
Multi-Channel Wireless Mesh Networks with TCP

Proxies

by

Adam Kohn

Bachelor of Engineering, Ryerson University, 2007

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Masters of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

c©Adam Kohn 2010

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

iii

Multi-Channel Wireless Mesh Networks with TCP Proxies

Masters of Applied Science 2010

Adam Kohn

Electrical and Computer Engineering

Ryerson University

Wireless mesh networks based on 802.11 technology could potentially be an inexpensive means of constructing

large-scale wireless infrastructure networks. Wireless mesh networks attempt to capitalize on multiple hop

communication to achieve transmissions over relatively larger distances. One fundamental concern is that

multi-hop wireless networks may suffer heavily from co-channel interference. If multiple channels from

the 802.11 spectrum are employed across adjacent links of communication, the interference effects can be

mitigated. In practice, either overlapping channels or independent orthogonal channels can be assigned to

the different links with varying effects. Topology control can be used to help manage these channels to

limit the interference effects while providing for the necessary capacity and scalability requirements. By

means of analyses and testbed experiments, I have validated that the introduction of multiple channels can

improve overall system performance. With respect to the end-users, end-to-end performance over multiple

wireless hops should be the primary concern. Under UDP-based communication sessions, network congestion

is not the main contributor to transport layer performance degradation. Upon further investigation, TCP

performance degrades exponentially with hop count, because it incorrectly interprets lost packets as a sign

of network congestion. Since TCP performance weakens for connections with more wireless hops, I further

evaluate if network performance can be improved by adding an n-hop TCP proxy service. These proxies

have the effect of breaking long connections into shorter connections with tighter transport layer control. A

trade-off between the number of proxies and the hop count between proxies becomes evident through testbed

evaluation. Analyzing various mesh characteristics and the relationships between MAC and transport layers

can help establish a suitable protocol for future work.

v

Acknowledgements

This MASc thesis would not have been possible without the guidance and unending support from many

people. First, and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Eddie Law,

for his guidance, encouragement and patience throughout the years, starting from a mere summer research

assistant to a full-fledged graduate student. I would like to further thank my dearest friends(Tal Tom, Vlad

Pinkhasov, Vlad Boldyrev, Danny Levi, Allan Carswell, Leora Schlanger, Will Jin) for providing the much

needed moral support and laughs which helped keep me relatively sane throughout the turmoil associated

with graduate studies. I would also like to thank my colleagues (Barry, Richard, Tom) for making me jealous

that I have yet to be a PhD student such as themselves. Despite the support from friends and family, I could

not have endured those late night coding sessions without my closest friend coffee. Lastly, I am indebted

to my loving family who bared with me as I attempted to reach this point. I apologize for the late nights

strolling in after working late. I apologize for the all the missed dinners. For sticking with me, I cannot

thank all these people enough.

vii

Contents

1 Introduction 1

1.1 WMNs and Multi-Channel WMNs . 2

1.2 IEEE 802.11 Networks . 6

1.3 Contributions . 9

2 Topology Designs for WMNs 13

2.1 Multi-Channel System Model . 14

2.2 Topology Control . 15

2.3 Summary . 20

3 Analysis of Multi-Channel WMNs 23

3.1 Multiple Channels . 24

3.2 MAC Analytical Model . 27

3.3 Transport Layer . 34

3.4 TCP Proxy . 37

3.5 Summary . 40

4 Performance Measurements 41

4.1 Channel Switching . 42

4.2 UDP Measurements . 44

4.3 Channel Overlap Effects . 50

4.4 TCP Measurements . 52

4.5 TCP Proxies . 56

ix

4.6 Summary . 58

5 Future Work 59

5.1 System Architecture . 60

5.2 Channel Assignment . 61

5.3 Neighbour Detection, Reporting and Routing . 63

6 Conclusion 65

A MATLAB Simulations 67

B Linux Kernel Module Code 75

References 103

x

List of Tables

2.1 Number of co-channel interfering nodes excluding itself for 3-channel 7-station model 20

2.2 Number of co-channel interfering nodes excluding itself for 3-channel 6-station model 20

3.1 Index of notations . 25

4.1 Testbed parameter settings . 42

4.2 Average UDP Throughput . 50

4.3 Adjacent and orthogonal channel overlap simulations . 50

4.4 Average TCP Throughput without proxies . 52

4.5 Average number of collisions . 53

4.6 Average TCP Throughput with proxies . 57

xi

List of Figures

1.1 Wireless infrastructure networks. 3

1.2 Interference ranges . 5

1.3 DCF operation of IEEE 802.11 . 7

1.4 IEEE 802.11 b/g frequency spectrum . 10

2.1 3-channel 3-station triangular topology construction unit . 16

2.2 3-channel 7-station topology . 18

2.3 3-channel 6-station topology . 19

3.1 Calculating the overlapping region . 24

3.2 Markov chain for the 802.11 backoff mechanism under saturated network conditions 30

3.3 Markov chain for the 802.11 backoff mechanism under non-saturated network conditions . . . 31

3.4 End-to-end multi-hop, transport layer delay . 35

3.5 TCP proxy layers and added queuing delay . 38

3.6 TCP proxy example using 3-hop proxies (n = 3) . 38

3.7 End-to-end multi-hop, TCP proxy delay . 40

4.1 Mean setup times for dynamic channel switching . 43

4.2 Single-channel 802.11 wireless mesh networks based on UDP session 46

4.3 Single-channel and Multi-channel UDP performance . 48

4.4 Single-channel and Multi-channel 802.11 wireless mesh networks duration based on TCP trans-

mission of 3 MB file without Proxies . 53

xiii

4.5 Single-channel and Multi-channel 802.11 wireless mesh networks throughput based on TCP

transmission of 3 MB file without Proxies . 54

4.6 Single-channel and Multi-channel 802.11 wireless mesh network throughput based on TCP

transmission of 3 MB file with Proxies . 57

5.1 Network stack . 62

xiv

Chapter 1

Introduction

The wide-spread growth of portable devices, such as laptops, portable digital assistants (PDAs), smart

phones, etc, have stimulated the desire to access the Internet any time and any where. Wireless access

technology has already been readily deployed throughout our homes, schools, offices and numerous hot-spot

locations. The affinity towards the Internet will continuously grow as time progresses, which will consequently

put a greater strain on the underlying network in the future.

Accommodating for this any time any where philosophy, commonly referred to as ubiquitous computing,

requires coverage of a significantly large area. Traditionally, wireless networks require strategically placed

access points such that each of them is connected directly to the wired backbone network. For complete

coverage of a wide area, a large number of these access points may be necessary to overcome the limited

transmission range, line-of-sight constraints, and other factors that can attenuate the wireless signal. Laying

the necessary cabling to extend the wired backbone is usually expensive, difficult, and time consuming. For

a complete system, this inevitably leads to high installation and maintenance costs to properly accommodate

for users spreading across large coverage areas.

The drive for inexpensive wireless networking solutions that are capable of providing a reliable, large

coverage area has prompted the development of alternative wireless infrastructure networks. One of which

is wireless mesh networks (WMNs), which employs a multiple hop approach. There are different wireless

technologies available that can be used to construct wireless mesh networks. The prevalent wireless local

area network (WLAN) standard of IEEE 802.11 [1] is a possible candidate, and will be the focus in this

thesis.

1

1.1. WMNS AND MULTI-CHANNEL WMNS CHAPTER 1. INTRODUCTION

1.1 WMNs and Multi-Channel WMNs

Wireless mesh networking is a paradigm that all stations are connected through wireless links, without the

need of having each access point connected to the wired backbone network. The terms wireless stations,

routers, and nodes will be used interchangeably. In general, wireless stations can be set up rapidly to cover

a wide geographical range. In this sense, packets may have to traverse along a path of wireless routers

to communicate with corresponding nodes in the network that are outside of its transmission range. This

multi-hop communication transforms the typical access point into additionally operating as packet relaying

routers. As a result of this cooperative means of communication, only a selected few nodes are required to

have a wired connection to the Internet, or wired backbone network. This concept is further exemplified by

Fig. 1.1. In Fig. 1.1(a), the traditional access point infrastructure is shown, where each station requires

direct cabling to the wired backbone network. This infrastructure design may be reliable, but the extensive

cabling that is required can make it difficult to scale to larger networks. Achieving an infrastrucutre in

this fashion will inevitably lead to high installation and maintenance costs. Alternatively, in Fig. 1.1(b) a

typical mesh infrastructure is shown, where only a few selected stations are connected to the wired backbone

network. It should be noted that the dashed lines are not actual links; they merely indicate that the two

neighbouring nodes are within transmission range of each other. They are only capable of communicating if

they each have a radio tuned to the same frequency channel. These links are thus referred to as virtual links.

The reduced cabling makes the system less expensive. Additionally, new nodes can be installed into the mesh

network quickly and with ease, even within rough terrain areas. They are a cost-efficient way to achieve the

scalability, flexibility, and reliability necessary to build a wireless infrastructure network. Therefore, wireless

mesh networks offer a promising compliment to existing wired backbone networks, that may be capable of

providing last-mile Internet access.

Wireless mesh network takes its roots from traditional ad-hoc networks, but the two should not be con-

fused. Unlike the paradigm of its ad-hoc network cousin, stations in mesh networks remain fairly stationary

and are not constrained by limited power. Not being hindered by these constraints allow the wireless mesh

networks to further exploit their resources. However, the need to operate as an infrastructure network often

entails a different set of design parameters. In general, large-scale wireless mesh networks with many wireless

hops are vulnerable to different communication problems [2, 3] such as bandwidth degradation, radio inter-

ference, high packet loss, long network latency, etc. These disadvantages have been limiting the deployment

2

CHAPTER 1. INTRODUCTION 1.1. WMNS AND MULTI-CHANNEL WMNS

(a) Traditional infrastructure

(b) Mesh infrastructure

Figure 1.1: Wireless infrastructure networks.

3

1.1. WMNS AND MULTI-CHANNEL WMNS CHAPTER 1. INTRODUCTION

of these large-scale wireless mesh networks. Ideally, an effective mesh network should sustain a low latency

and a high throughput performance between source-destination pairs that may be a few hops or many hops

away.

The inherent mutual interference effect of multi-hop communication is the main cause of these known

disadvantages. Assuming omni-directional antennas, the interference caused by adjacent nodes can be detri-

mental to any wireless communication, but the problem is exacerbated in the multi-hop communication

scenario. Among the multiple channels defined in the specification [1] for wireless local area networks, a

trivial method is to assign one frequency channel for each of the infrastructure stations operating within

the wireless mesh network. Consequently, all wireless stations then contend for the same shared wireless

medium. Furthermore, an infrastructure of wireless nodes may have large overlapping coverage area, which

can cause an unwanted number of packet collisions.

The problem associated with single-channel networks can be further explained by referring to a chain

of nodes, as depicted in Fig. 1.2. Nodes are arranged such that each node is only capable of transmitting

to its one-hop neighbour, as shown by the transmission range Rtx. More specifically, from a system design

perspective, the Rtx indicates the range that a frame can be successfully received with a signal strength

higher than the reception power threshold. It implies that a station may be capable of decoding the received

signal. In reality, this range depends on many factors such as, transmission power, receiver sensitivity, and

radio propagation properties. However, the capability of properly receiving a packet is also dependent upon

the interference range Rir. It is described as being the range that a station in receive mode is interfered

by another transmitter, and consequently suffers a packet collision. The interference range is always longer

than the transmission range [4]. Based on different communication conditions, different values of Rir can be

assigned in terms of Rtx. The assumption of Rir = 2.2 × Rtx is widely used in many simulators. With this

setting, the interference ranges for nodes s4 and s5 are shown in Fig. 1.2. As a direct result of this, noise is

created as nodes outside of its transmission range, but within its interference range, are unable to properly

interpret messages. As a result, these parameters can help determine the amount of interference a wireless

card may experience.

If using only one channel throughout the infrastructure and nodes s4 and s5 are in the process of com-

municating, then their transmissions may potentially impact the transmissions of six other nodes. This is

shown by the interference ranges of both these nodes. Another frame corruption scenario occurs when two

or more nodes are incapable of sensing each other, but attempt to transmit at the same time to the same

4

CHAPTER 1. INTRODUCTION 1.1. WMNS AND MULTI-CHANNEL WMNS

s1 s2
s3 s4 s5 s6

s7 s8

Transmission range of s4 Transmission range of s5

Inference range of s4 Inference range of s5

Figure 1.2: Interference ranges

node; frames are then corrupted with one another. For example, nodes s2 and s4 both attempt to send data

to station s3 simultaneously, but both frames collide and are corrupted at s3. This scenario is known as

the hidden terminal problem, and is one of the major issues associated with multi-hop wireless networks. In

addition to hidden terminals, packets are susceptible to noises from uncontrollable external sources. These

external sources refer to transmitters that are within the interference range but are not part of the cooper-

ative mesh network. Excessive collisions and corruptions require nodes to perform a proportional number

of packet retransmissions. Consequently, the duration and throughput performance is affected for packets

successfully traversing the multiple hops. Even in the simplified chained network topology as shown in Fig.

1.2, we can observe how the small overlapping coverage area can affect the performance of the network.

Using a single channel in a wireless mesh network inevitably results in high levels of co-channel interfer-

ence. To mitigate the effects of interference between adjacent mesh routers, the use of multiple channels is a

promising solution. This design aims at assigning different channels to different links. Ideally, the minimum

requirement is to have all links within an interference range assigned a different channel, in order to achieve

the optimal levels of performance. With the wireless medium being a limited resource, there are only a

limited number of channels that are available. It may be difficulat, and often impossible, to have enough

channels available for the ideal state, since interference ranges can encompass many virtual links. The usage

of multiple channels has the effect of increasing the theoretical capacity of the network. Much of the multi-

channel capacity analyses, such as in [5], tend to focus on single hop, ad-hoc, wireless communication. They

fail to take into consideration the implications of multi-hop communication. It is thus important to build a

mesh network that can properly handle the limited number of available channels, while limiting the effects

5

1.2. IEEE 802.11 NETWORKS CHAPTER 1. INTRODUCTION

of interference.

1.2 IEEE 802.11 Networks

The 802.11 wireless access technology, commonly associated with WLANs, has become the popular standard

for the last-mile Internet access. Being widely available, they offer the necessary low cost, ease of installation,

and fast setup desired for wireless mesh infrastructures. Therefore, the 802.11 may serve as a possible

underlying technology for building wireless mesh networks. Recently, the IEEE standardization body has

been formalizing a draft of the 802.11s protocol, as the forthcoming standard that expands on the WLAN

standard to allow for the necessary operations of a wireless mesh network [6]. The protocol in the draft provide

operations such as neighbour discovery and routing to achieve self-configuring and self-healing attributes.

At the moment, it is still quite simplistic and is not expected to perform well under certain scenarios. As it

currently stands, it does not provide much support for the usage of multiple channels and multiple radios,

which makes it quite limited in achieving the necessary throughput requirements of next generation systems.

In other words, they lack the ability to scale to larger capacities. There are some research results which

study the effects and behviour of large-scale wireless networking projects and implementations. For example,

the MIT’s Roofnet 802.11b mesh network has helped prove its validity as an infrastructure network, but has

also demonstrated its unfortunate shortcomings [7]. The aptly named carrier sense multiple access/collision

avoidance (CSMA/CA) techniques used in the 802.11 protocol attempts to prevent packet collisions by

limiting hidden terminals from simultaneous communication. By itself, the 802.11 medium access control

(MAC) protocol operates poorly in a multi-hop setting.

It is the responsibility of the Distributed Coordination Function (DCF) of the IEEE 802.11 MAC protocol

to handle the carrier sensing mechanism. The operation of the DCF protocol is illustrated in Fig. 1.3.

Referring back to the aforementioned hidden terminal problem, stations are incapable of sensing nodes that

are outside of the transmission range. The goal of the DCF protocol is to prevent the hidden terminal

problem from occurring. In order to reduce these effects, the 802.11 protocol uses request-to-send (RTS)

and clear-to-send (CTS) messages as a handshake mechanism prior to granting access to a specific channel.

When a node senses another node transmitting on the same channel by means of the RTS message, it runs

its backoff algorithm and defers its transmission until it can sense that the channel is no longer busy. A

neighbouring node must also defer its transmission when it senses that neighbouring nodes are in the process

6

CHAPTER 1. INTRODUCTION 1.2. IEEE 802.11 NETWORKS

of transmitting. However, a station may hold its transmission upon finding that its neighbour is also sending

a frame, even though the destination of these two frames do not corrupt each other at their respective

receiving nodes. In fact, both frames can be sent simultaneously. Referring to Fig. 1.2 as an example, node

s4 sends to s3, while s5 sends to s6. But, one of them may hold its transmission in 802.11; this is better

known as the exposed terminal problem. Based on its virtual carrier sensing mechanism, only neighbouring

nodes are aware of a station’s channel access activities. The standard and its corresponding protocol were

designed specifically for single hop communication; it was never intended to operate over multiple hops.

Nodes that are multiple hops away but still within the interference range may attempt to transmit at the

same time, which can cause a level of co-channel interference that the DCF protocol cannot prevent.

Figure 1.3: DCF operation of IEEE 802.11

When designing a wireless mesh network, it is important to consider the effects of collisions. This safety

mechanism that prevents packet collision tends to have a negative impact on multi-hop networks. Upon

experiencing a collision, a node will defer its transmission for a random time uniformly distributed between

0 and 2zWmin, where z is the transmission attempt and Wmin is the minimum backoff window size. If

multiple collisions occur, the possible length of backoff time increases exponentially. Excessive delays are

created in the network to prevent corruption as a result of the hidden and exposed terminal problems. If

one channel is used in the entire mesh network for a particular transmission between nodes, all adjacent

nodes that are capable of sensing the transmission will be unable to perform any of their own transmissions.

As a result, the backoff delay at each hop may add up and drastically increase the round trip time (RTT)

7

1.2. IEEE 802.11 NETWORKS CHAPTER 1. INTRODUCTION

of a Transmission Control Protocol (TCP) session, as described in the later sections. Since the number of

collisions affect the total backoff period, increased collisions negatively impact the per-hop performance. The

end-to-end, or transport layer, performance is consequently degraded as excessive delays incur at each hop

within the transmission. Therefore, by reducing the number of collisions that can occur by means of multiple

channels, we can possibly achieve a reduced delay and higher per-hop throughput performance. When

different channels are assigned to adjacent links, these adjacent links can have concurrent transmissions,

which overcomes the delays experience from co-channel interference.

Nowadays, there are different underlying physical technologies associated with 802.11 wireless commu-

nication, which include 802.11a/b/g/n wireless boxes. The different physical transmission attributes results

in differing bandwidths, data rates, interference constraints, and channel availability. Commodity wireless

devices for each of these standards are readily available; hence, each one can serve as possible candidates

for establishing the multi-channel wireless mesh network. The 802.11b/g standards operate on the 2.4 GHz

frequency band using direct-sequence spread spectrum (DSSS) and orthogonal frequency division multiplex-

ing (OFDM) techniques respectively. As a result of the different transmissions, the 802.11b standard has a

maximum of 11 Mbps, while 802.11g has a maximum data rate of 54 Mbps. The frequency spectrum of these

systems is shown in Fig. 1.4. Both the 802.11b/g standards carry 11 channels in North America. Typically,

each channel occupies approximately 20 MHz worth of bandwidth, as stated by the filtering requirements

of the standard [1]. Unfortunately, separation between two neighbouring channels is a mere 5 MHz; hence

the frequency bands, of some channels will overlap each other. For example, channels 1 and 2 are centred

at the frequencies 2.412 GHz and 2.417 GHz, respectively. Even though some channel overlap exists, there

are three channels, 1, 6, and 11, that are non-overlapping. These non-overlapping channels are often called

orthogonal channels. The filtering at the wireless transceivers ensure that these orthogonal channels do not

significantly interfere with one another. When using orthogonal channels, none of the neighbouring links

interfere with one another and is not constrained by transmission from other nodes within the network. With

the onset of various devices sharing the noisy 2.4 GHz band, 802.11a was introduced to operate on the 5 GHz

frequency spectrum. Also using an OFDM-based transmission, it is capable of achieving a maximum data

rate of 54 Mbps. In turn, greater capacities can possibly be reached, as 12 orthogonal channels are available.

The relatively newest standard of IEEE 802.11n [8] further attempts to increase network throughput and

capacity using multi-input, multi-output (MIMO) technology. This standard attempts to combine aspects

of its predecessors by operating at both the 2.4 GHz and 5 GHz spectra to provide 15 non-overlapping chan-

8

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

nels. As a baseline analysis of worst case scenario, the 802.11b standard was used in subsequent analyses

and experimentation. With a scaled down wireless mesh network testbed in Section 4, the limited number

of available channels is sufficient for out tests.

Although using all available channels in 802.11 may reduce co-channel interference, network performance

may still be hindered by the presence of adjacent channel interference. The adjacent channel interference

is attributed to the overlapping of channel’s power spectrums. Based on the experiments performed in [9],

it is not recommended in using two neighbouring channels on two adjacent wireless links. Doing so would

create an excessive amount of noise and packet corruption, due to the large overlapping regions. But, it may

be possible to use overlapping channels which are relatively further apart. For example, channels 1 and 4

which are 15 MHz apart may be able to provide improvements over the single channel scenario shown in Fig.

1.4(a). Hence, it may be possible to achieve suitable performance gains from the use of channels 1, 4, 8, and

11, as shown in Fig. 1.4(b). Given a network topology and known number of available channels, channel

assignment algorithms as discussed in [10, 11, 12, 13] can be used to set channels among different links.

Interference is still present upon using partially overlapped channels, but the level of interference is much

less than that of the single channel case. As each link does not have to share the medium with as many other

links, the network may experience fewer packet corruptions, shorter waiting times, and subsequently higher

per-hop throughputs. To reduce the effects of adjacent channel interference completely, orthogonal channels

can be used. Orthogonal channels are not constrained by transmission from other nodes within the network;

hence, none of the neighbouring links interfere. Unfortunately, using only orthogonal channels reduces the

number of available channels to the mesh network system. When there are fewer available channels, these

channels will have to be re-used more frequently as the system scales to larger networks. This causes a

greater chance for co-channel interference.

1.3 Contributions

By the nature of the underlying 802.11 MAC layer, the protocol is only concerned with the performance

related to its neighbouring nodes. But for end-users using wireless mesh networks, a satisfactory end-

to-end performance across multiple wireless hops must be offered. In other words, the performance of

transport layer traffic should be evaluated. This does not infer that the MAC layer, per-hop performance

is insignificant. Instead, the cross-layered interactions should be thoroughly investigated. The per-hop

9

1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

(a) Single Channel

(b) Overlapping Channels

(c) Orthogonal Channels

Figure 1.4: IEEE 802.11 b/g frequency spectrum

10

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

performance related to the MAC layer could play a critical role in evaluating the end-to-end performance

of transport layer. It is commonly known that wireless mediums are more prone to errors and packet loss.

When operating with multiple hops, we are no longer dealing with losses that can occur over a single link;

wireless mesh networks are concerned with packet losses over every link amidst the end-to-end connection.

Transmission Control Protocols (TCP) [14] and its corresponding congestion control algorithms have been

designed specifically for wired networks. Many existing algorithms such as NewReno [15] may operate poorly

over wireless mesh networks. These congestion control algorithms in TCP incorrectly assume that link

layer errors and delays are directly attributed to the presence of congestion in the network. Consequently,

congestion windows improperly resize to compensate, resulting in an inefficient use of network resources.

If congestion is not a concern the User Datagram Protocol (UDP) [16] can be used to bridge the gap

in understanding the relationship between the MAC and TCP layers. Therefore, understanding the delays

imposed across transport layer connections can help distinguish the frailties of typical wireless mesh networks.

In this thesis, we will address the performance of 802.11-based wireless mesh networks with respect to

the MAC and transport layers. As our intent is to focus on link layer contentions and possible TCP layer

improvements, routing and its corresponding overhead will not be considered in this evaluation. Using a

chained topology of varying hop counts and differing channel assignments, the channel contention problem

is studied through analysis and testbed-based experimentation. Since the performance of the transport

layer is highly dependent upon the MAC layer performance, it is crucial to initially analyze the influence of

collisions and packet losses. With the goal of trying to lessen these collisions, the concept of multiple channels

is introduced. Using UDP and TCP based analyses and tests, it becomes apparent that the multiple channel

solution is capable of improving the network’s performance only to certain degree. UDP based tests help

enforce the assumption that TCP congestion is of little concern and that the performance at the MAC layer

is the main cause of the poor transport layer performance. By attempting to combine TCP proxies with

multi-channel wireless mesh networks, long error-prone connections could be broken into shorter ones with

a tighter transport layer control. The possible gains achievable with TCP proxies, on the other hand, may

consequently be hindered by the excessive queueing delay imposed at each of the proxies. By observing the

relationships between MAC and transport layer protocols, we can see how a suitable protocol should be

designed in order to properly operate a reliable multi-channel wireless mesh network.

In order to design an 802.11 based multi-channel wireless mesh network, we need to design the infras-

tructure that can properly accommodate and handle the multiple channels while limiting the interference

11

1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

effects. To do this we suggest in Chapter 2 a multi-channel model to control the usage of multiple channels

along with a topology design that can help limit the interference effects. This description will help explain

the reasoning behind the tests and analyses performed in the subsequent chapters. But, a multi-channel

system and topology is meaningless without understanding the behaviour of such a network. In order to

design the 802.11 based mesh network, we need to understand why the network behaves the way it does.

To do this, Chapter 3 provides an analysis of the physical effects of multiple channels, an analysis of the

802.11 MAC operation, and eventually their effects on an end-to-end transport layer connection. In general,

the analysis allows us to further understand how nodes interact with one another and where problems exist

with respect to the multi-hop nature of wireless mesh networks. Based on this analysis and understanding

of the network, it can be seen how the network performance can be improved via TCP related solutions.

As a result of this, TCP proxies are introduced in the network to overcome some of the problems witnessed

in the transport layer analysis. Using a scaled down testbed of a multi-channel wireless mesh network as

described in Chapter 4, the behavior was further tested to discover the effects of a multiple channel network

that are difficult to witness in a mathematical analysis. It was possible to further observe how the network

reacts under certain real-life conditions. Implementing the TCP proxy mechanism in the testbed provided

a clear observation of the inclusion of an extra TCP sublayer connection. It is this behavior which can help

define tunable parameters for the necessary algorithms of a distributed multi-channel wireless mesh network

in future work described in Chapter 5.

12

Chapter 2

Topology Designs for WMNs

When dealing with multiple channels, channel management becomes a pertinent issue. The broadcast nature

of the wireless medium emphasizes the importance of maintaining a controlled level of interference throughout

the networking environment. Interference of this kind depends on factors such as traffic on neighbouring

links and topology of the network. This interference consequently has an impact on the achievable capacity

in a multi-hop setting. Paths between two communicating end-users need to operate with low interference

and high network capacity. Interference can be caused by inter-path communication, where transmissions

from separate paths corrupt one another. More importantly, interference can occur based on intra-path

communication, wherein transmission on different links in a single path interfere. A more channel diverse

multi-hop path has less intra-flow interference which increases the throughput along the path, as more links

can be active simultaneously. This leads us to evaluate the possibility of an interference associated topology

design for multi-channel wireless mesh networks [17].

Ideally, an effective wireless mesh network should be a low latency network that can dedicate separate

wireless bandwidth links for ingress and egress traffic, which is similar to the operation of cellular networks.

However, the system cost of a full duplex system can be very expensive. Using the half duplex 802.11

technology, it is possible to establish a framework for a multi-channel system.

13

2.1. MULTI-CHANNEL SYSTEM MODEL CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS

2.1 Multi-Channel System Model

To operate a multi-channel system, the station can be equipped with a single radio or multiple radios. Multi-

channel systems operating with a single radio transceiver, such as the Multichannel MAC (MMAC) protocol

[18] or the Slotted Seeded Channel Hopping (SSCH) protocol [19], require precision scheduling to avoid the

risk of permanently partitioning the network. As a reminder, two nodes are only capable of communicating if

they both have a radio tuned to the same channel. Even if nodes are within transmission range, the network

can become disconnected when neighbouring nodes do not have radios on the same channel. It can become

quite difficult to properly schedule and coordinate neighbouring nodes to be tuned to the same channel at

the same times. The alternative option is to use multiple radios at each node. These radios can thus be

preset or dynamically tuned at runtime. Our system model opts for the multi-radio approach in the handling

of multiple channels.

In our system model, we define κ as the set of available channels in a system for mesh packet relaying.

The corresponding number of channels is denoted by K = |κ|. To accommodate for the multiple channels,

each node is thus equipped with r number of radios. Stations do not need to be equipped with enough

radios to access the complete system bandwidth. In a multi-radio multi-channel wireless network, stations

can be installed with different numbers of radio ports such that 1 ≤ r ≤ K. Certainly, no two radio ports

in the same station should be tuned to the same channel at the same time, as this will cause an undesirable

self-inflicted interference. Generally speaking, it is often unnecessary to have a station with r = K, as they

may remain idle for large portions of time. This property will be shown in the following section discussing

topology. If r = K, the radios can be preset to each of the specific channels. The problems arise when

r < K, which requires the system to dynamically switch the radio’s frequency in order to properly use all

the available channels.

Instead of precise scheduling, coordinated channel switching operations necessary for distributed algo-

rithms require the presence of separate control channels. The control channel allows us to separate the

data packets from control messages (i.e. resource reporting, routing information, etc). For example, when a

node wants to transmit data to a node multiple hops away, the system must properly coordinate with one

another to ensure that each of the nodes along the path has a radio tuned to a similar channel preventing

any network partitioning from occurring. Additional radios are now needed such that they are permanently

tuned to these control channels. Therefore, the network now needs K +D available wireless channels, where

14

CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS 2.2. TOPOLOGY CONTROL

D represents the number of channels required for sending control messages. If the channel capacities for

control messaging is Cc and the relay channels’ capacities are Cd, then the total theoretical capacity Ctotal

of the system becomes

Ctotal = DCc + KCd. (2.1)

A question raised from this relates to the number of realy channels K that should be used in the system.

This leads to a baseline design established on the existing 802.11b standards. Currently, the 802.11b standard

has the fewest number of orthogonal channels. These channels are commonly picked for experiments in the

various literature, but it can only support a maximum of K = 2 to accommodate for at least one control

channel. Therefore, we have carried out experiments running overlapping channels with channels 1, 4, 8, and

11. Thus, we now have three channels available for relaying traffic between nodes K = 3, with one separate

channel used for control messaging D = 1.

2.2 Topology Control

Unlike mobile ad-hoc networks, or other ad-hoc networks, the topology of a wireless mesh network can be

controlled, since nodes remain fairly stationary. It was demonstrated in [20], that the throughput capacity

per node reduces significantly when the node density increases. Abiding by these concepts, interference

should be controlled by limiting the number of neighbouring nodes, N . When designing a multi-channel

wireless mesh network with K = 3, it is important to ensure that the system can properly scale to larger

networks if necessary. Ideally, the usage of multiple channels should allow us to have all links within any

path to be active simultaneously. In fact, if a neighbouring node uses an identical channel, serious co-channel

interference will occur. This entails a network where all adjacent links are always capable of operating over

the different channels, even when scaled to larger networks. In order to do so, topology construction units

are designed around the K available channels and the N neighbouring nodes to establish a system that limits

the interference and delays. These are appropriately referred to as K-channel N-station topology units.

The simplest way to handle three channels is with a small wireless mesh network as shown in Fig. 2.1.

The farthest distance between any two nodes can be set to the transmission range, Rtx. With K = 3 and

N = 3, each node only needs two transceivers to operate (r = 2), such that each of the virtual links can be

assigned to a different channel. In this 3-channel 3-station unit, the relaying channels can be permanently

fixed among these stations without introducing interference among relaying traffic. Hence, routing operations

15

2.2. TOPOLOGY CONTROL CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS

are trivial in this particular topology. However, the channel bandwidth is heavily under utilized.

Figure 2.1: 3-channel 3-station triangular topology construction unit

A simple way to create larger mesh networks is to duplicate and expand the already suitably functional

triangular base units. This design generates the aptly named 3-channel 7-station hexagonal unit shown in

Fig. 2.2(a). Upon using omni-directional antennas, the transmission range Rtx becomes the transmission

radius encompassing all seven nodes within this base structural unit. To re-utilize the channel bandwidth,

a station can use the same channel for communications to two other stations, at the two ends of the circle’s

diameter.

Upon considering Fig. 2.2(a), the topology now runs the risk of heavy intra-path interference for certain

multi-hop paths of communication. For example, any activities between stations s1 and s2 prohibit the

communication activities between stations s1 and s5, as per the operation of the 802.11 MAC protocol. The

nodes s5, s1, and s2 form a chained wireless mesh network which is similar to the one shown in Fig. 1.2.

Based on this problem, the network may experience excessive delays as nodes may be required to defer their

transmissions. Performance of a chained mesh network using the same channel under the TCP protocol

deteriorates rapidly for paths longer than three hops [2]. This occurrence will be further investigated and

verified in the subsequent chapters.

The problems associated with this design structure can be further demonstrated by duplicating the

hexagonal structural unit. By doing so, it is easy to create a larger scaled wireless mesh network. In

Fig. 2.2(b), a resulting 3-channel mesh network is now shown to encompass the entire interference range.

Certainly, these meshing nodes can introduce interference among each other. The transmission range and two

different interference ranges are shown to further demonstrate the problematic behaviour of such a system. In

the worst case scenario for Rir1 = 2.2×Rtx, there are 18 other meshing nodes that may introduce interference

16

CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS 2.2. TOPOLOGY CONTROL

to a station. As each node is using all three available channels, each node within the interference range is

capable of creating co-channel interference. On the other hand, if Rir2 = 3 × Rtx, then 36 corresponding

nodes can introduce undesirable levels of interference. In the network using Rir2 as the interference radius,

there are a total of 37 nodes that are capable of using all 3 wireless channels simultaneously if r = 3.

The previous 3-channel 7-station basic structural unit needs to be re-evaluated to overcome the evident

problems. Upon close investigation, the center station s1 may possibly be removed while still maintaining the

same level of wireless coverage and network access. This leads to the construction of an improved topology

base-unit. This adapted structural unit, as shown in Fig. 2.3(a), is referred to as the 3-channel 6-station unit.

At this point, it can already be seen that no two adjacent links are operating over the same channel, which is

an improvement over the previous scenario. This infers that all links can be active simultaneously, without

having to worry about the transmission deferals. But, this begs the question of whether this advantageous

property carries over for larger scaled mesh networks.

In order to construct larger scaled wireless mesh networks, this basic structural unit can be once again

duplicated and interconnected in a similar fashion as the previous case. The resulting 3-channel 6-station

based wireless mesh network can create a mesh network as shown in Fig. 2.3(b). This mesh network offers

similar coverage area as its 6-station predecessor. The transmission and interference areas are similarly

shown to demonstrate the improved behaviour of this system. With this base unit design for Rir1, there

are 12 other meshing nodes when excluding the center node. Upon careful attention, not all nodes in

the range use the same channel; only six stations may introduce co-channel interference at a station for a

given wireless channel. Similarly for Rir2, there are 34 other meshing nodes within the interference range,

but only 15 of those stations may introduce co-channel interference for a given channel. In the network

shown using Rir2 as the interference radius, there are in total 35 mesh nodes, and all nodes can use all

3 wireless channels simultaneously for r = 3. This resultant wireless mesh network can thus offer higher

throughput performance as co-channel interference is reduced. The comparisons of the two wireless mesh

network topologies are summarized in Table 2.1 and Table 2.2.

The importance of the control channel, for co-ordinated channel management, becomes essential when the

number of radios is less than the number of available channels (r < K). For communication to occur between

two neighbouring nodes, they must each have a radio tuned to the same data communication channel, such

that the channel belongs to the set κ. As each node is required to operate over all of the K channels, the

control interface is used to co-ordinate the switching between the channels as necessary. When designing a

17

2.2. TOPOLOGY CONTROL CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS

(a) Base structural unit

(b) Wireless mesh network

Figure 2.2: 3-channel 7-station topology

18

CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS 2.2. TOPOLOGY CONTROL

(a) Base structural unit

(b) Wireless mesh network

Figure 2.3: 3-channel 6-station topology

19

2.3. SUMMARY CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS

suitable protocol, it will be important to take this property into consideration.

Upon scaling the base structural unit to create Fig. 2.3(b), the improved interference property can be

maintained. It is important to observe that no two adjacent links operate over the same channel for any

multi-hop path within the wireless mesh network. It no longer suffers from the no-activities constraint if an

adjacent link is being used, as stated in the 3-channel 7-station network. In this design scenario, all links

within any chain of nodes can be operated concurrently. Therefore, a chained network of multiple channels

can be used, as long as the adjacent links are operating over different frequencies. Therefore, the chained

network can serve as a suitable baseline test when analyzing mesh networks under these conditions.

Table 2.1: Number of co-channel interfering nodes excluding itself for 3-channel 7-station model

Case Total num. of nodes Num. of co-channel nodes
Rir1 = 2.2 × Rtx 18 18
Rir2 = 3 × Rtx 36 36

Table 2.2: Number of co-channel interfering nodes excluding itself for 3-channel 6-station model

Case Total num. of nodes Num. of co-channel nodes
Rir1 = 2.2 × Rtx 12 6
Rir2 = 3 × Rtx 34 15

2.3 Summary

When designing a suitable wireless mesh network, it is important to properly control the wireless resources

which limits the inherent interference effects. It is difficult to completely remove the various causes of

interference, but relatively simple techniques can be used to limit their effects. With single channel mesh

networks being prone to heavy levels of co-channel interference, the usage of multiple channels can provide

the necessary scalability and capacity requirements for wireless infrastructures. A multi-channel multi-

radio design along with a corresponding control channel can be used to manage and coordinate the limited

number of available channels. With the limited mobility associated with infrastructure networking nodes,

the multi-radio system can be further combined with an interference controlled topology design. Using

scalable topology structure units, the system can grow to larger networks as needed, while operating under

the constraints imposed by the 802.11 underlying technology.

20

CHAPTER 2. TOPOLOGY DESIGNS FOR WMNS 2.3. SUMMARY

The advantage created by the 3-channel 6-station model is that all links can be active for any chain

of nodes established. Based on this idea, the subsequent chapters will attempt to further understand the

behaviour caused by this intra-path interference associated with a mutli-channel system. It is important to

first build a system that can suitably handle intra-path interference before trying to handle the inter-path

interference effects.

21

Chapter 3

Analysis of Multi-Channel WMNs

From the topology-based investigation provided in Chapter 2, we saw how a proper arrangement of nodes

can help control the interference levels of the network, without the need for complex channel assignment

algorithms. Using the 3-channel 6-station topology model, it is apparent that concurrent transmissions along

all links is vital in improving the network’s performance. The introduction of multiple channels to the system

avoids excessive delays caused by deferred transmissions, and allows for the desired simultaneous transmission

activity. Even along a chain of nodes operating over multiple channels, it is difficult to completely remove the

effects of co-channel interference. An example of this chain of nodes is shown as the darker line originating

from node s15 of Fig. 2.3(b). Despite overcoming the no-activities constraint, it is still susceptible to

the intra-path, co-channel interference effects. Based on this issue, it is important to first understand the

behaviour of a chain of nodes. Albeit simple, this particular topology can provide a baseline analysis and

set of results describing the interactions between nodes at the MAC level and subsequently the end-to-end

transport level. As previously mentioned, it is necessary to understand the effects of intra-path interference

before inter-path interference effects can be considered. We will use this chain topology, as also shown in

Fig. 1.2, in the further analyses and experiments.

In this section, an analysis of throughputs and latencies is provided as a packet traverses a multi-hop

chain of nodes. It attempts to understand the cross-layer interactions between the transport and MAC

layers, which allows us to see the problems associated with multi-hop communication. Upon noticing these

problems, an improvement to the common transport layer and TCP is suggested. Table 3.1 provides a

summary of all necessary symbols used in this analysis. The analysis provided here expands on my work

23

3.1. MULTIPLE CHANNELS CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

performed in [21].

3.1 Multiple Channels

It was briefly shown in Fig. 1.4 how multiple channels are utilized to counteract the spectral inefficiency in

the network. When using multiple channels, especially overlapping channels, it is important to understand

the effect that these adjacent channels have on the desired signals. The carrier sensing mechanism of the

network interface cards (as part of the physical layer) is incapable of sensing these channels, which reduces

the co-channel interference. Unfortunately, adjacent channel interference is consequently introduced, as we

will see in this section. On a similar note, the analysis here will show why orthogonal channels are commonly

used instead of overlapping channels. Signals that are heard, if at all, are interpreted merely as noise. If this

noise level exceeds a certain threshold such that the node in question is unable to correctly read a signal, the

packet is consequently discarded. Thus the transmitting node interprets the dropped packet as a collision or

corruption, since no ACK or CTS message is received in return. It is this potential signal corruption, that

needs to be understood before proceeding.

Figure 3.1: Calculating the overlapping region

To determine the effect of multiple channels, the extent of signal overlap needs to be found. For example,

if channels 4 and 8 were being used, we would want to determine the amount of overlap, as shown by the

shaded region of Fig. 3.1. Based on the specifications in [1], the spectral mask of the transmitter and receiver

must at least have a 30 dB attenuation at 11 MHz and 50 dB attenuation at 22 MHz from the centre frequency

24

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.1. MULTIPLE CHANNELS

Table 3.1: Index of notations

rs Number of radios attached to station s
K Number of available channels, K = |κ| > 1
Rir Interference range
Rtx Transmission range
θ Estimated channel overlap
fc Channel centre frequency

Pwr Power spectrum density
Wmin Minimum MAC contention window size

pi Probability of collision on channel i
for single link

τi Probability of a node transmitting on channel i
Ii Number of nodes in interference range
h Number of hidden nodes

f(Ij) Probability of no corruption from noise
and adjacent channel interference

max Maximum MAC retries
z MAC layer transmission attempt
q Arrival rate of packets
PI Probability of a node being idle
Ptr Probability of any node in range transmitting
PS Probability of node successfully gaining

access to channel
Blink Single hop throughput
E[L] Expected packet length

σ Slot time
Ds Expected delay of single-hop successful transmission
Dc Expected delay of single-hop collision
tr Time for RTS transmission

tsifs Time for SIFS transmission
tc Time for CTS transmission
td Time for data packet transmission
ta Time for ACK transmission

tdifs Time for DIFS transmission
p End-to-end probability of collision

E[Dmac] Expected single-hop delay
E[Dtrans] Expected end-to-end delay

BUDP UDP throughput
MSS Maximum segment size
RTT Round-trip time

n Proxy hop length
m Source-destination hop length

E[Dq] Expected queueing delay
λ Packet arrival rate
µ Packet service rate

E[Dproxy] Expected end-to-end delay with proxies
Bproxy End-to-end throughput with proxies

25

3.1. MULTIPLE CHANNELS CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

fc. A simplified technique is to assume an ideal filter which is capable of meeting these requirements. As

the name suggests, ideal filters are unattainable, but they are reasonable enough for our analyses. Thus,

to analyze the adjacent channel effects, the power densities of a signal on channel x (such that x ∈ κ) and

the possibly interfering channels y (such that y ∈ κ and y 6= x) must be determined. Assuming a random

signal with a power density function as a sinc function occupying the 20 MHz bandwidth, the percentage of

channel y on channel x is found as follows:

θ =

∫ ∞

−∞
Pwrx(f) · Pwry(f)df
∫ ∞

−∞
Pwrx(f)2df

(3.1)

where Pwrx is the power spectrum density of a signal on channel x and Pwry is the power spectrum density

of a signal on channel y.

This fraction of signal overlap represents the contributed levels of noise from adjacent channels (y). It

can then be used to calculate a normalized signal to noise ratio SNR of the interfering stations. If Pwrx

denotes the received power and Pwry represents the same signal at the same location on channel y, then

the SNR parameter is

SNR =
signal

noise
(3.2)

=
Pwrx

Pwry

(3.3)

=
1

θ
. (3.4)

As we are only discussing the effects of multiple channels here, the noise parameter in Eqn. (3.4) does not

consider the noise from external transmission sources outside of the mesh network.

With the estimated SNR values, we can further estimate the bit error rate of the system as a result of

the interfering adjacent channels. The bit error rate is dependent upon the particular modulation used for

the wireless communication. Assume that the data rate is operating at 11 Mbps, which is the maximum

theoretical data rate achievable for an 802.11b system. At this particular rate, the quadrature phase shift

keying (QPSK) technique is used for modulation. The bit error rate BER associated with QPSK is

BER = Q(

√

2
Eb

No

, (3.5)

26

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.2. MAC ANALYTICAL MODEL

where,

Eb

No

= (SNR)(
BW

rate
). (3.6)

This bit error rate calculation uses the Q probability function for standard normal distributions. The per

bit energy to noise ratio Eb

No

is commonly used to calculate bit error rates, which is a function of the SNR,

the channel’s bandwidth BW and the data’s rate. Before this adjacent channel analysis can be useful, it

needs to be translated into the packet error rate PER as follows:

PER = 1 − (1 − BER)l, (3.7)

where l represents the length of the packet in bits. We should expect channels that are further separated in

channel number to provide lower packet error rates as the overlap between channels is also reduced.

3.2 MAC Analytical Model

Before trying to evaluate the end-to-end throughput across multiple hops, we need to understand the per-hop

performance. As our goal is to employ a pre-existing MAC protocol associated with WLANs, the analytical

model needs to obey the 802.11 protocol as described in the previous section. Different analytical models

[22, 23, 24, 25] have been developed for the 802.11 protocol. The one developed in [22] uses a Markov

model representing the backoff stages. Using this methodology, a normalized throughput across a single

hop for WLAN was formulated. The models used in [22, 23] only consider a saturated traffic model, which

assumes that the buffers in a node always have packets ready to transmit. The operating model should be

slightly different in a multi-hop environment. That is, a frame transmission at a node may depend on the

transmissions from the previous node(s). As a result, the transmission buffers for each of the nodes do not

necessarily have a packet to send at all times, especially if there are excessive delays at the previous node(s).

In the case that a large amount of data such as a file is being transmitted, it can be assumed that the source

node of an end-to-end connection operates under saturated conditions. On the other hand, subsequent nodes

proceeding the source node within the path will likely experience conditions consistent with a non-saturated

model. Hence, in [24, 25], a similar Markov-based analysis for the non-saturated scenario has been developed

also for WLAN single hop communications. These models neglect to consider the effect of multiple channels.

Hence in this section, we extend and devise an analytical model combining these saturated and non-saturated

27

3.2. MAC ANALYTICAL MODEL CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

WLAN models for the purpose of multi-channel wireless mesh networks.

Our initial goal is to model the probability of a packet colliding or being corrupted. A collision occurs

when two or more nodes attempt to transmit a packet at the same time, or more particularly during the same

time slot. Based on this simplified explanation, the probability of collision when transmitting on channel i

is given as follows

pi = 1 − (1 − τi)
Ii−1+h · f(Ij) (3.8)

where τi represents the probability of a node transmitting on channel i, Ii−1 represents the number of nodes

in Rir using channel i minus itself, h represents the number of hidden nodes, and f(Ij) is the probability

that the packet on channel i is not corrupted by noise from adjacent channel interference. It should also be

noted that this collision probability is based upon the first person view, as seen by the node itself.

Transmissions from the Ij nodes on adjacent channel j, where j ∈ κ, may not be heard or interpreted by

MAC layers of neighbouring nodes. These adjacent channels are interpreted merely as noise. If this noise

exceeds a certain threshold in which the node in question is unable to correctly read a signal, the frame is

discarded. On the other hand, the transmitting node interprets the dropped frame as a collision since no

acknowledgement (ACK) or CTS message is received in return. Thus, the transmitting node interprets the

dropped packet as a collision, since no ACK or CTS message is received in return. The f(Ij) probability is

required to handle this noise and adjacent channel interference.

If the mesh network consists of randomly placed nodes in the topology, determining the values for Ii

(such that i ∈ κ) and parameter h requires finding the density of the nodes. Thanks to the topology-based

considerations of Chapter 2, the difficult task of finding the node density is not necessary. If we consider

a single multi-hop communication, it is safe to consider a chain of nodes. Suppose once again we consider

a single multi-hop communication session. Using the simplified chain topology shown in Fig. 1.2, we can

see that the number of interfering nodes is relatively less for nodes closer to the source or destination. For

example, assume a transmission is being attempted from nodes s1 to s8; therefore, the number of interfering

nodes for s1 is two, while the number of interfering nodes for s4 is four. The number of hidden nodes, which

cause many of the observed collisions, also varies: node s1 would be exposed to one hidden terminal, while s4

would be exposed to two hidden terminals. With a suitable mesh protocol, the number of interfering nodes

and the number of hidden nodes can be controlled. When using multiple channels, these numbers decrease

since nodes are not obligated to share the medium with as many neighbouring nodes. The orthogonal

28

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.2. MAC ANALYTICAL MODEL

channel case should theoretically provide the best scenario in terms of the number of interfering nodes and

probability of collision.

Without including f(Ij) in Eqn. (3.8), the model would only take into consideration co-channel interfer-

ence with known nodes in the mesh network. The probability of not having any corruption can incorporate

the effects of external noise sources and/or adjacent channel interference. It is assumed that this probability

of having no corruption from channel j is mutually exclusive to the probability of a successful transmission on

channel i, which allows us to multiply the two terms. Since each channel has a bandwidth of approximately

20 MHz, it is safe to assume that a channel separation of more than 5 channels does not produce a significant

amount of interference; therefore the f(Ij) term approaches a value of one. It is apparent that there will be

a tradeoff between the number channels available and the number of interfering nodes.

In Eqn. (3.8), the probability of transmission was introduced. A Markov model, which represents the

backoff counter, is used to describe this probability of a node transmitting in a given time slot τ . using the

saturated model described in [22], the two-dimensional Markov chain is depicted in Fig. 3.2. The theory

behind this relates to 802.11’s binary exponential backoff mechanism. As mentioned in the earlier description

of the 802.11 protocol, a node will defer its transmission for a random time uniformly distributed between

0 and 2zWmin, upon experiencing a collision. Solving this Markov chain leads to the determination of the

probability of a node transmitting on a channel i in a given time slot:

τi =
2(1 − 2pi)

(1 − 2pi)(Wmin + 1) + piWmin(1 − (2pi)max)
(3.9)

where Wmin represents the minimum contention window, max represents the maximum retries upon en-

countering a collision, and pi represents the probability of collision described earlier.

Generally, this saturated model would only be applicable to the source node. Subsequent nodes in the

multi-hop chain are dependent upon the previous hops’ transmissions. These nodes may not always have

a packet to transmit, and should be analyzed as being in non-saturated conditions. In this scenario, the

transitions between states is not as simple as the state transitions in Fig. 3.2. In this case, we need to take

the arrival rate of packets to the particular node into careful consideration. Arrival rates of packets allow us

to estimate whether or not the node has a packet to transmit in a given time slot. Using the non-saturated

model developed in [24], the modified Markov chain is depicted in Fig. 3.3. The additional states, indicated

by the dotted box outline, depict the states after transmitting a packet successfully. As shown in Fig. 1.3,

29

3.2. MAC ANALYTICAL MODEL CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

Figure 3.2: Markov chain for the 802.11 backoff mechanism under saturated network conditions

30

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.2. MAC ANALYTICAL MODEL

Figure 3.3: Markov chain for the 802.11 backoff mechanism under non-saturated network conditions

31

3.2. MAC ANALYTICAL MODEL CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

the MAC protocol undergoes an additional backoff after successfully transmitting a packet. Traditionally in

the saturated framework, another packet is ready to transmitted after this additional contention window. In

a non-saturated network, there may not be a packet available to transmit. Once again, solving this Markov

chain leads to the determination and re-evaluation of the probability of a node transmitting on a channel i

in a given time slot:

τi = (
1

b
)(

q2

1 − q
)(

Wmin

(1 − pi)(1 − (1 − q)Wmin)
− (1 − pi)) (3.10)

where,

b = (1 − q) +
q2Wmin(Wmin + 1)

2(1 − (1 − q)Wmin)

+
q(Wmin + 1)

2(1 − q)

(

q2Wmin

(1 − (1 − q)Wmin)
+ pi(1 − q) + q(1 − pi)

2

)

+
piq

2

2(1 − q)(1 − pi)

(

Wmin

1 − (1 − q)Wmin

− (1 − pi)
2

)

·

(

2Wmin

1 − pi − pi(2pi)
max−1

1 − 2pi

+ 1

)

.

When dealing with non-saturated networks, the probability of transmission is dependent upon the probability

of a packet being available in the transmission buffer q; this parameter is closely related to the arrival rate

of packets. In a multi-hop network, the probability of transmission is now dependent upon the arrival rate.

When operating with multi-hop networks, the arrival rate of packets to a node sx is dependent upon the

transmission rate at the previous node sx−1 and the appropriate propagation delays. The values for pi and τi

can be calculated by solving the system of non-linear equations. Then, if the number of wireless channels is

large in a mesh network, then the complexities of these calculations increase, since the number of equations

and number of unknowns increases for each channel.

The backoff mechanism of the 802.11 protocol requires the contention window to count down. As per the

protocol, it will only countdown when no node in its carrier sense range transmits. As the previous equations

were from the first person perspective of the node, the following equations take on a broader picture through

a third party view. As such, the probability evaluations should not be confused. When a node senses another

transmission on the channel in use, the backoff counter is required to freeze. The amount of time that the

counter is frozen relates to the network allocation vector (NAV), if it is used. When the node is counting

32

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.2. MAC ANALYTICAL MODEL

down, we can consider this as the node being idle for a slot time σ. Suppose that PI is the probability

that a channel is deemed as being idle. Based on this understanding of the 802.11 protocol, the probability

of a node being idle depends on the probability that no node in carrier sense range is transmitting Ptr in

that given time slot. Considering Ii nodes, without any hidden terminal problems, this probability can be

modelled by

PI = 1 − Ptr = (1 − τi)
Ii . (3.11)

Since the analysis needs to model when to freeze the backoff counter, we also need to know when any node

in carrier sense range has successfully acquired access to the medium. Successfully acquiring access to the

channel infers that the node can successfully transmit a packet to its neighbour. From [24], the probability

of a node successfully gaining access to the a particular channel, given that a transmission does occur, is as

follows

PS =
Iτ(1 − τ)I−1

Ptr

. (3.12)

This means that of the I nodes in interference range, only one can be granted access at a particular time

slot given that a transmission occurs. Hence, all other nodes I − 1 are restricted from transmitting courtesy

of the CSMA/CA mechanism.

It is our goal to evaluate the end-to-end, or transport layer’s, performance; therefore, the per-hop MAC

layer transmission delays and rates need to be analyzed first. The single-hop throughput Blink of a particular

link as modelled in [22] is as follows:

Blink =
PSPtrE[L]

(1 − Ptr)σ + PtrPSDs + Ptr(1 − PS)Dc

, (3.13)

where E[L] represents the expected packet length, Ds represents the expected delay for successful transmis-

sions, and Dc represents the expected delay for collided packets. As we can see, the expected delay can be

essentially decomposed into idle and busy delay times. The idle time refers to the slot time when the backoff

timer is counting down. The system is considered idle, and counting down, when no node in a specific Rir

is transmitting. Conversely, the busy period can be decomposed once again to the amount of time that that

the node is in the process of transmitting or trying to transmit. If a node successfully accesses the wireless

medium, it transmits with a probability PtrPs. On the other hand, a node may encounter a collision upon

transmitting with a probability Ptr(1 − Ps).

33

3.3. TRANSPORT LAYER CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

When the RTS/CTS mechanisms are invoked, a successful transmission requires sending the appropriate

packets and waiting for suitable periods to ensure that the channel is truly idle. The time for a successful

transmission is as follows

Ds = tr + 3tsifs + tc + td + ta + tdifs, (3.14)

where tr is the delay associated with an RTS packet transmission, tsifs is the short inter-frame spacing

(SIFS), tc is the delay associated with an CTS packet, td is the time to transmit a packet, ta is the time to

transmit an acknowledgement packet, and tdifs is the DCF inter-frame spacing (DIFS). These inter-frame

spaces are the necessary delays to ensure the channel is idle. Since RTS packets are sent to ensure that it

is safe to transmit and not impeded by hidden terminals, an unsuccessful transmission will find a collision

after transmitting an RTS packet but not receiving an CTS packet in return. Hence, the delay associated

with a collisions is found by

Dc = tr + tdifs. (3.15)

3.3 Transport Layer

Existing TCP algorithms assume that link layer errors and delays are attributed to the presence of congestion

in the network. Consequently, congestion windows prematurely resize, resulting in an inefficient use of

network resources. Compared to its wired counterpart, wireless links are more prone to errors and packet

loss, which makes existing TCP solutions unacceptable for wireless mesh networks. Therefore, packet loss

has a significant effect on the performance of a network. The usage of multiple channels, as previously

mentioned, can significantly reduce the number of collisions and packet losses. The most collisions can be

witnessed by a network with a single channel, while the network with orthogonal channels should eliminate

many of the collisions.

When using any transport layer protocols (i.e UDP, TCP, etc.), packets are often required to hop across

many links. Since there are no returning ACK messages at the transport layer for UDP, we can attempt to

find an analytical model for UDP based on the developed MAC model, which characterize the packet losses

from the link layer perspective. If orthogonal channels are used, then we may make the assumption that

each link is independent and mutually exclusive. As a result, we can take the product of each of the links

to determine the total probability of packet los across the multi-hop connection. The total probability of

34

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.3. TRANSPORT LAYER

packet loss p of a chain of m hops is

p = 1 −

m
∏

l=1

(1 − pl)
2, (3.16)

where pl represents the frame loss associated with the lth link. It is apparent that as the number of hops of

a communication flow increases, the probability of packet loss also increases. The power of two is required

to account for the reverse transmission of the MAC layer ACK. The value of pl is equal to the probability of

collision as calculated in Eqn. (3.16). It should be noted that the use of multiple channels may reduce the

number of collisions, but it cannot completely remove all packet loss from the system. Even the orthogonal

channel case is still be susceptible to packet loss from uncontrollable external sources.

Each packet that collides consequently contributes to the transport layer delay, as shown in Fig. 3.4.

From the MAC layer analysis from above, we can determine the approximate time required by a packet to

traverse across the m multiple hops from the source to its intended destination. Based on the theoretical

throughput, it is easy to derive the estimated delay of a packet across one hop E[Dmac], as the two are

inversely proportional. Using this, end-to-end delay of a packet E[Dtrans] is

E[Dtrans] =

m
∑

l=1

E[Dmac,l] (3.17)

where E[Dmac,l is the estimated delay crossing the link l.

Figure 3.4: End-to-end multi-hop, transport layer delay

As we can see, the transport layer delay of a packet is associated to the sum of all the delays of all

links across the multi-hop connection. Each link may suffer from different probabilities of collision; hence,

each link will also suffer from different packet delays. Since UDP operates in a connectionless fashion, this

35

3.3. TRANSPORT LAYER CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

particular delay analysis can be used to calculate the throughput of a UDP session, as shown in Eqn. (3.18).

BUDP =
MSS

E[Dtrans]
, (3.18)

where MSS refers to the maximum segment size. The connectionless nature of UDP infers that data is not

guaranteed to be received at the intended multi-hop destination. UDP-based traffic sources will continue to

push packets into the network at a constant rate regardless of whether packets have been received correctly.

It is easy to observe that the UDP throughput depends upon the MAC layer performance, but the TCP

throughput is more complicated to analyze. Unlike UDP, TCP provides a connection oriented approach that

ensures reliability of properly ordered packets. Therefore, this relates directly to the designs of congestion

control algorithms that are embedded within the TCP protocol. But, the devised probability of packet

loss shown in Eqn. (3.16) can help comprehend and model the end-to-end TCP throughput. Modeling of

TCP throughput in wired networks has been thoroughly investigated in [26], which has focused on congestion

avoidance design. In general, the throughput is inversely proportional to RTT and also inversely proportional

to p. Therefore, when RTT and/or p is decreased the throughput is improved. The RTT of a packet should

be estimated regarding sending through all hops with a returning transport layer ACK message. The RTT

of a perfect forwarding and returning scenario can be estimated as

RTT = 2 ∗ E[Dtrans]. (3.19)

Due to the retransmissions associated TCP protocols, this RTT has to be modified in order to properly

model multi-hop TCP sessions. It is our outright goal to use proxies to improve this overall throughput,

by attempting to reduce these parameters. These modelling parameters can depict a suitable relationship

between throughput, round-trip time, and packet loss probability. Using our calculations for probability

of packet loss and RTT, we can further observe the relationship between transport layer and MAC layer

characteristics. Therefore, we shall carry out experiments to measure the overall system performance for

TCP connections.

Furthermore, upon transmitting across multiple hops, a queueing delay is incurred at each hop. The

queueing delay experienced on a per-hop basis effects the end-to-end throughput. But for TCP proxy

design, discussed in the following section, it may not change due to the storing time at each TCP proxy.

36

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.4. TCP PROXY

Hence, it is safe to exclude this particular type of queueing delay from our analysis.

3.4 TCP Proxy

Apart from multi-channel designs, TCP proxies can be introduced into the wireless mesh networks in attempt

to further improve the overall performance of TCP connections. The proxy concept can be found in Split

TCP [27] and indirect TCP [28] designs. They were originally designed to separate wired and wireless links,

by introducing TCP proxies to separate the different mediums. In light of poor TCP performance in multi-

hop single channel 802.11 networks, a combination of n-hop TCP proxies and multi-channel design can be

introduced along the path between any pair of communicating devices.

The proxy concept breaks long, multi-hop connections into relatively shorter connections with fewer hops.

As shown in Fig. 3.5, an extra transport layer is added between the source and destination, which intercepts

the packets traversing across the multiple hops. In general, as shown in Eqn. (3.16), the probability of

packet loss p grows with the number of hops. Therefore, these shorter connections inevitably provide the

TCP connection with a tighter control. Shorter connections infer that fewer retransmissions are required

to traverse across the entire end-to-end connection; retransmissions now only need to be sent from the

previous proxy. The n-hop TCP proxy design splits a long multi-hop TCP connection into multiple TCP

connections. Each of these connections has fewer number of wireless hops, which may be able to improve

the TCP performance. For example, consider a path with seven wireless hops as shown in Fig. 3.6. A

typical TCP connection would be established between the first and eighth node, in this scenario. If a 3-hop

TCP proxy design is used, then there are ⌈8/3⌉ = 3 shorter TCP connections. Now, three TCP connections

are established: the first connection is established between the first and fourth nodes; the second between

the fourth and seventh nodes; and the last connection for the remaining nodes. The proxy is set up simply

by observing the time-to-live (TTL) field in the packet’s Internet Protocol (IP) header. Whenever it has

decremented by a multiple of n, a TCP proxy should be set up for this connection at the station.

Although TCP proxy design requires almost no changes to the TCP specification, the cost associated

with using proxies is the excessive buffering and queueing delays at each of the proxies. The additional

transport layer used to intercept packets must buffer these packets in order to properly operate the separate

TCP connection, which adds the delay in question. In order to determine this queueing delay, we need to

determine the arrival rate λ and the service rates µ at the transport layer, as also shown in Fig. 3.5. The

37

3.4. TCP PROXY CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

Figure 3.5: TCP proxy layers and added queuing delay

Figure 3.6: TCP proxy example using 3-hop proxies (n = 3)

38

CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS 3.4. TCP PROXY

arrival rate is dependent of the TCP goodput, as we are now only concerned with useful application layer

data and not underlying protocols’ overheads. Goodput is considered for the arrival, instead of throughput,

since only in order data packets are forwarded to the next proxy. On the other hand, the service rate

is dependent upon the speed at which the MAC layer can handle packet transmission, as shown by Eqn.

(3.13). This is why goodput is a more valid means of evaluation then throughput. Assuming links are

never permanently broken, all data packets transmitted will eventually be received through proper TCP

retransmission. However, through our experience in setting up the testbed, links may fail if too many

collisions have occurred, as a result of TCP permanently closing the connection. Assuming that the nodes

operate as an M/M/1 queueing system, the expected queueing delay across one proxy Dq is as follows:

E[Dq] =
1

µ − λ
. (3.20)

For an n-hop proxy to run on an m-hop source-destination pair, there are ⌈m/n⌉ TCP connections with

fewer numbers of wireless hops. This performance can be summarized by the delays incurred as a packet

traverses across all m hops, as shown in Fig. 3.7. For simplicity, we will also assume that each proxy incurs

the same delay. Therefore, the total end-to-end delay using proxies is

E[Dproxy] =

⌈m

n
⌉

∑

i=1

(E[Dtrans,i] + [E[Dq]) (3.21)

where E[Dtrans,i] is the travelling delay to reach the i-th proxy from the (i−1)-th proxy. When the value of

n is relatively small, many proxies are required to establish the end-to-end connection. If there are too many

proxies, these delays can accumulate to the point where using proxies is counterproductive. On the other

hand, when n is relatively large, we run into the problems associated with long connections as described in

Eqn. (3.17). As a result of these properties, there is an apparent trade-off between the number of proxies

and the length of the proxies within a single end-to-end connection. Thus, the goodput can be approximated

by associating the delay found in Eqn. (3.21) and the maximum segment size of a packet (MSS),

Bproxy =
MSS

E[Dproxy]
(3.22)

39

3.5. SUMMARY CHAPTER 3. ANALYSIS OF MULTI-CHANNEL WMNS

Figure 3.7: End-to-end multi-hop, TCP proxy delay

3.5 Summary

From the physical layer to the transport layer, nodes are susceptible to the effects of interference from

neighbouring nodes. Whether operating over a single channel or multiple channels, latencies are created

throughout the network as packets traverse across a series of nodes. Even along a chain of nodes, it was

shown in this section that co-channel interference effects can be quite detrimental to the operation of the

network. It is important to understand, and attempt to overcome, this intra-path behaviour first. When

using a single channel, the underlying 802.11 protocol forces nodes to defer their transmissions creating

heavy delays in the system that add up across the multiple hops. The usage of multiple channels should

limit the number of interfering nodes, and consequently allow for all links across the multiple hops to be

active simultaneously. Thus, performance measures and delays should be improved upon using multiple

channels. The following section will help verify this analysis to demonstrate the gains from using multiple

channels and the need for adopting TCP proxies.

40

Chapter 4

Performance Measurements

Various algorithms and protocols have been researched and developed within the research community, but

much of these designs have only been tested via a simulator. Simulators such as NS-2 [29] provide an

inexpensive, fast and convenient means of evaluating a design. However, the use of simulators only provides

a mere estimate, and likely only an upper-bound on the achievable performance. Real wireless networks

would inevitably be affected by uncontrollable factors. Unfortunately, these simulators do not operate under

the same set of parameters as testbed experiments. Actual wireless networks would inevitably be exposed to

uncontrollable, and random, interferences. Therefore, the other option is to implement a testing protocol in

a wireless mesh network testbed. Previously unknown hardware and interference delays can only be found

when implemented on a testbed environment. What may work nicely in the controlled environment of a

simulator may not work as nicely in a real-time multi-radio multi-channel wireless mesh network testbed.

Therefore in this section, we evaluate and compare the performance of transport layer traffic along single-

channel and multi-channel 802.11 wireless mesh networks by means of a wireless testbed. Additionally for

TCP traffic, n-hop TCP proxies are also added in the experiments. There are numerous difficulties in setting

up a multi-hop wireless testbed, which are susceptible to uncontrollable interference from sources outside

of the testbed. It is difficult to mitigate these noises, as they can be found easily everywhere. The testbed

topology follows the setup shown in Fig. 1.2. Each station operating under Linux v2.6 is equipped with two

Atheros-based 802.11b compliant wireless cards, such that there is no requirement for channel switching.

As we are dealing with a chain topology, the required number of radios (r = 3) for the 3-channel 6-radio

scenario is no longer necessary. For experiments, all data packets are transmitted with an equal size of 1500

41

4.1. CHANNEL SWITCHING CHAPTER 4. PERFORMANCE MEASUREMENTS

bytes (the MSS), and are transmitted over 11 Mbps capacity links. An unmodified 802.11 MAC protocol,

which implements CSMA/CA, is used. It should be noted that the RTS and CTS messages are always

transmitted at 1 Mbps as per the specification. On a similar note, the fragmentation capability of the MAC

layer is disabled to ensure that each packet is preceded with its corresponding RTS and CTS messages. The

reasoning for the necessary RTS and CTS messages will be further emphasized in Chapter 5. With regards

to TCP, the NewReno congestion algorithm is implemented for both the proxy case and the scenario without

proxies. A summary of the testbed parameter settings is provided in Table 4.1.

Table 4.1: Testbed parameter settings

Attributes Values
Network size, m 2 to 8 nodes
Channel set 1 κ = {1}, K = 1
Channel set 2 κ = {1, 4, 8, 11}, K = 4
Channel set 3 κ = {1, 6, 11}, K = 3

Data payload size 1500 bytes
Basic rate 1 Mbps
Data rate 11 Mbps

Min. contention window, Wmin 32
Max retries, max 7

4.1 Channel Switching

We have demonstrated that when attempting to set up a testbed under the K-channel N-station topology

for wireless mesh networks, each node may be equipped with varying number of radios. If the number of

transceivers in a node is identical to the number of operating wireless channels, then each transceiver can

simply be locked to each operating channel frequency. However, if the number of transceivers at a node is

fewer than the number of packet relaying channels (i.e. r < K), then the operating frequency channel of

a wireless card has to be switched upon being needed. This dynamic channel switching allows the wireless

mesh network to function properly in the multi-channel setting.

Experiments have been carried out on setting up channels for path establishments among source and

destination pairs. Portions of the Linux kernel module code developed to support this functionality, and the

mesh network framework, is supplied in Appendix B. The source and destinations are separated by m hops,

where 1 ≤ m ≤ 5. Each station contains three radios: one for control message passing and coordination;

42

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.1. CHANNEL SWITCHING

and two radios for packet relaying (r = 2) meant to accommodate for ingress and egress traffic. It should be

noted that the control channel is shared amongst all meshing nodes. Hence, the channel behaves similarly

to a single channel multi-hop communication. What differentiates this control channel from the typical data

relay channel is the size of these control packets. Channel setup packets can be much less than the maximum

segment size. Smaller packets tend to occupy the channel for a relatively shorter amount of time. The

experiments are aimed at finding the delay incurred by switching channels, and the nature of these delays

as hop length increases. The tests were run 100 times and the averages, standard deviations, and variances

were determined. The results of these findings are graphicallyh shown in Fig. 4.1 with a 95% confidence

interval. In this setup, the channels were set to 4, 8, and 11 repetitively along the wireless hops. It should be

noted that besides control information passed, no data from the application layer is transmitted to prevent

any extra overhead.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6

D
u
ra

ti
o
n
 [
m

s
]

Number of Hops

Figure 4.1: Mean setup times for dynamic channel switching

43

4.2. UDP MEASUREMENTS CHAPTER 4. PERFORMANCE MEASUREMENTS

From these measurements, it was found that the average time duration required to set a transceiver radio

to a specific channel takes about 3.97 msec. This result is specific to the Atheros wireless cards used; different

cards can achieve different channel switching times. Looking at how a typical network interface card switches

channels provides some light as to why the duration is quite large. When the operating system requests to

change the channel, the device must be completely reset. The channel switching time is considerably large,

with respect to the time required to transmit a single packet. As dynamic channel switching can provide an

improved level to wireless networks, it is safe to assume that in the future these channel switching times will

decrease as new technologies are introduced. As of now, this latency cannot be ignored, and must be taken

into consideration when designing the corresponding protocol.

As we can see from the results in Fig. 4.1, the measured setup durations are about linear, especially

when the number of hops is small. Indeed, when the number of hops are four or five, the mean setup

times get longer and have a greater variance, but still maintains a linear growth on average. It is important

to note that the behaviour of these setup times does not follow an exponential curve, as expected. This

exponential trend, commonly associated with data communication over multiple hops will be demonstrated

in the following section. Although seemingly small, this delay can hinder the performance of a network. As

each node is required to perform channel switching, the incurred delays add up as the network scales to

larger hop counts. If properly handled, this form of channel switching can be reasonable for establishing

multi-hop multi-channel wireless mesh networks.

4.2 UDP Measurements

Before implementing the TCP proxies, it is important to next evaluate and confirm the performance gains

from using multiple channels. To do so, we temporarily omit the control channel and channel switching

operations described in Section 4.1. Three sets of experiments have been carried out. The first experiment is

to compare the throughput performances of an m-hop source-destination pairing, for 1 ≤ m ≤ 7, such that

each link in the network operates on a single available channel (K = 1). The second test case operates under

the same topology using four overlapping channels (K = 4). This setup may suffer side-lobe interference,

but it has four times as many available channels to communicate than its single channel counterpart. Lastly,

three orthogonal channels are used in the testbed. No channel assignment is needed in this scenario because

they are each orthogonal.

44

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.2. UDP MEASUREMENTS

Using UDP, we are able to investigate the direct relationship between the number of hops across a multi-

hop connection, while not being restricted by the congestion window of a TCP connection. To observe the

effect of multiple hops prior to the introduction of multiple, a single channel network was initially tested.

Observing the effects of a multiple hop communication provides us with a point of comparison for the

proceeding discussions on the effects of multiple channels. Tests have been performed by transmitting a

large number of packets over an m-hop source-destination pair, for 1 ≤ m ≤ 7. Sending a large number of

packets is consistent with the idea that the source node is always saturated. For the testbed experiments, 5000

packets were transmitted to give the effect of a saturated source node. Based on these testing scenarios, the

mesh network testbed UDP results using a single channel (Channel Set 1) is shown in Fig. 4.2. The derived

analysis from Eqn. (3.18) for UDP performance is then compared against the measured testbed results.

The model was evaluated based on MATLAB simulations (see Appendix A). For the MATLAB simulations,

it should be noted that no packets are transmitted as the different models attempt to accomodate for the

saturated and non-saturated conditions. The results from the MATLAB evaluations are plotted against the

testbed results of Fig. 4.2 to emphasize the validity of the model. Exact data for the single channel UDP

case is summarized in Table 4.2.

From this test, it can be seen that the mathematical analysis provided in Chapter 3 matches closely to the

tested results; thus, helping prove the validity of the analytical method. It is apparent that as the number of

nodes increases the throughput decreases. This is consistent with our analysis since increased hops translates

to increased probability of packet loss, which in turn translates into increased delay. An increased delay leads

to the observed decrease in throughput. For an 11 Mbps backbone single-channel network, the goodput of

UDP traffic goes from around 5 Mbps for 1-hop down to 2 Mbps for 3-hop transmissions, eventually dropping

to below 1 Mbps for the 7-hop transmissions. A single-hop communication as shown by the first point in

the graph expectedly performs at the highest level, as it does not need to share and contend for the medium

with other nodes in the network. As more hops m are added to the system, more co-channel interference is

introduced. Therefore more nodes have to share and contend for the same wireless medium, which results

in the seemingly exponential drop of the curve.

Although, the analytical model does over-estimate the testbed results for the first point by 0.88 Mbps;

this translates to an approximate 5.7% drop based on the analytical model’s set of data. As previously

mentioned, the real-life factors affecting the testbed’s transmissions is difficult to match to all parameters of

a simulation; various assumptions are necessary to adequately model the system. Although relatively small,

45

4.2. UDP MEASUREMENTS CHAPTER 4. PERFORMANCE MEASUREMENTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7 8

D
a
ta

 r
a
te

 (
M

b
p
s
)

Number of Hops

Testbed
Analysis

Figure 4.2: Single-channel 802.11 wireless mesh networks based on UDP session

46

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.2. UDP MEASUREMENTS

the main factor that can possibly cause this difference is the noise from surrounding wireless transmission

sources. As tests were performed in an academic environment of a university, the school’s pre-existing wireless

network operating on the same frequency bands can potentially interfere with the proper transmission and

reception of packets. Another discrepancy between the analytical results and testbed results is noticeable at

the longer hop counts. For example, at the longest hop length of 7 hops, a discrepancy of 0.31 Mbps. This

discrepancy is much more significant than that noticed for the first hop, as the difference is approximately

42% of the analytical data. As multi-hop communication is being implemented, discrepancies from each hop

of the connection adds up; thus, it makes the discrepancies at longer hop counts relatively more significant.

In addition to the noise (if any), the additional discrepancy can possibly be attributed to the assumption

of interference range. The MATLAB simulations were based on the assumption that the interference range

was based on Rir = 2 × Rtx. For the smaller values of m, the number of nodes in the Rir and the number

of hidden nodes h are relatively fewer; this infers that an underestimation of these parameters has a less

significant effect for smaller values of m. Despite these discrepancies, the model still matches quite closely

to the actual testbed results.

To mitigate the impact of co-channel interference, as observed in the plotted single channel UDP graph

of Fig. 4.2, multiple channels are additionally used in the chained topology. Under similar topology and

conditions as the single channel scenario, the overlapping channel (Channel Set 2) and orthogonal channel

scenarios (Channel Set 3) are shown in Fig. 4.3. Once again, tests were performed. Tests have been

performed by transmitting a large number of packets over an m-hop source-destination pair, for 1 ≤ m ≤ 7.

To reduce the effect of random anomalies in the network, the tests were run 100 times and the average was

found. Based on these averages, deviations, and variances the 95% confidence interval was determined.

When using the partially overlapping channels, i.e., channels 1-4-8-11, there are slight improvements over

the single-channel network testbed. A similar trend of exponential decrease is apparent upon comparison to

the single channel case. In this specific case, co-channel interference is reduced by increasing the value of K

from one to four. Consequently, the introduction of overlapping channels adds a significant level of side-lobe

interference, or more commonly known as adjacent channel interference. Recalling back to the description

of the frequency spectrum shown in Fig. 1.4, nodes s1 and s2 will undergo the effects of adjacent channel

interference, despite overcoming co-channel interference Recalling that distance is an important factor in

interference and carrier sensing ranges, the distance between the these two nodes is not large enough to

prevent the system from overcoming adjacent channel interference. One important point to observe from

47

4.2. UDP MEASUREMENTS CHAPTER 4. PERFORMANCE MEASUREMENTS

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

D
a
ta

 r
a
te

 (
M

b
p
s
)

Number of Hops

Multi-channel:1-6-11
Multi-channel:1-4-8-11

Single channel

Figure 4.3: Single-channel and Multi-channel UDP performance

48

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.2. UDP MEASUREMENTS

the usage of Channel Set 2 relates to the increase in throughput from m = 2 to m = 3. Referring back

to the frequency spectrum once again, the third hop which operates over the eighth channel can safely be

considered orthogonal to the first channel; therefore, this is allows for both links (the link between s1, s2

and the link between s3, s4) to be active and undergo transmission simultaneously. It is this simultaneous

transmission capability that provokes this effect. The additional levels of interference result in only a slight

improvement. With the extent of this improvement, it may not warrent the possible usage within a wireless

mesh network. Further testing regarding overlapping channels is required, as performed by the following

sections, to deem this channel set as a possibility. Despite the gains from having multiple active links, it

seems that the increased adjacent channel interference cancels most of the gains by reducing co-channel

interference.

Upon using orthogonal channels, i.e., 1-6-11, significant improvements are observable. Noticeable gain is

observable, especially if the distance between source and destination nodes are within three hops (m = 1,

m = 2, and m = 3). For a three orthogonal multi-channel network, measured results report that the goodput

sustains around 6 Mbps from 1-hop to 3-hop UDP transmissions, dropping by only 0.31 Mbps. Once again

referring to the frequency spectrum of Fig. 1.4, it is understandable as to why the rates are sustained at

these points. In this case, the first hop (between s1 and s2) operate over channel 1, the second hop (between

s2 and s3) operate over channel 6, and the third hop (between s3 and s4) operates over channel 11. Up to

this point, all links can be activated simultaneously, and undergo transmissions simultaneously. It is this

fact that allows us to sustain the rates at the high levels. But, a noticeable drop occurs between m = 3

and m = 4. The main cause of this effect is that channels are required to begin being re-used at the fourth

hop (between s4 and s5). In this case, the first channel is re-used, as we are limited to only three available

channels. The impact of the large interference range once again impacts performance even in these simple

cases. As a result of this drop, it is safe to assume again that the interference range encompasses more than

the assumed 2 × Rtx. If this is true, each channel thus has to share and contend for the wireless medium.

Although having to contend for the channel with nodes that are multiple hops away, the number of interfering

nodes still remains significantly lower than the Channel Set 1 and Channel Set 2 counterparts. After and

including the m = 4 point, the throughput once again flattens out, and sustains a relatively consistent level

of UDP performance. This follows a similar reasoning as the first 3 hops. It is apparent here that even when

using orthogonal channels in a mere chain topology mesh network we cannot ignore the effects of hidden

terminals.

49

4.3. CHANNEL OVERLAP EFFECTS CHAPTER 4. PERFORMANCE MEASUREMENTS

Table 4.2: Average UDP Throughput

Hop Count Analytical Model Channel Set 1 Channel Set 2 Channel Set 3
1 5.03 4.15 6.06 6.11
2 2.56 2.55 2.54 5.94
3 1.71 1.91 2.76 5.80
4 1.28 1.23 1.44 1.31
5 1.03 0.40 0.56 1.13
6 0.86 0.38 0.19 1.43
7 0.73 0.42 0.15 1.22

4.3 Channel Overlap Effects

As demonstrated with the UDP results of Section 4.2, the overlapping channel usage from Channel Set 2 has

a slight improvement while the orthogonal channel case of Channel Set 3 has a relatively more significant

impact. To further understand these effects, the analysis provided in Section 3.1 can be further investigated.

Using MATLAB, the various parameters influencing this analysis were mathematically estimated (see Ap-

pendix A). Assuming an ideal filter and a random signal with a power density function as a sinc function

occupying the 20 MHz bandwidth, the fraction of channel overlap θ, the estimated bit error rate BER, the

estimated PER are calculated. The results of these calculations are summarized in Table 4.3. The noise

factor only takes into consideration the noise contributed by one channel on channel 1 (i.e. the fifth row

discusses the interference effects of channel 5 on channel 1). It is important to note that two calculations of

packet error rate are performed. The first calculation, PER1, pertains to the packet error rate associated

with a typical data packet with an MSS of 1500 bytes, which is equivalent to 12000 bits. On the other hand,

the second packet error rate PER2 corresponds to a typical 802.11 DCF control message. For example, the

RTS message is approximately 112 bytes operating at the basic data rate of 1 Mbps.

Table 4.3: Adjacent and orthogonal channel overlap simulations

Channel θ BER PER1 PER2

1 1 0.023 1 3.08 × 10−7

2 0.808 0.013 1 2.37 × 10−9

3 0.546 0.003 1 0
4 0.279 7.64 × 10−5 0.645 0
5 0.064 1.10 × 10−15 1.50 × 10−11 0
6 0 0 0 0

The three channel sets tested can be examined based on the calculated estimations of Table 4.3. The

50

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.3. CHANNEL OVERLAP EFFECTS

single channel case of Channel Set 1 relates to the first row, which shows the effect of co-channel interference

on the system. Since a single channel is inferred for this scenario, the channel overlap has a value of one

(θ = 1), which is consistent with our concept of co-channel interference. Based on this, all packets are likely

to become corrupted. But, the low bit error rate of RTS control messages infers that corresponding nodes

in the network should be able to properly read the packets in order to appropriately run the protocol’s

distributed coordination function.

The second scenario using Channel Set 2 tested the effects of overlapping channels, which incorporated

the effects of three and four channel separations. The three channel separation refers to adjacent links

operating on channel 1 and channel 4, or adjacent links operating on channel 8 and channel 11. Although

lower than the single channel case, the relatively lower power spectrum overlap causes the adjacent channel

interference. The low bit error rate can be misleading, as errors will consequently add up to provide a large

packet error rate of 64.5%. The corresponding packet error rate for an RTS control message approximates

to a value of 0; this means that a node operating on channel 1 cannot properly detect a signal occurring on

channel 4 via the RTS-CTS message handshake mechanism. The four channel separation refers to the case

where adjacent links are operating on channel 4 and channel 8 (which is equivalent to the effects of channel

5 on channel 1). The adjacent channel only contributes approximately 6.4%, causing an estimated packet

error rate 1.50 × 10−11. This is a relatively small packet error rate, which should not significantly affect

transmission occurring on the adjacent channels of 4 and 8.

Lastly, the orthogonal channel case of Channel Set 3 corresponds to the effects of channel 6 on channel

1, which is the last line of Table 4.3. Channels 7 through 11 have been omitted from the table as they

follow the same trend as the 5 channel separation shown. Based on ideal filters no channel overlap occurs for

channel separations exceeding 4 channels, there is no significant adjacent channel interference causing packet

errors. Hence, these non-overlapping channels can safely be used together to overcome some of the co-channel

interference effects. Although, it is difficult to completely remove the effects of co-channel interference as

seen from the previous section, since it is difficult to attain an ideal filter. Filters that are close to ideal can

be expensive and may not be suitable as cost is one main design goal for wireless mesh networks.

51

4.4. TCP MEASUREMENTS CHAPTER 4. PERFORMANCE MEASUREMENTS

4.4 TCP Measurements

As TCP remains the prevalent means of accessing the Internet, it would be prudent to ignore its effects.

Under similar topology and conditions as the previous UDP-based experiments, the transport layer protocol

is changed from UDP to TCP. Under these scenarios, the resulting transmission duration and throughput

from transmission of a 3-MB file are illustrated in Fig. 4.4 and Fig. 4.5, respectively. At each point for m for

all three channel sets, the average TCP throughput was found by taking the average of 100 TCP sessions.

Based on these averages, deviations, and variances the 95% confidence interval was determined and included

in the graph. A successfully designed wireless mesh network should at least guarantee high successful rate in

transmitting files, whether small or large in sizes, from a source to a destination that may be a few or many

hops away. Sending a large file is also consistent with the idea that the source node is always saturated. The

exact throughput results from the testbed experiments of the three channel set scenarios is summarized in

Table 4.4. The drivers for the atheros-based wireless cards are accompanied by an application layer program

that can be used to read the network interface’s wireless transmission and reception statistics, including

the various collisions that occur. To further understand and discuss these results, the number of collisions

between data packets measured in each of the three cases are shown in Table 4.5.

Table 4.4: Average TCP Throughput without proxies

Hop Count Channel Set 1 Channel Set 2 Channel Set 3
1 3.01 3.64 4.43
2 1.69 2.55 4.24
3 1.04 1.89 2.00
4 0.72 0.84 1.33
5 0.60 0.77 1.34
6 0.46 0.68 1.06
7 0.27 0.43 0.58

As shown in both graphs, multi-channel networks always perform better than single-channel networks. As

with the UDP results, it becomes apparent that as the number of nodes increases the throughput decreases.

This is consistent with our analysis since increased hops translates to increased probability of packet loss,

which in turn translates into increased delay. An increased delay leads to the observed decrease in throughput.

If congestion is to occur at any of the stations in the multi-hop network, the shape of throughput curve can be

significantly different than the throughput curves of its UDP counterpart. It can been seen that the plotted

curves for the single channel and multiple channel cases follow a similar shape to the previously plotted UDP

52

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.4. TCP MEASUREMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

D
u

ra
ti
o

n
 (

u
s
)

m Hops Between Source-Destination

Multi-channel:1-6-11
Multi-channel:1-4-8-11

Single Channel

Figure 4.4: Single-channel and Multi-channel 802.11 wireless mesh networks duration based on TCP trans-
mission of 3 MB file without Proxies

Table 4.5: Average number of collisions

Hop Count Channel Set 1 Channel Set 2 Channel Set 3
1 381.07 266.22 2.05
2 1039.93 4615.11 87.45
3 1818.69 6229.45 1597.3
4 2487.45 7486.86 2426.53
5 3853.12 6515.71 2357.29
6 5068.74 8697.17 2190.52
7 5120.14 9516.53 3535.13

53

4.4. TCP MEASUREMENTS CHAPTER 4. PERFORMANCE MEASUREMENTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8

D
a
ta

 r
a
te

 (
M

b
p

s
)

m Hops Between Source-Destination

Multi-channel:1-6-11
Multi-channel:1-4-8-11

Single Channel

Figure 4.5: Single-channel and Multi-channel 802.11 wireless mesh networks throughput based on TCP
transmission of 3 MB file without Proxies

54

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.4. TCP MEASUREMENTS

graphs of Fig. 4.3. The higher throughputs noticed in some of the UDP results are understandable. With

TCP being connection-oriented and UDP having a connectionless design. There is an overhead of extra

TCP packets required to establish a connection, which reduces the achievable throughput of TCP. Also as

predicted, the number of lost packets increases with number of hops for each scenario, which contributes to

the throughput trends.

In the single channel case, excessive backoffs from the carrier sensing mechanism occur, which results

in the relatively poor duration and throughput measurements. Referring to the number of collisions ex-

perienced, the RTS and CTS messages are seen to be incapable of preventing all of the collisions between

data packets. As RTS messages operate at a lower data rate causing a significantly lower packet error rate

than corresponding data error rates, they will tend to better overcome the effects of external noise factors.

Therefore, the RTS-CTS mechanism may grant access to the noisy channel, but upon transmitting the data

packet a packet error will likely occur in an excessively noisy environment. This consequently results in

the transmitter failing to receive an ACK for the lost packet, which inevitably causes a packet timeout and

retransmission of the packet. These timeouts and retransmissions lead to additional delays.

Even though there are four channels available in the second scenario to increase capacity, the RTS and

CTS messages are incapable of properly deterring packet collisions, as shown by the greater number of

collisions. Based on the data available in Table 4.3, the RTS and CTS control messages are seemingly

incapable of detecting the transmissions on adjacent channels. With the RTS-CTS handshake not properly

functioning, the MAC protocol will undergo fewer contention window backoffs as it cannot detect that the

channel is busy. Therefore, packets are pushed into the network at a higher rate causing some the reduction

in performance delays. As a result of this, the transmissions from adjacent channels will interfere with one

another causing packets to become corrupted. This is in addition to the corruptions caused by the already

noisy wireless channel. This again results in the transmitter failing to receive an ACK for the lost packet,

which is inevitably another cause of packet timeout and retransmission. These timeouts and retransmissions

lead to additional delays, and counteract the improvements of overcoming co-channel interference. Despite

the excessive number of collisions, the use of overlapping channels still outperforms the single channel case.

Once again, the use of orthogonal channels provides the best performance gains, as expected, since the

probability of collision is significantly reduced. The throughput curve for orthogonal channels demonstrates

that the lower probability of collision results in a greater throughput. Similar to the overlapping channel

scenario, RTS-CTS messages will more often detect that the channel is not busy. Although in this case,

55

4.5. TCP PROXIES CHAPTER 4. PERFORMANCE MEASUREMENTS

the channel is not busy, since the orthogonal channels do not produce a significant interference effect (as

seen in Table 4.3. Therefore, packets are pushed onto the network at a higher rate without succumbing to

as much interference. Based on the collision numbers, the system is still exposed to excessive noise levels,

but still producing less collisions than Channel Set 1. A jump in the number of collisions is noticeable

when channels begin to be re-used; this infers that the larger interference range makes RTS-CTS messages

incapable of listening to all the hidden terminals of the system. A real life wireless mesh network system

cannot completely remove these noise factors and must be taken into consideration. These results confirm

that the multi-channel case, either Channel Set 2 or Channel Set 3, is a better option.

4.5 TCP Proxies

Wireless networks are always prone to packet losses due to noise and interference within medium. As

measured and reported in Table 4.5, using multiple channels may not be able to completely eliminate all

collisions and packet losses. The usage of TCP proxies can be implemented to help counteract the effects

caused by the uncontrollable packet losses. The n-hop TCP proxy is designed to offer higher reliability for

the wireless networks in heavy packet loss environments. Experiments have been performed using a 7-hop

source-destination pair with proxies of length n for 1 ≤ n ≤ 6. The goal of the TCP proxy scheme is take

advantage of the demonstrated higher performance levels, for longer multi-hop connections. As shown in

Fig. 4.5, the worst performance was found for the measured 7-hop connections: 0.27 Mbps, 0.43 Mbps, and

0.58 for Channel Set 1, Channel Set 2, and Channel Set 3 respectively. By employing a variable number of

TCP proxies in between the end-to-end connection, it is predicted that the performance levels will exceed

these achievable data rates without using proxies. Upon adding the TCP proxy design, measured results

are plotted in Fig. 4.6. At each point for n and for all three channel sets, the average TCP throughput

was found again taking the average of 100 TCP proxy sessions. A 95% confidence interval is included. A

summary of the TCP proxy results is provided in Table 4.6.

When using a single channel, no noticeable performance gains are achieved from the introduction of

proxies to the network. This implies that the gains from shorter connections are completely counterbalanced

by the excessive queueing and buffering at the proxies. On the other hand, the relationship between proxy

length and number of proxies is clearly observable in both of the multi-channel scenarios. There is an apparent

trade-off between proxy length and number of proxies. When the value of m is small, a larger number of

56

CHAPTER 4. PERFORMANCE MEASUREMENTS 4.5. TCP PROXIES

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8

D
a

ta
 r

a
te

 (
M

b
p

s
)

n-Hop Proxy

Multi-channel:1-6-11
Multi-channel:1-4-8-11

Single Channel

Figure 4.6: Single-channel and Multi-channel 802.11 wireless mesh network throughput based on TCP
transmission of 3 MB file with Proxies

Table 4.6: Average TCP Throughput with proxies

Hop Count Channel Set 1 Channel Set 2 Channel Set 3
1 0.28 0.38 0.40
2 0.27 0.35 0.58
3 0.29 0.42 0.67
4 0.28 0.46 0.67
5 0.29 0.50 0.67
6 0.30 0.45 0.67
7 0.27 0.43 0.58

57

4.6. SUMMARY CHAPTER 4. PERFORMANCE MEASUREMENTS

proxies should be set up which may cause excessive queueing delays in the proxies. These queueing delays are

shown to exceed the gains introduced by a shorter connections. Similarly, the larger connections associated

with relatively larger values of m may have lower queueing delays but are prone to higher packet losses.

Therefore, we can see that there is an optimal point that maximizes throughput as a factor of packet loss

and channel share of the wireless capacity. In our testbed, the 3-hop to 6-hop TCP proxy designs in a

three orthogonal channel wireless mesh networks seem to give the best goodput results. For example, the

goodput of a 4-hop TCP proxy system on multi-channel network for the 7-hop TCP connection reaches close

0.7 Mbps, which is almost three times better upon comparing to the measured results for single-channel

network.

4.6 Summary

Performing experiments over a scaled down multi-channel wireless mesh network testbed are necessary to

help quantify the effects of the multi-hop communication design. The introduction of multiple channels

to the system can improve the performance of the network for UDP and TCP sessions. But, the main

problem associated with TCP-based communications is the misinterpretation of congestion in the network.

If multiple paths and multiple sources were initially tested to find the inter-path interference effects, this

issue would not have been as apparent. With the long connections being a possiblity for scaled mesh

networks, it is important to try and take advantage of shorter connections. Adopting TCP proxies allows

the system to benefit from these shorter connections, while still accommodating for the presence of long

multi-hop connections. Comprehension of the system’s end-to-end communication behaviour is important

for the development of the mesh network protocol. The delays caused by co-channel interference and adjacent

channel interference need to be minimized with the forthcoming protocol’s algorithms.

58

Chapter 5

Future Work

To properly operate as a wireless mesh network, the underlying protocol is required to be self-forming and

self-healing. This has the intention of simplifying the deployment and maintenance of such a system. As a

result of these properties, it should inherently provide a sense of reliability to clients connecting seamlessly to

the mesh. In fact, these types of networks are similar to ad-hoc networks, except that the nodes in wireless

mesh networks remain stationary and are not constrained by limited power. This allows developers to further

exploit the resources to overcome the shortcomings of a multi-hop system. Dynamic approaches may be more

suitable allowing the mesh network to adapt to the changing network conditions. With regards to using

commodity 802.11 wireless cards, dynamic channel assignment has been avoided since channel switching is

relatively slow and requires precise synchronization to avoid permanently partitioning the network. Faster,

less computationally intensive, and often less optimal techniques are required for algorithms that adjust

on the fly. These are often characterized as being centralized or distributed. Centralized networks are

often incapable of adapting to network changes quickly as time-sensitive information does not propagate

across the network as often as required. The problem with distributed networks is the excessive overhead of

distributing control information between nodes. To accommodate for this, a dedicated control channel and

control interface is introduced, as described in Section 2.1. This has the intention of separating data packets

from mesh management control packets.

Using the analysis and understanding of multi-radio, multi-channel wireless mesh networks thoroughly

discussed in the previous sections, it is the future goal to design a distributed multi-channel wireless mesh

network testbed using commodity 802.11 wireless cards. As we have already witnessed, design of a dynamic

59

5.1. SYSTEM ARCHITECTURE CHAPTER 5. FUTURE WORK

multi-channel wireless mesh network will encompass multiple layers from the standard OSI networking

model shown in Fig. 5.1(a). As the MAC layer name suggests, the layer is responsible for granting a node

with controlled channel access. With respect to the aforementioned interference issues, it is the MAC layer’s

responsibility of minimizing these interference levels and minimizing the number of collisions the transmitted

packets encounter. It is logical that the MAC layer should be responsible for channel management and channel

related operations. Although these aspects improve performance and control of the wireless medium, they

do not necessarily contribute to the goal of self-configuration. As packets are required to traverse across

multiple hops, nodes need to be aware of how they should reach corresponding nodes within the mesh;

conversely, this is the responsibility of the networking IP layer and the routing protocol. With respect to

dynamic multi-channel wireless mesh networks, the new mesh protocol is required to perform the following

operations at minimum:

• neighbour node detection

• efficient channel switching

• optimized channel assignment

• efficient notification and reporting of channel information.

• minimum cost routing

• minimized end-to-end performance.

It is important for each of the network interfaces to work together for the mesh to efficiently use its limited

available resources. The results found from the thorough analysis of this thesis should be used to design the

necessary optimization algorithms. The knowledge of channel interference, hidden nodes, interference range,

etc. must be used as metrics and weights to determine suitable mesh networking operation. As already

used in some of the experiments in this thesis, the framework for the multi-radio multi-channel system was

created (see Appendix B for snippets of the kernel module code).

5.1 System Architecture

Fig. 5.1(a) shows the lower layers of the unmodified OSI network layer. When multiple network interface

cards (NICs) are employed, each card has their own MAC layer; hence, each NIC will operate independently

60

CHAPTER 5. FUTURE WORK 5.2. CHANNEL ASSIGNMENT

and unaware of one another. It is possible for each NIC to operate independently, but this will inevitably

result in an unnecessarily large number collisions between a node’s own interfaces in addition to collisions

with surrounding nodes. For suitable level of control, a new MAC protocol is required.

There are two methods of achieving an appropriate MAC layer. The first method requires a wireless radio

frontend, for the physical layer, and an attached FPGA to test the novel MAC layer. This method can often

be quite difficult and expensive in terms of implementing and testing protocols. The second method requires

using commercially available wireless cards. With most of these cards, the MAC layer is not completely

available to reprogram within the kernel level’s driver, as shown in Fig. 5.1(a). Much of the required MAC

layer operations are programmed onto the network card’s firmware. Therefore, an additional control layer

is required to operate the mesh network, as shown in Fig. 5.1(b). The introduction of a new Mesh Control

layer can provide the control operations necessary, as the new control layer is now aware of each of the radios

attached to the node.

The open-source Linux operating system provides an adequate means of attaching a new layer between

the original MAC and the IP layers using loadable kernel modules and/or extending the functionalities of

the pre-existing drivers. Linux provides a simple mechanism known as Netfilter, which provides a series of

hooks at different points in the Linux network stack. These hooks allow new protocols to seamlessly intercept

packets as they move up, or move down, the protocol stack. Upon intercepting the packets, headers can be

added, packets can be dropped, packets can be mangled, new packets can be created, etc. Using appropriate

adjustments, new mesh control packets can be provided that perform the necessary operations stated above.

5.2 Channel Assignment

As previously mentioned, dynamic channel assignment is a key aspect in these types of protocols. To

incorporate these operations, dynamic channel switching is required. One of the main reasons that dynamic

channel assignment is avoided is the slow switching times associated with commodity hardware. Upon

switching the channel of a wireless card, the card needs to be completely reset to accommodate for the new

channel. Most wireless cards provide this option, but the latency of this operation will differ. For example,

Atheros based cards can take roughly 3 msec to switch between channels based on our tests (see Section 4.1).

This operation can be performed at the application layer, but another delay incurs from context switching

between the kernel and the application layers. Therefore, channel switching operations need to be performed

61

5.2. CHANNEL ASSIGNMENT CHAPTER 5. FUTURE WORK

(a) Original OSI network layers

(b) Mesh network layers

Figure 5.1: Network stack

62

CHAPTER 5. FUTURE WORK 5.3. NEIGHBOUR DETECTION, REPORTING AND ROUTING

as low as possible in the kernel, to avoid any excessive latencies. In such a system where switching delays

are relatively large, their delays need to be factored into optimization algorithms as a metric when choosing

channel assignments and other resource-related decisions.

5.3 Neighbour Detection, Reporting and Routing

When operating in a dynamic and distributed system, it is important that nodes are up to date on the

state of the network. Report messaging is a key functionality of any dynamic multi-channel wireless mesh

network design. Report messages need to be occasionally sent to neighbouring nodes to keep them up to

date on resource usage. Nodes need to be informed when certain links go down, links are too congested, links

are experiencing high packet loss, etc. For instance, in order to minimize the interference and prevent the

hidden/exposed node problem, neighbours need to be up to date on channel usage of neighbouring nodes.

This channel usage, which can be stored in a certain management information base, can then be used to

estimate a channel for its network interfaces upon attempting to establish a new connection. As shown in

Fig. 5.1(b), a separate module labelled MESH MIB is attached to the mesh control layer to store pertinent

information. This additional messaging system allows nodes within the mesh to work together to provide

the best performance.

The downside of such a system is that excessive information is propagated throughout the network,

which adds overhead that takes up valuable bandwidth resources from data communication. When there

are a sufficient number of available channels and radios on each node, a separate control channel interface

can be beneficial. A separate channel dedicated to this control information allows the network to maintain

up-to-date information. In turn, this up-to-date information allows nodes to make relatively better decisions

regarding the allocation of resources.

As previously mentioned, each of the nodes act as a router, which relays the multi-hop packets between

the various sources and destinations. As shown in Fig. 5.1(b), the MESH MIB is attached to the network

layer. The information maintained in the management information base allows the routing mechanism to

establish suitable routes. Any routing algorithm for ad hoc networks can technically be used.

63

Chapter 6

Conclusion

In this thesis, I have studied several aspects of designing wireless mesh networks in future. With multiple

channels and multiple radios per node, network topology with small number of nodes can be designed with

small overlapping coverage area. Then I have investigated end-to-end performance of transport layer traffic

in the mesh networks. By initially studying the interference impact in a simple chain network model, we can

devise an analytical equation which can fits the measured results of UDP traffic in a wireless chained network.

The analytical results are generated through saturated and unsaturated MAC models. The measured results

in experiments have validated the negative impact of deploying 802.11 technology for wireless mesh networks.

In order to improve the system performance, I have been able to show through experiments that combining

multiple channels with proxies is capable of improving the performance of TCP traffic in wireless mesh

networks. The experimentation provides a baseline result which enables us to understand how the multiple

hop wireless network interacts in response to even this simple scenario. The measured results for the TCP

proxy concept indicates that there are queueing delays in proxies while they provide better reliability of

traffic flow. There is a trade-off between number of proxies and the length of these proxies. The wireless

medium is volatile and susceptible to time variant packet losses. On the other hand, I have shown and

discussed different factors that may influence the decision of a suitable usage of proxies. These factors and

parameters need to be used to establish a suitable cross-layer protocol that manages and controls channel

assignment as well as proxy size, in order to provide the self-forming and self-configuring necessities of a

wireless mesh network.

65

Appendix A

MATLAB Simulations

%------------CONSTANTS--------------

tx_rate = 11*10^6; % wireless tranmsission rate/capacity [bits/sec]

tx_rate2 = 1*10^6; % transmission rate of rts, cts, acks

CW_min = 31; % minimum contention window

time_slot = 20*10^(-6); % slot time according to 802.11 [seconds]

size_data = 1500; % maximum transmission unit of data [bytes]

size_data_bits = size_data*8; % size of data [bits]

time_propogation = 1/tx_rate; % propogation time of data packet

time_propogation2 = 1/tx_rate2; % propogation time of RTS/CTS/ACK packet

% minimum total number of bits to successfully transmit a packet of data

size_total = size_data_bits + size_ack + size_rts + size_cts;

max_retries = 11; % maximum number of MAC layer retries

size_file = 3*(2^20)*8;

total_pkts = size_file/size_data_bits;

%---------------------------------

% number of nodes in interference range including itself

nodes_int_range = zeros(7,8);

% for R_ir = 2*R_tx

nodes_int_range2= [2 2 0 0 0 0 0 0;

3 3 3 0 0 0 0 0;

67

APPENDIX A. MATLAB SIMULATIONS

3 4 4 3 0 0 0 0;

3 4 5 4 3 0 0 0;

3 4 5 5 4 3 0 0;

3 4 5 5 5 4 3 0;

3 4 5 5 5 5 4 3;]

% for R_ir = 3*R_tx

nodes_int_range = [2 2 0 0 0 0 0 0;

3 3 3 0 0 0 0 0;

4 4 4 4 0 0 0 0;

4 5 5 5 4 0 0 0;

4 5 6 6 5 4 0 0;

4 5 6 7 6 5 4 0;

4 5 6 7 7 6 5 4;]

nodes_sense = nodes_int_range - 1;

num_hops = 7;

hops = 1:num_hops;

for i = 1:7

for j = 1:7

if (nodes_sense(i,j)<=0)

continue;

end

if (j==1)

tau_test = @(p1) prob_transmission(p1,CW_min,max_retries,nodes_sense(i,j),1,0,1)

- prob_transmission(p1,CW_min,max_retries,nodes_sense(i,j),1,0,2);

else

q = 1/mac_pkt_delay(i,j-1);

tau_test = @(p1) prob_transmission(p1,CW_min,max_retries,nodes_sense(i,j),q,0,4)

- prob_transmission(p1,CW_min,max_retries,nodes_sense(i,j),q,0,2);

end

p1 = fzero(tau_test,0.3);

p(i,j) = p1;

tau(i,j) = prob_transmission(p(i,j),CW_min,max_retries,nodes_sense(i,j),

q,bit_error,1);

% calculate the single node throughput

mac_tp(i,j) = calc_mac_tp(tau(i,j), p(i,j), nodes_int_range(i,j), 2);

mac_pkt_delay(i,j) = (1/mac_tp(i,j))*size_data_bits;

end

end

% calculate the multihop thorughput

Nhop_pkt_delay = zeros(1,num_hops);

for j = hops

for i=1:j

Nhop_pkt_delay(j)=Nhop_pkt_delay(j) + mac_pkt_delay(j,i);

end

68

APPENDIX A. MATLAB SIMULATIONS

Nhop_udp_tp(j)=size_data_bits/Nhop_pkt_delay(j);

end

figure;

plot(hops, Nhop_udp_tp,hops, udp_data_1ch);

69

APPENDIX A. MATLAB SIMULATIONS

% Calculate the probability of transmitting in a given time slot

% Parameter: p - probability of collision

% CW_min - MAC layer’s minimum contention window

% max_retries - MAC layer’s maximum retries

% nodes - number of nodes in interference range (excluding

% self)

% q - probability of packet arrival

% b - bit error rate

% test - test type

function [tau] = prob_transmission(p, CW_min, max_retries, nodes, q, b, test)

if (test==1)

tau = (2.*(1-2.*p))./((1-2.*p).*(CW_min+1)+p.*CW_min.*(1-(2.*p).^max_retries));

elseif (test==2)

%p_error = calc_prob_error(b);

p_error =0;

tau = 1-(1-(p+p_error)).^(1/nodes);

elseif (test==3)

b00=((q*CW_min)/(1-(1-q)^CW_min))+

((q*CW_min*(q*CW_min+3*q-2))/(2*(1-q)*(1-(1-q)^CW_min)))+

(1-q)+((q*(CW_min+1).*(p.*(1-q)-q.*(1-p).^2))/(2*(1-q)))+

((p.*q^2)./(2*(1-q).*(1-p))).*(((CW_min)/(1-(1-q)^CW_min))-

(1-p).^2).*(((2*CW_min.*(1-p-p.*(2*p).^(max_retries-1)))/(1-2.*p))+1);

tau = (1./b00).*(((q^2)*CW_min)/((1-q)*(1-p)*(1-(1-q)^CW_min))-((q^2)*(1-p))/(1-q));

elseif (test==4)

time_slot = 20*10^(-6);

size_data = 1500; % maximum transmission unit of data [bytes]

size_data_bits = size_data*8; % size of data [bits]

size_mac = 272; % size of 802.11 MAC header

size_phy_h = 192; % physical header

size_ack = 112+size_phy_h; % size of MAC’s ACK packet [bits]

size_rts = 160+size_phy_h; % size of MAC’s RTS packet [bits]

size_cts = 112+size_phy_h; % size of MAC’s CTS packet [bits]

tx_rate = 11*10^6; % wireless tranmsission rate/capacity [bits/sec]

tx_rate2 = 1*10^6; % transmission rate of rts, cts, acks

% time to transmit one data packet [seconds]

time_data = (size_data_bits+size_phy_h+size_mac)/tx_rate;

time_rts = size_rts/tx_rate2; % time to transmit RTS packet [seconds]

time_cts = size_cts/tx_rate2; % time to transmit CTS packet [seconds]

time_ack = size_ack/tx_rate2; % time to transmit ACK packet [seconds]

time_difs = 50*10^(-6); % interframe space [seconds]

time_sifs = 10*10^(-6); % short interframe space [seconds]

time_propogation = 1/tx_rate; % propogation time of data packet

70

APPENDIX A. MATLAB SIMULATIONS

time_propogation2 = 1/tx_rate2; % propogation time of RTS/CTS/ACK packet

T_s = time_rts + time_sifs + time_propogation2 + time_cts +

time_sifs +time_propogation2 + time_data + time_sifs +

time_propogation + time_ack + time_difs + time_propogation2;

T_s = T_s/time_slot;

T_c1 = time_rts + time_difs + time_propogation2;

T_c1 = T_c1/time_slot;

temp = p/(2*(1-p));

tau = (q + q*(T_s +T_c1*temp)*((1-2*p)/(1-p-p*((2*p)^max_retries)))

*(2/CW_min))/(1-q*nodes*(T_s +T_c1*temp));

else

disp(’Unacceptable parameter: test ’);

end

71

APPENDIX A. MATLAB SIMULATIONS

% Calculate the per-hop MAC layer delay

% Parameter: tau - probability of a given node transmitting in a given

% time slot

% p - probability of collision

% nodes - number of nodes in an interference range including

% itself

% test - version number of test

function [throughput] = calc_mac_tp (tau, p, nodes, test)

tx_rate = 11*10^6; % wireless tranmsission rate/capacity [bits/sec]

tx_rate2 = 1*10^6; % transmission rate of rts, cts, acks

CW_min = 31; % minimum contention window

time_slot = 20*10^(-6); % slot time according to 802.11 [seconds]

size_data = 1500; % maximum transmission unit of data [bytes]

size_data_bits = size_data*8; % size of data [bits]

size_phy_h = 192; % physical header

size_ack = 112+size_phy_h; % size of MAC’s ACK packet [bits]

size_rts = 160+size_phy_h; % size of MAC’s RTS packet [bits]

size_cts = 112+size_phy_h; % size of MAC’s CTS packet [bits]

size_mac = 272; % size of 802.11 MAC header

% time to transmit one data packet [seconds]

time_data = (size_data_bits+size_phy_h+size_mac)/tx_rate;

time_rts = size_rts/tx_rate2; % time to transmit RTS packet [seconds]

time_cts = size_cts/tx_rate2; % time to transmit CTS packet [seconds]

time_ack = size_ack/tx_rate2; % time to transmit ACK packet [seconds]

time_difs = 50*10^(-6); % interframe space [seconds]

time_sifs = 10*10^(-6); % short interframe space [seconds]

time_propogation = 1/tx_rate; % propogation time of data packet

time_propogation2 = 1/tx_rate2; % propogation time of RTS/CTS/ACK packet

% minimum total number of bits to successfully transmit a packet of data

size_total = size_data_bits + size_ack + size_rts + size_cts;

max_retries = 11; % maximum number of MAC layer retries

h=1; % number of hidden nodes

k = 1;

% First calculate probability that atleast one node is transmitting in a

% given time slot

p_tr = 1 - (1 - tau)^nodes;

72

APPENDIX A. MATLAB SIMULATIONS

% Calculate the probility that a transmission occuring on the channel is

% succesful

if (test == 1)

p_succ = (nodes*tau*(1-tau)^(nodes-1))/(p_tr);

elseif (test==2)

p_succ = (nodes*tau*((1-tau)^(nodes-1))*((1-tau)^(h*k)))/(p_tr);

end

% calculate the average time that the channel is sensed busy

% Re: T_s = RTS + SIFS + prop_time + CTS + SIFS + prop_time + phy_hdr +

% MAC_hdr + exp_payload + SIFS + prop_time + ACK + DIFS +

% prop_time

T_s = time_rts + time_sifs + time_propogation2 + time_cts + time_sifs

+ time_propogation2 + time_data + time_sifs + time_propogation

+ time_ack + time_difs + time_propogation2;

% calculate the average time channel sensed busy by collision

T_c1 = time_rts + time_difs + time_propogation2;

T_c2 = time_rts + time_sifs + time_propogation2

+ time_cts + time_difs + time_propogation2;

T_c3 = time_rts + time_sifs + time_propogation2 + time_cts

+ time_sifs +time_propogation2 + time_data + time_difs + time_propogation;

T_c4 = time_rts + time_sifs + time_propogation2 + time_cts

+ time_sifs +time_propogation2 + time_data + time_sifs

+ time_propogation + time_ack + time_difs + time_propogation2;

% calculate expected length of slot time

exp_slot_time = ((1-p_tr)*time_slot)+(p_tr*p_succ*T_s)+(p_tr*(1-p_succ)*T_c1);

% calculate expected payload size

exp_payload = p_succ*p_tr*size_data_bits;

exp_payload2 = p_succ*p_tr*time_data;

% calculate the trhoughput

throughput = exp_payload/exp_slot_time;

73

APPENDIX A. MATLAB SIMULATIONS

% Calculate the overlapping channel interference. Assume that each channel

% has the same properties.

% Parameters: seperation - sepearation of channels (i.e. if using

% channels 1 and 4; therefore seperation = 3)

% chan_bw - bandwidth of each channel

function [interference] = overlapping_chan_interference(separation, chan_bw)

% assuming ideal filters

x = -100:0.01:100;

p = power(sin(x/(chan_bw/2))./(x/(chan_bw/2)), 2);

p(10001)=1;

%create ideal filter

t = -100:0.01:100;

filt = zeros(1,size(t,2));

for R = 1:size(t,2)

if (t(R) >=-(chan_bw/2) && t(R) <= (chan_bw/2))

filt(R) = 1;

else

filt(R) = 0;

end

end

p3 = p.*filt;

%signal 2

ch_separation = 11;

freq_separation = 5*separation;

y = freq_separation-100:0.01:freq_separation+100;

%p2 = power(sin((x-freq_separation)/11)./((x-freq_separation)/11), 2);

p2 = zeros(1,size(t,2));

factor = freq_separation/0.01;

for R = 1:(size(t,2)-factor)

p2(R+factor)= p3(R);

end

channel_overlap = (p3.*p2);

overlap_power = trapz(channel_overlap);

cochannel_overlap = (p3.*p3);

cochannel_power = trapz(cochannel_overlap);

interference = overlap_power/cochannel_power;

74

Appendix B

Linux Kernel Module Code

/**

FILE: mesh_main.c

**\

#include "mesh.h"

#include "mesh_route.h"

/********************************/

static struct proc_dir_entry *mesh_proc = NULL;

static int mesh_show_stats(char *buffer, char **buffer_location,

off_t offset,int count, int *eof, void *data)

{

int len=0;

struct mesh_nbr *nbr=getNbrHead();

len = sprintf(buffer, "Address\tState\tChannel\n");

while(nbr!=NULL){

len+=sprintf(buffer+len,"%x\t%d\t%d\n",

nbr->ip_addr, nbr->channel, nbr->state);

nbr=nbr->next;

}

return len;

}

static int mesh_show_routing(char *buffer, char **buffer_location,

off_t offset,int count, int *eof, void *data)

75

APPENDIX B. LINUX KERNEL MODULE CODE

{

int len=0;

struct mesh_route *mesh_rt=getRtHead();

len = sprintf(buffer, "Address\tChannel\tState\n");

while(mesh_rt!=NULL){

len+=sprintf(buffer+len,"%x\t%x\t%d\t%d\t%s\n",

mesh_rt->dst_ip, mesh_rt->next_hop,

mesh_rt->metric,mesh_rt->channel,

mesh_rt->dev->name);

mesh_rt=mesh_rt->next;

}

return len;

}

static int mesh_show_topology(char *buffer, char **buffer_location,

off_t offset,int count, int *eof, void *data)

{

int len=0;

struct mesh_nodes *node=getNodeHead();

struct mesh_adj *adj;

len = sprintf(buffer, "Node\tAdjacencies\n");

while(node!=NULL){

len+=sprintf(buffer+len,"%x\t%u\t%d",

node->dst_ip, node->total_metric, node->seq);

if (node->valid_flag==RT_VALID && node->total_metric != 0 &&

node->gateway != NULL){

len+=sprintf(buffer+len,"\t%x\t%d",

node->gateway->ip_addr,

node->gateway->channel);

}

len+=sprintf(buffer+len,"\n");

adj = node->adj_head;

while(adj != NULL){

len+=sprintf(buffer+len,"\t%x\t%u\t%u\n",

adj->adj_ip, adj->channel,

adj->metric);

adj=adj->next;

}

node=node->next;

}

return len;

}

76

APPENDIX B. LINUX KERNEL MODULE CODE

void mesh_proc_init ()

{

struct proc_dir_entry *a, *b, *c;

mesh_proc = proc_mkdir("mesh", init_net.proc_net);

if (mesh_proc == NULL) {

printk("Unable to create the mesh proc directory\n");

return;

}

a = create_proc_entry("Mesh_Neighbours", 0, mesh_proc);

b = create_proc_entry("Mesh_routing_table", 0, mesh_proc);

c = create_proc_entry("Mesh_topology", 0, mesh_proc);

if (!a) {

remove_proc_entry("mesh", init_net.proc_net);

mesh_proc = NULL;

printk("Unable to create proc entry\n");

return;

}

a->read_proc = mesh_show_stats;

if (!b) {

remove_proc_entry("mesh", init_net.proc_net);

mesh_proc = NULL;

printk("Unable to create proc entry\n");

return;

}

b->read_proc = mesh_show_routing;

if (!c) {

remove_proc_entry("mesh", init_net.proc_net);

mesh_proc = NULL;

printk("Unable to create proc entry\n");

return;

}

c->read_proc = mesh_show_topology;

}

void mesh_proc_exit ()

{

/*unregister proc file(s)*/

if (mesh_proc) {

remove_proc_entry("Mesh_topology", mesh_proc);

remove_proc_entry("Mesh_routing_table", mesh_proc);

remove_proc_entry("Mesh_Neighbours", mesh_proc);

remove_proc_entry("mesh", init_net.proc_net);

mesh_proc = NULL;

77

APPENDIX B. LINUX KERNEL MODULE CODE

}

}

static struct net_protocol mesh_protocol = {

.handler = mesh_rcv,

};

static struct packet_type mesh_packet_type = {

.type = __constant_htons(ETH_P_MESH),

.func = mesh_rcv,

};

/*protocol registration process

registration process for layer 4 registration*/

void protocol_reg1 ()

{

/*register mesh protocol as subprotocol of IP*/

if (inet_add_protocol(&mesh_protocol, IPPROTO_MESH) < 0)

printk("inet_init: Cannot add MESH protocol\n");

}

void protocol_reg2 ()

{

dev_add_pack(&mesh_packet_type);

}

/*protocol unregistration process*/

void protocol_unreg1 ()

{

/*unregister IPPROTO_MESH*/

if (inet_del_protocol(&mesh_protocol, IPPROTO_MESH) < 0)

printk ("Cannot delete MESH protocol\n");

}

void protocol_unreg2()

{

dev_remove_pack(&mesh_packet_type);

}

static int __init mesh_init(void)

{

struct net_device *dev;

printk("Initializing Module\n");

/*set up proc file(s)*/

mesh_proc_init();

//flag_queue = 1;

78

APPENDIX B. LINUX KERNEL MODULE CODE

//status = STATE_IDLE;

/*should set channel to 1 (control channel)*/

/*if ((dev=dev_get_by_name(&init_net, "ath0"))!=NULL)

mesh_switch_ch(dev, 1);

if ((dev=dev_get_by_name(&init_net, "ath1"))!=NULL)

mesh_switch_ch(dev, 1);

if ((dev=dev_get_by_name(&init_net, "ath2"))!=NULL)

mesh_switch_ch(dev, 1);*/

protocol_reg1();

return 0;

}

static void __exit mesh_exit(void)

{

printk("Module exitd\n");

mesh_proc_exit();

protocol_unreg1();

return;

}

module_init(mesh_init);

module_exit(mesh_exit);

MODULE_LICENSE("GPL");

79

APPENDIX B. LINUX KERNEL MODULE CODE

/**

FILE: mesh_mib.c

Description:

- Mesh management information base

**\

#include "mesh.h"

struct neigh_entry * add_neighbour (__be32);

/*neighbour list pointers*/

struct neigh_entry *neigh_head;

struct neigh_entry *getNbrHead(){

return neigh_head;

}

__be32 getNextHop(__be32 dst_addr){

return 1;

}

int setNextHop(){

return 1;

}

struct neigh_entry * getNeighbour(__be32 gw_addr){

/*Search for neighbour in table*/

struct neigh_entry *nbr=neigh_head;

while (nbr!=NULL){

if (nbr->ip_addr == gw_addr)

break;

else

nbr = nbr->next;

}

/*if it does not exist in the table, add it*/

if (nbr==NULL){

nbr = add_neighbour(gw_addr);

}

return nbr;

}

/*return the status from the destination table based on destination address*/

int getStatus (__be32 gw_addr){

80

APPENDIX B. LINUX KERNEL MODULE CODE

/*Search for neighbour in table*/

struct neigh_entry *nbr=neigh_head;

while (nbr!=NULL){

if (nbr->ip_addr == gw_addr)

break;

else

nbr = nbr->next;

}

/*if it does not exist in the table, add it*/

if (nbr==NULL){

nbr = add_neighbour(gw_addr);

}

/*return it’s status*/

return nbr->state;

}

int setStatus(){

return 1;

}

/*add neighbour to table*/

struct neigh_entry * add_neighbour(__be32 gw_addr){

struct neigh_entry *nbr_ptr=neigh_head;

struct neigh_entry *new_nbr=kmalloc(sizeof(struct neigh_entry),GFP_KERNEL);

/*if unable to assign memory for the new neighbour*/

if (new_nbr == NULL)

return NULL;

if (nbr_ptr==NULL){

neigh_head=new_nbr;

}

else{

while (nbr_ptr->next!=NULL){

nbr_ptr=nbr_ptr->next;

}

nbr_ptr->next=new_nbr;

}

new_nbr->next=NULL;

new_nbr->ip_addr=gw_addr;

new_nbr->channel=0;

new_nbr->state=STATE_IDLE;

skb_queue_head_init(&(new_nbr->list));

81

APPENDIX B. LINUX KERNEL MODULE CODE

return new_nbr;

}

/*delete neighbour from table, part of garbage collector*/

int del_neighbour(){

return 1;

}

/*add destination to table*/

int add_destination(){

return 1;

}

/*delete destination from table, part of garbage collector*/

int del_destination(){

return 1;

}

void garbage_collector(){

}

static int __init mesh_MIB_init(void)

{

neigh_head = NULL;

return 0;

}

static void __exit mesh_MIB_exit(void)

{

}

module_init(mesh_MIB_init);

module_exit(mesh_MIB_exit);

MODULE_LICENSE("GPL");

EXPORT_SYMBOL(getNbrHead);

EXPORT_SYMBOL(getNeighbour);

EXPORT_SYMBOL(getStatus);

EXPORT_SYMBOL(setStatus);

EXPORT_SYMBOL(getNextHop);

EXPORT_SYMBOL(setNextHop);

82

APPENDIX B. LINUX KERNEL MODULE CODE

/**

FILE: mesh_ch.c

Description:

- Channel switching and channel handling operations

**\

#include "mesh.h"

int mesh_switch_ch(struct net_device *dev, int channel)

{

struct iwreq iwr;

iw_handler handler;

struct iw_request_info info;

int err;

// set m to channel and set e to 0 for channel change using ioctl

iwr.u.freq.m = channel;

iwr.u.freq.e = 0;

rtnl_lock();

if(!netif_device_present(dev)) {

printk("mesh_switch_ch: device not present\n");

return -ENODEV;

}

if(dev->wireless_handlers == NULL) {

printk("mesh_switch_ch: wireless handlers not present\n");

return -EINVAL;

}

handler = dev->wireless_handlers->standard[SIOCSIWFREQ-SIOCIWFIRST];

info.cmd = SIOCSIWFREQ;

info.flags = 0;

if((err = handler(dev, &info, &(iwr.u), NULL)))

printk("mesh_switch_ch: Wireless handler returned

an error value of %d\n", err);

rtnl_unlock();

return err;

}

static int __init mesh_ch_init (void){

return 0;

83

APPENDIX B. LINUX KERNEL MODULE CODE

}

static void __exit mesh_ch_exit(void){

//clear_neighbours();

}

module_init(mesh_ch_init);

module_exit(mesh_ch_exit);

EXPORT_SYMBOL(mesh_switch_ch);

MODULE_LICENSE("GPL");

/**

FILE: mesh_output.c

Description:

- Handling of outgoing messages

**\

#include "mesh.h"

#include "mesh_route.h"

/* This is the structure we shall use to register our function */

static struct nf_hook_ops nf_hook_send;

extern int (*mesh_send)(struct sk_buff *);

/*used to find the gateway IP address

But, might not be necessary if

only sending it to the neighbour

based on MAC address only, and NOT

the gateway’s IP address*/

__be32 mesh_find_gw(__be32 dest_addr)

{

struct rtable *rt;

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = dest_addr

}

},

};

if (ip_route_output_key(&init_net, &rt, &fl))

printk("MESH : can’t find route\n");

else

printk("MESH : route found\n");

}

84

APPENDIX B. LINUX KERNEL MODULE CODE

return rt->rt_gateway;

}

int mesh_sendrts (struct net_device *dev, __be32 s_addr, __be32 d_addr, __be32 gw_addr)

{

struct sk_buff *skb;

struct iphdr *iph;

//struct net_device *dev = skb->dev;

struct meshhdr *mh;

struct rtable *rt;

__be32 gw_addr_ctrl = ((gw_addr) & 0x00FFFFFF)|0x01000000;

//printk("MESH : %x\n", (d_addr && 0xFFFF0000);

do_gettimeofday(&val1);

if ((skb = alloc_skb(MAC_LEN + IPMESH_LEN, GFP_KERNEL))== NULL) {

printk("mesh_xmit: Cannot allocate socket buffer\n");

return 1;

}

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = gw_addr_ctrl,

}

},

.proto = IPPROTO_MESH

};

if (ip_route_output_key(&init_net, &rt, &fl))

printk("mesh_reply: ip_route_output_key

is unable to find a route\n");

else

printk("mesh_reply: ip_route_output_key has found a route\n");

}

//ctrlskb->dst = dst_clone(skb->dst);

skb->dst = &rt->u.dst;

skb->dev = skb->dst->dev;

skb_reserve(skb, MAC_LEN);

skb_reset_network_header(skb);

iph = ip_hdr(skb);

skb_put(skb, IP_LEN);

iph->version = 4;

iph->ihl = (sizeof(struct iphdr))>>2;

iph->tos = 0x00;

iph->frag_off = htons(IP_DF);

85

APPENDIX B. LINUX KERNEL MODULE CODE

iph->ttl = 10;

iph->daddr = rt->rt_dst;

iph->saddr = rt->rt_src;

iph->protocol = IPPROTO_MESH;

iph->tot_len = htons(IPMESH_LEN);

ip_select_ident(iph, &rt->u.dst, NULL);

ip_send_check(iph);

//skb->transport_header = skb->network_header + IP_LEN;

mh = (struct meshhdr *)skb_put(skb, MESH_LEN);

//mh = (struct meshhdr *)skb_transport_header(skb);

mh->type = TYPE_CTRL;

mh->control = RQST_CONN;

mh->channel = htons(CH5);

mh->srcip = s_addr;

mh->dstip = d_addr;

skb->protocol = htons(ETH_P_IP);

skb->dst->output(skb);

return 1;

}

unsigned int mesh_send2(unsigned int hooknum, struct sk_buff *skb,

const struct net_device *in, const struct net_device *out,

int (*okfn)(struct sk_buff *))

{

int status;

__be32 gw_addr;

struct mesh_nbr *nbr;

struct sk_buff *cpskb; /*buffer to hold copied data packet*/

printk("MESH SEND3\n");

/*IF it’s not a mesh control packet*/

if (((ntohl(ip_hdr(skb)->daddr)) & 0xFFFF0000) == convert_addr(198,168,0,0)

&&(ip_hdr(skb)->protocol != IPPROTO_MESH)){

/*get next hop address*/

gw_addr = mesh_find_gw(ip_hdr(skb)->daddr);

/*check status and destination/neighbour table*/

nbr = getNeighbour(gw_addr);

if (nbr->state == STATE_IDLE){

nbr->state == STATE_RQST_SENT;

if((cpskb = skb_copy(skb,GFP_KERNEL)) == NULL) {

printk("mesh_xmit: Cannot copy the socket buffer

to be transmitted\n");

86

APPENDIX B. LINUX KERNEL MODULE CODE

return 1;

}

// add the socket buffer to the end of the queue

skb_queue_tail(&(nbr->list), cpskb);

/*send request to send message to set up path*/

if(!(mesh_sendrts(skb->dev, ip_hdr(skb)->saddr,

ip_hdr(skb)->daddr, gw_addr))){

printk("MESH ERROR\n");

}

kfree_skb(skb);

return NF_STOLEN; /* accept ALL packets, and continue */

}

else {

/*add it to the queue or send it off immediately*/

/*therefore, pass it to scheduling thread*/

if((cpskb = skb_copy(skb,GFP_KERNEL)) == NULL) {

printk("mesh_xmit: Cannot copy the socket buffer

to be transmitted\n");

return 1;

}

// add the socket buffer to the end of the queue

skb_queue_tail(&(nbr->list), cpskb);

kfree_skb(skb);

return NF_STOLEN; /* accept ALL packets, and continue */

}

}

/*if it is a mesh packet*/

else{

return NF_ACCEPT;

}

}

int init_nf_hook_send()

{

/* Fill in our hook structure */

nf_hook_send.hook = mesh_send2; /* Handler function */

nf_hook_send.hooknum = 4; /* NF_IP_POST_ROUTING First hook for IPv4 */

nf_hook_send.pf = PF_INET;

nf_hook_send.priority = NF_IP_PRI_LAST; /* Make our function first */

nf_register_hook(&nf_hook_send);

return 0;

87

APPENDIX B. LINUX KERNEL MODULE CODE

}

/*thread function to handle scheduling of queued packets*/

int mesh_scheduling(void *arg)

{

struct sk_buff *skb;

struct mesh_nbr *nbr;

struct dst_entry *dst;

struct net_device *dev;

unsigned int hh_len;

while(1) {

nbr=getNbrHead();

while(nbr!=NULL){

if(nbr->state == STATE_PATH_EST){

if((skb=skb_dequeue(&(nbr->list))) != NULL){

/*if(dev_queue_xmit(skb)){

printk("MESH scheduling:

dev_queue_xmit returned

an error or negative integer\n");

kfree_skb(skb);

}*/

/********************/

dst=skb->dst;

dev=dst->dev;

hh_len=LL_RESERVED_SPACE(dev);

/* Be paranoid, rather than too clever. */

if (unlikely(skb_headroom(skb) < hh_len

&& dev->header_ops)) {

struct sk_buff *skb2;

skb2 = skb_realloc_headroom(skb,

LL_RESERVED_SPACE(dev));

if (skb2 == NULL) {

kfree_skb(skb);

break;

}

if (skb->sk)

skb_set_owner_w(skb2, skb->sk);

kfree_skb(skb);

skb = skb2;

}

if (dst->hh)

neigh_hh_output(dst->hh, skb);

else if (dst->neighbour)

88

APPENDIX B. LINUX KERNEL MODULE CODE

dst->neighbour->output(skb);

//kfree_skb(skb);

/***********************/

//if the queue is empty, increment counter, and

//if counter reaches certain amount,

//return state to IDLE

continue;

}

}

/*if state is IDLE or WAITING,

cannot transmit yet or has nothing to transmit*/

nbr=nbr->next;

}

msleep(100);

}

return 0;

}

static int __init mesh_out_init(void)

{

init_nf_hook_send();

/*start schuduling thread*/

kernel_thread(&mesh_scheduling, NULL, 0);

return 0;

}

static void __exit mesh_out_exit(void)

{

nf_unregister_hook(&nf_hook_send);

}

module_init(mesh_out_init);

module_exit(mesh_out_exit);

MODULE_LICENSE("GPL");

89

APPENDIX B. LINUX KERNEL MODULE CODE

/**

FILE: mesh_input.c

Description:

- Handling of incoming messages

**\

#include "mesh.h"

#include "mesh_route.h"

struct timeval val1;

struct timeval val2;

struct timeval val3;

struct timeval val4;

__be32 mesh_find_gw(__be32 dest_addr)

{

struct rtable *rt;

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = dest_addr

}

},

};

if (ip_route_output_key(&rt, &fl))

printk("MESH : can’t find route\n");

else

printk("MESH : route found\n");

}

return rt->rt_gateway;

}

struct net_device * get_gw_dev(__be32 dest_addr){

struct rtable *rt;

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = dest_addr

}

},

};

if (ip_route_output_key(&rt, &fl))

printk("MESH : can’t find route\n");

}

90

APPENDIX B. LINUX KERNEL MODULE CODE

return (&rt->u.dst)->dev;

}

int mesh_reply(struct sk_buff *skb){

struct sk_buff *new_skb;

struct iphdr *iph;

struct meshhdr *mh;

struct rtable *rt;

//printk("MESH : %x\n", (d_addr && 0xFFFF0000);

if ((new_skb = alloc_skb(MAC_LEN + IPMESH_LEN, GFP_KERNEL))== NULL) {

printk("mesh_xmit: Cannot allocate socket buffer\n");

return 1;

}

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = ip_hdr(skb)->saddr,

}

},

.proto = IPPROTO_MESH

};

if (ip_route_output_key(&rt, &fl))

printk("mesh_reply: ip_route_output_key

is unable to find a route\n");

else

printk("mesh_reply: ip_route_output_key has found a route\n");

}

//ctrlskb->dst = dst_clone(skb->dst);

new_skb->dst = &rt->u.dst;

new_skb->dev = skb->dst->dev;

skb_reserve(new_skb, MAC_LEN);

skb_reset_network_header(new_skb);

iph = ip_hdr(new_skb);

skb_put(new_skb, IP_LEN);

iph->version = 4;

iph->ihl = (sizeof(struct iphdr))>>2;

iph->tos = 0x00;

iph->frag_off = htons(IP_DF);

iph->ttl = 10;

iph->daddr = rt->rt_dst;

iph->saddr = rt->rt_src;

91

APPENDIX B. LINUX KERNEL MODULE CODE

iph->protocol = IPPROTO_MESH;

iph->tot_len = htons(IPMESH_LEN);

ip_select_ident(iph, &rt->u.dst, NULL);

ip_send_check(iph);

//skb->transport_header = skb->network_header + IP_LEN;

mh = (struct meshhdr *)skb_put(new_skb, MESH_LEN);

//mh = (struct meshhdr *)skb_transport_header(skb);

mh->type = TYPE_CTRL;

mh->control = RQST_ACCEPT;

mh->channel = htons(CH5);

mh->srcip = mesh_hdr(skb)->srcip;

mh->dstip = mesh_hdr(skb)->dstip;

new_skb->protocol = htons(ETH_P_IP);

new_skb->dst->output(new_skb);

return 0;

}

int mesh_forward_rqst(struct sk_buff *skb){

struct sk_buff *new_skb;

struct iphdr *iph;

struct meshhdr *mh;

struct rtable *rt;

__be32 gw_addr = mesh_find_gw(mesh_hdr(skb)->dstip);

__be32 gw_addr_ctrl = ((gw_addr) & 0x00FFFFFF)|0x01000000;

//printk("MESH : %x\n", (d_addr && 0xFFFF0000);

if ((new_skb = alloc_skb(MAC_LEN + IPMESH_LEN, GFP_KERNEL))== NULL) {

printk("mesh_xmit: Cannot allocate socket buffer\n");

return 1;

}

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = gw_addr_ctrl,

}

},

.proto = IPPROTO_MESH

};

if (ip_route_output_key(&rt, &fl))

printk("mesh_reply: ip_route_output_key

is unable to find a route\n");

92

APPENDIX B. LINUX KERNEL MODULE CODE

else

printk("mesh_reply: ip_route_output_key has found a route\n");

}

//ctrlskb->dst = dst_clone(skb->dst);

new_skb->dst = &rt->u.dst;

new_skb->dev = new_skb->dst->dev;

skb_reserve(new_skb, MAC_LEN);

skb_reset_network_header(new_skb);

iph = ip_hdr(new_skb);

skb_put(new_skb, IP_LEN);

iph->version = 4;

iph->ihl = (sizeof(struct iphdr))>>2;

iph->tos = 0x00;

iph->frag_off = htons(IP_DF);

iph->ttl = 10;

iph->daddr = rt->rt_dst;

iph->saddr = rt->rt_src;

iph->protocol = IPPROTO_MESH;

iph->tot_len = htons(IPMESH_LEN);

ip_select_ident(iph, &rt->u.dst, NULL);

ip_send_check(iph);

//skb->transport_header = skb->network_header + IP_LEN;

mh = (struct meshhdr *)skb_put(new_skb, MESH_LEN);

//mh = (struct meshhdr *)skb_transport_header(skb);

mh->type = TYPE_CTRL;

mh->control = RQST_CONN;

mh->channel = htons(CH5);

mh->srcip = mesh_hdr(skb)->srcip;

mh->dstip = mesh_hdr(skb)->dstip;

new_skb->protocol = htons(ETH_P_IP);

new_skb->dst->output(new_skb);

return 0;

}

int mesh_forward_accept(struct sk_buff *skb){

struct sk_buff *new_skb;

struct iphdr *iph;

struct meshhdr *mh;

struct rtable *rt;

__be32 gw_addr = mesh_find_gw(mesh_hdr(skb)->srcip);

__be32 gw_addr_ctrl = ((gw_addr) & 0x00FFFFFF)|0x01000000;

93

APPENDIX B. LINUX KERNEL MODULE CODE

//printk("MESH : %x\n", (d_addr && 0xFFFF0000);

if ((new_skb = alloc_skb(MAC_LEN + IPMESH_LEN, GFP_KERNEL))== NULL) {

printk("mesh_xmit: Cannot allocate sreturnocket buffer\n");

return 1;

}

{

struct flowi fl = {

.nl_u = {

.ip4_u = {

.daddr = gw_addr_ctrl,

}

},

.proto = IPPROTO_MESH

};

if (ip_route_output_key(&rt, &fl))

printk("mesh_reply: ip_route_output_key

is unable to find a route\n");

else

printk("mesh_reply: ip_route_output_key has found a route\n");

}

//ctrlskb->dst = dst_clone(skb->dst);

new_skb->dst = &rt->u.dst;

new_skb->dev = new_skb->dst->dev;

skb_reserve(new_skb, MAC_LEN);

skb_reset_network_header(new_skb);

iph = ip_hdr(new_skb);

skb_put(new_skb, IP_LEN);

iph->version = 4;

iph->ihl = (sizeof(struct iphdr))>>2;

iph->tos = 0x00;

iph->frag_off = htons(IP_DF);

iph->ttl = 10;

iph->daddr = rt->rt_dst;

iph->saddr = rt->rt_src;

iph->protocol = IPPROTO_MESH;

iph->tot_len = htons(IPMESH_LEN);

ip_select_ident(iph, &rt->u.dst, NULL);

ip_send_check(iph);

//skb->transport_header = skb->network_header + IP_LEN;

mh = (struct meshhdr *)skb_put(new_skb, MESH_LEN);

//mh = (struct meshhdr *)skb_transport_header(skb);

94

APPENDIX B. LINUX KERNEL MODULE CODE

mh->type = TYPE_CTRL;

mh->control = RQST_ACCEPT;

mh->channel = htons(CH5);

mh->srcip = mesh_hdr(skb)->srcip;

mh->dstip = mesh_hdr(skb)->dstip;

new_skb->protocol = htons(ETH_P_IP);

new_skb->dst->output(new_skb);

return 0;

}

int mesh_rcv(struct sk_buff *skb)

{

struct meshhdr *mh;

struct iphdr *iph;

struct mesh_nbr *nbr;

printk("MESH Receive: \n");

mh = mesh_hdr(skb);

iph = ip_hdr(skb);

/*is the message a routing message*/

if (mh->type=TYPE_RT_INFO){

mesh_route_rcv(skb);

return 1;

}

/*received request connection packet*/

if(mh->control == RQST_CONN) {

//check if packet needs to be forwarded

nbr = getNeighbour(mesh_find_gw(mh->srcip));

if ((iph->daddr & 0x00FFFFFF) != (mh->dstip & 0x00FFFFFF)){

printk ("MESH : forwarding connection request message\n");

if (mesh_forward_rqst(skb)){

printk("mesh_rcv: mesh_sendcts

failed to send CTS message\n");

}

nbr->state = STATE_RQST_SENT;

kfree_skb(skb);

return 1;

}

mesh_switch_ch(get_gw_dev(mh->srcip), NUM5);

95

APPENDIX B. LINUX KERNEL MODULE CODE

//if not forwarding, reply with the accept message

if(mesh_reply(skb)) {

printk("mesh_rcv: mesh_sendcts failed to send CTS message\n");

}

nbr->state=STATE_PATH_EST;

kfree_skb(skb);

return 1;

}

else if (mh->control == RQST_ACCEPT) {

printk ("MESH : received connection acceptance\n");

nbr = getNeighbour(mesh_find_gw(mh->dstip));

if ((iph->daddr & 0x00FFFFFF) != (mh->srcip & 0x00FFFFFF)){

mesh_switch_ch(get_gw_dev(mh->srcip), NUM5);

mesh_switch_ch(get_gw_dev(mh->dstip), NUM5);

nbr->state=STATE_PATH_EST;

printk("MESH : forwarding accept message\n");

if (mesh_forward_accept(skb)){

printk("mesh_rcv: mesh_sendcts failed

to send CTS message\n");

}

kfree_skb(skb);

return 1;

}

mesh_switch_ch(get_gw_dev(mh->dstip), NUM5);

nbr->state=STATE_PATH_EST;

kfree_skb(skb);

return 1;

}

else {

printk ("MESH : received invalid mesh control message type\n");

}

kfree_skb(skb);

return 1;

}

EXPORT_SYMBOL(mesh_rcv);

96

APPENDIX B. LINUX KERNEL MODULE CODE

EXPORT_SYMBOL(val1);

EXPORT_SYMBOL(val2);

MODULE_LICENSE("GPL");

97

APPENDIX B. LINUX KERNEL MODULE CODE

/**

FILE: mesh.h

Description:

- mesh header file

- mesh header frame structure

- packet types

**\

#ifndef _MESH_H

#define _MESH_H

#define IPPROTO_MESH 70

#define ETH_P_MESH 0x5000

#define TIMEOUT 30

#define MAX_NEIGHBOURS 3

#define MAC_LEN ETH_HLEN

#define IP_LEN sizeof(struct iphdr)

struct meshhdr{

__u8 type;

__u8 control;

__be16 channel;

__be32 srcip;

__be32 dstip;

};

static inline struct meshhdr *mesh_hdr(const struct sk_buff *skb)

{

return (struct meshhdr *)skb_transport_header(skb);

}

/*message types*/

#define TYPE_CTRL 0x01

#define TYPE_RT_INFO 0x02

/*control message types*/

#define HELLO 0x01 /*hello message*/

#define HELLO_REPLY 0x02 /*reply to hello message*/

#define RQST_CONN 0x03 /*request connection - include requested channel*/

#define RQST_ACCEPT 0x04 /*accept requested connection and channel request*/

#define CH_BUSY 0x05 /*channel busy - include channel status of node*/

#define CONN_FULL 0x06 /*connections full*/

#define CONN_REFUSE 0x07 /*refuse connection*/

#define DISCONN 0x08 /*Disconnection notice*/

#define RQST_CHANGE 0x09 /*Request channel change*/

#define SWITCH 0x0A /*Channel switch notice*/

#define BACK_CTRL 0x0B /*back in control*/

#define MESH_RTS 0x0C /*request to send*/

98

APPENDIX B. LINUX KERNEL MODULE CODE

#define MESH_CTS 0x0D /*clear to send*/

/**************/

#define MESH_LEN (sizeof(struct meshhdr))

#define MACIP_LEN (MAC_LEN+IP_LEN)

#define IPMESH_LEN (IP_LEN + MESH_LEN)

extern int mesh_rcv(struct sk_buff *skb);

extern int mesh_switch_ch(struct net_device *dev, int channel);

/* flag to signal a thread to transmit a new socket buffer through

dev_hard_start_xmit */

//extern int flag_queue;

/* flag to signal the completion of control message exchange */

//extern int status;

static inline __u32 convert_addr(unsigned char ip1,

unsigned char ip2, unsigned char ip3, unsigned char ip4)

{

__u32 addr = 0;

addr += ip1;

addr <<= 8;

addr += ip2;

addr <<= 8;

addr += ip3;

addr <<= 8;

addr += ip4;

return addr;

}

/*this node’s status*/

/*since it could be used for multiple communications,

needs to be set as a linked list*/

/*based on next hop address*/

struct node_status{

struct node_status *next;

struct node_status *previous;

int state;

__be32 dst_addr;

int count;

};

/* socket buffer list or queue (a link list) */

struct sk_buff_head list;

/*for simulation purposes only, simulated channel variable*/

int channel;

99

APPENDIX B. LINUX KERNEL MODULE CODE

extern struct timeval val1;

extern struct timeval val2;

/* used to maintain list of wireless devices and their names*/

/* should attempt to find a method to search for wireless devices */

struct mesh_dev {

struct net_device *dev;

//struct mesh_route *route_entry;

int index;

u_int32_t ip;

u_int32_t netmask;

char name[IFNAMSIZ];

struct mesh_dev *next;

struct socket *sock;

int num_active; //number of active communications using this mesh device

};

/*********channel information***********/

#define CHANNEL_CTRL 0x01

//get rid of all bits except for bit 10(channel 11), 7(channel 8), and 3(channel 4)

#define CH11 0x0400

#define CH8 0x0080

#define CH4 0x0010

#define NUM4 4

#define NUM8 8

#define NUM11 11

#endif

100

References

[1] IEEE Std 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifica-

tions, 2007.

[2] K. Nahm, A. Helmy, and C.-C. Jay Kuo, “Tcp over multihop 802.11 networks: issues and performance

enhancement,” in Proc. of MobiHoc ’05, 2005, pp. 277–287.

[3] Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop wireless channel on

tcp performance,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 209–221, 2005.

[4] J. Deng, B. Liang, and P. Varshney, “Tuning the carrier sensing range of ieee 802.11 mac,” in Global

Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, vol. 5, 29 2004, pp. 2987 – 2991.

[5] P. Kyasanur and N. H. Vaidya, “Capacity of multi-channel wireless networks: impact of number of

channels and interfaces,” in MobiCom ’05: Proceedings of the 11th annual international conference on

Mobile computing and networking, 2005, pp. 43–57.

[6] IEEE P802.11s/D3.0 Draft, 2009.

[7] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of an unplanned 802.11b

mesh network,” in MobiCom ’05: Proceedings of the 11th annual international conference on Mobile

computing and networking, 2005, pp. 31–42.

[8] IEEE Std 802.11: Amendement 5: Enhancements for Higher Throughput, 2009.

[9] A. Mishra, V. Shrivastava, S. Banerjee, and W. Arbaugh, “Partially overlapped channels not considered

harmful,” in Proceedings of the joint international conference on Measurement and modeling of computer

systems, 2006, pp. 63–74.

101

REFERENCES REFERENCES

[10] A. Subramanian, H. Gupta, and S. Das, “Minimum interference channel assignment multi-radio wireless

mesh networks,” in Proc. of the Sensor, Mesh, and Ad Hoc communications, 2007, pp. 481–490.

[11] P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel multi-interface ad

hoc wireless networks,” SIGMOBILE Mobile Computing and Communication Review, vol. 10, no. 1, pp.

31–43, 2006.

[12] A. Raniwala and T. Chiueh, “Architecture and algorithms for an ieee 802.11-based multi-channel wire-

less mesh network,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and

Communications Societies, vol. 3, March 2005, pp. 2223–2234.

[13] A. Das, H. Alazemi, R. Vijayakumar, and S. Roy, “Optimization models for fixed channel assignment

in wireless mesh networks with multiple radios,” in Proc. of the Sensor, Mesh, and Ad Hoc Communi-

cations, 2005, pp. 463–474.

[14] J. Postel, Transmission Control Protocol, 1981.

[15] S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast Recovery Algorithm, 2004.

[16] J. Postel, User Datagram Protocol, 1980.

[17] K. L. E. Law and A. Kohn, “Topology designs with controlled interference for multi-radio wireless

mesh networks,” in Mobility ’08: Proceedings of the International Conference on Mobile Technology,

Applications, and Systems, 2008, pp. 1–6.

[18] J. So and N. H. Vaidya, “Multi-channel mac for ad hoc networks: handling multi-channel hidden termi-

nals using a single transceiver,” in MobiHoc ’04: Proceedings of the 5th ACM international symposium

on Mobile ad hoc networking and computing, 2004.

[19] P. Bahl, R. Chandra, and J. Dunagan, “Ssch: slotted seeded channel hopping for capacity improvement

in ieee 802.11 ad-hoc wireless networks,” in MobiCom ’04: Proceedings of the 10th annual international

conference on Mobile computing and networking, 2004.

[20] P. Gupta and P. Kumar, “The capacity of wireless networks,” in IEEE Transactions on Information

Theory, vol. 46, no. 2, Mar. 2000, pp. 388–404.

102

REFERENCES REFERENCES

[21] A. Kohn and K. E. Law, “Experiments of multi-channel 802.11 wireless mesh networks with tcp proxies,”

in Biennial Symposium on Communications, 2010.

[22] G. Bianchi, “Performance analysis of the ieee 802.11 distributed coordination function,” Selected Areas

in Communications, IEEE Journal on, vol. 18, no. 3, pp. 535–547, Mar 2000.

[23] B.-J. Kwak, N.-O. Song, and L. E. Miller, “Performance analysis of exponential backoff,” IEEE/ACM

Trans. Netw., vol. 13, no. 2, 2005.

[24] K. Duffy, D. Malone, and D. Leith, “Modeling the 802.11 distributed coordination function in non-

saturated conditions,” Communications Letters, IEEE, vol. 9, no. 8, pp. 715–717, Aug 2005.

[25] O. Tickoo and B. Sikdar, “Modeling queueing and channel access delay in unsaturated ieee 802.11

random access mac based wireless networks,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 878–891,

2008.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp throughput: a simple model and its

empirical validation,” ACM SIGCOMM Computer Communication Review, vol. 28, no. 4, pp. 303–314,

1998.

[27] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tripathi, “Split tcp for mobile ad hoc networks,”

in IEEE Global Telecommunications Conference, 2002, vol. 1, Nov. 2002, pp. 138–142.

[28] A. Bakre and B. Badrinath, “I-tcp: indirect tcp for mobile hosts,” International Conference onDis-

tributed Computing Systems, p. 0136, 1995.

[29] “Network simulator. ns2. http://www.isi.edu/nsnam/ns.”

103

