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Abstract

Learning and forgetting are two important characteristics in manufacturing environments

where workers are cross-trained to increase their flexibility of adapting to different tasks.

Cross-training is introduced by industries so that one worker can work on multiple sta-

tions. This thesis develops two models: (i) a probabilistic learning curve approach to the

production lot size problem to determine the economic manufactured quantity (EMQ);

(ii) a real options approach to the valuation of cross-training with product life cycle.

Different workers perceive the complexity of a certain task differently and each worker

will have his/her learning curve with its individual characteristics. So, it is more real-

istic to assume that the learning curve characteristics are random variables with given

probability density functions. Furthermore, for the second model, the demand of the

product follows three-regime product life cycle. Each regime is modeled by a geometric

Brownian motion. The net present value (NPV) is calculated using the real options. The

results show that there is a significant change in the NPV compare to standard model

with simplified assumptions.
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Chapter 1

Introduction

Many companies today try to manufacture products with the highest possible quality

and to offer them in the right quantities at competitive prices so as to gain larger market

share than their competitors. One of the way to achieve by cross-train the workers to

work on multiple stations and considering learning in production. Research on the effects

of learning and forgetting (its opposite phenomenon) on production planning and control

policies is well documented in the literature (e.g., Jaber 2006). Learning and forgetting

are two characteristics of workers in manufacturing (or other industries), especially, when

workers alternate between different tasks to increases their flexibility. A policy that re-

quires them to be cross-trained, where workers’ learning is usually interrupted by breaks,

or by a new task. This thesis will: (i) develop a probabilistic learning curve and then

investigate the effects of learning and forgetting on the cost function for an inventory

system; and (ii) introduce the concept of real options for the valuation of cross-training

with learning and product life cycle.

On an assembly line, workers perform tasks repetitively. Repetition helps workers

learn their job faster with time, which accelerates the production rate. Production inter-

ruption and cross-training impedes the performance of workers as a result of forgetting.

When workers commence their work after an interruption, or after being away from a
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task, performing another one, for some time, or when a new product is introduced into

the production line they need some time to regain their performance. This means cost to

the company and loss of productivity. Surely, such costs cannot be avoided, but certainly

could be minimized. This will be the focus of the thesis.

Unlike the models in the literature, this thesis makes a realistic assumption that the

learning curve parameters, which are the initial processing time and the learning expo-

nent, are not deterministic. These parameters are those of a learning curve that captures

the learning of a population of workers (Nembhard and Uzumeri 2000). Practically, dif-

ferent workers perceive the complexity of a certain task differently. This suggests that

each worker will have his/her learning curve with its individual characteristics. So, it

is more realistic to assume that the learning curve characteristics are random variables

with given probability density functions. This surely gives more accurate results than

the aggregation of workers’ learning curves. To demonstrate the importance of assuming

a stochastic rather than a deterministic curve, and prior to addressing the cross-training

problem, the model of Jaber and Bonney (1998) is modified to account for random learn-

ing curve parameters. The modified model and the deterministic one (Jaber and Bonney

1998) are compared and discussed.

The thesis also focuses on real options for a cross-training model. There are three

cross-training schemes (Marks et al. 2002): (1) positional clarification where workers learn

from verbal instructions conveyed by more experienced team members; (2) positional

modeling where workers learn from verbal discussions and observations of the work of

the other team members; and (3) positional rotation where workers learn from hands on

approach. In this thesis, the positional rotation scheme is adopted as it is used by many

companies.

Cross-training is useful to balance capacity (Bokhorst et al. 2004 and Iravani et al.

2005). It equally distributes the workload amongst workers at different workstations and

improves the utilization and throughput of the production line. Cross-training also im-
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proves productivity without increasing the work-in-process where idle workers are moved

to busy workstations to reduce bottle-neck situations. There are three questions to an-

swer before a worker is assigned to a job: (1) what is his/her flexibility level (i.e., how

many tasks he/she has been cross-trained to perform)?; (2) what levels of skill he/she

has for the cross-trained tasks?; and (3) to which tasks a worker should be assigned to

and for how long?. To answer these questions in this thesis, the following assumptions

are made: (1) units are produced proportionally with cross-training; (2) each worker has

to complete the assigned job before the beginning of the next shift; (3) each worker is

fully trained for a job or not at all; and (4) cross-training assignments are dynamic.

Cross-training of workers has several benefits (Ebeling and Lee 1994): (1) improves

meeting due dates; (2) increases workers’ knowledge and skill levels about products and

processes; (3) reduces overtime costs due to absenteeism; (4) smoothes the transition

phase between products; (5) improves product and process quality; and (6) increases

throughput. (e.g., Park and Bobrowski 1989 and Wisner and Siferd 1995). However,

these benefits come at the cost of training and retraining of workers. Cross-training

also has conflicting objectives. There will be additional cost for labor lost during cross-

training. Management would like to see workers’ idle times reduced, which increases the

workers’ workload.

This thesis investigates cross-training in a production situation. The demand is un-

certain and it follows three-regime product life cycle: growth regime, maturity regime

and decay regime. Each regime is modeled by a geometric Brownian motion. The first

regime of the product life cycle is the growth regime. Afterwards, it switches stochas-

tically to maturity regime and then to decay regime. The growth regime is represented

with increasing demand, the maturity regime is represented with stabilized demand and

the decay regime is represented with decreasing demand. To represent these regimes on

the lattice, a heptanomial lattice is used, which has seven branches. A lattice is used

to find the fair value of a an option. The lattice model divides the time between now
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and the option’s expiration into N discrete periods. The option value is calculated with

different level of inventories. Then the optimal present value is calculated using opti-

mization models with non-linear programming. One optimization model calculates the

present value without cross-training and another model calculates the present value with

cross-training. The real options is used to find the highest profit. The assumption the

thesis makes for the production process is that the production floor has workstations,

primary workers, and secondary workers. A Primary worker works on his or her pri-

mary workstation. A Secondary worker works on a different workstation other than his

or her primary workstation. The results show that there is a significant change in the

present value, which is calculated with the cross-training, learning, product life cycle and

stochastic demand, compared to standard model with simplified assumptions.

The reminder of this study is organized as follows. Chapter 2 has background infor-

mation. Chapter 3 is to elaborate the probabilistic learning curve model with a numerical

example and the discussion. Chapter 4 describes the dynamic programming and the real

options models with a numerical example and the results. Chapter 5 concludes the study

of the findings and the future work.
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Chapter 2

Literature Review

This chapter provides a brief introduction about the basic concept of probabilistic learn-

ing curve, learning and forgetting, cross-training, and real options. It includes a briefing

of the problems and benefits as analyzed by multiple authors.

2.1 Probabilistic learning curve and the effect of learn-

ing and forgetting on the cost function

Many psychologists experiment on individual learning ability (Mazur and Hastie 1978).

There are many studies and models present in the literature: 1) how one organization

keeps hold of knowledge over time (Epple et al. 1991), 2) how learning is related to

manufacturing cost (Yelle 1979), 3) how learning is related to process time (Adler and

Nanda 1974, Axsater and Elmaghraby 1981, Smunt 1987, and Sule 1981), 4) how learning

is related to setup time (Karwan et al. 1988 and Pratsini et al. 1993), 5) how learning is

related to product veracity and process complexity (McCreery and Krajewski 1993) and

6) how learning is related to product and process quality (Jaber and Guiffrida 2004 and

Jaber and Guiffrida 2008).

This research is related to Jaber and Bonney (1998), Mazzola and McCardle (1997),
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and Wright (1936), which use the traditional learning curve model. Learning curve

theory can capture how fast workers can learn. The conventional learning curve is power

form and it is in labor hours per unit versus cumulative number of units (Wright 1936).

The traditional learning curve may include employee, organizational system and outside

factors.

The learning and forgetting model of Shafer et al. (2001) was formed using the fol-

lowing parameters: productivity rate for cumulative work, initial expertise of workers

units of cumulative work, steady- state productivity rate after all the learning has been

completed, learning rate from cumulative work and initial expertise require to reach half

of steady-state productivity rate, how recent the workers learn, and forgetting rate from

how recent the workers learn. Their results suggest that reducing the forgetting rate is

not important in a fast learning environment. Benefits of smaller size of worker pool in-

crease as the learning rate and the length of task tenures decreases. Increasing the length

of task tenures is not increasing productivity of the system. Increasing the length of task

tenures is more beneficial when there is large worker pool but not much effect on smaller

worker pool. Increasing the learning rate moderate the negative effect of increasing the

size of worker pool and the forgetting rate (Yelle 1979 and Shafer et al. 2001).

Although the work in this thesis is relevant to that of Nembhard and Shafer (2008),

it differs from it. Our model is based on a well founded industrial learning curve, where

as Nembhard and Shafer (2008) is not. They use a learning curve from psychology

(Mazur and Hastie 1978) that is based on the initial expertise, steady-state productivity,

rate of learning and rate of forgetting of heterogeneity in workers, where higher hetero-

geneity in workers corresponds to higher productivity. From analytical and simulation

results, increasing the variance in steady state of worker productivity does not change

the productivity level. However, increasing the variance of the initial processing time

decreases the productivity level. Increasing the variance in the learning rate of workers

or the forgetting rate increases the overall output. From simulation results, heterogene-
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ity in conjunction with learning rate has the most impact on the system’s productivity.

Increasing the initial processing time decreases the learning rate.

Nembhard (2001) investigates the heuristic policy for choosing workers for specific

tasks based on the learning rate of individual workers. It increases overall productivity. A

heterogeneous worker pool is more beneficial than a homogenous worker pool to increase

the productivity. Short production cycles give more improvements. Gradual learning

gives greater improvement instead of rapid learning. The heuristic policy will have more

impact if the workers need more practice, and workers have less variance and mean than

previous experience.

Models of Mazzola and McCardle (1997) and Salameh et al. (1993) are relevant to

the model, which is developed in this thesis and explores the probabilistic learning curve.

When the deterministic learning curve model was used, it gives more optimal production

quantity than myopic production. But, Mazzola and McCardle (1997) and Salameh et al.

(1993) showed that this is not always true if the probabilistic learning curve model is

used.

2.2 Real options for cross-training with learning and

product life cycle

Many researchers have analyzed the cost benefits of cross-training (Ebeling and Lee 1994,

Nembhard et al. 2005, Bollen 1999, Hopp and VanOyen 2004, Katok et al. 1998, Shaw

and Wagelmans 1998, VanMieghem 1995, and Nembhard et al. 2002). Ebeling and Lee

(1994) argued that the optimal solution is to train fewer workers for more extensive jobs;

it is costly and longer time to payoff. High attendance workers should train for a greater

number of jobs if the jobs contribute greatly to overtime cost. When the variation of

the attendance is less, the cross-training is evenly spread among the employees. Cross-

training is sensitive to the values of the overtime cost. The greater the overtime costs,
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the faster the payoff from the cross-training. Katok et al. (1998) discussed about the

coefficient modification heuristic with cost balancing and setup reduction. VanMieghem

(1995) and Nembhard et al. (2002) analyzed how to weigh the costs of cross-training.

Shaw and Wagelmans (1998) argued about a dynamic programming algorithm problem

with a general cost structure.

However, many researchers have analyzed the production flexibility (Bessant and

Haywood 1988, Sethi and Sethi 1990, Upton 1994, Upton 1995, VanMieghem 1995,

Brusco and Johns 1998, Choi and Kim 1998, Campbell 1999, Nembhard et al. 2002,

Slomp and Molleman 2002, Marks et al. 2002, Jaber et al. 2003, Hopp et al. 2004, and

Zamiska et al. 2007). For example, Slomp and Molleman (2002) concentrated on the

development of team member flexibility by cross-training. Four cross-training policies

were considered: critical task policy, worker flexibility policy, random policy and bottle-

neck redundancy policy. Slomp and Molleman (2002) identified that cross-training each

worker to have equal number of skills is better with homogeneous workers. Bessant and

Haywood (1988) argued that the flexibility is an organizational property rather than a

technical one. Marks et al. (2002) examined the effects of the cross-training on shared

knowledge structure as an indicator of cross-training effectiveness. Hopp et al. (2004)

identified that cross-training the bottleneck workers can produce increases in through-

put when the line is short and nearly balanced, variability of non-bottleneck stations is

high and variability of the bottleneck is low. Campbell (1999) evaluated the benefits of

cross-training and cross-utilization using a mathematical model and experiments. The

mathematical model is called the allocation model and it is used to allocate cross-trained

workers. The objective function for this model maximizes the sum of the utility asso-

ciated with the assignment of workers to the department. If the capacity of workers is

given as zero or one, the problem can be solved optimally. However, if it is given in

the fraction, the value of cross-utilization is evaluated based on heuristic solution. The

key factors that affect the cross-utilization are demand variation, cross-training breadth,
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and cross-training depth. The benefits of cross-utilization can be substantial with small

degree of cross-training. After a certain value, the additional cross-training capture little

additional value. The preferred value depends on demand variability. Upton (1994) and

Upton (1995) described the dynamics that create the flexibility. VanMieghem (1995) and

Nembhard et al. (2002) analyzed about the flexibility against the resulting performance

benefits and profits. Sethi and Sethi (1990) and Choi and Kim (1998) examined the

various forms of manufacturing flexibility with implications for cross-training.

Moreover, some researchers have examined the benefits in reducing the average num-

ber of customers in a queue (Iravani et al. 2007 and Iravani et al. 2005). Iravani et al.

(2007) argued that cross-training allows customer service representative to dynamically

relocate to answer calls from different services. It also reduces lack of calls for one cus-

tomer service representative and more calls for another representative even in non-peak

times. Iravani et al. (2005) developed a method to find an index for all the alternative

structures to find what structure has robust and better performance without precise in-

formation on demand or capacity. So, the capacity structure should not tie to a specific

demand or capacity pattern because otherwise it would reduce robustness of the system.

System structure is a means for buffering against variability. The variability of demand

can be met by either increasing the capacity or increasing the flexibility of available ca-

pacity such as using production sources with multiple capacities. In production sources

with multiple capacities, the capacity can be used against variability by increasing ca-

pacity or shifting capacity among sources. The ability of shifting capacity as the result

of capacity patterns of sources called system structure.

Furthermore, some researchers used real options to value cross-training policies. Nem-

bhard et al. (2005) and Yang (2007) used real options framework to model and value

cross-training policies. There are four factors that affects this model: 1) task heterogene-

ity, 2) worker heterogeneity, 3) labor dynamic (worker on leave), and 4) product dynamic

(product change). Nembhard et al. (2005) and Yang (2007) considered net present value
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based on traditional discounted cash flow technique for the production system with spe-

cialized workers and cross-trained workers. Two binomial lattices are used for underlying

production value and options valuation. If the system is already near optimal, the real

options approach is not better than traditional discounted cash flow.

Brusco and Johns (1998), Hung and Chien (2000), and Katok et al. (1998) analyzed

the workforce staffing assignment in terms of cost, productivity, policy level and mul-

tiple work activity categories. They recent integer linear programming mode with the

objective to minimize workforce staffing cost. Cross-training structure, which is defined

as a policy, contains number of work activity categories, the level of productivity and

the framework for deciding what skill classes are trained for what work activity cate-

gories. They found that for all the cross-training structures with 100% productivity in

secondary skill class are able to find the minimum cost for all the labor requirement

patterns. Considerable benefits can be realized even in a limited use of cross-training.

Even cross-training structures with 50% productivity in secondary skill class are able to

find 86.9% of the cost saving of 100% productivity.

Yang (2007) concentrated on the choice between equal and unequal number of skills per

worker. The results provide the right number of cross-trained workers, additional skills

per cross-trained worker, and additional machines to realize the benefits of cross-training.

The right cross-training policies were chose in different environments. The cross-training

policies are compared by different efficiency losses, labor utilization, and variability in

processing times, and worker absenteeism. The gap between benefits of cross-training

and no cross-training decreases as efficiency loss increases. This gap increases as the

variability in processing times increases. A positive efficiency loss implies that a worker

increasingly losing his or her power to learn a new skill. It is better to cross-train workers

to fewer works.
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2.3 Serial production system release policy

Production control can be identified with two systems: push and pull systems. The

production is scheduled and the material is pushed into the production line is called

push system. The completion of a product at the end of the production line triggers the

start of next product assembly process is called pull system. One alternative of a pull

system is the CONstant Work in Process (CONWIP) system. CONWIP is a mixture

of a push-pull system. Many researchers have analyzed the CONWIP system: Geraghty

and Heavey (2004), Marek et al. (2001), Spearman et al. (1990), Helber et al. (2011),

Gaury et al. (2000), Ryan et al. (2000), Herer and Masin (1997), and Gstettner and Kuhn

(1996).

CONWIP uses only one set of system cards to manage system WIP. CONWIP uses

cards to control the number of WIPs. For example, no part is allowed to enter the

system without a card. After a finished part is completed at the last workstation, a card

is passed to the first workstation and a new part is pushed into the sequential process

route (Marek et al. 2001).

A push system is where the jobs are scheduled and pull system is where the job to

enter the system is triggered by the completion of another job. Pull system has the shorter

flow time and reduced inventory level. Flow time or cycle time is the time between the

job release and its completion. A job will not start until a place is vacated in the system.

Enough jobs placed in the line so the bottleneck station is rarely idle. But the jobs do

not have to wait long. It will give maximum throughput without excessive flow time or

WIP (Helber et al. 2011).

The disadvantage of the CONWIP is that it does not control the inventory level

individually inside the system. If one workstation breaks down, the inventory will pile

up (Gaury et al. 2000). The objective of the Kanban is to decrease the WIP and of

the push system is to increase the throughput (Amin and Altiok 1997). Kanban means

marker or card in Japanese. To control WIP between workstations, Kanban uses card
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sets. Total WIP is equal to the summation of the number of cards in each card set. If

raw material is available and the material has a card, then only the production occurs

at a workstation. When the material receives card authorization to move, then only it is

pulled through the system. Kanban system pulls work between every pair of workstations

(Marek et al. 2001). In our case, we need to have a constant inventory level at each

station. So, Kanban policy is chosen over CONWIP policy to work in this model. If

CONWIP policy is selected, the finished inventory at each station cannot be maintained

at a certain level.

In this study, the conventional learning curve will be analyzed (Jaber and Bonney

1998, Jaber and Bonney 1996, Jaber and Bonney 1997, Jaber and Sikstrom 2004, Mazzola

and McCardle 1997, Wright 1936, and Salameh et al. 1993). Normally the learning slope

and time required to produce the first unit are constant. However, in this study, we are

going to modify the learning curve equation to have probabilistic learning slope and time

required to produce the first unit. All the workers do not have the same learning rate

or does not finish the work in same time frame. When we give probabilistic learning

rate and time to do the units, it makes the process more realistic. There will be a

significant difference when we use probabilistic parameters to model the learning curve

instead of deterministic parameters. A numerical example using uniform distribution for

both learning slope and the time to produce first unit is presented in the application of

learning and forgetting to determine EMQ. Furthermore, we will analysis cross-training

and real options. The demand of the product is uncertain and it follows three-regime

product life cycle: growth, maturity, and decay. Each regime is modeled as geometric

Brownian motion. The profit is calculated using non-linear program and the constraints

include the conditions for learning with or without cross-training. The real options is

used to choose the highest profit. The option value is calculated with different inventory

levels. A numerical example is analyzed and the results show that there is a significant

change in the profit compare to standard model with simplified assumptions.

12



Chapter 3

Probabilistic Learning Curve Model

In this chapter, a probabilistic version of the Wright (1936) learning curve is introduced.

This model can be used to investigate almost all learning and forgetting models that

are available in the literature. Some of the models, which are relevant to the thesis,

that assume learning to follow the (deterministic) Wright’s learning curve are those of

Salameh et al. (1993), Jaber and Bonney (1998), Jaber and Bonney (1996), Jaber and

Bonney (1997), Jaber and Sikstrom (2004), and Jaber and Guiffrida (2004). In this

chapter, the developed (probabilistic) model will be investigated in a lot sizing problem

setting by revisiting the work of Jaber and Bonney (1998), who assumed learning to

follow Wright’s learning curve, whose parameters are deterministic. Practically, different

workers perceive the complexity of a certain task differently. This suggests that each

worker will have his/her learning curve with its individual parameters. So, it is more

realistic to assume that the learning curve parameters are random variables with given

probability density functions. This surely gives more accurate results than the aggrega-

tion of workers’ learning curves. To demonstrate the importance of assuming a stochastic

rather than a deterministic curve, the model of Jaber and Bonney (1998) is modified to

account for random learning curve parameters.

The conventional learning curve phenomenon described by Wright (1936) has the
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labor hours per unit decrease when cumulative units increase as sown in Figure 3.1. The

equation for the learning curve is as follows.

Ty = T1y
−l, (3.1)

where y is the cumulative production count, Ty is the time required to produce the yth

unit, l is the learning curve slope and T1 is the time required to produce the first unit. The

parameters of the learning curve in Equation (3.1) are deterministic. For a population of

workers, the learning curve in Equation (3.1) can be an aggregate learning curve that is

averaging the output of each worker for each repetition and then fitting the learning curve

to the aggregated data. Workers learn differently suggesting that each one has his/her

own T1 and l values. As worker’s learning styles vary and are independent from other

learners, then it is reasonable to assume that the T1 and l values are random variables

where each follows a probability density function. This assumption will be adopted in

this chapter and throughout the thesis.

Figure 3.1: Learning curve

Wherever an interruption occurs in the learning process forgetting takes place (e.g.,

Jaber and Bonney 1998, Jaber and Bonney 1996, Jaber and Bonney 1997, and Jaber and
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Guiffrida 2004). The forgetting theory assumes that the time required to produce the

first unit after an interruption (break) is dependent on the length of the break and the

time it took to produce the last unit of the last cycle. The forgetting curve equation is

as follows (Globerson et al. 1989 and Jaber and Bonney 1996).

Tx = T̂1x
f , (3.2)

where x is the number of output units that would have been if no interruption occurred,

Tx is the time for the xth unit of lost experience, f is the forgetting slope and T̂1 is the

time required for the first unit of forgetting exponent. Figure3.2 shows behavior of the

forgetting curve Equation (3.2).

Figure 3.2: Forgetting curve

Jaber and Bonney (1998), Jaber and Bonney (1996), Jaber and Bonney (1997), and

Jaber and Sikstrom (2004) report that the learn-forget curve model expresses the forget-
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ting exponent.

fi =
l(1− l)log(qi + αi)

log(Ci + 1)
, (3.3)

where qi is the units produced in cycle i, αi is the number of units of experience accumu-

lated at the beginning of the cycle i, tB is the break time over which the total forgetting

occurs, tpi is the time to accumulate qi units, and Ci is the minimum ratio of the break

time duration to the production time (tB / tpi) as shown in Figure 3.3. Note that fi is

zero whenever l is 0 or 1. It means that there will be no forgetting if there is no learning

(nothing to forget) and rapid learning (forgetting slope unimportant (Jaber and Kher

2002)).

Figure 3.3: Learn-forget curve

If total forgetting occurs, then αi is zero. If no forgetting occurs, then all units of

accumulated experience from i−1 cycles are counted. Therefore, αi is between 0 and qn.
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The number of units accumulated for the next cycle, αi+1, is calculated as follows.

0 < αi <

i−1∑
n=1

qn, (3.4)

αi+1 = (qi + αi)
(l+fi)/l (qi +Ri + αi)

−fi/l, (3.5)

where the Ri is the number of units that would have been produced during the inter-

ruption period tbi. The behavior of the learning-forget curve model is shown in Figure

3.3.

Once the time required to produce the first unit in first cycle is known, learning rate

of the worker and the number of units accumulated experience at cycle i + 1, the time

required to produce the first unit for the cycle i+ 1 can be calculated as follows.

Ti+1 = T1(αi+1 + 1)−l. (3.6)

There is a production plant and it manufactures in increasing production rate. The

consumption rate is constant r units per unit time as shown in Figure 3.4, where Zi is

the maximum inventory level, tci is the cycle time and it is equal to tpi and tbi, tpi is the

time required to produce qi units and build a maximum inventory of Zi, tbi is the time

to deplete Zi. Note that qi ≥ rt over the interval zero to tpi. The inventory level as a

function as per Figure 3.4 can be written as follows.

ϕi(t) = qi(t)− rt (0 ≤ t ≤ tpi). (3.7)

ϕi(t) = −rt+ rtci (tpi ≤ t ≤ tci). (3.8)

The total time to produce qi units is t(qi). T1+αi
is the time required to produce

the first unit in cycle i. When the first unit is produced, there is already αi units of

accumulated experience from previous cycles. T2+αi
is the time required to produce the

second unit in cycle i and so on. Tqi+αi
is the time required to produce the qthi unit in

cycle i. By integrating t(qi) over the appropriate limits, the time required to produce qi

is calculated as follows.

t(qi) =

∫ qi+αi

αi

T1x
−ldx, (3.9)
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Figure 3.4: Inventory level affected by learning

3.1 The deterministic learning curve model

The deterministic learning curve model has its parameters, T1 and l, given and are the

same for every worker in a population of group of workers integrating t(qi) over the

appropriate limits will give the time required to produce qi units. When qi is solved, it

will give the quantity produced in function of time.

t(qi) =
T1

(1− l)
[(qi + αi)

1−l − (αi)
1−l],

qi =

(
1− l

T1

t+ α1−l
i

)(1/1−l)

− αi. (3.10)

3.1.1 The infinite planning horizon model

The infinite planning horizon model (Jaber and Bonney 1998) is presented to calculate

total cost when the planning horizon is infinite, where k is the setup cost, h is the

inventory carrying cost, dm is the material cost, and γ is the labor cost. The expected
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total cost (tc) equals to sum of production cost (pc) and holding cost (hc).

tc = pc+ hc.

pc = k + dmqi + γt(qi)

= k + dmqi +
γT1

1− l

[
(qi + αi)

1−l − α1−l
i

]
. (3.11)

Holding cost is inventory carrying cost (h) per unit times the area under the inventory

function in Figure 3.4. Thus, integrate ϕi(t) over the limit of 0 to tci is given as follows.∫ tci

0

ϕi(t)dt =
q2i
2r

−
T1

[
(qi + αi)

2−l − α2−l
i

]
(1− l)(2− l)

+
T1qiα

1−l
i

1− l
. (3.12)

After solving the area under the inventory function, the holding cost (hc) is obtained

by multiplying the area with the inventory carrying cost per unit (h).

hc = h

(
q2i
2r

−
T1

[
(qi + αi)

2−l − α2−l
i

]
(1− l)(2− l)

)
+

hT1qiα
1−l
i

1− l
. (3.13)

Once the holding cost and the production cost are known, the total cost can be found

by adding both costs. Therefore, the total cost is given as follows.

tc = k + dmqi −
γT1

1− l

[
(qi + αi)

1−l + α1−l
i

]
+ h

(
q2i
2r

−
T1

[
(qi + αi)

2−l − α2−l
i

]
(1− l)(2− l)

)
+

hT1qiα
1−l
i

1− l
. (3.14)

The total cost per unit time can be found by dividing the total cost by cycle time.

Therefore, the total cost per unit can be expressed as follows (Jaber and Bonney 1998).

tcu(qi) = rtc(qi)/qi.

tcu(qi) =
kr

qi
+ dmr −

γT1r

1− l

(
(qi + αi)

1−l + α1−l
i

qi

)
+ h

(
qi
2
−

T1r
[
(qi + αi)

2−l − α2−l
i

]
(1− l)(2− l)qi

)
+

hT1rα
1−l
i

1− l
. (3.15)

3.1.2 The finite planning horizon model

The finite planning horizon model (Jaber and Bonney 1998) is presented to calculate

total cost when the planning horizon is finite, which means there is a finite demand to
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fulfill, where k is the setup cost, h is the inventory carrying cost, dm is the material cost,

and γ is the labor cost. The expected total cost (tc) equals to sum of production cost

(pc) and holding cost (hc).

When there are N lots (a simplistic assumption of equal lots) and the total quantity

demand is Q, where Q = Nq, the total cost function can be calculated as in the infinite

planning horizon model with some adjustments.

tc = kN + dmQ− γT1

1− l

(
N∑
i=1

(
(Q/N + αi)

1−l + α1−l
i

))

+
hQ2

2Nr
− T1

(1− l)(2− l)

(
N∑
i=1

(
(Q/N + αi)

2−l − α2−l
i

))
+

hT1Q

N(1− l)

(
N∑
i=1

(
α1−l
i

))
.

(3.16)

The optimal demand lots N∗ is in between NL and NU . The total cost is calculated

for all the lots in between NL and NU inclusive to find the actual N∗ with the minimum

total cost.

3.2 The probabilistic learning curve model

In stochastic case, T1 and l are random variables as each worker in a population of

workers has his/her learning curve and subsequently its own parameters. The learning

curve parameters for the population of workers are treated as random variables with

known pdfs. The new learning curve equation is as follows.

ts(qi) =

∫ qi+αi

αi

∫ lb

la

∫ T1b

T1a

T1x
−lf(T1)f(l) dT1 dl dx, (3.17)

where ts(qi) is the total time to produce qi units in probabilistic learning curve equation.

T1a and T1b are the limits for the time required to produce first unit, T1. la and lb are

the limits for learning rate of each worker, l.

The functions f(T1) and f(l) are any function in general for stochastic T1 and l.

For simplicity, this study assumes that T1 and l are using uniformly distributed given
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respectively as

f(T1) =
1

(T1b − T1a)
, (3.18)

and

f(l) =
1

(lb − la)
. (3.19)

By integrating the learning curve in Equation (3.17) over the proper limits, the ex-

pected time required to produce qi units, t
s(qi), is given as,

ts(qi) =

∫ qi+αi

αi

∫ lb

la

∫ T1b

T1a

T1x
−l 1

(T1b − T1a)

1

(lb − la)
dT1 dl dx

= −(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx, (3.20)

where T1a and T1b are the limits for the time required to produce first unit, T1. la and lb

are the limits for learning rate of each worker, l. As for the deterministic case, the total

time to produce qi units is defined with time required to produce the first unit in cycle i

plus the time required to produce the second units and so on until the time required to

produce the qthi unit is added and integrated over the limit αi and qi + αi, the time to

produce qi units can be calculated. Derivation of Equation (3.20) is given in Appendix

A and it is solved using Matlab for the numerical results.

Equation (3.17) can be approximated as follows:

tse(qi) =

∫ qi+αi

αi

∫ lb

la

∫ T1b

T1a

T1x
−l 1

(T1b − T1a)

1

(lb − la)
dT1 dl dx

= −(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx

≈ −(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
λbx

−βb − λax
−βa
)
dx

≈ −(T1b + T1a)

2(lb − la){
λb

1− βb

[
(qi + αi)

1−βb − (αi)
1−βb

]
− λa

1− βa

[
(qi + αi)

1−βa − (αi)
1−βa

]}
,

(3.21)

where λa = 0.604743 − 0.065762la, βa = 0.21264 + 0.981904762la, λb = 0.604743 −

0.065762lb and βb = 0.21264 + 0.981904762lb
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3.2.1 The infinite planning horizon model

The infinite planning horizon model is presented to calculate total cost with stochas-

tic functions when the planning horizon is infinite. That is there is no finite demand

requested. Using the new stochastic time function, the total cost function can be calcu-

lated. Define k as the setup cost, h as the inventory carrying cost, dm as the material

cost, and γ as the labor cost. The expected total cost (tc) equals to sum of production

cost (pc) and holding cost (hc).

tc = pc+ hc.

pc = k + dmqi + γts(qi)

= k + dmqi − γ

[
(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx

]
. (3.22)

Equation (3.22) is solved using Matlab for the numerical results. If the approximated

equation is substituted for the above integration, the approximated production cost is

given as follows.

pce = k + dmqi + γts(qi)

= k + dmqi −
[
γ(T1b + T1a)

2(lb − la)

]
{

λb

1− βb

[
(qi + αi)

1−βb − (αi)
1−βb

]
− λa

1− βa

[
(qi + αi)

1−βa − (αi)
1−βa

]}
. (3.23)

Holding cost is the inventory carrying cost, h, times the area under the inventory

function. It is very hard to integrate stochastic time function to get the area under the

inventory function, so it is approximated as Salameh et al. (1993) defined. The average

inventory level over tci is given as follows.

ϕi(t) =
qi
2r

(rts(qi))− qi −
(lb + la)qit

s(qi)

(2(4− lb + la))
, (3.24)

where 1
T1a

> r
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After solving the area under the inventory function, the holding cost (hc) is found by

multiplying the area with the inventory carrying cost, h.

hc = h ϕi(t).

hc =
hqit

s(qi)

2
− hq2i

2r
− h(lb + la)qit

s(qi)

(2(4− lb + la))
. (3.25)

Once the holding cost and the production cost are known, the total cost can be found

by adding both costs. Therefore, the total cost is given as follows.

tc = k + dmqi + γts(qi)−
hq2i
2r

+
hqit

s(qi)

2
− h(lb + la)qit

s(qi)

(2(4− lb + la))

= k + dmqi −
hq2i
2r

+

[
γ +

hqi
2

− h(lb + la)qi
(2(4− lb + la))

]
[
−(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx

]
. (3.26)

This equation can be approximated as follows:

tce = k + dmqi + γts(qi)−
hq2i
2r

+
hqit

s(qi)

2
− h(lb + la)qit

s(qi)

(2(4− lb + la))

= k + dmqi −
hq2i
2r

+

[
γ +

hqi
2

− h(lb + la)qi
(2(4− lb + la))

] [
−(T1b + T1a)

2(lb − la)

]
{

λb

1− βb

[
(qi + αi)

1−βb − (αi)
1−βb

]
− λa

1− βa

[
(qi + αi)

1−βa − (αi)
1−βa

]}
.

(3.27)

From the total cost function, the expected total cost per unit (tcu(qi)) can be calcu-

lated by dividing the total cost by cycle time as follows,

tcu(qi) =
tc(qi)

tci
.

tcu(qi) = tc(qi)
r

qi
.

tcu(qi) =
kr

qi
+ rdm − hqi

2
+

[
γr

qi
+

hr

2
− h(lb + la)r

(2(4− lb + la))

]
[
−(T1b + T1a)

2(lb − la)

∫ qi+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx

]
. (3.28)
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If the approximated equation is substituted for the above integration, the approxi-

mated expected total cost per unit is given as follows.

tcue(qi) =
tc(qi)

tci
.

tcue(qi) = tc(qi)
r

qi
.

tcue(qi) =
kr

qi
+ rdm − hqi

2
+

[
γr

qi
+

hr

2
− h(lb + la)r

(2(4− lb + la))

] [
−(T1b + T1a)

2(lb − la)

]
{

λb

1− βb

[
(qi + αi)

1−βb − (αi)
1−βb

]
− λa

1− βa

[
(qi + αi)

1−βa − (αi)
1−βa

]}
.

(3.29)

3.2.2 The finite planning horizon model

The finite planning horizon model is to calculate total cost with stochastic time function

when the planning horizon is finite. That is, a finite demand is requested in the pro-

duction plant. The total cost function is expressed with k as the setup cost, h as the

inventory carrying cost, dm as the material cost, and γ as the labor cost. The expected

total cost (tc) equals to sum of production cost (pc) and holding cost (hc).

When there are N lots and the total quantity demand is Q, where Q = Nq, the total

cost is calculated with some adjustments to the infinite planning horizon model.

tc = kN + dmQ− hQ2

2Nr
+

[
γ +

hQ

2N
− h(lb + la)Q

(2N(4− lb + la))

] [
−(T1b + T1a)

2(lb − la)

]
N∑
i=1

[∫ Q/N+αi

αi

(
x−lb

ln(x)
− x−la

ln(x)

)
dx

]
. (3.30)

If the approximated equation is substituted for the above integration, the approxi-

mated total cost to the infinite planning horizon model is given as follows.

tce = kN + dmQ− hQ2

2Nr
+

[
γ +

hQ

2N
− h(lb + la)Q

(2N(4− lb + la))

] [
−(T1b + T1a)

2(lb − la)

]
N∑
i=1

[
λb

1− βb

[
(Q/N + αi)

1−βb − (αi)
1−βb

]
− λa

1− βa

[
(Q/N + αi)

1−βa − (αi)
1−βa

]]
.

(3.31)
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3.3 Numerical example and analysis

Let us assume there is a production line and its inventory is affected with learning and

forgetting. Consider the T1 (time to produce the first unit) vary from 0.050 to 0.075 days

per unit (Jaber and Bonney 1998). The consumption rate (r) is 12 units per day. The

labor cost (γ) is $80 per day. The holding cost (h) is $0.20 per day. The set up cost (k)

is $200 per production run. The learning curve slope varies from 0.05 to 0.15 to get l =

0.1 as Jaber and Bonney (1998) assumed. Assume tB is 300 days; that is the length of

the interruption or break period where the total forgetting occurs. The same experiment

is repeated when tB is equal to 500, 1000, 3000, 6000, and 12000 days.

For the stochastic case, using the above numerical values, we calculate optimum

production quantities for the cycles 1, 2 3, . . ., 12 (see Table 3.1). The optimum quantity

with tB = 300 is 465 in cycle 1.

We need to find the output, that would have been build up if an interruption did not

occur at unit number 465 in first cycle, to find the level experience at second cycle, α2. To

find this, we need tc1, which is the time of the first cycle. The amount of time, tc1, required

to produce 465 units can be calculated from Equation (3.24), is t(465) = 17.65 day.

Matlab is used to calculate the numerical value.

We need to determine the level of experience at the beginning of the second cycle.

For this we have to find the output that would have been collected if no interruption

occurred at unit 465. We use the following equation to find the total output (Jaber and

Bonney 1998):

α1 + q1 +R1 =

[
1− 0.1

0.0625

(
465

12

)
+ 01−0.1

]1/1−0.1

= 1126 units
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The forgetting slope is calculated as follows (Jaber and Bonney 1998):

fi =
0.1(1− 0.1)log(465 + 0)

log(16.99 + 1)

= 0.1913

where Ci is tB/t(465) and tB is 300 days.

For the deterministic case with T1 is 0.0625 and l is 0.1, the optimum quantity with

tB = 300 is 248 in cycle 1. The amount of time, tc1, required to produce 248 units is 9.92

days. The total output, when no interruption occurred at unit 248, is 560 units and the

forgetting slope is 0.1442. The total cost is 60.40 (Jaber and Bonney 1998).

Two extreme cases for deterministic learning curve are found as follows: (1) very fast

(T1b is 0.05 and lb is 0.15) and (2) very slow (T1a is 0.075 and la is 0.05). For the first case,

the optimum quantity with tB = 300 is 213 in cycle 1. The amount of time, tc1, required

to produce 213 units is 5.59 days. The total output, when no interruption occurred at

unit 213, is 825 units and the forgetting slope is 0.1709. The total cost is 50.61. For the

second case, the optimum quantity with tB = 300 is 328 in cycle 1. The amount of time,

tc1, required to produce 328 units is 19.39 days. The total output, when no interruption

occurred at unit 328, is 472 units and the forgetting slope is 0.0983. The total cost is

73.02.

Then, the process is repeated for tB is equal to 500 days. The second part of Table

3.1 shows the results for tB is equal to 500 days. The optimum quantities produced are

465, 436, 434, 433, 430, 429, 429, 429, 429, 429, 429, and 429 for cycles 1-12 respectively.

The estimated optimum quantities produced are 481, 451, 449, 448, 445, 444, 444, 444,

444, 444, 444, and 444 for cycles 1-12 respectively.

Then, the process is repeated for tB is equal to 1000 days. The first part of Table

3.2 shows the results for tB is equal to 1000 days. The optimum quantities produced are

465, 435, 433, 432, 431, 429, 427, 427, 427, 427, 427, and 427 for cycles 1-12 respectively.

The estimated optimum quantities produced are 481, 450, 448, 447, 446, 444, 442, 442,
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442, 442, 442, and 442 for cycles 1-12 respectively.

Then, the process is repeated for tB is equal to 3000 days. The second part of Table

3.2 shows the results for tB is equal to 3000 days. The optimum quantities produced are

465, 433, 432, 430, 427, 426, 425, 425, 425, 425, 425, and 425 for cycles 1-12 respectively.

The estimated optimum quantities produced are 481, 448, 447, 445, 442, 440, 439, 439,

439, 439, 439, and 439 for cycles 1-12 respectively.

Then, the process is repeated again for tB is equal to 6000 days. The first part of Table

3.3 shows the results for tB is equal to 6000 days. The optimum quantities produced are

465, 430, 427, 424, 420, 420, 420, 420, 420, 420, 420, and 420 for cycles 1-12 respectively.

The estimated optimum quantities produced are 481, 445, 442, 438, 434, 434, 434, 434,

434, 434, 434, and 434 for cycles 1-12 respectively.

Then, the process is repeated again for tB is equal to 12000 days. The second part

of Table 3.3 shows the results for tB is equal to 12000 days. The optimum quantities

produced are 465, 430, 425, 423, 420, 420, 420, 420, 420, 420, 420, and 420 for cycles

1-12 respectively. The estimated optimum quantities produced are 481, 445, 439, 437,

434, 434, 434, 434, 434, 434, 434, and 434 for cycles 1-12 respectively.

Comparing the results obtained for tB = 300, 500, 1000, 3000, 6000, and 12000 days,

the cost per unit time was reduced from 66.69, 65.82, 64.82, 63.47, 62.41 to 61.77 time

units, where the production is rate increased as a consequence. The optimum quantities

that were produced after the first cycle are decreased. This indicates that the longer

it takes to forget after a break, the less would be the impact of forgetting on the total

cost and optimum quantity produced. When we increase tB toward infinity, the changes

in optimum quantity produced is very minimal. This happens because when the break

between two cycles increases, the workers intend to forget more and more. Once the limit

is reached, they fully forget and need to learn from the beginning. In this case, you can

see they fully forgot when tB = 6000, therefore, there is no change in quantity produced

when tB is changed to 12000.
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The approximated Equation (3.21) is calculated when the upper and lower limits of

the learning curve slope, lb = 0.4 and la = 0.1, respectively. The approximated result for

the time request to produce 100 units is 1.82 days when the number of units accumulated

at the beginning of the cycle is 200.5. The result from Equation (3.20) is 1.76 days for

the same parameters. Therefore, the error is (1.82 -1.76)/1.76 = 0.034.

Table 3.1: Optimum quantity and estimated optimum quantity produced for 12 cycles

for tB = 300 and 500 days, respectively

Cyclei αi q t(qi) Total cost qe te(qi) Estimated cost

1 0 465 17.65 73.25 481 18.25 75.74

2 86.82 438 15.83 67.66 453 16.37 69.96

3 97.18 433 15.76 67.46 448 16.29 69.75

4 98.78 432 15.59 66.93 447 16.12 69.20

5 99.22 431 15.58 66.91 446 16.10 69.18

6 99.27 431 15.55 66.80 446 16.07 69.07

7 99.31 431 15.51 66.70 446 16.03 68.96

8 99.33 431 15.51 66.69 446 16.03 68.95

9 99.33 431 15.51 66.69 446 16.03 68.95

10 99.33 431 15.51 66.69 446 16.03 68.95

11 99.33 431 15.51 66.69 446 16.03 68.95

12 99.33 431 15.51 66.69 446 16.03 68.95

1 0 465 17.65 73.25 481 18.25 75.74

2 110.59 436 15.62 66.99 451 16.15 69.26

3 129.94 434 15.44 66.44 449 15.96 68.69

4 134.24 433 15.38 66.26 448 15.90 68.51

5 135.18 430 15.28 65.93 445 15.79 68.17

6 135.41 429 15.24 65.82 444 15.75 68.05

7 135.45 429 15.24 65.82 444 15.75 68.04

8 135.45 429 15.24 65.82 444 15.75 68.04

9 135.46 429 15.24 65.82 444 15.75 68.04

10 135.46 429 15.24 65.82 444 15.75 68.04

11 135.46 429 15.24 65.82 444 15.75 68.04

12 135.46 429 15.24 65.82 444 15.75 68.04

Not all the workers have the same learning rate or do the work in same time frame.
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Table 3.2: Optimum quantity and estimated optimum quantity produced for 12 cycles

for tB = 1000 and 3000 days, respectively

Cyclei αi q t(qi) Total cost qe te(qi) Estimated cost

1 0 465 17.65 73.25 481 18.25 75.74

2 140.44 435 15.43 66.40 450 15.95 68.66

3 175.40 433 15.20 65.67 448 15.72 67.90

4 186.23 432 15.12 65.42 447 15.63 67.64

5 189.60 431 15.07 65.26 446 15.58 67.48

6 190.63 429 15.00 65.04 444 15.51 67.25

7 190.88 427 14.93 64.83 442 15.44 67.04

8 190.87 427 14.93 64.82 442 15.44 67.02

9 190.86 427 14.93 64.82 442 15.44 67.02

10 190.84 427 14.93 64.82 442 15.44 67.02

11 190.84 427 14.93 64.82 442 15.44 67.02

12 190.83 427 14.93 64.82 442 15.44 67.02

1 0 465 17.65 73.25 481 18.25 75.74

2 180.82 433 15.18 65.60 448 15.70 67.83

3 244.20 432 14.91 64.72 447 15.42 66.92

4 271.46 430 14.75 64.22 445 15.25 66.40

5 283.20 427 14.61 63.77 442 15.11 65.94

6 288.05 426 14.56 63.61 440 15.06 65.77

7 290.08 425 14.52 63.48 439 15.01 65.64

8 290.87 425 14.51 63.48 439 15.00 65.64

9 291.22 425 14.51 63.47 439 15.00 65.63

10 291.38 425 14.51 63.47 439 15.00 65.63

11 291.45 425 14.51 63.47 439 15.00 65.63

12 291.48 425 14.51 63.47 439 15.00 65.63

Even one worker does not always have the ability to finish one product in the same time

frame over and over again. Thus, we gave stochastic learning rate and time to do the

units. It makes the process more realistic. It is shown that there is a significant difference

when we give stochastic characteristics for workers to model the learning curve instead

of deterministic characteristics. The numerical example using uniform distribution for

both learning curve slope and the time to produce first unit shows differences.
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Table 3.3: Optimum quantity and estimated optimum quantity produced for 12 cycles

for tB = 6000 and 12000 days, respectively

Cyclei αi q t(qi) Total cost qe te(qi) Estimated cost

1 0 465 17.65 73.25 481 18.25 75.74

2 202.17 430 15.00 65.01 445 15.51 67.22

3 283.33 427 14.62 63.80 442 15.12 66.00

4 322.92 424 14.41 63.14 438 14.90 65.29

5 342.39 420 14.23 62.56 434 14.71 64.68

6 238.39 420 14.21 62.48 434 14.69 64.60

7 351.69 420 14.20 62.45 434 14.68 64.57

8 356.43 420 14.19 62.43 434 14.67 64.57

9 358.85 420 14.19 62.42 434 14.67 64.57

10 360.10 420 14.19 62.42 434 14.67 64.57

11 360.73 420 14.19 62.41 434 14.67 64.57

12 361.06 420 14.19 62.41 434 14.67 64.57

1 0 465 17.65 73.25 481 18.25 75.74

2 220.81 430 14.93 64.78 445 15.44 66.98

3 320.09 425 14.45 63.24 439 14.94 65.39

4 374.05 423 14.25 62.58 437 14.93 64.70

5 403.749 420 14.08 61.92 434 14.56 64.02

6 419.79 420 14.04 61.85 434 14.52 63.95

7 428.99 420 14.02 61.81 434 14.50 63.91

8 434.29 420 14.01 61.79 434 14.48 63.89

9 437.36 420 14.00 61.78 434 14.47 63.88

10 439.14 420 14.00 61.77 434 14.47 63.87

11 440.18 420 14.00 61.77 434 14.47 63.87

12 440.78 420 14.00 61.77 434 14.47 63.87

We can see the changes in time to produce quantity when we change the upper limit of

the initial processing time T1b as shown in Figure 3.5. The bold line is for the deterministic

case and the others are for probabilistic cases. In here, when the upper limit of the initial

processing time is increased, the time to produce the quantity is increased.

We can see the changes in time to produce quantity when we change the lower limit of
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Figure 3.5: Effect on the output when T1b changes

the initial processing time T1a as shown in Figure 3.6. The bold line is for the deterministic

case and the others are for probabilistic case. In here, when the lower limit of the initial

processing time is decreased, the time to produce the quantity is decreased.

We can see the changes in time to produce quantity when we change the upper limit

of the learning curve slope lb as shown in Figure 3.7. The bold line is for the deterministic

case and the others are for probabilistic case. In here, when the upper limit of the learning

curve slope is increased, the time to produce the quantity is decreased.

We can see the changes in time to produce quantity when we change the lower limit of
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Figure 3.6: Effect on the output when T1a changes

the initial processing time la as shown in Figure 3.8. The bold line is for the deterministic

case and the others are for probabilistic case. In here, when the lower limit of the learning

curve slope is increased, the time to produce the quantity is increased.
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Figure 3.7: Effect on the output when lb changes
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Figure 3.8: Effect on the output when la changes
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Chapter 4

Real Options for Cross-Training

Model

In this chapter, a real options approach to the valuation of cross-training with three

regime product life cycle is introduced. This model can be used to investigate how to

cross-train workers who perceive the complexity of certain tasks differently and have

learning curve with its individual characteristics. In this chapter, the assumptions are

1) the production system is a serial production system with Kanban release policy, 2)

the demand follows three regime product life cycle: growth, maturity, and decay, and 3)

each regime is modeled by a geometric Brownian motion.

A heptanomial lattice, having seven branches, is used to model the three-regime prod-

uct life cycle. The first regime of the product life cycle is the growth regime. Afterwards,

it switches stochastically to maturity regime, and then to decay regime. The growth

regime represents increasing demand, the maturity regime represents stabilized demand,

and the decay regime represents decreasing demand. Each regime is represented by a

trinomial lattice and one period is considered as one month. Figure 4.1 shows a single

step in a heptanomial lattice. z represents the level of the underlying variable. For ex-

ample, the branches with nodes (z, t+ 1), (z + 3, t+ 1), and (z + 6, t+ 1) represent the
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growth regime. The branches with nodes (z + 1, t + 1), (z + 3, t + 1), and (z + 5, t + 1)

represent the maturity regime. The branches with nodes (z + 2, t + 1), (z + 3, t + 1),

and (z + 4, t + 1) represent the decay regime. To allow the efficient recombination of

the branches, the step sizes of all the branches are set to be equal. To maintain the

match between the original lattice and the distribution implied by the lattice, the middle

branch is added. πg,u, πg,m, and πg,d are the branch probabilities of the growth regime of

the upper, middle, and lower branches, respectively. πm,u, πm,m, and πm,d are the branch

probability of the maturity regime of the upper, middle, and lower branches, respectively.

Similarly, πd,u, πd,m, and πd,d are the branch probability of the decay regime of the upper,

middle, and lower branches, respectively. A similar model is presented with two regimes

in Bollen (1999).

The step size of regime w, ϕ̂w, is calculated using mean, µw, and volatility, σw, of the

regime w as follows:

ϕ̂w =

√
σ2
w∆t+ (µw∆t)2, (4.1)

where the ∆t represents the interval between two layers of the lattice. A small value of

∆t will make all the condition probabilities of branches positive (Hull 2002).

As Wahab and Lee (2011) explain, ϕ̂1, ϕ̂2, and ϕ̂3 are the step sizes of each regime:

1.growth, 2.maturity, and 3.decay. First, the step sizes are arranged and re-indexed such

that ϕ1 < ϕ2 < ϕ3. ϕ̂1 ̸= ϕ1 and ϕ1 is not the step size of the growth regime. It may

belong to any regime but it is the smallest step size. Similarly, ϕ̂2 and ϕ̂3 may not

be equal to ϕ2 and ϕ3, respectively. ϕ2 and ϕ3 may not belong to maturity and decay

regimes, respectively. Second, they are set for each branch as follows:

ϕ = max(ϕ1,
ϕ2

2
,
ϕ3

3
), (4.2)

so that ϕ = ϕw

w
and ϕw

w
≥ ϕŵ

ŵ
for all ŵ ̸= w. ŵ also represents a regime. Third, the step
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Figure 4.1: Heptanomial lattice

sizes of regimes are adjusted as

ϕŵ =


ϕw if ŵ = w

ŵ ϕw

w
if ŵ ̸= w

(4.3)

After the step sizes are adjusted, we calculate the branch probabilities of a trinomial

lattice for regime ŵ as follows:

πϕŵ,u =
eµŵ∆t − e(−ŵ ϕw

w ) − πϕŵ,m

(
1− e(−ŵ ϕw

w )
)

e(ŵ
ϕw
w ) − e(−ŵ ϕw

w )
, (4.4)

πϕŵ,m = 1− ϕ2
ŵ(

ŵ ϕw

w

)2 , (4.5)

πϕŵ,d = 1− πϕŵ,u − πϕŵ,m, (4.6)

37



4.1 Optimization models

An optimization model is developed to find the optimal cross-training policy. In a serial

production system with Kanban release policy, there are n stations with n workers.

Product quantity is processed in a series stations, j (j = 1, 2, . . . , n). The output of

station j is the only input to station j+1. The system employs a Kanban release policy

where the total inventory of raw material and finished items at each station is kept in

a certain level according to the Kanban card set. We assume that if a worker does not

work at a secondary station for one period, the worker will completely forget the tasks at

the secondary station. The total forgetting is assumed here to justify the cross-training.

In this model, the inventory level at a station is maintained at one of m levels.

Index Sets:

j - production stations, j = 1, 2, . . . , n

t - time period

k - number of workers, k = 1, 2, . . . , n

Parameters:

hj - holding cost per item per unit time at buffer for station j

Cjk - cross-training cost at station j for worker k

τjk - time to produce the first item at station j by worker k

ljk - learning slope of worker k for station j

U - unit cost per item (including raw material cost and setup cost)

Dt - demand in period t

p - price per unit of finished product

bjk - labor cost per hour of worker k at station j

βt - number of labor hours in a period t

B - the matrix represents all possible inventory levels

It - a row vector in matrix B
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4.1.1 Optimization model with cross-training

The optimization model, presented in this section, determines the optimal profit when

there is a cross-training involved in the production process.

Decision variables:

Ijt - inventory at station j at the end of period t. Ijt ∈ It (it is the jth element of It)

Qjt- production quantity at station j during period t

Xjkt - fraction of the time worker k works at station j in period t

Sjkt - cross-training status of worker k to station j in period t

Maximize the profit in a given period t

Max VCT = (p− U)Qnt −
n∑

j=1

hjIjt −
n∑

j=1

n∑
k=1

bjkXjktβt −
n∑

j=1

n∑
k=1
k ̸=j

CjkSjkt, (4.7)

Subject to

Ij(t−1) +Qjt − Ijt ≤ Dt, j = n (4.8)

Ij(t−1) +Qjt − Ijt −Q(j+1)t = 0, j = 1, 2, . . . , n− 1 (4.9)

0 ≤ Qjt ≤
n∑

k=1

(
(1− ljk)(βt)(Xjkt)

τjk

)1/(1−ljk)

, j = 1, 2, . . . , n (4.10)

n∑
k=1
k ̸=j

Sjkt ≥ 2, j = 1, 2, . . . , n (4.11)

n∑
j=1
j ̸=k

Sjkt ≥ 2, k = 1, 2, . . . , n (4.12)

Sjjt = 1, j = 1, 2, . . . , n (4.13)

n∑
j=1

Xjkt ≤ 1, k = 1, 2, . . . , n (4.14)

39



Xjkt ≤ MSjkt, j = 1, 2, . . . , n, k = 1, 2, . . . , n (4.15)

0 ≤ Xjkt ≤ 1, j = 1, 2, . . . , n, k = 1, 2, . . . , n (4.16)

Sjkt = {0, 1}, j = 1, 2, . . . , n, k = 1, 2, . . . , n, k ̸= j (4.17)

It ∈ B, (4.18)

Ijt ∈ It, j = 1, 2, . . . , n (4.19)

Constraint (4.8) indicates that the inventory at the last station in t − 1 period and

the quantity produced at period t in the last station is equal to the inventory at the

last station in the period t and demand in period t. Constraint (4.9) is the balance

equation representing the flow at each station. In Constraint (4.10), we calculate the

quantity produced at each station by including the effect of learning rate of the workers.

Constraints (4.11) and (4.12) are to indicate that at least two workers are cross-trained

for each station and each worker is cross-trained for at least two stations in a given

period, respectively. Constraint (4.13) indicates that each worker is trained for his or her

own station. Constraint (4.14) indicates that the total fraction of the time a worker is

assigned to work in all stations in a period should be less than or equal to 1. Constraint

(4.15) is to ensure that a worker is needed to be cross-trained to work on a specific

station. That is, if Xjkt > 0, then Sjkt = 1. If Xjkt = 0, then Sjkt = 0. The M is a

large integer number. Since the maximum value of Xjkt is 1 so, M = 1. The fraction of

the time assigned to a worker, Xjkt, is between 0 and 1 (Constraint (4.16)). Constraint

(4.17) indicates that the cross-training status is either 1 or 0. Constraint (4.18) indicates

that the buffer inventory for each station in a given period is represented by one of the

rows of matrix B. The matrix B has nm rows. The profit is maximized by searching over

all possible nm rows. Constraint (4.19) indicates that Ijt is an element of the vector of

inventory level It; that is Ijt is the inventory level at station j.
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4.1.2 Optimization model without cross-training

The optimization model, presented in this section, calculates the optimal profit without

cross-training. In this model, each worker works on his or her primary station only. The

following optimization model is created without any cross-training aspects.

Decision variables:

Ijt - inventory at station j at the end of period t

Qjt- production quantity at station j during period t

Maximize the profit in a given period t

Max VNCT = (p− U)Qnt −
n∑

j=1

hjIjt −
n∑

j=1
k=j

bjkβt, (4.20)

Subject to

Ij(t−1) +Qjt − Ijt ≤ Dt, ∀j = n (4.21)

Ij(t−1) +Qjt − Ijt −Q(j+1)t = 0, ∀j = 1, 2, . . . , n− 1 (4.22)

0 ≤ Qjt ≤
n∑

k=1

(
(1− ljk)(βt)

τjk

)1/(1−ljk)

, ∀j = 1, 2, . . . , n (4.23)

It ∈ B, (4.24)

Ijt ∈ It, j = 1, 2, . . . , n (4.25)

Constraint (4.21) indicates that the inventory at the last station in t − 1 period

and the quantity produced at period t in the last station is equal to the inventory at

the last station in the period t and demand in period t. The constraint (4.22) is the

balance equation of the inventory level and production quantity. In Constraint (4.23),

we calculate the quantity produced at each station by including the effect of learning rate

of the workers. Constraint (4.24) indicates that the inventory stored at each station is

one of the row vector of matrix B. The matrix B has nm rows. The profit is maximized
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by searching over all the nm rows. Constraint (4.25) indicates that Ijt is an element of

the vector of inventory level It; that is Ijt is the inventory level at station j.

4.2 Dynamic programming

After we find the optimal profit at each node of the demand developed by the lattice

approach, the backward dynamic program is used to find the net present value. For the

terminal node, the net present value is just the cash flow and it is calculated as follows:

V (z, It, T ) = max[VCT (z, It), VNCT (z, It)], when t = T ∀z

(4.26)

where z represents the level of the underlying variable in a lattice. VCT (z, It) is the

maximum profit computed with cross-training whereas VNCT (z, It) is the maximum profit

computed without cross-training.

For the intermediate nodes, the net present value is present value cash flow plus the

discounted expected value from the next time period. The net present value of each node

is computed using inventory level of prior node and the demand. The maximum profit

for each level of inventory is calculated as follows:

PV (z, ŵ, It, t) = max
Bt

[V (z, It, t), EV (z, ŵ, It+1, t)−H(It, It+1)],∀ŵ ∈ {g,m, d}, t ̸= T

(4.27)

where PV (z, ŵ, It, t) is the present value in regime ŵ at time t and current inventory

level It. H(It, It+1) is the holding cost. V (z, It, t) is the maximum profit computed using

the optimization model.

EV (z, ŵ, It, t) is the discounted expected value. It differs from regime to regime

because each regime is constructed by different set of branches. The discounted expected
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value for the growth regime is calculated as follows:

EV (z, g, It, t) = e−r∆t[(1− p(t))(πg,uPV (z, g, It, t+ 1)

+ πg,mPV (z + 3, g, It, t+ 1) + πg,dPV (z + 6, g, It, t+ 1))

+ p(t)(πm,uPV (z + 1,m, It, t+ 1) + πm,mPV (z + 3,m, It, t+ 1)

+ πm,dPV (z + 5,m, It, t+ 1))], (4.28)

where g represents the growth regime and m represents the maturity regime. p(t) is the

probability of switching from the growth regime to the maturity regime. πg,u, πg,m, and

πg,d are the conditional branch probabilities of the growth regime of the upper, middle,

and lower branches, respectively. Similarly, πm,u, πm,m, and πm,d are the conditional

branch probabilities of the maturity regime of the upper, middle, and lower branches,

respectively.

The discounted expected value for the maturity regime is calculated as follows.

EV (z,m, It, t) = e−r∆t[(1− q(t))(πm,uPV (z + 1,m, It, t+ 1)

+ πm,mPV (z + 3,m, It, t+ 1) + πm,dPV (z + 5,m, It, t+ 1))

+ q(t)(πd,uPV (z + 2, d, It, t+ 1) + πd,mPV (z + 3, d, It, t+ 1)

+ πd,dPV (z + 4, d, It, t+ 1))], (4.29)

where d represents the decay regime. q(t) is the probability of switching from the maturity

regime to the decay regime. πd,u, πd,m, and πd,d are the conditional branch probabilities

of the decay regime of the upper, middle, and lower branches, respectively.

The discounted expected value for the decay regime is calculated as follows:

EV (z, d, It, t) = e−r∆t[πd,uPV (z + 2, d, It, t+ 1)

+ πd,mPV (z + 3, d, It, t+ 1) + πd,dPV (z + 4, d, It, t+ 1)]. (4.30)

In Equation (4.27), H(It, It+1) is the holding cost. Holding cost is involved when the

inventory level changes from It and It+1. It will be deducted from the expected value to
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get the net present profit. The holding cost is calculated as follows:

H(It, It+1) =
4∑

j=1

hj(Ij(t+1) − Ijt) (4.31)

where hj is the inventory carrying cost per unit per period at station j.

4.3 Numerical analysis

Let us assume the total life cycle of a product is 5-year period, which is discretized

monthly. So, there are 60 periods in the total product life cycle (tl). The switch from

the growth regime to the maturity regime in the product life cycle is modeled as a

cumulative normal distribution with probability with a mean (µgm) of 3 years and a

standard deviation of 3 months. The switch from the maturity regime to the decay

regime is modeled with probability with a mean (µmd) of 4 year and a standard deviation

of 3 months. The initial demand is 180. The risk free rate of interest is 5%. Unit cost

per unit (including raw material and setup cost) is 2. The price per unit is $25.50. There

are 4 stations and 4 workers in the production line. The profit is maximized by searching

over four levels of inventory (4, 8, 12 and 16), which leads to 44 = 256 rows. We use

Kanban WIP system because we have a constant inventory level at each station in a

particular period. We are using optimization model to calculate the maximum profit for

each inventory level. Number of hours in a period is 300 hours.

Table 4.1 shows the annual risk adjusted mean and volatility that is used for each

regime of product life cycle. Table 4.2 shows the holding costs involved in each station

and there are 4 stations. Table 4.3 shows the learning slope of each worker at each

station. Table 4.4 shows the time to produce the first unit for each worker at each

station. Table 4.5 shows the labor cost for each worker at each station. Table 4.6 shows

the cross-training cost for each worker at each station.

The single regime process parameters were carefully selected so it can be compared

with three regime product life cycle. The volatility (σb) is calculated so the binomial
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Table 4.1: Annual risk adjusted mean and volatility for each regime of product life cycle

annual risk adjusted mean (µ) volatility (σ)

growth regime 25% 30%

maturity regime 0% 15%

decay regime -25% 5%

Table 4.2: Holding costs involved in each station

station 1 station 2 station 3 station 4

holding cost $0.10 $0.20 $0.30 $0.40

Table 4.3: Learning slope of each worker at each station

worker 1 worker 2 worker 3 worker 4

station 1 0.20 0.20 0.30 0.30

station 2 0.10 0.30 0.20 0.10

station 3 0.30 0.10 0.10 0.20

station 4 0.20 0.10 0.10 0.30

Table 4.4: Time to produce first unit for each worker at each station

worker 1 worker 2 worker 3 worker 4

station 1 0.01 0.01 0.02 0.01

station 2 0.02 0.01 0.02 0.01

station 3 0.01 0.02 0.02 0.01

station 4 0.01 0.01 0.02 0.02

lattice is covered the entire three regime product life cycle. σb is selected for geometric

Brownian motion by a weighted average of the three regimes’ volatilities.

σb =

√
µgm

tl
σ2
g +

µmd − µgm

tl
σ2
m +

tl − µmd

tl
σ2
d, (4.32)

The mean value for single regime product life cycle is also carefully selected to compare
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Table 4.5: Labor cost for each worker

worker 1 worker 2 worker 3 worker 4

station 1 $10 $11 $10 $12

station 2 $10 $10 $11 $12

station 3 $10 $10 $10 $12

station 4 $10 $11 $12 $10

Table 4.6: Cross-training cost for each worker

worker 1 worker 2 worker 3 worker 4

station 1 $0.00 $100.50 $150.00 $150.50

station 2 $200.00 $0.00 $100.00 $110.50

station 3 $100.00 $150.50 $0.00 $100.50

station 4 $170.00 $110.50 $150.00 $0.00

with three regime product life cycle. It is selected using trial and error procedure. The

mean value, which gives the same expected discount profit for both with product life

cycle and without product life cycle models, is selected.

Figure 4.2 shows that when we calculate the profit and the cross-training status

for model without product life cycle, we can see that the upper part of lattice gives the

maximum profit with cross-training and the lower part gives the maximum profit without

cross-training. The figure shows that the cross-training is helpful only in the last period.

If we increase the number of periods, the cross-training will help more and we may see it

when the time approaches the end of the period. When the time approaches zero, cross-

training is not helpful. It shows that when the demand is higher, the cross-training helps

to maximize the profit. If the demand is lower, then there is no need for cross-training.

The cross-training status is same for model with product life cycle. Figure 4.3 shows the

profit and the cross-training status for model with product life cycle.

The change in profit when we alter the volatility of growth regime (σg) is shown in
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Figure 4.2: Cross-training status for three periods of binomial lattice

Figure 4.4. The single regime process volatility (σb) is calculated by a weighted average

of the three regime’s volatilities so it can be compared with three regime product life

cycle. Therefore, it is also shown in Figure 4.4 to compare. The profit of the model

without product life cycle is way higher than the results from the model with product

life cycle. It shows how the product life cycle affects the profit. When there is no product

life cycle, the profit is not calculated accurately. Also, the profit increases significantly

when the volatility of growth regime (σg) is increased because the larger volatility is, the

greater is the probability that demand will grow significantly more.

The change in profit when we alter the volatility of maturity regime (σm) is shown

in Figure 4.5. The profit of the model without product life cycle is way higher than the

results of the model with product life cycle. It shows how the product life cycle affects the
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Figure 4.3: Cross-training status for three periods of heptanomial lattice

profit. When there is no product life cycle, the profit is not calculated accurately. Also,

the profit does not change much when the volatility of maturity regime (σm) changes

because there is no change in demand in maturity regime.

The change in profit when we change the volatility of decay regime (σd) is shown in

Figure 4.6. The profit of the model without product life cycle is way higher than the
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Figure 4.4: Change in profit vs. volatility of growth regime (σg)

results of the model with product life cycle. It shows how the product life cycle affects

the profit. We saw the same pattern earlier in the volatilities of growth and maturity

regimes. The profit increases when the volatility of decay regime (σd) is increased because

the larger volatility is, the demand significantly less. So the increase in the profit is very

low.

The change in profit when we change the annual risk adjusted mean of growth regime

(µg) is shown in Figure 4.7. Here also we can see that the result of the model without

product life cycle is higher than the results of the model with product life cycle. Also,

the profit increases significantly when the annual risk adjusted mean of growth regime

(µg) increases. It shows that profit is higher the higher the mean is, since this implies

that the life cycle will likely remain in growth for a longer period of time. The profit

that was calculated from the model without product life cycle is increased faster than

the profit from the model with product life cycle.
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Figure 4.5: Change in profit vs. volatility of maturity regime (σm)

The change in profit when we increase the years of life cycle is shown in Figure 4.8.

In this result also, we can see how the product life cycle affects. Without product life

cycle, the results will not be accurate. Also, the profit increases significantly when the

years of life cycle increases. It shows that profit is higher the longer the year is, since

this implies that the life cycle will likely remain in growth for a longer period of time.

The profit that was calculated from the model with product life cycle is increased faster

than the profit from the model without product life cycle.

The change in profit, when the number of stations cross-trained is altered, is shown in

Figure 4.9. The profit changes significantly at the beginning but after two stations, the

result is saturated. It happened because after a certain number of stations cross-trained,

the effect on the profit is minimal. It is because the worth of the cross-trained workesr

is lesser than the cross-training cost.

50



Figure 4.6: Change in profit vs. volatility of decay regime (σd)

The change in profit, when the number of workers cross-trained is altered, is shown

in Figure 4.10. The profit changes significantly at the beginning but after two workers,

there is not much change in profit. It happened because after a certain number of workers

cross-trained, the effect on the profit is minimal. It is because the worth of the cross-

trained stations is lesser than the cross-training cost.
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Figure 4.7: Change in profit vs. annual risk adjusted mean (µg)

Figure 4.8: Change in profit vs. years of lifecycle
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Figure 4.9: Change in profit vs. number of stations cross-trained
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Figure 4.10: Change in profit vs. number of workers cross-trained
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Chapter 5

Conclusion

In this study, we have developed two models: (i) a probabilistic learning curve approach

to the production lot size problem to determine the economic manufactured quantity

(EMQ); (ii) a real options approach to the valuation of cross-training with product life

cycle. We modify the learning curve equation for the probabilistic learning curve slope

and the time required to produce the first unit and find the unit cost function. For

simplicity, we use uniform distribution functions for both the learning rate and the time

required to produce the first unit. The results obtained from probabilistic learning curve

slope and time to produce the first unit are significantly different from those with the

constant learning curve slope and time to produce the first unit. When we had the

deterministic case, we found the optimum quantity of time to forget in 300 days is 248

in cycle 1 but in probabilistic case, it was 465. The amount of time required to produce

248 units is 9.92 days and to produce 465 units in 17.65 days. The total output, when

no interruption occurred was 560 units and the forgetting slope was 0.1442. For the

probabilistic case, the total output, when no interruption occurred was 1126 units and

the forgetting slope was 0.1913.

All the workers do not have the same learning rate or do not finish the work in the

same time frame. Even one worker always does not have the ability finish one product
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is same time frame over and over again. When we give probabilistic learning rate and

time to do the units, it makes the process more realistic. The results significantly differ

when we use probabilistic parameters to model the learning curve than the results with

constants parameters. Therefore, the probabilistic results are more realistic one.

For real options approach to the valuation of cross-training with product life cycle,

we consider three regime product life cycle: growth, maturity, and decay. The demand

follows the stochastic process modeled using a Brownian motion. Because there are

three regimes in the product life cycle, we use heptanomial lattice to represent it. We

compare the results of model with product life cycle and without product life cycle.

The parameters for without product life cycle are carefully selected so that geometric

Brownian motion covers the entire three regime product life cycle.

When we calculate the profit and the cross-training status for model with product

life cycle, we can see that the upper part of lattice gives the maximum profit with cross-

training and the lower part gives the maximum profit without cross-training. It shows

that when the demand is higher and the profit is higher, the cross-training helps to profit

more. If the demand is lower and the profit is lower, then there is no need for cross-

training. The results from model with product life cycle and model without product

life cycle is differ significantly. It shows how the product life cycle affects the profit.

The profit cannot be calculated accurately without product life cycle. When we change

the volatility for growth regime (σg) and the volatility for decay regime (σd), the profit

changes significantly, but the volatility for maturity regime (σm) does not change the

profit too much. However, when we change the annual risk adjusted mean for growth

regime (µg), the profit changes significantly. The number of years of the product life cycle

also affects the results significantly. The profit increases when the number of stations or

number of workers increases. After a certain number of stations or workers cross-trained,

there is not much change in profit, it saturated. The results are calculated using the

actual dollar values. This will help the managers to make decisions easily and effectively.
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There are some limitations related to the models in the thesis. One being that we did

not include the probabilistic learning curve in the optimization model to calculate the

quantity produced. It will discretize the lattice with more nodes making the numerical

computation harder.

When the time to produce the quantity is calculated, we are using uniform distribu-

tion. Even with the uniform distribution, we needed to use Matlab to find the numerical

results. If we use any other distribution, other than uniform distribution, the complexity

of the equation will be very hard. This is another limitation related to the model.

Further limitation in our model is regarding the number of stations and workers, and

inventory levels. We had four stations, four workers, and four inventory levels. It will

give a matrix with 44 = 256 rows. This means when we calculate profit at each node of

the heptanomial lattice, we will have 256 different results at each node. If we increase the

number of stations, number of workers, and inventory levels, it will make the computation

very complex and will take long time to run the program to find the results.

For future work, expand the model to include these above limitations and write pro-

grams to handle complex computations. Also, learning curve equation can be modified

to find unit cost for production analysis with back orders.

57



Appendix A

Derivation for Equation 3.20 is given below:

ts(qi) =

∫ qi+αi

αi

∫ lb

la

∫ T1b

T1a

T1x
−l 1

(T1b − T1a)

1

(lb − la)
dT1 dl dx

=

∫ qi+αi

αi

∫ lb

la

[∫ T1b

T1a

T1
1

(T1b − T1a)
dT1

]
x−l 1

(lb − la)
dl dx

=

∫ qi+αi

αi

∫ lb

la

[
T1

2

2

1

(T1b − T1a)

]T1b

T1a

x−l 1

(lb − la)
dl dx

=

∫ qi+αi

αi

(T1b + T1a)

2(lb − la)

∫ lb

la

x−l dl dx

x−l = y

−l.ln(x) = ln(y)

−ln(x)dl =
1

y
dy

dl =
1

y
dy

(
−1

ln(x)

)
The new limits are :

ya = x−la

yb = x−lb

ts(qi) =

∫ qi+αi

αi

(T1b + T1a)

2(lb − la)

∫ yb

ya

y
1

y

(
−1

ln(x)

)
dy dx

=

∫ qi+αi

αi

(T1b + T1a)

2(lb − la)

(
−(x−lb − x−la)

ln(x)

)
dx
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