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Abstract

Theory and Application of Encrypted Sequential Data Processing:

Search and Computation

Hoi Ting Poon

Doctor of Philosophy, Computer Science

Ryerson University, 2018

Cloud Computing has seen a dramatic rise in adoption in the past decade amid se-

curity and privacy concerns. One area of consensus is that encryption is necessary, as

anonymization techniques have been shown to be unreliable. However, the processing of

encrypted data has proven to be difficult. Briefly, the goal is to maintain security over

remotely stored and accessed data while achieving reasonable storage cost and perfor-

mance. Search is the most basic and central functionality of a privacy-protected cloud

storage system actively being investigated. Recent works have looked at enabling more

specialized search functions. In this thesis, we explore the problem of searching and pro-

cessing of sequential data. We propose three solutions targeting textual data, with em-

phasis respectively on security, storage cost and performance. Our first solution achieves

a high level of security with reduced communication, storage and computational cost

by exploiting properties of natural languages. Our second solution achieves a minimal

storage cost by taking advantage of the space efficiency of Bloom filters. Both propos-

als were also first to enable non-keyword search in phrases. Using a subsequence-based

solution, our final phrase search scheme is currently the fastest phrase search protocol

in literature. We also show how sequential data search schemes can be extended to in-

clude auditing with minimal additional cost. The solution is capable of achieving proof

of retrievability with unbounded number of audits. A sample application which enables
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searching and computing over target values of encrypted XML files is also demonstrated.

In terms of media, we describe an encrypted cloud media storage solution that simultane-

ously protects user privacy and enables copyright verification, and is the first to achieve

security against dishonest participants. We also describe a framework where practical

scalable privacy-protected copyright detection can be performed. Finally, an application

of sequence querying over generic data in the form of an Anti-Virus over encrypted cloud

storage is demonstrated. A private scanning solution and a public Anti-Virus as a ser-

vice solution are described, noting that the technique can be conceptualized as a generic

pattern matching solution on encrypted data. We also include some directions on future

work and unexplored applications.
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Chapter 1

Introduction

There has been significant interest in encrypted data processing in the research commu-

nity over the past decade. Arguably, it all started with VMWare: customizable virtual

machines with hard drive, RAM, CPU, etc, all adjustable as needed, easily and rapidly

deployable at a much lower cost than physical machines. As a result, small companies

can quickly set up their computing resources while established companies can reduce

the financial burden of setting up and maintaining physical data centers. Its scalability

and flexibility also allows clients to easily adjust the resources according to their com-

puting needs and quickly adapt to unexpected increases in traffic, such as a popular

app on launch day or defense against denial of service attacks. This is what fueled the

commercialization of cloud computing technology. Despite the numerous advantages of

out-sourcing data storage and computations, cloud computing and storage systems also

raise security and privacy concerns. Many organizations have become alarmed by in-

creasingly frequent data breaches and many, such as health services, require handling

private and classified information. The security and privacy concerns that come with

outsourcing of computing resources, combined with a timely breakthrough in homomor-

phic encryption, is what led many researchers to consider encrypted data processing

solutions for cloud services.

1.1 Motivation

Despite the proliferation of cloud technologies today, many commercial cloud service

providers do not offer data encryption. Those that do encrypt the data using a private

key that they control, allowing them to read any data they desire and offering no privacy

to their clients. The promise of reliable, scalable and cost-effective service is therefore
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CHAPTER 1. INTRODUCTION

hampered by the lack of data security and privacy. The latter can be particularly im-

portant in industries required to handle classified and confidential information such as

health care and financial services. In response, regulators establish standards requiring

anonymization of private data, through removal of personally identifiable information

such as names and identification numbers from client data. These techniques have been

in use by many companies such as Facebook and Netflix. Yet, many studies have shown

that they do not provide reliable protection. For instance, a study by MIT [1] showed

that knowing a person’s location four times in a year is enough to uniquely identify 95%

of users in a set of 1.5 million cellphone usage records. In genomics, short subsequences of

chromosomes were found to be enough to identify individuals with high probability [30].

The anonymized Netflix Prize dataset was famously deanonymized using publicly avail-

able information [49]. In all cases, the conclusion seems to be that reliable anonymization

could well be infeasible since information about individuals is so widely available and

easily accessible largely due to the Internet.

As an alternative to anonymization, encryption has well defined security properties

that have endured under the scrutiny of academics and security professionals. Rather

than maintaining seemingly non-identifying information in plain, all data is encrypted

with mechanisms in place to perform the required functionalities. Much of the difficulty

in securing distributed computation and data storage is due to the fact that strong en-

cryption tends to require significant computations, which in turn reduces the throughput

of the system. Therefore, the balance between cost, performance and security is central

to research in encrypted data processing. An insurance company that needs to secure

client data may be willing to sacrifice access speed while a stock exchange relying on

fast order processing would value response time above all. Another challenge rests in

enabling the functionalities required for remote access of encrypted data. However, many

functions available in storage systems and databases, such as search, deduplication and

auditing, do not translate intuitively to encrypted data. A trivial solution would have

the data owner download and decrypt the entire data set before performing the required

function on the plaintext. However, this would be impractically expensive on large data

stores with petabytes of data. As a result, researchers have been actively investigating

solutions for processing encrypted data on cloud storage. Particularly, search has been

identified as one of the most important features needed in encrypted storage systems.

1.1.1 Privacy-aware keyword search

Considered to be the core function of a privacy protected cloud storage system, con-

junctive keyword search over encrypted data has been the focus of many research works

2



CHAPTER 1. INTRODUCTION

in the past decade. More recently, researchers have begun exploring more specialized

functions such as fuzzy search [70,77], ranking [18,24,33] and auditing [8,65,72]. Along

the same line, our work aimed to extend basic keyword search functionality to include

phrases.

Since applications have different requirements, solutions are needed to satisfy different

levels of security, cost and performance. For instance, medical and financial services

may have sensitive data that require a high level of security. Despite many advantages

in outsourcing data management, current unencrypted cloud storage services generally

cannot meet the industry’s security needs. Therefore, a solution which enables secure

and private storage of sensitive documents while enabling search is of great value.

The emergence of the Internet of Things also introduced resource limited devices that

require lightweight solutions. For example, a network of devices in the field may need to

access a cloud database. However, due to geographical distance and power limitations,

a small edge device with limited amount of storage is instead placed close to the end

nodes to facilitate queries. Since the edge device is in the field, its storage needs to be

secured and the resource for supporting queries must have a low storage requirement.

Time sensitive applications such as those related to Big Data often require fast pro-

cessing to match the rate at which data are being generated. One of the emerging trends

in security is to perform large scale monitoring and intrusion/anomaly detection. Secu-

rity companies offering such services may require scanning security logs on their clients’

machines for network traffic, https requests, file transfers, etc. These information could

potentially be sensitive. They are also time critical. A fast detection of a newly released

malware can significantly reduce its spread and the damage it causes. A mechanism

for querying encrypted security logs with fast response time could present a practical

solution.

1.1.2 Cloud auditing: data retrievability

Another area of interest is that of cloud auditing. In particular, storing data in servers

that the data owner does not control presents a dilemma where there’s no obvious way

to ensure that the data is faithfully being stored. Furthermore, sensitive data needs

to be encrypted to ensure security and privacy. If the data is not frequently accessed,

how can one ensure that it remains uncorrupted and available without downloading

and decrypting the data set? Researchers describe the problem as proof of possession

or retrievability of untrusted cloud stored data. A practical solution to the problem is

especially beneficial to archives and backups that are rarely accessed but can be extremely

important when required. Imagine the scenario where a company’s financial dealings and

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Cloud auditing: proof of data retrievability

statements are stored in the cloud and a legal dispute arises some years later when proofs

of contractual obligations are required. Such documents are naturally confidential and

their availability and authenticity are equally important.

1.1.3 Privacy-preserving computations

While search is considered a basic functionality, the ability to compute over encrypted

data provides many interesting possibilities. Although generic computation over en-

crypted data has so far remained out of reach, application specific solutions have shown

promise.

In this thesis, we consider three problems where computing over encrypted sequences

is required.

XML Documents

XML is a data format that structures documents for human and machine readability. It

is widely used across the Internet, e.g. HTML, JSON. The textual documents consist of

attributes, tags and contents. Often, there are fields where contents are numeric, such

as prices, time and weight, where meaningful computations can be performed. When

documents are in plaintext, identifying contents of specific tags and computing over

them is straight forward. However, computing over encrypted XML documents is much

less obvious. Locations and ordering of tags are not necessarily consistent and may

even be missing across different documents of the same format. Size of contents can

also vary. A solution that addresses these challenges could provide a valuable tool to

process encrypted online forms and compute aggregated results while protecting privacy

of individual users.

Digital rights management

Since Napster introduced its pioneering peer-to-peer file sharing service, copyright advo-

cates had been in a constant struggle to enforce copyright laws over the Internet. While
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peer-to-peer file sharing remains popular today, cloud storage services have become the

tool of choice for many illegal distributors. Unlike peer-to-peer, there is no need to

maintain a server to seed a file. Instead, the distributor simply uploads the file to the

cloud and provides the link to the public. There is no cost to the distributor and no

maintenance required.

Figure 1.2: Hash based copyright detection for cloud storage services

Figure 1.3: Hash based copyright detection for encrypted cloud storage services (e.g.
Mega)

Companies such as Amazon EC2, Microsoft Azure and Mega are among cloud ser-

vice providers who have dedicated significant resources to comply with copyright laws

in order to continue operations. However, efforts to prevent copyrighted media from

being placed on cloud servers have had limited success. Furthermore, the need for user

security and privacy has led to cloud storage services offering encryption where the data

owner controls the private key. The latter renders traditional hash-based automatic de-

tection impossible. Figure 1.2 illustrates how a media previously reported by a copy

5



CHAPTER 1. INTRODUCTION

claimant as copyrighted can be automatically identified using the file’s hash signature

should other user uploads the same media. Figure 1.3 shows the equivalent scenario

in an encrypted cloud service where the encrypted media have different hashes due to

encryption with different keys, disabling traditional hash based detection. Without an

automatic detection system, cloud services can rely only on manual reports to remove

copyrighted media from their servers, a slow and ineffective process that exposes them to

legal threats. Without encryption, they cannot alleviate security and privacy concerns.

There is therefore a need for a solution that can effectively address both user privacy

and digital rights management on cloud services.

Malware detection

Anti-virus companies have come under scrutiny in recent years amid accusation of cy-

ber warfare between nations. As recent as in September 2017, US ordered removal of

Kaspersky’s products from government computers citing national security concerns on

fear that Kaspersky is used by the Russian government to further national interest [48].

These concerns are in no small part due to the significant control required by an anti-

virus software to perform its functions and its unrestricted access to any data stored on

a host machine. This level of access allows an anti-virus company to extract data from

any target machine with its software installed should it desires to. Anti-virus software

operates similarly on cloud servers. They run locally and are given administrator-like

access on machines. On a storage system, an anti-virus software’s main function is to

identify malware or, more specifically, the signatures and code sequences representing

malware. Knowledge of the data itself is not technically required, unless it matches

those representing malware. How would one then allow the anti-virus to detect malware

without giving it access to the data in plain? This question may be answered using

cryptographic techniques in a solution that provides both user privacy and control over

the amount of information that an anti-virus has access to.

1.2 Contributions

The contribution of this thesis revolves around techniques for searching and computing

over encrypted sequences and their applications to secure and privacy-protected cloud

services.

To establish the basic techniques, three search schemes for textual sequences are

described, with respective emphasis on:
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1. Security: This construction, denoted our schemesec, is the first practical phrase

search scheme with provable security in the literature. It is also the first to enable

queries for non-indexed words with basic ranking capability. More generally, the

scheme demonstrates techniques to improve storage and communication cost in

an index based search scheme when the data under search, be it textual or oth-

erwise, exhibits a highly non-uniform distribution. It is also demonstrated that

data symmetrically encrypted in counter mode can be searched directly without

indexing.

2. Storage: This construction, denoted our schemesto, is currently the phrase search

solution with the lowest storage cost in the literature. Non-indexed words are also

searchable with basic ranking capability. More generally, the scheme demonstrates

techniques to trade computational cost and processing speed for lower storage by

combining data and location, be it textual or otherwise, in a single searchable data

structure.

3. Speed: This construction, denoted our schemespd, is currently the fastest phrase

search scheme in the literature. The solution introduces a new way of searching

data sequences, shifting away from traditional location based search. The technique

allows the search to be completed in a single round of communication using only

efficient hash computations.

Our solutions can also adapt to the fog computing architecture, where edge devices

are placed closer to users to provide localized service as opposed to a pure cloud architec-

ture where only centralized servers are used. This reduces latency to clients and reduces

bandwidth to backbone cloud data center, improving quality of service. Adapting our

phrase search protocols to the fog computing architecture consists of placing and repli-

cating the indexes or Bloom filters at edge devices while storing the encrypted data sets

at the cloud storage.

Noting the connection with cloud data auditing and proof of retrievability schemes,

we also show that resources required for a location based search scheme can be reused for

proof of retrievability with minimal additional cost. To this end, we describe a private

auditing scheme and a public auditing scheme where a third party auditor is used. The

solutions maintain data and search privacy while enabling conjunctive keyword search,

phrase search and proof of retrievability with unbounded number of audits.

Using XML as example, we show how phrase search can be used in a document pro-

cessing solution that enables SQL-like queries, such as SUM and PRODUCT, while still

being relatively efficient. The solution is applicable to partially and fully encrypted XML
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documents. Our solution is also the first to consider fully encrypted XML documents,

where full protection of content and structure of the XML is available.

In terms of media, we describe a solution which enables both data privacy and copy-

right verification on encrypted media uploaded to cloud servers, resolving the apparent

incompatibility of the two features. By providing a technique to perform automatic de-

tection, this gives a way forward from the industry’s status quo where manual reports

are required on encrypted cloud storage such as Mega. It is the first solution to consider

the digital rights management issue for cloud storage in practise, where different parties

are considered malicious due to each having incentives to deviate from the protocol for

individual benefits. We also describe a framework where efficient copyright detection

can be performed by combining with an encrypted media search scheme.

Our final contribution involves an application of sequential encrypted binary data

processing for cloud based Anti-virus software. Instead of allowing an anti-virus access

to plaintext, all data are encrypted. The approach provides data owner control over the

anti-virus’s access to the data set as opposed to traditional anti-virus with unrestricted

access. More specifically, our solutions allow an anti-virus to scan for malware but learn

nothing more on the data. The cloud service provider assists in performing the scan, also

without knowledge of the data. The private scenario allows a single user to efficiently

scan his own encrypted data set, without revealing data to the cloud. We also showed

an interesting solution in the form of an anti-virus as a service where an anti-virus

server scans user’s encrypted data stored on the cloud. The solution has the property

that the anti-virus server does not require knowledge of the data in plain and the data

owner does not require knowledge of the malware database to perform malware scanning.

The cloud service provider does not acquire knowledge of the malware database or the

data being scanned. Furthermore, only a simple encrypted scanner is installed on the

cloud server, which does not require frequent software updates. This protects against

reverse-engineering of anti-virus software, prevents malware writers from gaining access

to malware databases, provides data control to users while maintaining data privacy and

security on the cloud.

1.3 Thesis organization

In this thesis, we explore the problem of searching and processing of sequential data.

In the form of text, this represents phrases. In media, this could be pixels or spectral

information. We begin our formal discussion in chapter 2 by proposing three solutions

targeting textual data, with an emphasis respectively on security, storage cost and per-
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formance. Business and organizations have varying needs in security, privacy and costs.

Agencies handling classified documents may opt for a highly secure solution in spite of

slower response time and higher storage requirement. A network of small devices with

limited storage may require the smallest storage requirement possible. An intrusion de-

tector scanning encrypted logs may require fast response time in order to process the

logs as fast as they are being generated. Each of these scenarios would require a dif-

ferent solution among the ones proposed. To help understand our solutions, section 2.2

provides background on the tools we will use throughout this thesis. Cloud auditing is

another area of interest. It involves mechanisms for a user to verify the integrity and

availability of one’s outsourced data when one no longer has access to it. In section 2.7,

we show that, under certain condition, a solution for sequential data search can also

be used as a cloud auditing solution with minimal additional cost. In other words, an

encrypted sequential data search scheme would not only allow a user to search but also

ensure that the cloud had not tempered with or lost any user data.

There are also scenarios where one might want to compute over certain portions of

a document. For example, a finance department may want to add up the costs of items

related to marketing in encrypted invoices. In section 2.8, we describe how one can search

and compute over structured text such as an encrypted XML file to perform SQL-like

queries.

Media, due to the large bandwidth and storage requirement, is commonly placed on

cloud storage services. While there are efforts towards enabling search for encrypted

media, our focus is on finding a solution to the status quo of digital rights management

in cloud services, where the need for user privacy runs counter to the need for respecting

copyright law. Namely, to protect user privacy, cloud services offer client-side data en-

cryption. Without access to user data in plain, they can no longer identify copyrighted

material. In chapter 3, we examine and describe an encrypted cloud media storage solu-

tion that protects user privacy while enabling copyright verification by computing over

encrypted pixel or coefficient sequences. Our solution considers the malicious setting,

which is particularly relevant in practise where there are incentives for users to upload

copyrighted media onto the cloud.

Finally, we show an application of sequential search over generic data in chapter 4

in the form of an Anti-Virus over encrypted cloud storage. Recent world events and

frequent network breaches, some of which claimed to be state sponsored, have brought

attention to Anti-Virus companies. Anti-Virus software requires administrative rights

over all aspects of computers to perform its functionalities. However, questions arose

over time on whether these companies can be trusted to have such complete control
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over our data. Furthermore, traditional Anti-Virus software stores the virus database

and performs malware scanning locally, which allows malicious parties to adopt and

test their malware accordingly. To address these issues, we proposed private and public

remote malware scanning solutions for encrypted cloud storage that not only enable user

privacy but also protect the content of the virus database from malware writers. To

conclude, some directions on future work and unexplored applications will be presented.

The following is a list of our publications and the section(s) associated with it:

• Section 2.3, 3.1 and 3.2: H. Poon and A. Miri. Privacy-aware search and com-

putation over encrypted data stores. In S. Srinivasan, editor, Guide to Big Data

Applications, chapter 11, pages 273–293. Springers International, 2018

• Section 2.4: H. Poon and A. Miri. An efficient conjunctive keyword and phrase

search scheme for encrypted cloud storage systems. In IEEE International Con-

ference on Cloud Computing, pages 508–515, 2015

• Section 2.5: H. Poon and A. Miri. A low storage phrase search scheme based on

bloom filters for encrypted cloud services. In IEEE International Conference on

Cyber Security and Cloud Computing, pages 253–259, 2015

• Section 2.6: H. Poon and A. Miri. Fast phrase search for encrypted cloud stor-

age. IEEE Transactions on Cloud Computing, DOI: 10.1109/TCC.2017.2709316,

to appear

• Section 2.7: H. Poon and A. Miri. A combined solution for conjunctive keyword

search, phrase search and auditing for encrypted cloud storage. In IEEE Conference

on Advanced and Trusted Computing, pages 938–941, 2016

• Section 2.8: H. Poon and A. Miri. Computation and search over encrypted XML

documents. In IEEE International Congress on Big Data, pages 631–634, 2015

• Section 4.1: H. Poon and A. Miri. Scanning for viruses on encrypted cloud storage.

In IEEE Conference on Cloud and Big Data Computing, pages 954–959, 2016

• Section 3.3.3: S. Ghaffaripour, F. Younis, H. Poon, and A. Miri. An analysis of

the security of compressed sensing using an artificial neural network. In Privacy,

Security and Trust, pages 1–3, 2017

As the motivations, contributions and organization of this thesis have been stated,

next chapter will begin the formal discussion with sequential search and computations

with textual data.
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Chapter 2

Text

Many sensitive and confidential information are stored in texts. Documents containing

medical records, financial spreadsheets, business transactions, credit card records and

customer information are among the most cited that require privacy protections. Search,

being one of the central needs of text processing systems, is of particular importance.

Investigation into privacy-protected keyword search began in the early 2000s, when

Boneh et al. [13] proposed one of the earliest works on keyword searching. Their scheme

uses public key encryption to allow keywords to be searchable without revealing data

content. Waters et al. [74] investigated the problem for searching over encrypted audit

logs. Many of the early works focused on single keyword searches. Recently, researchers

have proposed solutions on conjunctive keyword search, which involves multiple keywords

[20,41]. Other interesting problems, such as the ranking of search results [18,24,33] and

searching with keywords that might contain errors [70,77] termed fuzzy keyword search,

have also been considered.

The ability to search for phrases was also only recently considered [69, 79]. Phrases

are sequential textual data and the most common form encountered in practise. The

various encryption schemes and techniques presented in this chapter form the basis of our

work on search and computation over encrypted sequences. While English is assumed in

our discussions, the techniques can be extended to other natural languages.

In this chapter, we will describe three approaches to implementing phrase search over

encrypted documents, with respective focus on security, storage cost and performance.

We then describe a search and audit scheme that reuses the resources for enabling phrase

search, effectively granting audit capability for free. Then, an application in encrypted

XML processing will be demonstrated in section 2.8, which, in addition to search, also

allows computing over field values.
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Figure 2.1: Communication model for keyword search over encrypted data

2.1 Model for keyword search over encrypted data

The communication model for a keyword search protocol generally involves up to three

parties: The data owner, the cloud server and the user. In a private cloud, the user is

simply the data owner. For most of our discussions, we will be considering the public

cloud scenario involving three different parties. A typical protocol is illustrated in Figure

2.1. The user begins by sending a search request containing the queried keywords to the

data owner. To prevent the cloud from learning the keywords, the data owner computes

and sends a trapdoor to the cloud to initiate a protocol to search for the requested

keywords in the corpus. Finally, the cloud responds to the user with the search results

and, if required, indexes to the requested documents.

Our framework differs from some of the earlier works [13, 74], where keywords gen-

erally consist of meta-data rather than content of the files to be retrieved and where a

trusted key escrow authority is used due to the use of identity-based encryption. When

compared to recent works, our setup is equivalent to that of [75,79], where an organization

wishes to outsource computing resources to a cloud storage provider and enable search

for its employees, and similar to [24,71], where the aim is to return properly ranked files.

Most other recent works related to search over encrypted data have considered similar

models such as [69], where the client acts as both data owner and user.

The cloud server usually wields significant computational power compared to the

data owner and users. Therefore, it is desirable that the computational and storage cost

be asymmetrically placed on the cloud.

Note that, depending on the application, the encrypted documents may or may

not require retrieval once the query is resolved. Should retrieval be required, further

privacy issues may arise. These issues are considered in oblivious storage [28] and private

information retrieval schemes [17]. Our discussions will mainly restrict to the protocol

leading to the query resolution. Direct retrieval is assumed where appropriate to better
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compare against existing solutions for phrase search.

2.1.1 Security

In terms of security, we assume a semi-honest cloud server, which is interested in learning

about stored data but will follow our keyword search protocol as described and will not

modify or misrepresent any data in order to gain an advantage. Two of the main security

issues regarding keyword searches are the privacy of the document sets and the privacy of

the queried keywords. Briefly, a secure keyword search protocol should prevent the cloud

server from obtaining non-negligible amount of information on the stored documents or

the keywords in the query requests. The latter is a very difficult issue to address if

we consider an adversary with some prior knowledge about the documents, such as the

language and the content (ex: business, technical specifications), or the pattern of the

search requests. Consider a scenario where the cloud operator with statistical knowledge

of user data were able to identify the documents where the keywords ‘John’, ‘Smith’ and

‘Cancer’ reside. It would have learned with some level of confidence that John Smith has

cancer. Furthermore, should the user retrieves the queried documents at some point, the

association of subsets of documents to search patterns is inevitable. Although private

information retrieval protocols can be used to lessen its effect, they are costly and can

still leak information over time. As with all existing works, we will mostly restrict our

security discussions of search privacy on the scheme prior to document retrieval. Note

that, in our target application, users are employees of the data owner’s organization

and are authorized to search for any documents in the data set. Should an application

requires that users be restricted from accessing certain files, an access control system such

as [61] would be required to verify the matched results and returned only those which the

user has the required credential to access. In summary, our protocols are designed to be

secure against semi-honest Cloud services with statistical knowledge, such as distribution,

of the stored data, protecting user content from the Cloud service provider. Our first

protocol is also secure against semi-honest Cloud services with statistical knowledge of

incoming queries, while our other protocol can be modified to be secure against the

stronger adversary with a communication cost.

2.2 Background

Over the past decade, a few tools have been central to the development of encrypted

search schemes. In this section, we present some of the tools that we will use throughout

our discussions. Other related techniques can also be found in our survey [57]. Research
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work related to our proposed solutions will be presented in the relevant chapters.

2.2.1 Symmetric-key Encryption

Symmetric-key cryptographic algorithms are widely used for securing data. They consists

of encryption and decryption algorithms using the same secret key:

C = EK(P ) (2.1)

P = DK(C) (2.2)

where P is the plaintext, C is the ciphertext, EK() and DK() are the encryption and

decryption using the secret key K. The most popular symmetric key encryption in

practise is the block cipher AES. A block cipher is a symmetric-key algorithm that uses

a fixed block size. That is, P and C have fixed lengths, e.g. 128 bits. A secure symmetric

encryption has the following properties:

• Without the secret key and prior knowledge about the plaintext, it is infeasible to

learn the plaintext that generated a ciphertext other than through brute force

• Any two plaintexts, even with minor differences, yield uncorrelated ciphetexts

• A ciphetext should always decrypt to the correct plaintext under the secret key

Modes of Operation

To encrypt messages of different length using a block cipher, they must first be parti-

tioned into cipher blocks. Since the same message will encrypt to the same ciphertext

under the same secret key, encrypting each block independently is generally insecure,

as blocks representing identical plaintext can be easily identified. Modes of encryption

address this issue by allowing a block cipher to securely encrypt long messages. Two of

the most commonly used modes of encryption are Cipher Block Chaining (CBC) and

Counter (CTR) mode.

CBC mode, illustrated in figure 2.2, creates a chain by making each block’s encryption

dependent on the previous block, through an XOR of the plaintext with the previous

ciphertext block. Effectively, the encryption of a plaintext block is dependent on all

plaintexts processed up to that block. To ensure that the first block remains unique, an

initialization vector (IV) is used for the first block. Note that the initialization vector

should not be reused under the same secret key.
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Figure 2.2: Cipher Block Chaining (CBC) mode encryption

Figure 2.3: Counter (CTR) mode encryption

Counter mode, illustrated in figure 2.3, instead uses a counter to ensure uniqueness

of ciphertext, by making it dependent on the position of the block in the message. The

ciphertext is simply the XOR of the encryption of the counter with the plaintext. One

significant advantage of counter mode over CBC mode is that it is parallelizable.

2.2.2 Cryptographic Hashing Functions

A cryptographic hash function, H(), is a hash function with properties that are suitable

for use in cryptography. In addition to mapping a message of variable length to a hash

value of fixed size as in non-cryptographic hash functions, it must also have the following

properties:

• Infeasible to determine the message that generated a hash value other than through

brute force

• Infeasible to identify two messages that generate the same hash value

• Any two messages, even with minor differences, yield uncorrelated hash values

Cryptographic hash functions share many similar properties to an encryption algo-

rithm, except the output is uninvertible, fixed size, smaller than the message and collision

is possible. Common cryptographic hash functions include MD5, SHA-256 and BLAKE.
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2.2.3 Keyed Hashing Functions

Message authentication codes (MAC), also called keyed hash functions, are cryptographic

hash functions often used as a mean to ensure integrity and authenticity/origin of files.

With keyed hash functions, HK(), a secret key is used to generate the hash to ensure

only those possessing the secret key can generate and verify the hash value. HMAC is a

keyed hash function specified as follows:

HMACK(M) = H(K1|H(K2|M)) (2.3)

where K = (K1|K2) is the secret key, M is the message to be hashed and H() is a

cryptographic hash function.

2.2.4 Encrypted Indexes

Indexing has been one of the most efficient approaches to search over data. The technique

can also be extended to encrypted data.

An index works by first parsing a data set for keywords and then generating a table

that maps the keywords to the data. Consider a document set with three books with

the following keywords:

Book A ‘Horror’,‘Fiction’

Book B ‘World War’,‘Biography’

Book C ‘World War’, ‘Pandemic’, ‘Fiction’

Parsing the document set would result in the following index :

‘Horror’ A

‘Fiction’ A,C

‘World War’ B,C

‘Biography’ B

‘Pandemic’ C

Extending the approach to encrypted data consists simply of hashing and encrypting

the keys and entries in a manner that is consistent with the index structure [27]. The

data set itself is symmetrically encrypted using a separate secret key.
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EK(‘Horror’) EK(A)

EK(‘Fiction’) EK(A,C)

EK(‘World War’) EK(B,C)

EK(‘Biography’) EK(B)

EK(‘Pandemic’) EK(C)

Suppose a user wishes to upload a document collection, D = {D1,D2, . . . ,Dn}. It is

first parsed for a list of keywords, {kw1, kw2, . . . , kwn′}, which may include document

content or meta-data such as date and department. An index is generated mapping

keywords to documents such that I(kwj) = (d1, d2, . . . , dn), where di = 1 if kwj is a

keyword for the ithdocument and di = 0 otherwise. The index is then encrypted and

uploaded to the cloud server:

I(HK(kwj)) = EK(d1, d2, . . . , dn), (2.4)

where HK() is a keyed hash function and EK() is a symmetric encryption algorithm such

as AES. Briefly, cryptographic hash functions are mapping HK(x) : A → B, where x ∈ A,

|A| ≥ |B| and where it is computationally infeasible to determine any information about

x given H(x). The use of HK() for keywords is to ensure that only the data owner can

perform the queries and that the resulting hash value is fixed size even for keywords with

different length. Furthermore, the scheme does not require the extraction of keyword

from the hash values so a cryptographic hash function would represent a lower cost

option compared to encryption.

For the discussed example, the encrypted index would be

EK(‘Horror’) EK(100)

EK(‘Fiction’) EK(101)

EK(‘World War’) EK(011)

EK(‘Biography’) EK(010)

EK(‘Pandemic’) EK(001)

To perform a search for a set of keywords kw′ = {kw1, kw2, . . . , kwq}, the data owner

computes their hashes, HK(kw′) = {HK(kw1), HK(kw2), . . . ,HK(kwq)}, using the secret

key and sends them to the cloud server. The cloud server looks up entries in the index

tables corresponding to HK(kw′) and return the encrypted index entries to the data

owner. The data owner then decrypts and finds the intersection of index entries and

identifies the matching documents:
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DK(I(HK(kw1))) &DK(I(HK(kw2))) · · · &DK(I(HK(kwq))), (2.5)

where & is a bitwise AND operation. Suppose a query was made for all biographies from

World war veterans, a search for ‘World War’ and ‘Biography’ would require EK(‘World

War’) and EK(‘Biography’) to be sent to the cloud server. EK(011) and EK(010) would

respectively be returned to the data owner, who identifies B as the matching results from

011&010 = 010

2.2.5 Bloom Filters

While indexes provide a reliable and familiar approach to searching encrypted data, the

need for decryption and encryption during search can be computationally expensive for

certain applications. As an alternative, Bloom filters offer similar level of performance

without the need for decryption, but, unlike indexing, results can contain false positives.

While generally undesirable, false positives can provide some level of privacy protection

[27].

Bloom filters are space-efficient probabilistic data structure used to test whether an

element is a member of a set. A Bloom filter contains m bits and µ non-cryptographic

hash functions, Hi(x), are used to map elements to the m-bits in the filter. All bits

in the filter are initially set to zeros. To add an element, a, to the filter, we compute

Hi(a) for i = 1 to µ, and set the corresponding positions in the filter to 1. For example,

for µ = 2 and m = 5, to add ‘Happy’ to the filter, we compute H1(‘Happy’) = 1 and

H2(‘Happy’) = 4. Setting the position 1 and 4, the Bloom filter becomes 1, 0, 0, 1, 0. To

test for membership of an element, b, in a sample Bloom filter, we compute Hi(b) for

i = 1 to µ, the element is determined to be a member if all corresponding positions of

the sample Bloom filter is set to 1. For example, ‘Happy’ would be a member of the

Bloom filter, 1, 1, 0, 1, 1.

While Bloom filters have no false-negatives, it can falsely identify an element as

member of a set. Given µ hash functions, n items inserted and m bits used in the filter,

the probability of false positives is approximately:

p = (1− e−µ
n
m )µ. (2.6)

Applying Bloom filters for search consists of viewing the keywords associated with

a document as a set and individual keywords as its members. Using the same example

as in previous section, Book A would need to add ‘Horror’ and ‘Fiction’ to its filter.

Suppose µ = 2, m = 5, H1(‘Horror’) = 1, H2(‘Horror’) = 4, H1(‘Fiction’) = 2 and
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H2(‘Fiction’) = 4, Book A’s keyword filter would be 1, 1, 0, 1, 0. Proceeding similarly for

the remaining documents yield the following Bloom filters analogous to the index table

in previous section:

Book A 11010

Book B 01101

Book C 11011

To search for ‘World War’ and ‘Biography’, we would construct a query filter where

H1(‘World War’), H2(‘World War’), H1(‘Biography’) and H2(‘Biography’) are set and

send it to the server. Suppose, the query filter is 01101, the server identifies all filters

with the 2nd, 3rd and 5th bits set and returns Book B as the result.

Using Bloom filters for encrypted data proceeds in the same manner except members

of filters consist of keyed hashes of keywords. That is, to add ‘Happy’ to a filter, we first

compute its keyed cryptographic hash, HK(‘Happy’). Then, we hash the result and set

the filter bits as before using H1(HK(‘Happy’)) and H2(HK(‘Happy’)). To perform a

search, we construct a query using the cryptographic hash of keywords under search as

members. Since the cloud server does not have access to k, it cannot perform searches

without data owner’s authorization.

Note that if the file names also require privacy, a small lookup table matching numer-

ical identifiers to file names can be stored privately by the data owner. The matching

numerical identifiers can then be used in place of file names on the cloud server. A

sample file name to identifier table is as follows:

Book A 83546

Book B 15378

Book C 43879

When compared to the encrypted indexes approach, the use of Bloom filters will

generally lead to a much smaller storage requirement at the cost of having false positives.

2.2.6 Homomorphic Encryption

Homomorphic encryption allows computations to be carried out on ciphertexts, where

the results would decrypt to the corresponding computation on plaintexts. For example,

an additively homomorphic scheme would have the following property:

Add(E(A), E(B)) = E(A+B) (2.7)
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where Add() is a function of the ciphertexts and depends on the encryption algorithm.

It may be as simple as a XOR or a multiplication. This feature allows for third parties

to perform computations without exposing confidential information.

Paillier cryptosystem

Paillier cryptosystem [51] is one of the most popular probabilistic homomorphic encryp-

tion algorithms in the literature. The scheme involves three algorithms:

1. Key Generation: Generate two large primes, p and q, of equal length. Set n = pq,

g = n+ 1, λ = φ(n) and µ = φ(n)−1mod n, where φ(n) = (p− 1)(q − 1)

2. Encryption: For a message, m ∈ Zn, compute ciphertext, c = gmrnmod n2, where

r ∈ Z∗n

3. Decryption: For a ciphertext, c ∈ Zn2 , compute the message, m = L(cλmod n2)µ

mod n, where L =
⌊
µ−1
n

⌋

The public key, (n, g), is used for encryption and made public and the private key,

(λ, µ), is used for decryption and kept private by the owner. The scheme is additively

homomorphic:

E(m1, r1)E(m2, r2)mod n2 = E(m1 +m2, r1r2)mod n2. (2.8)

Although there’s no known method to compute the multiplication of two ciphertexts,

multiplication with plaintexts can be performed by

E(m1, r1)
m2mod n2 = E(m1m2, r

m2
1 )mod n2. (2.9)

The latter is used in protocols for more complex functions such as secure scalar

products [26].

Until recently, most homomorphic encryption algorithms are either additive or mul-

tiplicative, but not both. Gentry [25] described the first fully homomorphic encryption

algorithm which supports both addition and multiplication over ciphertext, opening

the door to many applications and a dramatic increase in interest on computing over
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encrypted data. Fully homomorphic encryption algorithms can now run in relatively

reasonable time. However, its computational cost remains several orders of magnitude

higher than all popular encryption algorithms [32]. Therefore, it is generally an imprac-

tical option.

2.3 Related Work

Many work can be found in the literature towards enabling privacy preserving search on

encrypted data for single keyword search, conjunctive keyword search and phrase search.

We describe some of the most relevant results in this section.

2.3.1 Single and conjunctive keyword search

Boneh et al.’s work [13] on an encrypted keyword search scheme based on public key

encryption was among the most cited in the area. At a time when email was the pri-

mary method of communication online, the author considered a scenario where a user

wishes to have an email server verify messages associated with certain keywords with-

out revealing the content of the emails. The usefulness of the system, shown in Figure

2.4, is demonstrated in a scenario where certain emails sent by various people may be

urgent and required immediate attention from the recipient. Hence, rather than waiting

for an email retrieval request, the recipient may be immediately alerted to the urgent

matter, all while maintaining the secrecy of the email contents. The proposed solution

uses identity-based encryption (IBE) and a variant using bilinear mapping.

Figure 2.4: Email filtering system

Another interesting application was proposed by [74] regarding searching through

encrypted audit logs, where only relevant logs are retrieved. The scenario involves an

auditor which acts as a key escrow authorizing investigators to search audit records. The

scheme uses an extension of Boneh’s scheme using identity-based encryption. Song et al.
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Figure 2.5: Audit records, with keywords and meta-data such as user and time [74]

[66] also considered the scenario introduced by Boneh et al. and proposed a probabilistic

search solution based on stream cipher.

Many recent works have focused on conjunctive keyword search, that is performing

queries using multiple keywords. Ding et al. [20] extended Boneh et al.’s scheme using

bilinear mapping to perform multiple keyword search and described a solution that

did not include expensive pairing operations in the encryption and trapdoor generation

phase. Kerschbaum et al. [41] considered the search of unstructured text, where positions

of keywords are unknown. The use of encrypted index for keyword search was examined

in [27] and a scheme secure against chosen keyword attack was proposed. The ranking

of search results was looked at by Wang et al. in [71]. The authors described a solution

based on the commonly used TF-IDF (Term Frequency × Inverse Document Frequency)

rule, which computes a value representing the importance of a keyword to a document

in the corpus, and the use of order preserving symmetric encryption. Liu et al. [44]

considered the search for potentially erroneous keywords termed fuzzy keyword search.

The index-based solution makes use of fuzzy dictionaries containing various misspelling

of keywords including wildcards.

2.3.2 Phrase search

Solutions for searching for phrases over encrypted data were only recently proposed by

researchers. The main difference between conjunctive keyword search and phrase search

is that the queried keywords must appear contiguously in the specified order in addition
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Figure 2.6: Keyword location index [79]

Figure 2.7: Encrypted keyword location index [79]

to all being present in the document.

Zittrower et al. [79] were the first to investigate the problem. His solution uses a

keyword-to-document index and a keyword location index. The keyword-to-document

index provides the mapping of keywords to the documents which contain them while

the location index contains the position of the keywords within each document. The

researchers identified potential statistical attacks on the indexes: Since certain words

are more common than others in every natural language, the distribution of keywords

in the indexes could reveal information on the documents. To defend against statistical

attack, truncation of encrypted keywords was used to generate false positives in query

results to hide the true search terms. To identify false positives, indicators are included in

the index entries and also stored client-side. Figure 2.6 shows a sample keyword location

index and figure2.7 shows the corresponding truncated partially encrypted index. The

locations are also encrypted in the location index stored in the cloud. Note that 498

appears twice but actually represents different words. Indicators, i.e. 0 and 1 for the

example, is attached to differentiate between them. A table stored client-side maps

indicators to keywords. Figure 2.8 shows the keyword-to-document index. With a large

enough corpus, many keywords can be associated with the same truncated encrypted

form, providing a measure of privacy and defense against statistical analysis. The scheme

requires a fairly high communication and computational cost due to the large amount

of false positives used to provide security. Much of the computation is also performed

client-side.
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Figure 2.8: Keyword-to-document index [79]

Tang et al. [69] focused on the security of phrase search in a solution with provable

security using normalization, which consists of creating lookup tables for encrypted key-

words and locations of seemingly uniform distribution. Their technique also uses two

index tables: a keyword-to-document index and a keyword chain table. Central to their

solution is the keyword chain table used to verify existence of pairs of keywords. Each

location is represented as a random value, ri. In addition to storing the location of the

keyword in the index, it also stores the hash, hS(ri), of the preceding location. Figure

2.9 illustrates this process. Thus, to verify a phrase, one needs to access the row entries

corresponding to the keyword and document using ψZ(wordd||id(Di)) and compute the

chain of hashes starting with the first word. In order to achieve provable security against

statistical attacks, the keyword chain table is normalized against all documents in the

corpus. Random data is used to fill in the table so that the same number of elements

is listed under every entry. This results in a uniform distribution of entries in the ta-

ble. However, the solution has a high storage cost as the index tables require significant

storage, which hinders its practicality.

2.4 An Efficient and Secure Phrase Search Scheme for

Encrypted Cloud Storage

Our first solution [53] aims to achieve high security with a much lower storage cost than

[69]. The scheme is capable of basic ranking and was the first published work with the

ability to search for non-indexed keywords. It’s suitable for applications where security is

of high importance and where client-side computation and higher storage are acceptable

trade-offs. For example, a private company’s financial statements or patient health care

records at a clinic are confidential documents that would require a high level of security

and privacy. We begin by providing the basic conjunctive search algorithm in section

2.4.1 and the basic phrase search algorithm in section 2.4.2. An in-depth discussion of the
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Figure 2.9: Keyword chain table [69]

modifications to balance the different security, storage and communication requirements

can be found in section 2.4.3.

Note this work has also appeared in:

• H. Poon and A. Miri. An efficient conjunctive keyword and phrase search scheme

for encrypted cloud storage systems. In IEEE International Conference on Cloud

Computing, pages 508–515, 2015

2.4.1 Basic conjunctive keyword search protocol

Our starting point is a simple index based keyword search scheme, similar to the one

described in section 2.2.4.

For a document collection, D = {D1,D2, . . . ,Dn}, we parse each document, Di, for a

list of keywords, {kw1, kw2, . . . , kwn′}. An index, I, is then generated mapping keywords

to documents such that I(kwj) = (d1, d2, . . . , dn), where di = 1 if kwj is linked to the

document. The documents are then encrypted and uploaded to the server. The index is

also encrypted prior to being placed on the cloud server:

I(EK(kwj)) = {EK(d1, d2, . . . , dn)}. (2.10)
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Alternatively, a local dictionary mapping keywords to unique word id’s, I(WordID

(kwj)) instead of I(EK(kwj)) can be used, but must be stored and maintained by the

data owner.

To perform a search, the user sends a set of keywords kw′ = {kw1, kw2, . . . , kwq} to

the data owner. The data owner computes EK(kw′) and sends it to the cloud server.

The cloud server returns the encrypted index entries to data owner, who then finds the

documents matching the requested keywords from the intersection of index entries:

DK(I(EK(kw1))) &DK(I(EK(kw2))) · · · &DK(I(EK(kwq))), (2.11)

where & denotes a bitwise and operation. If required, the data owner may now request

that the matched documents be sent to the user from the cloud server.

2.4.2 Phrase search based on symmetric encryption

For querying phrases, the proposed solution by Zittrower [79] uses truncation of en-

crypted keywords to generate false positives in query results to hide the true search

terms. As a result, part of the index must be stored client-side and the search is also

performed by the client rather than the cloud. The use of false positives to provide secu-

rity can be unreliable since the number of false positives associated to individual search

terms is random. That is, by luck, one encrypted keyword may match several others

after truncation while a different keyword may have no matches. Tang [69] addresses

the privacy concerns by proposing a solution with provable security using normalization.

The technique uses an index table that allows for verifications of chains of keywords in-

stead of having the word locations stored. However, the index table requires significant

storage, which hinders its practicality.

Searching for a phrase is searching for keywords that appear contiguously in the

specified order. In another word, we must have some knowledge on the locations of the

keywords. In [79], all keyword locations are stored alongside encrypted keywords in an

index. In [69], the relative location of the keywords are stored in a table. Note that

a standard single keyword index is also used in both cases. We first observed that the

use of a single keyword index alongside the keyword location is enough for determining

whether the phrase is present. We then note that we do not need to learn the location

of more than a single keyword within the phrase.

To add phrase search capability to the basic scheme, a keyword location index is

used. To generate the keyword location index for a document, Di, it is first parsed for

keywords. Each keyword, kwi′ , would have its locations ji′′ encrypted and stored in the
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index table, resulting in:

{H(Di|kwi′), EK(j1, j2, . . . , jn)}, (2.12)

where H() is a cryptographically secure hash function and jx are the locations of kwi′

within Di. Given a user phrase search request kw′ = (kw1, kw2, . . . , kwq), the data owner

proceeds as in section 2.4.1 to determine documents containing all keywords. It then

selects a random keyword, kwrand, in the phrase and queries its location by sending

H(Di|kwrand) to the cloud. Given its locations in Di, the owner can identify potential

starting locations of the phrase and return hashes of the phrase as if it starts at those

locations:

{H(EKDi
,js(kw1, kw2, . . . , kwq)), i, js} (2.13)

where i is the index of the matched document and js is an identified candidate starting

location of the phrase, for each match. EKDi,js
() represents the symmetric encryption

of the phrase if it were at location js of document Di. Note that the secret key, KDi ,

used for encrypting the stored document Di is different from the secret key K used for

encrypting the indexes. The cloud then computes H(E(wjs , wjs+1, . . . , wjs+q)), where

E(wj) is the actual jth encrypted stored word in document i. Matched phrases are found

where the following equality holds:

H(E(wjs , . . . , wjs+q)) = H(EKDi,js
(kw1, . . . , kwq)). (2.14)

That is, if the queried phrase indeed appears at location js, then the ciphertext of

the queried phrase would appear at location js of the document, Di, and their hashes

must match.

Modes of operation

Unlike previous works by [79] and [69], we do not rely purely on indexes to deter-

mine matches. Instead, we process the encrypted document themselves on the fly. The

advantage is that we require less information to be stored in the index and a lower

storage requirement by the cloud server. The ability to process encrypted data, how-

ever, poses some challenges. With asymmetric encryption, the computational cost can

be prohibitive. With deterministic symmetric encryption, the data must be encrypted

using a mode of operation that prevents the same plaintexts from mapping to the same

ciphertexts.
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Cipher-block chaining (CBC), a commonly used mode of operation, would require an

extra step where the cloud must return the ciphertext, E(wjs−1), directly ahead of the

expected starting position of the phrase to the owner in order for the owner to compute

H(E(kwjs), kwjs+1, . . . , kwjs+q)). A simple initialization vector can be H(Di), where Di
is the document id, should a phrase starting at the first position be queried.

Alternatively, we propose the use of counter mode (CTR), which does not require

this extra step and also renders the encryption parallelizable, an advantage today where

multi-processor computers are ubiquitous. The initialization vector can be stored along-

side the document in plain or simply use H(Di) to provide further saving.

Non-keyword search

An interesting property of the proposed scheme is that it has the ability to search en-

crypted documents for words that are not part of the keyword space. To the best of our

knowledge, this is currently the only proposed phrase search algorithm with this ability.

In many scenarios, it is impractical to index every word in the document sets. Common

words such as ‘it’ or ‘and’ are often omitted. Some may choose to go further and index

only distinctive words relevant to the document.

As long as the queried phrase contains at least one keyword, the owner can determine

the expected starting position of the phrase and proceed with the query. Although

possible, querying a phrase containing no keywords would require expensive brute-force

matching through the document set.

Ranking

The scheme provides the basic ability to rank the returned results during the final step

of the phrase matching process: The number of matched phrases per document can

be tracked and used to rank the returned results. Though not discussed here, further

ranking capability can be added by incorporating TF-IDF as in [71,76] during the initial

conjunctive keyword matching phase using order preserving encryption [6]. This can

even be used to provide the best odds of relevant results should an application wishes

to limit the number of results for the query by proceeding to the phrase search on only

the highest ranked documents in the initial step.

Proximity ranking, which ranks results based on the distance between keywords,

was suggested by Zittrower [18, 79] and can also be used here since the location of the

keywords can be queried.
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2.4.3 Security

At rest, the cloud server contains the encrypted documents, EKDi
(Di), the keyword

index, I(EK(kwj)) = {D1,D2, . . . ,Dy} and the keyword location indexes, {H(Di|kwi),
j1, j2 . . . jn}. The security of the encrypted documents at rest is equivalent to that of

the symmetric encryption EKDi
() and cryptographic hash function, H(). However, the

keyword and location indexes are particularly susceptible to statistical attacks, since

certain words are more common than others in every natural language. The location of

the keywords may also reveal information to an adversary with partial knowledge [79].

For example, if knowledge of statistical distribution of documents allowed the cloud

to identify a document containing ‘FBI’, ‘North Korea’ and ‘assassination’, it could

potentially represent a compromise in national security.

To alleviate the problem, Tang [69] opted to encrypt the single word index and have

the keyword chain index normalized by filling in random data so that every entry contains

the same number of elements as the largest entry prior to normalization. Encrypting

the single word index is sufficient to provide provable security for hiding single word

statistics. However, hiding the statistical properties of the keyword chain index used

to provide phrase search capability came at a high cost in storage. It is known that

most natural languages roughly follows Zipf’s law, which states the word frequency

is inversely proportional to its rank in the frequency table [59]. By filling in entries

up to the maximum occurrence of a word in the entire document set, the resulting

index comprises almost entirely of random data. Figure 2.10 shows the distribution

of a particular research paper with approximately 6000 words, which follows roughly

the distribution of documents of English language. We’ll refer to this example for the

remaining of this section to explain the design of our scheme. If all words in the sample

document are indexed, the most common word is ‘the’, with 445 instances, ≈ 7% of all

words. It was found that the ten most common words comprises 25% of all words in the

document. In fact, almost 1200 of the 1300 distinct words occurred less than 10 times in

the document. Using Tang’s scheme, the keyword chain table for this document would

contain 446*1300 entries where over 436*1200 contains random data. Thus, less than

10% is actually used for searching. If the most common English words are excluded, we

would have 1066 distinct words indexed and the 20 most common words comprising 25%

of all words indexed. The most common word occuring 84 times and over 1000 words

occuring less than 10 times, resulting in less than 26% of the data useful for search.

During query, one must also account for the statistical property of search terms,

that is users may be more likely to perform a search for a subset of keywords. Then,
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Figure 2.10: Cumulative distinct word distribution of a sample document

it may be possible for the cloud server to establish a known plaintext scenario, where

kwj and EK(kwj) are discovered. Since the indexes, dj , are encrypted, the link between

document and keywords are not available from the keyword to document index only.

Hence, knowing the encrypted keywords in a conjunctive keyword query would not allow

an attacker, i.e. the Cloud, to identify the documents which the keywords reside in.

However, if an attacker can identify the keywords in a phrase search, he would be able

to identify which keyword location table is accessed in our original setup where each

table is stored alongside the document and hence be able to link certain keywords to

the documents. A simple modification would mitigate this attack: Simply store all

the keyword location table together as a corpus-wide keyword location table and have

location search use this table for any document. Note that the hash values for H(Di|kwi)
would have to larger in size to reduce risk of collision. This prevents the Cloud from

learning which document the keywords belong to in the same way that the conjunctive

keyword table does. Since the document ID is already part of the information in the

table, the simple change is sufficient.

Reducing storage cost in providing security of the location index

The algorithm provided in section 2.4.2, although efficient, is vulnerable to statistical

analysis. Namely, the number of entries for each word in a document is not hidden. A

modification can be made to provide similar privacy protection as in Tang’s scheme [69].

The goal of normalization is to hide the fact that certain keywords appear more frequently

than others. Since the number of entries for each word cannot be reduced without losing

potential matches, the simplest approach would be to insert random data until every

word is associated with the same number of entries, as suggested by Tang. Furthermore,

to hide the statistics of the most frequent word of each document in the document set,
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the normalization can be applied over the entire set rather than per document. This

results in every query returning the same number of entries independent of the keyword

or document, but at a high storage cost.

As noted in section 2.4.3, keyword frequencies are distributed such that most com-

mon words dominate the entries. Although not as pronounced when the most common

words in English are excluded, the trend remains. In the example provided, the two

most common words were ‘decoding’ and ‘algorithm’, the topic of the research paper,

appearing 84 and 64 times respectively. By the 21st most common word, the count has

reduced to 18. Therefore, the high cost in Tang’s scheme is due to having to adjust the

majority of the keywords to accommodate these very few common keywords. Perhaps

it would be preferable to do the reverse. Instead of increasing all entries to match the

most common keyword, we could ‘reduce’ the number of entries taken up by the most

common keywords.

Rather than normalizing according to the most common keyword in the document

set, we could normalize to the keyword at, say, the p = 95% percentile when ordered from

the least to the most common. For 95% of the keywords, it suffices to increase the number

of entries to match the target keyword. For the most common 1−p = 5%, each keyword’s

entries must be split into multiple equivalent keywords, each comprising of the target

number of entries. In the example, p = 95% corresponds to a keyword which appeared

10 times in the text. Keywords that appear between 11 and 20 times will be split into 2

equivalent keywords, etc. This results in 1∗31+2∗7+3∗4+4∗4+5∗1+6∗2+8∗1 = 98

extra keywords, each with 10 entries, for a total of 1164 ∗ 10 = 11640 entries in addition

to the 1164 indexed keywords. If normalization to maximum keyword had been used,

the resulting table would contain 1066 ∗ 84 = 89544 entries instead, a 87% reduction

in number of entries in the proposed approach. In fact, the reduction in storage cost

is greater still since an entry in a keyword chain index requires two parts containing

the hashed previous word’s location and the current word’s location while our scheme

requires only the latter.

Note that a split keyword requires more storage for its different variations and for

padding the number of entries to a multiple of the target value. It is also necessary to

store the number of times a keyword’s been split. As p decreases, the amount of storage

we save increases, but at a slower rate, potentially reaching a point where the momen-

tum reverses and storage cost instead increases. Depending on the keyword frequency

distributions, the optimal value for p can be any value between 0 and 1. At the limit case

of normalizing according to the least common keyword, reasonably assumed to have only

a single entry, the scheme reduces to indexing every word in the document, resulting in
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3224 entries with 3224 keywords in the example. Assuming that keywords require same

storage as a location entry, the optimal value for p was heuristically found to be 70%,

where 2010 keywords were used with each containing only 2 entries. A table listing the

number of times 149 keywords is split must also be stored by the client. Note that the

client side storage cost is comparatively low due to the low number of common keywords

in typical documents. Section 2.4.4 contains a more in-depth discussion and experiment

to find the optimal value for p and an optimal split value.

Another advantage of this approach is the relative ease in adding and removing

documents from the set. A new document can be parsed as usual and each keyword

index is split and padded to fit the norm of the set. Conversely in [69], a problem could

arise where a new document’s most common term appears more frequently than the

most common term in the document set, and could not be added without regenerating

the entire index. Removing documents is also straight forward, with each document

corresponding to a bit in the single keyword index and each document having its own

keyword location index. The task becomes more difficult using Tang’s approach since the

keyword chain index is applied to the entire document set. When adding new documents,

our scheme does require updating certain entries in the keyword to document index

and since they are encrypted, the entry corresponding to the keywords in the added

documents would have to be updated in entirety. A practical approach is to schedule

an index update during low traffic and maintain a local index of newly added files until

the scheduled update. Note that our scheme does leak information on the statistics on

the number of distinct keywords for the documents. However, since its value is typically

a function on the document size [22], which is available to the cloud server, we do not

believe it to be a significant source of security leak. Therefore, we did not normalize the

number of distinct keywords between different document indexes.

Reducing communication cost in providing security of the location index

There’s also a communication cost to querying more keywords. However, since the cloud

server does not need to return a significant number of unused entries, the communication

cost is also reduced. For the sample research paper, a query for ‘polynomial code’ requires

returning only 37 entries using the proposed scheme whereas 168 entries would have to

be returned if maximal normalization were used. On this note, one may notice that the

number of entries queried are susceptible to statistical analysis. If a query for a single

keyword returns a very small number of entries, one can reasonably assume that the

queried keyword(s) is not a common word. However, if a query for multiple keywords

returns a larger number of entries, it does not imply a common keyword was queried since
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multiple keywords can be assigned to a common term or many less common terms. There

is no obvious way for the cloud server to decide whether two encrypted keywords are

equivalent. Similar to previous case, maximal normalization would provide guaranteed

protection. Assume the most common keyword in the document set is associated with

x equivalent keywords, then a query for n keywords should proceed as follows:

a) Select random nx− n keywords

b) Perform the query for the combined nx keywords

In this way, every keyword queried returns the same number of entries. Based on

similar reasoning as for storage, we argue that we would achieve only marginally less

protection for common keywords if we instead set a minimum of q ≤ x keywords queried

instead of nx. A query for q = x keywords can then be associated with the most common

keyword or a combination of many less common keywords. From the example, less than

2% of the keywords appear more than 18 times while the most common term appears

84 times. Choosing q = 18 would then only reveal that a query of 18 keywords does not

include 2% of the keywords in the document. Therefore, choosing q < x could provide

significant savings at the cost of minimal security loss.

2.4.4 Analysis

To provide a better understanding of the scheme on large document sets, we retrieved

1500 documents made available by Project Gutenberg [2] and compared our results

against other phrase search schemes. The Natural Language Toolkit [12] was used to

determine the statistical properties of the corpus and the performance for the various

schemes.

Effect of common passages in a corpus

The retrieved documents often include headers and footers outlining the copyright, con-

tact and source information. The inclusion of such texts that are repeated throughout

the document set can skew the statistical property of a corpus. Other examples of such

documents include forms, contracts and technical documentations. The possible inclu-

sion of repeated texts highlights the need for hiding the word frequency distribution of

documents. To better understand the skewing effect, we attempted to remove the header

and footer from the documents. However, due to inconsistent placement and wording,

we were only able to remove most, but not all of them.
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While examining the frequency distribution of words in each document, we found

that the most frequent word in each document was particularly affected by the skewing

effect. The following are the most common words in the list when headers and footers

are included: said, would, ebook, upon, thou, king, state, etext, love and like. When

they are removed, the list becomes: said, would, upon, thou, king, love, state, like, little

and could. Note the terms, ebook and etext, are frequently used words in the header

and footer rather than the content. Further examinations also revealed that, while the

corpus averaged 4000 distinct words per document, the documents whose most common

words were ebook or etext contain an average of only 1600 distinct words. Therefore, the

skewing effect affects mainly shorter documents where the header and footer represent

a significant portion of the words.

Should the basic scheme in section 2.4.1 be used without any protection against

statistical analysis, an examination of the index tables could reveal significant portion

of the content of the shorter documents by matching the frequency distribution of words

in the header and footer against the encrypted keywords, EK(kwj), in the index table.

We illustrate such an attack in the following scenario: A company is storing application

forms on a cloud service provider. An employee of the cloud service provider legitimately

uses the company’s service to submit a form. In addition to having knowledge of the

form’s content, the employee also has access to the corresponding encrypted file along

with the encrypted index tables. Any texts that are not entered by a user must be in

every encrypted form. If the amount of texts entered by the user is much less than

the texts already on the form, the employee could have reasonable chance of success at

determining the keywords, kwj , corresponding to, EK(kwj), by comparing the number

of entries for the keywords with the frequency distribution of words over the form. Any

discrepancies must then be user-entered texts.

Effect of indexing common words in a corpus

Common words such as “the”, “on” and “at”, also called stop words, are often filtered

out before indexing since they are functional terms of little relevance to the document’s

content. Indexing common words can also be expensive in both storage and computation.

However, filtering them out could limit the ability to search for phrases that include

such terms, as is the case in [69,79]. Recall that our scheme can search for non-indexed

keywords. To evaluate the effect of indexing common words, We processed the corpus

with and without stop words.

When common words are included, the most frequent word in 96% of the documents

becomes “the”. In terms of security, if protection against statistical analysis is not
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included, this can easily be exploited as described in previous section. In terms of

storage, we observed that the highest number of instance of “the” in a document was

129070. When stop words are removed, the number of instance of the most frequent word

becomes only 10757, which is 92% less frequent than “the”. This illustrates that not

indexing common words can lead to significant reduction in storage cost. To correctly

search for phrases that include stop words, the approaches by [69, 79] would require

indexing common words, which translates to significantly more storage than our scheme.

Finding an optimal p value relative to storage cost

We examined the optimization of the scheme in terms of storage. Since symmetric

encryption is used, storage cost of the encrypted documents is optimal. The storage

cost of our keyword-to-document index is similar to existing schemes. Since there’s only

one such index for a corpus, its cost is relatively small compared to the location index

which is assigned to each document. Therefore, we focus our evaluation on the location

index. To this end, we first define the storage cost to be the total number of entries the

table maintains. The storage cost of the scheme is dependent on the amount of times a

keyword is split. We initially defined a p value which determines the percentage of the

keywords in a document that are left unsplit. Figure 2.11 shows the histogram of optimal

p value for the sample document set. For 90% of the documents, the optimal p value was

observed to be between 60% and 70% percentile. The histogram for the corresponding

number of entries assigned to each keyword is shown in Figure 2.12. The majority of the

optimal split values are between 2 and 4. Although the p value was found to be more

consistent throughout the corpus, it might be more practical to have a fixed split value

to reduce the preprocessing cost. It may also be more secure. Since the optimal split

value is dependent on the keyword distribution of the document, Indexes with different

split values could leak information on the document content.

2.4.5 Comparison with other schemes

We compare our phrase search scheme to Zittrower’s [79] and Tang’s [69]. Since sym-

metric encryption is used, the encrypted documents require roughly the same amount of

storage as when in unencrypted form. This is true for all three schemes in consideration.

Using Zittrower’s approach, the user must store a dictionary mapping every distinct

word in each document to an index value used to distinguish between different keywords

since different keywords can map to the same entries in the index table. Suppose there

are x distinct keywords in the corpus and suppose optimal representation for the index
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Figure 2.11: Optimal p value across 1500 sample documents

Figure 2.12: Optimal split value across 1500 sample documents
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value was used, this represents x(log2(x) + b) bits of storage, where b is the average

number of bits per keyword. On the server, two index tables are stored, one mapping

truncated encrypted keywords to documents and another to their locations within the

documents. Each encrypted keyword was truncated to 12 bits. Suppose that a location

value requires y bits, that there’s an average of x′ distinct keywords and that each

keyword appears q times on average per document. Then, the location table requires

x′(12+qy) bits and the keyword-to-document table requires x(12+p log2(n)), where p is

the average number of documents associated with a keyword in the corpus and n is the

total number of documents in the corpus. The keyword-to-document table here requires

the least amount of storage among the three schemes since normalization was not used.

Instead, the scheme relies on false positives to defend against statistical analysis. The

author stated an average of 300 collisions among the encrypted keywords when 12 bits are

retained. This means a query for a single keyword would on average also return results

belonging to 300 other keywords that must then be processed by the client. Although it

is possible to reduce the communication cost by increasing the number of bits retained,

this leads to lower collision rate and susceptibility to statistical analysis. Although it

does not lead to a higher storage cost, the technique requires a higher communication

and computational cost, especially on client side. Since the amount of false positives

generated is random, the technique also has the risk of generating very low number of

false positives for certain keywords, leading to a variability in security throughout the

keyword set.

In Tang’s scheme, the user similarly stores a dictionary mapping keywords to index

values, requiring x(log2(x) + b) bits of storage. The server also stores two tables: The

keyword-to-document index, requiring x(log2(x)+n) bits of storage, and a location index

table requiring x′(h + d(u + y)) bits of storage, where h is the number of bits to store

a hashed keyword, u is the number of bits to store a hashed location value, y is the

number of bits to store a location value and d is the number of instance of the most

frequent keyword in the corpus. Although the storage requirement for the client and the

keyword-to-document index is similar to Zittrower’s scheme, the location index table is

several orders of magnitude greater, due to the normalization to the value of d. The

goal of normalization was to achieve security against statistical attacks, but at a high

storage cost. Unlike in Zittrower’s scheme, the technique allows the cloud to perform the

majority of the computations. In terms of communication, the scheme includes returning

irrelevant results since normalization requires insertion of random data into the index

tables, although much less than in Zittrower’s scheme.

In our scheme, denoted our schemesec, the user must also keep track of the keywords
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that are split in addition to the dictionary mapping keywords to index values. Our exper-

iments showed that splitting keyword entries into pairs were ideal for reducing the size of

the location index tables on server. Splitting into pairs, on average, increases the number

of keywords by 150% in the location table, where approximately 27% of the keywords

were to be split. Suppose that there is an average of x′ distinct keywords per document

and that k is the average number of instance of most frequent word per document, then

the split keyword table would require 0.27x′(log2(x
′) + log2(k/2)) bits of storage. Note

that this client side table can be reduced in storage by splitting into triplets or quartets

instead, which would respectively reduce the number of keywords to be split to 18% and

14%, although it would also have the effect of increasing the server side storage cost.

It is also possible to encrypt the split table and store on the cloud similar to the index

tables, eliminating the need for client side storage aside from the keyword dictionary.

However, it must be retrieved in entirety and decrypted during search. Retrieving only

split values of the relevant keywords would leak information on the number of common

words among the search terms since only common terms are split. On the cloud server,

our scheme requires a keyword-to-document index table which uses x(log2(x)+n) bits of

storage and a location index table that requires on average 2.5x′(h+ 2y) bits, where h is

the number of bits used to represent the hashed keyword. Although our scheme requires

a higher client-side storage than both Tang’s and Zittrower’s schemes, the size of the

split table is significantly smaller than the normalization cost in Tang’s scheme and far

less irrelevant data are used in normalizing the tables as explained in section 2.4.3.

Table 2.2 summarize the results of the schemes on the sample Gutenberg document

set with the experimental values for the various parameters outlined in Table 2.1. For

the hash values of keywords and locations, we assumed that each would require 16 bits in

all cases. Since there are approximately 1 million words in the English language today,

we would need no more than 20 bits to guarantee no collision. We believe 16 bits is

reasonable since the number of words used in most scenarios is far less than the limit.

As shown, the proposed approach can achieve significant savings in cloud storage at a

modest increase in user storage.

2.5 A Low Storage Phase Search Scheme based on Bloom

Filters for Encrypted Cloud Services

In this section, we present a phrase search scheme that emphasizes on achieving the

lowest storage requirement [54]. Instead of encrypted indexes, the solution makes use of

two sets of space efficient bloom filters. The scheme is capable of basic ranking and can
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Table 2.1: Properties of the sample document set

Average number of documents associated with a keyword, p 885.6
Total number of documents, n 1530
Total distinct keywords, x 285396
Average number of distinct keywords per document, x′ 3959.6
Average number of times each keyword appears per document, q 5.6
Number of instance of the most frequent keyword, d 10757
Average number of instance of most frequent word per document, k 369.1

Table 2.2: Comparison of phrase search schemes for a sample of 1500 documents

Zittrower [79] Tang [69] Our schemesec
user cloud user cloud user cloud

Storage 1.98MB 392.5MB 1.98MB 242.8GB 5.78MB 139.3MB

be adapted to search for non-indexed keywords and defend against Inclusion-Relation

attacks [15]. It’s suitable for applications where a low remote storage is required in

exchange for higher computational cost or slower response time. For example, a network

of small devices with limited storage or a startup looking to minimize financial cost. The

scheme’s conjunctive keyword and phrase search protocols are presented in section 2.5.1,

along with explanations on various features and design choices.

Note this work has also appeared in:

• H. Poon and A. Miri. A low storage phrase search scheme based on bloom filters

for encrypted cloud services. In IEEE International Conference on Cyber Security

and Cloud Computing, pages 253–259, 2015

2.5.1 Phrase search scheme based on Bloom filters

A Bloom filter is a space efficient data structure used to test whether an element is

a member of a set. In a search scheme, it can be used to test whether a keyword is

associated with a document. The data structure can also be adopted for our phrase

search scheme. A traditional phrase search scheme, as in [79] [69], uses a keyword-to-

document index and a location/chain index to map keywords to documents and match

phrases. We describe the use of Bloom filters to support the functionality of these indexes

to further reduce the storage cost.
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2.5.2 Conjunctive keyword search protocol

To provide conjunctive keyword search capability, each document, Di, is parsed for a

list of keywords kwj . A Bloom filter of size m is initialized to contain all zeros. Each

keyword is hashed using a private key to produce Hkc(kwj) before passing into k Bloom

filter hash functions and the result is used to set k bits in the Bloom filter. This addition

of keywords as members results in a Bloom filter for each document: BDi = (b1, b2, ...bm)

where bi ∈ {0, 1}. The document collection, D = {D1,D2, . . . ,Dn}, is then encrypted

and uploaded along with the Bloom filters to the cloud server. Note that each Bloom

filter can be viewed as the equivalent of an entry in an index table.

To perform a conjunctive keyword search, the user sends a set of keywords kw′ =

{kw1, kw2...kwq} to the data owner. The data owner computes a keyed hash, Hkc(kw
′),

of the keywords, randomizes their order, and sends them to the cloud server. Upon

receipt, the cloud server computes a query Bloom filter, T = (t1, t2, ...tm), for Hkc(kw
′)

and verifies the keywords by comparing against the Bloom filters for each document. A

match is found if T = T&BDi , where & denotes a bitwise and operation. Finally, the

cloud server sends the matched documents to the user.

2.5.3 Phrase search protocol

To provide phrase search capability, each keyed hashed keyword is concatenated with its

location, Hkl(kwj)|j, and passed into k hash functions and the result is used to set k

bits in the keyword location Bloom filter, BlDi , stored alongside the conjunctive keyword

filter on the cloud. To perform a phrase search, the user performs a conjunctive keyword

search for all the keywords in the phrase as previously described, except the user also

sends the hash of the phrase under a different private key,

Hkl(kw
′) = (Hkl(kw1), Hkl(kw2)...Hkl(kwq)), (2.15)

to the cloud. For each document containing all the keywords, the location of the first

keyword in the phrase is queried. To do so, the cloud server verifies whether Hkl(kw1)|s
is a member of BlDi , for s = 1 to r′, where r′ is the size of the candidate document.

Then, for each Hkl(kw1)|s′ found to be a member of BlDi , the cloud verifies whether

Hkl(kw2)|(s′ + 1) is a member of the set to determine whether the next keyword is in

sequence. The cloud then proceeds similarly to determine whether the keywords in the

phrase follows in proper order by verifying the membership of Hkl(kw2+i)|(s′ + i + 1)

for each Hkl(kw1+i)|(s′ + i) found, narrowing the search at each step. The documents
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where phrases were found are returned, that is the set of Di where

{Hkl(kw1+j)|s′ + j} ∈ BlDi and j = 1 to q. (2.16)

Note that the phrase search requires only 2 exchanges with the cloud server. The

data owner relays the query Bloom filter T and the encrypted phrase Hkl(kw
′) to the

cloud. The cloud performs the conjunctive keyword search and location search locally

and returns the results.

Despite its advantage in reducing storage, Bloom filter does have some drawbacks

in security and computational cost. Its use leads to a probabilistic generation of false

positives to hide the search terms. Using a larger filter leads to lower false positive

rate, but also lowers protection of search terms and higher storage cost. Using a small

filter leads to greater protection, low storage cost but larger false positives and com-

putational/communication cost from searching for non-relevant terms. Aside from the

trade-off in security, the scheme can require a higher computational cost than an index-

ing approach, due to the iterative hash computations during phrase search to verify the

keyword-location membership. The choice of hash function is therefore an important

factor in the performance of the scheme.

Incremental hash functions

While popular cryptographic hash functions such as SHA2 and MD5 are often cited,

they are less suitable for Bloom filter constructions. Since keywords are encrypted prior

to addition into the filter to hide the search terms from the cloud, security properties

such as preimage and collision resistance are not needed for our application. Instead,

speed and low collision rate are valued.

From section 2.5.3, it can be observed that Hkl(kw1) does not change as we iterate

through different values of s when computingHi(Hkl(kw1)|s). Therefore, a hash function

that can efficiently compute Hi(x1|x2|x′3) given Hi(x1|x2|x3) can greatly improve perfor-

mance. These are generally called incremental hash functions introduced by Bellare [9].

A series of efforts into their development culminated in a randomize-then-combine con-

struction [10], in which standard cryptographic hash functions such as SHA2 and MD5

can be made incremental. Since the hash functions in the Bloom filter are not security-

critical, we simplify the construction to increase performance. The resulting design is

shown in Figure 2.13, where h() is a standard hash function and bi are input blocks.

The key features being a simple XOR combine function and a parallel design for fast

computation. Briefly, the goal is to separate a message into blocks, b = (b1, b2, . . . , bn),
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Figure 2.13: Incremental hash function for Bloom filter

and hash the blocks separately instead of hashing b as a whole. In this way, incremental

changes that affect blocks require only recomputation of the affected block rather than

recomputation the entire message.

While the randomize-then-combine construction by Bellare [10] holds a slight advan-

tage in performance compared to the more popular Merkle-Damg̊ard construction. The

latter can also be used to perform incremental hashing provided that the location is

attached at the end since the Merkle-Damg̊ard process is iterative rather than parallel.

For the hash function, h(), MurmurHash3a is currently among the fastest non-

cryptographic hash functions available while providing randomness and collision proper-

ties similar to its cryptographic counterparts [3].

Non-keyword search

Note that our scheme does not restrict the encryption algorithm used for the document

set. However, its choice could enable certain features such as the ability to perform

searches on non-keywords, i.e. words that are not added to the Bloom filters. Common

words in a language, such as “the”, “a”, “is”, also called stop words, are often omitted

since they are functional terms of little relevance to the document’s content. While

this improves performance, it also limits the ability to search for phrases that include

such terms, as is the case in [79] [69]. Consider the scenario where one wishes to search

for “Flights from Canada to US” as opposed to “Flights to Canada from US”. Despite

having different meanings, the query results would be identical without the ability to

consider stop words in the phrase. A more extreme example would be the popular

quote “To be, or not to be”, a phrase containing only stop-words. Note that, while

possible, searching for a phrase with only unindexed stop-words would require brute-

force matching. Interestingly, a slight extension of the quote “To be, or not to be, that

is the question” would be searchable using our technique due to inclusion of the keyword

“question”, but would be problematic for existing solutions such as in [79] and [69].

To enable non-keyword search, we adapt a technique presented in section 2.4. Briefly,
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we encrypt the document set using symmetric encryption, such as AES, running in

counter mode with the initialization vector set to H(Di). A list of the 500 most common

words in order of frequency in the language of the document set excluding stop words

is maintained by the data owner. To perform a phrase search, a conjunctive keyword

search is performed with all the keywords in the phrase as in section 2.5.2. Then, the

least common word in the phrase is identified using the frequency list and its location

is queried. Then, given its locations, we can compute the candidate starting location of

phrases by subtracting the offset of the least common word from the first word in the

phrase. We then verify whether the first word is at the candidate starting location, s, by

verifying whether Hkl(kw1)|s is a member of BlDi for each candidate document. Given

the matching locations, the owner returns

{H(EKDi
,js(kw1, kw2, . . . , kwq)), i, js} (2.17)

where i is the index of the matched document, js is the identified starting location of the

phrase and H() is a non-cryptographic hash function, for each match. EKDi,js
() repre-

sents the symmetric encryption of the phrase at location js of document Di. The cloud

then computes H(EKDi,js
(wjs , wjs+1, . . . , wjs+q)), where EKDi,js

(wj) is the jth stored

word in document i. Matched phrases are found where the following equality holds:

H(EKDi,js
(wjs , . . . , wjs+q)) = H(EKDi,js

(kw1, . . . , kwq)). (2.18)

Ranking and adding/removing documents

Our scheme can also rank the query results by tracking the number of matched phrases

per document. Proximity ranking, suggested by Zittrower [79], can also be used since

the location of the keywords can be queried.

Another advantage of this approach is the ease in adding and removing documents

since each document retains its own pair of Bloom filters. In the algorithm proposed by

Tang [69], a problem could arise where a new document’s most common term appears

more frequently than the most common term in the document set. As a result, it could

not be added without regenerating the index.

2.5.4 Modified phrase search scheme against IR attacks

In [15], Cai described the notion of inclusion-relation (IR) attacks, which states that two

query sets, a and b, where a is the subset of b, would imply b includes the set of keywords

from a. If a cloud server has some knowledge of the statistical properties of the incoming
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Figure 2.14: Relationship between keyword set, trapdoor and search result [15]

search terms, it can potentially discover some of the keywords.

An interesting property of the proposed technique is that it can be adapted to defend

against such attacks by ensuring that a set of keywords can lead to many possible queries

(trapdoors) due to the inclusion of false positives. Also, since different sets of keywords

can lead to the same positions in the Bloom filter being set to 1, different keyword

sets can also lead to the same query. This provides some level of privacy. Figure 2.14

shows the different mapping of keywords to trapdoors and search results between various

conjunctive keyword search schemes. Our proposed technique is of type C, where the

same phrase can lead to different encrypted queries, which was suggested to provide the

best defense against inclusion-relation attacks [15].

An inclusion-relation attack can be carried out against the basic scheme if an attacker

gains access to a significant amount of known queries and their associated search results.

The class of searching algorithms of type C noted in Figure 2.14 was proposed to defend

against such attacks.

To adapt our basic scheme in section 2.5.1 to defend against IR attacks, we increase

the false positive rate by randomly removing z terms from the beginning and the end

of the phrase being queried. Due to the uniqueness of long phrases, more terms can be

removed to generate false positives. For our experimental data set, z = bq/3c was found

to be effective for q ≤ 6 and z = q − 3 for q > 6. For example, a query phrase, kw′ =

(kw1, kw2, kw3), would be queried randomly as kw′ = (kw1, kw2) or kw′ = (kw2, kw3).

This results in false matches that contain only sub-phrases, severing the inclusion relation

between search terms and query results for queries with common terms.

2.5.5 Security

The cloud server contains the encrypted documents, EKDi
(Di), the conjunctive keyword

Bloom filter, BDi , and the location Bloom filter, BlDi . The security and privacy of the

documents are ensured by the symmetric encryption algorithm. The filters do not reveal

meaningful information since all members are meshed together in the structure. The
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words added to the conjunctive keyword Bloom filter are encrypted to prevent the cloud

from learning the keywords that are contained in the documents. The location Bloom

filter operates similarly, but the keywords are encrypted with a different key to sever the

link between the two filters. If the same encryption key had been used, the cloud would

be able to perform a location query even when it’s not requested.

During query, users may be more likely to perform a search for a subset of keywords.

Then, it may be possible for the cloud server to establish a known plaintext scenario,

where kwj and EK(kwj) are discovered. Since the filters are stored per document, if the

attacker can identify which filter was accessed during a search, he would have identify

the documents that contain the keywords. While the low-storage construction is not

designed defend against Cloud with statistical knowledge of incoming queries, it can be

modified to defend against such attack, by recognizing that the distribution of incoming

queries seen by the Cloud is controlled by the data owner. In a similar manner to

the defense against IR attacks, the data owner can shape the distribution of keyword

queries to be uniform by injecting fake queries. That is, the data owner maintain a table

of keyword queries with a count value and whenever, a frequently searched keyword is

queried, it injects extra keywords or phrases with probability equal to the inverse of their

query probability such that infrequent keyword or phrase is more frequently injected.

2.5.6 Performance Analysis

As outlined in section 2.5.3, our scheme, denoted our schemesto, requires two Bloom

filters per document, one for mapping keywords to document and one for determining

keyword location. The two sets of filters require N(bk + bl) bits of storage on the cloud

server, where bk is the size of a conjunctive keyword Bloom filter, bl is the size of a

keyword location Bloom filter and N is the number of documents in the corpus. The data

owner needs only to store cryptography keys. The communication cost also compares

favorably with existing schemes. The proposed protocol requires only two messages to

be sent, one containing the keyed hash of the keywords for each filter, and the other

containing the results of the query. Altogether, the scheme requires 2qh bits to be

sent to the cloud server and ulog2(N) bits sent to the user, where h is the number

of bits per hashed keyword and u is the number of matched documents. In terms of

computation, the scheme requires 2q keyed hash computations on the client side to

generate the trapdoor query sent to the server. Upon receiving the query, the server

performs qk Bloom filter hash computations to produce the query filters, followed by a

bitwise AND operation for each conjunctive keyword filter, BDi , in the document set.

Then, for each matched document, rk Bloom filter hash computation is needed to locate
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the first word in the phrase, followed by rik hash computation for each additional word

in the phrase, where r is the number of keywords in the candidate document and ri is the

number of matches for the ith word in the phrase. In most practical scenarios, r � ri,

resulting in approximately uirk hash computations required during phrase search, where

ui is the number of matched documents during conjunctive keyword search. The response

time of the scheme is dependent on the execution time/computational power of the server

and the client, and also the transmission and propagation time of the messages. While

the computational load will likely be the more important factor, our scheme also has the

advantage of a short transmission time due to a small query filter and requiring only a

single round-trip delay time to complete. Therefore, the distance between the server and

client has a lower impact on the performance of the system.

Zittrower’s truncated ciphertext approach requires a client-side dictionary mapping

distinct keywords to index values to differentiate between entries associated with different

keywords under the same key in the index table [79]. Assuming optimal representations,

this table requires x(log2(x) + b) bits of storage, where x is the number of distinct

keywords in the corpus and b is the average number of bits per keyword. On the server,

two index tables are stored: one mapping truncated encrypted keywords to documents

and another to their locations within the documents. The two tables require x(12 +

p′ log2(N)) and x′(12+gy) bits respectively, where p is the average number of documents

associated with a keyword in the corpus and y is the number of bits needed to store a

location value. The scheme relies on false positives to provide security, with an average

of 300 collisions among the encrypted keywords. Hence, a query would also return results

belonging to 300 other unrelated keywords, leading to a significant amount of wasted

bandwidth and processing. In terms of communication, this results in up to 300uilog2(N)

bits wasted during conjunctive keyword search, where ui is the number of candidate

documents matched in the search, and 300g(y+log2(x))+salt) bits wasted during phrase

search for every keyword in the query. Together with the true results, the scheme would

respond to a client’s 12q bits query with up to 301ui(log2(N)+301q(g(y+log2(x))+salt))

bits of data. In terms of computation, the client must first decrypt all the returned entries

and then use the dictionary to identify the relevant results while discarding collision.

Further processing follows to identify keywords that are in order based on the decrypted

locations. The computational load is naturally higher compared to the non-cryptographic

hashing used in the proposed scheme and must be carried out by the client. Although

the scheme requires only a single round-trip delay, the transmission time is relatively

long due to the high number of false positives. The response time also suffers due to the

significant amount of decryption operations. Since the client likely possesses much lower
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computational power than the server, it would also require a longer execution time to

complete the decryptions.

Tang’s scheme [69] similarly stores a keyword dictionary on the client while a keyword-

to-document index and keyword chain tables are stored on the cloud server, requiring

x(log2(x) + b) bits of client-side storage and x(log2(x) +N) +Nx′(h+ d(h+ y)) bits of

server-side storage, where b is the average number of bits per keyword, h is the number

of bits to store a hashed keyword or location value, y is the number of bits to store

a location value and d is the number of instance of the most frequent keyword in the

corpus. Although the storage requirement for the client and the keyword-to-document

index is similar to Zittrower’s scheme, the keyword chain table, analogous to the location

index, is several orders of magnitude greater, due to the normalization to the value of

d. In terms of communication, the client sends qlog2(x) bits to the server during the

conjunctive keyword search and receives qN bits as results. For phrase matching, the

client sends ui(qlog2(x)+(q−1)h) bits to the server, where ui is the number of candidate

documents, and receives ulog2(N) bits in matching document ID’s. Although its com-

munication cost is lower than Zittrower’s scheme, communicating index entries and keys

still costs more than the transmission of a single Bloom filter and the encrypted key terms

required by the proposed technique. One of the main advantages of Tang’s approach is

in allowing the cloud to perform the majority of the computations. During conjunctive

keyword search, the client performs a dictionary lookup and computes the keyed-hash of

the keywords and sends them to the server. The server similarly performs a table lookup

for the queried entries. During phrase search, the client hashes the keywords under a

different private key in addition to q−1 chain keys for the chain digests. Upon receiving

the hashed phrase and chain keys, the server finds the corresponding entries in the index

via binary search, and performs up to d(q − 1) keyed hashes. Due to the size of the

keyword chain table, a significant amount of hash computation is required to verify a

phrase, especially when a candidate document contains all the keywords but not in con-

secutive order, where the maximum number of hashes would then be required to reject

it as a match. The response time of the scheme is then largely dependent on the server’s

ability to compute the keyed hashes. When compared to the proposed scheme, it’s im-

portant to note that the hashing algorithm used in Bloom filters is non-cryptographic

and incremental, which is significantly faster than the cryptographic hash functions used

in Tang’s scheme. It should also be noted that the scheme requires two round-trip delays

compared to the one required in our scheme, with a similar transmission time.
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2.5.7 Experimental Results

We evaluate the proposed algorithm on a corpus consisting of 1500 documents made

available by Project Gutenberg [2] and compared our results against existing phrase

search schemes. The documents were preprocessed to exclude headers and footers, which

include copyright, contact and source information to reduce skewing in the statistics of

the data set. Stop words are also omitted. To determine the statistical properties of

the corpus and the performance for the schemes, the Natural Language Toolkit [12] was

used.

As Bloom filter forms the basis of our approach, its design parameters are an impor-

tant factor on the scheme’s performance. We rewrite the false positive rate equation 2.6

as follows:
m

n
=

−k

ln
(

1− e
ln(p)

k

)
,

(2.19)

where k hash functions are used to insert n items into a m bits Bloom filter with a false

positive rate of p. Figure 2.15 shows the number of bits needed per entry to achieve

false positive rates between 1% and 10% depending on the number of hash functions

used. To reduce storage cost, a small filter is desirable. A low false positive rate would

be beneficial in terms of communication and computational cost. Most importantly,

using a small number of hash functions greatly improves the execution time since the

computational cost is proportional to the number of hash function used. Note that the

the optimal k for minimizing false positive rate is rarely used in practice since there is

often very little improvement in false positive rate as we increase the number of hash

functions past a certain threshold. While the limit case of using a single hash function,

k = 1, would minimize the computational cost, it also more than doubles the storage

cost compared to using more hash functions. As shown in the figure, the number of

bits per entry and the false positive rate is fairly stable for k ≥ 2. Although we could

improve the false positive rate by using more hash functions, increasing the number of

hash function used from k = 2 to k = 3 would increase our computational cost by 50%

while reducing storage cost by no more than 25%. Having considered the various trade-

offs, the operating point was heuristically chosen for a false positive rate of p = 5% with

k = 2 and m/n = 7.9. To determine the number of bits needed for the Bloom filters,

BDi and BlDi , we need the number of items that each filter must store. That is the total

number of keywords per document and the number of distinct keywords per document.

Their values among various parameters of the sample Gutenberg document set are listed

in table 2.3. At 7.9 bits per entry, a conjunctive keyword Bloom filter would require, on
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Figure 2.15: Bits per entry (m/n) as a function of the number of hash function (k) and
false positive rate (p)

average, bk = mx′/n = 3.82kB and a location filter would require bl = mr/n = 29.286kB.

Table 2.5 summarize the results of the schemes on the sample Gutenberg document

set with the experimental values for the various parameters outlined in table 2.3. The

hash values of keywords and locations are assumed to require 16 bits. Since communi-

cation and computational costs are query-dependent, related parameters are kept in the

formulas and approximations were made to retain dominant terms for clearer compar-

isons. In practical scenarios, ui > u > q and Dec(x) > Hk(x) > Hbf (x) > LUT (x),

where Dec(x), Hk(x), Hbf (x) and LUT (x) represent the cost of a decryption of x bits,

a keyed hash computation of x bits, a Bloom filter hash computation of x bits and a

table look up of x elements. Note that the communication and computational cost val-

ues for Zittrower’s scheme are worst-case estimates. As shown in the table, our scheme

requires almost 8 times lower storage cost than Zittrower’s scheme. Aside from the low

storage cost, it also achieves a lower communication cost and would vastly outperform

both schemes when there are many candidate documents. As for computational cost,

our scheme requires more work to be performed by the cloud server, but the load is far

lighter on the client, which is desirable in a cloud based solution.
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Table 2.3: Properties of the sample document set

Average number of documents associated with a keyword, p′ 885.6
Total number of documents, N 1530
Total distinct keywords, x 285396
Average number of keywords per document, r 30364.7
Average number of distinct keywords per document, x′ 3959.6
Average number of times each keyword appears per document, g 5.6
Number of instance of the most frequent keyword, d 10757
Average number of instance of most frequent word per document, k′ 369.1
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2.6 Fast Phrase Search for Encrypted Cloud Storage

In this section, we present a phrase search scheme [58], which achieves a much faster

response time than existing solutions, including those discussed in section 2.4 and 2.5.

Instead of dedicating resources for matching keywords to documents and keyword loca-

tions, the scheme considers the presence of subsequences as indication of the presence of

the sequence they derived from. The scheme is scalable, where documents can easily be

removed and added to the corpus. We also describe modifications to the scheme to lower

storage cost at a small cost in response time and to defend against cloud providers with

statistical knowledge on stored data. The solutions is suitable for applications where a

fast response time is valued, such as businesses that provide fast data access to clients

and in secure big data applications where data must be processed as they are rapidly

generated. For example, a stock exchange that processes private client orders and an

intrusion detection software that scans encrypted security logs uploaded to the cloud.

Although phrase searches are processed independently using our technique, they are typ-

ically a specialized function in a keyword search scheme, where the primary function is to

provide conjunctive keyword searches. Therefore, we describe both the basic conjunctive

keyword search algorithm and the basic phrase search algorithm in section 2.6.2 along

with design techniques in section 2.6.2. Complete Performance analysis of all our phrase

search schemes and experimental results are included in section 2.6.6 and 2.6.7.

Note this work has also appeared in:

• H. Poon and A. Miri. Fast phrase search for encrypted cloud storage. IEEE

Transactions on Cloud Computing, DOI: 10.1109/TCC.2017.2709316, to appear

2.6.1 Conjunctive keyword search protocol

In a keyword search scheme, Bloom filters can be used to test whether a keyword is asso-

ciated with a document. Many existing phrase search schemes [69,79] use a keyword-to-

document index and a location/chain index to map keywords to documents and match

phrases. We describe an alternative approach using Bloom filters to support this func-

tionality with an emphasis on response time. Our scheme can be summarized as the use

of multiple n-gram Bloom filters, Bn
Di

, to provide conjunctive keyword search and phrase

search.

To provide conjunctive keyword search capability, each document, Di, is parsed for

a list of keywords kwj . A Bloom filter of size m is initialized to zeros. Each keyword

is hashed using a secret key to produce Hkc(kwj) and passed into k Bloom filter hash
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functions to set k bits in the Bloom filter. This results in a 1-gram Bloom filter for

each document: B1
Di

= (b1, b2, ...bm) where bi ∈ {0, 1}. The document collection, D =

{D1,D2, . . . ,DN}, is encrypted and uploaded along with the Bloom filters to the cloud

server. The Bloom filters are then organized into a matrix with the first row containing

the filter B1
D1

for the first document and the last row containing B1
DN

. Its transpose is

stored as a Bloom filter index IBF where each row corresponds to a bit in the Bloom

filters. Note that the ith row in IBF contains information on which document’s filter

has its ith bit set. This arrangement allows us to quickly identify the documents for a

specific query by working only with bits that are set.

To perform a conjunctive keyword search, the user sends a set of keywords kw′ =

{kw1, kw2...kwq} to the data owner. The data owner performs the Bloom filter hash

computation to determine the set of bit locations, Q = {q1, q2, ...qx}, that would be

set in the query filter and sends them to the server. The server then computes T =

IBF,q1&IBF,q2 ...&IBF,qx , where IBF,qi is the qthi row in IBF . The index of bits that are

set in T are identified as the matched documents. Note that the size of the set Q is

much smaller than m since the query filter contains only a few keywords while a con-

junctive keyword Bloom filter contains all the keywords in a document. Therefore, this

approach can identify the matched documents much faster, performing fewer operations

than individual filter verification.

Note that an entry in the Bloom filter index has as many bits as the number of

documents. A query generally involves only a few words and very few bits set. These

lead to only a few rows being extracted for matching. Furthermore, when performing

the bit-wise AND testing, computer processors would generally test 32 or 64 bits at a

time. Should a test results in all zeroes for any subset of bits in a row, the corresponding

documents are no longer candidates and the subset of bits no longer require testing in

subsequent rows.

2.6.2 Phrase search protocol

To provide phrase search capability, each document is parsed for lists of keyword pairs

and triples. For example, ‘Happy Day, Happy Night’ would yield the pairs, ‘Happy Day’,

‘Day Happy’ and ‘Happy Night’, and the triples, ‘Happy Day Happy’ and ‘Day Happy

Night’. A keyed hash for each keyword pair is computed, Hkp(kwj |kwj+1), and passed

into k hash functions and the result is used to set k bits in the Bloom filter, B2
Di

. Keyword

triples are similarly hashed to generate the Bloom filter, B3
Di

. The resulting Bloom filters

for pairs and triples are organized into matrices with the first rows containing the filters

Bx
D1

for the first document. The matrices are then transposed to produce the pairs and
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triples Bloom filter indexes, IBF 2 and IBF 3 , which are stored alongside the encrypted

documents on the cloud.

To perform a phrase search, the user begins by sending the phrase, kw′ = (kw1, kw2,

. . . kwq), to the data owner. The data owner performs the Bloom filter hash compu-

tation of the pair, Hkp(kw1|kw2), to determine the set bits in the query filter if the

phrase contains two keywords. If the phrase contains more than two keywords, the

hashes of triples within the phrase, Hkp(kwj |kwj+1|kwj+2) where j = 1 to q − 2, are

evaluated instead. The set bit locations are sent to the server, who then computes

T = IBF 2,q1&IBF 2,q2 ...&IBF 2,qx , where IBF 2,qi is the qthi row in IBF 2 if the phrase con-

tains two keywords, and similarly using IBF 3 for longer phrases. The set bits in T

identify the matched documents. That is, for each set bit index, i, in T , the following is

true:

{Hkp(kw1|kw2)} ∈ B2
Di

(2.20)

for pairs and

{Hkp(kwj |kwj+1|kwj+2)} ∈ B3
Di

, where j = 1 to q − 2, (2.21)

for triples.

Our phrase search scheme requires only 2 exchanges: a) The initial message to the

cloud server containing the set bit locations of the query Bloom filter T for pairs or

triples and b) The query results from the phrase search performed locally by the cloud.

Performing the phrase search requires k(q − 2) hash computations for phrases of length

q > 2 and a simple bit-wise AND operations. The protocol is computationally efficient.

Its performance is dependent on the length of the phrase and largely independent of the

size of the document set. Due to the space efficiency of Bloom filters, our scheme also

requires less storage than index based schemes. Since filters are assigned per document,

adding or removing documents consists simply of adding or removing the associated

filters, providing a scalable solution.

While a document containing a phrase will always be correctly identified as such,

our scheme can falsely identify documents as containing a phrase when it doesn’t. The

source of the false positive is not only the natural property of Bloom filter, but also in

how a phrase match is determined. If a user queries n-grams for n = 2 or n = 3, our

scheme has no false positives other than ones arising from the use of Bloom filters. For

n > 3, however, it is possible that keyword triples within a phrase appear in different

parts of a document without the complete phrase being present. Using the previous
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example of ‘Happy Day Happy Night’, a false positive would occur if a document does

not contain the phrase but instead contains ‘Happy Day Happy Day’ and ‘Snowy Day

Happy Night’. The validity of the scheme is based on low occurrence of such scenarios

in practical settings.

Designing for target precision in large corpuses

In information retrieval, precision and recall are often used to measure the performance

of a system in its ability to retrieve relevant data.

Recall is defined as the fraction of documents relevant to a query that is retrieved:

Recall =
TP

TP + FN
(2.22)

Precision is defined as the fraction of retrieved documents that are relevant to the

query:

Precision =
TP

TP + FP
(2.23)

Since our scheme has no false negatives, it achieves 100% recall rate. However,

precision tends to decrease when querying longer phrases due to a higher number of false

positives (FP ) relative to true positives (TP ). While not ideal, it is unlikely that this

would negatively affect the performance of querying corpuses of typical size, due to the

uniqueness of long phrases, as will be demonstrated in section 2.6.7.

When working with particularly large corpuses, the number of Bloom filters can be

used to tune the precision rate. One may notice that the number of false positives can be

reduced by extending the scheme to include a quadruple Bloom filter, B4
Di

, and beyond,

at the cost of extra storage. On the other hand, one can also reduce storage by using

fewer filters. While it’s possible to use only the pairs filter, it’s generally preferable to

use at least one for pairs and one for triples when processing English documents since

2-grams and 3-grams are fairly common in the language. Our experimental results over

a corpus of 1500 documents showed a significant number of false positive when using

2-grams to infer presence of 3-grams while almost no false positive were seen when using

3-grams to infer presence of 4-grams. This motivates our design choice of using two

filters: a 2-gram and a 3-gram filter.

Suppose an application have a target precision, Precn, for n-grams and a corpus with

N documents, we can estimate the probability that a file be matched by computing

pT = 1 − (1 − un)x
′−n+1, where x′ is the average number of keywords per file and un

is the probability of two random n-grams being identical. Then, the number of true
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positive is approximately pTN and the target number of false positive is

FPT =
pTN − PrecnpTN

Precn
. (2.24)

Assume the probability that a file being retrieved as false positive is pf , then the

probability that no more than FPT files were found as false positive is

p =

FPT∑
i=1

(
N

i

)
pif (1− pf )i. (2.25)

Suppose we wish that the probability p > 90%, the above equation can then be solved

for a target pf .

Given the probability, pf(n,m), that an n-gram is a false positive when verified using

a m-gram Bloom filter and the number of n-grams in a file, fs, the probability that

the file is retrieved as a false positive is 1− (1− pf(n,m))
fs. If we desire a false positive

probability of no greater than pf , then we would verify if 1− (1− pf(n,m))
fs < pf . If the

inequality holds, the target is achieved otherwise a m + 1-gram Bloom filter is added.

The process repeats until the inequality holds.

Note that when choosing a target precision, Precn, it is helpful to consider the ex-

pected number of files returned per n-gram query. For example, if a query is expected to

return less than 5 results, a precision of 80% would yield only 1 false positive per query

on average. Depending on the application, it may be then preferable to target shorter

sequences such as n− 1 where the higher number of false positive could be problematic.

2.6.3 Modified phrase search scheme against IR attacks

The basic scheme can be adapted to provide additional defense against inclusion-relation

attacks where an attacker has access to a significant amount of query Bloom filters and

search results associated with known queries. To do so, we modify our algorithm to a

type C searching algorithm in the same manner as in section 2.5.4.

In an IR-secure scheme, keywords are randomly removed from the beginning and the

end of the query phrase. More terms can be removed from longer phrases to generate

false positives. For example, a query phrase, kw′ = (kw1, kw2, kw3), would be queried

randomly as kw′ = (kw1, kw2) or kw′ = (kw2, kw3). This results in an increase in false

matches that only contain sub-phrases, severing the inclusion relation between search

terms and query results.
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2.6.4 Security

At rest, the cloud server contains the encrypted documents, EKDi
(Di), the conjunctive

keyword Bloom filter, BDi , and the n-gram Bloom filters, Bn
Di

. The security and privacy

of the documents are ensured by the symmetric encryption algorithm. The words added

to the conjunctive keyword Bloom filter and the n-grams added to the n-gram Bloom

filters are hashed with a secret key to prevent the cloud from learning the keywords

contained in the documents.

The situation is more complex during query. In order to achieve high efficiency, the

basic scheme uses the same secret key for the Bloom filters of different documents. As

a result, it is possible for the cloud to knowingly verify the existence of an encrypted

keyword or n-gram in every document in the corpus. Given enough queries, the cloud

could build a statistical distribution of encrypted words. If the cloud has any prior

knowledge on the statistics of the corpus, such as that the language is English or that

it contains legal documents, it may be able to learn partial information on the data.

An intuitive defence against this statistical attack would use different secret keys for

different documents. However, this would incur significant overhead since filters would

have to be computed and verified separately for every document. Instead, we propose a

hybrid approach as described in the following section.

2.6.5 A hybrid approach against statistical attacks

In a typical keyword search scheme, the majority of queries consist of conjunctive key-

word searches. Being a specialized search option, phrase searches occur far less frequently.

Therefore, the availability of statistical information for individual keywords would be far

greater than that for n-grams. To defend against statistical attacks, the more secure,

albeit more expensive, approach of encrypted indexing is used for conjunctive keyword

matching, where the statistics of individual keywords are better protected. The ap-

proach, described in section 2.4, provides security for individual keywords at the cost of

having to perform client-side encryption/decryption and to re-encrypt the index when

adding files. The use of n-gram Bloom filters for phrase search is retained. In addition to

the low availability of statistical information due to the infrequent occurrence of phrase

searches, the number of distinct n-grams is also far greater than the number of distinct

keywords [14], resulting in a distribution that shows individual probability of occurrence

several orders lower than that of keywords [40]. This means it is significantly more dif-

ficult to mount a statistical attack against n-grams because far more data is required

to recognize the rare occurrences of n-grams while, at the same time, far fewer data is
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Table 2.6: Average number of distinct n-grams for a sample of 150 documents

Number of words n = 1 n = 2 n = 3

37626 4833 32023 36884

available. Table 2.6 illustrates this property on our experimental data set. Regarding

updates to the corpus, it should be noted that index update can be delayed to avoid

constantly decrypting and re-encrypting the index. That is, the data owner can main-

tain a small local index which includes recently added and removed files until the next

scheduled index update.

The encrypted index approach to conjunctive keyword search proceeds as follows. A

document collection, D = {D1,D2, . . . ,Dn}, is parsed for a list of keywords, kwj . An

keyword-to-document index, I, is generated mapping keywords to documents such that

I(kwj) = (d1, d2, . . . , dn), where di = 1 if kwj is linked to the document and di = 0

otherwise. The resulting index is encrypted and uploaded to the cloud server:

I(HK(kwj)) = EK(d1, d2, . . . , dn). (2.26)

To perform a search, the user sends a set of keywords kw′ = {kw1, kw2, . . . , kwq} to

the data owner. The data owner computes their hashes, HK(kw′), using a secret key

and sends them to the cloud server. The encrypted index entries are returned to the

data owner, who computes the intersection of index entries and identifies the matching

documents:

DK(I(HK(kw1))) &DK(I(HK(kw2))) · · · &DK(I(HK(kwq))), (2.27)

where & is a bitwise AND operation. Note that the phrase search protocol, which runs

independently, in the hybrid construction is identical to that described in section 2.6.2.

Therefore, the response time, communication cost and computational cost associated

with phrase search are also identical.

2.6.6 Performance Analysis

As outlined in section 2.6.2, our scheme, denoted our schemespd, requires two Bloom

filters per document for the purpose of phrase search, one for storing pairs and another

for triples. Note that the conjunctive keyword Bloom filters are not required for the

purpose of phrase search. The two sets of filters require N(b2 + b3) bits of storage on
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the cloud server, where b2 is the size of a pairs Bloom filter, b3 is the size of a triples

Bloom filter and N is the number of documents in the corpus. The data owner needs

only to store cryptographic keys. Since all existing schemes include conjunctive keyword

search capability, we have included the 1-gram filter, b1, in our comparison tables 2.8

and 2.9. The communication cost of our scheme is similar to [54], descibed in section

2.5. The proposed protocol requires only two messages to be sent, one containing the

set bit locations of the query Bloom filter for pairs or triples and the other containing

the matched results. Assuming the queried phrase contain q > 2 keywords and that k

is small, the scheme requires (q − 2)klog2(b3) bits to be sent to the cloud server and

ulog2(N) bits to be sent to the user, where u is the number of matched documents. In

terms of computation, the scheme requires hashing of triples in the phrase using a secret

key, with a total of 3(q−2)b bits, where b is the average number of bits per keyword, and

k(q−2) standard hash computations on the client side to determine the set bit locations

of the query filter sent to the server. Upon receiving the query, the server performs a

bitwise AND operation between the Bloom filter index entries, each consisting of N bits,

for the k(q − 2) set bit location. The matches are then immediately available from the

result. The response time of the scheme is dependent on the execution time of the server

and the client, and also the transmission time and propagation delay of the messages.

The most expensive computation in the protocol is the 3(q−2)b keyed hashing performed

by the client while non-cryptographic hashing and bit-wise AND are both very efficient

operations. In addition, the scheme also enjoys a short transmission time due to a

compact description of the query filter and requires the minimal propagation delay of a

single round-trip communication.

Zittrower’s proposal [79] uses an encrypted keyword truncation table that maps dis-

tinct keywords with the same truncated ciphertext to different index values. The table

allows the data owner to differentiate between entries associated with different keywords

but have the same truncated ciphertext in the index table stored on the cloud. Assuming

optimal representations, this table requires x(log2(x) + b) bits, where x is the number of

distinct keywords in the corpus and b is the average number of bits per keyword. On the

cloud server, two index tables, one mapping truncated encrypted keywords to documents

and another to their locations within the documents, are stored. The two tables require

x(12 + p′ log2(N)) and x′(12 + gy) bits respectively, where p is the average number of

documents associated with a keyword in the corpus and y is the number of bits needed

to store a location value. On average, The scheme results in 300 collisions among the

encrypted keywords to hide the true search terms. In other words, a query response

contains, on average, results belonging to 300 other unrelated keywords, leading to a
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significant amount of wasted bandwidth and processing. In terms of communication,

this implies that up to 300ui log2(N) bits are spent transferring unrelated data during

conjunctive keyword search, where ui is the number of candidate documents matched in

the search, and 300g(y + log2(x)) + salt) bits are wasted during phrase search for every

keyword in the query. When combined with the desired query results, a 12q bits query

would yield a response with up to 301ui(log2(N) + 301q(g(y + log2(x)) + salt)) bits of

data from the cloud server. Regarding computational cost, the data owner must decrypt

all returned entries and, using the encrypted keyword truncation table, identify the re-

sults belonging to the searched keywords while discarding collisions. Then, based on the

decrypted locations, the data owner identifies documents where the keywords appear in

order. Due to the need for client-side encryption and the large amount of false positives

processed during search, the scheme has a higher computational requirement than our

proposed scheme, where the most expensive operation consists of hash computations.

Although the protocol results in only a single round-trip delay, it has a long transmis-

sion time due to the high number of false positives. The response time also degrades

due to a high processing time because of a significant amount of decryption operations

required at the client which likely possesses much lower computational power than the

cloud server.

Tang’s scheme [69] also uses a table mapping keywords to index values kept locally

by the data owner. On the cloud server, a keyword-to-document index and a keyword

chain table are stored. While the keyword-to-document index is similar to other existing

solutions, the keyword chain table is a structure that allows the verification of keyword

chains, combining the use of cryptographic hash and randomly generated location in-

dicators. In order to achieve security across all parameters, it was proposed that the

keyword chain table be applied to the entire data set and normalized according to the

highest occurring keyword in the document set. In all, x(log2(x) + b) bits of storage

is required by the data owner and x(log2(x) + N) + Nx′(h + d(h + y)) bits of storage

is required by the cloud, where b is the average number of bits per keyword, h is the

number of bits used to store a hashed keyword or location value, y is the number of bits

to store a location value and d is the number of instance of the most frequent keyword

in the corpus. While the client-side storage requirement is low, the keyword chain ta-

ble, analogous to the location index, is several orders of magnitude greater, due to the

normalization to the value of d. In terms of communication, the client sends qlog2(x)

bits to the server during the conjunctive keyword search phase and receives qN bits

as results. For matching phrases using the keyword chain table, the data owner sends

ui(qlog2(x) + (q − 1)h) bits to the cloud server, where ui is the number of candidate
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documents, and receives ulog2(N) bits in matching document ID’s. While the commu-

nication cost of the scheme is an improvement over Zittrower’s scheme, communicating

index entries and keys is still more costly than the transmission of a single Bloom filter

required in our proposed technique. One of the main advantages of Tang’s approach

is the asymmetric distribution of computational load, where the cloud server, typically

possessing significant computational power, performs the majority of the computations.

During the conjunctive keyword search phase, the client performs a table lookup and

computes the keyed-hash of the queried keywords and sends them to the cloud server.

The server then performs a table lookup for the queried entries and return the results to

the data owner. Given the candidate documents, the client hashes the keywords under a

different secret key in addition to q − 1 chain keys for the chain digests. Upon receiving

the hashed phrase and chain keys, the server finds the corresponding entries in the index

using binary search, and performs up to d(q − 1) keyed hashes. Due to the size of the

keyword chain table, a significant amount of hash computation is required to verify a

phrase, especially when a candidate document contains all the keywords but not in con-

secutive order, where the maximum number of hashes would then be required to reject

it as a match. The processing time of the scheme is largely dependent on the server’s

ability to compute the keyed hashes. The two phase protocol also requires two round-

trip delays. Compared to our proposed technique, the scheme has a higher propagation

delay and a higher processing time since the hashing algorithm used in Bloom filters is

non-cryptographic, which is significantly faster than the cryptographic hash functions

used in Tang’s scheme.

In section 2.4, we proposed a solution to address the high communication cost in

Zittrower’s scheme and the high storage cost noted in Tang’s scheme while maintaining

a high level of security. We’ll designate this scheme as our schemesec. The central

idea was to exploit properties of natural languages to better design the indexes. By

considering the almost exponential distribution of words in most languages, it was shown

that splitting keywords location entries into pairs dramatically reduces the storage cost

of the system. The scheme requires data owners to maintain a dictionary mapping

keywords to index values and a list showing the number of times that keywords were

split in each file. It was found that the data owner would require x(log2(x) + b) bits

for the conjunctive keyword index and 0.27x′N(log2(x
′) + log2(k

′/2)) bits of storage for

the split tables. The cloud server would store the encrypted keyword-to-document index

using x(log2(x) +N) bits and the location index tables using 2.5x′N(h+ 2y) bits, where

h is the number of bits used to represent a hashed keyword and y is the number of bits

to store a location value. During the first phase of a phrase query, qlog2(x) bits would be
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sent to the cloud to identify candidate document and qN bits would be received by the

data owner. On average, a query for a single keyword’s locations requires 2.5 encrypted

keywords to be sent due to splitting. A location query for a random keyword in phrase

would then require sending 2.5h bits to the server. Given ui candidates identified in the

conjunctive keyword search, 2.5hui bits would need to be sent. In response, the cloud

returns the encrypted location entries requiring 2.5ui ∗ 2y = 5uiy bits. Hash signatures

of the phrase at the identified starting locations are then sent to cloud for matching,

requiring uig(h + log2(N) + y) bits, where g is the number of times a keyword appears

on average per document. In terms of computation, the cloud server must look up the

index entries on each step and perform hash computations of qb bits at uig locations.

The data owner must encrypt q keywords for conjunctive keyword search and hash one

random keyword for location query. Then, uig encryption and hash computation of

q keywords are required to generate the hash signatures for matching. The scheme

presents a significant improvement in terms of practicality over Zittrower and Tang’s

scheme by offering a much lower storage cost at the cloud and not having to rely on a

large number of false positives to maintain security. Phrase search is performed in two

rounds of communication, as in Tang’s scheme, with the first step identifying candidate

documents that contain all keywords.

In section 2.5, we noted that further reduction in storage can be achieved and pro-

posed a scheme based on Bloom filters that focused on minimizing storage cost. We’ll

designate this solution as our schemesto. For conjunctive keyword search, all distinct

keywords in a document is placed in a conjunctive keyword filter to enable keyword-

to-document search. For phrase search, keywords are concatenated with their locations

and placed inside a keyword location filter to enable location queries. The scheme re-

quires two Bloom filters per document, one for mapping keywords to document and one

for determining keyword location. The filters are stored on the cloud server, requiring

N(bk + bl) bits of storage, where bk is the size of a conjunctive keyword Bloom filter,

bl is the size of a keyword location Bloom filter and N is the number of documents

in the corpus. The data owner retains only cryptographic keys. In terms of commu-

nication cost, the protocol requires that the keyed hash of the keywords for each filter

be sent to the cloud server, and the results of the query returned to the data owner.

Altogether, the scheme requires 2qh bits to be sent to the cloud server and ulog2(N)

bits to be sent to the user, where h is the number of bits per hashed keyword and u is

the number of matched documents. Regarding computational cost, the data owner must

perform 2q keyed hash computations to generate the trapdoor query. Upon receiving

the query, the server performs qk Bloom filter hash computations to produce the query
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filters. A bitwise AND operation for each conjunctive keyword filter in the document

set identifies the candidate documents. Then, for each candidate document, rk Bloom

filter hash computation is needed to find the locations of the first word of the phrase,

followed by rik hash computation for each additional word to determine matches, where

r is the number of keywords in the candidate document and ri is the number of matches

for the ith word in the phrase. Generally, r � ri. Therefore, approximately uirk hash

computations are required during phrase search, where ui is the number of matched doc-

uments during conjunctive keyword search. The space-efficiency of Bloom filters allowed

the scheme to achieve the lowest storage cost among existing solutions but it required a

brute-force approach to identify keyword locations. Although incremental hash functions

can improve the verification speed, the computational cost remains high and increases

proportionally to the size of the documents. While the scheme requires a single round of

communication, the response time of the scheme suffers due to the high processing time

required to identify keyword locations.

Table 2.8 shows a comparison of all our schemes to existing techniques. For clarity,

some terms that do not have a significant impact on the associated cost were omitted.

Note that the variants, our schemespd (speed) and our schemespd (storage) are defined in

section 2.6.7 and our schemespd (hybrid/*) corresponds to the hybrid approach described

in section 2.6.5. While our schemespd (speed) exhibits a high storage cost in order to

achieve the fastest processing time by taking full advantage of the Bloom filter index,

variants with different values of t, such as our schemespd (storage), can achieve fast

processing time with a storage cost similar to our schemesec and 3 times lower than Zit-

trower’s scheme. Regarding the hybrid approach, the technique differs from the scheme

in section 2.6.2 only in its conjunctive keyword search functionality. Its phrase search

functionality remains the same. Therefore, its response time, communication cost and

computational cost associated with phrase search are identical to our base scheme. The

sole difference is the storage cost of the system where resource dedicated to conjunctive

keyword search, namely the index, requires higher storage than a 1-gram Bloom filter.

2.6.7 Experimental Results

To compare our results against existing phrase search schemes, we evaluate our algorithm

on a corpus consisting of 1500 documents made available by Project Gutenberg [2]. The

documents were preprocessed to exclude headers and footers, which include copyright,

contact and source information to reduce skewing in the statistics of the data set. Stop

words are also omitted. To determine the statistical properties of the corpus and the

performance for the various schemes, the Natural Language Toolkit [12] was used.
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The design of Bloom filters is important to our scheme’s performance. In particular,

the use of a Bloom filter index requires the filters to be of the same length. Recall that

the equation for false positive rate is as follows:

p = (1− e−k
n
m )k (2.28)

where k hash functions are used to insert n items into a m bits Bloom filter with a false

positive rate of p. Figure 2.16 shows false positive rates between 1% and 10% relative to

the number of hash functions and the number of bits needed per entry. A small filter size

is preferable in terms of storage. A low false positive rate would reduce communication

and computational cost. In particular, using a small number of hash functions greatly

improves the execution time since the computational cost is proportional to the number

of hash function used. In practice, the number of hash functions, k, needed to minimize

false positive rate is rarely used since there is very little improvement in false positive

rate as we increase the number of hash functions past a certain threshold. Using a

single hash function, k = 1, would reduce the computational cost, but also more than

doubles the storage cost to achieve the same false positive rate. The high variance in

false positive rate when k = 1 can also be problematic for corpus with high variance in

document sizes. As shown in the Figure 2.17, the number of bits per entry and the false

positive rate is fairly stable for k ≥ 2 and m/n ≥ 10.

Selecting the Filter Size

Optimizing for response time requires normalizing the filter size to take advantage of the

Bloom filter index. A simple design approach is to ensure that the parameters meet the

requirements in the worst case scenario. If an application requires a certain false positive

rate, then the filter size can be chosen such that the document with the largest number

of distinct keywords or n-grams in the corpus falls within the required rate. In most

practical scenarios, it would be the largest document in the corpus. All other smaller

documents would exhibit lower than required false positive rate. However, this approach

has a high cost in storage. In corpuses where there’s a large variance in document

sizes, much of the storage is wasted. For example, if we consider the entire Gutenberg

corpus of 15620 English documents, the largest document contains 2.8 million words.

However, only 88 documents contain more than 140 thousand words and half of the

documents in corpus contain less than 20 thousand words. In such scenarios, a trade-off

between response time and storage cost can be made by using t sets of filter sizes where

only one of the document set would conform to the largest filter size used, effectively
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generating t Bloom filter indexes. In the previous example, we can have the largest

88 documents conform to the largest filter size, the following 7722 documents conform

to the document containing 140 thousand words and the remaining 7800 documents

conform to the document containing 20 thousand words. This simple change would lead

to 30 times lower storage requirement than the fastest solution. This approach requires

a slight modification of the protocol in section 2.6.2, where the output of the k hash

functions would be sent to the server instead of the set bit locations. To determine the

set bit locations, the server simply computes the hash values modulo the filter sizes. The

server then proceeds to compute T as usual for each set of filters to determine matches.

Note that the limit case of setting t = N , where every document uses exactly the filter

size needed to achieve the desired false positive rate, would require the least amount of

storage, but would also require the server to verify each filter separately. Nonetheless, it

would still achieve much improved response time when compared to existing approaches.

We will refer to the approach with t = 1 as “Our schemespd (speed)” and t = N as “Our

schemespd (storage)” in tables 2.8 and 2.9 to highlight that the former is designed for

the highest speed and the latter is designed for the lowest storage cost possible with a

trade-off in speed. It should be noted that the best value for t depends on the application

and especially on the distribution of file sizes. If all documents have the same number

of distinct keywords or n-grams, there is no advantage in storage for choosing t > 1 as

all filter sizes would be the same.

Having considered various trade-offs, the operating point was heuristically chosen

for a false positive rate of p = 5% with k = 2 and m/n = 7.9 for our experimental

corpus. A more stringent false positive rate of 1% can be achieved by increasing the

number of bits per entry to m/n = 19 while keeping the number of hash functions at

k = 2, maintaining a high response time at the cost of more storage. Although we could

improve the false positive rate by using more hash functions, increasing the number of

hash function from k = 2 to k = 3 would increase our computational cost by 50%,

leading to lower performance.

The storage requirement is dependent on the number of items that the filters must

store. Using the simple approach of normalizing according to the largest document,

we would require the number of bits needed to store the number of distinct keywords

in the largest document for each conjunctive keyword filter. Similarly, the number of

distinct pairs and triples determine the size of each pairs or triples filter. The values of

various parameters of the sample Gutenberg document set are listed in Table 2.7. To

provide consistent comparison with existing schemes, we consider 1530 documents from

the Gutenberg corpus. At 7.9 bits per entry and optimized for speed, a conjunctive

65



CHAPTER 2. TEXT

keyword Bloom filter would require b1 = x′′m/n = 41kB, a pairs filter would require

b2 = r2m/n = 2.17mB and a triples filter would require b3 = r3m/n = 2.66mB. Should

we wish to minimize storage, we would require b1 = x′′m/n = 3.82kB, a pairs filter would

require b2 = r2m/n = 23.43kB and a triples filter would require b3 = r3m/n = 28.7kB.

Usually, the number of distinct words/pairs/triplets is proportional to the document

size. However, in the event of outliers, this could allow an attacker to easily recognize

the non-conforming documents. To defend against this, one can design a minimum filter

size to file size ratio so that a file with an unusually small number of distinct words would

have a filter size larger than what is needed to protect the file’s identity. Equivalently,

a minimum file size can also be set so that a file requiring an unusually large filter size

would be padded to have a correspondingly large file size associated with it.

Long phrases

Long phrase queries are often used to locate known items rather than to locate resources

for a general topic. In many cases, the user’s goal is to retrieve a single document.

Longer phrases also have a very low probability of occurrence and yield fewer matches.

Therefore, even with a precision rate of 50%, we would rarely see more than a single false

positive for a search query of longer phrases. In our experiment, we never encountered

more than a single false positive in queries with phrases containing more than 4 keywords.

The small amount of false positives can also be easily identified and removed client-side.

As a result, the effect of low precision rate in longer phrases should not have a noticeable

detrimental effect in practice.

Table 2.9 summarizes the results of the schemes on the sample Gutenberg document

set with the experimental values for the various parameters outlined in Table 2.7. For

the hash values of keywords and locations, we assumed that each would require 16 bits

in all cases. English words have an average length of 5 letters. Hence, b is set to 40.

Since communication and computational costs are query-dependent, related parameters

are kept in the formulas and dominant terms were retained for clearer comparisons. In

practical scenarios, ui > u > q and Enc(x) ≈ Dec(x) > Hk(x) > Hbf (x) ≈ H(x) >

LUT (x) ≈ Mod(x) > And(x), where Enc(x), Dec(x), Hk(x), Hbf (x), H(x), LUT (x),

Mod(x) and And(x) represent respectively the cost of an encryption of x bits, a decryp-

tion of x bits, a keyed hash computation of x bits, a Bloom filter hash computation of x

bits, a standard hash computation of x bits, a table look up of x elements, the modulus

computation of x numerical values and bit-wise AND operation of x bits . Note that

the communication and computational cost values for Zittrower’s scheme are worst-case

estimates. As shown in the table, our schemesspd require far lower computational cost
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Figure 2.16: False positive rate (p) as a function of the number of hash function (k) and
bits per entry (m/n)
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Figure 2.17: False positive rate (p) as a function of the number of hash function (k) and
bits per entry (m/n) (close up)
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Table 2.7: Properties of the sample document set

Average number of documents associated with a keyword, p′ 885.6
Total number of documents, N 1530
Total distinct keywords, x 285396
Average number of keywords per document, r 30364.7
Maximum number of keywords per document, r′ 2815415
Average number of distinct keywords per document, x′ 3959.6
Maximum number of distinct keywords per document, x′′ 42489
Average number of distinct pairs per document, r2 25177.6
Maximum number of distinct pairs per document, r2′ 2252332
Average number of distinct triples per document, r3 30842.5
Maximum number of distinct triples per document, r3′ 2759106
Average number of times each keyword appears per document, g 5.6
Number of instance of the most frequent keyword, d 10757
Average number of instance of most frequent word per document, k′ 369.1

on both the data owner and the cloud server. The advantage is particularly notable on

the cloud where only basic operations are needed. Our schemespd (storage) also achieves

almost 5 times lower storage cost than Zittrower’s scheme. In terms of communication,

our schemesspd require only a single round trip much like Tang’s solution, but requires

fewer bits to be sent by either party. It is also interesting to note that the bulk of the

communication/computation cost is not dependent on the number of matches for the

keywords.
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2.7 A Combined Solution for Search and Auditing for

Encrypted Cloud Storage

In this section, we propose a solution for storing, auditing and searching through en-

crypted document sets on cloud storage [55]. Instead of including resources that enable

the functionalities separately, our setup uses the same pool of resources, leading to a

smaller overhead than simply using two separate solutions. Our solution maintains many

desirable features such as privacy of documents and search terms, proof of retrievability

with theoretically unbounded number of audits and public verifiability. It is applica-

ble to any sequential data search schemes with location query capability and provides

protection against data tempering and ensure data integrity.

Note this work has also appeared in:

• H. Poon and A. Miri. A combined solution for conjunctive keyword search, phrase

search and auditing for encrypted cloud storage. In IEEE Conference on Advanced

and Trusted Computing, pages 938–941, 2016

2.7.1 Auditing cloud services

It’s generally agreed that auditing is needed for cloud storage services, in particular

where they are used as data archives and backups, where they may not be accessed for

long periods of time. Since the data is not in the owner’s possession, verifying that the

data is indeed available is not a simple task. Where privacy and security is concerned,

the cloud service provider should also not learn the content of the encrypted data as

a result of the auditing process. Ateniese et al. were among the first researchers to

consider the problem of auditing encrypted cloud storage. They defined the notion of

provable data possession (PDP) and proposed various solutions over the past decade

[7,8]. Their solution generally involves the addition of homomorphic tags, used for data

verification. One of the common shortfalls of existing schemes such as in [8] is that there’s

often a limit on the number of audits that can be performed before the data have to be

reprocessed. Shacham et al. [64] argued that the previous definition is also insufficient, in

that it allows the verification of a subset of blocks without guaranteeing the availability

of the data as a whole, and proposed the use of a stronger proof of retrievability (POR).

Researchers have, over the years, devised various POR schemes, generally requiring the

use of an erasure code to achieve the retrievability criterion without verifying all stored

data. The resulting data expansion from the use of erasure code is the cost of achieving

this stronger guarantee [65]. Wang et al. [72] investigated the possibility of a public
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auditing service, where a third party may perform the auditing task for the data owner.

The challenge, however, is that the auditing service provider should not be considered

any more trusted than the cloud service provider. As such, the auditing service provider

must perform auditing without knowledge of the data content. To this end, Wang et al.

[72] proposed a scheme using public key encryption that could meet these requirements.

Another recent work noted the vulnerability of verifying data ownership by knowledge

of its signature that was identified in many cloud service at the time [31] and proposed

two-way auditing where the user must also prove to the cloud its knowledge and, thus,

ownership of the data.

2.7.2 Communication Model

For keyword search, our communication model involves up to three parties: The data

owner, the cloud server and the user. Our discussions will assume the public cloud sce-

nario involving all three parties. The algorithms can easily be adapted to the private

cloud scenario where the user is simply the data owner. A standard keyword search pro-

tocol is shown in Figure 2.18. The user begins by sending a search request containing the

queried keywords to the data owner. To prevent the cloud from learning the keywords,

the data owner computes and sends a trapdoor to the cloud to initiate a protocol to

search for the requested keywords in the corpus. Finally, the cloud responds to the user

with the indexes to the requested documents.

For auditing, the private model on which our solution is based on is shown in Figure

2.19. The data owner begins by selecting and querying a set of keywords or rows from

the indexes. Upon retrieving the results, the data owner randomly selects a number of

bits to audit. The cloud must respond by providing the hash of the bit stream queried.

Our solution can also be used in a public auditing model, shown in Figure 2.20, where

a third party verifies data integrity in data owner’s stead. In the public model, a set of

pre-computed challenge and signature response must be sent to the auditor, who then

independently engages with the cloud server in an auditing protocol.

In each scenario, the cloud operator is assumed to be semi-honest, following our

protocol without deviation, but is interested in learning about stored user data. The

auditor is also assumed to be semi-honest in the public auditing model.

2.7.3 Keyword and Phrase search schemes

Our combined audit and search solution works with any keyword and phrase search

scheme that has the ability to query a keyword’s location within a document and uses a
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Figure 2.18: Communication model for keyword search over encrypted data

Figure 2.19: Communication model for private auditing over encrypted data

Figure 2.20: Communication model for public auditing over encrypted data
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symmetric encryption algorithm in counter mode. Examples include our schemesec [53],

our schemesto [54] and Zittrower’s solution [79]. Without loss of generality, we’ll describe

a basic phrase search scheme here.

Given a document set, D = {D1,D2, . . . ,Dn}, each document, Di, is parsed for a list

of keywords, kwj . An index, I, is generated mapping keywords to documents such that

I(kwj) = (d1,j , d2,j , . . . , dn,j), where di = 1 if kwj is found in the document. The index

is then encrypted:

I(HK(kwj)) = EK(d1,j , d2,j , . . . , dn,j). (2.29)

where HK() is a cryptographically secure hash function. For each document, Di, a

keyword location index, Il, is also generated containing entries:

{HK(Di|kwi), EK(j1, j2, . . . , jn′)} (2.30)

where jx are the byte locations of kwi within Di. The documents are then encrypted

using any symmetric encryption, such as AES, under counter mode and uploaded along

with the encrypted indexes to the cloud server. The initialization vector is set to the

hash of the document index, H(Di)
To perform a standard keyword search, the user sends the queried keywords kw′ =

{kw1, kw2, . . . , kwq} to the data owner. The data owner computes HK(kw′) and sends

to the cloud server. The cloud server returns the encrypted index entries to the data

owner, who then finds the documents matching the keywords from the intersection of

index entries:

DK(I(HK(kw1))) &DK(I(HK(kw2))) · · · &DK(I(HK(kwq))), (2.31)

where & denotes a bitwise and operation.

To perform a phrase search, the user begins with a standard keyword search to

identify candidate documents. Then, the locations of the keywords in the candidate

documents are queried by sending HK(Di|kwi) to the cloud. Upon decrypting the lo-

cation information, the location of the first keyword in the phrase, kw1, is extracted.

For each location, Loc(kw1) = {j1, j2 . . . , jm}, the data owner verifies if the following

keyword is kw2. For every positive match, the process repeats for the following keyword

until the last keyword in the phrase is verified or until no candidates remain.
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2.7.4 Auditing protocol

To enable auditing, we add a row-based query mechanism to the basic phrase scheme

described in previous section so that each row of the index, Il, corresponding to a

keyword, also includes EK(rowno|kw), where rowno is the row number of the key-

word, kw, and, optionally, the row number can also be added to the keyword loca-

tions as follows: EK(rowno|j1|j2 . . .). The latter provides earlier fault detection should

a malicious cloud returns a different set of entries than asked. The data owner must

also maintain a record of the number of rows available for each file’s index. An au-

dit query proceeds as follows: The auditor performs a keyword location or phrase

search for a set of keywords, kwa = {kwa1, kwa2, kwa3, . . . kwan}, or randomly chooses

a set of documents and performs a row-based query by sending a set of row numbers

rowa = {ra1, ra2, ra3 . . . , ran}. The former has the advantage that the first step is sim-

ply a conjunctive keyword search and can be gathered based on user queries over time,

without the added complexity of a row-based query mechanism. The latter has the ad-

vantage of not requiring knowledge over what keywords may be present in the document

set and increasing the randomness of audits. In both cases, the server would return the

encrypted locations for the set of keywords or the rows requested. Upon receiving an

entry, {EK(rowno|kw), EK(j1, j2, . . . , jn′)}, the first term is decrypted to verify that the

row number or the keyword matches the one being queried. If there are discrepancies,

the audit fails. Otherwise, the data owner is now aware of the locations of the keywords

and can verify them by specifying a bit sequence belonging to a subset of the locations

queried and requesting the cloud server to compute a hash signature of the bit sequence.

While it is possible to audit any bit sequence using this approach, it is useful to

have a simple description of the locations to avoid having to specify the locations of

every bit under audit. To this end, we chose to fix the number of bits to audit per

keyword location. The following audit message is sent to the cloud server, describ-

ing the bits under audit: {run size, {DID1 , byteloc1 , byteloc2 , . . . bytelocn′′}, . . . {DIDn ,

byteloc1 , byteloc2 , . . . bytelocn′′}}. Upon receipt, the server locates the document, DID1 ,

and retrieves run size bytes at each byte location, byteloci for i = 1 to n′′, and place

them in a buffer in order. Document DID2 is then processed in the same manner and the

requested bytes added to the buffer until all bytes under audit are placed in the buffer.

Aside from the bits under audit, the data owner also sends a salt value, Salt, which

the cloud must also placed in the buffer. Finally, a hash signature of the bit sequence

in the buffer is computed and returned. By decrypting EK(rowno|kw), the data owner

knows the keywords at all the specified locations and can compute their corresponding
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ciphertexts. Because the auditor can recompute the ciphertexts, he can reproduce the

buffer that the cloud server should obtain and verify that the signatures match. The

inclusion of the salt serves to defend against replay attack should the same set of bit

sequence gets audited at a later time.

To make use of a public auditor, the data owner must pre-compute sets of bit se-

quence, salt and signature and provide them to the auditor. An audit would be per-

formed by sending the message describing the run size and bit locations, then verifying

the signature the cloud server responds with.

Modes of operation

The choice of symmetric encryption was natural due to its efficiency and well-studied

security. For the purpose of our auditing protocol, it is also important that the data

owner can systematically reproduce the ciphertext at any byte location.

Cipher-block chaining (CBC), a commonly used mode of operation for symmetric en-

cryption, would require the preceding ciphertext block in order to compute the ciphertext

at any location. This could significantly increase communication cost depending on the

number of disjoint bit sequences under audit.

The choice of counter mode (CTR) is more suitable for our application as each

ciphertext can be computed independent of other blocks, averting the communication

cost of performing encryption in CBC mode. The initialization vector can be stored in

plain with the document or use H(Di) to further reduce storage cost.

Furthermore, it is also possible to perform non-indexed keyword search under CTR

mode. Detailed discussion can be found in section 2.4.

Parameters for row and keyword selections

On average, English word length is approximately 5 characters, which translates to 40

bits. For a sample document set obtained from Project Gutenberg [2], keywords appear

on average 15 times per document. Therefore, 600 bits on average would be available per

row returned. Auditing 1024 kbits would require, on average, a minimum of 1707 rows.

Suppose we request 3500 rows, we can then select run size = 20 bits at each keyword

location. Then, for each keyword location, the auditor randomly chooses a starting bit

location with an offset between 1 and keyword length − 20. The bits under audit are

the 20 bits following the specified start location.
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2.7.5 Analysis

In terms of storage, our scheme requires only that the encryption for each distinct key-

word and the row number, EK(rowno|kw), be added in the keyword location indexes.

The communication and computational complexity of keyword and phrase search is iden-

tical to the underlying phrase search schemes.

When compared to audit schemes, our solution uses encrypted indexes in place of tags

and erasure codes. The storage cost of proof of retrievability schemes heavily depend on

the recoverability of the erasure codes used and grows proportionally to the document

set size. Our storage cost also increases as the document set size increases. However,

as noted in section 2.4, the probability distribution of natural languages is far from

uniform. The number of distinct keywords, and so the size of the indexes used in our

scheme, grows much slower than the document sizes do. The communication cost is

similar to existing audit schemes in that the bits under audit must be specified in some

way. The main computational cost during setup is that of generating the indexes for the

entire document set. During audit, the data owner must decrypt the retrieved keywords

and encrypt the audit bit sequence while the cloud hashes the requested bits.

Note that the number of audits allowed in our scheme is theoretically upper bounded

only by the information available in the document set and the size of the salt chosen. Any

set of bits in the document can be audited, provided that the keyword at the location

is indexed. As such, indexing all words in the document set would allow our scheme

to achieve proof of retrievability, provided the index itself is retrievable. This can be

achieved by storing the index locally or using existing proof of retrievability schemes on

the indexes. Note that the indexes are much smaller than the document set. Therefore,

the data expansion and computational cost resulting from the use of erasure code would

also be much lower.

In terms of security, the stored documents are symmetrically encrypted and the

private key remains with the data owner at all times. The indexes are also symmetrically

encrypted for privacy. In the public auditing model, the auditor is given a set of byte

locations and the cryptographic hash of the bit sequence it should obtain. Since it is

computationally infeasible to compute the pre-image of a cryptographic hash, the auditor

would not be able to manipulate bit sequences to obtain different valid signatures. Bit

locations also do not reveal information on the stored data. Attempts to store and replay

audit queries by a malicious cloud operator would only be successful if exactly the same

bit sequence and salt were chosen. Attempts to suggest the requested row do not exist

would be caught since the data owner is aware of the number of rows available. Should
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the cloud operator send a set of locations for a different keyword than the one requested,

it would also result in an audit failure since a different keyword would result in a different

bit sequence or a mismatched rowno should it be included with the locations.

2.8 Computation and Search over Encrypted XML

Documents

To the best of our knowledge, the problem of obtaining aggregated data from encrypted

XML documents has not been addressed though there have been efforts towards querying

of such documents. In [38], the authors described a technique for encrypting and querying

XML documents in a tree structure. While the scheme is reasonably efficient, it is limited

to select type queries and the use of trees exposes the structure of the XML documents.

Sung [67] proposed using Elliptic curve cryptosystem to encrypt XML documents and

Juan [39] investigated techniques to reduce the overhead in decrypting XML data. Both

of these solutions considered only partially encrypted XML documents and are also

limited to select type queries.

In this section, we present a scheme which combines search and computations over

encrypted documents to extract aggregated data from XML documents [52]. Unlike

existing schemes, our approach can be used for partial or fully encrypted XML documents

and allows computations to be performed server-side, expanding to queries that include

functions such as sum and avg. This solution is particularly useful for processing user

uploaded forms to the cloud. We begin by presenting the communication model of the

proposed scheme in section 2.8.1 and provide a simple description of the XML format in

section 2.8.2. Then, we will introduce the basic protocols required for keyword search in

section 2.8.3. Finally, in Section 2.8.4, the full protocol for search and computations is

presented.

Note this work has also appeared in:

• H. Poon and A. Miri. Computation and search over encrypted XML documents.

In IEEE International Congress on Big Data, pages 631–634, 2015

2.8.1 Model for keyword search and computation over encrypted data

The communication model for our protocol involves up to three parties: The data owner,

the cloud server and the user. In a private cloud, the user is simply the data owner.

Figure 2.21 illustrates a standard protocol where the user initiates the request by sending

the keywords, kwi, and the function, F (x), to the data owner. The data owner then
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Figure 2.21: Communication model for search and computation over encrypted data

generates a trapdoor and sends it to the cloud. A protocol to search over the requested

keywords and function arguments follows. Finally, the cloud responds to the user with

the indexes to the requested documents and the result of F (x).

2.8.2 XML format

XML is a markup language that specifies how documents encoded in a format that is

simple and easy to use [4]. Since its inception, it has seen wide-spread use across the

Internet and many variants, such as JSON, have since been specified.

A typical XML file includes tags, attributes and contents. A tag is a markup that

begins with a ‘<’ and ends with ‘>’. Attributes are sometimes included in a tag to

better describe the content. The following is an example of a XML file describing music

in an album, where various tags such as title and artist are used and a number attribute

describes ordering of the songs.

<ALBUM>

<SONG number="1">

<TITLE>Blowing in the Wind</TITLE>

<ARTIST>Bob Dylan</ARTIST>

<PRICE>5.99</PRICE>

<YEAR>1963</YEAR>

</SONG>

<SONG number="2">

<TITLE>Lost in France</TITLE>

<ARTIST>Bonnie Tyler</ARTIST>

<PRICE>6.99</PRICE>

<YEAR>1976</YEAR>

</SONG>

...

</ALBUM>

It is important to note that the location of a tag within a document is not fixed. The
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ordering of the tags may differ without affecting the content of the document. Certain

elements may be present in some, but not all documents. The size of the content may

also be inconsistent. Therefore, a searching algorithm is required for processing XML

files.

2.8.3 Search over encrypted XML documents

We first require the basic conjunctive keyword search scheme from section 2.4.1, which

allows a user to identify documents matching a set of keywords. However, it would not

be able to access specific elements within the XML documents. For example, in order to

answer the question, “What is the average price of a song by Bob Dylan?”, one would

first require identification of albums that contain Bob Dylan in the artist tag and retrieve

the corresponding price. Note that to determine the price, one must first determine the

documents listing the artist’s songs, and that the artist’s name contains two consecutive

keywords. Matching of consecutive terms is also termed phrase search. We present a

light weight version of the protocol discussed in section 2.4 below.

To provide phrase search capability, a keyword location index is used. To generate

the keyword location index, we compute

IL(H(Di|kwj)) = EK(l1, l2, . . . , ln), (2.32)

where H() is a cryptographically secure hash function and lx are the locations of kwj

within Di. Given a user phrase search request kw′ = (kw1, kw2, . . . , kwq), the data

owner proceeds as in section 2.4.1 to identify n documents containing all keywords. It

then queries the location of the keywords by sending H(Di|kwj) for i = 1 to n and j = 1

to q to the cloud. Given the locations, the data owner can verify that a phrase exists if,

for any lx ∈ IL(H(Di|kw1)), (lx + j) ∈ IL(H(Di|kwj+1)), where j = 1 to q.

It should be noted that, even when querying single keywords, it is possible that a

tag or attribute contains the queried keyword. It is rarely the intent to return results

where keywords belong to both markup and content, therefore leading to false matches.

When applying the basic phrase search protocol to XML documents, it is important

then to also index certain symbols as keywords, in particular <, > and /, to allow

differentiation between tags and contents, and facilitate identification of sibling, child

and parent elements from the XML tree.
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2.8.4 Computations over encrypted XML documents

The previous phrase search scheme would be sufficient to perform most common searches.

However, despite the computational and storage efficiency of symmetric encryption, such

as AES, computations cannot be performed on symmetrically encrypted data without

decryption, leading to a potentially expensive process of retrieving thousands of values,

if, for example, one were to compute the average price of all albums in a catalog.

Homomorphic encryption

As discussed in section 2.2.6, homomorphic encryption allows computations to be carried

out on ciphertexts, where the results would decrypt to the corresponding computation

on plaintexts. An additively homomorphic scheme, such as Paillier cryptosystem would

have the following property:

Add(E(A), E(B)) = E(A+B) (2.33)

By extension, multiplication by constant is also possible in additively homomorphic

schemes. This feature allows computations to be performed without exposing confidential

information.

Combining Symmetric and Homomorphic Encryption

To enable computations over encrypted data, homomorphic encryption is a natural

choice. However, it is significantly more expensive than symmetric encryption in both

storage and computations. To benefit from its feature while minimizing its cost, we

propose adapting the encryption scheme based on the content of the document. That is,

only content which may be used for computations, assumed here to be numeric data, are

homomorphically encrypted, while remaining content are symmetrically encrypted. Us-

ing the example in section 2.8.2, we may have EAES(</ARTIST>), EAES(<PRICE>),

EPaillier(5.99), EAES(</PRICE>). Without loss of generalization, we will describe our

scheme using Paillier’s cryptosystem.

To enable computations over encrypted XML documents,

1. Document Encryption: Each document, Di, is parsed and encrypted such that nu-

meric data are encrypted using EPaillier(m), as described in section 2.2.6 and the

remaining content is symmetrically encrypted using AES, EAES(m).
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2. Document Indexing: Each document, Di, is parsed and indexed as described in

section 2.4.1 and 2.8.3.

3. Keyword Search: To compute F (x) where tagm = kw1, kw2 . . . kwq and x ∈ tagx,

we must first resolve the clause by searching for keyword, kwi using the keyword-

to-document index and the keyword location index if phrases are queried. The

location of tagx is then queried for the matched documents. Markup symbol loca-

tions are also queried to resolve potential conflicts between keywords and tags.

4. Function computation: Once the location of the function arguments are deter-

mined, the cloud server computes F (x) using EPaillier(x) where x ∈ tagx. For ex-

ample, if the average price is desired, then tagx = ‘price′ and F (x) =
∑
EPaillier(x).

Upon receiving F (x), it is decrypted to obtain the sum and the average is obtained

by dividing the number of matched elements.

Note that the function, F (x), is not limited to summations. With minor modifica-

tions, other more complex functions can also be used such as scalar product [26] and

comparison [19]. Our solution requires the exchange of two rounds of queries and the

encrypted result of the function. In terms of computations, the queries consist of bi-

nary searches, hash computations and equality comparisons, each of which can be done

efficiently. The efficiency of the computation of F (x) depends on the function and the

encryption algorithm used. In terms of summation, Paillier’s cryptosystem consists of a

simple integer addition modulo n2. Since most XML documents consists of few numeric

value relative to text, the computational cost of the document encryption is not believed

to be significantly worse than pure symmetric encryption.

It is interesting to note that it is infeasible to determine whether a ciphertext resulted

from AES encryption or Paillier by examining the ciphertext alone. Therefore, a cloud

server would yield no additional information from the encrypted documents. If further

security is desired, it is possible to hide the location of the desired numeric values by

requesting the computation of F (x) over other symmetrically encrypted data, at the

expense of computational and communication cost. Other security measures can also be

included in the design of the keyword-to-document index and keyword location index to

defend against statistical analysis at the expense of efficiency [69,79].

In this chapter, we presented three sequential text search schemes, each targeted at

different applications requiring respectively high security, low storage and fast response
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time. Detailed analysis comparing against existing works in the literature was provided,

along with discussions on security and design issues. We also showed that a sequential

data search scheme can be extended to solve the cloud auditing problem with little

additional cost. Finally, we illustrated how a phrase search scheme can be a component

of a more complex query system where computations such as sum and products can be

performed over encrypted XML documents. In the following chapter, we will present

our work on encrypted sequential processing in media.
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Media

The growing importance of media cannot be understated. It is estimated that, by 2019,

80% of the world’s bandwidth would be consumed by media. At the end of 2015, the

number sits at 70%, with Netflix and Youtube combining for over 50% of data sent

over the Internet. Naturally, the need to process videos, audios or images in a secure

and privacy-aware manner will be of growing interest in coming years. While studies

in encrypted media processing is still at its infancy, there exists some interesting and

working solutions. For our discussions, we will consider the media to be an image, as

techniques used for images generally form the basis of techniques used for audio and

video.

In this chapter, we will begin with a brief discussion on existing solutions on privacy-

aware media search. Then, we will present our solution on privacy-aware copyright

detection on cloud. Our solutions targets cloud storage services such as DropBox, Ama-

zon Webservices and Mega.nz, where cloud service provider may want to offer client side

data encryption to protect user privacy while also respect copyright laws to avoid litiga-

tion. Our discussion will begin with background on watermarking techniques for digital

rights management. Related work in the area follows, in particular compressive sensing

for media encryption, along with discussions on strengths and weaknesses. Then, we will

present our protocols and setup of a framework for copyright detection in cloud services.

3.1 Keyword based media search

The simplest approach to adapt existing text-based searchable encryption to media is

through a meta-data only media search. Consider a set of images, I = {I1, I2, . . . , In},
we first extract a list of keywords for each image. This extraction process can be manual,
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Figure 3.1: Keywords-based image filtering system based on IBE

i.e. a person assigning keywords such as ‘Man’, ‘bird’, ‘table’, ‘HighRes’, or it may be

done through artificial intelligence (AI) and image recognition systems.

Once all images have been assigned keywords, solutions for conjunctive keyword

search apply as is by considering the image set as the document set. This is achievable

because the search mechanism for the text-based solutions are all based on extracted key-

words and the documents are encrypted separately from the search mechanism, be it an

index, Bloom filters or IBE encrypted keywords. The reason for the separation is because

searching data content on-the-fly is computationally expensive, even when unencrypted,

since each file must be scanned as a whole if no pre-processing was performed. Due to

the security guarantees of standard symmetric and asymmetric encryption algorithm,

processing of encrypted data is often impossible or very computationally intensive.

Figure 3.1 shows a media filtering system based on the Email filtering system in

Figure 2.4. The system depicts an image bank that receives images from various sources.

Occasionally, some images may contain sensitive or personally identifiable information

that requires blurring before being placed in the image bank. The data owner would

like to maintain privacy and prevent the host server from learning the image contents.

However, due to the quantity of images received, the data owner would like an automatic

sorting system that would facilitate post-processing upon decryption. The depicted

system achieves this by requiring each user encrypts their images using a symmetric

encryption algorithm and encrypts a series of keywords using IBE to describe the image.
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3.2 Content based media search

Searching for media based on content is a far more challenging task. Generally, im-

ages are first processed to produce feature vectors, analogous to keywords in documents,

using algorithms such as SIFT [45]. Feature vectors are values that are deemed repre-

sentative of the image according to a feature extraction algorithm, which may consider

features such as edges, lines, contrast, brightness, position of eyes and noses, etc. The

Euclidean distance between feature vectors provides a mean to measure the similarity

between different images. However, doing so in encrypted domain is generally impossible

with standard encryption algorithms. We’ll describe a solution based on homomorphic

encryption.

Recall that content-based image search typically relies on Euclidean distances be-

tween feature vectors as a measure of similarity. That is to compute

∥∥FQ − FDj

∥∥ =

√√√√ N∑
i=1

(FQ,i − FDj ,i)
2 (3.1)

where FQ = {FQ,1, FQ,2, . . . FQ,N} is the feature vector of the querying image and FDj =

{FDj ,1, FDj ,2, . . . FDj ,N} is that of an image under test. Since the square root operator

applies to all values, it is easy to see that using the squared Euclidean distance is equally

valid as a distance measure. Naturally, computing the summation is possible using fully

homomorphic encryption although at a high computational cost. To do so, the data

owner encrypts the features FDj ,i for each image Dj and uploads to server. To perform

a query for an image, Q, the data owner encrypts all features, FQ,i, of the query image

and uploads to the server. The server computes distj =
∑N

i=1(FQ,i − FDj ,i)
2 for all

images in the database and returns distj ’s to data owner. The smallest distance values

are identified as matches by decrypting the results.

Additive homomorphic encryption, such as Paillier cryptosystem [51], can also be

used to query an image in plaintext against an encrypted image database, by exploiting

the following property:

N∑
i=1

(FQ,i − FDj ,i)
2 =

N∑
i=1

F 2
Q,i − 2

N∑
i=1

FQ,iFDj ,i +
N∑
i=1

F 2
Dj ,i (3.2)

Since FQ,i is in plain, the first term is available. With E(FDj ,i) as ciphertext, the

second term can be computed using equation 2.9. The third term can be uploaded with

the features during setup. The server can then compute the encrypted distance without
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interacting with data owner. The encrypted distance must then be sent back to the data

owner for decryption. It should be noted, however, that the ability to perform similarity

search using images in plain could allow the server to infer that the matched encrypted

image retrieved is close to the query image presented.

3.3 Privacy-aware digital rights management for cloud

storage

Digital rights management (DRM) is a relatively new concept born as a result of the

ease of data sharing on Internet, in particular music, images and videos. The Digi-

tal Millennium Copyright Act (DMCA) is the most well-known law in the world that

criminalize technology enabling copyright infringement. Since the birth of Napster, the

entertainment industries had been in a struggle to enforce copyright laws on the Internet,

where traditional laws limited by countries and borders do not hold. The ongoing war

had led to high profile shutdowns of popular file sharing sites. One of the most notable

cases involves Megaupload, which is a company that RIAA claims to facilitate piracy

of copyrighted media, despite allowing owners to report copyrighted contents. The cur-

rent push towards cloud storage had been widely praised for its economic advantage.

However, companies offering cloud storage, such as Amazon EC2 and Microsoft Azure,

operate much like these file sharing sites and are arguably equivalent. They allow users to

place potentially copyrighted material onto the company’s servers and share with other

users. If a cloud storage provider provides full access to authorities for scanning for copy-

righted content, it would compromise the privacy of its users. If it refuses, the provider

would be exposed to legal threats and would risk having its operations shutdown.

3.3.1 Current state of DRM on cloud services

To provide a sense of the needs of cloud services and copyright claimants, we present the

case of Megaupload, which had previously been the largest file sharing site in the world

and was targeted by Recording Industry Association of America (RIAA) as the largest

piracy site behind bittorrent. The file sharing service was shut down in 2012 on claims

that it was dedicated to copyright infringement. When Megaupload was shut down by

RIAA following court orders, it had few options. After a period of considerations, the

service was relaunched as an encrypted cloud service citing user privacy while following

copyright laws by accepting DMCA complaints and processing file takedowns. It oper-

ated much like any other cloud storage company, except all files are stored encrypted
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while users maintain the secret keys. In short, Mega, using encryption as a means to

enable user privacy, can continue to operate while protecting itself against litigations

claiming that it’s willfully operating a business that profits from piracy. Since data

stored on its servers are encrypted and it does not have the secret key, it cannot know

what the data represents and so cannot be legally responsible for its content unless given

the decryption key. As of today, Mega continues to operate while likely aware that much

of its customer base remains those seeking to distribute and download copyrighted me-

dia. The current state is such that DRM over cloud services is still largely performed by

monitoring of known file sharing sites and human reporting of DMCA complaint forms.

There are a few caveats to Mega’s claims. The cloud service provider is still required

to be trusted for user privacy to be protected since the encryption and decryption scripts

are loaded from the cloud service provider. It would be trivial for Mega to compromise

user privacy should it desire to. Users also do not have the ability to search, rendering it

difficult to manage a large collection of files. Copyright claimants must provide both the

file link and the decryption keys in DMCA complaints. Should the decryption key be

kept secret within a well-knit community, copyrighted claimants would have no recourse.

Other non-encrypted file sharing services exist, but with a high turn-over, presumably

due to legal challenges. Our goal is to provide the tools that would allow both copyright

claimants and cloud services to achieve their respective goal of copyright detection and

user privacy. The private keys remain private to each party while copyright infringement

can be detected without revealing the file content.

3.3.2 Digital watermarking

As a result of the ease of data sharing over the Internet, Digital watermarking was devel-

oped as a technique to protect media from illegal distribution. It is widely used in the film

and music recording industries. For example, an unreleased movie may be distributed

to critics and reviewers for advanced screening to help gauge the movie’s performance

at the risk of being leaked to the Internet. Should it happen, digital watermarks can be

used to track the source of the leak and served as proof in a court of law.

Digital watermarking is the process of hiding a watermark signal in a carrier signal.

The watermark signal or message is typically hidden in such a way that the carrier signal

is not disrupted from its operation. In practise, the carrier signal, also called the cover

work, is generally a media such as an image, audio or video while the watermark signal

is a white noise like sequence. Once inserted into a host media, the watermarked version

is perceptually identical to the original.

The embedding of an invisible watermark allows the verification of the owner of
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Figure 3.2: Basic watermarking model

media content. In the case of a copyright dispute, the owner can be verified using the

watermark. Since the marked media is perceptually identical to the original, it can be

distributed commercially without issue. Figure 3.2 shows the basic model of embedding

and detecting watermarks.

There are generally two criteria for watermark algorithms: Robustness and imper-

ceptibility. Robustness refers to the ability of the watermark to survive transformations,

e.g. image processing. Imperceptibility refers to the quality of the watermarked media

relative to the original. It is generally desirable but difficult to achieve both since a

stronger watermark signal is more difficult to remove while also causes more degradation

to the cover work.

There are many watermark embedding techniques, such as fragile watermarks [42,46]

and spread spectrum content dependent watermarking [29,35]. For our solution, we will

consider a simple watermarking scheme: A watermark, Wm = (W1,W2, . . . ,WN ), is to

be embedded into a cover work (image), C0 = (C1, C2, . . . , CN ) where Ci are pixel values.

Ci would be coefficients if spectral representation is used. The watermarked image is

computed as follows [36]:

Cw = C0 + αWm (3.3)

where (W1,W2, . . . ,WN ) is each randomly selected as 1 or −1 with equal probability

and α is the watermark strength, a parameter used to balance between robustness and

imperceptibility. C0 is shifted so the sequence of pixel values is zero-mean. Note that

C0 and Wm are transformed from 2-D to a one dimensional sequence.

Watermark detection allows verification of a watermark in an image under test. Given

the watermark, detectors can be separated into two categories: blind and non-blind. A

blind detector detects the watermark without knowledge of the cover work. A non-blind

detector detects the watermark given the cover work. Naturally, the latter is far easier

to achieve and provides a higher accuracy.
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Figure 3.3: Correlation values in a random reference mark test

Detection is commonly done using a slight variation of the Pearson’s sample correla-

tion coefficient. A non-blind detector for the simple watermarking scheme above would

be

ρnb =
1

N

N∑
i=1

(C − C0)Wm (3.4)

where C is the image under test and N is the number of elements in C. A blind detector

would be

ρ =
1

N

N∑
i=1

CWm. (3.5)

If C = Cw,

ρnb =
1

N

N∑
i=1

(C − C0)Wm =
1

N

N∑
i=1

αW 2
m = α (3.6)

since ||Wm|| = 1. For blind detection,

ρ =
1

N

∑ N∑
i=1

CWm =
1

N

∑ N∑
i=1

C0Wm +
1

N

∑ N∑
i=1

αW 2
m =

1

N

∑ N∑
i=1

C0Wm + α ≈ α

(3.7)

because C0 is zero mean then the expected value of the first term is zero.

Since the blind detector does not include the cover work in its calculation, the corre-

89



CHAPTER 3. MEDIA

Figure 3.4: Original image (Spatial domain)

lation value is noisier. Figure 3.3 shows the correlation, ρ, of watermarked images with

the embedded watermark and randomly generated watermarks. The correlation values

with embedded watermarks are clearly distinguished. A threshold value is then used to

determine whether a positive detection occurred. For our discussion, we will consider

a blind detector as the media is encrypted. Even if the encrypted cover work is made

available, there can be enough uncertainty regarding the identity of the cover work that

a blind detector would provide a more suitable solution in our scenario.

While it is straightforward to embed the watermark into image pixels, embedding in

the spatial domain may not be as robust against common image processing techniques.

Embedding in frequency domain is often suggested as an alternative. Figure 3.4 and

Figure 3.5 show respectively a sample original image and its wavelet transformed version.

Frequency transform, such as Wavelet or DCT, leads to an alternate representation of

the media in terms of frequency levels. In Figure 3.5, the smallest sub image, in top left,

represents the coefficients for the lowest horizontal and vertical frequency components. It

shows the rough layout of the image. The largest portion, in bottom right, represents the

highest frequency components and outlines the detailed values in the image. Embedding

in low frequencies would grant the highest robustness and the lowest quality. Conversely,

embedding in high frequencies would yield the highest quality image but the watermark

could be easily removed.

Note that the simple embedding algorithm is applicable to both spatial and frequency
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Figure 3.5: Wavelet transformed image (Frequency domain)

domain as the cover work sequence may represent pixel values as well as frequency

coefficients. For our solution, it is only important that the embedding technique be

known. Both spatial and frequency domain embedding can be used.

3.3.3 Related work

Long before cloud computing’s mass adoption, researchers noted an ambiguity in the

target application of digital watermarking. Namely, in order to prove that a media is

copyrighted, the claimant must reveal the watermark in order to prove his ownership.

However, in doing so, he would have also provided the information necessary to remove

the watermark from the media. Early proposals to the problem include asymmetric

watermarking [37, 68], where a public and a private key were used allowing public wa-

termark detection, but was determined to be vulnerable to sensitivity attacks [5]. Later

on, Craver [62] proposed Zero-knowledge watermarking which relies on zero-knowledge

proofs as a means to prove the existence of the watermark without revealing what the

watermark is. Research into Zero-knowledge watermarking, however, does not concern

with the privacy of or require hiding the watermarked image, and generally uses a mix-

ture of image processing technique alongside commitment schemes to achieve its goal

[5, 62].

More recently, there have been a few proposals [34, 73] regarding privacy-preserving

image outsourcing and authentication. Most of which have revolved around using com-
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pressed sensing as an encryption algorithm to achieve privacy over the outsourced images.

Compressed sensing as encryption and its drawbacks

Compressed Sensing (CS) [21] is a signal processing technique for reconstructing a signal

known to be sparse through fewer samples than required by the Shannon-Nyquist sam-

pling theorem. This means signals that can only be sampled infrequently and previously

thought to be impossible to reconstruct may now be determined. It also means that

sparse signals can be compressed to fewer samples than stated by the Nyquist criterion.

The breakthrough discovery led to significant interest in the area. Among them, few

researchers [43, 50, 60, 78] also suggested that it is usable as a compression-encryption

algorithm.

The recoverability of a sparse signal depends on two conditions: a) The signal must

be sparse in some domain, that is most of its elements are zero. b) The transform matrix

to the domain satisfies Restricted Isometric Property (RIP) [21]. The latter is known to

be satisfied by a vast majority of signals in practise. Most media are sparse. Since human

visions and hearing can only perceive a small range of frequencies and are most sensitive

to low frequencies, compression algorithms often convert to the frequency domain and

remove all elements with low magnitude, resulting in a sparse signal in the frequency

domain.

The CS compression algorithm is a simple matrix multiplication:

Y = AX (3.8)

where X ∈ Rn×1 is a sparse signal, A ∈ Rm×n is a compressed sensing (CS) transform

matrix and Y ∈ Rm×1 is the compressed signal. Note that m � n. The CS matrix

is often chosen to be zero mean normally distributed. When given Y and A, the ma-

trix multiplication represents an underdetermined system and can have many solutions.

Compressed Sensing states that, if there is a unique sparse solution to the underdeter-

mined system, then it is recoverable. We omit the reconstruction algorithms as they

require significant background and are not relevant to our discussion.

The argument for adoption of CS as an encryption algorithm is simply that the CS

matrix is necessary for signal reconstruction. Without it, reconstruction fails and the

result signals appear random. Furthermore, the underdetermined nature of the system

seems to lend well to the security of the system. As an encryption scheme, X is the

plaintext, A is the secret key and Y is the ciphertext. It is not required that m � n,

only m ≤ n. For the purpose of image processing, all media are frequency transformed
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and compressed by removing low magnitude elements (making them zero) to a sparse

representation, used asX. Each element in the CS matrix, i.e. the secret key, is generated

as zero mean normal distributed random number. The ciphertext Y is computed as a

matrix multiplication of X and A.

The basic construction is almost identical to Hill cipher. Works on analyzing its

security had mostly arrived at similar properties, e.g. A high number of possible keys,

computationally infeasible to brute force, and vulnerable to known-plaintext attack.

Namely, for a m×n matrix, we would need at most n known X to Y pairs to completely

determine A. It was also noted by [16] that CS matrix satisfying RIP is energy preserv-

ing. We noted that the analysis [50,60] generally omitted the effect of the restrictions on

plaintexts and CS matrix, that is the sparsity of plaintext and the normal distribution

of CS matrix. Both of which limits the plaintext and key space. In particular, a normal

distributed matrix could have many small elements. In image processing, these small

elements might be considered zero with little disruption on the quality of the reconstruc-

tion. Through a series of experiments using artificial neural networks, we [63] found

non-uniform distribution of ciphertext to plaintext and private key, suggesting other

vulnerabilities may be present if compressed sensing is used as an encryption scheme.

Although we were unable to devise specific attacks aside from ones known in the

literature, there are other security and practical issues regarding its use. Wang [73] was

among the first to devise a fairly complete solution on multimedia storage outsourcing

framework. The main observation in the result is that watermarking can be performed

with relative success in a CS transformed media. Since CS transformed images and

watermarks cannot be used to reconstruct the original image and watermark without

the CS matrices, they do not leak user privacy and are considered secure. However, the

practical weakness of CS as encryption becomes apparent in the experiments.

To evaluate performance, a 512× 512 original image is used along with a watermark

of the same size. By definition, a CS matrix of size 5122×5122 would be required. That is

the matrix would have over 68 billion elements. Instead, the researchers opted to consider

the image as 642 8 × 8 blocks. Each block uses a separate 64 × 64 CS matrix. While

this strategy reduces the total number of elements in the matrices to 644 = 16777216, it

also leads to more serious information leakage due to the energy preserving property of

RIP [16]. The CS transformed image in [73] showed a fairly clear coarse representation

of the original image as a result of this block separation to reduce the CS matrix size.

In its complexity evaluation, it was also noted that a 1000× 1 image, that is equivalent

to a 20× 50 image, would require sending 256MB of data to represent the 1000× 1000

CS matrix.
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To summarize, to achieve the original intended level of security, the key size needs

to be N2, where N is the plaintext size. For media, N is often relatively large compared

to block size of typical encryption algorithms. With the key size growing exponentially

relative to the plaintext size, CS as an encryption system becomes quickly impractical.

Reducing the media into smaller blocks to address the issue instead leads to information

leakage that is perceptible by the naked eye, removing user privacy and security. Even

assuming that CS is secure as encryption, the system is completely impractical even for

very small images. Attempts at improving the practicality all but remove any security

on the plaintext. For these reasons, Compressed sensing do not appear suitable as a

technique for privacy-protected digital rights management. We instead propose the use

of homomorphic encryption for our constructions.

Furthermore, all existing solutions use the semi-honest model for all participants,

which states that the participants would not inject false or malicious data. When con-

sidering our copyright detection for cloud services, this is a fairly weak assumption as

each participant would have some incentive to do so. Particularly, the user holding

the media would, in many cases, want to pass the detection to have his media deemed

legitimate whether it is the case or not.

3.3.4 Model for copyright detection over encrypted data

The standard communication model for a copyright verification protocol involves up

to three parties: the copyright claimant, the cloud server and the user (file uploader).

Digital watermarking is used for copyright detection. The user wishes to upload a media

to the cloud server. He first encodes the media as specified (e.g. JPEG, wavelet, etc)

and encrypts the file using homomorphic encryption. The file is then uploaded to the

cloud server which initiates a three party protocol with copyright claimant to verify

the legitimacy of the media. The copyright claimant in turn provides the encrypted

watermarks to verify against the user’s file. The protocol would result in a correlation

value that indicates whether the claimant’s watermark was found to be present in the

user’s file. A sample protocol is illustrated in Figure 3.6.

Should an application requires more flexibility, where the user may encode the media

in different formats, such as wavelet instead of discrete cosine transform (DCT), multiple

equivalent versions of the detection algorithm can be implemented. A possible scenario

to circumvent detection would be to encrypt the file prior to upload. Unfortunately, this

scenario is unsolvable without the private key and barring any weakness in the encryption

scheme the file uploader uses. A secure encryption scheme, such as AES, does not produce

ciphertexts where plaintext can be revealed. In general, any encoding on the media must
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Figure 3.6: Communication model for copyright detection over encrypted data

be known, i.e. the encrypted media must be a known representation of the actual media.

Furthermore, pre-encryption would incur a performance cost, in particular, to the clients

that the file uploader wishes to distribute the files to and may present a technical barrier

to some and limit the audience. This makes it an undesirable option for illegal file

uploaders. Furthermore, we also require no collusion between the parties because the

computations required to arrive at a copyright infringement decision is such that any two

colluding parties could yield meaningful information on the remaining member’s inputs.

In fact, the central function being performed is between the copyright claimant and the

user, where any collusion between them would naturally reveal all the information in

the system. The cloud service provider’s role is to act as a mediator and protects the

privacy of the two sides by producing a final result that does not reveal information on

either side’s input.

An ideal solution would consider all three parties to be malicious since each party

may have interest in gaining information on the other parties:

• The file uploader could be a user wishing to share copyrighted media using the

cloud service provider’s resources or obtain information on the copyright holder’s

watermark in order to circumvent detection.

• The cloud service provider could be interested in the user’s files to better position

its business in relation to its clients. It may even be interested with colluding

with either party for financial incentives in compromising the third party’s private

information.

• The copyright claimant may have interest in the user’s or the cloud service provider’s

private information, such as a government agency wishing to uncover a person of

interest’s data.

In our solution, we assume the semi-honest model for the cloud, where the service
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provider would not deviate from the protocol, but would attempt to obtain extra infor-

mation on stored media or the watermark. The data holder and the watermark holder

are assumed to be potentially malicious and would attempt to alter the data to its favor.

Note that we will begin our discussion with a base algorithm without the assumption of

malicious participants before leading into our full protocol.

Our solution differs from earlier works by making use of encryption algorithms with

established security. It is also the first to achieve security and privacy against dishonest

participants in a setting representative of the expected behavior in cloud storage services.

We are also the first to describe the components required in a practical framework for

digital rights management involving both search and copyright detection.

3.3.5 A construction with semi-honest participants

Before we describe our solution against malicious participants, we begin with a construc-

tion under the semi-honest model to illustrate the basic setup. There are three parties

involved:

• The data holder or user holds the media, X, and wishes to place the media on the

cloud without revealing the media to the cloud service provider

• The cloud service provider operates the cloud server and provides a data outsourc-

ing service that accepts encrypted data, alleviating its clients’ privacy concerns.

However, it also needs to protect itself against the legal threat posed by users

potentially uploading copyrighted content.

• The watermark holder or copyright claimant holds and embeds the watermark, W ,

into the copyrighted media prior to releasing it to public.

In a semi-honest model, the data holder would honestly use the media, X, that it

uploads to cloud server and the watermark holder would likewise use, W , and neither

would deviate at any step of the protocol. Similarly, the detection result would also

be honestly reported. As such, the cloud service provider can be assured that if the

detection algorithm works as intended, any copyright infringement would be identified.

He may therefore trust the two parties to perform the bulk of the detection prior to

reporting the results. The key is to prevent any leak of information on the watermark

and media to each party during the process. Figure 3.7 shows the communication model

with semi-honest participants.
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Figure 3.7: Model for construction with semi-honest participants

As in any watermarking application, the copyrighted media must be watermarked

prior to release. A sample watermark embedding process for images in the frequency

domain is as follows:

1. Perform DCT/Wavelet transform to obtain a set of coefficients for an image of size

q.

2. The set of transform coefficients will be real numbers. In order to limit error and

apply encryption, the values are multiplied by a large factor and truncated into

integers.

3. The watermark vector, W , of size k, is chosen from the standard normal distri-

bution and also multiplied by the large factor and truncated. The watermarked

image, X ′, is obtained by computing:

X ′ = X + αW (3.9)

where α is the watermark strength and X represents the k coefficients selected for

embedding, typically values representing the middle frequencies to balance robust-

ness and imperceptibility. To simplify our discussion and without loss of generality,

we will assume X and W are the same size, i.e. q = k.

The copyrighted image, having been released, may not be distributed without per-

mission. The copyright claimant, wishing to prevent unauthorized mass distribution,

sets up a server to work with the cloud service provider to prevent copyrighted material

from being accepted. When a user wants to upload a media to the cloud server, it must

also engage in a secure two party computation protocol with the copyright claimant’s

server to verify the legitimacy of the media being uploaded. At the end of the protocol,

the copyright claimant will notify the cloud server of any infringement and the encrypted

media uploaded by the user would be accepted or rejected accordingly.
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Secure watermark detection with semi-honest participants

To determine whether data holder’s media, XDH , is copyrighted, watermarked detection

is performed. We first note that the criteria for a positive watermark detection,

ρ =
1

N

N∑
i=1

XDHW > δth (3.10)

can be rewritten as

N∑
i=1

XDHW > Nδth, (3.11)

where the left hand side of the equation is a scalar product and the right is the threshold

value, δth, scaled by the number of elements, N . From equation 3.11, the watermark

detection then consists of two steps:

• Compute the scalar product of the media under test and the watermark

• Compare against threshold value

To compute the scalar product, we use a secure protocol by Goethals [26, 73] and

Paillier cryptosystem as the underlying homomorphic encryption scheme 2.2.6. The

protocol involves one round of exchange between the data holder and the watermark

owner, and one round between each party and the cloud service provider to compute the

results and render the decision. Figure 3.8 shows the secure scalar product protocol.

From pixels and coefficients to field elements

Transformation into frequency domain generally results in coefficients that are real num-

bers, R. Since Paillier and most other encryption algorithms require integer as plaintexts,

the coefficients are scaled up and fractional values removed before encryption is applied.

For higher accuracy representation, a higher scaling factor is used, but also requires more

storage and computational cost. Watermarking in the spatial domain, however, does not

require scaling since pixel values are typically already integers. Note that the threshold

value for detection must also be scaled up by the same factor.

Another issue that needs addressing is that shifted pixel values and coefficients may

be negative or positive while plaintext elements are strictly between 0 and Cmax. To

accommodate negative values, we separate the field into a positive and a negative region

[23]. That is, for x = 0 to Cmax
2 − 1, it is mapped to [0, Cmax

2 − 1], representing positive
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SecScal(XDH ,W,Nδth):

1. The user runs the key generation algorithm for Paillier cryptosystem to pro-
duce a public and private key pair, (pk, sk).

2. The user then encrypts his media, XDH = {x1, x2 . . . xN}, using pk and sends
the encrypted media, Epk(XDH), to the watermark holder.

3. Given the encrypted media, the watermark holder computes the scalar
product in the encrypted domain: z1 =

∑N
i=1Epk(xi)

wi , where W =
{w1, w2 . . . wN} is the watermark.

4. The watermark holder also encrypts a random plaintext, sB , to obtain z2 =
Epk(sB). Then, he sends z = z1z2 to the user and {sB , Nδth} to the cloud
service provider, where Nδth is the threshold value.

5. The user decrypts ρ to obtain sA = Dsk() = (
∑N

i=1XDHW ) + sB and sends
it to the cloud service provider.

6. The cloud service provider computes ρ = sA − sB =
∑N

i=1XDHW . The
encrypted media is rejected if ρ > Nδth and accepted otherwise.

Figure 3.8: Secure scalar product for copyright detection with semi-honest participants

values. For x = −Cmax
2 to −1, it is mapped to [Cmax

2 , Cmax−1], representing negative val-

ues. Due to properties of modular arithmetic, the representations will remain consistent

through ciphertext additions and multiplications so long as the values never exceed the

assigned range at any point in the computation. Therefore, it is important that N = pq

be sufficiently large to accommodate the maximum image size and accuracy required.

3.3.6 A construction secure against dishonest participants

The construction for semi-honest model becomes problematic if we consider that each

participant may want to cheat in some manner. In particular, a dishonest user would

want to convince the cloud of its media’s legitimacy regardless of the nature of the media.

This is certainly the case in our target application of file sharing sites where illegal media

distribution is rampant. One simple approach to subvert the semi-honest construction

is to send a much smaller value instead of the true value of sA. This would lead to

a smaller correlation computed by the cloud and less likely to be flagged as copyright

infringement.

To address this issue, we propose a construction secure against dishonest participants.

Our solution is based on a secure multiparty computation scheme by Bendlin [11]. The

scheme works with any homomorphic encryption algorithm as long as the computations

involved do not increase size of the input over a limit. It is efficient during function

evaluation as it does not require any expensive cryptographic operations. The latter are

performed instead in a setup phase between the participants.
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The original description allows for any n parties to perform multiplications and addi-

tions of their inputs. They exchange sets of tokens along with cryptographically secure

MAC during the setup phase. Proof of knowledge protocols are used to ensure that the

tokens are well formed and within a system limit, where any message and randomness

used, at any point, must be less than a specified limit: m < M and r < R. In addition,

a smaller limit, τ < r and ρ < R, is used for specifying limits on inputs and random-

ness, as these will grow as computations are performed. For C = Epk(x, r), we call C

a (τ, ρ)-ciphertext if there exists (x, r) such that |x| ≤ τ and |r| ≤ ρ. Note that these

limits are set by the system, i.e. the participants, and is dependent on the required level

of security. These ensure that the computations are correct. During function evaluation,

the tokens are used to specify inputs, perform additions, multiplications, output values,

ensure correctness and that no parties deviate from the protocol.

Zero-knowledge proofs

There are two proofs of knowledge protocols required to ensure correctness of computa-

tions from all participants:

• Proof of plaintext knowledge: This protocol provides proof to a verifier that a

prover knows the plaintext that formed the ciphertext and that the ciphertext are

within limit required by the system

• Proof of correct multiplication: This protocol provides proof to a verifier that

a prover had correctly performed multiplication of a ciphertext encrypted under

prover’s public key with a plaintext plus some randomness provided by the verifier

The proof of plaintext knowledge protocol is illustrated in Figure 3.9. Broadly, the

process involves the prover producing a separate sets of ciphertexts and the verifier

generating a random set of coefficients. The prover then proves that he knows the

plaintexts by successfully computing a linear combination of the ciphertexts using the

verifier’s coefficients and sending them along with the exact randomness and the plaintext

of the separate sets of ciphertexts. The verifier verifies that the linear combination and

randomness provided gives the correct ciphertexts.

The proof of multiplication protocol is illustrated in Figure 3.10. The basis of proof

is similar to PoPK(). The process also involves the prover producing a separate set of

ciphertexts and the verifier generating a random sets of coefficients. The main difference

is that the verification involves not only the linear combination of the ciphertexts, but

also must satisfy the multiplication and addition of the random ciphertext. An alternate

protocol specifically for Paillier can be found in [11].
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PoPK(τ, ρ):

1. Given a set of ciphertexts, {Ck = EP (xk, rk)}k=1
u , where EP (xk, rk) is a

Paillier encryption of plaintext, xk, and randomness, rk, with prover’s public
key. We define vectors c = (C1, . . . , Cu) and x = (x1, . . . xu) and the matrix
R = (r1, . . . ru), where rk are rows.

2. Prover constructs m (2u−1+log(u)τ, 2u−1+log(u)ρ)-ciphertexts: {Ai =
EP (yi, si)}mi=1 and send them to the verifier. We define vectors a =
(A1, . . . , Au) and y = (y1, . . . yu) and the matrix S = (s1, . . . su), where sk
are rows.

3. Verifier selects a random vector e = (e1, . . . eu) ∈ {0, 1}u, and sends it to the
prover.

4. Prover computes and sends z = y + Mex and T = S + MeR to the verifier,
where Me =.

5. Verifier accepts the proof if a + Mec = {EP (z1, t1), . . . Ep(zm, tm)}, |zi| ≤
2u−1+log(u)τ and |ti| ≤ 2u−1+log(u)ρ.

Figure 3.9: Proof of plaintext knowledge

PoCM(τ, ρ):

1. Given sets of ciphertexts {(Ak, Bk, Ck)}uk=1, where Ak = EP (ak, hk), Ck =
akBk +EV (rk, tk) and EV () is a Paillier encryption using the verifier’s public
key.

2. Prover constructs u random (23u−1+log(u)τ, 23u−1+log(u)ρ)-ciphertexts:
{Dk = EP (dk, sk)}uk=1

3. Prover also constructs u ciphertexts: Fk = dkBk + EV (fk, yk), where
EV (fk, yk) are random (24u−1+log(u)τ2, 24u−1+log(u)τρ)-ciphertexts.

4. Prover sends Dk and Fk to the verifier.

5. Verifier selects a random ek, and sends it to the prover.

6. Prover computes zk = dk + ekak, vk = sk + ekhk, xk = fk + ekrk and
wk = yk + ektk.

7. Prover sends {(zk, vk)}uk=1 and {(xk, wk)}uk=1 to the verifier.

8. Verifier accepts the proof if Dk + ekAk = EP (zk, vk), Fk + ekCk = zkBk +
Ev(xk, wk), |zk| ≤ 23u−1+log(u)τ , |vk| ≤ 23u−1+log(u)ρ, |xk| ≤ 24u−1+log(u)τ2

and |wk| ≤ 24u−1+log(u)τρ

9. repeat for every k.

Figure 3.10: Proof of correct multiplication

Setup phase

The first step in our privacy-aware solution is to set up the tools we would need to per-

form secure computations. This includes the ability to generate the public and private

keys as well as single and triple shares. For better clarity on the description of the proto-
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Share: ([x])

1. Each participant, Pi, randomly chooses xi and sends its encryption EPi(xi),
which are (τ, ρ)-ciphertexts, to all other participants.

2. Each pair of participants, Pi and Pj , use PoPK on EPi(xi) to prove that
they are correct and well formed.

3. Each participant Pi holds x and the randomness, r, used to generate EPi(xi)
as private values.

Figure 3.11: Subprotocol to create additive shares of a random value

cols, we will omit the number of variables, u, which was included previously to highlight

that many instances of the function can be performed in parallel, such as the creation

of many single shares or proving correct multiplications on a collection of triples. Single

shares are representations of a value shared among all participants. We denote [a] as the

value a shared among all participants along with cryptographically secure MAC. This

enables secure sharing of participant’s inputs. Triple shares are representations of values

a, b, c with a multiplicative relationship, i.e. c = ab. They are similarly accompanied

with MAC to ensure correctness. Zero-knowledge proofs are used to ensure the com-

putations are performed honestly. We denote ([a], [b], [c]) a triple share. This enables

secure multiplication. Figure 3.15 shows the functions required during setup.

Generation of private additive shares is the most basic operation required, shown in

Figure 3.11. The shares are kept private until a result needs to be revealed. Message

authentication codes (MAC) provide the mechanism to detect dishonest participants and

ensure correct computations. Figure 3.14 shows the steps to acquire message authenti-

cation codes on additive shares. Note that αij is kept consistent for all variables shared

a pair of participants while βiaj varies. This design allows us to update the MAC con-

sistently throughout operations in the compute phase. Figure 3.12 show the subprocess

required to obtain additive shares of a product of two values between two participants.

This pairwise operation is used as a subprocess to compute multiplicative sharings be-

tween all parties. Figure 3.13 lists the steps required to perform a multiplication of two

values shared between all participants, based on the conversion of a product of sums to

a sum of products and using 2mult to perform the latter.

Note that the setup phase can be performed without knowing the participants’ inputs

or the functions they need to compute. For example, the setup phase may be performed

when a user sign up for the cloud storage service. Then, when a user uploads a file, the

service proceeds to the compute phase.
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2mult(x,y): (z = xy)

1. Participant, Pi, computes and sends c = xEPj (y) + EPj (r) to Pj , where

EPj (r) is a random (23u+log(u)τ2, 23u+log(u)τρ)-ciphertexts.

2. Participant, Pi, use PoCM to prove that c is constructed correctly.

3. Participant, Pj , decrypts c to obtain his share zj and Pi sets his share zi = −r.

Figure 3.12: Subprotocol to compute a two-party sharing of the product of their en-
crypted inputs

nmult([a],[b]): ([c] = [a][b])

1. Each participant, Pi computes c′i = aibi.

2. Each pair of participants, Pi and Pj , use 2mult() with input EPi(ai) and
EPj (bj) and adds the outputs to their c′i and c′j respectively: ci = c′i + zi and
cj = c′j + zj .

3. Each participant, Pi, uses Share except, instead of selecting random xi, he
uses ci. This results in a shared product [c], with each participant holding
ci.

Figure 3.13: Subprotocol to compute a sharings of a product of two other shared values

InitMAC:

1. For each pair of participants, Pi and Pj , Pi chooses a random αi
j and send a

(τ, ρ)-ciphertext, EPi(α
i
j) to Pj .

2. Pi then runs PoPK with EPi(α
i
j) as input and with Pj as verifier.

AddMAC:

1. To add MAC to a shared representation of a, i.e. {a1, a2 . . . au}, each pair of
participants, Pi and Pj use 2mult() with input EPi(α

i
j) from Pi and EPj (aj)

from Pj . This results in Pi holding zi = −βi
aj

and αi
j . Pj holds zj =

αi
jaj + βi

aj
, where αi

jaj = zi + zj .

2. This results in Pi holding a MAC key, Ki
aj

= (αi
j , β

i
aj

), which can be used to
verify Pj ’s MAC, MAC(aj) = zj .

Figure 3.14: Subprotocol supporting message authentication codes (MAC)

Compute phase

Once the setup is complete, each participant holds single shares of random values and

shares of triples representing products, all with verifiable MAC’s. Each participant now

has the ability to verify all other participants’ shares to ensure they are correct. The

objective in the compute phase is to enable the participants to perform additions and

multiplications of inputs that the participants select using the collection of singles and
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InitKeyMac:

1. Each participant generates a (pk, sk) pair and publishes his public key, pk.

2. Run InitMAC() to create authentication keys.

Singles: [a]

1. Run the Share() protocol to create shares of a random a.

2. Run AddMAC() to obtain committed [a].

Triples:([a], [b], [c])

1. Run Share() 4 times to obtain [a], [b], [f ], [g].

2. Run nmult([a], [b]) and nmult([f ], [g]) to obtain [c] and [h], where c = ab and
h = fg.

3. Run AddMAC() on [a], [b], [c], [f ], [g], [h].

4. The parties verify that [a], [b], [c] are correct representation of the product of
a and b producing c, using [f ], [g], [h]:

(a) Parties select a random e.

(b) They then compute ε = e[a] − [f ] and δ = [b] − [g], and open ε and δ
to all parties.

(c) Having ε and δ, they now compute and open e[c]−[h]−δ[f ]−ε[g]−[f ]−δε
to all parties.

(d) If the result is zero, ([a], [b], [c]) is added to the collection of triples.

Figure 3.15: Setup functions

triples while updating the MAC to ensure consistency.

We first describe some basic operations or subprotocols on shares, shown in Figure

3.16. Opening of a shared representation, a, to a participant, Pi, is to reveal the plaintext

of a, to Pi. Opening to all participants is to reveal the value to all participants while

having every participant verify the correctness of all shares. Addition of two shared

representation is simply the additions of their shares and MAC’s. Multiplication of a

value by a public constant similarly involves multiplying the shares and MAC’s by the

constant. To add a constant to a shared representation involves one participant adding

the constant to his share and all other participants updating their MAC keys to maintain

consistency.

With these, we now have all the tools to completely describe the secure multi-party

computation protocol against dishonest participants. The setup phase involves the key

generation and creating enough committed singles and triples for the functions that the

participants would need for the computations. In the compute phase, a participant can

create shares of his inputs by computing the offset of a shared random value gener-

ated during setup and denoting it as a variable, say x. Addition of two variables is
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Open:

1. To open a shared representation to a participant, Pi, each participant, Pj ,
sends his share aj and MAC(aj) to Pi.

2. Pi, who holds the MAC key, (αi
j , β

i
aj

), verifies that MAC(aj) = αi
jaj + βi

aj
.

3. If the equality holds for all j, he computes and obtain the value for a =
∑
ai.

4. To open a shared representation to all participants, repeat for every partici-
pant, Pi.

Add: ([c] = [a] + [b])

1. To add shared representations, a and b, each participant, Pi, computes
ci=ai+bi and updates the MAC keys and MAC as follows: Ki

aj
= Ki

aj
+

Ki
bj

= (αi
j , β

i
aj

+ βi
bj

) and MAC(cj) = MAC(aj) +MAC(bj)

AddConstant: ([b] = [a] + δ)

1. To add a constant δ to a shared representation, [a], a participant, say P1,
adds δ to his share a1.

2. All participants, Pj , update the MAC keys by replacing βi
aj

with βi
aj
− δαi

j .

MultConstant: ([b] = δ[a])

1. All participants multiply their shares, MAC keys and MAC’s by δ: aj ⇒ δaj ,
βi
aj
⇒ δβi

aj
and MAC(aj)⇒ δMAC(aj)

Figure 3.16: Computing over shared [a] representations, including MAC updates

straightforward.

Multiplication of two shared representations, [x] and [y] , is performed by considering

the offsets of the representation against an established triple. First, we write x = a + ε

and y = b+ δ. Then, we have:

xy = (a+ ε)(b+ δ) = ab+ εb+ δa+ εδ. (3.12)

Given a triple ([a], [b], [c]), we can compute ε = [x] − [a] and δ = [y] − [a]. The first

term is given by [c]. Since x and a remains privately shared, ε and, similarly δ, can be

opened to all parties. The second and third term can then be computed by multiplying a

public constant. The fourth term is an addition by a constant. Figure 3.17 summarizes

all the operations to perform secure multi-party computation.

Secure copyright detection protocol against dishonest participants

With the secure AMPC protocols, we can now describe our solution for secure watermark

detection. There are three parties involved in our solution. The data holder holds the

media under test. The copyright claimant holds the watermark. The cloud service

provider is providing a data storage and distribution service, and is prohibited by law
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Init: (Setup phase)

1. The participants run InitKeyMAC().

2. Then, run Singles() and Triples() enough times to allow for the number of
additions and multiplications required in the application. Note that more can
be generated as needed, so long as the bound are respected in computations

Input:

1. To create shares of a participant’s input, a random single, [a], is opened to
the participant.

2. Having learned a, he computes and sends δ = xi − a to all participants

3. All parties perform [xi] = [a] + δ.

Add:

1. Compute [z] = [x] + [y]

Mult: ([z] = [x][y])

1. Parties select a random triple ([a], [b], [c])

2. Open ε = [x]− [a] and δ = [y]− [b] to all parties

3. Compute [z] = [c] + ε[b] + δ[a] + εδ

4. remove ([a], [b], [c]) from the list of triples

Output:

1. To output [z] to a participant, open [z] to that participant.

Figure 3.17: Arithmetic multi-party computation (AMPC) protocols

from hosting copyrighted content.

After setup, the first step is to generate the inputs representing the image and the

watermark. The media and watermark are converted, if necessary, to the required rep-

resentation, such as DCT, wavelet or spatial. If the inputs are not integers, scaling is

performed. Then, shared representations of the media and watermark are obtained using

Input(). The core computation in the detection algorithm is the scalar product of the

image and watermark, consisting of multiplication and addition of shared values. Once

a shared correlation value is obtained, the threshold value is subtracted from it so that

a positive value indicates that it is higher than the threshold. Two random values are

then generated and used to hide the actual correlation value while maintaining its sign.

Further discussion on these two random values is found in section 3.3.6. Finally, the

sanitized correlation value is revealed to all participants and a positive value indicates

a positive detection. If the media is found to be legitimate, encrypted shares of data-

holder’s inputs are added up and stored. Proofs of knowledge and correct multiplication

are used on each sharing and computation to ensure honesty of participants. Message

authentication code is also used by every pair of participants to ensure that the final

106



CHAPTER 3. MEDIA

Using the functions from AMPC protocol:

1. Data holder, Watermark holder and Cloud service provider run Init(). This
represents the setup phase.

2. Data holder uses Input(X) to generate a shared representation of his image,
X = {x1, . . . xN}.

3. Watermark holder uses Input(W ) and Input(−Nδth+1) to generate a shared
representation of his watermark, W , and the correlation threshold, Nδth−1.

4. All parties compute the scalar product of data holder and water-
mark holder’s inputs using [xwprod,i] = Mult([xi], [wi]) for all i and
Add([xwprod,1], . . . [xwprod,N ]) to compute the correlation value, corr =∑N

i=1 xwprod,i.

5. Cloud service provider chooses two random positive values: mixA and mixB,
where mixA ≥ MixAmin ≥ 2 and mixA > mixB ≥ 0. Then, use
Input(mixA). and Input(−mixB).

6. All parties compute [corrs] = Add([corr], [−Nδth + 1]) and then [result] =
Add(Mult([corrs], [mixA]), [−mixB]).

7. [result] is opened to all parties. A positive value indicate copyright infringe-
ment has been detected, i.e. corr > Nδth, and a negative value indicate
otherwise.

8. If the media is deemed legitimate, the cloud service provider adds up the
shares of the media,

∑
Epk(xi), and stores as user’s file.

Figure 3.18: Protocol for copyright detection with semi-honest cloud

output is correct. That is, the correlation value must be verified by all three parties

to be accepted. Figure 3.18 shows our base protocol, which is secure against dishonest

data/watermark holders and semi-honest cloud.

Hiding the correlation value

The correlation value is hidden to prevent data holder or watermark holder from deducing

each other’s inputs. If the correlation value, ρ, is known, either party can construct an

equation with s unknown, where s is the size of the media or watermark. Suppose the

data holder wishes to deduce the watermark, he knows:

Nρ = x1w1 + x2w2 . . . xsws (3.13)

where N is the size of the media, xi is a pixel or coefficient of the media and wi is the

corresponding element of the watermark. Since he knows X, he can compute ρ, given s

equations of the same form with different X’s. That is, uploading s media and obtaining

their correlation against the same watermark would allow the data holder to solve for the

watermark. Therefore, mixA and mixB are used to randomize the correlation without
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changing its sign. Figure 3.18 shows a construction where the cloud generates mixA and

mixB as required. Since there are conditions on mixA and mixB but no mechanism

is available to ensure that the cloud service providers follow, we denote this protocol as

secure against dishonest data holder and watermark holder with a semi-honest cloud.

MixAmin ≥ 2 should be chosen to be large enough to provide adequate security and hide

the true correlation value. Note that a trusted fourth party can also be used in place of

the cloud to generate these values.

Note that the secure computation protocol cannot detect participants lying about

their inputs. That is, a user providing false media, a copyright claimant providing a

false watermark or the cloud service provider generating a mixA or mixB that do not

follow the protocol are scenarios that the protocol do not consider. However, should

the participant provide false inputs, they must continue in every step until the end. In

the user’s case, providing a false media would lead to the false media being accepted for

storage, which does not benefit the user. In the copyright claimant’s case, providing a

false watermark yields no information on the user’s media, provided no collusion occurs

between the participants, and would fail to detect copyright infringement. In the cloud

service provider’s case, falsifying mixA or mixB could lead to a false detection result,

but yield no information on the watermark or media.

However, there are scenarios where the cloud service provider may benefit in falsi-

fying mixA, mixB and consequently the correlation value. A cloud storage provider

whose primary clients are illegal media distributors may want to purposely select a small

mixA and large mixB, where mixB � mixA contrary to the protocol, to lower the

correlation result to ensure most media go through, legitimate or otherwise. We propose

an alternative construction that ensures mixA and mixB satisfy the required conditions

using only random shares generated in setup. We ensure values are positive through

squaring and achieves the condition of A > B through the relationship between the sum

of squares and the difference of squares.

We require

mixA > mixB ≥ 0 & mixA > MixAmin. (3.14)

To satisfy the first condition, we use the following relation:

mixA′ = (a2 + b2)2 > mixB = (a2 − b2)2 ≥ 0 (3.15)

where a and b are arbitrary integers. The condition is true for any values of a and b,

which means they can be taken from any shared representations generated during setup.
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Using the functions from AMPC protocol:

1. Data holder, Watermark holder and Cloud service provider run Init(). This
represents the setup phase.

2. Data holder uses Input(X) to generate a shared representation of his image,
X = {x1, . . . xN}.

3. Watermark holder uses Input(W ) and Input(−Nδth+1) to generate a shared
representation of his watermark, W , and the correlation threshold, Nδth−1.

4. All parties compute the scalar product of data holder and water-
mark holder’s inputs using [xwprod,i] = Mult([xi], [wi]) for all i and
Add([xwprod,1], . . . [xwprod,N ]) to compute the correlation value, corr =∑N

i=1 xwprod,i.

5. All parties select two random values mixA and mixB, where mixA >
mixB ≥ 0 and mixA > MixAmin, by performing the following:

(a) Select two random single shared values from the collection of singles.
We denote them [randA] and [randB].

(b) Compute [randA2] = Mult([randA], [randA]) and [randB2] =
Mult([randB], [randB]) to obtain sharings of their squares.

(c) Compute [sumA] = Add([randA2], [randB2]) and [diffB] =
Add([randA2], [−randB2]), where [−randB2] = −1 ∗ [randB2].

(d) Compute [mixA] = Mult([sumA], [sumA]) + MixAmin, where
MixAmin is a public constant, and [mixB] = Mult([diffB], [diffB])

6. All parties compute [corrs] = Add([corr], [−Nδth + 1]) and then [result] =
Add(Mult([corrs], [mixA]), [−mixB]).

7. [result] is opened to all parties. A positive value indicate copyright infringe-
ment has been detected, i.e. corr > Nδth, and a negative value indicate
otherwise.

8. If the media is deemed legitimate, the cloud service provider adds up the
shares of the media,

∑
Epk(xi), and stores as user’s file.

Figure 3.19: Protocol for copyright detection against all dishonest participants

The second condition is equivalent to mixA−MixAmin > 0. Since mixA > 1 from the

first condition, adding MixAmin to any positive value would yield a valid solution for

mixA. Combined with the first condition, we have:

mixA = (a2 + b2)2 +MixAmin > MixAmin (3.16)

Figure 3.19 illustrates our privacy-aware copyright detection protocol against dishon-

est participants.
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Figure 3.20: Copyright detection with multiple copyright claimants

3.3.7 Example with multiple copyright claimants

In practise, many different organizations generate media and may want to limit distri-

bution (copyright detection), trace the source or even track the popularity of its media.

The same techniques discussed in this chapter can be used in each case, except media

is not rejected when watermarking is used for the purpose of data mining as in the last

case.

Figure 3.20 shows a setup where many organizations work with the cloud service

provider to ensure legitimacy of the data it stores. When a user uploads a media, he

also uploads his public key, which is distributed to all copyright claimant servers. Each

copyright claimant engages in the protocol illustrated in Figure 3.19 with the user and

the cloud service provider. The user may use the same public key in every instance.

At the end, if all copyright claimants are satisfied that the media is not copyrighted,

the cloud service provider sums up the encrypted shares and stores the symmetrically

encrypted private key, EAES(sk), that the user sends upon acceptance.
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3.4 A framework for secure and privacy-aware copyright

detection in cloud storage system

Our protocol can detect on copyright infringement on individual media. However, in

practise, users upload many media and copyright claimants would have many copy-

righted works and potentially many watermarks. On its own, our protocol would require

performing detection on every pair of media and watermarks on every user-uploaded file,

which is fairly inefficient.

We propose a copyright verification framework, shown in Figure 3.21, which addresses

the efficiency issue by separating into two steps:

1. Candidate identification

2. Copyright detection

We first perform a secure media (image/video) search against a database of copy-

righted media. When a copyright claimant releases a watermarked media, it also creates

an encrypted feature sets associated with the watermark. When a user uploads a media,

he first engages in a secure search of his media’s feature sets over the collection of copy-

righted media feature sets. If any matches were found, the copyright verification protocol

would follow on only the candidate media identified. Since feature sets are much smaller

than the media itself, the solution would be more efficient than a brute-force verification

of all media.

The content-based searching algorithms described in section 3.2 are applicable in

our framework. As discussed, feature sets are compared using Euclidean distance. In

particular, equation 3.2 can be computed using the secure AMPC protocol from Figure

3.17. The second term is a scalar product of the feature sets. Any copyrighted media

whose Euclidean distance with user’s media is below a certain threshold is retained as

candidate to proceed to copyright detection presented in section 3.3.6.

Since feature sets are used to identify the copyrighted works that the user uploads,

a non-blind detector with its higher accuracy, may even be possible if the feature sets

are able to accurately identify the copyrighted works. However, due to the searching

algorithms’ inability to ensure that the encrypted feature sets provided by user belong

to the encrypted media, our framework works only in the semi-honest model for all

participants.

Depending on the application’s security requirement, feature sets may be considered

to contain negligible information on the original media and allowed to be publicly re-

leased. In which case, a search over plaintext would be far more efficient and accurate.
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Figure 3.21: Framework incorporating search and copyright detection

The feature sets of copyrighted media can be stored on cloud server and candidate search

needs not involve the copyright claimant. A non-blind detector would greatly improve

performance.

In this chapter, we presented a digital rights management solution for encrypted cloud

storage where the privacy of users and copyright claimants are both protected. Copyright

infringement is detected using digital watermarking over encrypted pixel or coefficient

sequences. A construction was provided for the practical setting where the user, cloud

and copyright claimant may be malicious. Our solution provides an automated DRM

solution, targeted at cloud storage providers such as Dropbox and Mega, where the need

to respect copyright laws presents a constant legal threat and a resource-consuming

burden. In the next chapter, we will present an application of search over encrypted

binary data sequences.
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Data

While text and media represent the most common form of outsourced data where privacy

and security are of importance, there are scenarios where privacy-protected search and

computing over generic data is of interest.

In this chapter, we present a novel solution to malware scanning where an Anti-virus

service may be performed with different levels of privacy protection [56]. At the highest

level, virus can be scanned without knowledge of the data being tested except in the

event of a positive match. It is also another example where computation and search

are combined as in section 2.8, except over binary data. It should be noted that our

technique can be generalized as an approach to match any patterns in encrypted data,

and is not restricted to the application of malware detection.

Note this work has also appeared in:

• H. Poon and A. Miri. Scanning for viruses on encrypted cloud storage. In IEEE

Conference on Cloud and Big Data Computing, pages 954–959, 2016

4.1 Scanning for Viruses on Encrypted Cloud Storage

We look at a problem that has yet to be examined by the community: that of malware

detection on encrypted data. The issue is particularly relevant where organizations

use cloud storage to archive data or to back up their systems. It is not unusual that

companies would archive a significant amount of data in case the information becomes

needed again in the future and such data may not be accessed for long periods of time.

While many malwares are identified soon after released, some remain dormant long before

they are discovered. Should the archive contain malwares, retrieval could activate them.

Similarly, restoring a system to a backup containing malwares would also be problematic.
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In these scenarios, a methodology to detect malwares in the encrypted archive would be

invaluable.

Furthermore, anti-virus companies often share information on newly discovered mal-

wares to aid in protecting users against the latest threats. The shared information was

always considered trusted. Recently, it has emerged that a reputed anti-virus company

may have intentionally injected false positives in an attempt to harm the reputation

of its competitors, resulting in a spike of legitimate files being identified as malware in

the early 2000s [47]. Such malicious behavior from a partner was not considered in the

past. One of the main reasons that a malicious party was able to launch such an attack

was due to the direct access to the competitors’ anti-virus programs and their malware

database. This allows them to reverse engineer the software to determine and to mislead

their identification algorithms. Note that malware writers have also always been able

to do the same to verify that their latest malwares can avoid detection or to be alerted

when their released malware has been identified. All are good reasons why an anti-virus

tool can be invaluable when offered as a cloud service, where the detection algorithms

and virus database can be kept private and server-side updates are seamless and invisible

to public.

In this chapter, we present two schemes for performing virus scanning over encrypted

data: a private cloud solution, where the data owner possesses the anti-virus tools and

database, and an anti-virus as a service solution, where the data owner requests the

scanning service from the anti-virus company, which controls the anti-virus tools and

database. We also describe how the service can be performed over unencrypted data.

4.1.1 Background

Modern malware identification techniques include signature-based detection, heuristics-

based detection, behavioral-based detection (including Sandbox detection) and data-

mining techniques (AI). While each technique has its strengths and flaws, combining

them has been an effective strategy in practice. A malware’s standard signature often

refers to the file’s hash signature, e.g. The MD5 hash of an executable file. While its

detection capability is limited on its own due to the proliferation of polymorphic viruses,

it is still one of the most reliable tools available and is highly effective when combined with

other identification techniques. The combination of the various properties, behavioral

and structural, of a malware is often referred to as a generic signature, which is one of

the most commonly used identification techniques in anti-virus software today.

Our solutions for encrypted cloud storage will be restricted to detecting malware

based on structural rather than behavioral properties. More specifically, in addition
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Figure 4.1: Communication model for two-party malware scanning over encrypted data

to being able to identify perfect matches of malware through standard signatures, the

solutions allow for detection of sequences of potentially malicious computer instructions,

which may appear at different positions in a file, as in generic signatures. Malware

that evolves and has several versions in the wild typically exhibits such properties. By

extension, our schemes also allow the use of wildcards.

Our proposed solution in a private scanning model relies on the use of encrypted

indexes, originating from the field of keyword search over encrypted data.

While efficient, the private model can be limiting as the data owner must manage

the anti-virus tools and perform the scan using his own resources. Alternatively, we

propose an anti-virus as a service model where the malware scanning tools and database

are maintained by the anti-virus company and the data owner requests to have the scan

performed. Our solution in this model is based on the use of homomorphic encryption.

In particular, a demonstration of our scheme based on Paillier’s cryptosystem will be

presented.

4.1.2 Private scanning of malware over encrypted data

In many cases, an organization is the sole user accessing and writing data onto the cloud

server. We describe here an efficient solution to provide malware scanning capability in

this scenario, where security concerns are restricted to that of the cloud operator.

Communication Model

Our communication model involves two parties, as shown in Figure 4.1, where the data

owner encrypts and uploads the data to the cloud server and subsequently requests virus

scanning by following a communication protocol. The data owner is assumed to have

a set of virus definition consisting of standard signatures such as MD5 or SHA-256 and

generic signatures, restricted to structural properties, describing snippets of malicious

codes.

In terms of security, we assume the cloud operator to be semi-honest, following our

protocol without deviation, but is interested in learning information on the stored data.

The main requirement of our scheme is that the content of the files stored on the cloud
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server remains private and no information is leaked as a result of the malware scanning

setup and protocol.

Malware scanning protocol

Our proposed solution is based on encrypted indexes, using techniques similar to [53] and

[27], and allows for standard and generic signature (with wildcards) based detections.

Briefly, two indexes are used: A block-to-file index, I, and a block location index, IL.

The block-to-file index enables a coarse scan to quickly identify potentially infected files

in the data set while the block location index allows for detailed scan on individual files

for virus identification. Our scheme uses symmetric encryption to protect the content

of the files and indexes. During setup, N files, forming the data set to be uploaded,

are parsed and indexed as n-bit blocks, resulting in a block-to-file index and N block

location indexes. The indexes and files are then encrypted and uploaded onto the server.

To perform a virus scan request, the data owner first queries the block-to-file index, I,

for files containing instruction blocks corresponding to virus definitions followed by a

query on IL to determine code sequence matches. The queries sent to the cloud service

provider contain encrypted blocks while the returned entries are also encrypted. To

speed up standard signature detection, a hash signature, such as SHA-256, is attached

at the beginning of every file. Our scheme achieves the required functionalities without

additional complexity in terms of storage, communication and computational cost when

compared to search schemes for encrypted cloud storage [79].

A detailed description of the algorithms is as follows. A file collection, D = {D1, D2,

. . . ,DN}, is parsed for n′-bit blocks, xj . A block-to-file index, I, is generated mapping

blocks to files such that I(xj) = (d1, d2, . . . , dN ), where di = 1 if xj is found in the file

and di = 0 otherwise. The resulting index is encrypted and uploaded to the cloud server:

I(HK(xj)) = EK(d1, d2, . . . , dN ). (4.1)

In addition, a block location index, IL(i), is generated for each file:

IL(i)(HK(Di|xi)) = EK(xi)(j1, j2, . . . , jNxi
), (4.2)

where HK() is a cryptographically secure hash function and jx are the locations of xi in

the file with identifier, Di.
To perform a standard signature scan for a malware with a nh-bit hash signature,

Sig(y) = (y1, y2 . . . , ynh/n′), the user begins by sending the keyed hash of the signature,

HK(Sig(y)), to the cloud. The corresponding encrypted index entries in I are returned
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to the data owner. A set of candidate files, DC , are then found by decrypting the entries

and identifying their intersection:

DK(I(HK(y1))) &DK(I(HK(y2))) · · · &DK(I(HK(ynh/n′))), (4.3)

where & denotes a bitwise AND operation. The data owner then sends HK(Di|Sig(y)),

where Di ∈ DC to query the block location of the signatures. Upon receiving the en-

crypted location entries, IL(i)(HK(Di|yi)) = EK(yi)(j1, j2, . . . , jn) from the cloud server,

the data owner decrypts and identifies files, Di, as matches if 1, 2 . . . , nh/n
′ are respec-

tively in DK(EK(y1)), DK(EK(y2)) . . . , DK(EK(ynh/n′ )
). Note that multiple malwares can

be verified simultaneously by sending multiple keyed hash signatures at the same time.

To perform a generic signature scan for a malware with the following characteristic

code snippets ya = (y1, y2 . . . , yq′) and yb = (y1, y2 . . . , yq′′), the user computes and sends

HK(ya ∪ yb) to the cloud. The cloud server returns the corresponding encrypted index

entries to data owner, who then finds the set of candidate files from their intersection

in the same way as when performing a standard signature scan. To determine the

existence of the code snippets, the block locations are then queried by sending HK(Di|yi)
where yi ∈ {ya ∪ yb} to the cloud server. Upon decrypting the location information,

the location of the first block, y1, in ya is extracted. For each location, Loc(y1) =

{l1, l2 . . . , lm}, the data owner verifies if the following block is y2. For each candidate

found, {l1 + 1, l2 + 1 . . . , lm′ + 1} ∈ Loc(y2), the data owner continues with the following

block. The process iterates until the last block in the snippet is verified or until no

candidates remain. The algorithm then proceeds in the same manner with yb. Files

where the locations of the code snippets appear as ordered are identified as matches.

Note that a query with wildcard is equivalent to a query for multiple code snippets.

For example, querying (ya, wildcard5 blocks ,yb) is equivalent to querying ya and yb, with

the additional step of ensuring the location of the first block of yb is 5 blocks after the

last block of ya. Since there is no limit to the length of sequences or wildcard, this is

equivalent to generic pattern matching.

An alternative approach for verifying code snippets that may require less communi-

cation would proceed as before for identifying candidate files. Instead of querying the

locations of all blocks within candidates, a random block in the code snippets is queried,

H(Di|yi). Given the locations, the owner returns

{H(EKDi
,js(y1, y2, . . . , yq′)), i, js}, (4.4)

where i is the index of the matched file and js is the expected starting location of the
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code snippet, for each match. EKDi,js
() represents the symmetric encryption of the code

snippet at location js of file Di. The cloud then computes H(E(xjs , xjs+1, . . . , xjs+q)),

where E(xj) is the jth stored block in file i. Matches are found where the following

equality holds:

H(E(xjs , . . . , xjs+q′)) = H(EKDi,js
(y1, . . . , yq′)). (4.5)

The communication cost of the alternative approach depends on the frequency of the

random block chosen. Instead of randomly choosing the block, one approach to ensure

lower communication cost is to select the block with the lowest frequency in the file set.

To do so, a block frequency list would be stored locally by the data owner. To allow

for fast computation of encrypted block sequences, the data should be encrypted using

a block cipher in counter mode.

The scheme is fairly efficient, requiring mainly decryption of index entries and lookup

of sequences by the data owner. Any symmetric encryption algorithm can be used and

security is easily observed since the index entries are encrypted as a whole. The setup

and protocol are flexible and can also be used for keyword and phrase searches with

proper choice of parameters. A hierarchical setup of indexes could also lead to better

efficiencies.

4.1.3 Anti-virus as a service for encrypted cloud storage

While simple, the previous scenario requires the data owner to manage the malware scan-

ning process, including the anti-virus software and database. Furthermore, an anti-virus

software designed to run entirely client-side exposes the virus database and detection

algorithms to the public, including malicious users which may use the information to aid

in malware development or to disrupt normal operation of the anti-virus software.

Therefore, we propose the implementation of anti-virus as a cloud service, where only

essential scanning is performed client-side and malware detection based on the scanning

results is performed by the anti-virus company’s server. Aside from simplifying the

frequent updates currently required by anti-virus software, denying malicious parties

access to a significant portion of the scanning algorithm would also hinder efforts to

produce malware that evades detection and protect against reverse-engineering of the

detection algorithms. In addition, our solution maintains user privacy by requiring the

data stored on the cloud be encrypted under data owner’s private key.
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Figure 4.2: Communication model for three-party malware scanning service on encrypted
data

Communication Model

We consider a three-party model, as shown in Figure 4.2, where the data owner encrypts

and uploads the data to the cloud server and the anti-virus company offers a malware

scanning service on the encrypted data. Virus scanning is performed by following a

communication protocol. The anti-virus company controls the malware database and

the detection algorithm. The data owner generally initiates by sending a scan request

to the anti-virus server. Then, a set of encrypted signatures/code sequences are sent to

the cloud for tests. The encrypted results are sent back to the data owner, who sends

the decrypted scan results back to the anti-virus server for analysis.

In terms of security, we assume both the cloud operator and anti-virus service provider

to be semi-honest, following our protocol without deviation, but are interested in learning

information on the stored data. The main requirement of our scheme is that the content

of the files stored on the cloud server remains private and no information is leaked as

a result of the malware scanning setup and protocol except where malware matches are

found.

Another highly desirable property is that the virus definitions and malware identifica-

tion methodologies, which include the weighing of the various matches and combinations

of results that would lead to positive identifications, are not leaked as a result of the

scanning protocol.

Malware scanning protocol

Our proposed solution is based on homomorphic encryption, discussed in section 2.2.6.

Without loss of generalization, we will describe the scheme using Paillier’s cryptosystem.

Briefly, the scheme works as follows. The data owner encrypts the data set using Paillier’s

cryptosystem and sends the result to the cloud. The public key is also uploaded with the

data set. A hash signature, such as SHA-256, is attached to each file to enable standard

signature verification. To perform a malware scan, the anti-virus company encrypts the
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standard and generic signatures using the data owner’s public key and sends them to the

cloud for testing. The cloud computes the difference between the encrypted data and

test sequences. Since the data and the hash signature/code snippets are both encrypted,

the cloud gains no information on either and sends the results back to the data owner.

Using the homomorphic property that E(X) +E(−Y ) = E(0) if X = Y , the data owner

decrypts and sends the individual test results to the anti-virus server. Finally, the anti-

virus server sends the malware scan results to data owner or cloud, depending on end

user agreement.

A detailed description of the algorithms is as follows. We first generate the publickey,

(n, g), and the private key, (λ, µ), for a Paillier cryptosystem which accepts n′-bit plain-

texts. Given a file collection, D = {D1,D2, . . . ,DN}, a hash signature, Sig(Di), such as

SHA-256, is computed and attached to each file. The file collection is then encrypted

as n′-bit blocks, xj . Recall that the ciphertext, c, for a given plaintext, m, is given by

c = gmrnmod n2, where r ∈ Z∗n.

To perform a standard malware signature scan, the anti-virus server encrypts the

negation of a nh-bit hash signature, Sig(y) = {y1, y2 . . . , ynh/n′} using the user’s public

key. This results in the encrypted signature:

CSig(y) = {g−y1rn1 , g−y2rn2 . . . g
−yn′

h rnn′h
}, (4.6)

where n′h = nh/n
′ is the number of blocks needed to represent the hash signature. The

anti-virus server then sends the encrypted hash signature. For each file, the cloud storage

provider computes

QSig(Di) = {Q1, Q2 . . . Qn′h} = CSig(Di) + CSig(y) (4.7)

and homomorphically multiplies each block by a random value before passing to the data

owner:

Q′Sig(Di)
= {Qr11 , Q

r2
2 . . . Qrh

n′h
} (4.8)

where ri ∈ Zn are randomly generated. The data owner decrypts each result and a

match is detected if

D(Q′Sig(Di)
) = {0, 0 . . . 0}. (4.9)

The scan results are sent back to the anti-virus server as a bit sequence
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QStd(Sig(y)) = {QD1 , QD2 . . . QDn} (4.10)

where QDi represents a single bit and is set to 1 if a match is detected for Di and is set

to 0 otherwise. Based on the scan results, the anti-virus server determines if a malware

is detected.

The previous step can be performed more efficiently at the cost of a small chance of

false positive by aggregating the encrypted blocks. That is, compute

QA =
∑

QSig(Di) =

n′h∑
i=1

Qi (4.11)

and returning Q′A = QrAA to the data owner, where a match is identified if

D(Q′A) = 0. (4.12)

The description on generic signature will proceed using this aggregated approach for

clarity. Note that multiple malware can be verified simultaneously by sending multiple

keyed hash signatures at the same time.

A generic signature verification with code snippets proceeds in the same manner

using a sliding windows approach. For the following malware block sequence, ya =

{y1, y2 . . . , yq′}, the anti-virus server encrypts the sequence using the data owner’s public

key to obtain

Cya = {g−y1rn1 , g−y2rn2 . . . , g−yq′ rnq′} (4.13)

and sends it to cloud server. For an encrypted file CDi = {Cx1 , Cx2 . . . CxnDi
}, the cloud

computes

Q(js) = {Q1, Q2 . . . Qq′} = Cx(js) + Cya , (4.14)

where Cx(js) = {Cxjs , Cxjs+1 . . . Cxjs+q′−1
}, for the starting block, js = 1 to nDi − q′ + 1.

The results are then aggregated and

QA(js)
′ = (

∑
Q(js))

rA (4.15)

is sent back to the data owner, who decrypts the results to determine matches where

D(QA(js)
′) = 0. (4.16)
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The individual results are sent to the anti-virus server as a bit sequence:

QGen(Di, ya) = {QDi(1), QDi(2) . . . QDi(nDi − q′ + 1)} (4.17)

where QDi(js) represents a single bit and is set to 1 if a match is detected for Di at

position js and is set to 0 otherwise. Based on the scan results, the anti-virus server

determines if a malware is detected. Scanning for snippets with wildcards proceeds

similarly. To verify {ya, wildcard5 blocks ,yb}, 5 blocks are skipped at the end of ya when

computing equation 4.14. That is,

Q(js) = {Q1, Q2 . . . Qq′+q′′} = {Cx(js,a), Cx(js,b)}+ {Cya , Cyb} (4.18)

where

Cx(js,a) = {Cxjs , Cxjs+1 . . . Cxjs+q′−1
}

Cx(js,b) = {Cxjs+q′+4
, Cxjs+q′+5

. . . Cxjs+q′+q′′−2
}

(4.19)

It is interesting to note that the cloud can only access the encrypted data, the en-

crypted code sequences and hash signatures under test. Without the user’s private key,

the cloud cannot learn their content. Similarly, the anti-virus server is never granted ac-

cess to the encrypted data and only receives the test results in the form of a bit sequence

representing a match versus non-match. An encrypted sequence test result, Q′A, is first

randomized such that no information is divulged except in the event that Q′A = 0. Thus,

other than the event of a match, little is revealed on the content of the data under test.

4.1.4 Anti-virus as a service for unencrypted cloud storage

Despite the promise of better user privacy, much of today’s cloud storage providers do

not provide encryption services where the private key is controlled by the data owner. In

fact, most providers continue to work with unencrypted data due to efficiency and various

functionalities that are available only data remains unencrypted. Nonetheless, anti-virus

as a service would still be valuable in an unencrypted cloud for its ease in keeping

the malware scanning tools up to date and its ability to hinder the viability testing

of malwares and to prevent reverse engineering of detection algorithms. The scenario

would also be interesting in applications where privacy is not of concern. Furthermore,

detection can be performed based on behavioral in addition to structural characteristics

of malwares, leveraging techniques that currently do not work on encrypted data.
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Communication Model

The communication model for an anti-virus as a service is the same three-party model as

in the encrypted case, shown in Figure 4.2. The data owner uploads the data to the cloud

server and the anti-virus company offers a malware scanning service on the data. Virus

scanning is performed by following a communication protocol. The anti-virus company

controls the malware database and the detection algorithm. A client scanning software

runs on the cloud server. Unlike the encrypted case, there are no privacy or security

requirements on unencrypted data. The objective is to hide as much as possible the

malware detection algorithm.

Malware scanning protocol

To illustrate the technique, consider the following set of rules:

• sudo followed by self-decryption and execution, (Behavioral), Weight = 2

• SHA-256 hash signature is {x, y or z}, (Structural), Weight = 1

• Code snippet {cs1, wildcard10bytes , cs2}, (Structural), Weight = 1

A score of 2 results in a positive malware match. In standalone anti-virus software,

the entire sequence of tests is performed locally and visible to anyone monitoring the

software. As a cloud service, the client performing the scan may relay the information

that a sudo had been called, that a file with hash x′ is found or a code snippet is

detected, but only the anti-virus server could decide whether a positive malware match

had occurred, based on the scan results. While our simple example may contain only a

few rules, a practical anti-virus may perform hundreds of tests. A positive scan result

may not necessarily be a factor that led to the positive match of the malware detected,

and vice-versa. This separation of the anti-virus scanning process effectively turns the

anti-virus server into a black box to a malicious user. The ease and invisibility of software

updates can also alter the behavior of the anti-virus server without an outsider becoming

aware. This dramatically complicates any reverse engineering efforts and attempts at

testing malware viability without being detected.

It should be noted, however, that behavioral detection must be performed by the

client scanner due to the time-sensitive nature of executing codes, although behavior

deemed to be high-risk may be interrupted to await further instructions from the anti-

virus server, which may include structural verification of the executing file/code/ram, or
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permission for the executing code to continue to run under restricted conditions while

monitoring further suspicious behaviors.

In this chapter, we explored the problem of malware detection on cloud services, and

proposed three anti-virus solutions for cloud services. Our solution based on encrypted

search provides an intuitive approach to perform malware detection on an encrypted

cloud storage whose access is limited to the data owner. The scheme allows for any

symmetric encryption algorithm to be used, with performance comparable to the leading

keyword and phrase search algorithms.

Aside from user privacy, we also examined the disadvantages of implementing anti-

virus as a software that performs scanning locally. In particular, the current approach

exposes the virus database and detection algorithm, potentially aiding malware writers

to evade detection and malicious agents to reverse engineer the detection algorithms.

Therefore, we propose an anti-virus as a service solution, which, in addition to mitigating

the aforementioned risks, also eases the frequent updates required for the critical service.

Our solution is based on homomorphic encryption and demonstrated using Paillier’s

cryptosystem. Detection is performed in the encrypted domain, ensuring privacy.

While encryption leads to greater security and privacy, many valuable functionalities

are currently not possible in the encrypted domain and unencrypted cloud services will

continue to operate in the foreseeable future. Nonetheless, the merit of implementing

anti-virus as a cloud service extends to unencrypted cloud services. In addition, operating

over unencrypted data allows for behavioral detection that plays a significant role in anti-

virus software today.
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Conclusion and Future Work

In this thesis, we explored techniques for searching and processing encrypted data, in

particular, that of sequences.

Upon analyzing existing works in the area of encrypted text and phrase search, we

identified several key challenges that needed to be addressed. It culminated into three

main proposals for searching phrases in encrypted documents.

Our first solution from section 2.4, denoted our schemesec, describes a technique for

splitting keywords, inspired from the properties of natural languages, to reduce wasted

storage, computational and communication cost found in existing solutions. It maintains

almost the same level of security as the current leading solution while drastically improve

upon storage and communication cost. For our experimental corpus, we found a reduc-

tion of 65 % in cloud storage cost compared to the solution with the lowest storage [79]

in the literature. When compared to the provably secure solution by [69], the storage

cost is reduced by 95 % while sacrificing only small distinguisability between the num-

ber of distinct keywords per document in a corpus. The latter, being largely correlated

with document size, corresponds to information that is available to the cloud operator

anyways. Because all existing solutions relied on some form of false/random data, their

storage, communication and computational cost all scaled with the security and corpus

size. By reducing/removing the irrelevant data, our solution also significantly reduces

communication and computational cost in addition to storage. By carefully selecting the

encryption algorithm, it was also the first solution proposed in the literature that allows

non-indexed keywords to be queried and includes basic ranking capability. Note that

the degree of improvement depends on the property of the corpus and is summarized in

Table 2.8.

Our schemesto from section 2.5 exploits the space efficiency of Bloom filters to achieve
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the lowest storage cost reported among all phrase search schemes. The scheme stores

location information and keywords into same Bloom filter structures. We also discussed

how incremental hash functions can be used to improve the performance cost traded for

the storage reduction. The solution showed a further reduction of 65% in storage over our

previous solution of section 2.4, an overall 87% reduction in cloud storage over the leading

solution in literature. Due to the small representation of Bloom filters, the scheme also

reduces communication cost. In place of encryption and decryption operations, a series

of non-cryptographic hash functions are required instead. The scheme also supports

non-keyword search and basic ranking.

Noting that all existing solutions had a relatively low response time, our final schemespd,

described in section 2.6, proposes a new paradigm of viewing sequences as a collection

of subsequences (n-grams) that may be queried independent of their locations. Relying

on the unique properties of long textual sequences, the technique allows for a dramatic

speed-up of existing phrase search techniques, reducing the protocol from the usual two

to three rounds into a single round of communication while requiring only two Bloom fil-

ter verifications and cryptographic hash functions, as opposed to expensive cryptographic

operations of most existing schemes. When compared to our schemesto, it requires far

fewer hash function evaluations and achieves a much faster processing time. While the

fastest implementation can require a high storage cost, the scheme can be adjusted to

balance storage and response time as required by the application. In the lowest storage

implementation, the scheme still enjoys much faster response time than existing works

while requiring about 40 % less storage than our schemesec and 70 % more than our

schemesto. To summarize our findings, we also included an in-depth performance and

security analysis of all schemes and supported our proposals with experimental results

on a sample corpus. Tables 2.7, 2.8 and 2.9 give an overall comparison of all existing

phrase search solutions in terms of storage, communication and computational cost.

Furthermore, we noted that a keyword location based phrase search scheme can ef-

fectively provide both search and audit capabilities to cloud services while satisfying the

strong requirement of proof of retrievability with unbounded number of audits. Sec-

tion 2.7 describes our solution which is applicable to our schemesec and our schemesto.

The scheme requires the same resources as a standard phrase search solution, requiring

only a new protocol to perform auditing and without the use of tags and erasure codes

traditionally used in auditing solutions. Aside from search, we also demonstrated an

application in XML processing in section 2.8. The proposal uses symmetric encryption

for phrase search and homomorphic encryption for values. This enables SQL-like queries

in XML at a relatively low overhead computational cost to encrypt the documents as
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the number of values in a XML is generally far lower than text.

Processing encrypted media presents an interesting challenge. A sequence of pixels or

music notes contains far greater amount of information than texts. While an exact match

is considered appropriate in text, media may be perceptually identical while quite differ-

ent in description. Our work focused on the area of digital rights management in cloud

storage services, where the need for user privacy and copyright law enforcement seem

to contradict. To this end, we described the first privacy-aware watermark detection

scheme for cloud storage service in section 3.3.6 that is secure against dishonest par-

ticipants. The solution uses image processing, watermarking, homomorphic encryption,

message authentication codes and zero-knowledge proofs to allow data holder, copyright

claimants and cloud service providers to securely convert media into ciphertexts where

watermark detection can be performed while ensuring that all parties are following the

protocol as described. We also presented a complete practical framework in section 3.4

incorporating both content-based media search and copyright detection.

Finally, we present a novel application in section 4.1 based on search of generic bit

sequences in the form of malware detection. Noting that existing anti-virus solutions

often require super-user like control of the host and daily updates, Anti-virus companies

could potentially gain control of or monitor any computers and data store on which it

is installed. We consider alternative designs where user maintain greater control over

the scanning process and, in particular, the privacy of his data. We described three

solutions, based on private scanning, anti-virus as a privacy-aware service and as a public

service. We showed that standard hash-based detection and code snippet scanning can

be performed over encrypted data. Our solution for private scanning makes use of our

phrase search protocols extended to binary data to achieve an efficient one to one anti-

virus scanning. Then, we note that, with all the data being stored in cloud, an anti-virus

can be performed as a service. We then described a three way protocol to performed virus

scanning over encrypted data using homomorphic encryption. Our solutions protect user

privacy such that file content is only revealed upon a match and only where the match

occurs within the file.

5.1 Future work

During our research, we encountered many interesting problems we had hoped to, but

were unable to explore or complete. We briefly discuss a few here which we believe are

most promising.
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5.1.1 Privacy-protected queries for DNA/Chromosome Sequence

Sequential data processing may find use in genomics, where individuals’ DNA sequencing

may post a privacy risk. Typical operations by medical professionals include locating

genes at certain starting and ending positions, and specific start and end sequences such

as ATG and TAA. Since certain chromosome sequences and genetic mutations are linked

to diseases and medical conditions, data confidentiality is of high importance.

A notable difference between genetics and the data types considered in this thesis

is the plaintext space and statistical distribution of the data. Unlike text and media,

the number of possible chromosomes is much lower and has far lower diversity, which

may require higher security to manage the heightened risk of statistical and brute force

attacks.

5.1.2 Privacy-protected feature extraction and search scheme against

dishonest participants

In chapter 3, we described a solution to perform the central functionality of copyright

detection in a privacy-aware setting. While the algorithms work as intended, they do not

scale well in practice. As the number of copyright claimants increase, the performance

deteriorates since each uploaded media would have to compare against every claimant’s

watermark and perform the algorithm as many times as there are claimants.

The performance issue can be addressed by incorporating search as a first step to

narrow down the set of watermarks that the uploaded media required testing against,

as described in section 3.4. To do so, the copyright claimants upload sets of feature

vectors for their works along with the watermarks. When a media is uploaded, a search

is performed to identify similar copyrighted media. Finally, the detection algorithm is

performed against the watermarks of copyrighted works identified to be most similar to

the media under test. Different levels of computational cost and detection accuracy can

be achieved by varying the threshold of similarity.

There are significant challenges to achieving this practical framework. While our

detection algorithms can defend against dishonest participants, we had required that

the uploader and the copyright claimants be honest during search in section 3.4. How-

ever, this is a fairly weak assumption in practise, where illegal media distributers are

incentivized to cheat in order to convince the cloud providers to distribute their content.

Namely, security and privacy issues must be addressed in the search algorithm as in

the detection algorithm. Furthermore, the ciphertext of the media under test must be

identical or provably equivalent in both search and copyright detection. In a copyright
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detection scenario, the media uploader may want to deceive the cloud by providing a

feature vector belonging to a legitimate media other than the one he wishes to upload.

We are not aware of any work on search over encrypted data in settings where a searcher

would have incentive to deceive the search engine, or vice-versa.

A possible extension of our construction from chapter 3 would have Paillier cryp-

tosystem as the basis for both search and detection. A feature extraction algorithm

consisting only of operations permitted in homomorphic encryptions would be used on

the encrypted media to extract the encrypted feature sets. The feature sets are com-

pared against those of copyrighted works extracted in the same manner to identify similar

works where the squared Euclidean distance is below a certain threshold. This can be

achieved using the multiparty computation scheme described in section 3.3.5 and 3.3.6.

Since the feature sets are extracted from the encrypted media the user uploads and the

similarity measure is computed using an algorithm secure against dishonest parties, the

cloud can be assured that the similarity testing results can be trusted. Furthermore,

since both search and detection algorithm are based on Paillier, the user would not be

able to switch out the encrypted media for the detection step.

The key challenge in the above solution lies in devising a media feature extractor

in the encrypted domain. Unfortunately, many of the most popular feature extraction

algorithms, such as SURF, SIFT and HOG, contain non-linear operators, which are

operations not directly available in homomorphic encryption.

5.1.3 Aggregation of matching results in privacy-protected

Anti-Virus as a service

The major drawback of the privacy-aware cloud based Anti-Virus described in section

4.1.3 is the high communication cost. Particularly, if a thorough indiscriminate scan on

all files is requested, the communication cost is equivalent to the size of the database.

Note that the scheme still achieves data privacy of stored data and anti-virus database,

and that the trivial solution of sending the database is not a valid alternative.

Generally, the goal of the anti-virus code snippet pattern matching process is to

determine the existence of snippets regardless of their positions within the file. Our

analysis found that related techniques were unable to satisfy the privacy requirements of

maintaining the privacy of the keywords from the data owner and privacy of documents

from the cloud operator, despite improved communication cost. Using IBE such as

Boneh’s keyword search in private email database and Water’s delegation of auditors for

log investigation schemes, the data owner must give authorization to any third party

wishing to search over the encrypted data by providing the plaintext of the requested
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keywords. Using a public key scheme enables the anti-virus server to send the data

without notifying data owner. The only primitive for sequential data search among

our solutions which omit location information is the n-tuple Bloom-filter based query.

However, the data owner must also provide permission to a third party in order to

perform the query and, in doing so, reveals the plaintext to data owner. While it is

possible to insert public key encrypted keywords into the filter, it would allow anyone

including the cloud operator to perform queries without the data owner’s permission.

Note that, if wildcards are used, relative positioning of code snippets may be required.

The presented scheme in section 4.1.3 provides information on not only whether

matches occurred, but also the location of the matches. If both sets of information are

required and cryptographic strength protecting the matches is to be maintained, then we

believe that the communication cost can only be improved if an approach is devised to

map a ciphertext representing the difference of plaintext and code snippet to a ciphertext

representing a match (1 or 0) and have the size of the ciphertext reduced to that needed

for the binary plaintext space. That is, the minimum number of bits required to represent

the information of whether a match occurred (Y or N) and the corresponding locations

within a file cannot be less than the number of bits required to represent the ciphertext

of a (Y or N) times the number of locations in the file. Furthermore, should the location

of the matches be not required, then, further improvement may be possible since the

entire file can now be processed to produce a single (Y or N) response.

Should it be possible to map the plaintext-snippet difference to an encrypted 1 or

0 value, the matching results can be meaningfully aggregated to determine if a match

has occurred over any part of the file by summing them up at all the tested locations

in a file. Assume that a match at location i results in Ei(1) and a non-match results in

Ei(0), then the matching result for a file would equal:

E(x) =
n∑
i=1

(Ei(xi)) (5.1)

If a match is found in any location within the file, x 6= 0. If matches are rare occurring

events, further savings can be achieved by increasing the aggregation level to multiple

files or folders, and then narrowing down to identify matched files if needed. That is, a

single matched result of E(0) can be used to signal non-matched status for many files.

If an algorithm can map matches to Ei(0) instead, it is easy to convert to the above

scenario by providing a ciphertext for 1, Es(1), to the cloud operator and convert the

result by computing E′i(xi) = Es(1)− Ei(xi).
The difficulty of the idea lies in devising a scheme that would map an encrypted
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difference representing a match to a ciphertext of 1 and 0. A possibility we considered

is Euler’s theorem, which states that

aϕ(n) = 1 (mod n), (5.2)

where ϕ(n) denotes Euler’s totient function. That is, if a is non-zero and coprime to n,

the above operation results in 1. If a is zero, the above operation results in 0. However,

ϕ(n) is equivalent to the private key in Paillier cryptosystem, as is the case in most public

key cryptosystems and cannot be revealed to the cloud operator. One would require a

solution that would enable the cloud to compute the exponentiation without revealing

the exponent, such as performing a homomorphic exponentiation, which we believe is an

open problem.

5.1.4 Privacy-protected Big Data: Homomorphic neural network

The ability to compute over encrypted data presented by homomorphic encryption could

lead to cryptographically secure outsourcing of computation. In addition to allowing a

remote server to store and search over encrypted data without revealing their content, it

may even enable data to be manipulated in meaningful ways without learning its content,

providing privacy and security in services such as cloud based word processing software

(e.g. Office 365) or Internet email services.

Another sample application would be privacy-protected recommender system. Sup-

pose a recommender system has identified that users belonging to certain clusters are

interested in certain products, a customer may send his feature sets, which may include

previously view products and set preferences, in encrypted form and have the recom-

mendation be computed by the server and sent back in encrypted form without learning

what products he had viewed or his preferences. A possible methodology would be to

perform privacy-protected collaborative filtering. The required computations, such as

the Pearson correlation, to identify similarity between feature sets are comparable to

those used in our privacy-aware copyright detection solution in section 3.3.

A more general and broadly applicable solution would be a homomorphic neural net-

work. Artificial Neural Networks mimic brain functions through a network of equations.

They have shown to be very effective at solving many practical problems, finding use in

computer vision, speech recognition, health monitoring, network traffic balancing, etc.

Construction of neural networks typically involves layers of connected neurons. Each

neuron generates a single output based on an activation function, fa(), of a set of inputs.

Each connection to the next layer is associated with a weight that scales this output.
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Figure 5.1: Input layer of a neural network with three inputs

The output from previous layer is similarly scaled. Figure 5.1 illustrates a layer of a

sample network. The output of the layer is: V = {V1, V2, V3}. The individual outputs

are defined by Vi = fa(Win,i,1X1 +Win,i,2X2 +Win,i,3X3), where Win,i,j are the weights

and Xi are inputs:

V1 = fa(Win,1,1X1 +Win,1,2X2 +Win,1,3X3)

V2 = fa(Win,2,1X1 +Win,2,2X2 +Win,2,3X3) (5.3)

V3 = fa(Win,3,1X1 +Win,3,2X2 +Win,3,3X3)

The scale and add operations are naturally available in homomorphic encryption

algorithms. However, the activation function poses a significant challenge. Typical

activation functions used in neural networks are non-linear, e.g. tanh() and logsig(). The

common use of threshold functions, another non-linear operation, also poses a problem.

As is often the case, another limiting factor towards achieving secure and private big

data is the performance of homomorphic encryptions, even in the simpler collaborative

filtering solution mentioned earlier. Nonetheless, a positive result towards the realization

of a homomorphic neural network would have wide implications.
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Glossary

IR Inclusion Relation

DRM Digital Rights Management

IBE Identity-Based Encryption

TF-IDF Term Frequency × Inverse Document Frequency

LUT Lookup Table

TP True Positive

FP False Positive

NLTK Natural Language Toolkit

PDP Provable Data Possession

POR Proof of Retrievability

CBC Cipher-Block Chaining

CTR Counter Mode

SIFT Scale-Invariant Feature Transform

PEKS Public-Key Encryption with Keyword Search

DMCA Digital Millennium Copyright Act

RIAA Recording Industry Association of America

DCT Discrete Cosine Transform

CS Compressed Sensing

RIP Restricted Isometric Property

MAC Message Authentication Code

AMPC Arithmetic Multi-Party Computation

SURF Speeded Up Robust Features

HOG Histogram of Oriented Gradients

P2P peer-to-peer

IV Initialization Vector
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