
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

Inverse biometrics for keystroke dynamics
Fatema Rashid
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Rashid, Fatema, "Inverse biometrics for keystroke dynamics" (2009). Theses and dissertations. Paper 915.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/915?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

INVERSE BIOMETRICS FOR KEYSTROKE
DYNAMICS

By
F atema Rashid

B.S. in Computer Science, National University of Computer and Emerging Sciences

Karachi, Pakistan, June 2004

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2009

© Fatema Rashid 2009

PROPfmY OF
R~ UftNfMITY UBPW1V

Author's Declaration Borrow List

Ryerson University requires the signatures of all persons using or photocopying this thesis.

I hereby declare that I am the sole author of this thesis.
Please sign below, and give address and date.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

F atema Rashid

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Paterna Rashid

ii iii

Abstract

Inverse Biometrics for Keystroke Dynamics

A thesis for the degree of

Master of Science in Computer Science, 2009

By
Fatema Rashid

Ryerson University

Tremendous research has been done in the area of computer security using biometrics. But not

much has been done in the field of inverse biometrics, which consists of synthesizing artificial

biometric samples that can be used for testing existing biometric systems or protecting them

against forgeries. Due to the complexity of the data collection process and privacy and legal

issues that are involved, finding volunteers for data collection is a challenging task. In this thesis,

we introduce for the first time an inverse biometrics model for keystroke dynamics that can be

used to generate as much data as desired. We show that these synthetic data behave as close as

possible like real human data, making our inverse biometrics model a model of choice for testing

the existing and upcoming biometric systems. Keystrokes dynamics biometric is a behavioural

biometric technology, which allows user recognition based on the actions received from the

keyboard while interacting with a graphical user interface. The proposed inverse biometric

model first learns from the real human data and based on this experience, it generates synthetic

users. Each synthetic user generated by model has a unique behaviour, but follows the properties

iv

of real human users. A twofold cross-validation testing technique is employed to validate the

synthetic data using a suitable analysis model. Comparable performance results are obtained

when applying the model to real human data.

v

Acknowledgements

It is my honour to express my deep gratitude to people who made this challenge possible for me.

I would like to thank my supervisor Dr. Isaac Woungang, for giving me the opportunity to work

under him. He offered me such a challenging topic for my thesis, and with his strong support and

constant guidance, I finally achieve my goals. He did not only guide me in the course of this

thesis, but also provided me an opportunity to be benefited from his vast knowledge. He was

always present to help me out and guide me whenever I needed his guidance.

I would also like to thank Dr. Issa TraonS for sharing his enormous knowledge about keystroke

dynamics, and computer security in general, and for giving his time and guidance to make this

thesis better.

I would also like to express my gratitude to Dr. Ahmed A wad E. A. as it is his work that

provided me a basis to put together this research thesis.

Lastly, and most importantly, I would like to thank my mother Khakashan Khalid Zaki and my

father Syed Kalid Zaki . It is their prayers and support that gave me courage to fulfil my goals.

I would like to express my profound gratitude to my husband who has been a constant source of

encouragement for me throughout my studies. To him, I dedicate this thesis. And above all, I

would like to thank my daughter, Nabiha, who was my strongest motivation throughout my

studies.

vi

Dedication

To my husband

Rashid

I would not be here without his support and his strong belief in me.

vii

Table of Contents
3.4.1 Dwell Times .. 28

3.4.2 Fly Time ... 32

3.4.3 Key Codes ... 36
Abstract ... iv

3.5 Keystrokes Biometrics Synthesis ... 39

Acknowledgements ... vi 3.5.1 Random Keystroke Data Generator ... 42

List of Tables ... x 3.5.2 Behaviour Injector ... 43

List of Figures ... xi 3.5.3 Keystroke Biometric Data Generator ... 44

List of Abbreviations .. xii 3.5.3.1 Dwell Time Neural Network Design .. 45

Chapter 1 Introduction .. xii

1.1 Context ... 1

3.5.3.2 Learning Phase ... 47

3.5.3.3 Fly Time Network .. 52

3.5 .3 .4 Learning Phase ... 54
1.2 Research Problem ... 4

3.5.4 Noise Injector .. 58
1. 3 The Approach ... 5

3.6 Generated Biometric Keystroke Data ... 59
1.4 Contributions: ... 8

3. 7 Implementation and Design ... 63
1. 5 Thesis Outline ... 8

3.7.1 Design ... 63
Chapter 2 Background Research ... 11 3. 7.2 Interface and Features .. · · · · .. · 69

2.1 Overview ... 11 3.7.2.1 Main Interface .. 69

2.2 History of Biometrics .. 12 3.7.2.2 Set Behaviour ... 70

2.3 Inverse Biometric .. 13 3.7.2.3 The Analysis Panel .. 71

2.4 Guidelines for Appropriate Use of Simulated Data: ... 15 3. 8 Summary ... · .. · ··· .. · .. · · .. ·· 72

2.5 Databases for Synthetic Biometric Data ... 16 Chapter 4 Evaluation ... 74

2.6 Keystroke Analysis Research ... 17 4.1 Context .. 74

2.6.1. Keystroke Analysis of Fixed Text .. 17 4.2 Kolmogorov-Smirnov Testing ... 76

2.6.2 Keystroke Analysis of Free Text.. .. 19 4.3 Validation Experiment ... 80

2. 7 Inverse Biometrics for Mouse Dynamics ... 21 4.4 Summary ... 87

Chapter 3 Keystroke Biometrics Synthesis .. 23 Chapter 5 Concluding Remarks ... 88

3.1 Overview ... 23 5.1 Future Work .. 88

3.2 Keystroke Dynamics Data ···································:··············: .. 24 5.2 Improvements .. 89

3.3 Data Collection .. 24 References ... · .. · ... 91

3.3.1 Detection and Analysis .. 25

3.3.2 Experimental Settings ... 25

3.4 Data Analysis .. 28

viii ix

List of Tables List of Figures

Table 3.1: Occurrences percentage ofDT with the upper limit equals to 30 ms 31 Figure 1.1: Simulation Process 1

Table 3.2: Percentage of fly time values above 59 ms 34 Figure 3.1: Experimental Environment 27

Table 3.3: Symbols and their respective key codes 37 Figure 3.2: Histograms of dwell times for the keys of the same user 1

Table 3.4: Snapshot of the real human data after filtration 39 Figure 3.3: Histograms showing the dwell times for two different users 1

Table 3.5: Combination of variables used to yield the best MSE 46 Figure 3.4: Dwell time of two different users after removing the noises 1

Table 3.6: Combination of different variables used to yield the best MSE value .. 54 Figure 3.5: Histogram showing the fly time for one user 33

Table 4.1:Sample Data forKS Test 77 Figure 3.6: Fly times for two different users 1

Table 4.2:Analysis Results of Real Data 86 Figure 3.7: Fly times for two different users after removing noises 1

Table 4.3 :Analysis Results of Synthetic Data 86 Figure 3.8: Dwell times and fly times for one user. 1

Figure 3.9: Comparison between letters and numerals for two users 1
Figure 3.10: Architecture of the Synthetic Keystroke Data Generator. .. 41

Figure 3.11: Comparison of key codes for two different users 1
Figure 3.12: Architecture of the Dwell Time Neural Network. 45

Figure 3.13:Training performance of the dwell time neural network. .. 1

Figure 3.14: Error difference for the dwell time neural network training ... 50
Figure 3.15: Error difference between the real and generated times values for the remaining 5 users 52

Figure 3.16: Architecture of the fly time neural network. 53
Figure 3.17: Performance of the fly time network. .. 55

Figure 3.18: Error difference between the real and the generated fly times ofthe input training data 56

Figure 3.19: Error difference between the real and generated fly times ... 57

Figure 3.20: Fly times for one user before and after the noise insertion 1
Figure 3.21: Comparison between the fly time values for real and synthetic users 1

Figure 3.22: Comparison between dwell time values of real and synthetic users 1
Figure 3.23: Comparing the real and synthetic user' first and second key codes' dwell times 1

Figure 3.24: Use Case Diagram of the inverse biometric data generator 64
Figure 3.25: Package diagram showing the classes and their relationships in the software tool. 67

Figure 3.26: Packages and their classes 1
Figure 3.27: Snapshot of the main interface 69

Figure 3.28: Snapshot of behavioural interface 71
Figure 3.29: Snapshot of the analysis panel. ... 72

Figure 4.1: Comparison of the reference signature against the real data for user 1 for fly time 79
Figure 4.2: Comparison of the reference signature for user 1 against the real data for user 2 for fly time 80

Figure 4.3: Validation Experiment- Case of FRR 84
Figure 4.4: Validation Experiment- Case of FAR 85

Figure 4.5: ROC Curves of Real Data vs. Synthetic Data ... 87

X xi

List of Abbreviations

FAR False Acceptance Rate

FRR False Rejection Rate

MSE Mean Square Error

NN Neural Network

SMAG Synthetic Mouse Action Generator

QQ Quantile Quantile

MLP Multi-Layer Perceptron

MM Mouse Movement

DD Drag and Drop

PC Point and Click

KS Kolmogorov Smirnov

ROC Receiver Operating Characteristic

xii

Chapter 1
INTRODUCTION

1.1 Context

Not too long ago, only a few number of computer systems were around, which were huge and

heavy to carry, at the extent that they could not be fitted in a small room. This is no longer true.

Today, several networks of computers are involved in our daily life activities, carrying

information across large numbers of autonomous and embedded devices. The entire scenario has

dramatically changed, and now, computers are making our lives easier. But, there is a price to

pay for this comfort as well. Indeed, with an increase in the number of hacking incidents, identity

theft and cyber crimes, computer security has become a very significant concern to organizations

and people. In addition, with the increasing trend of making more data available to the users on

the Internet and any other networks, secure computing is a very important requirement for all

systems. From now on, operators of computer systems cannot simply allow highly confidential

data to be accessed using simply passwords and user ids since passwords have been recognized as

an extremely poor form of protection1
• For this reason, new methods of authentication have been

developed, among which some have already been deployed and others are still under

development. In this regard, biometric technologies provide an alternative method for user

identity verification in specific environments. Biometric is the term used to indicate a set of

physiological and behavioural human characteristics that may allow verification of personal

1 CERT: stands for Computer Emergency Response Team, Canergie Mellon University's Soft ware
Engineering Institute, http://www .cert.org/

identity [5]. In [22], the authors defined biometric as "the application of statistical analysis to

biological data". In the particular field of computer security, biometrics is defined as "the

automated use of a collection of factors describing human behavioural or physiological

characteristics to establish or verify a precise identity" [21]. Nowadays, biometric systems are

widely deployed for authentication purpose, and are considered to be the best so far in the

market. Biometrics includes facial recognition, voice recognition, iris pattern recognition, and

fingerprint pattern recognition. These human features can be exploited for user identification

purposes. To these effects, one needs to convert them in digital format first, before performing

different detection analysis algorithms on them. Achieving this conversion mandates the use of

some devices specifically designed to capture these human features in such a form that they can

be further used for security purpose. Unfortunately, such special devices are often not affordable

to common class organizations and people, and are often difficult to integrate in old systems, i.e.,

systems previously designed, which have been continuously used in most organizations for their

current daily computer's duties. But, as the biometric technology is growing, some vendors have

integrated such special devices in their systems. For instance, Dell computers have a device used

for capturing thumb print, in order for users to login to their laptops or desktops. However, this

dependency on special hardware devices is a major hurdle in the use of new biometric systems

since there still quite an overwhelming number of machines that are not equipped with such

special hardware devices, or for which the intrinsic manufacturing features do not facilitate their

integration with existing biometric systems, or even for which this integration is simply

impossible. For this reason, this thesis advocates the use of behavioural biometrics based on

keystroke dynamics as a suitable alternative for circumventing the above difficulty [9]. Indeed,

using keystroke dynamics does not involve the use of any special hardware device to be

2

integrated with the systems in order to use biometric technologies for security purpose [7, 11].

The only requirement is the use of a standard human-computer interaction device, in this case,

the keyboard, which is readily available in any modem computer. Keystroke dynamics (referred

to as typing dynamics), is the detailed timing information that describes exactly when each key

was depressed and when it was released as a user is typing at a computer's keyboard [6].

One of the important benefits of using keystroke dynamics (as well as other behavioural

biometrics) is that the False Rejection Rate (FRR) and the False Alarm Rate (FAR) - two

parameters characterizing the performance of such systems - can be adjusted by changing the

acceptance threshold at the individual level [1]. This adjustment mechanism allows the system to

explicitly define individual risk mitigation - a feature that traditional biometric technologies can

never achieve [4]. Another benefit of using keystroke dynamics is that they can be captured

continuously, i.e., not just at the start-up time and they can accurately be used to trigger an alarm

to another system or person. Additionally, keystroke dynamics can also be useful in many other

situations. A typical example is when a single user has several passwords because in such a case,

forgetting or loosing the passwords is a very common concern. Another well-known example is

when dealing with purchasing a good or paying a bill through a Web site via the Internet. In this

case the user is asked to answer few personal questions, say for example, his login and
'

password, for authentication purpose. If the user cannot remember this required information,

he/she can choose to be authenticated through a method involving the use of a Web based client

side application, which gathers the keystroke timing, then sends it to the server who then use it

for authenticating the user. The confirmation of the identity of a user is a key issue for secure

systems. The above keystroke dynamics-based authentication method can also be used to

confirm the identity of a user. Typically, if a typing model of each legal user of the system is

3

available, the person using an account that is raising a possible alarm may be asked to enter a

new typing sample. This typing sample is then checked against the typing model of the legal

owner of the account. If there is a match, the user's identity is confirmed. If not, the verification

of the identity of the user has failed and the user is immediately disconnected from the system,

and his/her account is blocked.

1.2 Research Problem

In order to achieve the above mentioned benefits of biometric recognition systems based on

keystrokes dynamics, these systems should be comprehensively tested. As a key requirement, the

testing phase must involve the use of a large number of human users. But, it is very hard to

attract human users for this kind of experiments, which is a major challenge for this research

area. Finding volunteers to carry out a wide range of tests is really a nightmare because some

people are reluctant in submitting their keystrokes due to privacy reasons. Some others may raise

legal issues since they might already have been involved in using their keystrokes for safety

purpose on other systems and do not want to jeopardize the privacy requirements of those

systems. The situation is even worse when the volunteers have to deal with data submission.

Indeed, the volunteers who accept to be enrolled in the experiments may be required to spend

numerous hours or days for data testing purpose, in addition to installing a data collection

software module in their own laptops or desktop, in the form of a client application. These

limitations and hassles often hinder people to volunteer as participant to the data collection

process, making the testing process hard to realize due to the lack of sufficient amount of real

human data. This type of limitations does not exists in biometric systems using. fixed text such as

the one proposed in [6], simply because few test samples per individual are required, thus can be

4

easily and quickly collected for testing purpose. However, in most available biometric systems, it

is imperative to have enough real human data gathered, in order to be able to comprehensively

test these systems. Thus, data collection is a major problem faced by the testers of biometric

systems as these systems must be thoroughly tested and in a satisfactorily manner, i.e., in such a

way that it is ultimately possible to estimate whether the biometric technology has been able to

successfully identify the users or it needs to be further refined. This thesis proposes a novel

inverse biometric model, capable of generating synthetic keystroke biometric data that could be

used to test biometric existing and future keystroke analysis models. Using our inverse biometric

model, one can generate as many data as desired, which mimic as close as possible the behaviour

of real human data, thus can be used for the testing of any biometric system. The effectiveness of

our proposal is demonstrated through statistical analysis and simulation.

1.3 The Approach

Similar to other biometric technologies, a possible solution to the above-mentioned challenge is

to develop a simulator that can be used to generate synthetic keystroke data. To this effect, the

idea is to develop an inverse biometric model for keystroke dynamics based on the raw data

collected from real users, with the goal to produce as many amount of data as required or as

many number of users as required to be generated. Inverse biometric consists of the synthesis of

artificial biometric samples that can be used for testing existing biometric systems or protecting

them against forgeries [15]. Biometric synthesis is the inverse problem of biometric analysis,

which involves collecting and processing biometric samples from human users and then,

simulating these samples to achieve the same purpose [4]. Our proposed novel inverse biometric

model is able to generate as much data as required that mimic the behaviours of real human-like

5

data, while being as much accurate as possible. To achieve this challenging task, our model is

designed in such a way that it first learns from the raw human data, then simulates and generates

the synthetic data afterwards. To this effect, several steps are required as illustrated in Fig.l.l.

Building an inverse biometric model (like the one proposed here) to simulate keystroke

dynamics, requires studying various factors and then, recognizing a pattern to be able to

successfully imitate the acquired biometric information. Once a reliable model for simulation has

been obtained, one can thoroughly test our biometric system with as many users as desired until

producing a satisfactory result. A detailed explanation of these steps is provided in Chapter 3.

This simulator is not only capable of generating as much data as desired, but it also is capable of

injecting behavioural characteristics in the data so that these data really mimic the behaviours of

real human-like data as accurately as possible. Moreover, the simulator is capable of injecting

noise in the data from the range of 0% to 100 %, as well as injecting typing errors from the same

range to make the data as close as possible to real human data. Through these features, the users

of our simulator will be able to generate various different types and sizes of data sets that are

suitable for testing their ongoing or already developed biometric recognition systems.

6

'Generate Biometric Data

Synthetic Keystroke Data

Figure 1.1: Simulation Process

7

1.4 Contributions:

The main contribution of this thesis is the development of an inverse biometric model that can be

used to generate realistic keystroke dynamic actions in order to test and improve keystroke

dynamics biometrics recognition systems. To this effect, this model has been evaluated to ensure

that the generated synthetic keystroke data really mimic real human-like data behaviors as

accurately as possible. The model has been implemented in the form of a software tool referred

to as Synthetic Keystrokes Generator. This software tool takes its input parameters from the user,

then, generates synthetic keystroke data according to the specifications given by the user. A few

important features of this software tool are as follows: (1) It is user friendly, (2) it can allow its

user to inject noise and errors very easily into the data in a specified range, in order to make them

as close as possible to real human-like data, (3) it is easy to install and can run on any computer

capable of supporting Microsoft .Net framework in C# programming language, (4) it embeds

MATLAB functions, allowing its user to invoke neural networks-based utility functions that are

suitable for statistical analysis and other required duties, (5) it provides the functionality of

saving and analyzing the keystroke synthetic data, and finally (6) it can be used by researchers to

create any number of artificial users and inject different behaviors into the keystroke dynamics

actions of each user.

1.5 Thesis Outline

The rest of this document is composed of the following chapters:

8

kbapter 2: Related Work

In this chapter, we provide a state-of-the-art literature review of existing keystroke dynamics

biometrics approaches, highlighting their pros and cons. We also discuss certain general

principles or ideas that can be borrowed from other keystroke dynamics biometrics synthesis.

Chapter 3: Keystroke Biometrics Synthesis

The chapter constitute the core of this thesis. Our main contribution is presented therein. First,

we describe the data collected from the real human users. Second, we analyze the real human

data in order to establish suitable criteria (characteristics) for producing synthetic keystroke data

which is as close as possible to the real human data. Third, we describe the data generation

process. This step involves some discussion on the implementation of some neural networks

based functions in MATLAB. To this effect, we describe the multilayer neural networks-based

architectures that were designed, as well as other approaches that were designed, but not finally

adopted for data processing - here, reasons are given on why these other approaches were not

retained. Fourth, we provide an in-depth comparison of real and synthetic keystroke data through

an analytical study of the performance of the designed neural networks, using well known

performance metrics. Fifth, we provide a stepwise description of the software tool (simulator),

designed to implement our proposed inverse biometric model (shown in Fig. 1.1). It is essentially

a simulator that can be used to generate synthetic keystroke data. The tool provides neat features

for adding behavior to the keystroke dynamics actions, analyzing these actions and saving them

to files. We also highlight the technical aspects of the implementation of our model, such as

package diagrams and important use cases.

9

Chapter 4: Evaluation

Evaluating the findings is of course an essential part of the research work. In this chapter, we

describe the different types of evaluation methods used to validate the keystroke synthetic data

and discuss corresponding results. To this effect, we had to devise new validation techniques to

ensure a thorough resemblance of the keystroke synthetic data to the real human-like data.

Chapter 5: Concluding Remarks

Finally, we conclude by analyzing and summarizing the results and highlighting future work that

can be pursued for further investigation and enhancements. We also discuss few interesting

questions that have arisen from the work carried in this thesis.

10

Chapter 2
Background Research

Biometric technology has been primarily used for user authentication and identification in a

specific environment. The term "biometrics" is derived from the Greek words bio (life) and

metric (to measure) [18]. Biometrics is the term used to indicate a set of human physiological

and behavioural characteristics that may allow verification of personal identity [15]. Today,

biometric systems are widely used for authentication purpose, and are considered to be the best

so far in the market. Several different design approaches of biometric systems have been

proposed in the literature. In this chapter, we review the current state of biometric technology

and the approaches used so far in terms of keystroke dynamics.

2.1 Overview

With the exponential increase tn the rate of computer usage and the increasing trend of

presenting everything online, computer security has become a challenging task. User

authentication is an important aspect when ensuring the integrity of computer networks. This

justifies why new methods for authentications are being developed. Various methods of

verification of the identity of an individual exist: (1) They can be based on a security system of

personal identification which involves ID cards or keys - for instance, in the case of ID cards,

each ID card has a unique number on it (2) They can be based on what the user knows and

memorizes, such as passwords, (3) They can be done by using biological metrics such as retina

prints, keystroke or finger prints, and (4) They can be done through encryption or cryptographic

techniques; to name a few. The first two techniques have been widely used, but due to the

11

increasing risks to computer security and unauthorized access attempts, biometric technology is

widely advocated as one of the methods of choice for effective authentication. Biometric features

can be divided into two main categories namely physiological features and the behavioural

features [5]. The physiological features include face, eye (precisely retinal or iris patterns),

fingerprints, palm topology, hand geometry, wrist veins and thermal images. The behavioural

features include voiceprints, handwritten signatures, keystroke, and mouse dynamics.

Physiological features have been more successful than behavioural ones for the implementation

of authentication systems because essentially, the former do not vary along time whereas the

later may change drastically over a certain period of time or between two consecutive samplings.

Typical well known examples of behavioural features are signature and keystroke dynamics.

2.2 History of Biometrics

Possibly, the first known example of biometrics in practice was a form of fingerprinting being

used in China in the 14th century, as reported by the Explorer Joao de Barros [20]. He wrote that

"the Chinese merchants were stamping children's palm prints and footprints on paper with ink to

distinguish the young children from one another". This is one of the earliest known cases of

biometrics in use, even nowadays.

Until the late 1800's, identification was largely dependent upon photographic memory. In the

1890s, a french anthropologist named Alphonse Bertillon sought to fix the problem of

identifying convicted criminals and turned biometrics into a distinct field of study. He developed

a method of multiple body measurements called Bertillonage (pseudonyme of his name) [20].

His system was used by police authorities throughout the world, until it started fading when it

12

was discovered that: (1) some people shared the same measurements, and (2) two people could

get treated as one based on the measurements alone. After the failure of the Bertillonage

technique, the police force started to use fingerprinting, a method developed by Richard Edward

Henry of Scotland Yard, essentially reverting to the same methods used by Chinese people for

years. In the past three decades, biometrics has moved from a single method (fingerprinting) to

more than ten discrete methods [20]. There are over a hundred companies which are involved in

designing/enhancing their biometric systems, using state-of-the-art technologies as they become

available to them. Well-known practical examples of biometric technology deployments can be

found in airports, naval air force locations throughout the world, hospitals, governmental

institutions, to name a few. Usually, installing a bi?metric technology would involve a high cost

of installation of its underlying surveillance system and other accessories, thus, cannot always be

afforded by the general public.

2.3 Inverse Biometric

A major challenge in the area of biometrics system related research is the collection of real

human data. Due to privacy and security issues, finding an adequate number of volunteers who

will accept to carry out a wide test/experiment in order to validate the effectiveness of a

biometric system is a tedious task, which can easily tum to be infeasible. More often, a common

situation that arises is that the number of real human data samples available for testing tends to

be smaller, which may seriously affect the trustworthiness of the experiment as well as that of

the biometric system itself. The situation becomes even worse with the data collection process

due to legal issues that may arise. In some cases, this process may involve having the participants

13

install a data collection software module on their personal computers, and this may require

collecting several hours or days of test data, which is unlikely.

To circumvent this difficulty, inverse biometric data can be generated instead, and suitably be

used in place of real human data. In [13], forward biometrics is defined as, "An analysis of

Biometric Information that aims at classification, identification or recognition of this

information". Whereas, the inverse is defined as, "Generation of Biometric Information to satisfy

given characteristics, in particular, fluctuations, noises etc". Inverse biometric data are artificially

created or synthesized biometric data. Since this type of data can be made available in huge

quantity (providing that a suitable framework be designed for generating them), existing and

future biometric systems can benefit from using them for testing purpose, and for protection

against forgeries. Henceforth, the development of a framework in the form of a simulator that

can be used to accomplish this goal is highly desirable. Such a simulator would be helpful for

testing the biometric recognition system against any type of data, including extreme and normal

data. Moreover, noise could be injected while testing the system, to determine how well the

biometric system is able to cope with different scenarios and types of data. But, the generated

synthetic data must be in accordance with real human data, so that they can be used to replace

real human data.

There are various types of synthesized data [14], described as follows:

i. Synthetic fingerprints: The use of synthetic fingerprints is very beneficial in testing

fingerprint identification systems. Today, automatic fingerprint synthesis involve dealing

with problems such as testing fingerprint identification systems, training security

personnel, biometric database security, and protecting intellectual property.

14

ii. Synthetic signatures: Signatures are related to handwriting, but more statistical data are

available on handwriting than on signatures. Examples of methods for generating

synthetic signature are those based on geometrical models.

iii. Synthetic retina or iris images: The synthesis of iris or retina images has not been

developed yet. But some works are being done on the generation of iris layers pattern.

Iris recognition systems scan the surface of the iris in order to compare patterns [19].

i v. Synthetic speech and voice: Considerable amount of work has been done on the

synthesis of speech and voice. Now, a common goal for researchers is to improve the

audio quality and the naturalness of speech by developing techniques for emotional

coloring. New targets include identifying age, gender, emotion, personality, physical

fitness, and social upbringing, to name a few.

v. Synthetic modeling: It is defined as the identification of a person through the pattern

produced by walking [17]. Unlike other biometrics, gait offers potential for recognition at

a distance or at low resolution. Gait signature is derived from the bulk motion and shape

characteristics of the subject. Gait signatures are used in security system using screening

machines.

v1. Synthetic faces: The problem with face recognition system is that changes in age, smile,

and accessories make it harder for them to recognize the same face. This can be solved by

training the system with these variations. Typically, these variations are generated

artificially from real images.

2.4 Guidelines for Appropriate Use of Simulated Data

15

In [14], the main focus is on the formulation of guidelines for the proper use of simulated data

for biometric authentication research purpose. The authors present a set of robust criteria for the

use of synthetic biometric data, stressing that simulated data can only be used if they meet

certain requirements. Three essential characteristics that simulated data must satisfy are as

follows:

1. Simulated data must be flexible, meantng that in the random generation step, the

distribution considered must have enough parameters, and these parameters must be

robust enough to model the data under study.

n. The data generation procedure should be as simple as the data can allow, but not simpler.

The goal is to be able to represent the variation in the population using models capable of

describing that variability, without extraneous and unnecessary parameters. The synthetic

models and data should be complex enough to represent the real-time situation, but at the

same time, should be simple enough to evaluate.

111. The simulated data must satisfy the consistency and goodness of fit criterions. As an

illustration, the authors in [16] compare the observed data to a proposed population

model. If this population model is "statistically far" from the observed data, then that

particular distribution is not a good fit for the targeted data, thus is rejected. However, if

the population model is "statistically close" to the observed data, then it is judged as

consistent with the observed data.

2.5 Databases for Synthetic Biometric Data

Collecting large databases with biometric information, such as fingerprints, is troublesome for

many researchers due to the issue of protection of personal information. Imitation of the

16

biometric information can allow one to create databases with tailored biometric information,

without expensive studies involving human subjects [13]. SFinGe is an example of tool used to

create databases of fingerprints. This was developed at the University of Bologna. The reader can

refer to http:llbias.csr.unibo.itlresearch/biolablsfinge.html, for more details about that tool. The

generated databases have been included in the Fingerprint Verification Competition FVC2004

(see http://bias.csr.unibo.it/fvc2004/databases.asp) and perform just as well as real fingerprints.

2.6 Keystroke Analysis Research

Since we are dealing with inverse keystroke analysis and simulation, we will discuss, in this

section, some of the works being done on keystroke biometric analysis. In these research works,

real data from the keyboard are analyzed for user authentication. Initially, researchers were using

fixed texts, which were entered at the time of initial authentication via user ID and passwords.

Recently, we have started seeing some works on free text analysis, i.e., whatever text the user

enters can be used for keystroke biometric recognition. In the sequel, we review some of the

most well-known approaches used for the keystroke analysis of fixed and free texts.

2.6.1. Keystroke Analysis of Fixed Text

Several approaches have been proposed in the literature for keystroke analysis of fixed text. For

instance Brown and Rogers used neural networks to solve the problem of identifying specific

users through the typing characteristics exhibited when typing their own names [10]. In [7],

Monrose and Rubin developed a technique to harden passwords based on keystrokes dynamics.

17

In [6], the authors investigated two problems related to keystroke dynamics, namely the

aforementioned intrinsic variability of typing, and the possibility of typing errors. The approach

tends to provide a reasonable level of accuracy even over remote connections. In their

experiments, the authors defined a measure, precisely, the distance between two typing samples,

which determines the elapsed time between the depression of the first key and the third key of a

trigraph (i.e. three consecutive typed keys), and they called it the duration of the trigraph. Then,

they take a typing sample and put its trigraph in an array and sort it on the basis of the trigraphs'

duration in milliseconds. The output is then considered as a reference sample S 1 and all other

samples from the users are compared against it. Afterwards, the distance of any other sample S2

with respect to S 1 is computed as the sum of the distances of each trigraph of S2 with respect to

the position of the same trigraph in Sl. Based on this information, a specific user can then be

authenticated. To test the efficiency of using the aforementioned distance measure for user

classification and authentication purposes, the authors conducted an experiment involving 44

persons from their department, who were asked to type five times a fixed text of 683 characters,

for a total of 220 samples. Their approach was able to yield a false acceptance rate (FAR) of 4%

and an Impostor Pass Rate (IPR) of0.01 %. It was also pointed out that their approach faces some

scalability issues, for instance, dealing with a larger number of legal users of the system quickly

increases the chances that two legal users might have similar profiles. Furthermore, unlike other

keystroke dynamics-based approaches for user authentication, their proposed approach allows

typing errors, same typing samples for all users and smaller number of samples.

Instead of using trigraphs, in [8] another technique is used to verify the identity of the user using

the keystroke dynamics his or her login string. The program measures the time duration between

18

the moment every key button is hit to the moment it is released. Users were asked to type the

login string as the sample. So their text sample is also fixed and short in length.

2.6.2 Keystroke Analysis of Free Text

In contrast with fixed text analysis, few papers have been published on keystroke analysis of free

text. In [11] the user authentication through keystrokes is done on the basis of the information

gathered from the keystroke latencies. In [5], a comprehensive approach for keystroke analysis

of free texts is presented. This research focuses on the issue of user identification through

keystroke dynamics even after the login phase is over. The approach advocates that working with

the typing rhythms of the free text - which is entered without any constraint - can make it

possible to identify the user at any time. Few advantages of using keystroke dynamics have been

described in this paper: (1) no additional task is performed for authentication as the user has to

type anyways, (2) using keystroke dynamics systems is cheaper compared to other authentication

systems because the only hardware required is the standard keyboard, which is readily available

in almost all modern computers, (3) the typing rhythms are available even after the login phase is

over, so that the user can be identified continuously. The authors in [5] have indicated some

serious drawbacks when dealing with the analysis of typing rhythms. Firstly, from two

consecutive keystrokes, it is possible to only extract the elapsed time between the release of the

first key and the depression of the second (so-called digraph latency), as well as the amount of

time each key is held down (so-called keystroke duration). Secondly, the information for the

same user may change due to the changes in the environment, the type of keyboard used, and the

text entered. To address these problems, most researches in the field of keystroke analysis have

limited their experiments to samples produced from structured, predefined texts. The reason is

19

that entering longer texts may be tedious, and may not yield a satisfactory level of accuracy. One

of the reasons justifying the use of free texts is that using shorter texts may not provide enough

information, and, on the other hand, longer texts might require more time to be entered by the

users.

Static keystroke analysis is defined as the analysis performed on typing samples produced by

using the same predetermined text for all individuals under observation. Dynamic analysis

implies a continuous or periodic monitoring of issued keystrokes. It is intended to be performed

during a log-in session, after the authentication phase has passed [5]. In [5], the authors

presented their typing samples in terms of the n-graphs, together with the duration of each n

graph. They observed that if the typed text is sufficiently long, the same n-graph may occur more

than once. In that case, the n-graph is reported only once and the mean duration of its

occurrences is determined. To handle short samples, their proposed solution is to merge these

samples together to make them useful, but the results obtained are slightly worse than those

obtained using long samples. Overall, their approach can achieve a FAR less than 5% and an IPR

less than 0.005%.

In [3], an employee surveillance system based on free text detection of keystroke dynamics is

introduced. The authors use real human keystrokes data for user authentication purpose. The

detection approach for free text detection addresses various challenges, for instance, the ability to

enrol a user using a non-predefined set of data, the ability to provide information about the user's

identity based on a minimal amount of non-deterministic input, to name a few. The authors

achieved their goals by utilizing a digraph approximation technique, which is based on a sorted

time mapping technique. The approach utilizes neural networks to simulate and analyze the

20

, b h ·our based on encoded set of digraphs. The optimal performance achieved by their users e avi

d detector was a FAR of0.0152% and a false rejection rate (FRR) of 4.82%. propose

2. 7 Inverse Biometrics for Mouse Dynamics

In the previous section we described the work done so far on keystroke dynamics. Since our

research focuses on inverse biometrics for keystrokes dynamics, we need some background

knowledge of both keystroke analysis of real data and inverse biometrics. Since the closest input

device to keyboard is mouse, we explore the inverse mouse dynamics too. An interesting

approach is presented in [4]. Here, the authors have discussed their experience on using synthetic

data for research purpose in mouse biometrics. But, due to the lesser number of volunteers and

the difficulty encountered in data submission, they were inclined to use synthetic data in addition

to real human data. In [4], the mouse actions are classified under the following four different

categories: (1) mouse-move (MM)- which corresponds to general movement, (2) drag-and-drop

(DD) _ where the action starts with the mouse button down, the movement, then the mouse

button up, (3) point-and-click (PC) - where the mouse movement is followed by a click or

double click, and (4) silence - i.e., no movement. The authors stressed that the monitoring

silence intervals yield a lot of information about the user's behaviour, justifying why their

analysis step is divided into movement analysis and silence analysis steps. For the movement

analysis, some characteristics such as type of action, traveled distance (in pixels), elapsed time

(in seconds) and movement direction, were considered. Few other factors were introduced,

which are the same for all users of the system. For instance, the desktop resolution, the mouse

cursor speed, and the mouse button configuration. Since the raw data itself cannot convey any

information, they have been represented into various statistical graphs. For the analysis, the

21

authors considered the most representative factors which collectively represent mouse dynamics

signatures. These are: movement speed, movement direction, action time, travelled distance and

elapsed time. Typically, their mouse dynamics signature for a specific user corresponds to a

sequence of 39 numbers corresponding to the values of the different factors involved. A mouse

biometric synthesis model was then developed for simulation purpose. The main idea underlying

the model is to take the raw data and the signatures, and based on them, create synthetic users

such that every user is unique and everyone has his own mouse actions that represent his

signature. The ideas from [4] proved to be very helpful in our proposed research, which is the

development of a model for inverse keystrokes and their analysis. Until now no significant work

is being done in the field of inverse biometrics for keystrokes. The use of synthetic keystrokes

for user authentication is a pristine approach which is not yet explored much. We present the

idea of first generating the synthetic keystrokes and then using those synthetic keystrokes for

user authentication in the later chapters. The process of developing an inverse keystroke

dynamics model is described in the next chapter.

22

Chapter 3

Keystroke Biometrics Synthesis

This chapter covers the main contributions of the thesis, which are twofold: (1) an inverse biometric

model, in the form of a simulator, developed for the synthesis and simulation of keystroke dynamics

- the workings of each of the modules that constitutes the model is described, (2) comparison of the

generated keystroke synthetic data against real human data - the goal to demonstrate that the

generated synthetic data can mimic as close as possible the behaviours of real human data. Our

simulator can thus be used as a tool of choice for testing existing biometric systems or even those

currently under development.

3.1 Overview

This chapter describes the process of how the data is being collected and how the generation of

synthetic data is done. It highlights the characteristics of the volunteers and their typing trends. More

precisely, raw data are collected from the user. After thorough examination of the raw data, a set of

guidelines were established that would be used to ensure that the generated synthetic data depict

the real users. Once these guidelines were defined, a keystroke biometric synthesis model was

developed for simulation, producing synthetic data. After the data generation, the synthetic

keystroke data is again examined to determine the extent to which the real human data and the

synthetic keystroke data differ from each other. The chapter describes our designed inverse biometric

model and its implementation, which comprises four modules. Each module is designed to perform a

specific task, and all modules work together to achieve our ultimate goal of generating synthetic

23

keystroke data. Fig. 3.10 (in this Chapter) depicts a diagram describing the relationship between

these modules

3.2 Keystroke Dynamics Data

The keystroke dynamics data are basically the actions generated by the keyboard when used by a

specific user while interacting with the computer. The keyboard actions can be categorized as key

press and key release [2].

Since the keyboard has only one way to interact with, which is the key, we need to identify different

actions that are performed on the keys by the user while typing. The key press action is defined as the

actual action when any key is pressed down, while the key release action represents the action when the

key press is stopped and the key is free and being released. In order to quantity these actions, we need to

define some way to calculate them. To this effect, we use the time as indicator to measure these actions,

by considering the following time factors: .fly time and dwell time (in milliseconds (ms)) [2, 3].

The fly time corresponds to the time taken by the user to move from the first key to the second one.

More specifically, it is the elapsed time between the release of the first key and press of the second

one. The dwell time corresponds to the elapsed time between the press of a key and the release of the

same key. All the data that we collected is either the fly time or the dwell time.

3.3 Data Collection

The raw human data used in this thesis was collected in an experiment organized and presented in [2,

3]. In this section we briefly summarize the general settings for this experiment, which involves the

description of the characteristics of the participants, the hardware, etc. Further details of the data

collection process can be found in [2, 3]. We will briefly introduce the method of how the data was

collected and what parameters were considered.

24

3.3.1 Detection and Analysis

There are different techniques which have been used to analyze and examine the real human data

collected from users. The analysis may include recognizing the same user or differentiating

between two different users. In [2], the detection and analysis is done with the help of neural

networks. The enrolment process consists of training a neural network with collected digraphs on

which the mapping order technique is applied. A digraph represents a typing action performed by

the user from a specific key to another key on the keyboard. The time calculated in each digraph

consists of the sum of the dwell times (the time needed to click on the key) and the flight time

(the time required to move from one key to another). Mapped from/to key combinations are sent

as inputs to the neural network in case of diagraphs, while the elapsed time is used as the training

output. The neural network is a feed forward multilayer perceptrons. The number of input nodes

is 2, which represents the "From" and "To" mapped keys. The output layer consists of one node,

which represents the time needed to perform the digraph. The hidden layer consists of 20 nodes.

The back propagation technique is used to train the neural network. A neural network is trained

for each of the enrolled users. The weights of the trained neural networks for all users are saved

in a repository for future use during the detection process. Further details of this detection

algorithm can be found in [2].

3.3.2 Experimental Settings

An analytical model, borrowed from [2] was used in this study for data analysis purpose. This

analytical model was validated through several experiments conducted in 2003, involving 23

participants who gave their informed consent. These participants include 16 males and 6 females,

with varying computer skills and ages ranging from 13 to 48 years. The experiment configuration

25

involved the deployment of the client software on remote workstations connected to a central server

via the Internet [2]. The tasks performed by the users varied from Web browsing to word processing

and video game playing. The data collected was then sent directly to the central server and kept for

future use.

In these experiments, the client software, which is responsible for monitoring keystroke actions, fed a

detection server (software) with the monitored data. Then the user actions were monitored when the

user login occurred and stops running when the user logout occurred. This client software was totally

transparent since it does not affect any other applications. The detection server was installed on a

local area network. It was configured to accept connections from local workstations and from outside

the network over the Internet to allow remote users to participate in the experiment. A large number

of participants were connected remotely to the network from their home computers. However,

several users were also connected from national or international locations during the experiment. The
Figure 3.1: Experimental Environment

server software stored the collected data in an internal database, along with other information,

including the user ID. The hardware configurations for the participating computers varied from a

Pentium 2 266-MHz processor to a Pentium 4 1.5- GHz processor. The server configuration was a
The optimal performance achieved by the detector was a false acceptance rate (FAR) of0.0152% and

Pentium 3 450-MHz processor with 256 Mbytes of RAM, running the Windows 2000 operating
a false rejection rate (FRR) of 4.82%. These rates are encouraging as a starting point, but more

system. The client workstations could run different versions of the Microsoft Windows operating
improvement are still needed, i.e., further tests are required in order to achieve more appropriate

system (Windows 98SE, Windows ME, Windows 2000, and Windows XP).
results by using larger data sets. However, as mentioned previously, it is very hard to have enough

The software caches all keystroke dynamics and sends the data to the central server. The server
human real data for testing purpose due to the difficulty encountered in enrolling human users, added

processes and stores the data in the database for future analysis. The experiment lasted for 9 weeks
to privacy and security concerns which may arise in doing so. This thesis proposes an alternative

and an average of 119.979 digraphs per user was collected. The entire process is presented in Fig. 3.1
solution which consists of synthesizing the above small sample (48 user's data) of raw keystroke data

to generate as much synthetic keystroke data as desired, whose characteristics mimic as close as

possible the characteristics of real human data.

26 27

3.4 Data Analysis

The data with which we start our analysis is composed of a dataset of 23 users. Each data unit from

each user had 5 columns, namely, first key code, second key code, fly time, first key dwell time, and

second key dwell time. The number of samples from each user is different in each case. The number

of samples for each user ranges from 32468 to 121955 samples. Our analysis of the data attributes

follows.

3.4.1 Dwell Times

As already mentioned, the dwell time is the time difference between the key press and key

release. In our data, two columns refer to the dwell time, namely, the first key dwell time and the

second key dwell time. Our analysis of the dwell time reveals that there is a large variation

among the users. In Fig.3.2, it is observed that for one specific user the dwell times for both keys

are ranging from positive to negative. But the dwell time cannot be a negative value. In this

particular situation, the reason for having some negative values for the dwell time might be that a

noise factor is involve in the process of submitting the data. Our simulation experiments aim at

detecting and fixing this anomaly. It is also observed in Fig. 3.2 that the number of occurrences

for dwell times less than zero are around 10 to 15 out of 108209, the total number of samples

collected for this particular user. This represents only 0.00924% of the samples. Thus, one can

conclude that these values can safely be omitted due to noise factors. This affirmation is also

confirmed when running the comparison with other users. When other users are considered, we

notice that in average, 0.02% to 0.9% of the samples from each user are negative values. Thus,

we filtered all the negative values from all users.

28

c
c
0

0
N

X 104 User 1 First Key DNelllime
12,---,------,-----,----,-,--,-------,----,----,--,

lim~ms)

10 12

X 104

X 104 User 1 Second Key Dwell Time
12.-----.-----r-----.-----r---.---.----,--.---,

s
e 10

a

u 8
c
c
0

~ 4

o~~--~~-~~
·3 ·2.5 ·2 ·1 .5 ·1 .0.5 0 0.5

1ime(ms)
1.5

X 105

Figure 3.2: Histograms of dwell times for the keys of the same user.

In Fig.3.3, we compared two different users for their dwell times. It is observed that these two

users are completely distinguished in their behaviour from each other. In case ofuser1, the dwell

times are negative and positive for both keys, but in for user2, the dwell time values are well

ranged, i.e., are positive values. We can thus infer that each user has its own characteristics, i.e.,

behavioural attributes, which can be used for authentication purpose. In this particular case,

user 1 has a higher noise level and user2 has a lower noise level.

29

X 104 User1 Dwell Tiroo
1,,_,_-,-,-,--~~.-~-.~

s
e 10
c

c
0

.g -6 -4 ·2 0 2 4 6 8 10 12

User2 Dwell Time

r
u 6

c
0 5

I
0 4

~ 3

Figure 3.3:-H.is.tograms showing the dwell times for two difie~~nt users.

Figure 3.3: Histograms showing the dwell times for two different users.

After filtering the negative values, we tried to find a suitable range of the dwell times which

represents all the users. The values for dwell times were ranging from 1 ms to 311 04 ms. We

analyze each user one by one to find the upper limit for the dwell time, and we retain different

choices: 20 ms, 25 ms, 30 ms and 35 ms. We use 0 as the lower limit. The best results were

obtained when the upper limit equals to 30 ms. Table 3.1 shows the percentage of dwell times

which was found greater than 30 ms for a sample of 10 users. We then tested all other users and

found similar results, but the table depicts only the results for 10 users. Since the table clearly

30

indicates that the dwell times greater than 30 ms are negligible, these are considered to be a noise

factor.

Users Time o/o > 30ms Users Time%)> 30(ms)
Userl 0.3 User6 0.7
User2 0.9 User7 0.2
User3 0.45 User8 0.58
User4 0.96 User9 1.67
UserS 1.9 UserlO 2.09

Table 3.1: Occurrences percentage ofDT with the upper hmtt equals to 30 ms

These time limits appeared to be the best suitable for all users. Consequently, the minimum

amount of data from each user was omitted and the maximum information was retained and used

to train the neural network in later stages. In Fig. 3.4, we compare the same two users as in the

above comparisons. Now, after removing the negative values and applying the proper limit, i.e.,

from 0 ms to 30ms, the observed data for the users is depicted in Fig. 3.4. For our training

purpose, we took 3000 samples of dwell times from each of the 23 users. We can still notice that

the two users maintain their own individual characteristic behaviour which is the soul of our

research.

31

User1 Dwell Time Uset2 Dwell lime
800

s 700

c
"soo a
r
u
csoo c c

0 0

I
400

0 0 :m
N N

15 ro 25 l) 10 1s ro 25 l)
lime(ms) Time(ms)

Figure 3.4: Dwell time of two different users after removing the noises

3.4.2 Fly Time

The fly time is defined as the time difference between the release of the first key and the press of

the second key. When we analyze the fly times for different users, we found some important

facts. Fig.3.5 shows that the range for fly time of one specific user is from 0 ms to 300 ms. Here,

there is no issue of negative values as noise in any of the users' fly time. The range of fly times

for this user is 0 ms to 3 OOms, which is consistent with that of all the 23 users we have analyzed.

32

X 104 User1 Fly Time
8

s 7
e
c
n
a 6

r
u
c 5
c
0

f
4

0

0
3

N

2

0
0 50 100 150 200 250 300

Time(ms)

Figure 3.5: Histogram showing the fly time for one user.

In Fig.3.6, it is observed that the fly time ranges from 0 ms to 300 ms even for two different

users. Moreover, the users also maintain their individual traits in fly time patterns. Each user has

a different pattern in his/her fly time behaviour. But, we found that these ranges are not properly

adjusted since the data above a certain threshold is only noise and do not have information

pattern in them for every user.

o.
N

User1 Aylime

50 100 150 200 2iO l))

T1111e(ms)

User2 Fly Trne

50 100 150 200 250 l))

lime(ms)

Figure 3.6: Fly times for two different users.

33

As in the case of dwell time, we have determined the percentages of data above a certain

threshold, then we have explored the fly time ranges in the same manner as mentioned above.

We found that any fly time greater than 60 ms represents a noise due to some environmental

factors. This might be due to the fact that the data sets for all users have a very small percentage

of such factors. As observed in Table 3 .2, the percentage of fly times greater than 60 ms is

negligible. Similar tests using all other users reveal the same pattern. Thus, Table 3.2 depicts the

results for only 10 users.

Table 3.2: Percentage of fly time values above 59 ms.

After filtering the noises from the data so that it can be used to train the neural network (as

described in the later sections), the histograms for the above mentioned two users now changed

to the graphics shown in Fig. 3.7. In these histograms, it can be observed that more often, the

upper limit for the fly time is greater than that of the dwell time. This is quite understandable

since for a user, it takes more time to move from one key to another than it takes to press a key.

34

c
0

10

User1 Fly Time

20 30 40
Time(ms)

5

e500
c

r
u400

0
N

User2 Rylime

10 20 30 40 50
Time(ms)

Figure 3.7: Fly times for two different users after removing noises.

For out training purpose, we took 3000 samples from each of the 23 users. It can be observed

from Fig. 3.8 that the dwell time values are less than the fly time values in terms of ms- for this

particular user, the fly time values range from 0 to almost 56 ms. The white bars show that the

dwell time values which tend to diminish as the X axis values increases. Similar observations

were made for the other users.

35

Comparison of fly and dwell time for one specific user
X 10

3. ~------~------~------~--------~------~------~
5

2.
5

No of occurrences 2

1.
5

0.
5

3.4.3 Key Codes

60

Time(ms)

Figure 3.8: Dwell times and fly times for one user.

The third important part of the data is the key codes. These key codes were stored at the time

the users submitted the sample texts, which contain all types of characters, including

numerals and letters. The fly and dwell times were then calculated against these key codes.

Numeral keys are keys that represent numbers 0 to 9 within the sample text. The keys which

represent letters from A to Z are called letter keys. Other types of keys such as full stop (.),

backspace, page up, page down, $, #, @,), [, * , to name a few, are called assisting keys.

Command keys such as F1, F2, CTRL, Windows, to name a few, are called control keys.

Table 3.3 shows a representation of all 84 symbols in terms of key codes, used in the sample

texts.

36

Symbol Code Symbol Code

Fl 280 Pause # 690
F2 600 Insert 821
F3 610 Del 831
F4 620 - 410
F5 630 1 to 9 " 20 to 100
F6 640 0 110
F7 650 - 120
F8 660 = 130
F9 670 B.Space 140
FlO 680 Home 711
Fll 870 Tab 150
F12 880 [260
Caps 580] 270
; 390 \ 430

' 400 P.Up 731
Shift 420 P.Down 811

'
510 End 791
520 Ctrl 290

I 530 1I'' Windows 911
€ 720 Alt 560
Up 721 Space 570
Down 801 AltGr 561
Left 751 $ 770
Right 771 QtoP 160 to 250

AtoL 300 to 380 ZtoM 440 to 500

Table 3.3: Symbols and their respective key codes

We use these key codes as input to our neural networks. These codes are collected at the time the

users submit the sample texts. It should be noticed in the table that the letters on the third line of

the keyboard from Q to P are coded from 160 to 250 with an increment of 1 0, while the letters on

the forth line of the keyboard from A to L are coded from 300 to 380 with an increment of 10.

Similarly, letters on the fifth line like from Z toM are coded from 440 to 500.

In Fig. 3.9, it is observed that the users maintain their individual behaviour in typing

sample of texts. We took two users. Then we took out only the key codes representing the letters

and numerals. We did not consider the assistant keys, or the control keys. We obtain the

37

histograms showing only the number of occurrences of letters and numerals. Fig. 3.9 shows that

depending upon the number of samples inputted by the user, more or less equal number of letters

and numerals are typed by any user. The same observation is made for all other users as well.

Compcrison of letters and Numerals X 104

12,...,-------,------,-,----,--,----,----,-------,-----,--,

~ 10
c
n
a
u 8
c
c
0

0
N 4

X 104 Comparison of Letters and Numerals
14 ,..,------,----,-----,---,-,----,----,------r----,--,

s
e 12
c
n

~ 10
u
c
0 8

f
0 6

0
N

Figure 3.9: Comparison between letters and numerals for two users.

Table 3.4 shows a snapshot of the data taken from one specific user after removal of all noises

and correction of all the ranges.

38

151 Code 2nd Code Flv Time l st KDT 2nd KDT

1 2 3 4 5

Fi!l 490 390 49 5 6
2 490 570 6 5 4
3 490 240 11 5 6

4 801 801 10 8 5
5 190 300 11 6 7
6 330 240 5 6 6
1 320 570 5 6 4
8 180 500 2 4 8
9 190 570 3 5 5

10 21:0 240 5 4 7
11 570 420 25 5 5
12 140 480 42 7 6
13 570 310 6 5 8
14 200 300 1 4 6
15 170 180 8 3 6
16 310 570 4 6 7
17 570 ~~ 8 6 5

--

18 200 2 4 5
19 180 3201 8 5 8
20 190 230 11 7 7
21 801 801 10 7 5
22 310 570 4 6 6
23 180 300 51 5 5
24 180 200 4 8 9
25 300 490 4 5 5

Table 3.4: Snapshot of the real human data after filtration.

3.5 Keystrokes Biometrics Synthesis

From the above analysis of raw data (from the users), we would like to generate synthetic

keystroke data that depicts as close as possible the real human users. This section deals with that

process, referred to as keystrokes biometrics synthesis. To this effect, some guidelines for the

ranges of the fly and dwell times should be established, and some key codes must be considered.

Based on these settings, a new keystroke biometric synthesis model is devised. This model is

39

capable of generating as much keystroke synthetic data as desired, which can be used to replace

real human data when testing any keystroke biometric system. There is no limit on the amount

users that can be produced as well. This model is based on four major modules as shown in Fig.

3.1 0, each of which is contributing its part to achieve the aforementioned goals.

40

1Y1odule 1

Random Keystrokes Data Generator

l\-Iodnle 2

Behaviour Injector

:rvfodule 3

KevstJokes Bimnettic Data
~ Generator

BiometricData

l\·fodule4

Noise Injector

Figure 3.10: Architecture of the Synthetic Keystroke Data Generator.

41

The general functioning of the Synthetic Keystroke Data Generator is as follows: based on

samples of raw data provided as input, the random Keystrokes Data Generator produces the key

codes according to some predefined guidelines. It also produces the random keystroke data.

These outputs are passed on to the Behaviour Injector module, which integrates the behavioural

characteristics of the biometric data into the data itself, in accordance to the aforementioned

guidelines. The Keystroke Biometric Data Generator module takes this input and creates the

synthetic keystroke data through training some neural networks. Finally, this generated keystroke

synthetic data is passed to the Noise Injector module, which in tum, injects noise elements into

the data, with the goal to exhibit as close as possible the real human data characteristics. A

description of each module follows.

3.5.1 Random Keystroke Data Generator

The role of this module is to generate random keystroke data. This includes numbers like number

of samples per user and typing error levels. After the data analysis discussed in section 3.3, it

was found that every user has his/own style/behaviour in his/data. We could not find any specific

pattern which could be used to cluster the data originated from different users, the reason being

that individuals are different to each other. However, it was found that some attributes are shared

among the data from all the users. An analysis of these attributes helps us to devise some

guidelines, which are to be used to ensure that the generated synthetic data are as close as

possible from the real human data behaviours. These guidelines are as follows:

42

Dwell Time should be in a specific range -
From our analysis of the data sets in Section 3.4.1, it was inferred that the upper limit and lower

limit for the dwell time should respectively be 30 ms and 1 ms. This fact has been validated in

Section 3 .4.1 where we experimented with the data set from 23 users.

Fly Time should be in a specific range

From our analysis of the data set of 23 users as described in Section 3.4.2, it has been established

that the fly time cannot be smaller than 1 ms and greater than 60 ms if it has to depict non noisy

real human data and almost 97% of the data fall within this range. So the upper limit used for our

analysis is 60 ms and the lower limit used is 1 ms.

3.5.2 Behaviour Injector

This module is used to inject behavioural attributes into the data. We are focussing on free texts

rather than fixed texts. In our case study, the real human behaviour needs to be injected in the

typing sample that the user has provided. The inputs to both networks, namely the fly time and

the dwell time, are the only key codes. These key codes represent the type of the sample data that

the user wants to submit. The neural network task is to train this sample data and generate some

time values that make it biometric.

There are four types of key codes which can be used in the typing sample: letter key codes,

numeral key codes, assisting key codes, and control key codes. The generated key codes are

given to the network. They depend on the type of keys used. For instance, the user may want to

'
create a typing sample consisting of only letters, setting the percentages of all other codes to

43

zero, or the user may want to create a sample consisting of all types of keys, setting a largest in

number of numeral keys, followed by the letter keys, followed by control keys, and finally a

smallest number of assisting keys. Figure 3.11 depicts the key codes used by two different users.

It can be observed that user 1 has more key codes falling in the range [200, 300] whereas user 2

has more key codes falling in the range [100, 200]. It means that the sample submitted by user 1

has more letters and the sample submitted by user 2 has more numerals. Behavioural attributes

are therefore user dependent.

User 1 key codes User 2 Key COOes

700

~ ~ ~ ~ ~ ~ ~ ~ ~

Key Codes
-~-~---

Figure 3.11: Comparison of key codes for two different users.

3.5.3 Keystroke Biometric Data Generator

This module is the heart of our system since it is the one responsible for creating the synthetic

data. It takes the raw data as input, along with the behavioural attributes, then, generates the

44

biometric data. It involves using two different neural networks for training the raw data: the

dwell time neural network and the fly time neural network. The design methodology and

learning phase of both neural networks follows.

3.5.3.1 Dwell Time Neural Network Design

We used the generalized feed forward network with two layers: the hidden layer and the output

layer. The hidden layer has 20 neurons, while the output layer has only one neuron as shown in

Fig. 3.12.

20 1

Figure 3.12: Architecture of the Dwell Time Neural Network.

The generalized feed forward neural networks (Fig. 3.12) can fit multidimensional mapping

problems arbitrarily well, given consistent data and enough neurons in its hidden layers. In these

networks, the connections between the units do not form a directed cycle. The networks are able

to process.larger data sets in a short period of time. Since the data we had is from the real human

users, it has been considered as consistent. But, there is a trade off between the number of

neurons and the processing time. When more neurons are involved, the time it takes to

process/train the data is much longer, which may result into a better learning. In other words, a

45

fewer number of neurons would yield a shorter data processing time, which may result into a

decreasing learning capability. In the hidden layer, we make use of the log sigmoid as transfer

function, which calculates the layers output from its net input. Another alternative would have

been to use linear functions, but through experiments, we have observed that the log function is

the bset choice since it provides the best possible results. After experimenting with different

number of layers and learning functions, we have determined the lowest value for the mean

square error (MSE), and we have used it as our performance indicator. Table 3.5 shows the

variations for the different combinations that we have experimented.

No. of Layers No. of Neurons Transfer Function MSE

3 40 All Linear 0.0800
5'

'" j ti '11

2 20 Sigmoid 0.0727

2 20 Linear 0.0722

4 40 Sigmoid/Linear 0.0801

2 20 Sigmoid/Linear Mixed 0.0713

Table 3.5. Combmatwn ofvanables used to yteld the best MSE.

As observed in Table 3.5, the least mean square error is achieved when we used a two layers

neural network with the sigmoid hidden neurons and the linear output neurons, keeping the

number of neuron to 20. The input to the neural network is the key code taken from the real

user's data. The output of the neural network is the period of time the user pressed that key or

dwelled on that key. The neural network should then learn how to calculate the dwell time given

any key code from the same coding scheme as that of the input. This makes the data biometric.

In [4], the authors indicated the reason of not using a classifier in lieu of the neural network for

this type of data. In fact, using a classifier involves using both real and synthetic data. We have

46

followed the same advice in this thesis. We define the time as a function of the key codes and we

get the neural network to learn this function from the data provided.

3.5.3.2 Learning Phase

The neural network learning phase is supervised. Learning is defined as a procedure for

modifying the weights and biases of a network [2]. There are two types of learning: supervised

and unsupervised. The difference between supervised and unsupervised learning is that the

former is provided with a set of proper network behaviour examples, whereas in the latter, the

weights and biases are modified in response to the network inputs only. The performance

indicator which we used is the mean square error with sigmoid transfer function in the hidden

layer. This indicator measures the network's performance according to the mean of the squared

error. The learning is divided into two steps: (1) the training step, where the weights of the neural

network are modified under a supervised learning, and (2) the testing step, where some part of

the real data is used to test the neural network.

3.5.3.2.1 Training Phase

We train the network by using the Levenberg-Marquardt back propagation algorithm. To this

effect, we select 18 of the 23 users, then, consider 3000 samples from each user. We keep the

remaining 5 users out the testing exercise. The purpose of the training is to get the neural

network to produce data that are as close as possible to real human data. The aforementioned

3000 samples of data from each user are placed in a matrix format and are randomly shuffled.

The number of samples taken from each user is considered the same so that the training process

is unbiased towards any user, i.e. does not depend on a particular user. This mechanism has

47

appeared to be useful in ensuring that the input data given to the neural network follows (at a

certain degree) the guidelines that were derived from raw data (as described in Section 3.4).

3.5.3.2.2 Data Processing Phase

In this phase, the data needs to be transformed in a form that the neural network would find it

easy to learn based on the information enclosed in the data. Initially, we considered a binary

coding scheme where each key code is represented by a binary number, resulting into 84 inputs

for the dwell time network and 84x2 =168 inputs for the fly time network. We then assign

numbers to each key sequentially. For instance, for the key number 7, using any specific code

number, 1 will appear as input in the 7th position (out of the 84 positions) and the rest of

positions will be filled out by 0. But, the major issue with this coding scheme turns is that not

every user employs every key in his/her typing sample (for instance, for one particular user,

some of the bits in the input might always be equal to 0). This coding scheme was not suitable

for the learning of the neural network since we have observed that using such a scheme increases

in the number of inputs, which consumes enough memory in the MA TLAB environment, and the

network could not reach an optimal performance.

To address the above problem, we pre-process the data in some other way, taking into

account that some transfer functions require that the inputs and targets be scaled to fit within a

specified range. To this effect, we use the premnmx function. This function pre-processes the

data so that its minimum is -1 and its maximum is 1. Its syntax is

[pn,minp,maxp] = premnmx(p)

48

where p is the normal input and pn in the transformed data scaled in the range [-1, 1], and maxp

and minp are respectively the maximum and minimum ranges of the input data. This function

normalizes the inputs and targets of the network training set in such a way that they fall in the

interval [-1 , 1]. When the data is pre-processed before the experiments, and after the simulations,

it needs to be converted back to the original scale. The corresponding post-processing subroutine

for premnmx is the postmnmx function. he weights of the neural network are initially set to 0, but

after each epoch, the weights are updated according to the mean square error. More precisely, at

each epoch, the time produced by the network is compared with the real time shown in the data,

and accordingly, the weights of the network are adjusted. This process takes place until the real

target time output and the produced output time are as close as possible to bring the mean square

error to its lowest possible value. The mean square error finally achieved is 0.0713 in 102

epochs. The training performance of the dwell time neural network is depicted in Fig. 3.13. It can

be observed that the MSE equals 0.0713. This means that after the training phase, when the

neural networks calculates the dwell time, the mean square of the difference between the

calculated time and the real time is at least 0.0713 seconds, which is very small when time is

measured in milliseconds.

--Train
--Validation
--Test
--- -- -- Best.

1G2

0~~17o~~2~0~" ~37o--~470--~5~0--~6~0--~7~0--~8~0---9~0~_d
102Epochs

Figure 3.13: Training performance of the dwell time neural network.

49

The error difference, i.e. the difference between the targeted output and the generated output of

the dwell neural network training, for the same input, is depicted in Fig. 3.14. It is observed that

for most of the times, the calculated error is in the range [-0.5, 1], which is negligible. This

means that for most key codes, the neural network has been able to determine a dwell time value

which is very close to that of the real human data. Typically, the neural network has been shown

to accurately guess (at a certain degree) the time value after learning from its input, i.e. from the

human behaviour provided to it in the form of training data. After this phase, the neural network,

along with its current configurations of weights and biases is saved and kept for future

generations of as many data as desired, and also for testing the remaining 5 users that were not

previously involved in the testing phase.

-1~----~----~-----L-----L----~----~----~
0 2 3 4 5 6 7

Figure 3.14: Error difference for the dwell time neural network training.

Testing Phase

50

In the testing phase, we used our remaining 5 users that were excluded from the above step. We

extracted the same number of 3000 samples from each of the 5 users. The samples are made by

key codes only, then, are put in a matrix format, and then, are randomly mixed to make the

results unbiased. It should be noted that the dwell time for these 5 users is not shown to the

network. Rather, the neural network determines the dwell time value for the 5 users based on

what it has learned from the previous learning experience of the 18 users. From this, one can

determine the error difference, i.e. the difference between the resulting output time values and

the actual time values given in the data set for the 5 users. Typically, the goal has been to train

the network for establishing an association between the key code and its dwell time, and for

generating the biometric data based on this association. The error difference, i.e. the difference

between the time values generated by the network and the time values from the real human users

is depicted in Fig. 3.15. It can be observed that this difference is mostly in the range [-0.4, 0.9],

which indicates that the generated values are quite close to the real ones when time is measured

in milliseconds.

51

1.5

0.5

0

-0.5

-1

-1 .5
0 2 M 4 5 6

x10

7
4

Figure 3.15: Error difference between the real and generated times values for the remaining 5 users.

3.5.3.3 Fly Time Network

The fly time network is of the same type as the dwell time network. It is also a generalized feed

forward network with two layers: the hidden layer and the output layer. The hidden layer has 40

neurons, while the output layer has one neuron as shown in Fig. 3.16.

52

Output

2 1
40 1

Figure 3.16: Architecture of the fly time neural network.

In order to achieve the least mean square error (MSE), we have considered various combinations

of factors such as number of neurons in the hidden layer, the number of layers, the choices of

transfer functions, to name a few. The least MSE of 0.1678 is obtained after running 56 iterations

of the neural network. We have used 2 as the number of layers, 40 as the number of neurons,

along with some sigmoid hidden neurons and linear output neurons transfer functions. The

combinations of different variables leading to the minimum MSE are shown in Table 3.6. The

first and second key codes are the inputs to the neural network whereas the fly time between the

key with the first code and the key with second code is the output of the network. The input and

output are made noise free according to the guidelines described in Section 3 .2. The network is

trained to learn how to generate the fly time in order to make the data biometric. The rest of the

settings are similar to what was done in the context of the dwell time network.

53

No. of Layers No. of Neurons Transfer Function MSE
unbiased towards any user. Our final input matrix is constructed in such a way that it no longer

depicts any specific user, but only the human behaviour.

3.5.3.4.2 Data Processing Phase

The data processing phase requires addressing similar concerns than in the case of the dwell time

network: (1) the issue of transforming the data in a form suitable for the neural network to easily
Table 3.6: Combination of different variables used to yield the best MSE value.

learn from the information - here, the premnmx functions are used for pre-processing the data

3.5.3.4 Learning Phase
instead of binary coding schemes (as previously described in Section 3.5.3.3), (2) the neural

network initially sets the weights to 0.0, and after each epoch, the weights are adjusted according

The supervised learning is used for the neural network. The performance function employed is
to the MSE value. This process is continued until the least MSE is achieved - here, the obtained

mean square error as in the case of the dwell time network, along with the sigmoid transfer
MSE is equal to 0.1678 after 151 epochs (as shown in Fig. 3.17). This means that when the

function in the hidden layer. This function measures the network's performance according to the
neural network tries to generate the fly time values based on its own learning, the difference

mean of the squared error. The learning is divided into two steps: (1) the training step, where the
between the generated fly time value and the real fly time value is at least 0.1678, which is

weights of the neural network are modified under supervised learning, and (2) the testing step,
negligible when the time measured is in milliseconds.

where some part of the real data are used to test the neural network.

10
--Train

3.5.3.4.1 Training Phase --· - · Validation
--Test
- - - - - - - Best

As we did previously, the neural network is trained using the Levenberg-Marquardt back

propagation algorithm, by selecting 18 out of the 23 users, keeping the remaining 5 users for the

testing phase. As previously done, we have considered 3000 samples from eachuser, and have

put them in a matrix and have randomly shuffle them. The purpose of the neural network has

been to train it so that it produces the fly times that are as close as possible to that of human data.
150

The number of samples taken from each user is the same, i.e., 3000, so that the training is

Figure 3.17: Performance of the fly time network.

54 55

The error difference, i.e. the difference between the values of the synthetically generated fly time

and the real fly time of the input training data, are compared in Fig.3.18. This represents the

difference of error for the fly time values for the 18 users' data that we used for training

purposes. It is observed that the error difference is in the range [-0.4, 0.9], which is negligible

when the time is measured in milliseconds. Therefore, we can infer that the values predicted by

the neural network are very close to the real values which represent the human behaviour. This

network and its weights and biases are then saved and kept for future generations of data, and for

the testing of the real of the remaining 5 users.

0.5

0

-0.5

-1

-1.5
0 2 3 4 5 6 7

4
X 10

Figure 3.18: Error difference between the real and the generated fly times of the input training data.

3.5.3.4.3 Testing Phase

56

The testing phase is conducted in a manner similar to what was done in the case of the dwell

time neural network, i.e.: (1) we use the remaining 5 users, and extract 3000 samples from each

user, which are composed of the first key code and the second key code only, then we put them

in a matrix and randomly mixed them to make the results unbiased, (2) we avoid showing the fly

time for these 5 users to the network, (3) we train the neural network to calculate the fly time

value for the 5 users on the basis of what it has learned from the above experience with the 18

users. Fig. 3.19 depicts the error difference, i.e. the difference between the output time values

generated by the network and the actual time values from the data set of the 5 real human users.

It is observed that the difference between the two sets of data is in the range [-0.3, 0.9], which

shows that the network has been able to establish an association between the inputs and the

outputs.

0.5

0

-0.5

-1

-1.5

-2
0 2 3 4 5 6 7

4
x10

Figure 3.19: Error difference between the real and generated fly times.

57

3.5.4 Noise Injector

This module performs an important task, which is inserting the elements of noise in our

generated data. It should be remembered that this generated data has been filtered out based on

some guidelines as discussed in Section 3.2. A noise is typically defined as a value that falls

outside specified ranges. From our data analysis phase, the data that were outside some specific

ranges and were not meaningful in fulfilling the prescribed guidelines have been identified.

These data are also considered when generating the noises. The Noise Injector works as follows:

The time values generated by the neural network are sent to the Noise Injector. Meantime, the

user specifies and selects the percentage of noise he/she would like to insert into the data, for Figure 3.20: Fly times for one user before and after the noise insertion.

instance, 20% noise out of a total of 2000 samples - which corresponds to 400 samples having
3.6 Generated Biometric Keystroke Data

noisy time values. The Noise Injector module then sets the time values for 400 samples outside The random data are passed to the behaviour injector. Then, the neural networks generate the

the ranges predefined for them, indicating that the fly time for such samples is greater than 60 ms biometric data and finally, the Noise Injector module injects the noise into the data to make it

and the dwell time values are greater than 30 ms. For one specific user, Fig. 3.20 shows some behave as real human data as close as possible. After all these steps, the biometric keystroke data

discrepancy between the fly times obtained in the absence of noise and the fly times obtained in is generated. In order to determine if the synthetic data behave the same as real data or how

the presence of 30 %noise. Indeed, in the fly time without noise, the observed upper limit is 60 different these two might be, we run the following comparisons. We compare the synthetic fly

milliseconds, whereas in the presence of noise, the upper limit for the fly time has increased to time against the fly time for one specific real user. In Fig. 3.21, it is observed that the fly time of

reach 98 milliseconds. the real user is in the range [2 ms, 60 ms] and the majority of fly time values fall in the range [2

ms,15ms]. For the synthetic user, the fly time is the range [1 ms, 60 ms], and the majority of fly

time values fall in the range [1 Oms, 25ms].

58 59

Fly time b: Rei User

10 20 30 40 50 60
FlyT~ms)

• 600
• u
c noo
::J
u
u
0 ...
0

0

z~

200

AylimeoSyntbe!ic User

ro 20 ~ ~ 50 60 m
Flylime{s)

Figure 3.21: Comparison between the fly time values for real and synthetic users.

We also compare the dwell time values of real and synthetic users. In Fig. 3 .22, it is observed

that in case of real user, the majority of the dwell time values fall in the range [5ms, 1 Oms] with

the highest value being 30ms, while for the synthetic user, the dwell values fall in the range

[1 ms, 8ms] in most of the cases with the highest value being 18ms. This means that these two

users are not even closer to each other in this respect. But the both the real and synthetic users

follow the same guidelines and have their own unique behaviour.

60

llwellime for Real User Dwell lime 1m Synthetic User

2000

1500

1000 0 z

~ H 20 ~ 30 10 12 14 16 18
' Owellime(ms) Dwel Trne(ms)

Figure 3.22: Comparison between dwell time values of real and synthetic users.

The goal is to judge how much a single user deviates from her own track, i.e. how much a single

user is different from herself while pressing two keys one at a time. To this effect, it is observed

from Fig. 3.23 that in terms of dwell time, a specific user does not show much difference in

behaviour when pressing the first and second key. The first bar shows the values for the frrst key

and the second bar shows the values for the second key. In this case, an almost equal number of

occurences are observed for the dwell time values for both keys. Similar observations happen

with the synthetic user, even though most of the values concentrate in the range [6ms, 7ms] for

the case of the real user and in the range [7.8 ms, 8 ms] for the case of the synthetic user. Which

indicates the fact that although the real and synthetic users show different behaviours but follow

the same trends and guidelines as indicated in the beginnig of the chapter. Each real user has his

own pattern for the dwell time vales of first and second keys. this pattern is the same for both the

keys of one specific user but might be diffrent from other users. And the same trend is visible in

61

case of synthetic users that is they show the same pattern for the dwell time values of both the

keys but they may differ from each other.

Dwel Times for first au! second keys for syntehtic user

2500 1200

1000
2000

800 • • g 1500
II
0
c

II ~
~ :J
u g 600 u
0 0

'0 1000
...
0

0 0
z z 400

500
200

0
I._

0 • 0 10 15 20 25 30 5 6 9 10 11 '12 13
Dwell Time{ms) Dwell Times(ms)

Figure 3.23: Comparing the real and synthetic user' first and second key codes' dwell times.

It should be noticed that we cannot compare the key codes for real and synthetic users since

these are not generated by the neural network, but are set through the Behaviour Injector module

by the user.

From the above comparisons, it can be concluded that the generated synthetic users are different

from the real ones and do not have the same trends or patterns in their data, but they do fulfill the

guidelines established in Section 3.2. The neural network learns from the real users' data and

then is able to generate synthetic users, each having a unique random behaviour. Thus, we have

been able to generate biometric keystrokes data for any specific user with unique behavioural

properties.

62

3.7 Implementation and Design
We have developed a software tool to implement the above mentioned synthesis of keystrokes.

This software tool implements the inverse biometric model and can be used for generating the

keystroke actions without any a-priori knowledge of the program's modules.

3.7.1 Design
The goals of our software tool are twofold: (1) allow users to generate as many keystroke

samples as they want such that these samples depict as close as possible the real human

behaviour, (2) insert as much noise as desired and adjust the typing errors and other attributes

easily for the generated synthetic data. Figure 3.24 depicts the use case diagram of the software

tool and highlights the functionalities of the program. Some key features of the software tool are

as follows. It allows the generation of synthetic data, the injection of noise in the generated data

to make it behave as close as possible like real human data, the analysis and extraction of data

for other purposes. The software tool is also designed in such a way that it can be evolved and

extended to incorporate more functionality. The tool is designed in Microsoft .Net Visual Studio

by using C# and MATLAB. We used COM objects to incorporate MATLAB with .NET

framework.

63

Set Behaviour

Insert Noise%

USER View Data

Save Data to file

Analyze Data

Figure 3.24: Use Case Diagram of the inverse biometric data generator.

64

Input Values

This interface helps the user to provide the inputs to the program with respect to the number of

keys that the user would like to include in the typing sample.

Set Behaviour

This module allows the user to specify the behavioural characteristics of the sample, for instance,

the percentage of letters, numerals, control keys and assisting keys.

Insert Typing Error

This module allows the user to specify any percentage of typing errors he/she would like to

include in the typing sample.

Insert Noise

This module allows the user to insert the percentage of samples he/she wants to be infected with

noise in order to make the synthetic data exhibit the true human behaviour.

Generate User Data

This module allows the user to actually generate the data with all the above mentioned

specifications by using the neural networks implemented in MATLAB.

65

View the User

This module allows the user to view the data properly fixed in a grid with the first key code, the
GUI

I Stt &ha,.·iour I (An.Jtyze User I
second key code, the fly time, the dwell time of the first key and the dwell time of the second t T

I Main Interface I
key.

Save Data in a File Data <ienH 1ors

Random K.S Data Generator

This module allows the user to save one user in one file with all the above mentioned five

columns. The name of the file would be the word ''user" followed by the user's number.

I Input Values I
I MATLAB Data G.nH&to.r I • • I F1vtimeNN I I OWellt imeNN J

Analyze User

l
This module allows the user to analyze the properties of the generated data graphically by using

Ohjeets

I User I
the Zed bar graphs. To this effect, the user must select two synthetic users in order to compare • L

t KS Data I I Graphicah I
I

their data.

We use .Net as programming platform and C # as programming language. Since C# is highly

object oriented, we have designed classes and objects in our program that implement this feature.
Figure 3.25: Package diagram showing the classes and their relationships in the software tool.

Fig. 3.25 depicts those classes and objects, as well as their relationship to each other ..
Each package and its classes are described in Figure 3.26.

66
67

i

Package: GUI

CLASSES DESCRIPTION
~

Main Interface This class implements the main interface for the user,
which will be used to start the program and take the
inputs.

Set Behaviour
This class implements the interface that allows the user
to set the bepavioural attributes of the typing sample.

ia.Analyze Us~r This class implements the graphical interface that will ,
allow the user to analyz~ different users graphically.

CLASSES DESCRIPTION

R::mdom Keystroke"
Data generator

This ~lass gen,erates the ga~ ... that consis!s o(~
the key codes according to the user's
specification and gives this as an input to the
next generator.

Package:Data Generators

Package: Objects

MATLAB
Data Generator

CLASSES

Users

KS Data

Graphicals

This class has all the implementation to
generate the synthetic data. It calls the neural
networks implemented in MA TLAB and
retrieves back the results.

DESCRIPTION

This class implements all the functions and properties
of one specific user.

This class implements all the functions and properties
of the keystroke data for any user.

This class implements all the functions and properties
of the Zed graphs used to analyze the user.

Figure 3.26: Packages and their classes

3.7.2 Interface and Features
In this section we will show the snapshots of the interfaces used in our program.

3.7.2.1 Main Interface
At the beginning of the program, the first windows form that appears is the main interface of the

program. This interface is shown in Fig. 3 .26. It has the following features:

User Input

I.,IV\1\ ~I No. of Samples per User '--.xruv- · __ __,C!J=. Typing Enor Level

Noise Level-----101-· --

L------~---e-0~~-a ----~~~ L ______ s_aw_t_o_~~~~~~~ L ~~-u-~~~-· -~-·----~

Figure 3.27: Snapshot of the main interface.

Number of Samples per User: here, the user enters the number of samples to be generated

69

Typing Error Level: here, the user can adjust through this track bar the percentage of typing

error to insert. This percentage ranges from 0 % to 100 %. Typing Sartlflle Characteristics

Textual Olaracteristics

Noise Level: here, the user can adjust through this tract bar the percentage of noise to be inserted

in the synthetic data. This percentage ranges from 0% to 100%.

4 Letters L-IP ---=~= .. I
lo

[~, Assig1 ~Values t!jj 4 of Assisting Keys

Design Typing Samples: by clicking on this button, a new interface will pop up where the user
4 of Numerals Jo ~I

can setup the design features of the typing sample. jo

Generate Data: By clicking on this button, the synthetic data will be generated and will appear
Figure 3.28: Snapshot of behavioural interface.

in the grid.

Save to file: By clicking on this button, the program will ask the user to select the directory on 3.7.2.3 The Analysis Panel
Figure 3.28 is the snapshot of the analysis panel. This interface pops up when the user clicks on

the computer where to save the data for the selected user in a text file format.
the 'Analyze User' button on the main interface. For the analysis purpose, the user should select

User Analysis: By clicking on this button, another interface will be opened, which has a any two users from the drop down list. Two sets of three bar graphs will be displayed, one set for

graphical view and interpretation of the generated synthetic data. each user. The first bar graph depicts the number of occurrences on theY and the fly time in

3. 7 .2.2 Set Behaviour
milliseconds on the X axis, the second bar graph compares the first key dwell times for both

This interface (shown in Fig. 3.27) pops up after clicking Design Typing Sample button on the users, and the third bar graph compares the second key dwell times for both users. These bar

main interface. In this interface, the user can enter the characteristics of the typing sample. First, graphs are implemented through the 'Zed Graph' method provided in our program.

the user enters the percentage of letters (a to z), followed by the percentage of assisting keys

&,(,#and@, etc. Then, the user enters the percentage of numerals (from 0 to 9) followed by the

percentage of assisting control keys (F1, F7, etc). In order to make the program user friendly, the

user can also click on the "Assign Random Values" button and the program would assign

random percentages to the above mentioned parameters. Before proceeding further, the program

also ensures that the user has entered all the 1 00% values.

70 71

existing biometric systems or those currently under development. It can also be merged with the

.................... M ••••••••

Select First User Uoer 1 Select Second User ·~······-··-·-··-·-· ;;;:·]
SMAG tool described in [4] to produce a powerful tool that can serve the testing needs of both

User Analysis User Analysis mouse dynamics and keystroke dynamics systems.

:: _I

~ I

Figure 3.29: Snapshot of the analysis panel.

3.8 Summary
We have developed a new inverse biometric model, in the form of a simulator, for generating the

synthetic keystroke data. These goals are achieved by taking some raw data from the real users

and analyzing it, and then train some neural networks on that data which leads to synthetic

keystroke data that can mimic as close as possible the behaviours of real human data. Comparisons

between the generated and real data are given to validate the system. This chapter has also

discussed the design and features of the software tool that we have developed to implement the

inverse biometric model, describing how the tool performs the tasks of synthetic data generation,

and analysis of the inverse biometric data. This tool used as a framework of choice for testing

72
73

Chapter 4
Evaluation

This chapter discusses different evaluation approaches that have been proposed in the literature,

and then presents our evaluation procedures and results.

4.1 Context
In order to judge the quality of any model or the data generated by it, the generated data must

undergo some validations, by comparing them against real data through various validation

techniques. To date, the focus of the research on biometric synthesis has primarily been on the

design of data generators rather than being on the validation of the proposed models themselves

[8, 15]. As a result, there is a great deal of consensus about how to empirically or even

analytically validate synthetic biometric generators. One way to achieve validation is by

comparing the biometric data with the real data visually [19]. But this cannot be applied in the

case of synthetic keystrokes as they do not have a visual signature like iris patterns or

fingerprints do. Therefore, it is necessary to find other types of validation schemes. Another

approach which can be used for the same purpose is to compare the recognition performance

achieved for some existing analysis models using synthetic biometric samples or alternatively

real biometric samples [9, 30]. This strategy is probably best suited for us since we can compare

the generated synthetic keystroke data against the real data on the basis of the performance

results they have generated when tested on the same analysis model. It is then expected that

acceptable synthetic keystroke data would yield performance results closer to that of real data

when applied to a given analysis model.

74

Apart from using analysis models for validating synthetic keystroke data, statistical testing

techniques can also be useful for this type of data. Such testing approaches consist of comparing

the statistical distributions of real data against the statistical distributions of synthetic keystroke

data. Example methods that can be used to achieve this kind of testing approach are: Chi-squared

tests, Kolmogorov-Smirnovtests, and Anderson-Darling tests. Graphical statistical methods such

as the Quantile-Quantile (Q-Q) plot can also be used for the same purpose to achieve similar type

of results. The Q-Q plot has been used by Daugman to establish that matching scores for a

collection of iris-scans fitted well the beta-binomial distribution [23]. However, all the

aforementioned approaches rely on hypothesis testing. Hypothesis testing is a common method

of drawing inferences about a population based on statistical evidence from a sample [2]. These

testing approaches associate certain assumptions with the data being used. Behavioural

biometrics such as keystroke dynamics (that we deal with in this thesis) are characterized by

their strong variability, which may conflict or contradict many of the assumptions required by

existing statistical testing techniques [4]. We argue that effective statistical testing for synthetic

keystrokes data generation would require the design of new testing paradigms which address the

specific nature of the considered synthetic keystrokes data. Based on the above considerations,

the rest of the Chapter describes two types of evaluations: (1) we compare the generated

synthetic keystrokes data against real human data using the Kolmogorov-Smimov statistical

testing method, implemented in MATLAB (see Section 5.2), the goal being to show that

synthetic keystrokes data have behavioural attributes closer to that of real human data, but are

different from real human data, and (2) we apply and compare the recognition performance

results obtained by applying synthetic keystrokes data and raw data to an existing analysis

75

model. Our results confirm that the performances of synthetic keystrokes data and real human proportion of X1 values less than X with the proportion of X2 values less than X. The kstest2

data are very similar. function uses the maximum difference over all X values as its test statistic [24]. Mathematically,

this can be written as:

4.2 Kolmogorov-Smirnov Testing MAX (IF1(X)- F2(X)I)
The results obtained in Section 3.6 are from comparing one real user against one synthetic user.

where F1(X) is the proportion ofX1 values less than or equal to X and F2(X) is the proportion of
We can clearly infer that the two users are quite distinguished from each other. But these results

X2 values less than or equal to X [24].
hold for two users only, one being real and the other being synthetic. We are not sure about the

rest of the real users or in other words we don't know about an overall impression of the all the
Real Data Synthetic Data

real users that how close they are to the generated synthetic users. For this purpose we conducted
First Key Second Key Code Fly Time First Key Second Key Code Fly Time

...... rt . ..1

a Kolmogorov-Smimov (KS) test, implemented in MATLAB under the name 'kstest2' function. 490 240 11 770 720 18
190 300 11 720 751 24

The experiment was carried out as follows: (1) we collected 3000 random keystroke samples 330 240 5 310 430 13

from each of the 23 real users and merged them into one data set called the Real Data Sample,
320 570 5 80 711 31
180 500 2 430 630 10

(2) we then generated 150 synthetic users, and took 3000 random keystroke samples from each 190 570 3 20 660 30
210 240 5 770 520 26

of them and merged them into another data set, called the Synthetic Data Sample. For this type 570 420 25 40 10 16

of test, the Real Data Sample and the Synthetic Data Sample may not contain the same number 140 480 42 620 811 7
570 310 6 771 771 16

of elements. Sample data from these two sets is shown in Table 5.1 200 300 1 660 290 13
170 180 8 620 90 42

The purpose of the two-sample KS test is to check whether the two samples come from the 310 570 4 100 620 27

same continuous distribution or not. The definition for this test given in the Matlab is a function 570 210 8 811 310 23
200 190 2 650 630 17

H = kstest2(X1, X2) and it performs a two-sample Kolmogorov-Smimov test to compare the 180 320 8 630 560 18

distributions of values in the two data vectors which it named as X1 and X2 and each of length
190 230 11 711 650 21

Table 4.1 :Sample Data forKS Test

n 1 and n2, respectively. They represent random samples from some underlying distributions. The

null hypothesis for this test is that X1 and X2 are drawn from the same continuous distribution
We performed the testing on both the fly time and dwell time values. We first compared the fly

and the result H is 1 if X 1 and X2 do not belong to the same distribution or 0 if that do belong to
time values of real and synthetic users, and then we compare the dwell time values of real and

the same continuous distribution. For each potential value X, the KS test compares the
synthetic users. In all tests performed, the results came out to be 1, which means that the

76 77

hypothesis that the samples are taken from the same distribution can be rejected. Just to Fig. 4.1, compares the reference signature against the real data for user 1 for fly time, while

strengthen the results obtained from the first test, we also performed another experiment, similar Fig. 4.2 compares the reference signature for user 1 against the real data for user 2 for fly time. It can

to the first one, but this time, using real data only. We collected 3000 samples from each real be observed that when a user is compared with itself (Fig. 4.1), the difference between the two

user, ensuring that these samples are different from the one taken earlier. Then we merged them data sets is not significant, but, when a user is compared against another user (Fig. 4.2), the

in a similar manner as we did above, into one real data set and then compared this real data set difference in the patterns is quite significant. This observation validates our research motive that

against the earlier Real Data Sample. The result came out to be 0, meaning that the two data sets each user has his/her own characteristics, different from that of other users, and these

being compared are from the same distribution. This is obviously expected, but, it verifies that characteristics can be used to identify that user which is further proved in the next section.

the kstest2 function is able to detect similarity as well as difference. The 'kstest2' function gives

the 0 value for the null hypothesis. 7 0 -·· ·-···-·----··--········-····-······-- ····--·--··-···---··-··············---·---·- --·-·-·-··--······----······-···-··-·····--··-··-·--···-··-·--···-···--·---·-····-··--·

These tests confirm that the synthetic users generated by our inverse biometric model have 60 +-------------~------------------

completely different behaviour from the real users that were used to train the neural networks. In v;
E 40 ~~--~------~------------~-----other words, the synthetic users that are generated are not perturbed instances of the data that Cl>
E 30 +U~~~------~~--------~~~.
i=

---User 1 data

was collected from real users, but in fact, they exhibit their own behavioural properties. The --+- User 1 ref

actual behaviour and behavioural characteristics are to be distinguished. The synthetic data that
10

is generated has behavioral characteristics similar to real data, but the actual behavior of 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

synthetic users is different from that of real users. For instance, one synthetic user may take No. of Occurances

longer dwell time for all the samples than a real user would do, or the fly times may be shorter Figure 4.1: Comparison of the reference signature against the real data for user 1 for fly time.

for real users. It is completely up to us as to what behavior we want to insert into a user.

Synthetic users are different in their behaviours because of the fact that every real user is also

different in its own behaviour. Since synthetic users are created on the basis of the guidelines

derived from a comprehensive analysis of real users, they have the same behavioural properties

and attributes than real users.

78 79

90

80

70 -

60 -Cll

E 50 -cv
E 40
j::

30

20

10 -!

0 -

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

No. of Ocurrances

., User2

-+-User 1 ref

---·------------·---·--·----··---------··-----------------·-

Figure 4.2: Comparison of the reference signature for user 1 against the real data for user 2 for fly time

4.3 Validation Experiment

In this section, we devised an evaluation approach that focuses on the analysis of the biometric

synthesis model. Since the core component of the proposed synthesis model is the self-learning

component, we have focused our effort on training and evaluating the model using real

biometrics samples through a 2-fold cross-validation process, mixing the real and biometric data

for comprehensive testing as done in [4]. We use the following definitions introduced in [3]:

False Acceptance Rate (FAR): This metric is defined as the ratio between the number of

occurrences of accepting a non-authorized user compared to the number of access trials.

False Rejection Rate (FRR): This metric is defined as the ratio between the number of false

alarms caused by rejecting an authorized user compared to the number of access trials.

80

Receiver Operating Characteristic Curve (ROC): The ROC curves are obtained by plotting

the FRR values versus the FAR values based on threshold limits. The purpose of the ROC curves

is to show the relationship of the FRR and FAR rates at variable threshold limits.

The optimal operating point depends on the relative cost of a false acceptance compared

to that of a false rejection [1]. If the system is designed to minimize FAR to make the system

more secure (for instance, for access control systems and intrusion detection systems purposes),

FRR will increase [2, 5, 6]. On the other hand, if the system is designed to decrease FRR (for

instance, in the case of digital forensic systems) by increasing the tolerance to input variations

and noise, then FAR will decrease. The lower the values of these indicators are, the better is the

performance of the system. The optimal tuning point is calculated based on the application

requirements and the aimed level of security [2, 5, 6]. The following steps were implemented to

validate our analysis model.

1. We first trained 23 neural networks, one for each of our 23 real users.

2. We then generated 23 synthetic users, each from one of the 23 neural networks trained in

Step 1, and each having 3000 samples. All the 23 synthetic users are now saved in a pool

called 'Self Users'.

3. We made a pool of 30 synthetic users, each having 3000 samples from the neural

networks trained in Step 1. But, we assured that none of the synthetic users is produced

from the network trained for that particular user. For instance, for the pool of user 1, we

have produced 30 synthetic users trained using all neural networks, except the user 1 's

neural network.

81

4. Similarly, we made 23 pools, each of 30 users for all the 23 users, keeping in

consideration the fact that the pool for any user should not have a synthetic user

generated from him/her.

5. Now, to calculate the FAR, we compared each user reference with the pool created for

that user. Each user is attacked by 30 other users having 3000 samples. For instance, to

calculate the FAR for user 1, we simulated the user 1 's network with his pool of 30

synthetic users whose target data were already generated through their neural networks.

Then, we calculated the deviation between the targeted time and the simulated time, then

we decided whether this synthetic user is user 1 or not. The way that we designed the

pool has revealed that this synthetic user is not user 1. By calculating the percentage of

deviation and changing this threshold level, we determined the FAR for user 1.

6. We repeated the process in Steps 1 to 5 for all the 23 users, comparing them with the

pools designed for them. We then performed the whole scheme for fly time and dwell

time. Afterwards, we calculated the average of the FAR values obtained from these

experiments to determine the FAR value of the system.

7. To calculate the FRR, we compared each user with himself. For instance, for user 1, we

simulated user 1 's network with the synthetic user 1, which was generated from the same

network earlier and was saved in the so-called 'Self Users' pool. Then, from the

calculation of the deviation between the targeted time and the generated time, we

determined if this user can be identified as user 1 or not (as a matter of fact, this user is

user 1). Afterwards, we changed the percentage of deviation and based on this threshold,

we determined the FRR for this user. Then, we repeated the whole exercise for all 23 real

82

users by comparing them with themselves in terms of dwell times and fly times, and then,

we determined the FRR of the system as the average of the obtained FRR values.

It should be noticed that while doing these experiments, we have injected 10 % noise in our

synthetic users' data. To calculate the deviation, we used the formula in [2], i.e.

D= abs (di (n,3)- ttx(n))*100 I ttx (n)

where abs denotes the absolute value, di is the targeted time and ttx is the simulated time for of

dwell or fly time values. The result is stored in the form of an array, which has 3 columns,

referred to as the reference user id, the current user id, and the result of comparison, where the

reference user is the user who is being tested and the current user is the user with whom the

reference user is being tested. Fig. 4.3 and Fig. 4.4 depict our evaluation approach for calculating

the FRR and FAR respectively.

83

For IF I to 23 Real Users
n equals to m

For m=l to 23 Synthetic Users

Real User(n) Synthetic User(m)

Analysis i\JodeJ

Figure 4.3: Validation Experiment- Case of FRR.

84

F o:r :a= 1 to 23 Reali Users

"" : ~ ' '" -.< ' ~ ' .. "iii" <

~- = - -..~~--- =~ ~ ---

:a. not eqn.aJ to :m

30 :~Q"Dt:.hdic 'll1:lllll!:rS f'roDl the
pool~ fOr real_.

(.):

Figure 4.4: Validation Experiment- Case of FAR.

After conducting the above mentioned testing experiments, we have achieved an optimal

performance of FAR= 3.806 % and FRR = 1.962% using a 50% threshold limit.

We repeated the above experiment with a new set of real users. We obtained 20 real

users' data from a data set originally collected in [1] and used that data to evaluate FAR and FRR

for real users using the same analysis model. The purpose is to compare the real data against the

synthetic data that we have previously generated. We used new set of real users for ensuring that

the analysis model does not generate any bias results based on the previously used real data.

Table 4.2 and Table 4.3 shows the FAR and FRR based on thresholds. The threshold values are

taken from 10% to 100% with an interval of 10, thus, there are total 10 points for each FRR and

FAR. We then used the data presented in these tables to plot the ROC curves for both real and

synthetic data in Figure 4.5. In a ROC curve, there is usually a point at which the FRR and FAR

are likely equal. At the point where the FRR and FAR coincide, the lowest the value of this

85

point, the better the performance of the system [4]. In case of real data, the crossover point is at

50 %threshold where the FAR is 2.92 and FRR is 1.903. In case of synthetic data the crossover

point is at 60% threshold where FAR is 2.754 and FRR is 2.138. It is observed that these values

are not exactly the same but are very close to each other in both cases, i.e. the difference between

them is negligible. The plotted ROC curves in Figure 4.5 validate this claim. The crossover point

for the real data case is lower than that of the synthetic data case, but still the difference is small

enough to be acceptable.

Threshold 0/o FARo/o FRR0/o

10
20 16.45 0.137

30 12.01 0.158

100 11.804
Table 4.2: Analysis Results of Real Data

Threshold 0/o FAR0/o FRR0/o
10 k

-f" 27.15 0.109 >;
H + X '£!

20 21.63 0.837
3'0 I w 15.08 ·' 1.390 iit&i,;it'

· -
"''"

40 07.51 1.72

50 3.806 1.962

60 2.754 2.138

70 8 B 2.201 #~. 4.3409

80 1.609 6.601
11~!90 ::!!Jci i,iiJ:L mr 0.719 iff1

8.01'3 .0!) :?t
g· ,.. % .110-

100 0.531 12.35
Table 4.3: Analysis Results of Synthetic Data

86

The following are the ROC curves for real and synthetic data plotted with the help of the data
presented in table 4.2 and table 4.3.

Roc Curves for Real Data vs Synthetic Data

30

25 ---------------

20

15

10

5

0

0

., Real Data

-It-Synthetic Data

10 20 30

False Acceptance Rate%

----------------··--

Figure 4.5: ROC Curves of Real Data vs. Synthetic Data

4.4 Summary
In this chapter, we have evaluated our inverse biometric model for keystroke dynamics based on

two different validation schemes. First, we have tested both the synthetic and real data using

some statistical testing approaches. These tests showed that the two data sets are not the same

and do belong to the same distribution. These tests also confirm that each synthetic user possess

its own characteristic behaviours which is not the same as that of the real human behaviour but
'

is based on the same foundation as that of the real user. We also compared the real human data

against the synthetic data using the same analysis model, and we obtained some close

resemblance between the FAR and the FRR values.

87

Chapter 5
Concluding Remarks

Keystroke Dynamics Biometrics is an emerging as well as exponentially evolving area of

research which posses several challenges for the researchers. This area of computer security has

become very attractive for the scientists as it shows great potential in terms of providing user

authentication for the computer systems in network forensics and impersonation detection. In

this thesis we presented an inverse biometric model for keystroke dynamics. The bottom line for

this model is the need of larger volume of data representing the same traits as of real human data

which can be used for testing biometric devises. This was due the fact that real human data is

hard to obtain due to the privacy and legal issues. We then presented various validation

techniques from different paradigms to ensure that the synthetic data does have behavioural

properties similar to the real data. We showed many comprehensive comparisons at different

stages of our research to show the properties of synthetic data in comparison of the real data. We

also explained the design and implementation details of the model in the later parts of the thesis.

This model can help the researchers and industrialists interested in keystroke dynamics

technology to improve and test their recognition systems comprehensively.

5.1 Future Work
In the future, we intend to test and improve our own keystroke biometric analysis model. We

intend to use this model in the areas of network forensics and continuous user authentication. We

have inverse mouse dynamics implemented and evaluated in [4] by our fellow researchers in our

lab. Since both the technologies are similar in many aspects and can be used effectively to

achieve the goals of computer security, we are planning to combine the two of them. By

combining mouse dynamics with keystroke dynamics, we can have a Multimodal Biometric

88

Identification system. A big advantage of having a Multimodal Biometric System as compared to

a Unimodal Biometric System is that a multimodal system can significantly narrow down the

number of possible matches [4]. If we have both the keystrokes and mouse dynamics for the

same user we can definitely have a strong profile for the particular user that can be used in future

for user authentication purposes. Hence, work is already underway in our lab for looking at the

possible combinations of these two models so that a broader profile can be generated about the

user's behaviour Future trends will be toward the adoption of ubiquitous, continuous monitoring

technologies that combine cost-effective storage and processing capabilities and mitigate privacy

concerns at the same time. We intend to meet this challenge through the development of

BIOTRACKER [2].

5.2 Improvements
Although we tried to develop our inverse biometric model for keystroke dynamic very cautiously

and scientifically but there is always room for improvement. Particularly when the area of

research is evolving like ours one always has to be careful about new developments and

requirements in such fields. Since we also have to deal with human behaviour we have to have a

wide variety of human behaviour to comprehensively test our system which makes it a

challenging task. The issues which currently can be further investigated are as follows:

1. What is the effect of being a right handed or a left handed user in case of keystroke

dynamics? We would like to further investigate the point that how much being a right or

left handed person contributes towards the validity of synthetic keystroke data.

2. How does the typing speed of a user affect the synthetic data produced by our model?

Since we know that with the passage of time the users become more proficient and fast in

89

their typing speed, we would like to know that if it also effects their typing behaviour or

not?

3. What will be the affect of increasing age on the typing skills and typing speed? This point

is important for us as we can discover how much the user's typing attributes and

behaviours changes with the age so that we can also incorporate those changes in our

model.

4. As we used FRR and FAR for the performance measurement, we would like to further

improve these indicators by doing more and more research and bring any improvement

that is possible.

5. Can we improve the performance of the analysis model by having a better system for

detection and noise filtration?

All these issues need to be addressed in future. We have research going on in this regard in our

labs. We presented only a few aspects of keystroke dynamics and its usage in computer systems'

security especially for user authentication. Since it is an emerging field much more is yet to

come. We would try to further analyze and study even the minor details of the human behaviour

in order to enable our inverse biometric model to generate more accurate and realistic keystroke

actions.

90

References

1. Ahmed, A.A.E., Traore, I. "A New Biometric Technology Based On Mouse Dynamics",
IEEE Transactions on Dependable and Secure Computing, pp 165-179, Vol. 4, No. 3,
July-September 2007 ,.

2. Ahmed, A.A.E., Traore, I. "Detecting Computer Intrusions Using Behavioral
Biometrics", Proceedings of the Third Annual Conference on Privacy, Security and Trust,
St. Andrews, New Brunswick, Canada, pp. 91-98., October, 2005.

3. Ahmed, A.A.E., Traore, I. "System And Method For Determining A Computer User
Profile From A Motion-Based Input Device", PCT patent application with the World
Intellectual Property Organization, filed by the University of Victoria
(PCT/CA2004/000669) filing date: 3 May 2004 priority date: 2 May 2003.

4. Nazar, A.,Traore, 1., Ahmed, A.A.E." Inverse Biometrics For Mouse Dynamics",

International Journal of Pattern Recognition and Artificial Intelligence, 16:37, September
16, 2007.

5. Guneti, D., & Picardi, C. "Keystroke Analysis Of Free Text". ACM Transactions on
Information and System Security, Vol. 8, No. 3, pp. 312-347, (2005).

6. Bergadano, F., Guneti, D., Picardi, C. "User Authentication Through Keystroke
Dynamics". ACM Transactions on Information and System Security, Vol. 5, No.4, pp.
367-39(2002).

7. Monrose, F., & Rubin, A. D. "Keystroke Dynamics As A Biometric For Authentication".
Future Generation Computer Systems, 16(4), 351-359, (2000).

8. Obaidat, M.S., & Sadoun, B. "Verification Of Computer Users Using Keystroke
Dynamics". IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
2 7(2), 261-269 ' (1997).

9. Bleha, S., Slivinsky,C., & Hussein. B. "Computer-Acess Security Systems Using
Keystroke Dynamics". IEEE Trans. Patt. Anal. Mach. Int. PAMI-12, 12, 1217-1222,
1990.

10. Brown, M. E. & Rogers, S.J. "Method And Apparatus For Verification Of A Computer
Userr's Identification, Based On Keystroke Characteristics". Patent Number 5,557,686,
U.S. Patent and Trademark Office, Washington, D.C., Sept,. 1996.

91

11. Joyce, R., and Gupta, "Identity Authentication Based On Keystroke Latencies"
Commun. ACM, Vol.33, pp. 168-176, Feb. 1990.

12. Polemi, D. Biometric techniques: "Review And Evaluation Of Biometric Techniques
For Identification And Authentication" . Report prepared for the European Comission
DG XIII-C.4 on the Information Society Technologies, 2000 .

13. Yanushkevich, S., Stoica, A., Srihari, S., Shmerko, V., Gavrilova, M. Simulation of
Biometric Information: "The New Generation Of Biometric Systems " Proc. BT2004 Int'l
Workshop on Biometric Technologies, pp.87-98, (2004).

14. Ma, Y., Schuckers, M., & Cukic, B. "Guidelines For Appropriate Use Of Simulated Data
For Bio Authentication -Research ". Automatic Identification Advanced Technologies,
Fourth IEEE Workshop on, 251-256, 2005.

15. Yanushkevich, S. N., Stoica, A., Shmerko, V.P. and Popel, D. V. "Biometric Inverse
Problems", Taylor & Francis I CRC Press, 2005.

16. Nicholas M. Orlans and Douglas J. Buettner and Joe Marques: "A Survey Of Synthetic
Biometrics: Capabilities And Benefits" , Proceedings of the International Conference on
Artificial Intelligence (IC-AI'04), CSREA Press, Vol. I, 499- 505, 2004

17. Yanushkevich, S.N., Stoica, A., Wang, P. S., Srihari, S.N. "Introduction To Synthesis In
Biometrics", Chapter 1 in Image Pattern Recognition: Synthesis and Analysis in
Biometrics, Vol. 67, WSPC (World Scientific Publishing Co.), pp. 5-29, 2007.

18. Questbiometrics.com, 'Biometric Definition' ,
http:/ /www.questbiometrics.com/biometric-definition.html, (Last Updated 2005).

19. Zuo, J. and Schmid,N.A. "A Model Based, Anatomy Based Method For Synthesizing Iris
Images", Lane Department of Computer Science and Electrical Engineering, West
Virginia University, Morgantown, WV 26506, USA, 2002.

20. GlobalSecurity.org, 'Biometrics Overview',
http://www.globalsecurity.org/security/systems/biometrics-history.httn, (Last Updated
2009).

21. Matyas, V. Jr., Riha,Z. "Toward Reliable User Authentication Through Biometrics",
IEEE Security & Privacy Magazine, Vol. 1 No.3, pp. 45-49, 2003.

22. Pearsall,J., Trumble,B. (Eds), The Oxford English Reference Dictionary, Oxford
University Press, Great Claredon Street, Oxford OX2 6DP, 2001.

92

23. Daugman,J., "The Importance Of Being Random: Statistical Principles Of Iris
Recognition", Pattern Recognition, 36(2), pp. 279-291, 2003.

24. Mathworks.com, 'MATLAB Central',
http:/ /www.tnathworks.com/matlabcentrallnewsreader/view thread/154150, (Last
Updated 2009.)

93

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	Inverse biometrics for keystroke dynamics
	Fatema Rashid
	Recommended Citation

