Product

name

Mac Book

13”
HP NX6310 HP NX9000

Logitech

QuickCam

Express

Incase

Neoprene

Sleeve 13”

IBM-

Dockingstation

Category Notebook Notebook Notebook Web_cam Accessory Docking_station

Product

specs

13” flat

screen

2.0 GHz

Intel Core

Duo

Memory :

512 MB

DDR2– SO-

DIMM

HDD : 80

GB

color : white

15" TFT

Intel Duo

T2300+

1.66GHz

Centrino

512MB

DDR-RAM

60GB HDD

DVD

Burner

Wlan

Windows

XP

15" TFT XGA

Pentium4-M

2.2 GHz

Memory : 256

MB DDR-

RAM

HDD: 40 GB

CD-RW /

DVD-ROM

Modem

EtherNet

(10MBit), Fast

EtherNet

(100MBit)

WLAN

802.11g

Windows XP

Professional

VGA 352 x

288

Neoprene

sleeve

for X41

(00000008)

GTIN 00000003 00000006 00000009 00000012 00000015 00000018

Price $ 1,349.00 $ 905.99 $ 857.00 $ 23,90 $ 29,95 $ 199,00

Bargainer

Product

name

Mac Book

13”
HP NX9420

Mac Book

13”

Airport

Extreme

Base station

IBM-

Dockingstation

Fjutsi Siemens

Dockingstation

Category Notebook Notebook Notebook Networking Docking_station Docking_station

Product

specs

13” flat

screen

17"

WXGA+

13” flat

screen

WLAN-

Router

docking station

for X41
No specification

 79

2.0 GHz

Intel Core

Duo

Memory : 1

GB DDR2–

SO-DIMM

HDD : 100

GB

color :

white

TFT

(1440×900)

Centrino

Duo

1.83GHz

1GB DDR2-

RAM

100GB

HDD

DVD+/-RW

Windows

XP

Profesional

Modem

WLAN

BlueTooth

2.0 GHz

Intel Core

Duo

Memory : 2

GB DDR2–

SO-DIMM

HDD : 120

GB

color: black

802.11b and

g compatible

transfer rate

up to 54

Mbps

(00000008)

GTIN 00000004 00000007 00000010 00000013 00000016 00000019

Price $ 1,449.00 $ 1,249.99 $ 2,049.00 $ 199,00 $ 269,95 $ 234,00

 80

APPENDIX B

QoS Collector for Response time Implemented in JAVA

The algorithm of retrieving response-time in QoS collector described in Chapter three is

implemented in Java as following:

Figure B.1 Implemented QoS response-time collector in Java

try{

 QoSResponseTimeMonitor QosRTM = null;

 for(int i=0; i<5; i++){

 QosRTM = new QoSResponseTimeMonitor();

 QosRTM.start();

 BargainerService bs = new BargainerService();

 BargainerPortType bpt = bs.getBargainerPort();

 ProductList pl = bpt.listProducts(ProductCategory.NOTEBOOK);

 QosRTM.stop();

 long timeElapsed = QosRTM.getElapsedTime();

 System.out.println("timeElapsed:"+timeElapsed);

 }

 }

 catch(Exception ex){}

 81

Experiment Result for Evaluating QoS Collector

In this experiment, we collect the response time for each service, and retrieved that five times for

each. The data collected is presented in the following figures.

Table B.1 Experiment Result: the QoS information for Service Bargainer

of Execution Response Time(ms) Throughput (kb/sec)

1 2.664 0.8314

2 0.651 3.4024

3 0.691 3.2054

4 2.323 0.9535

5 0.451 4.9113

Table B.2 Experiment Result: the QoS information for Service Hawker

of Execution Response Time(ms) Throughput (kb/sec)

1 2.754 0.8830

2 0.491 4.9531

3 0.531 4.58

4 0.44 5.2727

5 0.391 6.2199

 82

Table B.3 Experiment Result: the QoS information for Service Rummage

of Execution Response Time(ms) Throughput (kb/sec)

1 2.664 0.8314

2 0.651 3.4024

3 0.691 3.2054

4 2.323 0.9535

5 0.451 4.9113

 83

APPENDIX C

Utility Analyzer for Response Time Implemented in Java

The algorithm of the utility analyzer is defined in the Chapter three and it is implemented in Java

language in the following figure.

Figure C.1 Implementation of The utility calculator (service Bargainer) in Java

QosAttribute qosAttr = new QosAttribute();

 int Br = 1; //1,2,4

 double e = 2.71828;

 double Kr = 100*(1 + Math.pow(e,Br)) / Math.pow(e,Br);

 double qosUtility = 0.0;

 double r = qosCollector.getBargainerQoSResponseTime ()/1000;

 qosUtility = (Kr * Math.pow(e,(-r +Br))) /(1 + Math.pow(e,(-r +Br)));

 qosAttr.setResponseTime(r);

 qosAttr.setUtilityValue(qosUtility);

 84

Experiment Result Evaluating Utility Analyzer

 Table C.1 Utility for Service Bargainer

of

Execution

Utility for

Response Time

Utility for

Throughput

The Overall Utility

1 21.78 12.322 17.997

2 80.209 75.115 78.171

3 78.877 72.889 76.482

4 28.769 16.482 23.854

5 80.871 76.188 78.998

Table C.2 Utility for Service Hawker

of

Execution

Utility for

Response Time

Utility for

Throughput

The Overall Utility

1 20.182 14.078 17.740

2 85.433 83.890 84.816

3 84.144 82.756 83.589

4 87.059 85.004 86.236

5 88.599 85.730 87.451

Table C.3 Utility for Service Rummage

of

Execution

Utility for

Response Time

Utility for

Throughput

The Overall Utility

1 23.11 9.152 17.527

2 87.659 17.017 59.402

3 86.710 14.814 57.952

4 88.630 19.650 61.038

5 88.286 18.669 60.439

 85

APPENDIX D

This simple test is designed for semantic web service solution executed in WSMO environment,

which is followed the execution flow shown in Figure 4.7. The test has no any QoS constraints

involved. The scenario and test case result is shown in Appendix D. In this case, the goal aims to

find a notebook of Apple Mac. The requirement is described as following:

1. Processor: Intel Duo Core Processor 2.0 GHz

2. Memory: at least 512 MB RAM

3. Hard Disk: at least 120 GB HDD

4. Piece: at least 2000 $

The capability in the WSMO goal is defined as in the following Figure

 86

Figure D.1 Capability Definition for Notebook Purchasing

Also, by analyzing all the products from three vendors, we can easily know the product

00000010 offered by Bargainer can meet this requirement. The figure 4.9 and 4.10 shows the

service discovery executed in SoapUI and output message in WSMX monitor respectively. And

the result is same as our expectation.

capability GoalA2Capability

 nfp

 _"http://www.wsmo.org/goal/discovery/instancebased/mainElements" hasValue {"?x"}

 endnfp

 postcondition

 definedBy

 (?x[

 po#processorType hasValue po#intelCoreDuo,

po#processorGHz hasValue ?procGhz,

 po#price hasValue ?price, po#color hasValue ?color,

 po#hddGB hasValue ?hddGB,

po#memoryMB hasValue ?memMB] memberOf po#Notebook

 and ?procGhz = 2.0

 and ?memMB >= 512

 and ?hddGB >= 120

 and ?price > 2000

).

 87

Figure D.2 Service Selection result Shown in WSMX Message Window.

 88

REFERENCES

[1] J.A.F. da Silva, N. das Chagas Mendonca, “Dynamic invocation of replicated Web

services”, In Proceedings of the WebMedia and LA-Web, pp. 22 – 29, Brazil, 2004

[2] Yijun Chen, Abdolreza Abhari, “An agent-based framework for dynamic web service

selection”, In Proceedings of the 2008 Spring simulation multiconference, no. 6, Ottawa,

Canada, 2008

[3] E.M Maximilien and M.P. Singh, “A framework and ontology for dynamic Web services

selection”, International Journal of IEEE Internet Computing, vol. 8, pp. 84 – 93, IBM Corp.,

USA, Sep. 2004

[4] J. Kopecký and E. Simperl, “Semantic web service offer discovery for e-commerce”, In

Proceedings of the 10th international conference on Electronic commerce, vol. 342, no. 29,

Innsbruck, Austria, 2008

[5] D. Bachlechner, “Toward a Semantic Web service technology roadmap”, In

Proceedings of Research Challenges in Information Science(RCIS 2008), pp. 17 – 28,

Marrakech, Sep 26, 2008

[6] X. Wang, M. Hauswirth, T. Vitvar, and M. Zaremba, “Semantic web services selection

improved by application ontology with multiple concept relations”, In

Proceedings of the 2008 ACM symposium on Applied computing, pp. 2237-2242, Ceara,

Brazil, 2008

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28da%20silva%20%20j.a.f.%3Cin%3Eau%29&valnm=da+Silva%2C+J.A.F.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20das%20chagas%20mendonca%20%20n.%3Cin%3Eau%29&valnm=das+Chagas+Mendonca%2C+N.&history=yes
http://portal.acm.org/author_page.cfm?id=81414614424&coll=GUIDE&dl=GUIDE&trk=0&CFID=102695282&CFTOKEN=60692168
http://portal.acm.org/author_page.cfm?id=81337487691&coll=GUIDE&dl=GUIDE&trk=0&CFID=102695282&CFTOKEN=60692168
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28maximilien%20%20e.m.%3Cin%3Eau%29&valnm=Maximilien%2C+E.M.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20singh%20%20m.p.%3Cin%3Eau%29&valnm=Singh%2C+M.P.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentIssue.jsp?punumber=4236
../Winter2009/Thesis/Papers/Semantic%20web%20service%20offer%20discovery%20for%20e-commerce/author_page.cfm
../Winter2009/Thesis/Papers/Semantic%20web%20service%20offer%20discovery%20for%20e-commerce/author_page.cfm
../../../../../../search/searchresult.jsp

 89

[7] J. Cardoso, “Discovering Semantic Web Services with and without a Common Ontology

Commitment”, In Proceedings of the IEEE Services Computing Workshops, pp. 183 –

190, Washington, DC, USA, 2006

[8] G. Yeom and D. Min, ” Design and implementation of Web services QoS broker”, In

Proceedings of Next Generation Web Services Practices(NWeSP 2005), p.2, Seoul, South

Korea, Aug 2005.

[9] D.A. Menasce and V. Dubey, “Utility-based QoS Brokering in Service Oriented

Architectures”, In Proceedings of IEEE International Conference on Web Service (ICWS 2007),

pp. 422 - 430, Salt Lake City, UT, 2007

[10] M.A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A QoS broker based architecture

for efficient Web services selection”, In Proceedings of IEEE International Conference on

Web Services (ICWS 2005), vol.1, pp. 113 – 120, Que., Canada, 2005

[11] C. J. Acuña and E. Marcos, “Modeling semantic web services: a case study”, In

Proceedings of the 6th international conference on Web engineering, vol. 263, pp. 32 -

39, California, USA 2006

[12] RDF Semantics, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/, last visited Aug 29,

2010

../../../../../search/searchresult.jsp
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.Gwyduk%20Yeom.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Dugki%20Min.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10610
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28menasce%20%20d.a.%3Cin%3Eau%29&valnm=Menasce%2C+D.A.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20dubey%20%20v.%3Cin%3Eau%29&valnm=Dubey%2C+V.&history=yes
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4279552
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.Serhani,%20M.A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Dssouli,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Hafid,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Sahraoui,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=10245
../Winter2009/Thesis/Papers/Modeling%20semantic%20web%20services%20a%20case%20study/author_page.cfm
../Winter2009/Thesis/Papers/Modeling%20semantic%20web%20services%20a%20case%20study/author_page.cfm
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

 90

[13] Resource Description Framework (RDF): Concepts and Abstract Syntax,

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, last visited Aug 29, 2010

[14] K. Kritikos and Dimitris Plexousakis, “OWL-Q for Semantic QoS-based Web Service”,

In Proceedings of Fifth European Conference on Web Services, pp. 181 – 190, Halle, Germany ,

2007

[15] OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/, last visited

Aug 29, 2010

[16] I. Toma, D. Foxvog, and M.C. Jaeger, “Modeling QoS characteristics in WSMO”, In

Proceedings of the 1st workshop on Middleware for Service Oriented Computing (MW4SOC

2006), vol. 184, pp. 42 – 47, Melbourne, Australia, 2006

[17] M. Hanafy and M. Fakhry “A Proposed Architecture for Learning Object Selection

and Discovery Based on WSMO”, In Proceedings of 4th International Conference on Next

Generation Web Services Practices, pp. 10 – 14, Seoul , Dec 2008

[18] D. Bachlechner, “Toward a Semantic Web service technology roadmap”, In Proceedings

of Second International Conference on Research Challenges in Information Science, pp. 17 –

28, Marrakech, 2008.

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4399722
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4399722
http://www.w3.org/TR/owl-guide/
http://portal.acm.org.ezproxy.lib.ryerson.ca/author_page.cfm?id=81100415635&coll=ACM&dl=ACM&trk=0&CFID=28289093&CFTOKEN=90325970
http://portal.acm.org.ezproxy.lib.ryerson.ca/author_page.cfm?id=81100499589&coll=ACM&dl=ACM&trk=0&CFID=28289093&CFTOKEN=90325970
http://portal.acm.org.ezproxy.lib.ryerson.ca/author_page.cfm?id=81100654836&coll=ACM&dl=ACM&trk=0&CFID=28289093&CFTOKEN=90325970
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28hanafy%20%20m.%3Cin%3Eau%29&valnm=Hanafy%2C+M.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20fakhry%20%20m.%3Cin%3Eau%29&valnm=Fakhry%2C+M.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4700361
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4700361
../../../../../search/searchresult.jsp
../../../../../xpl/RecentCon.jsp

 91

[19] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl, version

1.1, last visited Aug 30, 2010

[20] The SWS Challenge, http://sws-challenge.org, last visited Aug 30, 2010

[21] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/, version 1.1, last visited Aug 30, 2010

[22] UDDI Version 3.0.2, http://www.uddi.org/pubs/uddi_v3.htm version 3.0.2, last visited

Aug 30, 2010

[23] D. Cooney and P. Roe. “Mobile Agents Make for Flexible Web Services”, In

Proceedings of the Ninth Australian World Wide Web Conference, Australia, July 2003

[24] C. Petrie, T. Margaria, H. Lausen, and Mi. Zaremba, “Semantic Web Services

Challenge”, pp.13-27, Springer US, ISBN: 978-0-387-72495-9, 2009

[25] T. Margaria, “The Semantic Web Services Challenge: Tackling Complexity at the

Orchestration Level”, In Proceedings of 13th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS), pp. 183 – 189, Belfast, 2008

http://www.w3.org/TR/wsdl
http://sws-challenge.org/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.uddi.org/pubs/uddi_v3.htm
http://www.dcooney.com/
http://www.fit.qut.edu.au/~roe
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28margaria%20%20t.%3Cin%3Eau%29&valnm=Margaria%2C+T.&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4492860
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4492860

 92

[26] D. Fensel, H. Lausen, A. Polleres, J.d. Bruijn, M. Stollberg, D. Roman , and J. Domingue.

“Enabling Semantic Web Services: The Web Service Modeling Ontology”, pp.63-81, Springer-

Verlag New York, Secaucus, NJ, USA, ISBN: 3540345191, Nov, 2006

[27] Web Service Modeling Ontology (WSMO), D2v1.3., http://www.wsmo.org/TR/d2/v1.3/ ,

last visited Aug 30, 2010

[28] S. Li and J. Zhou, "The WSMO-QoS Semantic Web Service Discovery Framework", In

Proceedings of International Conference on Computational Intelligence and Software

Engineering (CiSE 2009) , pp. 1-5, Wuhan, China. Dec, 2009.

[29] J. Kopeck, D. Roman1, M. Moran and D. Fensel, “Semantic Web Services Grounding”,

In Proceedings of the Advanced Int'l Conference on Telecommunications and Int'l Conference on

Internet and Web Applications and Services, pp.127-127, Washington, DC, USA. 2006.

[30] WSML, http://www.wsmo.org/TR/d16/d16.1/v0.21/#sec:wsml-xml, version 0.21, last

visited Aug 30, 2010

[31] W. Hodges, “The Blackwell Guide to Philosophical Logic”, pp. 10-31, Blackwell press,

ISBN: 0631206930, 2001

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Dieter%20Fensel
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Holger%20Lausen
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Axel%20Polleres
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Jos%20de%20Bruijn
http://www.amazon.com/s/ref=ntt_athr_dp_sr_5?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Michael%20Stollberg
http://www.amazon.com/s/ref=ntt_athr_dp_sr_6?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Dumitru%20Roman
http://www.amazon.com/s/ref=ntt_athr_dp_sr_7?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=John%20Domingue
http://www.wsmo.org/TR/d2/v1.3/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362500
http://www.wsmo.org/TR/d16/d16.1/v0.21/#sec:wsml-xml
http://en.wikipedia.org/wiki/Wilfrid_Hodges

 93

[32] L. S. Cauman, “First-Order Logic: an introduction”, pp.1-10, Berlin, Germany,

ISBN: 0486683702, 1998

[33] O. Shafiq, M. Moran, E. Cimpian, A. Mocan, Mi. Zaremba and D. Fense, “Investigating

Semantic Web Service Execution Environments: A Comparison between WSMX and OWL-S

Tools”, In Proceedings of the Second International Conference on Internet and Web

Applications and Services (ICIW ‘07), p. 31, Morne, June 2007.

[34] M. Zaremba, T. Vitvar, M. Moran and T. Hasselwanter, “WSMX Discovery for SWS

Challenge”, Digital Enterprise Research Institute, National University of Ireland, Galway,

University of Innsbruck, Austria, Sep 01, 2008, available at http://sws-

challenge.org/workshops/2006-Athens/papers/DERI-sws-challenge-3.pdf

[35] G. Dai, X. Bai, and C. Zhao, “A Framework for Model Checking Web Service

Compositions Based on BPEL4WS”, In Proceedings of the IEEE International Conference on e-

Business Engineering, pp. 165 – 172, Hong Kong, China, 2007

[36] M. Wang, Z. Du, Y. Chen, S. Zhu, and W. Zhu, “Dynamic Dataflow Driven Service

Composition Mechanism for Astronomy Data Processing”, In Proceedings of the IEEE

International Conference on e-Business Engineering, pp. 596 – 599, Hong Kong, China. 2007

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4222895
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/RecentCon.jsp?punumber=4222895
http://sws-challenge.org/workshops/2006-Athens/papers/DERI-sws-challenge-3.pdf
http://sws-challenge.org/workshops/2006-Athens/papers/DERI-sws-challenge-3.pdf
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28dai%20%20guila%3E%3Cin%3Eau%29&valnm=Dai%2C+Guilan&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20bai%20%20xiaoyin%3E%3Cin%3Eau%29&valnm=Bai%2C+Xiaoying&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20zhao%20%20chongchon%3E%3Cin%3Eau%29&valnm=Zhao%2C+Chongchong&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28wang%20%20ma%3E%3Cin%3Eau%29&valnm=Wang%2C+Man&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20du%20%20zhihu%3E%3Cin%3Eau%29&valnm=Du%2C+Zhihui&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20chen%20%20yinon%3E%3Cin%3Eau%29&valnm=Chen%2C+Yinong&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20zhu%20%20shihu%3E%3Cin%3Eau%29&valnm=Zhu%2C+Shihui&history=yes
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20zhu%20%20weihu%3E%3Cin%3Eau%29&valnm=Zhu%2C+Weihua&history=yes

 94

[37] Z. Chen, J. Ma, L. Song, and L. Lian. “An Efficient Approach to Web Services

Discovery and Composition when Large Scale Services are Available”, In Proceedings of the

2006 IEEE Asia-Pacific Conference on Services Computing, pages: 34 – 41, Guangzhou,

Guangdong, China, 2006.

[38] W.T. Tsai, C. Fan, Y. Chen, R. Paul, and J. Chung, “Architecture classification for SOA-

based applications”, In Proceedings of the Ninth IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing, pp.295-302, Tempe, AZ, USA. 2006

[39] T. Yu, Y.Zhang, and K. Lin, “Efficient Algorithms for Web Services Selection with End-

to-End QoS Constraints”, International Journal of ACM Transactions on the Web (TWEB), vol.

1, no. 6, New York, NY, USA, May 2007

[40] Resource Description Framework (RDF), http://www.w3.org/RDF/, last visited Aug 30,

2010

[41] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, “The

Description Logic Handbook”, pp.1-5, Cambridge University Press, ISBN-10: 0521781760,

2003

[42] M. Kerrigan, “Web service selection mechanisms in the Web Service Execution

Environment (WSMX)”, In Proceedings of the 2006 ACM symposium on Applied

computing, pp. 1664 - 1668, Dijon, France 2006.

http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28zhumin%20che%3E%3Cin%3Eau%29&valnm=Zhumin+Chen&history=yes
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20jun%20m%3E%3Cin%3Eau%29&valnm=Jun+Ma&history=yes
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20ling%20son%3E%3Cin%3Eau%29&valnm=Ling+Song&history=yes
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20li%20lia%3E%3Cin%3Eau%29&valnm=Li+Lian&history=yes
http://www.w3.org/RDF/
author_page.cfm

 95

[43] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, “Utility functions in autonomic systems”,

In Proceedings of the First International Conference on Autonomic Computing, pp. 70 - 77, NY,

USA, 2004

[44] R.D. van der Mei and H.B. Meeuwissen “Modelling End-to-end Quality-of-Service for

Transaction-Based Services in Multi-Domain Environments”, In Proceedings of IEEE

International Conference on Web Services, pp.3 – 462, Washington, DC, USA, 2006

[45] D. Zuquim G. Garciz and M. Toledo, “Semantics-enriched QoS policies for web service

interactions“, In Proceedings of the 12th Brazilian Symposium on Multimedia and the

web, vol. 192, pp. 35 – 44, Natal, Rio Grande do Norte, Brazil, 2006

[46] WSMO Studio Users Guide V.1.27, http://www.wsmostudio.org/doc/wsmo-studio-ug.pdf,

last visited Aug 30, 2010

[47] R. Karunamurthy, F. Khendek and R.H. Glitho, “A Novel Business Model for Web

Service Composition”, In Proceedings of the IEEE International Conference on Services

Computing , pp. 431 – 437, Montreal, Que, CA, 2006

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.Walsh,%20W.E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Tesauro,%20G..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Kephart,%20J.O..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=Authors:.QT.%20Das,%20R..QT.&newsearch=partialPref
http://portal.acm.org.ezproxy.lib.ryerson.ca/author_page.cfm?id=81319490455&coll=ACM&dl=ACM&trk=0&CFID=91620064&CFTOKEN=33963410
http://www.wsmostudio.org/doc/wsmo-studio-ug.pdf
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28karunamurthy%20%20r%3E%3Cin%3Eau%29&valnm=Karunamurthy%2C+R.&history=yes
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20khendek%20%20f%3E%3Cin%3Eau%29&valnm=Khendek%2C+F.&history=yes
http://0-ieeexplore.ieee.org.innopac.lib.ryerson.ca/search/searchresult.jsp?disp=cit&queryText=%28%20glitho%20%20r.h%3E%3Cin%3Eau%29&valnm=Glitho%2C+R.H.&history=yes

 96

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2010

	QoS-based semantic web service selection
	Yijun Chen
	Recommended Citation

