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© Aroutchelvame Mayilavelane 2005

Master of Applied Science
Department of Electrical & Computer Engineering
Ryerson University ‘

Abstract

The hardware acceleration of the wavelet transform for real-time systems has
become an essential research field. In the first part of the thesis, an efficient architecture
that performs both forward and inverse lifting-based discrete wavelet transform is
proposed. The proposed architecture reduces the hardware requirement by exploiting the
redundancy in the arithmetic operation involved in DWT computation. The proposed
architecture does not require any extra memory to store intermediate results. The
proposed architecture consists of predict module, update module, address generation
module, control unit and a set of registers to establish data communication between
predict and update modules. The symmetrical extension of images at the boundary to

reduce distorted images has been incorporated in our proposed architecture as mentioned

in JPEG2000. The DWT architecture is proposed for both (5,3) wavelet and (9,7) wavelet.

Best-basis algorithm that is designed for signal compression and de-noising uses WPT to
select the best-basis node for a given additive cost function. In the second part of the
thesis, we propose the architecture for best-basis algorithm for images (2D signals) that
uses the proposed wavelet architecture to perform WPT decomposition. A new algorithm
to implement the natural logarithm function using Maclaurin series is proposed to
implement the cost function used for best-basis algorithm. These architectures have been
described in VHDL at the RTL level and simulated successfully using ModelSim
simulation environment. These architecures are implemented in Virtex II Pro FPGA

series of Xilinx.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Interest in wavelet transformations has greatly increased, as their applications
have become numerous such as image processing and image compression. Digital images
have become more comrﬁon in the multimedia world. The digital images replace their old
analog ancestors. One such application is found in digital cameras. In digital cameras,
one expects to inspect the result immediately after taking the picture. To support this
behavior, the picture has to be compressed, stored on a flash memory card, decompressed
and shown at LCD display in nearly real-time. Features like high-speed previews have to
be provided. Furthermore, one could expect to store more number of images on memory
stick. Therefore, efficient hardware image compression algorithms with excellent visual
properties are necessary.

Practical image data sequences normally contain a substantial amount of
redundancy. Redundancy in signals can appear in the form of smoothness of the signal or
in other words correlation between the neighboring signal values. The image sequence

that embeds redundancy can be presented more compactly if the redundancy is removed



by means of a suitable transform. A popular transform that has been used for years for
compression of digital still images and image sequences is the Discrete Cosine Transform
(DCT). The DCT transform uses cosine functions of different frequencies for analysis
and for decorrelation of data. The DCT provides signal frequency content into fixed,
equal bandwidth partitions. By providing only the frequency content of the signal, the
DCT is unable to represent non-stationary signal properties in the transform domain.
Often, images are non-stationary. To overcome this problem, the JPEG algorithm [1] uses
a block based transform in which DCT is applied to image block separately. Because
each block is transformed on an individual basis, there are often inefficiencies between
blocks. The Discrete Wavelet Transform (DWT) rectifies this problem by providing a
representation of a given image in both time and scale domains. Because of this, the
DWT has been shown to significantly outperform the DCT in image compression
applications, leading to their inclusion in the JPEG 2000 standard [2-3]. The DWT is a
reversible transform and can be either a “lossy” or “lossless” process depending on the
selection of wavelet. Besides image compression, DWT are also aptly suited for image
editing and progressive transmission applications since they provide a multiresolution
decomposition of a signal.

The DCT based JPEG algorithm yields good results of compression ratio till 10:1.
As the compression ratio increases, the quantization of the coefficients causes blocking
effects in the decompressed image. When compression ratio reaches 24:1, it only allows
the DC coefficients, which are the average of the pixels of an 8x8 block, to be encoded.
Consequently, the input image is approximated by a series of 8x8 blocks of local

averages, which is visually very annoying. For DWT followed by Embedded Zero Tree




encoding algorithm, in contrast, compressions of the ratios of 100:1 have been achieved,
while still yielding a reconstructed image with an acceptable quality.

The lifting scheme [4-7] has been introduced for efficient computation of the
DWT. Its main advantage with respect to the classical filter bank structure lies in its
better computational efficiency [24] and in the fact that it enables a new method for filter
design. Using the lifting scheme, it is easy to use integer arithmetic without encountering
problems due to finite precision or rounding. Applying the inverse transform in the lifting
scheme is very easy and, as long as the transform coefficients are not quantized, would
always result in a perfect reconstruction of the original picture.

Some of the applications of DWT are digital video compression,
telecommunications, signal and image processing and processing of non-stationary
signals in areas such as bio-medicine. In those applications, the computational burden on
the transform part is very high. To meet this additional burden in real-time applications,
the hardware design and implementation of these transforms has itself taken on much
importance. In this case, the high-computational parts of the program are designed in
hardware and loaded into reconfigurable hardware unit such as FPGA.

The performance of these applications can be increased if the transform provides
good spectral and temporal resolutions in arbitrary regions of the time-frequency plane.
This flexibility is provided by Wavelet Packet Transform (WPT). It is a generalized
representation of DWT which allows the further decomposition of the high-pass output
i.e. detailed information.

In WPT analysis, the signal of size N = 2" can be expanded in 2" different ways

and this number may be large. So, it is important to use an efficient method to find its



best-tree representation, i.e. the best-tree that minimizes certain additive cost function.
Coifman and Wickerhauser proposed a clas/sical entropy-based algorithm to find the best-
tree and their algorithm is called best-basis algorithm [8]. Best basis algorithm is
primarily designed to reduce the storage space needed for a signal and also it can be used
for de-noising. This algorithm looks for time-frequency representation of the signal in
wavelet packet or trigonometric basis. The entropy-based algorithm involves the
computation of logarithm function. The hardware implementation of logarithm function
and other elementary function is the performance bottleneck of the best-basis algorithm
in real-time systems. The higher the number of bits of precision is required by the
logarithm function, the more is the number of clock cycles required by the hardware.
Software routines applying techniques such as polynomial and rational
expressions have been used to evaluate the elementary functions such as logarithm
function [9]. Even though these techniques compute logarithm function with accurate
results, they are often too slow compared to the real-time applications. The hardware
implementation of the elementary functions have been developed as an alternative to the
software routines, providing high speed solutions implemented in dedicated hardware.
The CORDIC based algorithms [10-11] are considered to be one of the best hardware
based methods due to their low area requirements. The main drawback in this algorithm
is their approximate linear convergence of one radix-r digit per step, resulting in long
execution times for small radices and high precision. The latency can be reduced by
increasing the radix. However this method leads to an increase in the cost of

implementation with increase in radix.




This thesis has been broadly classified into two parts. In the first part of the thesis,
we propose an efficient architecture for DWT (WPT), using (5,3) and (9,7) wavelet
mentioned in JPEG2000, that implements lifting scheme. The proposed DWT (WPT)
architecture requires less hardware area and it does not require extra storage elements
such as memory and FIFO to store the intermediate results. In the second part of the
thesis, we propose architecture for best-basis algorithm for 2D signal or image. This part
of the thesis also includes a proposed algorithm and architecture for implementing natural
logarithm using Maclaurin series. The hardware design implements different techniques
such as pipelining, parallel operation modules, data reusability and special features of

FPGA to maximize its performance.

1.2 Research goal and tﬁe contribution of the Author

The computational complexity of DWT and best-basis algorithm is an obstacle for
using those in practical applications. Therefore, the hardware implementation of the
algorithm is desirable. The main objective of this thesis is to propose an efficient
architecture for DWT and best-basis algorithm. The contribution of the author is
described in the following:

e Proposing an efficient architecture for DWT or WPT using (5,3) and (9,7)
wavelets that requires less hardware area and does not require extra storage
devices to store the intermediate results,

e Proposing a novel algorithm and architecture for natural logarithm function using

Maclaurin series,



e Proposing an efficient architecture for best-basis algorithm for 2D signal or image
which includes detailed architecture description for calculation of cost-function,
address generation for best-basis RAM and calculation of best-tree,

e Implementing the design in VHDL,

e Performing simulations in ModelSim to verify functional correctness of the
design,

e Implementing the design in Xilinx Virtex II Pro FPGA using Xilinx
Implementation tool,

e Comparing the performance of the DWT architecture with some existing popular
architectures,

e Performing simulations with large picture size for different precision of filter
coefficients and analyzing the error variation for both (5,3) and (9,7) wavelets.

e Performing simulations for best-basis algorithm for different images or 2D signals

to verify the architecture.

1.3 Organization of the thesis

The main objective of the thesis is to propose an efficient architecture for DWT or
WPT, natural logarithm function and the best-basis algorithm. The thesis is organized as
follows:

Chapter 2 starts with the theoretical background, briefly introducing the DWT and
the best-basis algorithm. The lifting scheme based DWT computation results in less
number of arithmetic operations compared to the filter-based DWT computation. The

lifting-based DWT and the best-basis algorithm with detailed example are described in




this chapter. Detailed survey of some existing lifting-based DWT architectures and
hardware implementation of elementary functions such as natural logarithm is presented
in this chapter.

Chapter 3 proposes an efficient architecture for DWT or WPT that requires less
hardware area and does not require extra storage devices to store intermediate results.
The DWT architecture for both (5,3) and (9,7) wavelets is described in detail in this
chapter.

Chapter 4 proposes architecture for best-basis algorithm for 2D signal or image.
This chapter also discusses in detail the architecture for calculating cost-function,
generating addresses for best-basis RAM and determining best-tree. The architecture for
two cost functions, Threshold function and Shannon function, is also proposed. Also, an
algorithm and architectﬁre to implement natural logarithm function using Maclaurin
series is proposed in this chapter.

Chapter 5 presents results and discussion for the DWT or WPT architecture and
the best-basis algorithm architecture.

Chapter 6 summarizes the important contributions and results in the proposed

architectures and lists out the future work related to this research.



CHAPTER 2

BACKGROUND

This chapter starts with a brief introduction of discrete wavelet transform and
lifting scheme. It also provides survey of some of the existing DWT architectures. In the
next section, some of the existing hardware implementation of elementary functions such
as logarithm function is discussed. In the last section, the best-basis algorithm is briefly

discussed with an example.

2.1 Discrete Wavelet Transform (DWT)

2.1.1 Introduction

The idea of the DWT is mainly based on the sub-band coding scheme. In the
discrete time function, the filters of different cutoff frequencies are used to analyze the
signal at different scales. The signal is passed through a series of high pass filters to
analyze the high frequencies, and it is passed through a series of low pass filters to
analyze the low frequencies. The resolution of the signal, which is a measure of the

amount of detail information in the signal, is changed by the filtering operations, and the




scale is changed by upsampling and downsampling (subsampling) operations.
Subsampling a signai corresponds to reducing the sampling rate, or removing some of the
samples of the signal. Upsampling a signal corresponds to increasing the sampling rate of
a signal by adding new samples to the signal. In discrete signals, frequency is expressed
in terms of radians. Accordingly, the sampling frequency of the signal is equal to 2x
radians in terms of radial frequency [12-15].

The DWT analyzes the signal at different frequency bands with different
resolutions by decomposing the signal into a coarse approximation and detail information.
The decomposition of the signal into different frequency bands is simply obtained by
successive highpass and lowpass filtering of the time domain signal. The original signal
x(n) is first passed through a halfband highpass filter h(n) and a lowpass filter g(n) [12-
15]. After the filtering, haif of the samples can be eliminated according to the Nyquist’s
rule, since the signal now has a highest frequency of x /2 radians instead of z. The signal
can, therefore, be subsampled by 2, simply by discarding every other sample.

The DWT coefficient can be obtained for 2D signals such as image as explained
below. The DWT decomposes the image/signal in the space-resolution domain. The one
stage of DWT computation produ;:es four sub-images representing an approximated
image (LL) and the details along directions (HH, HL and LH) as shown in Fig.2.1. The
operations involved are low-pass filtering (g(n)), high-pass filtering (h(n)) and down-
sampling by 2 to keep only necessary information [14]. In one-level decomposition, the
above operation is performed on the rows of the input, x(n), to generate the high-pass (H)

and low-pass (L) outputs. The same operation is performed on the H and L values to



generate “HH and HL” and “LH and LL” output respectively. The LL outputs are fed to

the next level of decomposition.

h(n) > 2l —» HH

hm) > 24
x(n) g(n) 2l —» HL

h(n) [ zi — LH

—> om) [ 24>

—> g(n) 2l —> LL

L
Fig.2.1: DWT for 2D Signals

2.1.2 Lifting Scheme

Wavelets discussed in the previous section are referred to as first generation
wavelets. Second generation wavelets are much more flexible and used to define wavelet
bases for bound intervals. The main difference between first and second generation
wavelets is that it does not involve convolution. Lifting scheme can be used to construct
second generation wavelet.

The basic idea of the lifting scheme is very simple — try to use the correlation in
the data to remove redundancy. The 1D DWT decomposition using lifting scheme
consists of three stages: split, predict, update and scaling [4-7] as shown in Fig.2.2. The
2D DWT decomposition can be easily achieved by applying the lifting scheme both row-

wise and column-wise.
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Fig2.2: Lifiing Scheme

In the first stage (split), the input data is divided into two disjoint sets of samples.
There is no restriction on splitting the data but the only thing needed is some procedure to
join the two samples to obtain the original data [4-7]. One of the possibilities of the split
of the input x;, is grouping the even indexed samples x;2 and the odd indexed samples
xj21+1 in different sets.

In the second stage (predict), one set of samples can be used to predict the other
set of samples based on the correlation present in the input signal [4-7]. The prediction
operator ‘P’ can be constructed based on the correlation structure of the input data.
Practically, it might not be possible to accurately predict the one set of sample based on
the other set of samples. Thus, the set of samples to be predicted or detailed co-efficient
can be replaced with the difference between itself and the predictor output. If the
samples ‘X21’, “X21+1” and “Xai+2” considered in the split stage are highly correlated, one can
easily device the predictor function uis'ing the even samples as variables to predict the odd
samples. To predict the odd sample X;21+1°, the predictor function can be the average of
the neighboring sample on the left “x;»’ and the other sample on the right ‘Xj21:2.” The

detail co-efficient can be given by di.11 = Xj21+1 — Y2(Xj 21 + X 2142).
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The update stage utilizes the key properties of the coarser signals i.e. they have
the same average value of the signal [4-7]. Thus the update stage implements this
property by finding the update function ‘U’ using the detailed coefficients with the
sample used for predictor function. In our case, this can be achieved using the equation
Xj1,1 = X521 + Ya(djor g o1+dj ).

In the scaling stage, the even samples are multiplied by 1/K and odd samples by K
in the case of forward transform. The inverse DWT is obtained by traversing in the
reverse direction, changing the factor K to 1/K and factor 1/K to K.

All these values can be computed-in-place i.e. the even index locations can be
overwritten with averages (coarse coefficient) and the odd ones with the detailed
coefficient.

One can immediately build inverse scheme for it. Again the inverse lifting scheme
has three stages: undo update, undo predict and merge.

Given dj.;; and xj.1;, one can recover the even samples by simply subtracting the
update information as X;j 21 = Xj.1,1 - %4(dj.1,-1 + dj.1,1) — undo update.

Given x;21 and dj.;), one can recover the odd samples by adding the predict
function as shown X;j1+1 = dj.1; + Y2(Xj21 + X;j21+2) — undo predict.

Given both odd and even samples, one has to simply zipper them together to
recover the original si gﬁal - Merge.

The main advantages [4-7] of the lifting scheme are:

e Lifting scheme is fast and easy to implement in hardware because it replaces the

Fourier transform.
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¢ Lifting can be done in-place, therefore no auxiliary memory needed. At every
stage, the calculated value replaces the old one.

o The inverse transform can be immediately found by undoing the operations of the
forward transform. It can be realized by reversing the order of the arithmetic

operation.
2.1.3 Boundary Treatment

Real-world signals do not extend infinitely in time or space, but are limited to a
finite interval. So when the signal comes close enough to the edge, the filters need some
sample values that are not defined. If zero padding is employed to avoid the boundary
discontinuity, the transforrﬁ results in large coefficients. This will induce artifacts in the
image and severe encoding inefficiency. As a solution to this problem, classical signal
processing extends the data for the computations near the boundary by either periodic
extension or boundary extension.

In periodic extension, the finite signal is extended periodically by putting copies
of itself in front of and behind. the original signal. After the wavelet transform, the
coefficients that lie outside of the interval of defined signal is simply discarded. These
discarded coefficients can be recovered easily because they are the same as the retained
coefficients. However, unless the first and the last samples have the same value, we
introduce unwanted discontinuities at the boundaries of the original signal. These
.discontinuities will locally enlarge the wavelet coefficients and make compression of the

signal more difficult.
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An easy solution for handling the finite length signals is to extend them such that
they become symmetric and periodic [16]. Symmetric extension consists in extending the
signal with the signal samples obtained by a reflection of the signal centered on the first
sample for extension to the left, and in extending the signal with the signal samples

obtained by a reflection of the signal centered on the last sample for extension to the right.

2.1.4 DWT Architectures

Several architectures have been proposed for hardware implementation of
convolution-based DWT [17-21] because the DWT computation is basically the filter
convolution as explained in Section 2.1.1. After introduction of second generation
wavelets using lifting scheme, it has been used widely in DWT architecture because it
requires fewer arithmetic computations and provides faster and efficient filtering of the
DWT than that of the convolution-based DWT architecture. Thus, using lifting-based
DWT architecture outperforms convolution-based DWT architectures. Also, the line-
based method of computing DWT has been proposed to reduce the internal memory
requirement from a frame size to a few line buffers with proper memory management
[22-23]. This section discusses some of the efficient architectures for 2D DWT using the
lifting scheme.

The architecture described in [24] calculates forward and inverse 2D DWT in
row-column fashion on a block of data of size NxN. The architecture reads block of data,
performs the transform and outputs LH, HL and HH data at each level of decomposition.

The LL data is used for the next level of decomposition. The architecture consists of row

14



module with two row processors and register file, column module with two column
processors and register files and two memory modules (one for row processing and the
other for column processing). This architecture can be configured to perform 2D DWT
for several DWT filterbanks. Each row and column processor comprises of a different
configuration of adders, multipliers and shifters in the data path for several DWT
filterbanks which was explained in detail in [24]. This architecture needs more
intermediate or internal memory to perform the computation. Row processing memory
module uses two banks with one read/write access for each bank whereas column
processing memory module consists of four banks with one read/write operation for three
banks and dual read operation for the last one.

The architecture in [25] describes hardware accelerator for the lifting scheme
based DWT. For 2D sign;als, this architecture performs DWT in row-wise and then in
column-wise. This architecture achieves the acceleration using the techniques such as
pipelining, data-reusability and parallel operations. This architecture consists of predict
module, update module and FIFOs to store intermediate results. The FIFOs are used to
store some of the input signals and the output of the predict module and then forward
those values to the update module. The filter coefficients for both predict and update
modules are supplied from the memory. In order to meet the boundary conditions,
different filter coefficients are supplied for the input signals at the boundary compared to
the coefficients supplied for non-boundary input signals. Since the architecture uses
different coefficients at various points of the input signal, this architecture was unable to

exploit the redundancy in the arithmetic operations of the DWT computation.
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The architecture described in [26] implements line-based architecture for the 2D
inverse - wavelet transform. The -architecture performing row-wise computation is
straightforward. The column-wise computation is started as soon as the row-wise
computation is completed for the current line of the 2D signal. Line buffering in the form
of FIFOs and additional logic are necessary to perform column-wise DWT computation
because the data are fetched in different order for the column-wise computation. This
architecture starts the computation before the whole 2D signal is stored in the input
memory. However, the proposed architecture in this thesis does not involve line-based
transform, therefore this architecture is not considered for comparison.

The architecture in [27] folds the computations of all decomposition levels into
the same low-pass and high-pass units to achieve higher hardware utilization. The
architecture requires very large quantity of registers with increase in decomposition level.
Apart from that, the whole architecture has to be designed separately for various levels of
decomposition. The proposed architecture utilizes the same hardware to compute DWT

coefficients irrespective of the level of decomposition.

2.2 Best-Basis Algorithm

The 2D DWT as shown in Fig.2.1 decomposes the image into four sub-bands:
approximation, vertical detail, horizontal detail and diagonal detail. Iterating this filter
structure on all sub-bands creates a so-called atomic decomposition of the image in the
form of a full, balanced quad-tree. This decomposition provides a large number of all

possible decompositions. Each node of that quad-tree corresponds to a sub-band that is a
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projection of the image to a subset of basis functions. This decomposition is called
Wavelet Packet or WPT. The octave decomposition obtained from DWT is good for
images that have most of their energy in a low frequency part. For some images that
contain stronger high frequency elements, WPT is a better choice. A relatively simple and
effective optimization algorithm called best-basis algorithm was proposed by Coifman
[8]. It trims the atomic decomposition tree to minimize some defined cost function M.
This algorithm simplifies optimization of the whole tree to a parent-children comparison
of criterion M in a bottom-up direction. The algorithm takes the next four steps:

Step 1: Decompose image into an atomic tree using wavelet packet.

Step 2: Compute cost of each node using one of the cost functions listed in the
later part of this section.

Step 3: Starting at fhe bottom of the tree, repeat step 4 on all the nodes except the
last level leaves until the root is reached.

Step 4: Make the following decision:

4
£, M(X; kthchild ) < M(xithparem Jthen
(i) preserve subtree below the node Xitmparent
(ii) Replace the cost of the parent with the total cost of the children

nodes as shown below:

( 1thparent) zk—l ( i,kthchild)
else

prune subtree below Xitparent

end if
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The cost function or information cost is the essential part of best-basis algorithm.

Some of the cost functions [28] are listed below:

M=3  aluk) @.1)

e Number of elements above threshold value:

( )_ 0,if|co|.>.t 22)
HEO= 1, il < '
e Logarithm of energy: ,u(co)=log|a)|2 2.3)
e Entropy:
1
M(u) =3 Juck)|” log - 2.4)
k (k)|

The best-basis algorithm for 1D signal is explained with an example shown in
Fig.2.3. The first step of the algorithm is to decompose the signal into quadtree structure
and to compute cost of each node in the tree using one of the cost functions M given in
equations (2.1-2.4). Starting from the bottom level of the quadtree, the cost of parent
node is compared with the total cost of the corresponding children node. The cost of each
pair of adjacent children nodes are compared to that of their parent. This is simply
accomplished by comparing the cost function at the parent node with sum of cost
function at children nodes. Either the parent node or the total cost of whichever has less
cost is selected and the search is continued to the top branch in the tree. If the total cost of
the children nodes is less than that of their parent, the children nodes are the better choice.

In that case, the cost of the parent node is updated with the cost of the children and the
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old parent cost is mentioned inside the parenthesis as shown in Fig.2.3. The nodes whose

cost has not been updated with have been selected as best-basis nodes.

50

/ \

20 22

\ / \

First Stage: Compute cost and mark the nodes

34(50)

/

12(20)

/ \

5(11) 7(12)

Second Stage: Perform Step-4 of the algorithm and select best-basis

Fig.2.3: Best-basis Selection process
2.3 Architectures for Elementary Functions

Elementary functions such as logarithm function are important for scientific

computing, logarithmic number system processor and DSP and 3D-graphics applications.
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Some of other elementary functions are square-root, exponential and trigonometric
functions those are widely used in-scientific computations [29-31]. Software routines
applying techniques such as polynomial and rational expressions have been used to
evaluate it. Although these routines provide accurate results, they are often too slow for
real-time applications.

The hardware implementation of the elementary functions such as logarithm,
exponential has been broadly classified into two groups — non-iterative and iterative
methods. The non-iterative method includes direct table look-up, polynomial and rational
approximations and table-based methods [32-34] and it is usually suitable for low-
precision calculations. The iterative method includes CORDIC, digit-recurrence and on-
line algorithms [35-38] and functional iteration methods such as Newton-Raphson and
Goldsmidt algorithms [39] and it is usually suitable for both low-precision and high-
precision computations.

Direct table look-up is suitable for very—low precision calculations, but the huge
memory requirements of such technique make it an inefficient method for even single—
precision computations. Another hardware implementation is based on approximating the
elementary functions in the form of polynomial approximations [40]. However, the
degree of the polynomial to be employed is usually high and a large number of
multiplications and additions must be performed resulting in long execution times.

Table-based methods involve both direct table look-up and polynomial
approximations method. The use of table look-up allows a low-degree polynomial to be

employed and the low-degree polynomial allows a significant reduction in size of the
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look-up tables used for computation. Some of the table-based methods are discussed in
[32-34].

High-radix CORDIC based and high-radix digit-recurrence algorithms are
important methods to implement elementary functions in hardware because of their low
area requirements for high-precision computations compared to that of table-based
methods. The main drawback in this algorithm is their linear convergence of one radix-r
digit per step, resulting in long execution times for small radices and high precision.
High-radix digit recurrence methods have been proposed for the computation of several
elementary functions [35-38]. However, this method leads to an increase in the cost of
implementation with increase in radix.

Functional iteration methods, such as Newton-Raphson and Goldschmidt
algorithms [39], are based .on multiplication operations and have quadratic convergence
which results in low-latency algorithms for high-precision computations at the expense of
increased hardware requirements. One of the main drawbacks of using this method is the
difficulty in obtaining correct rounded result.

We propose an algorithm and architecture for natural logarithm implementation

using Maclaurin series in Chapter 4.
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CHAPTER 3

ARCHITECTURE FOR LIFTING-
BASED DISCRETE WAVELET
TRANFORM

3.1 Introduction

The Discrete Wavelet Transform (DWT) based on lifting scheme was discussed in
detail in Section 2.1. The lifting scheme is a fast implementation of the DWT. However,
the software implementation of the lifting-based DWT on general-purpose processors is
often too slow for real-time applications. General-purpose processors execute the
programs in a sequential manner. However, in the hardware domain, the architecture for
lifting-based DWT can be implemented such that the parallelism in its implementation
can be exploited methodically. Also in the hardware domain, large amount of needed data
can be stored in the registers and accessed immediately for future computation.

The lifting-based DWT computation involves considerable amount of parallel
operations. The proper architectural design of DWT can buffer the data read from the
memory and reduce the large amount of data transfer to and from the input memory. The

dual-port internal RAM blocks in Xilinx Virtex Il and Virtex II Pro FPGA family can be
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exploited to implement the lifting-based DWT architecture. Also, most of the existing
DWT architectures use either memory or FIFOs to store the intermediate results obtained.
The proposed architecture performs both forward and inverse lifting-based DWT. The
architecture does not require any extra memory or FIFOs to store the intermediate results.

This chapter is organized as follows. The arithmetic operations involved in lifting-
based DWT for (5,3) and (9,7) wavelets are discussed in Section 3.2. In Section 3.3, the
proposed architecture is presented with detailed description of predict module, update

module and their integration.

3.2 Arithmetic Operations in Lifting-Based DWT

The lifting scheme provides many advantages such as fewer arithmetic operations,
in-place implementation and easy management of boundary extension compared to
convolution-based DWT architectures. The arithmetic operations of wavelet (5,3) and
(9,7) filters, adopted in JPEG 2000 [41-42], are presented in this section in order to
explain the redundancy in the arithmetic operation involved in the calculation of the
lifting-based DWT computation. The lifting-based implementation of (5,3) wavelet as
mentioned in JPEG2000 is shown in Fig. 3.1. The calculation of two consecutive high-

pass and low-pass coefficients for (5,3) wavelet for an input signal x;; is shown below:

High-pass coefficients, d; ,;:
dj_1i = X141 +0*(Xj27) + ¢* (X 2542)s 3.1

di_1iel =Xj2i43 T *(Xj2142) + A * (X 2544)- (3.2)
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Fig.3.1: Lifting Scheme for (5,3} wavelet

Low-pass coefficients, x;:
Xj-1,i =Xj2i +B* (A1) +B* (o), (3.3)
Xj-1i+l = Xj2i+2 +B*(dj1 ;) +B*(dj_pi41)- (34

where a = 0.5 and # = 0.25 are the (5,3) filter coefficients [41]. From the equations 3.D)

and (3.2), it is found that the product value of a times X giv2 calculated at the particular

clock cycle is required at the next clock cycle. Similarly from equations (3.3) and (3.4),

the product value of A times dj_] ;at the particular clock cycle is required at the next clock

cycle. Therefore, in the proposed architecture for the predict module calculation, we
perform one multiplication in each cycle for calculating [nt*(xj ,2i+2)] and the other value
[a*(xj’zi)] can be obtained from previous clock cycle; instead of performing two
multiplications in every clock cycle as mentioned in [25]. Also, the proposed architecture
needs only one multiplier in the update module. Thus, the proposed architécture utilizes
the redundancy of the above mentioned arithmetic operation reducing the number of

multipliers required.
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The lifting-based implementation of Daubechies 9/7 wavelet as mentioned in
JPEG2000 is shown in Fig. 3.2. It involves two scaling steps and four lifting steps (first

and second intermediate stages, high-pass stage and low-pass stage) as given below:

12is1 =X iy + 0% (X5 21) + 0 * (X 2i42)s (3.5)
Loi =X2i +B*(I2i1) + B* (I2541), (3.6)
djori =Tair +2* (I2i2) + % * Uy, 3.7)
Xjo1,i =loj +8*(djy3) +8*(d oy 41)s (3.3
i =K*(dj)s (3.9)
X1 =A/K)*(xj1), (3.10)

where a = -1.586134342, # = -0.052980118, y = +_0:8§291 1075, & = +0.443506852 are
the coefficients for (9,7) wavelet and K = 1.230174104 is the scaling factor [31].
Equations (3.5), (3.6), (3.7) and (3.8) represent the calculations of first intermediate,
second intermediate, high-pass and iow-pass stages respectively. The calculation of four
lifting steps for two consecutive values for 9/7 wavelet is shown below:

First Immediate Stage, I5;+;:
Ipj1 =X i + o * (Xj2i-2) + @ * (X 2;) @3.11)
Lois1 =Xjoia1 + 0¥ (Xj01) + 0 * (X42) (3.12)
Second Intermediate Stage, I,;: |
Lyip =xj2i2 +B*(I2-3) +B*(I2i) (3.13)

Ly =x;0i +B*(T2i—1) +B*(U2i41) (3.14)
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High-pass Stage, d.;;:

djori =Inig +x* Ugi2) + X * (I2) (3.15)

djint =Toist +%* (2) + 1 * (2i42) (3.16)
Low-pass Stage, Xj.1;:

Xjo1i =12 +8*(djy1) +8*(djy 1) (3.17)

Xj-1,i+1 = l2j +8%(dj_1i41) +8%(dj-p,i42) (3.18)
Xizia  Xjza Xz Xjaa X X 2is1 X{2i4

Stage

i [ |
allLE 7Y

Second
Intermediate Stage

High-pass Stage

Low-pass Stage

Fig.3.2: Lifting Scheme for (9,7) wavelet without scaling

From the equations (3.11) and (3.12), it is found that the product value of a times

Xj2i calculated at the particular clock cycle is required at the next clock cycle. Similar

redundancy in multiplying operation can be easily observed for the other stages from

equations (3.13-3.18). Thus, the proposed architecture performs one multiplying

operation in every clock cycle for each stage and the other multiplier output can be

obtained from the previous clock cycle.

Similarly, the proposed architecture needs two multipliers each for predict and

update modules in the case of (13,7) wavelet. Thus, the proposed architecture utilizes the
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redundancy of the above mentioned arithmetic operation reducing the number of

multipliers required.
3.3 The Proposed Architecture

In this section, the architecture for (5,3) and (9,7) wavelets are described in detail.
This architecture can be used to carry out both forward and inverse discrete wavelet

transform.
3.3.1 Predict Module

The predict modulé performs arithmetic calculation to determine detailed or high-
pass coefficients, dj.;; given in equation (3.1) for (5,3) wavelet. The general-purpose
processor performs four memory accesses, two multiplications and two additions to
implement predict module. The hardware can be designed to perform all the arithmetic
operations in parallel. Again, one multiplication output is obtained from its calculation in
the previous cycle. It can be easily seen that, in every clock cycle, the module needs only
one new even input sainple, Xj2i+2, from the memory and uses the other even input
sample, X2, that is read in the previous cycle. This is achieved by storing the even
sample, X;2;, in the register. This reduces memory read to one for all even input samples
required for high-pass coefficient calculation. However, the odd input sample, x;2i+1, has
to be read from the memory simultaneously. This problem is overcome by using dual-

port RAM to store the input samples. The read operations of even and odd samples
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occupy both ports of the dual-port RAM but the detailed or high-pass coefficient obtained
from the predict module has to be written back to the RAM in the same clock cycle. In
order to write the detailed or high-pass coefficient to the RAM, the input dual-port RAM
has to be operated twice the frequency of the system clock.

The predict module for (5,3) wavelet is shown in Fig.3.3. Initially, the input

register R] is loaded with the even sample from the input RAM. In the meantime, the

predict filter coefficient ‘a’ and the corresponding odd sample are made available to

calculate the detailed coefficient dj.] .~ The second register R, stores the output of the
multiplier in the current cycle and in the meantime the register R, supplies the multiplier

output obtained in the previous cycle. Thus we reduce the number of multipliers required
for predict operation for (5,3) wavelet to one whereas the number required for the
architecture described in [25] is two. Similarly, for (13,7) wavelet, only two multipli_ers
required for predict module instead of four. For (5,3) wavelet, we can use shifters instead
of multipliers. As pointed out in Section 2.1.2, the predict module for forward and inverse
transform differs in only one arithmetic operation i.e. addition for forward transform and
subtraction for inverse transform. The fw_iv signal shown in Fig. 3.3 determines whether

the predict module operates forward or inverse transform.
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Fig.3.4: Update Mddule
3.3.2 Update Module

The update module calculates the low-pass or coarse coefficients, Xj.1,; given in
the equation (3.3) for (5,3) wavelet. Implementing update module in the general-purpose
processor involves four memory accesses, two multiplications and two additions. The
hardware is designed to perform all the arithmetic operations in parallel and only one
multiplication is required to perform‘ instead of two. The maximum number of memory
accesses that could be carried out for each system clock cycle is four. But the predict
module uses three memory accesses to the input RAM. The update module has to use the
refnaining one memory access to caléulate and store coarse or low-pass coefficient in the

same system clock cycle. The inputs of the update module are from the output of the
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predict module and the even sample that is read from the input RAM for the predict
module. Therefore, the output of the predict module and the even sample is fed directly to
the update module instead of reading those values from the input memory again. Thus,
the remaining one memory access to the input RAM is used to write the coarse or low-
pass coefficient in the same system clock cycle.

The structure of the update module for (5,3) wavelet is shown in Fig. 3.4. The

input register R is loaded with the even sample. In the next clock cycle, the multiplier is

fed with the detailed coefficient and the update coefficient ‘B’ and the output of the
multiplier is fed to both the adders as shown in Fig. 3.4. Similarly, for (13,7) wavelet, the
module needs only two multipliers for update module. In this case also, the multipliers
can be replaced with shifters for (5,3) wavelet. The update module for forward and
inverse transform differs by one arithmetic operation as mentioned in predict module.
Thus, the fw_iv signal determines the type of the transform to be performed. |

As mentioned in JPEG2000 [41], the signal is symmetrically extended by two
signal values on the left side and one signal value on the right side for (5,3) wavelet and
four signal values on the left side and three signal values on the right side for (9,7)
wavelet to reduce artifacts at the boundary. The boundary treatment problem is solved by

passing proper address to the proposed architecture.
3.3.3 Lifting-Based (5,3) Wavelet Architecture

The proposed DWT architecture consists of predict module, update module,

control unit to generate proper address and set of registers to establish data
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communication between the modules. The proposed architecture calculates and writes
one high-pass coefficient and one low-pass coefficient to the memory in each system
clock cycle.

The predict and update modules discussed in the sections 3.3.1 and 3.3.2 are
interconnected with set of registers for (5,3) wavelet as shown in Fig. 3.5. The general-
purpose processor executes predict and update calculation sequentially. whereas, in
hardware, both calculations can be carried out simultaneously. But the problem in
hardware design now is that the update module needs the outputs of the predict module in
forward transform and the predict module needs the output of the update module in the
case of inverse transform.

As discussed in the previous section, the predict module uses three memory
accesses out of four availéble memory accesses to the input RAM whereas the update
module requires three more memory accesses (two read operations for detailed
coefficient and even sample and one write operation for coarse coefficient) to the input
RAM. However, the memory accesses required for the update module can be reduced to
one as given below:

1. The set of registers have been introduced between the output of the predict module, d;.
1, and the input (detailed coefficient) of the update module. These numbers of registers
in between both modules pass on the correct detailed coefficient required at the input of
the update module.

2. From equations (3.1-4), it can be seen that the update module uses the same even

samples that the predict module uses. However, the even sample read from the input
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RAM is used by both the modules at different clock cycle i.e. the predict module uses it
first and then the update module needs it. Thus, placing a few registers before the even
sample is fed to the update module solves the synchronization or timing problem and the
update module reuses the even sample read from the input RAM.

Thus, two read operations for the update module are avoided by using set of
registers in between both modules. Only one memory access available to the input RAM
for the update module is used to perform write operation of the coarse coefficient. Now,
the proposed architecture is able to calculate one detailed coefficient and one coarse
coefficient at every clock cycle. The proposed architecture operates dual-port RAM twice
as fast as the system clock frequency to obtain detailed and coarse coefficients at every
clock cycle. The first half of the system clock is used to write the detailed and coarse
coefficients into the input 'RAM whereas the second half of the system clock is used to
read even and odd samples from the input RAM. The technique discussed till this point is
based on the forward transform.

For inverse transform, the two inputs for update module are read from the input
RAM directly and the outputs of both predict and update modules are written back to the
input RAM. Thus, all the four memory accesses available for one system clock frequency
are used. The two inputs required for predict module is fed in a similar method applied to
the update module in the forward transform.

The multiplexers placed before the set of registers, the predict module and the
update module select the proper signal required by them based on the forward or inverse
transform. The above described architecture performs lifting scheme for 1D signal. For

the forward 2D transform, it starts with iteration level zero as current level (CL). The
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forward 1D transform is first applied to all the rows and then to all the columns.
Subsequently, the transform starts with the next level of iteration until the required
number of decomposition level is accomplished. For the inverse transform, the inverse
1D transform is applied exactly in the opposite order. Flowcharts in Fig.3.6 illustrate the

2D forward and inverse transform.

3.3.4 Lifting-Based (9,7) Wavelet Architecture

The proposed lifting based architecture for (9,7) wavelet consists of one predict
module to perform first intermediate stage, three update module to perform second
intermediate, high-pass and low-pass stages, control.unit to generate proper addresses and
set of registers to establish data communication between modules. This architecture can
be used to perform both forward and inverse DWT and DWPT.

The proposed architecture for 9/7 wayelet with four lifting steps is shown in Fig.
3.7. The scaling steps in 9/7 wavelet have not shown in Fig. 3.7. The set of registers is
used in between the stages to properly pass the output of one stage to the next stage.
Because of these registers, the architecture does not require any extra memory/FIFOs to
store the intermediate results. This architecture uses dual-port input RAM which operates
twice as fast as the system clock frequency to obtain the high-pass and low-pass
coefficients at every clock cycle. The read and write operations to the input RAM and the
data transfer between stages are similar to that explained for the (5,3) wavelet
architecture. The forward or inverse transform is performed based on the value of fw_iv

signal (0 or 1).
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( 2D Forward 2D Inverse
Transform Transform

&

A 4 A4
CL-=0 CL = max. no. of level
A A 4
Forward 1D lifting- Inverse 1D lifting-
based transform on based transform on
TOWS columns
v A 4
Forward 1D lifting- Inverse 1D lifting-
based transform on based transform on
columns rows
v A
CL=CL +1 CL=CL-1
L < max. no. CL>0
of level
no yes - no yes'

y A 4
( Stop ) ( Stop )
Fig.3.6: Flowchart of the 2D Forward and Inverse Transform
The lifting-based (13,7) wavelet architecture has one predict module, one update

module, control unit and set of registers for data communication between the modules.

However, both predict and update modules are not the same as that discussed in Sections
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3.3.1 and 3.3.2. The predict module and the update module need two multipliers (shifters)
to calculate detailed and coarse coefficients respectively. This architecture will look
similar to that of (5,3) wavelet.

The proposed architecture for (5,3) wavelet is described in VHDL hardware
description language for functional correctness and the waveform obtained from the
simulator environment is shown in Fig.3.8. The “fw_iv” signal is set to one to perform
forward DWT transform. The input RAM (dual-port) is operated at the frequency
(ram_clk) twice that of the system frequency (clk). The even and odd samples are read
from the input RAM when the system clock (clk) is low and the output of predict and
update modules are written into the input RAM when the “clk” signal is high. The
“mem_read_even_address” and “mem_read_odd_address” signals supply proper address
to the input RAM to read the even and odd samples respectively when the system clock
(cIk) is low. The “mem_write_even_address” and “mem_write_odd_address” signals
supply proper address to write the coarse (update output) and detailed (predict output)
coefficients respectively when the system clock signal is high. In the first two clock cycle,
the two consecutive even sample values (188 and 137 read from the even addresses 2 and
0 as shown in the Fig.3.8) are read form the input RAM and one odd sample (181 from
the odd address 1) is read in the third clock cycle. The predict module calculates the
detailed coefficient using those even and odd samples and writes the detailed coefficient
in the input RAM (19 write into the address 1) in the fourth clock cycle. Similarly, the
update module calculates the coarse coefficient and writes it in the input RAM in the
seventh clock cycle (145 writes in the address 0). Since the whole process is pipelined,

the predict and update modules write the detailed and coarse coefficients at every clock

38



cycle. Similarly, the proposed architecture for (9,7) wavelet is described in VHDL
hardware description language for functional correctness and the waveform obtained
from the simulator environment is shown in Fig.3.9. The signals shown in the Fig.3.9 are
meant for the same functionality described above. But (9,7) wavelet includes four stages
of lifting operation i.e. first intermediate, second intermediate, .predict and update stages.
The outputs of these stages are represented by the signals in Fig.3.9 are inter_level 1,

inter_level 2, detailed_coefficient and coarse_coefficient signals respectively.
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CHAPTER 4

ARCHITECTURE FOR BEST-BASIS
ALGORITHM FOR 2D SIGNALS

4.1 Introduction

Best basis algorithm belongs to a class of entropy-based algorithms for efficient
representation and signal compression. Classical entropy-based algorithms for best basis
selection were first introduced by Coifman and Wickerhauser [8]. Best basis algorithm is
primarily designed to reduce the storage space needed for a signal and also it can be used
for de-noising. When the information content of the signal coordinates in the new basis is
low it means that the distribution of coefficients is such that the energy of the signal is
concentrated in a few coordinates. Another natural application of best basis algorithm is
de-noising. This is achieved simply by finding a representation with a few significant
terms (less entropy representation) so that one can neglect the coefficients less than a
threshold value [51]. If signal to noise ratio is not too low one is able to extract the

desired signal from the noisy one by threshold operation hence getting rid of unimportant
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coordinates. In this chapter the hardware implementation of best-basis algorithm is
discussed in detail.

This chapter is organized as follows. Section 4.2 discusses the algorithm and the
architecture for natural logarithm implementation. The architecture for best basis
algorithm and the architecture for best tree calculation for 2D signal are discussed in

detail in the Section 4.3.

4.2 Algorithm and Architecture for Logarithm Function

4.2.1 Algorithm

The proposed algorithm is based on Maclaurin (or Taylor) series for natural
logarithm (In) function [43] which is given below:

x? X3
ln(]+x)=x—7+?—...,—lSXS+1 “.1

The main drawback in calculating logarithm function using Maclaurin series is
that it involves more arithmetic (multiplication and addition) operations to get more

accurate value. If | x| is much smaller than one, the accurate value of In(1+x) obtained

from equation (4.1) involves lesser arithmetic operations.

The proposed algorithm uses the first two terms in Maclaurin series to obtain

In(1+x) as shown below:

2
In(l + x) =x—-x7,—1 <x <+l ' 4.2)

To calculate natural logarithm of ‘X’ i.e. In(X), where X > 1, divide X by another

number R such that | x' |5 X/R | is close to 1 so that x =x"-1 is very small. Thus,
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In(X) =In(R) + In(x") 4.3)

The constant In(R) is read from the look-up table or memory. Since |x| is much
smaller than one, the In(x") = In(1+x) is calculated using the equation (4.2). The value of
R is chosen depending upon the number of bits of accuracy needed after the decimal
point of the logarithm output. The algorithm for natural logarithm implementation is

explained below:
Step 1: Determine the range Roay, 2"...2™", where n is an integer, such that 2" < X < 2™

Step 2: To obtain 4/ bits or / decimal digits accuracy after decimal point of natural

logarithm of X, divide the range Rpay into m = 2" equal sub-ranges Ry, R,,..., R,.

n+l _4n
ie. Ry —2" ---[2—2J+2"
m

n
R; >2" ---[2—+2"]
m

i n n
R, —|2" +—2—}-|:2“ 422 :l

[ n n
Ry — |20 + 22|20 32
m m
N _ n ’
R, — [2“ +£"iJ o+l “.4)
m
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Step 3: Select the range R, in which X falls.

i.e.IiZ" +wi:l <X< [2“ +x—2n-:| 4.5)

m m

Step 4: Find the mid-point of the range,R ,, .

Rx(m@:;[(zn Lﬁ](z _ZH “
m m

Step 5: Normalize X in the range R, as given below:

Let x” be normalized X.

.. X

= 4.7
¥ TR, (mid) @7
The natural logarithm of X is calculated by
In(X) = In[R  (Mid)x'] = In[R  (mid)|+In(x"). (4.8)

The In(x") is obtained using equation (4.2) whereas In[Rx(mid)] is read from look-

up table or memory. The proposed algorithm for logarithm implementation is a non-

iterative method applying Maclaurin series and the flowchart explaining the proposed

algorithm is shown in Fig.4.1. For example, calculate natural logarithm of X = 184 with /

= 2 decimal digit accuracy after decimal point from the above algorithm.

43



. Normalize X
FindR_,, »  X’=14x=[X/R (mid)]
m< X < el ] . P .
X =[(X-Rmid)}R (mid}]
y L 2 E
Divide R into ‘m’ cqual ranges, Find LN(x’=]+x)
R,.R,,...,R_, m=2"!for 41 bits of , using first two terms of
precision Maclaurin Series
SClCCt. Ri" X Determine LN(X) = LN[x".R_(mid)]
falls within R = LN|R (mid)] = LN xi‘)
and find R (mid) (mid)] = LNC

Fig.4.1: Flowchart of Natural Logarithm implementation using Maclaurin
series to find LN(X)

Step 1: The range Ruax is (27 ... 2°).i.e. 128 < 184 <256.
Step 2: Number of sub-ranges, m = 2. The first range R; is 128 ... 192 and the second
range is Ry is 192 ... 256.
Step 3: The selected range Ry is R; because X (=184) falls within the range of R, i.e. 128
<X<192.
Step 4: The mid-point of the selected range R; is 160 i.e. Ri(mid) = 160.
Step 5: x = x" - 1 = (184-160)/160 = 24/160 ar_ld In(184) = In(160) + In(1+x)=5.2139.
The expected value is 5.2149 and the error is 0.0010. It is evident from the error value
that the natural logarithm value of X is accurate for 8 bits or two decimal digits after the
decimal point.

The above example clearly explains the computation of natural logarithm value
for integer numbers. We present another exahple to compute natural logarithm for the

values of X less than one. To calculate the natural logarithm for X = 0.0512 with 16-bit
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of precision i.e. four decimal digit of precision, the proposed algorithm needs a little
modification which is explained with the example.
Step 1: Determine the range Rynax in which X falls. The range R is 27 ... 2%).je. 27 <
0.0512 <27,
Step 2: The number of sub-ranges to obtain 16-bit of precision is m = 8 or 2Y™. The
ranges are

Ry - 0.03125-0.03515625

R2-  0.03515625 —0.0390625

R3; - 0.0390625 — 0.04296875

Rs-  0.04296875 —0.046875

Rs-  0.046875—0.05078125

Rs- 0.05078125 _ 0.0546875

R7- 0.0546875 —0.05859375

Rg-  0.05859375 —0.0625
Step 3: The selected range is Re.i.e. 0.05078125.<X <0.0546875.
Step 4: The mid-point of selected range is Rg(mid) = 0.052734375.
Step 5: The value of x is (X/Re¢(mid) — 1) = -0.029096. The In(1+x) = -0.02952 obtained
using the equation (Y.2). Thus, the value of In(X) = In(R¢(mid)) + In(1+x) = -2.9720. The

actual value of In(X) is -2.9720157 and the absolute error is 0.0000157.
The last example presented below explains the computation of natural logarithm

for mantisaa part of the floating point ’representation [44]. The computation of In(X =

1.5120) with 16-bit or four decimal digit of precision is explained below:
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Step 1: The range Ruay is always in the range from 2'%/2'% t0 2'%25.ie. 1 <X < 2.
Step 2: The number of sub-ranges to obtain 16-bit of precision is m = 8 or 2™, The
ranges are
Ri- 1.000-1.125
R,-  1.125-1.250
R3- 1.250-1.375
Rs-  1.375-1.500
Rs- 1.500-1.625
R¢- 1.625-1.750
R;-  1.750-1.875
Rg- 1.875-2.000
Step 3: The selected range is Rs (1.500 — 1.625).
Step 4: The mid-point of the selected range is Rs(mid) = 1.5625.
Step 5: The value of x is (X/Rs(mid) — 1) = -0.03232. The In(1+x) = -0.03284 is obtained
from equation (Y.2). Thus, the value of In(X) = In(Rs(mid)) + In(1+x) = 0.4134. The

actual value of In(X) is 0.413433 and the absolute error is 0.000033.
4.2.2 Architecture
The proposed architecture of natural logarithm implementation consists of three

stages: Selection-of-value stage, Normalization stage and Log-unit stage. The architecture

involves two multiplication and three addition operations irrespective of the number of
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bits of accuracy required. The architecture for natural logarithm with 8-bit or two decimal
digit accuracy after the decimal point is shown in Fig.4.1.

Selection-of-value Stage: This stage supplies the value of Ry(mid), inverse of
Rx(mid), In[Rx(mid)] and R for all possible sub-ranges of Ry.x from the look-up table or
memory to the next stage. As mentioned in the proposed algorithm, the number of sub-
ranges depends on the number of bits of accuracy needed after decimal point. For
example, the number of sub-ranges is two for the 8-bit accuracy after decimal point of the
natural logarithm function. Also it supplies the number of shifts that the shifters have to
carry out in the next two stages. Finally, this stage selects the Ry(mid), inverse of

Ry(mid), In[R«(mid)] and Ry corresponding to the range Ry where X falls.

Normalization Stége: It also finds the normalized X i.e. x. The x =x" - 1 is
obtained by first subtracting X with Ry(mid) and then multiplying the difference with the
inverse of Ry(mid) selected in this stage. Thus this stage involves one subtractor and one
multiplier.

Log-unit Stage: This stage calculates In(1+x) given in the equation (4.2). This
involves one square and one subtraction operations. This stage also includes one more

addition operation to get the final natural logarithm value of In(X).
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The natural logarithm architecture with 11 bits of accuracy is described in VHDL
hardware description language and simulated for functional correctness as shown in

Fig.4.2 with the ModelSim simulator.

an_testevei [ 1 1 1 1 1 1 1 | I
An_testersn_val 150 L] 162 163 764 155 123 34 8
testertn_output “TOTT " JT0TA 0367 T30 71089 S {10405 10418 o831 0443

1(160) » 103032M1 = 30747

Fig.4.3: Timing Diagram of Natural Logarithm Architecture with & bits of precision

4.3 Architecture for Best-Basis Algorithm

The best-basis algorithm with detailed example for 2D signal was explained in
Section 2.2. In this section, the architecture to implement the best-basis algorithm for 2D
signal from two-level wavelet packet decomposition is discussed in detail. The proposed
architecture for best-basis algorithm is classified into three stages. The block diagram of
the proposed best-basis architecture is shown in Fig.4.3. In the first stage, the WPT
decomposition is carried out using the architecture of lifting-based DWT proposed in
Chapter 3. The second stage calculates the cost function using the architecture of the
logarithm proposed in Section 4.2. The output of the cost function is written into another
dual-port RAM called Best-basis RAM. In the final stage, the architecture for best-basis
selection, which is discussed later in this section, determines the best-basis node. The
proposed best-basis architecture includes the following sub-modules or sub-architectures:

e Wavelet Packet Architecture (discussed in detail in Chapter 3),

e Best-Tree Selector Architectures,
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e Dual-port Best-Basis RAM with Address Generator module,
e Cost-Function Architecture — Architectures for two different cost functions are
discussed in this section. Those two cost function architectures are Threshold-

Function architecture and Shannon-Function architecture.

4.3.1 Best-Tree Selector Architecture

The best-tree selector architecture for 2D signal is shown in Fig.4.4. The input to the
architecture is fed from the dual-port RAM, named best-basis RAM. For 2D signal, each
parent node is linked to four children node. Thus, the cost of all the four children nodes
have to be added before it is compared with the cost of the parent node. The architecture
reads the cost of the two children nodes from the best-basis dual-port RAM in the first
clock-cycle and the cost of the other two nodes are read in the second clock cycle. In the
second clock cycle, the cost of the first two children nodes are added and stored in the
register R;. In the third clock cycle, the cost of the second two children nodes are added
and stored in the register R». In the fourth clock cycle, the cost of the parent node is read
from the best-basis RAM and stored in the register R4. The values in the registers R; and
R, are added and stored in the register R; in the fourth clock cycle. In the fifth clock cycle,
the total cost of the children nodes stored in the register R3 and the cost of the parent node
stored in the register R4 are compared. If the total cost of the children nodes is less than

that of the parent node cost, all the four children nodes are
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. -
. : / Compa-
BethAiBﬁs*s : 5 ZX rator
: : —{rd
clk1 clk2 © ck3 i clk4 | clk5
Fig.4.5: Best-Tree Selector
clk
Counter R, > . | » DD_aaddr_|
: Y v
) R, Afm
L T:
bb_addr_a
L, A |
. R2 AN _
‘D‘ . — 0——bb wrb
S : — ) — » bb_wr a
. ‘ ' 0 | |——>bbena
0 —— /0 .
Fig.4.6: Best-Basis Address Gé)zcrmbr_fbr tree selecl)'oh
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selected and vice versa. In the last clock (sixth) cycle, the parent node cost is updated in
the best-basis RAM. The waveform for the best-tree selector obtained from the

ModelSim simulator environment is shown in Fig.4.6.

Mi2dtestbench_97ick [ | 1 1 1 ] ] _
autestoench gt ex [T L LML L L L L
at2diestbench_97bb_treeselect_en
MRdtestbench_S7:00_value 0
Ndestbench_97/0b_ram en a |
M2dlestbench_97:0b_ram_en b 7 —
M2dtestbench_9T/bb_ram_we_a
M2dlestbench_S7bh_r—m_we b

Mmatestbench_97/estbasis_ram data_a X 218 221
tctestbench_97/estbasis_ram_data_b X p&j] 710
fwdtestbench_97/bestbasis_ram addr a 13 i7 (] i5
A2dtestbench_G7/bestbasis_ram_addr b 20 18 16

bb_valuc - Sclected parent nodc cost to be written in the best-basis RAM.
bestbasis_ram_addr_a - represents the signal “bb_addr_a”.
bestbasis_rum_addr_b - represents the signal “bb_addr_b™.
bestbasis_ram_data_a - The data read from the address “bb_add_a™.
bestbasis_ram_data_b - The data read from the address “bb_add_b™.
bb_ram_cn_a - represents the signal “bb_cn_a”.

bb_ram_en_a - represents the signal “bb_en_b”.

Fig.4.7: Wuaveform of Best-Tree Selector

4.3.2 Address Generator for Best-Tree Selector Architecture

The Address Generator for best-tree selector architecture consists of 3-bit counter,
three subtractors and combinational circuits to generate signals for the best-basis RAM at
appropriate time intervals. The address generator is shown in Fig.4.5. The signals
generated at each counter value are explained in detail in Table 4.1. In the first two clock
cycles (count = 0 and 1), the cost of the four children nodes is read from the best-basis
RAM using the adders A; and A,. In the third clock cycle (count = 2), the parent-node
address is generated from the adder As. From now onwards until the count value is reset

to zero, the parent address is set to the port-A of the best-basis RAM. In the sixth clock
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cycle (count = 5), the write-enable of port-A is set to one and the selected cost value from
the best-basis tree selector architecture is written to the parent-node address. The counter

is reset to zero in the next clock cycle.

3-bit counter output Signals generated

000, 001 e First pair of child-node addresses is generated when
count is zero and the second pair of child-node
addresses is generated when count is one.

e The enable signal (bb_en_b) for port-B of the best-
basis RAM is set one.

e The addresses (bb_addr_a and bb_addr_b) for port-A
and port-B are set to odd (decr_child_odd_addr) and
even (decr_child_even_addr) addresses of the children
nodes respectively.

e The adders A1 and A2 generate even and odd
addresses of the children nodes.

010 e The total cost of four children-nodes is calculated.

011, 100 e The address (bb_addr_a) for port-A is set to parent-
- node address.

101 e Set the write enable signal of port-A is set to one. The

selected cost from the best-tree selector architecture is
written to the best-basis RAM during this clock-cycle.
110 e Reset the counter.

Table 4.1: Signals generated at each counter value for Best-Tree selection

4.3.3 Cost-Function Architecture

The best basis algorithm finds a set of wavelet bases that provide the most
desirable representation of the data relative to a particular cost function. The cost function
may be chosen to fit a particular application. In this section, the architectures for two cost

functions namely, threshold function and Shannon function, are proposed.

54




Threshold-Function Architecture

One of the simplest cost-function of the best-basis algorithm is a threshold
function. The threshold function counts the number of wavelet coefficients in a particular
wavelet packet node whose absolute value is greater than a threshold value ‘t> as shown
in equation (4.9).

N-1
cost= " (|x()|>1)?1:0 4.9
i=0

To calculate the best basis, the tree is traversed from the bottom and each node is
assigned with its cost value rel_ative to the threshold function in this case. When the
wévelet packet tree is consﬁucted, all the nodes are marked with ﬂags (say, flag is set to
one, if it is selected). The flag of the nodes is modified on calculating the best-basis set.
Assume P1 and Cl1 as the cost of the parent node and the sum of the cost of children
nodes associated with the parent node respectively. The best-tree architecture performs
the following to find the best-basis set:

e If P1 <C1, set the flag of the parent node to one as part of the best-basis set and
also set all the flags of the nodes in the sub-tree of the parent node to one.

e IfPI1 > Cl, the cost of the parent node P1 is replaced with the sum of the cost of
children nodes C1.

The threshold function architecture consists of two comparators and two adders as

shown in Fig.4.7. In each clock cycle, the even and odd values fed to the architecture are
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even_val

o
cnt_even_va
00 — VA,
\ »] ’\Az » cost
D N >
01— Count
o ) {Register)
odd_val clk — R
> T : - t-Threshold Value
t — ) . :  reset
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Fig.4;8: Threshold Function Architecture

compared with the threshold value. If the even value is greater than the threshold value
and the cnt_even_val signal (this signal decides if the valid even value fed to the
architecture) is one, the count value is incremented by one using adder A;. The output of
A is then fed to the next adder A,. If the odd value is greater than the threshold value and
the cnt_odd_val signal is set high, the output of A; is incremented and stored in the flip-

flop. The output of the flip-flop gives the cost of the node.

Shannon-Function Architecture

Another important cost function of the best-basis algorithm is the Shannon
entropy function. The Shannon entropy function provides a measure of the economy of

the representation of the signal. The Shannon entropy is given as
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cost =y x?[i]In(x2[i]) (4.10)

The Shannon-function consists of one natural logarithm unit discussed in Section
4.2, two multipliers and one adder and it is shown in Fig.4.8(a). Since the output of the
log-unit is available at the fourth clock cycle, the square value of input is passed through
three registers to make it available at the multiplier Ma. The cost of all the coefficients is
summed together and stored in the flip-flop. The cost function architecture for Shannon
function is shown in Fig.4.8(b) using two blocks of Shannon function architecture. This

architecture calculates the total cost of the wavelet packet node.

After best-tree selection, the information about the nodes to be reconstructed is
obtained using the flag set for each wavelet packet nodes. The best-basis nodes are
actually reconstructed by applying inverse WPT selectively according to the flag of each
node. If the flag of the node ‘i’ is equal to one, the particular node is reconstructed from
the four children nodes associated with it. If the flag of the node i’ is set to zero, its
reconstruction from its four children nodes is avoided. Thus the wavelet packet nodes
selected from the best-tree selection are constructed. In order to construct the original
signal from the best-basis nodes, reconstruct the nodes whose flags are set to zero. This

gives the original signal selected from the best-basis nodes.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 DWT

The proposed architecture can implement lifting based DWT for each level
sequentially. This architecﬁre does not require any external storage devices‘ to sfore the
intermediate results and thus avoids delay caused by memory access. Because a set of
registers controlled by global clock is being used, the control unit does not need to take
the intermediate results in and out of the extra stora{ge device. The output data rate of this
architecture is two (one from predict module and the other from update module) per clock
cycle.

The performance analysis is studied in terms of hardware (multipliers and adders)
requirement and computation time for (5,3), (9,7) and.( 13,7) wavelets. Because the set of
registers controlled by the clock is employed, the architecture does not require any extra
memory/FIFO to store the intermediate results. Table 5.1 provides the comparative
evaluation of the proposed architecture with other architectures [24-25] in terms of area

and computation time for one level of decomposition of the signal of size NxN.
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The proposed architecture needs less number of multipliers compared to other

architectures proposed in [24- 25]. The proposed architecture utilizes less number of

multipliers compared to the architectures mentioned in [24]. The architecture proposed in

[24] has better computation time than the proposed architecture in the case of (5,3) and

(9,7) wavelets but it requires same computation time approximately as the proposed

architecture for (13,7) wavelet. Furthermore the architecture proposed in [24] requires

more hardware area for (5,3) and (13,7) wavelet. The main advantage of the proposed

architecture is that it utilizes less number of multipliers compared to other architectures.

. Multiplier/ Intermediate | Computation
Architectures Shifter Adder Memory/FIFO Time
(5,3) Wavelet :
Memory N
Andra [24] 4 8 required ~(N/2)xN
Kuzma(25] 4 4 FIFO required =~(NxN)
Proposed 2 4 None =~(NxN)
(9,7) Wavelet
Memory -
Andra [24] 4 8 required ~(N/2)XN
Kuzma[25] 8 FIFO required ~(NxN)
Proposed 4 8 None ~(NxN)
(13,7) Wavelet
Memory -
Andra [24] 8 16 required ~(NxN)
Kuzmal25] 8 FIFO required ~(NxN)
Proposed 4 8 None ~(NxN)

Table 5.1: Comparison of the proposed DWT architecture with existing ones.
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The accuracy of DWT coefficients depends on the precision of both the input data
and the filter coefficient. To explore the effects of precision on the proposed design, test
images (Lena, Barbara, Zelda and Peppers available at
http://cmp.felk.cvut.c7j~fojtik/gaI]ery/gray.htm) of size 512 x 512 are used to verify the
architecture. In VHDL simulation, the original image and the reconstructed image after
forward and inverse DWT are compared. The simulation results for error calculation per
pixel in terms of four different measures are. computed and shown in Tables 5.2 — 5.3
with zero bit precision of input values and in Tables 5.4 — 5.7 with 8 bits of precision of
input values. The four types of measuring error calculation are discussed in brief below:

e Average absolute error (AAE) per pixel — is the ratio between the sum of the error

values in each pixel and the total number of pixels.

: 1 NN
AAE:N*Nggle(x,y)l, (.1

whefe e(x,y) is the error of the pixel (x,y) between reconstructed image and
original image of size N*N.
e Average mean square error (MSE) per pixel [45] — is the ratio between the sum of

the square of the error values in each pixel and the total number of pixels.

NN s
MSE=N*NXZ=:1)§J€ V(x,y)l (5.2)

e Average signal-to-noise ratio (SNR) in dB [46] — is the power ratio between the

signal and the background noise.
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12(x,y)

i Mz

SNR(dB) = 10log;o (5.3)

Mz =
D=5

e’ (x, y)l

b
Il
—_
«<
I
—

where 1(x,y) is the pixel value at (x,y) of the image I.
e Average peak signal-to-noise ratio (PSNR) [47] in dB — is the power ratio of the

maximum pixel value of the signal and the background noise.

2
PSNR(dB) = 101og;o MAXQS 5) (5.4)
MSE = N* ZIZJe x, y)|
y=

The average error values per pixel for the test images recovered after one, two and
three level of (9,7) wavelet packet decomposition with zero bit precision of input values
are shown in Tables 5.2, 5.3 and 5.4 respectively. From these tables, it is evident that the
increase in the precision of the filter coefficients of the proposed archltecture does not
minimize the error after certain precision level. Comparing the error values obtained for
the precision of filter coefficient more than or equal to 18, the error values remain the
same. It concludes that the error cannot be reduced further with increase in the precision
of more than 18 without increasing the precision of the input.values. For further reduction
in tl11e error, the preciﬁio;l of the input values may have to be increased. For 8 bits
precision of input values, the calculated average error value is very less. Therefore,
depeﬁdiné upon the; accuracy needed the precision of both input values and iifting
coefficients have to be increased. But the increase in the precision of the input values

increases the size of the input RAM required.
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Precision AAE MSE SNR (dB) PSNR (dB)
11 2.226 8.188 33.342 14.934
13 2.159 7.816 33.545 15.136
16 2.154 7.790 33.559 15.150
18 2.153 7.783 33.563 15.153
20 2.153 1.783 33.563 15.153

(a) For “Lena” Image
11 2218 8.169 32.602 14.944
13 2.168 7.902 32.746 15.088
16 2.164 7.877 32.760 15.102
18 2.164 1.877 32.760 15.102
20 2.164 1.877 32.760 15.102
(b) For “barbara” Image
11 2.253 8.351 33.151 14.848
13 2.205 8.109 33.279 14.976
16 2.194 8.031 33.321 15.017
18 2.193 8.028 33.323 15.020
20 2.193 8.028 33.323 15.020
(c) For “Peppers” Image .
11 2.197 8.013 30.942 15.027
- 13 2.176 7918 30.994 15.079
16 2.169 7.878 31.016 15.101
18 2.169 7.878 31.016 15.101
20 2.169 1.878 31.016 15.101
(d) For “Zelda” Image -
11 2.223 8.180 32.509 14.938
13 2.177 7.936 32.641 15.070
16 2.171 7.894 31.061° 15.101
18 2.169 7.891 32.666 15.094
20 2.169 7.891 - 32.666 15.094

_(e) Average Pixel Error values for all the images

Table 5.2: Average Error per pixel represented in various terminologies for the
" images recovered after one level of (9,7) wavelet decomposition with zero bit
precision of input data.
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Precision AAE MSE SNR (dB) PSNR (dB)
11 4.371 30.847 27.582 9.173
13 4.285 30.009 27.702 9.293
16 4.272 29.886 27.720 9.311
18 4.267 29.813 27.730 9.321
20 4.267 29.813 27.730 9.321

(a) For “Lena” Image
11 4.384 - -31.019 26.807 9.149
13 4.296 30.167 26.928 9.270
16 4.270 29.845 26.975 9.317
18 4.269 29.829 26.977 9.319
20 4.269 29.829 26.977 9.319
(b) For “barbara” Image
11 4.422 31.493 27.386 9.083
13 4.356 30.943 27.463 9.160
- 16 .. 4326 . 30.677 27496 9.196
18 4.320 30.543 27.519 9.216
20 4.320 30.543 27.519 9.216
(c) For “Peppers” Image
11 4.291 29.957 25.215 9.300
13 4.224 29.281 25314 9.399
16 4.206 29.089 25.343 9.428
18 4.206 29.089 25.343 9.428
20 4.206 29.089 25.343 9.428
(d) For “Zelda” Image
11 4367 30.829 26.748 9.176
13 4.290 30.100 26.852 9.281
16 4.266 29.824 26.892 9.321
18 4.265 29.089 26.892 9.428
20 4.265 29.089 26.892 9.428

(e) Average Pixel Error values for all the images

Table 5.3: Average Error per pixel represented in various terminologies for the
images recovered after two level of (9,7) wavelet decomposition with zero bit
precision of input data.
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Precision AAE MSE SNR (dB) PSNR (dB)
11 6.855 76.429 23.642 5.233
13 6.746 75.107 23.722 5318
16 6.718 73.997 23.782 5.373
18 6.712 73.844 23.791 5.382
20 6.712 73.844 23.791 5.382

(a) For “Lena” Image
1T |  6.891 ' 76.984 22.860 5.201
13 6.819 75.643 22.936 5.278
16 6.761 74.676 22.992 5.334
18 6.760 74.695 22.991 5.332
20 6.760 74.695 22.991 5.332
(b) For “barbara” Image
11 6.926 78.010 23.447 5.144
13 6.789 75314 23.600 5.297
- 16 6.781 | =+ 75957 - 23.612- -+ 5.308
18 6.777 74.959 23.620 5.317
20 6.777 74.959 23.620 5.317
(c) For “Peppers” Image
11 6.798 75.233 21.216 5.301
13 6.696 73.334 21.372 5412
16 6.689 73.199 21.335 5.420
18 6.689 ' 73.199 21.335 5.420
20 6.689 : 73.199 ' 21.335 5.420
(d) For “Zelda” Image
11 - 6.868 76.664 22.791 5.220
13 6.762 74.850 22.908 5.326
16 6.737 74.457 22.930 5.359
18 6.735 74.174 22.934 5.363
20 6.735 74.174 22.934 5.363

(e) Average Pixel Error values for all the images

‘Table 5.4: Average Error per pixel represented in various terminologies for the
images recovered afier three level of (9,7) wavelet decomposition with zero bit
precision of input data. wavelet decomposition
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Precision AAE MSE SNR (dB) PSNR (dB)
11 1.000 1.000 42474 24.065
13 0.989 0.989 42.522 24.113
16 0.906 0.906 42.902 24.493
18 0.766 0.766 : 43.634 25.225
20 0.766 0.766 43.634 25.225

(a) For “Lena” Image
11 1.000 1.000 : - 41.724 24.065
13 0.985 0.985 41.789 24.131
16 0.894 0.894 . 42.211 124.553
18 0.762 0.762 42.904 25.246
20 0.740 0.740 43.029 27.371
(b) For “barbara” Image
11 1.000 1.000 42.372 24.069
13 0.980 0.980 42.457 24.154
16 . |. 0.897 0.897 42.840 - 24.536
18 ' 0.764 0.764 '43.536 25.233
20 0.743 0.743 43.658 25.354
(c) For “Peppers” Image
11 0.999 0.999 39.982 24.068
13 0.974 0.974 40.096 24.181
16 0.876 0.876 40.556 24.641
18 0.759 0.759 41.177 25.262
20 0.743 0.743 41.269 25.354
(d) For “Zelda” Image -
11 1.000 1.000 41.638 24.067
13 0.982 0.982 41.716 24.145
16 0.893 0.893 - 42.100 24.557
18 0.763 0.763 T 42813 25.242
20 0.748 0.748 42.898 25.826

(e) Average Pixel Error values for all the images

Table 5.5: Average Error per pixel represented in various terminologies for the
images recovered after one level of (9,7) wavelet decomposition with eight bits
precision of input data.
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Precision AAE MSE SNR (dB) PSNR (dB)
11 1.000 1.000 42.474 24.065
13 0.994 0.994 42.497 24.088
16 0.926 0.926 42.808 24.399
18 0.795 0.795 43.470 25.061
20 0.772 0.772 43.600 25.191

(a) For “Lena” Image
11 0.999 0.999 41.723 24.065
13 0.992 0.992 41.760 24.102
16 0917 0.917 42.101 24.443
18 0.793 0.793 42.731 25.073
20 0.769 0.769 42.867 25.209
(b) For “barbara’” Image
11 1.000 1.000 42.370 24.067
13 0.987 0.987 42.427 24.124
16 - - 0921 0.921 42.727 - 24.424
18 0.789 0.789 43.397 25.094
20 0.771 0.771 43.497 25.192
(c) For “Peppers” Image
11 1.000 1.000 39.981 24.067
13 0.983 0.983 - 40.053 24.138
16 0.899 0.899 40.440 24.525
18 0.791 0.791 41.000 25.085
20 0.770 0.770 41.118 25.203
(d) For “Zelda” Image
11 1.000 1.000 41.637 24.066
13 0.989 0.989 41.684 24.113
16 0.916 0.916 42.019 24.448
18 0.792 0.792 42.650 25.078
20 0.771 0.771 42.771 25.199

(e) Average Pixel Error values for all the images

Table 5.6: Average Error per pixel represented in various terminologies for the
images recovered after two level of (9,7) wavelet decomposition with eight bits
precision of input data.
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Precision AAE MSE SNR (dB) PSNR (dB)
11 1.000 1.000. 42.474 24.065
13 0.994 0.994 42.499 24.090
16 0917 0917 42.848 24.439
18 0.779 0.779 43.557 25.148
20 0.779 0.779 43.557 25.148

(a) For “Lena” Image
11 0.999 0.999 41.723 24.065
13 0.991 0.991 41.765 24.106
16 0.906 0.906 42.151 24.492
18 0.780 0.780 42.803 25.145
20 0.760 0.760 42.913 25.255
(b) For “barbara” Image
11 1.000 1.000 42.371 24.066
13 0.986 0.986 42.431 24.128
16 0.909 0.909 42.782 24.479
18 0.778 0.778 43.461 25.158
20 0.758 0.758 - 43.571 25.268
(c) For “Peppers” Image
11 1.000 1.000 39.982 24.067
13 0.980 0.980 ~40.066 24.151
16 0.884 0.884 40.514 24.599
18 0.774 0.774 41.092 25.177
20 0.762 0.762 41.161 25.246
(d) For “Zelda’ Image
11 1.000 1.000 41.638 24.066
13 0.988 0.988 41.690 24.119
16 0.904 0.904 42,074 24.502
18 0.778 0.778 42.728 25.157
20 0.765 0.765 42.801 25.229

(e) Average Pixel Error values for all the images

Table 5.7: Average Error per pixel represented in various terminologies for the
images recovered after three level of (9,7) wavelet decomposition with eight bits
precision of input data.
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The absolute error value per pixel for the test images after one, two and three
]eve! of (5,3) wavelet packet decomposition is zero. Thus, the reconstructed image from
the wavelet packet decomposition in (5,3) wavelet is the same as the original image
whereas the reconstructed image from (9,7) wavelet is distorted and not same as the
original image.

The simulation results for various level of decomposition of 512x512 Lena image
for both (5,3) and (9,7) wavelets are shown in Fig.5.1 and Fig.5.2 respectively. From
these figures, it is clear that the reconstructed image of Lena looks the same as the
original image for (5,3) wavelet whereas, for (9,7) wavelet, the distortion in the

reconstructed image is seen clearly as the number of decomposition level is increased.

N
4
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(a) Original Image

(c) Two Level of Decomposition (d) Recovered Image after one level of
decomposition

(e) Recovered Image after two level of () Recovered Image after three level of
decomposition decomposition

Fig.5.1: Lena Images of size 512*512 after 2D WPT Decomposition using (3,3) Wavelet.
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(d) Recovered Image afier one level of
decomposition

(e) Recovered Image after two level of () Recovered Image after three level of
decomposition decomposition
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(g) Recovered Image after four level of (h) Recovered Image after five level of
decomposition decomposition

Fig.5.2: Lena Images of size 512*512 after 2D WPT Decomposition using (9,7) Wavelet.
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3.2 Best-Basis Algorithm for Images

The proposed best-basis architecture for 2D sigﬁals or images includes DWT
architecture proposed in Chapter 3 to obtain the wavelet packet decomposition of the
image. In the next step, the wavelet packet coefficient is passed through the cost-function
architecture to calculate each node cost. The proposed architecture computes the node
cost using either Threshold-function architecture or Shannon-functién architecture which
wefe discussed in Section 4.3.3. The cost of each node is stored in the dual-port RAM
(Best-basis RAM). The cost of children nodes and parent node is read from the best-basis
RAM and fed to the best-tree selector architecture. The best-tree selector architecture
performs the best-basis algorithm and determines the best-basis node. The architecture
for best-basis algorithm for 1D signal was proposed in [48-49]. The architecture in [49]
performs convolution-based 1D wavelet packet transform and it does not discuss about
the cost-function used to determine the cost of the nodes. The proposed best-basis
architecture in this thesis performs lifting-based 2D wavelet packet decomposition and
discusses about the cost-function used to determine the node cost.

The proposed architecture to determine the best-basis node from two-level of
DWPT decomposition is described in VHDL hardware description language and
simulated successfully on ModelSim simulation environment for various‘; images (Lena,
Zelda, Bird and Barbara) of size 64x64. The JAVA program implementing best-basis
architecture for 2D signal is developed to éompare the results. The VHDL program

selects the best-basis nodes from the two-level decomposition of the images. The output
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of the VHDL program is compared with the best-basis nodes selected from the software
program written in JAVA. The output of the software shows only the node-number
selected by the algorithm. The numbering‘ of the nodes for two-level DWPT is shown in
Fig.5.3. The best-basis algorithm is performed on the wavelet packet obtained from both
(5,3) and (9,7) wavelets. For (9,7) wavelet, Figs. 5.4, 5.6, 5.8 and 5.10 show the quad-tree
with the cost of the nodes obtained from both Shannon and Threshold functions and the
best-basis nodes for the images Lena, Bird, Zelda and Barbara respectively. Figs. 5.5, 5.7,
5.9 and 5.11 show the quad-tree with cost of the nodes obtained from both Shannon and
Threshold functions and the nodes selected from the best-basis algorithm for the images
Lena, Bird, Zelda and Barbara for (5,3) wavelet respectively. The best-basis nodes

selected for each image from both ModelSim simulation and JAVA program are the same.

Fig.53 Numbering of Wavelet Packet Node
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5.3 FPGA Implementation

The proposed architecture is implemented in an FPGA, namely the Virtex 11 Pro
FPGA series of Xilinx. The design is described in VHDL hardware description language
and simulated for functional correctness with the ModelSim simulator. The Xilinx
implementation tool is used to implement the design in order to achieve the realistic
timing results for performance analysis. The CORE Generator tool of the Xilinx tool is
used to generate RAM blocks. The FPGA implementation of the proposed design for a
picture size of 64*64 pixels is achieved. However, simulations for all desired picture
sizes are carried out for performance analysis in ModelSim simulator. Even though the
maximum value of the pixel or input data of the image is 255 i.e. bits, the input data or
pixel width is set to 16 bits for better accuracy of the result. The final DWT coefficients
are stored in the input RAM in FPGA. These values are read from the input RAM
through serial port using the MicroBlaze Soft Processor using the Fast Simplex Link
(FSL) channel. The DWT coefficients are read using FSL channel as mentioned in [54].
The data of 32-bit width is read through the serial port and therefore, two consecutive
values in the input RAM are read using FSL through serial port at every clock cycle.
These values are displayed on Tera Term Pro HTTP terminal as shown in Fig.5.12.
Except for the picture RAM size, the rest of the resource usage and timings are almost

constant for different configurations of the design.
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Image Dimensions:

Transform:
Filter Type:
Target Device:
Target Package:
Speed Grade:
Synthesis Tool:

The ourput read ﬁ‘om Xilinx Virtex Il Pro FP’GA througli serial port d:spla} ed on Tera 7erm :
Pro HTTP Terminal :

64*64

2D Lifting-Based DWT

(CX))

XC2VP30

FF896

-6

XST, Xilinx Implementation Tool.

Wavelet Transform (9,7):

Number of Slices:
Number of Slice Flip Flops: 919
Number of 4 input LUTs:

1564 outof 13696 11%
outof 27392 3%
2792 outof 27392 10%
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Number of Bonded IOBs: 377  outof 556 67%
Number of BRAMs: 30 outof 136 22%
Number of MULTI18X18s: 6 outof 136 4%

Natural Logarithm with 11 bits of precision:

Number of Slices: 256  outof 13696 1%
Number of Slice Flip Flops: 369  outof 27392 1%
Number of 4 input LUTs: 343  outof 27392 1%
Number of Bonded IOBs: 315  outof 556 56%
Number of BRAMs: 1 outof 136 0%
Number of MULT18X18s: 2 outof 136 1%

Best-Basis Algorithm for images (Threshold Cost Function):

Number of Slices: 2024 outof 13696 1%
Number of Slice Flip Flops: 1303 outof 27392 1%
Number of 4 input LUTs: 3620 out of 27392 1%
Number of Bonded IOBs: 493  outof 556 56%
Number of BRAMs: 32 outof 136 0%
Number of MULT18X18s: 6 outof 136 1%

As mentioned before, the resource usage in the case of wavelet transform and

best-basis algorithm is almost the same for different configurations except for the picture

RAM size. S
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, an efficient architecture for both (5,3) and (9,7) lifting-based DWT
and best-basis algorithm for images or 2D signal has been proposed. Also, a new
algorithm and architecture for natural logarithm using Maclaurin series has been
proposed to implement the Shannon cost function in best-basis algorithm. The proposed
DWT architecture exploits the arithmetic redundancy involved in lifting scheme to
reduce the number of multipliers required. Because the set of registers are used to route
the output of one stage to the next stage of the lifting sfeps of both (5,3) and (9,7)
wavelets, the proposed DWT architecture does not utilize extra memory or FIFOs to store
the intermediate results. The proposed DWT architecture is compared with other existing
architectures and shown that the proposed architecture utilizes less hardware area. The
proposed architecture for best-basis algorithm rperforms the best-tree selection from the
two-level of wavelet packet decomposition of images. The best-basis architecture utilizes

two cost functions, Threshold and Shannon cost functions, to compute the cost of the
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nodes. The best-tree selector architecture implements the best-basis algorithm to
determine the best-basis nodes. The best-basis nodes obtained from the proposed

architecture for various images are also presented. The summary of the work and future

extension of the work are presented in this chapter.

DWT
The following summarizes the contributions and the achievements of the author
by proposing lifting-based DWT architecture:

e Efficient architecture for lifting-based DWT using (5,3) and (9,7) wavelets. The
proposed architecture utilized less hardware area by exploiting the arithmetic
redundancy in the calculation of the lifting scheme.

e The proposed architecture does not require additional or extra storage devices
such as memory, FIFO to store the intermediate results unlike other existing
architectures.

e The proposed DWT architecture was compared with already existing architecture
for (5,3), (9,7) and (13,7) wavelets based on the requirement of the multipliers,
adders and extra storage devices. In comparison, it is evident from the table that
the proposed architecture uses minimum number of multipliers with no extra
storing devices. The simulation of the proposed architecture was performed for
different precision of filter coefficients for both (5,3) and (9,7) wavelets. The
result shows that the error value per pixel obtained from different formulae

decreases with increase in the precision of the filter coefficients of (9,7) wavelets.
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Since the whole image is reversed without any error from (5,3) wavelet, the

increase in the precision of filter coefficients does not affect its performance.

Natural Logarithm
e An efficient algorithm and architecture for the implementation of natural

logarithm function was proposed in Chapter 4.

Best-Basis Algorithm

e The architecture for best-basis algorithm for 2D signal or image was proposed in
Chapter 5. The proposed DWT architecture in Chapter 3 was used to compute the
quadtree decomposition of the 2D signal. The proposed architecture used one of
the cost function, Threshold function or Shannon function, to arrive the node cost.
The proposed logarithm algorithm in Chapter 4 was used to implement the
Shannon cost function.

o The architectures for best-tree calculation for 2D signal, address generation for
best-basis dual-port RAM and information cost calculation of each node were
proposed and discussed in details in Chapter 6.

e The proposed architecture for 2D signal was evaluated based on several images

and compared with the software output.
e Implementing all the proposed architectures — The proposed architectures were

described in VHDL hardware description language. The design was simulated

successfully in ModelSim simulation tool for function correctness and
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synthesized using Xilinx tool. In order to obtain the realistic data, the VHDL code

was implemented in Xilinx Virtex 11 Pro FPGA using the Xilinx implementation

tool. The FPGA implementation results were discussed in Chapter 5.

6.2 Future Research

The research has the potential for further scope of work. In the following we

highlight or propose some ideas that could lead to future research recommendations:

An algorithm and architecture for natural logarithm function was proposed
in the Chapter 4. The extensive study and analysis can be carried out by
determining the area and delay estimates of the algorithm in a particular
technology as discussed in [50]. The proposed algorithm can be further
extended for the other elementary functions such as exponential and
trigonometric functions such as sine and cosine functions.

The idea of the proposed best-basis architecture for images can be further
extended to another algorithm called Local Discriminant Basis (LDB)
algorithm [52-53]. LDB performs similar steps as best-basis algorithm
except that the cost function in LDB determines the discriminant measure

as mentioned in [52].
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APPENDIX A

VHDL Code of the modules involved in Lifting-based DWT and Best-
Basis Algorithm

VHDL model of Predict Module:
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

use work.wavelet.all;

entity predict is
generic (N: integer := 2);
port
lam_in: in data_type;
gam_in: in data_type;
pred_coeff: in coeff_type;
lam_en: in std_logic;
clk: in std_logic;
fw_iv: in std_logic;
gam_out: out data_type
);
end predict;

architecture predict_arch of predict is
signal mult_outs: mult_out_vector(0 to N-1);
signal lam_stages: data_type;
signal gamma_cal: data_type;

component multiplier
generic (A_length, B_length: integer);
port (
A:in std_logic_vector(A_length-1 downto 0);
B: in std_logic_vector(B_length-1 downto 0);
O: out std_logic_vector(A_length+B_length-1 downto 0)
);
end component;
begin

setLambdaValues: process(clk, lam_en)
begin
if(clk'event and clk ='1') then
if(lam_en ="1") then
lam_stages <= lam_in;
end if}
end if}
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end process;
mul: multiplier generic map(data_length, coeff_length) port map(lam_stages, pred_coeff, mult_outs(0));

setOtherMultiplierOutputs: process(clk)
begin
if(clk'event and clk = '1') then
mult_outs(N-1) <= mult_outs(0);
end if;
end process;

findGammaOut: process(mult_outs, gam_in, fw_iv)
variable sum: std_logic_vector(lifting_adder_output_width-1 downto 0);
variable sum_scaled: data_type := (others =>'0");

begin :

sum := (others =>"'0");

foriin0to (N - 1) loop
sum := sum + sxt(mult_outs(i), sum'length);

end loop;

sum_scaled := sum(data_length+predict_coeff_scaling_in_bits-1 downto predict_coeff scaling_in_bits);
if(fw_iv="1") then

gamma_cal <= gam_in - sum_scaled;
else '

gamma_cal <= gam_in + sum_scaled;

end if}
sum_scaled_out <= sum_scaled;

end process;

setGammaOutput: process(clk)
begin
if(clk'event and clk ='1") then
gam_out <= gamma_cal;
end if}
end process;
end predict_arch;

VHDL model of Update Module:
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_signed.all;

use work.wavelet.all;

entity update is

generic(NTilde: integer := 2);

port (
lam_in: in data_type;
gam_in: in data_type;
upd_coeff: in coeff_type;
clk: in std_logic;
lam_en: in std_logic;
next_lam: in std_logic;
fw_iv:in std_logic;
lam_out: out data_type

)
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end update;

architecture update_arch of update is
signal mult_outs: mult_type;
signal mult_out_scaled: data_type;
signal lambdas: data_vector(0 to Ntilde - 1);
signal lam_outs: data_vector(0 to Ntilde - 1);

component multiplier
generic (A_length, B_length: integer);

port
A:in std_logic_vector(A_length-1 downto 0); .
B:instd_logic_vector(B_length-1 downto 0); -« -
O: out std_logic_vector(A_length+B_length-1 downto 0)

)

end component;

begin
assign_lam_ins: process(clk, lam_en)
begin
if(clk'event and clk ="'1") then
if(lam_en ='1") then
for i in 0 to (NTilde-2) loop
lambdas(i) <= lam_outs(i+1);
. end loop;
lambdas(NTilde-1) <= lam_in;
end if;
end if;
end process assign_lam_ins;

mul: multiplier generic map(data_length, coeff_length) port map(gam_in, upd_cocfi{0), mult_outs(0));
mult_out_scaled(0) <= mult_outs(0)(data_length+update_coeff_scaling_in_bits-1 downto
update_coeff_scaling_in_bits);

mul_out <= mult_out_scaled(0);

process(mult_out_scaled, lambdas, fw_iv)

begin
for i in 0 to (NTilde/2-1) loop
if(fw_iv ="1") then
lam_outs(i) <= lambdas(i) + mult_out_scaled(i);
lam_outs(NTilde/2+i) <= lambdas(NTllde/2+|) + mult_ out _scaled(i);
else
lam_outs(i) <= lambdas(i) - mult_out_scaled(i);
lam_outs(NTilde/2+i) <= lambdas(NTilde/2+i) - mult_out_scaled(i);
end if}
end loop;
end process;

assign_lam_out: process(clk)
begin
if(clk'event and clk ='1') then
lam_out <= lam_outs(0);
end if;
end process assign_lam_out;
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. end update_arch;

VHDL model of Threshold Cost Function Moﬂule:

library ieee;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use work.wavelet.all;

entity ThresheldFunction is

port (

clk: in std_logic;

count_even_value: in std_logic;

count_odd_value: in std_logic;

reset_count: in std_logic;

in_even_value: in std_logic_vector(data_length-1 downto 0);
in_odd_value: in std_logic_vector(data_length-1 downto 0);
bestbasis: out std_logic_vector(15 downto 0)

end Thre;holdFunction;

architecture costfunction of ThresholdFunction is

begin

best_basis: process(clk) .
variable count: std_logic_vector(15 downto 0) := (others =>'0");

begin

if(clk'event and clk ='1') then

if(reset_count ='1") then

count := (others =>"'0");
end if}
if(count_even_value ='1') then

if(not (in_even_value <min_val_on_positive_number and in_even_value >

min_val_on_negative_number)) then
count := count + "001";

end if; -

end if;

if(count_odd_value ='1") then
if(not (in_odd_value < min_val_on_positive_number and in_odd_value >
min_val_on_negative_number)) then
count := count + "001";
end if;
end if;
bestbasis <= count;
end if}

end process best_basis;
end costfunction;

VHDL model of Shannon Cost Function Module:

library ieee;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
use work.wavelet.all;
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entity ShannonEqn is

port (
clk: in std_logic;
reset_count: in std_logic;
consider_value: in std_logic;
in_value: in std_logic_vector(15 downto 0);
out_bbcost: out std_logic_vector(31 downto 0)
)

end ShannonEqn;

architecture equation of ShannonEqn is

component LN_unit port (
clk: in std_logic;
input: in std_logic_vector(15 downto 0);
LN_output: out std_logic_vector(15 downto 0)

);

end component;

for all: LN_unit use entity work.NaturalLog(LN_arch);

component multiplier
generic (A_length, B_length: integer);
port (
A: in std_logic_vector(A_length-1 downto 0);
B: in std_logic_vector(B_length-1 downto 0);
O: out std_logic_vector(A_length+B_length-1 downto 0)
);

end component;

signal abs_in_value: std_logic_vector(15 downto 0) := (others =>"0");

signal LN_from_LogUnit: std_logic_vector(15 downto 0) := (others =>'0");
signal mult_output: std_logic_vector(17 downto 0) := (others =>"0");

signal delay_mult_output_1: std_logic_vector(16 downto 0) := (others =>"0");
signal delay_mult_output_2: std_logic_vector(16 downto 0) := (others =>"0");
signal delay_mult_output_3: std_logic_vector(16 downto 0) == (others =>'0");
signal x_square: std_logic_vector(16 downto 0) := (others =>'0");

signal cost_of_coeff_x: std_logic_vector(32 downto 0) := (others =>'0');

begin
process(in_value)
begin - :
if(in_value(15) ="'1') then
abs_in_value <= not (in_value) + 1;
else
abs_in_value <= in_value;
end if;
end process;

" mul_1: multiplier generic map(16, 16) port map(abs_in_value, abs_in_value, mult_output); .

LN: LN_unit
port map (
clk => clk,
input => abs_in_value,
LN_output => LN_from_LogUnit
);
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Delay_multiplieroutput_unit:
process(clk)
begin
if(clk'event and clk ='1') then )
delay_mult_output_1 <=mult_output(15 downto 0);
delay_mult_output_2 <= delay_mult_output_1;
delay_mult_output_3 <= delay_mult_output_2;
X_square <= delay_mult_output_3;
end if}
end process Delay_multiplieroutput_unit;

mul_2: multiplier generic map(16, 16) port map(x_square, LN_from_LogUnit, cost_of coeff x);
process(clk, reset_count, consider_value, cost_of coeff x)

variable indiv_cost: std_logic_vector(20 downto 0) := (others =>'0");
variable node_cost: std_logic_vector(31 downto 0) := (others =>'0");
variable prev_node_cost: std_logic_vector(31 downto 0) := (others =>'0");
variable count: integer := 0;
begin
indiv_cost := cost_of_coeff x(31 downto 11);
if(clk'event and clk ='1') then
prev_node_cost := node_cost;
end if}
if(reset_count ="'1") then
node_cost := (others =>"'0");
elsif(consider_value ='1") then
node_cost := prev_node_cost + indiv_cost;
count := count + 1;
end if;
out_bbcost <= node_cost;
end process;
end equation;

library ieec;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
use work.wavelet.all;

entity ShannonFunction is
port (

clk: in std_logic;
is_even_value: in std_logic;
is_odd_value: in std_logic;
reset_cost: in std_logic;
in_even_value: in std_logic_vector(15 downto 0);
in_odd_value: in std_logic_vector(15 downto 0);
out_bbcost_node: out std_logic_vector(31 downto 0)

end ShannonFunction;
architecture costfunction of ShannonFunction is

component ShannonEqn
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begin

port (
clk: in std_logic;
reset_count: in std_logic;
consider_value: in std_logic;
in_value: in std_logic_vector(15 downto 0);
out_bbcost: out std_logic_vector(31 downto 0)
)

end component;

signal out_even_bbcost: std_logic_vector(31 downto 0) := (others =>'0');
signal out_odd_bbcost: std_logic_vector(31 downto 0) := (others =>'0');

BBCF_1: ShannonEgn

port map (
clk => clk,
reset_count =>reset_cost,
consider_value => is_cven_value,
in_value => in_cven_value,
out_bbcost => out_even_bbcost

);
BBCF_2: ShannonEgn
port map (
clk => clk,
reset_count => reset_cost,
consider_value =>is_odd_value,
in_value => in_odd_value,
out_bbcost => out_odd_bbcost
)
process(clk, out_odd_bbcost, out_even_bbcost)
begin

out_bbcost_node <= out_odd_bbcost + out_even_bbcost; -
end process;

end costfunction;

VHDL model of Best-Tree Selector Module:

library icec;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use work.wavelet.all;

entity BestTreeSelector is

port
clk: in std_logic;
bb_enable: in std_logic;
set_flag_in_TreeSelector: in std_logic;
in_cost_of_childl: in std_logic_vector(15 downto 0);
in_cost_of_child2: in std_logic_vector(15 downto 0);
in_cost_of_parent: in std_logic_vector(15 downto 0);
parent_node: in std_logic_vector(10 downto 0);
flag_level_0: out std_logic;
flag_level_1: out std_logic_vector(3 downto 0);
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total_child_cost: out std_logic_vector(15 downto 0);
out_selected_cost: out std_logic_vector(15 downto 0)
); »
end BestTreeSelector;

architecture BestTree_arch of BestTreeSelector is
signal cost_child1: std_logic_vector(15 downto 0) := (others => '0");
signal cost_child2: std_logic_vector(15 downto 0) := (others =>'0');
signal added_cost1: std_logic_vector(15 downto 0) := (others =>'0");
signal added_cost2: std_logic_vector(15 downto 0) := (others =>'0");
signal totalchildcost: std_logic_vector(15 downto 0) := (others =>'0");
signal selected_cost: std_logic_vector(15 downto 0) := (others =>'0");
signal level_0: std_logic :='0";
signal level_1: std_logic_vector(3 downto 0) := "0000";
begin
process(clk, bb_enable)
begin
if(clk'event and clk ='1") then
if(bb_enable ="'1') then
cost_childl <=in_cost_of childl;
cost_child2 <=in_cost_of _child2;
end if}
end if}
end process;
sumChildCost: process(clk, bb_enable, cost_child1, cost_child2)
variable bln_toggle: boolean := false;
variable add_out: std_logic_vector(15 downto 0) := (others =>'0'");
begin
if(bb_enable ='1") then
add_out := cost_child1 + cost_child2;
totalchildcost <= added_cost1 + added_cost2;
total_child_cost <= added_cost1 + added_cost2;
bln_toggle :=not bin_toggle;
end if}
if(clk’event and clk ='1') then
if(bb_enable ='1") then
if(bln_toggle) then
added_cost1 <=add_out;
else
added_cost2 <= add_out;
end if;
end if}
end if}
end process;
setSelectedCost: process(clk, bb_enable, node_0, node_1, node_2, node_3, node 4,
set_flag_in_TreeSelector)
begin
if(bb_enable ='1') then
if(clk'event and clk ='1') then
out_selected_cost <= selected_cost;
flag_level_0 <=node_0;
flag_level_1 <=node_4 & node_3 & node_2 & node_1;
end if;
end if}
end process;
end BestTree_arch;

104



	Ryerson University
	Digital Commons @ Ryerson
	1-1-2005

	An efficient architecture for discrete wavelet transform and best-basis algorithm for images
	Aroutchelvame Mayilavelane
	Recommended Citation


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117

